"Fossies" - the Fresh Open Source Software Archive

Member "Atom/resources/app/apm/node_modules/ctype/man/man3ctype/ctio.3ctype" (8 Dec 2016, 8265 Bytes) of archive /windows/misc/atom-windows.zip:


'\" te
.\" Copyright (c) 2011, Robert Mustacchi.  All Rights Reserved.
.\" Copyright (c) 2011, Joyent, Inc.  All Rights Reserved.
.\"
.\" Permission is hereby granted, free of charge, to any person obtaining a copy
.\" of this software and associated documentation files (the "Software"), to
.\" deal in the Software without restriction, including without limitation the
.\" rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
.\" sell copies of the Software, and to permit persons to whom the Software is
.\" furnished to do so, subject to the following conditions:
.\"
.\" The above copyright notice and this permission notice shall be included in
.\" all copies or substantial portions of the Software.
.\" 
.\" THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
.\" IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
.\" FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
.\" AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
.\" LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
.\" FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
.\" IN THE SOFTWARE.
.TH CTIO 3CTYPE "December 12, 2011"
.SH NAME
ctio, ruint8, ruint16, ruint32, ruint64, wuint8, wuint16, wuint32, wuint64,
rsint8, rsint16, rsint32, rsint64, wsint8, wsint16, wsint32, wsint64, rfloat,
rdouble, wfloat, wdouble \- integer and float operations
.SH SYNOPSIS
.LP
.nf
var mod_ctype = require('ctype');

\fBNumber\fR \fBmod_ctype.ruint8\fR(\fBBuffer\fR \fIbuf\fR, \fBString\fR \fIendian\fR, \fBNumber\fR \fIoffset\fR);
.fi

.LP
.nf
\fBNumber\fR \fBmod_ctype.ruint16\fR(\fBBuffer\fR \fIbuf\fR, \fBString\fR \fIendian\fR, \fBNumber\fR \fIoffset\fR);
.fi

.LP
.nf
\fBNumber\fR \fBmod_ctype.ruint32\fR(\fBBuffer\fR \fIbuf\fR, \fBString\fR \fIendian\fR, \fBNumber\fR \fIoffset\fR);
.fi

.LP
.nf
\fBNumber[2]\fR \fBmod_ctype.ruint64\fR(\fBBuffer\fR \fIbuf\fR, \fBString\fR \fIendian\fR, \fBNumber\fR \fIoffset\fR);
.fi

.LP
.nf
\fBNumber\fR \fBmod_ctype.rsint8\fR(\fBBuffer\fR \fIbuf\fR, \fBString\fR \fIendian\fR, \fBNumber\fR \fIoffset\fR);
.fi

.LP
.nf
\fBNumber\fR \fBmod_ctype.rsint16\fR(\fBBuffer\fR \fIbuf\fR, \fBString\fR \fIendian\fR, \fBNumber\fR \fIoffset\fR);
.fi

.LP
.nf
\fBNumber\fR \fBmod_ctype.rsint32\fR(\fBBuffer\fR \fIbuf\fR, \fBString\fR \fIendian\fR, \fBNumber\fR \fIoffset\fR);
.fi

.LP
.nf
\fBNumber[2]\fR \fBmod_ctype.rsint64\fR(\fBBuffer\fR \fIbuf\fR, \fBString\fR \fIendian\fR, \fBNumber\fR \fIoffset\fR);
.fi

.LP
.nf
\fBNumber\fR \fBmod_ctype.rfloat\fR(\fBBuffer\fR \fIbuf\fR, \fBString\fR \fIendian\fR, \fBNumber\fR \fIoffset\fR);
.fi

.LP
.nf
\fBNumber\fR \fBmod_ctype.rdouble\fR(\fBBuffer\fR \fIbuf\fR, \fBString\fR \fIendian\fR, \fBNumber\fR \fIoffset\fR);
.fi

.LP
.nf
\fBvoid\fR \fBmod_ctype.wuint8\fR(\fBNumber\fR value, \fBString\fR \fIendian\fR, \fBBuffer\fR \fIbuf\fR, \fBNumber\fR \fIoffset\fR);
.fi

.LP
.nf
\fBvoid\fR \fBmod_ctype.wuint16\fR(\fBNumber\fR value, \fBString\fR \fIendian\fR, \fBBuffer\fR \fIbuf\fR, \fBNumber\fR \fIoffset\fR);
.fi

.LP
.nf
\fBvoid\fR \fBmod_ctype.wuint32\fR(\fBNumber\fR value, \fBString\fR \fIendian\fR, \fBBuffer\fR \fIbuf\fR, \fBNumber\fR \fIoffset\fR);
.fi

.LP
.nf
\fBvoid\fR \fBmod_ctype.wuint64\fR(\fBNumber[2]\fR value, \fBString\fR \fIendian\fR, \fBBuffer\fR \fIbuf\fR, \fBNumber\fR \fIoffset\fR);
.fi

.LP
.nf
\fBvoid\fR \fBmod_ctype.wsint8\fR(\fBNumber\fR value, \fBString\fR \fIendian\fR, \fBBuffer\fR \fIbuf\fR, \fBNumber\fR \fIoffset\fR);
.fi

.LP
.nf
\fBvoid\fR \fBmod_ctype.wsint16\fR(\fBNumber\fR value, \fBString\fR \fIendian\fR, \fBBuffer\fR \fIbuf\fR, \fBNumber\fR \fIoffset\fR);
.fi

.LP
.nf
\fBvoid\fR \fBmod_ctype.wsint32\fR(\fBNumber\fR value, \fBString\fR \fIendian\fR, \fBBuffer\fR \fIbuf\fR, \fBNumber\fR \fIoffset\fR);
.fi

.LP
.nf
\fBvoid\fR \fBmod_ctype.wsint64\fR(\fBNumber[2]\fR value, \fBString\fR \fIendian\fR, \fBBuffer\fR \fIbuf\fR, \fBNumber\fR \fIoffset\fR);
.fi

.LP
.nf
\fBvoid\fR \fBmod_ctype.wfloat\fR(\fBNumber\fR value, \fBString\fR \fIendian\fR, \fBBuffer\fR \fIbuf\fR, \fBNumber\fR \fIoffset\fR);
.fi

.LP
.nf
\fBvoid\fR \fBmod_ctype.wdouble\fR(\fBNumber\fR value, \fBString\fR \fIendian\fR, \fBBuffer\fR \fIbuf\fR, \fBNumber\fR \fIoffset\fR);
.fi

.SH DESCRIPTION
.sp
.LP
The argument \fIbuf\fR refers to a valid buffer (from calling new Buffer()). The
argument \fIendian\fR is either the string 'big' or 'little' and controls
whether the data in the buffer is interpreted as big or little endian. The argument
\fIoffset\fR indicates the starting index into the buffer to read or write. All
functions ensure that starting at \fIoffset\fR does not overflow the end of the
buffer. The argument \fIvalue\fR is a Number that is the valid type for the
specific function. All functions that take \fIvalue\fR as an argument, verify
that the passed value is valid.

.SS "\fBruint8()\fR, \fBruint16()\fR, \fBruint32()\fR"
.sp
.LP
The \fBruint8()\fR, \fBruint16()\fR, and \fBruint32()\fR functions read an 8,
16, and 32-bit unsigned value from \fIbuf\fR and return it. The value read is
influenced by the values of \fIoffset\fR and \fRendian\fI.


.SS "\fBrsint8()\fR, \fBrsint16()\fR, \fBrsint32()\fR"
.sp
.LP
The \fBruint8()\fR, \fBruint16()\fR, and \fBruint32()\fR functions work just as
\fBruint8()\fR, \fBruint16()\fR, and \fBruint32()\fR, except they return signed
integers.

.SS "\fBruint64()\fR, \fBrsint64()\fR"
.sp
.LP
The \fBruint64()\fR and \fBrsint64()\fR functions read unsigned and signed 64
bit integers respectively from \fBbuf\fR. Due to the limitations of ECMAScript's
\fBNumber\fR type, they cannot be stored as one value without a loss of
precision. Instead of returning the values as a single \fBNumber\fR, the
functions return an array of two numbers. The first entry always contains the
upper 32-bits and the second value contains the lower 32-bits. The lossy
transformation into a number would be \fIres[0]*Math.pow(2,32)+res[1]\fR.
Note that, unless an entry is zero, both array entries are guaranteed to have
the same sign.

.SS "\fBwuint8()\fR, \fBwuint16()\fR, \fBwuint32()\fR"
.sp
.LP
The functions \fBwuint8()\fR, \fBwuint16()\fR, and \fBwuint32()\fR modify the
contents of \fBbuf\fR by writing an 8, 16, and 32-bit unsigned integer
respectively to \fBbuf\fR. It is illegal to pass a number that is not an integer
within the domain of the integer size, for example, for \fBwuint8()\fR the valid
range is \fB[0, 255]\fR. The value will be written in either big or little
endian format based upon the value of \fBendian\fR.


.SS "\fBwsint8()\fR, \fBwsint16()\fR, \fBwsint32()\fR"
.sp
.LP
The functions \fBwsint8()\fR, \fBwsint16()\fR, and \fBwsint32()\fR function
identically to the functions \fBwuint8()\fR, \fBwuint16()\fR, and
\fBwuint32()\fR except that they the valid domain for \fBvalue\fR is that of a
signed number instead of an unsigned number. For example the \fBwsint8()\fR has
a domain of \fB[-128, 127]\fR.

.SS "\fBwuint64()\fR, \fBwsint64()\fR"
.sp
.LP
The functions \fBwuint64()\fR and \fBswint64()\fR write out 64-bit unsigned and
signed integers to \fBbuf\fR. The \fBvalue\fR argument must be in the same
format as described in \fBruint64()\fR and \fBrsint64()\fR.

.SS "\fBrfloat()\fR, \fBrdouble()\fR"
.sp
.LP
The functions "\fBrfloat()\fR and \fBrdouble()\fR" work like the other read
functions, except that they read a single precision and double precision
IEEE-754 floating point value instead.

.SS "\fBwfloat()\fR, \fBwdouble()\fR"
.sp
.LP
The functions "\fBrfloat()\fR and \fBrdouble()\fR" work like the other write 
functions, except that the domain for a float is that of a single precision 4
byte value. The domain for a double is any \fBNumber\fR in ECMAScript, which is
defined to be represented by a double.

.SH ATTRIBUTES
.sp
.LP
See \fBattributes\fR(5) for descriptions of the following attributes:
.sp

.sp
.TS
box;
c | c
l | l .
ATTRIBUTE TYPE	ATTRIBUTE VALUE
_
Interface Stability	Committed
_
MT-Level	See below.
_
Standard	Not standardized.
.TE

.sp
.LP

All functions are MT-safe in so far as there aren't shared memory MT concerns in
most node programs. If one where to concoct such an environment, these functions
wouldn't be MT-safe.

.SH SEE ALSO
.sp
.LP