"Fossies" - the Fresh Open Source Software Archive

Member "Atom/resources/app/apm/node_modules/tweetnacl/README.md" (25 Nov 2016, 12075 Bytes) of archive /windows/misc/atom-windows.zip:


As a special service "Fossies" has tried to format the requested source page into HTML format (assuming markdown format). Alternatively you can here view or download the uninterpreted source code file. A member file download can also be achieved by clicking within a package contents listing on the according byte size field.

TweetNaCl.js

Port of TweetNaCl / NaCl to JavaScript for modern browsers and Node.js. Public domain.

Build Status

Demo: https://tweetnacl.js.org

:warning: Beta version. The library is stable and API is frozen, however it has not been independently reviewed. If you can help reviewing it, please contact me.

Documentation

Overview

The primary goal of this project is to produce a translation of TweetNaCl to JavaScript which is as close as possible to the original C implementation, plus a thin layer of idiomatic high-level API on top of it.

There are two versions, you can use either of them:

Installation

You can install TweetNaCl.js via a package manager:

Bower:

$ bower install tweetnacl

NPM:

$ npm install tweetnacl

or download source code.

Usage

All API functions accept and return bytes as Uint8Arrays. If you need to encode or decode strings, use functions from https://github.com/dchest/tweetnacl-util-js or one of the more robust codec packages.

In Node.js v4 and later Buffer objects are backed by Uint8Arrays, so you can freely pass them to TweetNaCl.js functions as arguments. The returned objects are still Uint8Arrays, so if you need Buffers, you'll have to convert them manually; make sure to convert using copying: new Buffer(array), instead of sharing: new Buffer(array.buffer), because some functions return subarrays of their buffers.

Public-key authenticated encryption (box)

Implements curve25519-xsalsa20-poly1305.

nacl.box.keyPair()

Generates a new random key pair for box and returns it as an object with publicKey and secretKey members:

{
   publicKey: ...,  // Uint8Array with 32-byte public key
   secretKey: ...   // Uint8Array with 32-byte secret key
}

nacl.box.keyPair.fromSecretKey(secretKey)

Returns a key pair for box with public key corresponding to the given secret key.

nacl.box(message, nonce, theirPublicKey, mySecretKey)

Encrypt and authenticates message using peer's public key, our secret key, and the given nonce, which must be unique for each distinct message for a key pair.

Returns an encrypted and authenticated message, which is nacl.box.overheadLength longer than the original message.

nacl.box.open(box, nonce, theirPublicKey, mySecretKey)

Authenticates and decrypts the given box with peer's public key, our secret key, and the given nonce.

Returns the original message, or false if authentication fails.

nacl.box.before(theirPublicKey, mySecretKey)

Returns a precomputed shared key which can be used in nacl.box.after and nacl.box.open.after.

nacl.box.after(message, nonce, sharedKey)

Same as nacl.box, but uses a shared key precomputed with nacl.box.before.

nacl.box.open.after(box, nonce, sharedKey)

Same as nacl.box.open, but uses a shared key precomputed with nacl.box.before.

nacl.box.publicKeyLength = 32

Length of public key in bytes.

nacl.box.secretKeyLength = 32

Length of secret key in bytes.

nacl.box.sharedKeyLength = 32

Length of precomputed shared key in bytes.

nacl.box.nonceLength = 24

Length of nonce in bytes.

nacl.box.overheadLength = 16

Length of overhead added to box compared to original message.

Secret-key authenticated encryption (secretbox)

Implements xsalsa20-poly1305.

nacl.secretbox(message, nonce, key)

Encrypt and authenticates message using the key and the nonce. The nonce must be unique for each distinct message for this key.

Returns an encrypted and authenticated message, which is nacl.secretbox.overheadLength longer than the original message.

nacl.secretbox.open(box, nonce, key)

Authenticates and decrypts the given secret box using the key and the nonce.

Returns the original message, or false if authentication fails.

nacl.secretbox.keyLength = 32

Length of key in bytes.

nacl.secretbox.nonceLength = 24

Length of nonce in bytes.

nacl.secretbox.overheadLength = 16

Length of overhead added to secret box compared to original message.

Scalar multiplication

Implements curve25519.

nacl.scalarMult(n, p)

Multiplies an integer n by a group element p and returns the resulting group element.

nacl.scalarMult.base(n)

Multiplies an integer n by a standard group element and returns the resulting group element.

nacl.scalarMult.scalarLength = 32

Length of scalar in bytes.

nacl.scalarMult.groupElementLength = 32

Length of group element in bytes.

Signatures

Implements ed25519.

nacl.sign.keyPair()

Generates new random key pair for signing and returns it as an object with publicKey and secretKey members:

{
   publicKey: ...,  // Uint8Array with 32-byte public key
   secretKey: ...   // Uint8Array with 64-byte secret key
}

nacl.sign.keyPair.fromSecretKey(secretKey)

Returns a signing key pair with public key corresponding to the given 64-byte secret key. The secret key must have been generated by nacl.sign.keyPair or nacl.sign.keyPair.fromSeed.

nacl.sign.keyPair.fromSeed(seed)

Returns a new signing key pair generated deterministically from a 32-byte seed. The seed must contain enough entropy to be secure. This method is not recommended for general use: instead, use nacl.sign.keyPair to generate a new key pair from a random seed.

nacl.sign(message, secretKey)

Signs the message using the secret key and returns a signed message.

nacl.sign.open(signedMessage, publicKey)

Verifies the signed message and returns the message without signature.

Returns null if verification failed.

nacl.sign.detached(message, secretKey)

Signs the message using the secret key and returns a signature.

nacl.sign.detached.verify(message, signature, publicKey)

Verifies the signature for the message and returns true if verification succeeded or false if it failed.

nacl.sign.publicKeyLength = 32

Length of signing public key in bytes.

nacl.sign.secretKeyLength = 64

Length of signing secret key in bytes.

nacl.sign.seedLength = 32

Length of seed for nacl.sign.keyPair.fromSeed in bytes.

nacl.sign.signatureLength = 64

Length of signature in bytes.

Hashing

Implements SHA-512.

nacl.hash(message)

Returns SHA-512 hash of the message.

nacl.hash.hashLength = 64

Length of hash in bytes.

Random bytes generation

nacl.randomBytes(length)

Returns a Uint8Array of the given length containing random bytes of cryptographic quality.

Implementation note

TweetNaCl.js uses the following methods to generate random bytes, depending on the platform it runs on:

If the platform doesn't provide a suitable PRNG, the following functions, which require random numbers, will throw exception:

Other functions are deterministic and will continue working.

If a platform you are targeting doesn't implement secure random number generator, but you somehow have a cryptographically-strong source of entropy (not Math.random!), and you know what you are doing, you can plug it into TweetNaCl.js like this:

nacl.setPRNG(function(x, n) {
  // ... copy n random bytes into x ...
});

Note that nacl.setPRNG completely replaces internal random byte generator with the one provided.

Constant-time comparison

nacl.verify(x, y)

Compares x and y in constant time and returns true if their lengths are non-zero and equal, and their contents are equal.

Returns false if either of the arguments has zero length, or arguments have different lengths, or their contents differ.

System requirements

TweetNaCl.js supports modern browsers that have a cryptographically secure pseudorandom number generator and typed arrays, including the latest versions of:

Other systems:

Development and testing

Install NPM modules needed for development:

$ npm install

To build minified versions:

$ npm run build

Tests use minified version, so make sure to rebuild it every time you change nacl.js or nacl-fast.js.

Testing

To run tests in Node.js:

$ npm run test-node

By default all tests described here work on nacl.min.js. To test other versions, set environment variable NACL_SRC to the file name you want to test. For example, the following command will test fast minified version:

$ NACL_SRC=nacl-fast.min.js npm run test-node

To run full suite of tests in Node.js, including comparing outputs of JavaScript port to outputs of the original C version:

$ npm run test-node-all

To prepare tests for browsers:

$ npm run build-test-browser

and then open test/browser/test.html (or test/browser/test-fast.html) to run them.

To run headless browser tests with tape-run (powered by Electron):

$ npm run test-browser

(If you get Error: spawn ENOENT, install xvfb: sudo apt-get install xvfb.)

To run tests in both Node and Electron:

$ npm test

Benchmarking

To run benchmarks in Node.js:

$ npm run bench
$ NACL_SRC=nacl-fast.min.js npm run bench

To run benchmarks in a browser, open test/benchmark/bench.html (or test/benchmark/bench-fast.html).

Contributors

JavaScript port:

Original authors of NaCl, TweetNaCl and Poly1305-donna (who are not responsible for any errors in this implementation):

Contributors have dedicated their work to the public domain.

This software is distributed without any warranty.

Third-party libraries based on TweetNaCl.js

Who uses it

Some notable users of TweetNaCl.js: