"Fossies" - the Fresh Open Source Software Archive

Member "Atom/resources/app/apm/node_modules/jsbn/index.js" (7 Feb 2017, 41810 Bytes) of archive /windows/misc/atom-windows.zip:


As a special service "Fossies" has tried to format the requested source page into HTML format using (guessed) Javascript source code syntax highlighting (style: standard) with prefixed line numbers and code folding option. Alternatively you can here view or download the uninterpreted source code file.

    1 (function(){
    2 
    3     // Copyright (c) 2005  Tom Wu
    4     // All Rights Reserved.
    5     // See "LICENSE" for details.
    6 
    7     // Basic JavaScript BN library - subset useful for RSA encryption.
    8 
    9     // Bits per digit
   10     var dbits;
   11 
   12     // JavaScript engine analysis
   13     var canary = 0xdeadbeefcafe;
   14     var j_lm = ((canary&0xffffff)==0xefcafe);
   15 
   16     // (public) Constructor
   17     function BigInteger(a,b,c) {
   18       if(a != null)
   19         if("number" == typeof a) this.fromNumber(a,b,c);
   20         else if(b == null && "string" != typeof a) this.fromString(a,256);
   21         else this.fromString(a,b);
   22     }
   23 
   24     // return new, unset BigInteger
   25     function nbi() { return new BigInteger(null); }
   26 
   27     // am: Compute w_j += (x*this_i), propagate carries,
   28     // c is initial carry, returns final carry.
   29     // c < 3*dvalue, x < 2*dvalue, this_i < dvalue
   30     // We need to select the fastest one that works in this environment.
   31 
   32     // am1: use a single mult and divide to get the high bits,
   33     // max digit bits should be 26 because
   34     // max internal value = 2*dvalue^2-2*dvalue (< 2^53)
   35     function am1(i,x,w,j,c,n) {
   36       while(--n >= 0) {
   37         var v = x*this[i++]+w[j]+c;
   38         c = Math.floor(v/0x4000000);
   39         w[j++] = v&0x3ffffff;
   40       }
   41       return c;
   42     }
   43     // am2 avoids a big mult-and-extract completely.
   44     // Max digit bits should be <= 30 because we do bitwise ops
   45     // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
   46     function am2(i,x,w,j,c,n) {
   47       var xl = x&0x7fff, xh = x>>15;
   48       while(--n >= 0) {
   49         var l = this[i]&0x7fff;
   50         var h = this[i++]>>15;
   51         var m = xh*l+h*xl;
   52         l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff);
   53         c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);
   54         w[j++] = l&0x3fffffff;
   55       }
   56       return c;
   57     }
   58     // Alternately, set max digit bits to 28 since some
   59     // browsers slow down when dealing with 32-bit numbers.
   60     function am3(i,x,w,j,c,n) {
   61       var xl = x&0x3fff, xh = x>>14;
   62       while(--n >= 0) {
   63         var l = this[i]&0x3fff;
   64         var h = this[i++]>>14;
   65         var m = xh*l+h*xl;
   66         l = xl*l+((m&0x3fff)<<14)+w[j]+c;
   67         c = (l>>28)+(m>>14)+xh*h;
   68         w[j++] = l&0xfffffff;
   69       }
   70       return c;
   71     }
   72     var inBrowser = typeof navigator !== "undefined";
   73     if(inBrowser && j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
   74       BigInteger.prototype.am = am2;
   75       dbits = 30;
   76     }
   77     else if(inBrowser && j_lm && (navigator.appName != "Netscape")) {
   78       BigInteger.prototype.am = am1;
   79       dbits = 26;
   80     }
   81     else { // Mozilla/Netscape seems to prefer am3
   82       BigInteger.prototype.am = am3;
   83       dbits = 28;
   84     }
   85 
   86     BigInteger.prototype.DB = dbits;
   87     BigInteger.prototype.DM = ((1<<dbits)-1);
   88     BigInteger.prototype.DV = (1<<dbits);
   89 
   90     var BI_FP = 52;
   91     BigInteger.prototype.FV = Math.pow(2,BI_FP);
   92     BigInteger.prototype.F1 = BI_FP-dbits;
   93     BigInteger.prototype.F2 = 2*dbits-BI_FP;
   94 
   95     // Digit conversions
   96     var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
   97     var BI_RC = new Array();
   98     var rr,vv;
   99     rr = "0".charCodeAt(0);
  100     for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
  101     rr = "a".charCodeAt(0);
  102     for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
  103     rr = "A".charCodeAt(0);
  104     for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
  105 
  106     function int2char(n) { return BI_RM.charAt(n); }
  107     function intAt(s,i) {
  108       var c = BI_RC[s.charCodeAt(i)];
  109       return (c==null)?-1:c;
  110     }
  111 
  112     // (protected) copy this to r
  113     function bnpCopyTo(r) {
  114       for(var i = this.t-1; i >= 0; --i) r[i] = this[i];
  115       r.t = this.t;
  116       r.s = this.s;
  117     }
  118 
  119     // (protected) set from integer value x, -DV <= x < DV
  120     function bnpFromInt(x) {
  121       this.t = 1;
  122       this.s = (x<0)?-1:0;
  123       if(x > 0) this[0] = x;
  124       else if(x < -1) this[0] = x+this.DV;
  125       else this.t = 0;
  126     }
  127 
  128     // return bigint initialized to value
  129     function nbv(i) { var r = nbi(); r.fromInt(i); return r; }
  130 
  131     // (protected) set from string and radix
  132     function bnpFromString(s,b) {
  133       var k;
  134       if(b == 16) k = 4;
  135       else if(b == 8) k = 3;
  136       else if(b == 256) k = 8; // byte array
  137       else if(b == 2) k = 1;
  138       else if(b == 32) k = 5;
  139       else if(b == 4) k = 2;
  140       else { this.fromRadix(s,b); return; }
  141       this.t = 0;
  142       this.s = 0;
  143       var i = s.length, mi = false, sh = 0;
  144       while(--i >= 0) {
  145         var x = (k==8)?s[i]&0xff:intAt(s,i);
  146         if(x < 0) {
  147           if(s.charAt(i) == "-") mi = true;
  148           continue;
  149         }
  150         mi = false;
  151         if(sh == 0)
  152           this[this.t++] = x;
  153         else if(sh+k > this.DB) {
  154           this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh;
  155           this[this.t++] = (x>>(this.DB-sh));
  156         }
  157         else
  158           this[this.t-1] |= x<<sh;
  159         sh += k;
  160         if(sh >= this.DB) sh -= this.DB;
  161       }
  162       if(k == 8 && (s[0]&0x80) != 0) {
  163         this.s = -1;
  164         if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh;
  165       }
  166       this.clamp();
  167       if(mi) BigInteger.ZERO.subTo(this,this);
  168     }
  169 
  170     // (protected) clamp off excess high words
  171     function bnpClamp() {
  172       var c = this.s&this.DM;
  173       while(this.t > 0 && this[this.t-1] == c) --this.t;
  174     }
  175 
  176     // (public) return string representation in given radix
  177     function bnToString(b) {
  178       if(this.s < 0) return "-"+this.negate().toString(b);
  179       var k;
  180       if(b == 16) k = 4;
  181       else if(b == 8) k = 3;
  182       else if(b == 2) k = 1;
  183       else if(b == 32) k = 5;
  184       else if(b == 4) k = 2;
  185       else return this.toRadix(b);
  186       var km = (1<<k)-1, d, m = false, r = "", i = this.t;
  187       var p = this.DB-(i*this.DB)%k;
  188       if(i-- > 0) {
  189         if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); }
  190         while(i >= 0) {
  191           if(p < k) {
  192             d = (this[i]&((1<<p)-1))<<(k-p);
  193             d |= this[--i]>>(p+=this.DB-k);
  194           }
  195           else {
  196             d = (this[i]>>(p-=k))&km;
  197             if(p <= 0) { p += this.DB; --i; }
  198           }
  199           if(d > 0) m = true;
  200           if(m) r += int2char(d);
  201         }
  202       }
  203       return m?r:"0";
  204     }
  205 
  206     // (public) -this
  207     function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }
  208 
  209     // (public) |this|
  210     function bnAbs() { return (this.s<0)?this.negate():this; }
  211 
  212     // (public) return + if this > a, - if this < a, 0 if equal
  213     function bnCompareTo(a) {
  214       var r = this.s-a.s;
  215       if(r != 0) return r;
  216       var i = this.t;
  217       r = i-a.t;
  218       if(r != 0) return (this.s<0)?-r:r;
  219       while(--i >= 0) if((r=this[i]-a[i]) != 0) return r;
  220       return 0;
  221     }
  222 
  223     // returns bit length of the integer x
  224     function nbits(x) {
  225       var r = 1, t;
  226       if((t=x>>>16) != 0) { x = t; r += 16; }
  227       if((t=x>>8) != 0) { x = t; r += 8; }
  228       if((t=x>>4) != 0) { x = t; r += 4; }
  229       if((t=x>>2) != 0) { x = t; r += 2; }
  230       if((t=x>>1) != 0) { x = t; r += 1; }
  231       return r;
  232     }
  233 
  234     // (public) return the number of bits in "this"
  235     function bnBitLength() {
  236       if(this.t <= 0) return 0;
  237       return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM));
  238     }
  239 
  240     // (protected) r = this << n*DB
  241     function bnpDLShiftTo(n,r) {
  242       var i;
  243       for(i = this.t-1; i >= 0; --i) r[i+n] = this[i];
  244       for(i = n-1; i >= 0; --i) r[i] = 0;
  245       r.t = this.t+n;
  246       r.s = this.s;
  247     }
  248 
  249     // (protected) r = this >> n*DB
  250     function bnpDRShiftTo(n,r) {
  251       for(var i = n; i < this.t; ++i) r[i-n] = this[i];
  252       r.t = Math.max(this.t-n,0);
  253       r.s = this.s;
  254     }
  255 
  256     // (protected) r = this << n
  257     function bnpLShiftTo(n,r) {
  258       var bs = n%this.DB;
  259       var cbs = this.DB-bs;
  260       var bm = (1<<cbs)-1;
  261       var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i;
  262       for(i = this.t-1; i >= 0; --i) {
  263         r[i+ds+1] = (this[i]>>cbs)|c;
  264         c = (this[i]&bm)<<bs;
  265       }
  266       for(i = ds-1; i >= 0; --i) r[i] = 0;
  267       r[ds] = c;
  268       r.t = this.t+ds+1;
  269       r.s = this.s;
  270       r.clamp();
  271     }
  272 
  273     // (protected) r = this >> n
  274     function bnpRShiftTo(n,r) {
  275       r.s = this.s;
  276       var ds = Math.floor(n/this.DB);
  277       if(ds >= this.t) { r.t = 0; return; }
  278       var bs = n%this.DB;
  279       var cbs = this.DB-bs;
  280       var bm = (1<<bs)-1;
  281       r[0] = this[ds]>>bs;
  282       for(var i = ds+1; i < this.t; ++i) {
  283         r[i-ds-1] |= (this[i]&bm)<<cbs;
  284         r[i-ds] = this[i]>>bs;
  285       }
  286       if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs;
  287       r.t = this.t-ds;
  288       r.clamp();
  289     }
  290 
  291     // (protected) r = this - a
  292     function bnpSubTo(a,r) {
  293       var i = 0, c = 0, m = Math.min(a.t,this.t);
  294       while(i < m) {
  295         c += this[i]-a[i];
  296         r[i++] = c&this.DM;
  297         c >>= this.DB;
  298       }
  299       if(a.t < this.t) {
  300         c -= a.s;
  301         while(i < this.t) {
  302           c += this[i];
  303           r[i++] = c&this.DM;
  304           c >>= this.DB;
  305         }
  306         c += this.s;
  307       }
  308       else {
  309         c += this.s;
  310         while(i < a.t) {
  311           c -= a[i];
  312           r[i++] = c&this.DM;
  313           c >>= this.DB;
  314         }
  315         c -= a.s;
  316       }
  317       r.s = (c<0)?-1:0;
  318       if(c < -1) r[i++] = this.DV+c;
  319       else if(c > 0) r[i++] = c;
  320       r.t = i;
  321       r.clamp();
  322     }
  323 
  324     // (protected) r = this * a, r != this,a (HAC 14.12)
  325     // "this" should be the larger one if appropriate.
  326     function bnpMultiplyTo(a,r) {
  327       var x = this.abs(), y = a.abs();
  328       var i = x.t;
  329       r.t = i+y.t;
  330       while(--i >= 0) r[i] = 0;
  331       for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t);
  332       r.s = 0;
  333       r.clamp();
  334       if(this.s != a.s) BigInteger.ZERO.subTo(r,r);
  335     }
  336 
  337     // (protected) r = this^2, r != this (HAC 14.16)
  338     function bnpSquareTo(r) {
  339       var x = this.abs();
  340       var i = r.t = 2*x.t;
  341       while(--i >= 0) r[i] = 0;
  342       for(i = 0; i < x.t-1; ++i) {
  343         var c = x.am(i,x[i],r,2*i,0,1);
  344         if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) {
  345           r[i+x.t] -= x.DV;
  346           r[i+x.t+1] = 1;
  347         }
  348       }
  349       if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1);
  350       r.s = 0;
  351       r.clamp();
  352     }
  353 
  354     // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
  355     // r != q, this != m.  q or r may be null.
  356     function bnpDivRemTo(m,q,r) {
  357       var pm = m.abs();
  358       if(pm.t <= 0) return;
  359       var pt = this.abs();
  360       if(pt.t < pm.t) {
  361         if(q != null) q.fromInt(0);
  362         if(r != null) this.copyTo(r);
  363         return;
  364       }
  365       if(r == null) r = nbi();
  366       var y = nbi(), ts = this.s, ms = m.s;
  367       var nsh = this.DB-nbits(pm[pm.t-1]);   // normalize modulus
  368       if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); }
  369       else { pm.copyTo(y); pt.copyTo(r); }
  370       var ys = y.t;
  371       var y0 = y[ys-1];
  372       if(y0 == 0) return;
  373       var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0);
  374       var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2;
  375       var i = r.t, j = i-ys, t = (q==null)?nbi():q;
  376       y.dlShiftTo(j,t);
  377       if(r.compareTo(t) >= 0) {
  378         r[r.t++] = 1;
  379         r.subTo(t,r);
  380       }
  381       BigInteger.ONE.dlShiftTo(ys,t);
  382       t.subTo(y,y);  // "negative" y so we can replace sub with am later
  383       while(y.t < ys) y[y.t++] = 0;
  384       while(--j >= 0) {
  385         // Estimate quotient digit
  386         var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2);
  387         if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) {   // Try it out
  388           y.dlShiftTo(j,t);
  389           r.subTo(t,r);
  390           while(r[i] < --qd) r.subTo(t,r);
  391         }
  392       }
  393       if(q != null) {
  394         r.drShiftTo(ys,q);
  395         if(ts != ms) BigInteger.ZERO.subTo(q,q);
  396       }
  397       r.t = ys;
  398       r.clamp();
  399       if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder
  400       if(ts < 0) BigInteger.ZERO.subTo(r,r);
  401     }
  402 
  403     // (public) this mod a
  404     function bnMod(a) {
  405       var r = nbi();
  406       this.abs().divRemTo(a,null,r);
  407       if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r);
  408       return r;
  409     }
  410 
  411     // Modular reduction using "classic" algorithm
  412     function Classic(m) { this.m = m; }
  413     function cConvert(x) {
  414       if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
  415       else return x;
  416     }
  417     function cRevert(x) { return x; }
  418     function cReduce(x) { x.divRemTo(this.m,null,x); }
  419     function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
  420     function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
  421 
  422     Classic.prototype.convert = cConvert;
  423     Classic.prototype.revert = cRevert;
  424     Classic.prototype.reduce = cReduce;
  425     Classic.prototype.mulTo = cMulTo;
  426     Classic.prototype.sqrTo = cSqrTo;
  427 
  428     // (protected) return "-1/this % 2^DB"; useful for Mont. reduction
  429     // justification:
  430     //         xy == 1 (mod m)
  431     //         xy =  1+km
  432     //   xy(2-xy) = (1+km)(1-km)
  433     // x[y(2-xy)] = 1-k^2m^2
  434     // x[y(2-xy)] == 1 (mod m^2)
  435     // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
  436     // should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
  437     // JS multiply "overflows" differently from C/C++, so care is needed here.
  438     function bnpInvDigit() {
  439       if(this.t < 1) return 0;
  440       var x = this[0];
  441       if((x&1) == 0) return 0;
  442       var y = x&3;       // y == 1/x mod 2^2
  443       y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4
  444       y = (y*(2-(x&0xff)*y))&0xff;   // y == 1/x mod 2^8
  445       y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff;    // y == 1/x mod 2^16
  446       // last step - calculate inverse mod DV directly;
  447       // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
  448       y = (y*(2-x*y%this.DV))%this.DV;       // y == 1/x mod 2^dbits
  449       // we really want the negative inverse, and -DV < y < DV
  450       return (y>0)?this.DV-y:-y;
  451     }
  452 
  453     // Montgomery reduction
  454     function Montgomery(m) {
  455       this.m = m;
  456       this.mp = m.invDigit();
  457       this.mpl = this.mp&0x7fff;
  458       this.mph = this.mp>>15;
  459       this.um = (1<<(m.DB-15))-1;
  460       this.mt2 = 2*m.t;
  461     }
  462 
  463     // xR mod m
  464     function montConvert(x) {
  465       var r = nbi();
  466       x.abs().dlShiftTo(this.m.t,r);
  467       r.divRemTo(this.m,null,r);
  468       if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r);
  469       return r;
  470     }
  471 
  472     // x/R mod m
  473     function montRevert(x) {
  474       var r = nbi();
  475       x.copyTo(r);
  476       this.reduce(r);
  477       return r;
  478     }
  479 
  480     // x = x/R mod m (HAC 14.32)
  481     function montReduce(x) {
  482       while(x.t <= this.mt2) // pad x so am has enough room later
  483         x[x.t++] = 0;
  484       for(var i = 0; i < this.m.t; ++i) {
  485         // faster way of calculating u0 = x[i]*mp mod DV
  486         var j = x[i]&0x7fff;
  487         var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM;
  488         // use am to combine the multiply-shift-add into one call
  489         j = i+this.m.t;
  490         x[j] += this.m.am(0,u0,x,i,0,this.m.t);
  491         // propagate carry
  492         while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; }
  493       }
  494       x.clamp();
  495       x.drShiftTo(this.m.t,x);
  496       if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
  497     }
  498 
  499     // r = "x^2/R mod m"; x != r
  500     function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
  501 
  502     // r = "xy/R mod m"; x,y != r
  503     function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
  504 
  505     Montgomery.prototype.convert = montConvert;
  506     Montgomery.prototype.revert = montRevert;
  507     Montgomery.prototype.reduce = montReduce;
  508     Montgomery.prototype.mulTo = montMulTo;
  509     Montgomery.prototype.sqrTo = montSqrTo;
  510 
  511     // (protected) true iff this is even
  512     function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }
  513 
  514     // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
  515     function bnpExp(e,z) {
  516       if(e > 0xffffffff || e < 1) return BigInteger.ONE;
  517       var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
  518       g.copyTo(r);
  519       while(--i >= 0) {
  520         z.sqrTo(r,r2);
  521         if((e&(1<<i)) > 0) z.mulTo(r2,g,r);
  522         else { var t = r; r = r2; r2 = t; }
  523       }
  524       return z.revert(r);
  525     }
  526 
  527     // (public) this^e % m, 0 <= e < 2^32
  528     function bnModPowInt(e,m) {
  529       var z;
  530       if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);
  531       return this.exp(e,z);
  532     }
  533 
  534     // protected
  535     BigInteger.prototype.copyTo = bnpCopyTo;
  536     BigInteger.prototype.fromInt = bnpFromInt;
  537     BigInteger.prototype.fromString = bnpFromString;
  538     BigInteger.prototype.clamp = bnpClamp;
  539     BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
  540     BigInteger.prototype.drShiftTo = bnpDRShiftTo;
  541     BigInteger.prototype.lShiftTo = bnpLShiftTo;
  542     BigInteger.prototype.rShiftTo = bnpRShiftTo;
  543     BigInteger.prototype.subTo = bnpSubTo;
  544     BigInteger.prototype.multiplyTo = bnpMultiplyTo;
  545     BigInteger.prototype.squareTo = bnpSquareTo;
  546     BigInteger.prototype.divRemTo = bnpDivRemTo;
  547     BigInteger.prototype.invDigit = bnpInvDigit;
  548     BigInteger.prototype.isEven = bnpIsEven;
  549     BigInteger.prototype.exp = bnpExp;
  550 
  551     // public
  552     BigInteger.prototype.toString = bnToString;
  553     BigInteger.prototype.negate = bnNegate;
  554     BigInteger.prototype.abs = bnAbs;
  555     BigInteger.prototype.compareTo = bnCompareTo;
  556     BigInteger.prototype.bitLength = bnBitLength;
  557     BigInteger.prototype.mod = bnMod;
  558     BigInteger.prototype.modPowInt = bnModPowInt;
  559 
  560     // "constants"
  561     BigInteger.ZERO = nbv(0);
  562     BigInteger.ONE = nbv(1);
  563 
  564     // Copyright (c) 2005-2009  Tom Wu
  565     // All Rights Reserved.
  566     // See "LICENSE" for details.
  567 
  568     // Extended JavaScript BN functions, required for RSA private ops.
  569 
  570     // Version 1.1: new BigInteger("0", 10) returns "proper" zero
  571     // Version 1.2: square() API, isProbablePrime fix
  572 
  573     // (public)
  574     function bnClone() { var r = nbi(); this.copyTo(r); return r; }
  575 
  576     // (public) return value as integer
  577     function bnIntValue() {
  578       if(this.s < 0) {
  579         if(this.t == 1) return this[0]-this.DV;
  580         else if(this.t == 0) return -1;
  581       }
  582       else if(this.t == 1) return this[0];
  583       else if(this.t == 0) return 0;
  584       // assumes 16 < DB < 32
  585       return ((this[1]&((1<<(32-this.DB))-1))<<this.DB)|this[0];
  586     }
  587 
  588     // (public) return value as byte
  589     function bnByteValue() { return (this.t==0)?this.s:(this[0]<<24)>>24; }
  590 
  591     // (public) return value as short (assumes DB>=16)
  592     function bnShortValue() { return (this.t==0)?this.s:(this[0]<<16)>>16; }
  593 
  594     // (protected) return x s.t. r^x < DV
  595     function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); }
  596 
  597     // (public) 0 if this == 0, 1 if this > 0
  598     function bnSigNum() {
  599       if(this.s < 0) return -1;
  600       else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0;
  601       else return 1;
  602     }
  603 
  604     // (protected) convert to radix string
  605     function bnpToRadix(b) {
  606       if(b == null) b = 10;
  607       if(this.signum() == 0 || b < 2 || b > 36) return "0";
  608       var cs = this.chunkSize(b);
  609       var a = Math.pow(b,cs);
  610       var d = nbv(a), y = nbi(), z = nbi(), r = "";
  611       this.divRemTo(d,y,z);
  612       while(y.signum() > 0) {
  613         r = (a+z.intValue()).toString(b).substr(1) + r;
  614         y.divRemTo(d,y,z);
  615       }
  616       return z.intValue().toString(b) + r;
  617     }
  618 
  619     // (protected) convert from radix string
  620     function bnpFromRadix(s,b) {
  621       this.fromInt(0);
  622       if(b == null) b = 10;
  623       var cs = this.chunkSize(b);
  624       var d = Math.pow(b,cs), mi = false, j = 0, w = 0;
  625       for(var i = 0; i < s.length; ++i) {
  626         var x = intAt(s,i);
  627         if(x < 0) {
  628           if(s.charAt(i) == "-" && this.signum() == 0) mi = true;
  629           continue;
  630         }
  631         w = b*w+x;
  632         if(++j >= cs) {
  633           this.dMultiply(d);
  634           this.dAddOffset(w,0);
  635           j = 0;
  636           w = 0;
  637         }
  638       }
  639       if(j > 0) {
  640         this.dMultiply(Math.pow(b,j));
  641         this.dAddOffset(w,0);
  642       }
  643       if(mi) BigInteger.ZERO.subTo(this,this);
  644     }
  645 
  646     // (protected) alternate constructor
  647     function bnpFromNumber(a,b,c) {
  648       if("number" == typeof b) {
  649         // new BigInteger(int,int,RNG)
  650         if(a < 2) this.fromInt(1);
  651         else {
  652           this.fromNumber(a,c);
  653           if(!this.testBit(a-1))    // force MSB set
  654             this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this);
  655           if(this.isEven()) this.dAddOffset(1,0); // force odd
  656           while(!this.isProbablePrime(b)) {
  657             this.dAddOffset(2,0);
  658             if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this);
  659           }
  660         }
  661       }
  662       else {
  663         // new BigInteger(int,RNG)
  664         var x = new Array(), t = a&7;
  665         x.length = (a>>3)+1;
  666         b.nextBytes(x);
  667         if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0;
  668         this.fromString(x,256);
  669       }
  670     }
  671 
  672     // (public) convert to bigendian byte array
  673     function bnToByteArray() {
  674       var i = this.t, r = new Array();
  675       r[0] = this.s;
  676       var p = this.DB-(i*this.DB)%8, d, k = 0;
  677       if(i-- > 0) {
  678         if(p < this.DB && (d = this[i]>>p) != (this.s&this.DM)>>p)
  679           r[k++] = d|(this.s<<(this.DB-p));
  680         while(i >= 0) {
  681           if(p < 8) {
  682             d = (this[i]&((1<<p)-1))<<(8-p);
  683             d |= this[--i]>>(p+=this.DB-8);
  684           }
  685           else {
  686             d = (this[i]>>(p-=8))&0xff;
  687             if(p <= 0) { p += this.DB; --i; }
  688           }
  689           if((d&0x80) != 0) d |= -256;
  690           if(k == 0 && (this.s&0x80) != (d&0x80)) ++k;
  691           if(k > 0 || d != this.s) r[k++] = d;
  692         }
  693       }
  694       return r;
  695     }
  696 
  697     function bnEquals(a) { return(this.compareTo(a)==0); }
  698     function bnMin(a) { return(this.compareTo(a)<0)?this:a; }
  699     function bnMax(a) { return(this.compareTo(a)>0)?this:a; }
  700 
  701     // (protected) r = this op a (bitwise)
  702     function bnpBitwiseTo(a,op,r) {
  703       var i, f, m = Math.min(a.t,this.t);
  704       for(i = 0; i < m; ++i) r[i] = op(this[i],a[i]);
  705       if(a.t < this.t) {
  706         f = a.s&this.DM;
  707         for(i = m; i < this.t; ++i) r[i] = op(this[i],f);
  708         r.t = this.t;
  709       }
  710       else {
  711         f = this.s&this.DM;
  712         for(i = m; i < a.t; ++i) r[i] = op(f,a[i]);
  713         r.t = a.t;
  714       }
  715       r.s = op(this.s,a.s);
  716       r.clamp();
  717     }
  718 
  719     // (public) this & a
  720     function op_and(x,y) { return x&y; }
  721     function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; }
  722 
  723     // (public) this | a
  724     function op_or(x,y) { return x|y; }
  725     function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; }
  726 
  727     // (public) this ^ a
  728     function op_xor(x,y) { return x^y; }
  729     function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; }
  730 
  731     // (public) this & ~a
  732     function op_andnot(x,y) { return x&~y; }
  733     function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; }
  734 
  735     // (public) ~this
  736     function bnNot() {
  737       var r = nbi();
  738       for(var i = 0; i < this.t; ++i) r[i] = this.DM&~this[i];
  739       r.t = this.t;
  740       r.s = ~this.s;
  741       return r;
  742     }
  743 
  744     // (public) this << n
  745     function bnShiftLeft(n) {
  746       var r = nbi();
  747       if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r);
  748       return r;
  749     }
  750 
  751     // (public) this >> n
  752     function bnShiftRight(n) {
  753       var r = nbi();
  754       if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r);
  755       return r;
  756     }
  757 
  758     // return index of lowest 1-bit in x, x < 2^31
  759     function lbit(x) {
  760       if(x == 0) return -1;
  761       var r = 0;
  762       if((x&0xffff) == 0) { x >>= 16; r += 16; }
  763       if((x&0xff) == 0) { x >>= 8; r += 8; }
  764       if((x&0xf) == 0) { x >>= 4; r += 4; }
  765       if((x&3) == 0) { x >>= 2; r += 2; }
  766       if((x&1) == 0) ++r;
  767       return r;
  768     }
  769 
  770     // (public) returns index of lowest 1-bit (or -1 if none)
  771     function bnGetLowestSetBit() {
  772       for(var i = 0; i < this.t; ++i)
  773         if(this[i] != 0) return i*this.DB+lbit(this[i]);
  774       if(this.s < 0) return this.t*this.DB;
  775       return -1;
  776     }
  777 
  778     // return number of 1 bits in x
  779     function cbit(x) {
  780       var r = 0;
  781       while(x != 0) { x &= x-1; ++r; }
  782       return r;
  783     }
  784 
  785     // (public) return number of set bits
  786     function bnBitCount() {
  787       var r = 0, x = this.s&this.DM;
  788       for(var i = 0; i < this.t; ++i) r += cbit(this[i]^x);
  789       return r;
  790     }
  791 
  792     // (public) true iff nth bit is set
  793     function bnTestBit(n) {
  794       var j = Math.floor(n/this.DB);
  795       if(j >= this.t) return(this.s!=0);
  796       return((this[j]&(1<<(n%this.DB)))!=0);
  797     }
  798 
  799     // (protected) this op (1<<n)
  800     function bnpChangeBit(n,op) {
  801       var r = BigInteger.ONE.shiftLeft(n);
  802       this.bitwiseTo(r,op,r);
  803       return r;
  804     }
  805 
  806     // (public) this | (1<<n)
  807     function bnSetBit(n) { return this.changeBit(n,op_or); }
  808 
  809     // (public) this & ~(1<<n)
  810     function bnClearBit(n) { return this.changeBit(n,op_andnot); }
  811 
  812     // (public) this ^ (1<<n)
  813     function bnFlipBit(n) { return this.changeBit(n,op_xor); }
  814 
  815     // (protected) r = this + a
  816     function bnpAddTo(a,r) {
  817       var i = 0, c = 0, m = Math.min(a.t,this.t);
  818       while(i < m) {
  819         c += this[i]+a[i];
  820         r[i++] = c&this.DM;
  821         c >>= this.DB;
  822       }
  823       if(a.t < this.t) {
  824         c += a.s;
  825         while(i < this.t) {
  826           c += this[i];
  827           r[i++] = c&this.DM;
  828           c >>= this.DB;
  829         }
  830         c += this.s;
  831       }
  832       else {
  833         c += this.s;
  834         while(i < a.t) {
  835           c += a[i];
  836           r[i++] = c&this.DM;
  837           c >>= this.DB;
  838         }
  839         c += a.s;
  840       }
  841       r.s = (c<0)?-1:0;
  842       if(c > 0) r[i++] = c;
  843       else if(c < -1) r[i++] = this.DV+c;
  844       r.t = i;
  845       r.clamp();
  846     }
  847 
  848     // (public) this + a
  849     function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; }
  850 
  851     // (public) this - a
  852     function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; }
  853 
  854     // (public) this * a
  855     function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; }
  856 
  857     // (public) this^2
  858     function bnSquare() { var r = nbi(); this.squareTo(r); return r; }
  859 
  860     // (public) this / a
  861     function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; }
  862 
  863     // (public) this % a
  864     function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; }
  865 
  866     // (public) [this/a,this%a]
  867     function bnDivideAndRemainder(a) {
  868       var q = nbi(), r = nbi();
  869       this.divRemTo(a,q,r);
  870       return new Array(q,r);
  871     }
  872 
  873     // (protected) this *= n, this >= 0, 1 < n < DV
  874     function bnpDMultiply(n) {
  875       this[this.t] = this.am(0,n-1,this,0,0,this.t);
  876       ++this.t;
  877       this.clamp();
  878     }
  879 
  880     // (protected) this += n << w words, this >= 0
  881     function bnpDAddOffset(n,w) {
  882       if(n == 0) return;
  883       while(this.t <= w) this[this.t++] = 0;
  884       this[w] += n;
  885       while(this[w] >= this.DV) {
  886         this[w] -= this.DV;
  887         if(++w >= this.t) this[this.t++] = 0;
  888         ++this[w];
  889       }
  890     }
  891 
  892     // A "null" reducer
  893     function NullExp() {}
  894     function nNop(x) { return x; }
  895     function nMulTo(x,y,r) { x.multiplyTo(y,r); }
  896     function nSqrTo(x,r) { x.squareTo(r); }
  897 
  898     NullExp.prototype.convert = nNop;
  899     NullExp.prototype.revert = nNop;
  900     NullExp.prototype.mulTo = nMulTo;
  901     NullExp.prototype.sqrTo = nSqrTo;
  902 
  903     // (public) this^e
  904     function bnPow(e) { return this.exp(e,new NullExp()); }
  905 
  906     // (protected) r = lower n words of "this * a", a.t <= n
  907     // "this" should be the larger one if appropriate.
  908     function bnpMultiplyLowerTo(a,n,r) {
  909       var i = Math.min(this.t+a.t,n);
  910       r.s = 0; // assumes a,this >= 0
  911       r.t = i;
  912       while(i > 0) r[--i] = 0;
  913       var j;
  914       for(j = r.t-this.t; i < j; ++i) r[i+this.t] = this.am(0,a[i],r,i,0,this.t);
  915       for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a[i],r,i,0,n-i);
  916       r.clamp();
  917     }
  918 
  919     // (protected) r = "this * a" without lower n words, n > 0
  920     // "this" should be the larger one if appropriate.
  921     function bnpMultiplyUpperTo(a,n,r) {
  922       --n;
  923       var i = r.t = this.t+a.t-n;
  924       r.s = 0; // assumes a,this >= 0
  925       while(--i >= 0) r[i] = 0;
  926       for(i = Math.max(n-this.t,0); i < a.t; ++i)
  927         r[this.t+i-n] = this.am(n-i,a[i],r,0,0,this.t+i-n);
  928       r.clamp();
  929       r.drShiftTo(1,r);
  930     }
  931 
  932     // Barrett modular reduction
  933     function Barrett(m) {
  934       // setup Barrett
  935       this.r2 = nbi();
  936       this.q3 = nbi();
  937       BigInteger.ONE.dlShiftTo(2*m.t,this.r2);
  938       this.mu = this.r2.divide(m);
  939       this.m = m;
  940     }
  941 
  942     function barrettConvert(x) {
  943       if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m);
  944       else if(x.compareTo(this.m) < 0) return x;
  945       else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; }
  946     }
  947 
  948     function barrettRevert(x) { return x; }
  949 
  950     // x = x mod m (HAC 14.42)
  951     function barrettReduce(x) {
  952       x.drShiftTo(this.m.t-1,this.r2);
  953       if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); }
  954       this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3);
  955       this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2);
  956       while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1);
  957       x.subTo(this.r2,x);
  958       while(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
  959     }
  960 
  961     // r = x^2 mod m; x != r
  962     function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
  963 
  964     // r = x*y mod m; x,y != r
  965     function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
  966 
  967     Barrett.prototype.convert = barrettConvert;
  968     Barrett.prototype.revert = barrettRevert;
  969     Barrett.prototype.reduce = barrettReduce;
  970     Barrett.prototype.mulTo = barrettMulTo;
  971     Barrett.prototype.sqrTo = barrettSqrTo;
  972 
  973     // (public) this^e % m (HAC 14.85)
  974     function bnModPow(e,m) {
  975       var i = e.bitLength(), k, r = nbv(1), z;
  976       if(i <= 0) return r;
  977       else if(i < 18) k = 1;
  978       else if(i < 48) k = 3;
  979       else if(i < 144) k = 4;
  980       else if(i < 768) k = 5;
  981       else k = 6;
  982       if(i < 8)
  983         z = new Classic(m);
  984       else if(m.isEven())
  985         z = new Barrett(m);
  986       else
  987         z = new Montgomery(m);
  988 
  989       // precomputation
  990       var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1;
  991       g[1] = z.convert(this);
  992       if(k > 1) {
  993         var g2 = nbi();
  994         z.sqrTo(g[1],g2);
  995         while(n <= km) {
  996           g[n] = nbi();
  997           z.mulTo(g2,g[n-2],g[n]);
  998           n += 2;
  999         }
 1000       }
 1001 
 1002       var j = e.t-1, w, is1 = true, r2 = nbi(), t;
 1003       i = nbits(e[j])-1;
 1004       while(j >= 0) {
 1005         if(i >= k1) w = (e[j]>>(i-k1))&km;
 1006         else {
 1007           w = (e[j]&((1<<(i+1))-1))<<(k1-i);
 1008           if(j > 0) w |= e[j-1]>>(this.DB+i-k1);
 1009         }
 1010 
 1011         n = k;
 1012         while((w&1) == 0) { w >>= 1; --n; }
 1013         if((i -= n) < 0) { i += this.DB; --j; }
 1014         if(is1) {   // ret == 1, don't bother squaring or multiplying it
 1015           g[w].copyTo(r);
 1016           is1 = false;
 1017         }
 1018         else {
 1019           while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; }
 1020           if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; }
 1021           z.mulTo(r2,g[w],r);
 1022         }
 1023 
 1024         while(j >= 0 && (e[j]&(1<<i)) == 0) {
 1025           z.sqrTo(r,r2); t = r; r = r2; r2 = t;
 1026           if(--i < 0) { i = this.DB-1; --j; }
 1027         }
 1028       }
 1029       return z.revert(r);
 1030     }
 1031 
 1032     // (public) gcd(this,a) (HAC 14.54)
 1033     function bnGCD(a) {
 1034       var x = (this.s<0)?this.negate():this.clone();
 1035       var y = (a.s<0)?a.negate():a.clone();
 1036       if(x.compareTo(y) < 0) { var t = x; x = y; y = t; }
 1037       var i = x.getLowestSetBit(), g = y.getLowestSetBit();
 1038       if(g < 0) return x;
 1039       if(i < g) g = i;
 1040       if(g > 0) {
 1041         x.rShiftTo(g,x);
 1042         y.rShiftTo(g,y);
 1043       }
 1044       while(x.signum() > 0) {
 1045         if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x);
 1046         if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y);
 1047         if(x.compareTo(y) >= 0) {
 1048           x.subTo(y,x);
 1049           x.rShiftTo(1,x);
 1050         }
 1051         else {
 1052           y.subTo(x,y);
 1053           y.rShiftTo(1,y);
 1054         }
 1055       }
 1056       if(g > 0) y.lShiftTo(g,y);
 1057       return y;
 1058     }
 1059 
 1060     // (protected) this % n, n < 2^26
 1061     function bnpModInt(n) {
 1062       if(n <= 0) return 0;
 1063       var d = this.DV%n, r = (this.s<0)?n-1:0;
 1064       if(this.t > 0)
 1065         if(d == 0) r = this[0]%n;
 1066         else for(var i = this.t-1; i >= 0; --i) r = (d*r+this[i])%n;
 1067       return r;
 1068     }
 1069 
 1070     // (public) 1/this % m (HAC 14.61)
 1071     function bnModInverse(m) {
 1072       var ac = m.isEven();
 1073       if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO;
 1074       var u = m.clone(), v = this.clone();
 1075       var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1);
 1076       while(u.signum() != 0) {
 1077         while(u.isEven()) {
 1078           u.rShiftTo(1,u);
 1079           if(ac) {
 1080             if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); }
 1081             a.rShiftTo(1,a);
 1082           }
 1083           else if(!b.isEven()) b.subTo(m,b);
 1084           b.rShiftTo(1,b);
 1085         }
 1086         while(v.isEven()) {
 1087           v.rShiftTo(1,v);
 1088           if(ac) {
 1089             if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); }
 1090             c.rShiftTo(1,c);
 1091           }
 1092           else if(!d.isEven()) d.subTo(m,d);
 1093           d.rShiftTo(1,d);
 1094         }
 1095         if(u.compareTo(v) >= 0) {
 1096           u.subTo(v,u);
 1097           if(ac) a.subTo(c,a);
 1098           b.subTo(d,b);
 1099         }
 1100         else {
 1101           v.subTo(u,v);
 1102           if(ac) c.subTo(a,c);
 1103           d.subTo(b,d);
 1104         }
 1105       }
 1106       if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO;
 1107       if(d.compareTo(m) >= 0) return d.subtract(m);
 1108       if(d.signum() < 0) d.addTo(m,d); else return d;
 1109       if(d.signum() < 0) return d.add(m); else return d;
 1110     }
 1111 
 1112     var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997];
 1113     var lplim = (1<<26)/lowprimes[lowprimes.length-1];
 1114 
 1115     // (public) test primality with certainty >= 1-.5^t
 1116     function bnIsProbablePrime(t) {
 1117       var i, x = this.abs();
 1118       if(x.t == 1 && x[0] <= lowprimes[lowprimes.length-1]) {
 1119         for(i = 0; i < lowprimes.length; ++i)
 1120           if(x[0] == lowprimes[i]) return true;
 1121         return false;
 1122       }
 1123       if(x.isEven()) return false;
 1124       i = 1;
 1125       while(i < lowprimes.length) {
 1126         var m = lowprimes[i], j = i+1;
 1127         while(j < lowprimes.length && m < lplim) m *= lowprimes[j++];
 1128         m = x.modInt(m);
 1129         while(i < j) if(m%lowprimes[i++] == 0) return false;
 1130       }
 1131       return x.millerRabin(t);
 1132     }
 1133 
 1134     // (protected) true if probably prime (HAC 4.24, Miller-Rabin)
 1135     function bnpMillerRabin(t) {
 1136       var n1 = this.subtract(BigInteger.ONE);
 1137       var k = n1.getLowestSetBit();
 1138       if(k <= 0) return false;
 1139       var r = n1.shiftRight(k);
 1140       t = (t+1)>>1;
 1141       if(t > lowprimes.length) t = lowprimes.length;
 1142       var a = nbi();
 1143       for(var i = 0; i < t; ++i) {
 1144         //Pick bases at random, instead of starting at 2
 1145         a.fromInt(lowprimes[Math.floor(Math.random()*lowprimes.length)]);
 1146         var y = a.modPow(r,this);
 1147         if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {
 1148           var j = 1;
 1149           while(j++ < k && y.compareTo(n1) != 0) {
 1150             y = y.modPowInt(2,this);
 1151             if(y.compareTo(BigInteger.ONE) == 0) return false;
 1152           }
 1153           if(y.compareTo(n1) != 0) return false;
 1154         }
 1155       }
 1156       return true;
 1157     }
 1158 
 1159     // protected
 1160     BigInteger.prototype.chunkSize = bnpChunkSize;
 1161     BigInteger.prototype.toRadix = bnpToRadix;
 1162     BigInteger.prototype.fromRadix = bnpFromRadix;
 1163     BigInteger.prototype.fromNumber = bnpFromNumber;
 1164     BigInteger.prototype.bitwiseTo = bnpBitwiseTo;
 1165     BigInteger.prototype.changeBit = bnpChangeBit;
 1166     BigInteger.prototype.addTo = bnpAddTo;
 1167     BigInteger.prototype.dMultiply = bnpDMultiply;
 1168     BigInteger.prototype.dAddOffset = bnpDAddOffset;
 1169     BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo;
 1170     BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo;
 1171     BigInteger.prototype.modInt = bnpModInt;
 1172     BigInteger.prototype.millerRabin = bnpMillerRabin;
 1173 
 1174     // public
 1175     BigInteger.prototype.clone = bnClone;
 1176     BigInteger.prototype.intValue = bnIntValue;
 1177     BigInteger.prototype.byteValue = bnByteValue;
 1178     BigInteger.prototype.shortValue = bnShortValue;
 1179     BigInteger.prototype.signum = bnSigNum;
 1180     BigInteger.prototype.toByteArray = bnToByteArray;
 1181     BigInteger.prototype.equals = bnEquals;
 1182     BigInteger.prototype.min = bnMin;
 1183     BigInteger.prototype.max = bnMax;
 1184     BigInteger.prototype.and = bnAnd;
 1185     BigInteger.prototype.or = bnOr;
 1186     BigInteger.prototype.xor = bnXor;
 1187     BigInteger.prototype.andNot = bnAndNot;
 1188     BigInteger.prototype.not = bnNot;
 1189     BigInteger.prototype.shiftLeft = bnShiftLeft;
 1190     BigInteger.prototype.shiftRight = bnShiftRight;
 1191     BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit;
 1192     BigInteger.prototype.bitCount = bnBitCount;
 1193     BigInteger.prototype.testBit = bnTestBit;
 1194     BigInteger.prototype.setBit = bnSetBit;
 1195     BigInteger.prototype.clearBit = bnClearBit;
 1196     BigInteger.prototype.flipBit = bnFlipBit;
 1197     BigInteger.prototype.add = bnAdd;
 1198     BigInteger.prototype.subtract = bnSubtract;
 1199     BigInteger.prototype.multiply = bnMultiply;
 1200     BigInteger.prototype.divide = bnDivide;
 1201     BigInteger.prototype.remainder = bnRemainder;
 1202     BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder;
 1203     BigInteger.prototype.modPow = bnModPow;
 1204     BigInteger.prototype.modInverse = bnModInverse;
 1205     BigInteger.prototype.pow = bnPow;
 1206     BigInteger.prototype.gcd = bnGCD;
 1207     BigInteger.prototype.isProbablePrime = bnIsProbablePrime;
 1208 
 1209     // JSBN-specific extension
 1210     BigInteger.prototype.square = bnSquare;
 1211 
 1212     // Expose the Barrett function
 1213     BigInteger.prototype.Barrett = Barrett
 1214 
 1215     // BigInteger interfaces not implemented in jsbn:
 1216 
 1217     // BigInteger(int signum, byte[] magnitude)
 1218     // double doubleValue()
 1219     // float floatValue()
 1220     // int hashCode()
 1221     // long longValue()
 1222     // static BigInteger valueOf(long val)
 1223 
 1224     // Random number generator - requires a PRNG backend, e.g. prng4.js
 1225 
 1226     // For best results, put code like
 1227     // <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'>
 1228     // in your main HTML document.
 1229 
 1230     var rng_state;
 1231     var rng_pool;
 1232     var rng_pptr;
 1233 
 1234     // Mix in a 32-bit integer into the pool
 1235     function rng_seed_int(x) {
 1236       rng_pool[rng_pptr++] ^= x & 255;
 1237       rng_pool[rng_pptr++] ^= (x >> 8) & 255;
 1238       rng_pool[rng_pptr++] ^= (x >> 16) & 255;
 1239       rng_pool[rng_pptr++] ^= (x >> 24) & 255;
 1240       if(rng_pptr >= rng_psize) rng_pptr -= rng_psize;
 1241     }
 1242 
 1243     // Mix in the current time (w/milliseconds) into the pool
 1244     function rng_seed_time() {
 1245       rng_seed_int(new Date().getTime());
 1246     }
 1247 
 1248     // Initialize the pool with junk if needed.
 1249     if(rng_pool == null) {
 1250       rng_pool = new Array();
 1251       rng_pptr = 0;
 1252       var t;
 1253       if(typeof window !== "undefined" && window.crypto) {
 1254         if (window.crypto.getRandomValues) {
 1255           // Use webcrypto if available
 1256           var ua = new Uint8Array(32);
 1257           window.crypto.getRandomValues(ua);
 1258           for(t = 0; t < 32; ++t)
 1259             rng_pool[rng_pptr++] = ua[t];
 1260         }
 1261         else if(navigator.appName == "Netscape" && navigator.appVersion < "5") {
 1262           // Extract entropy (256 bits) from NS4 RNG if available
 1263           var z = window.crypto.random(32);
 1264           for(t = 0; t < z.length; ++t)
 1265             rng_pool[rng_pptr++] = z.charCodeAt(t) & 255;
 1266         }
 1267       }
 1268       while(rng_pptr < rng_psize) {  // extract some randomness from Math.random()
 1269         t = Math.floor(65536 * Math.random());
 1270         rng_pool[rng_pptr++] = t >>> 8;
 1271         rng_pool[rng_pptr++] = t & 255;
 1272       }
 1273       rng_pptr = 0;
 1274       rng_seed_time();
 1275       //rng_seed_int(window.screenX);
 1276       //rng_seed_int(window.screenY);
 1277     }
 1278 
 1279     function rng_get_byte() {
 1280       if(rng_state == null) {
 1281         rng_seed_time();
 1282         rng_state = prng_newstate();
 1283         rng_state.init(rng_pool);
 1284         for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr)
 1285           rng_pool[rng_pptr] = 0;
 1286         rng_pptr = 0;
 1287         //rng_pool = null;
 1288       }
 1289       // TODO: allow reseeding after first request
 1290       return rng_state.next();
 1291     }
 1292 
 1293     function rng_get_bytes(ba) {
 1294       var i;
 1295       for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte();
 1296     }
 1297 
 1298     function SecureRandom() {}
 1299 
 1300     SecureRandom.prototype.nextBytes = rng_get_bytes;
 1301 
 1302     // prng4.js - uses Arcfour as a PRNG
 1303 
 1304     function Arcfour() {
 1305       this.i = 0;
 1306       this.j = 0;
 1307       this.S = new Array();
 1308     }
 1309 
 1310     // Initialize arcfour context from key, an array of ints, each from [0..255]
 1311     function ARC4init(key) {
 1312       var i, j, t;
 1313       for(i = 0; i < 256; ++i)
 1314         this.S[i] = i;
 1315       j = 0;
 1316       for(i = 0; i < 256; ++i) {
 1317         j = (j + this.S[i] + key[i % key.length]) & 255;
 1318         t = this.S[i];
 1319         this.S[i] = this.S[j];
 1320         this.S[j] = t;
 1321       }
 1322       this.i = 0;
 1323       this.j = 0;
 1324     }
 1325 
 1326     function ARC4next() {
 1327       var t;
 1328       this.i = (this.i + 1) & 255;
 1329       this.j = (this.j + this.S[this.i]) & 255;
 1330       t = this.S[this.i];
 1331       this.S[this.i] = this.S[this.j];
 1332       this.S[this.j] = t;
 1333       return this.S[(t + this.S[this.i]) & 255];
 1334     }
 1335 
 1336     Arcfour.prototype.init = ARC4init;
 1337     Arcfour.prototype.next = ARC4next;
 1338 
 1339     // Plug in your RNG constructor here
 1340     function prng_newstate() {
 1341       return new Arcfour();
 1342     }
 1343 
 1344     // Pool size must be a multiple of 4 and greater than 32.
 1345     // An array of bytes the size of the pool will be passed to init()
 1346     var rng_psize = 256;
 1347 
 1348     if (typeof exports !== 'undefined') {
 1349         exports = module.exports = {
 1350             BigInteger: BigInteger,
 1351             SecureRandom: SecureRandom,
 1352         };
 1353     } else {
 1354         this.BigInteger = BigInteger;
 1355         this.SecureRandom = SecureRandom;
 1356     }
 1357 
 1358 }).call(this);