# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # import bpy import bmesh from mathutils.geometry import intersect_line_line as LineIntersect import itertools from collections import defaultdict from . import cad_module as cm def order_points(edge, point_list): ''' order these edges from distance to v1, then sandwich the sorted list with v1, v2 ''' v1, v2 = edge def dist(co): return (v1 - co).length point_list = sorted(point_list, key=dist) return [v1] + point_list + [v2] def remove_permutations_that_share_a_vertex(bm, permutations): ''' Get useful Permutations ''' final_permutations = [] for edges in permutations: raw_vert_indices = cm.vertex_indices_from_edges_tuple(bm, edges) if cm.duplicates(raw_vert_indices): continue # reaches this point if they do not share. final_permutations.append(edges) return final_permutations def get_valid_permutations(bm, edge_indices): raw_permutations = itertools.permutations(edge_indices, 2) permutations = [r for r in raw_permutations if r[0] < r[1]] return remove_permutations_that_share_a_vertex(bm, permutations) def can_skip(closest_points, vert_vectors): '''this checks if the intersection lies on both edges, returns True when criteria are not met, and thus this point can be skipped''' if not closest_points: return True if not isinstance(closest_points[0].x, float): return True if cm.num_edges_point_lies_on(closest_points[0], vert_vectors) < 2: return True # if this distance is larger than than VTX_PRECISION, we can skip it. cpa, cpb = closest_points return (cpa - cpb).length > cm.CAD_prefs.VTX_PRECISION def get_intersection_dictionary(bm, edge_indices): bm.verts.ensure_lookup_table() bm.edges.ensure_lookup_table() permutations = get_valid_permutations(bm, edge_indices) k = defaultdict(list) d = defaultdict(list) for edges in permutations: raw_vert_indices = cm.vertex_indices_from_edges_tuple(bm, edges) vert_vectors = cm.vectors_from_indices(bm, raw_vert_indices) points = LineIntersect(*vert_vectors) # some can be skipped. (NaN, None, not on both edges) if can_skip(points, vert_vectors): continue # reaches this point only when an intersection happens on both edges. [k[edge].append(points[0]) for edge in edges] # k will contain a dict of edge indices and points found on those edges. for edge_idx, unordered_points in k.items(): tv1, tv2 = bm.edges[edge_idx].verts v1 = bm.verts[tv1.index].co v2 = bm.verts[tv2.index].co ordered_points = order_points((v1, v2), unordered_points) d[edge_idx].extend(ordered_points) return d def update_mesh(obj, d): ''' Make new geometry (delete old first) ''' bpy.ops.mesh.delete(type='EDGE') bpy.ops.object.editmode_toggle() oe = obj.data.edges ov = obj.data.vertices vert_count = len(ov) edge_count = len(oe) for old_edge, point_list in d.items(): num_points = len(point_list) num_edges_to_add = num_points - 1 for i in range(num_edges_to_add): oe.add(1) ov.add(2) ov[vert_count].co = point_list[i] ov[vert_count + 1].co = point_list[i + 1] oe[edge_count].vertices = [vert_count, vert_count + 1] vert_count = len(ov) edge_count = len(oe) # set edit mode bpy.ops.object.editmode_toggle() bpy.ops.mesh.remove_doubles( threshold=cm.CAD_prefs.VTX_DOUBLES_THRSHLD, use_unselected=False) def unselect_nonintersecting(bm, d_edges, edge_indices): if len(edge_indices) > len(d_edges): reserved_edges = set(edge_indices) - set(d_edges) for edge in reserved_edges: bm.edges[edge].select = False print("unselected {}, non intersecting edges".format(reserved_edges)) class TCIntersectAllEdges(bpy.types.Operator): '''Adds a vertex at the intersections of all selected edges''' bl_idname = 'tinycad.intersectall' bl_label = 'XALL intersect all edges' bl_options = {'REGISTER', 'UNDO'} @classmethod def poll(cls, context): obj = context.active_object return obj is not None and obj.type == 'MESH' and obj.mode == 'EDIT' def execute(self, context): # must force edge selection mode here bpy.context.tool_settings.mesh_select_mode = (False, True, False) obj = context.active_object if obj.mode == "EDIT": bm = bmesh.from_edit_mesh(obj.data) selected_edges = [edge for edge in bm.edges if edge.select] edge_indices = [i.index for i in selected_edges] d = get_intersection_dictionary(bm, edge_indices) unselect_nonintersecting(bm, d.keys(), edge_indices) update_mesh(obj, d) else: print('must be in edit mode') return {'FINISHED'} def register(): bpy.utils.register_module(__name__) def unregister(): bpy.utils.unregister_module(__name__)