"Fossies" - the Fresh Open Source Software Archive

Member "proj-6.2.1/test/googletest/include/gtest/internal/gtest-internal.h" (6 May 2019, 50942 Bytes) of package /linux/privat/proj-6.2.1.tar.gz:


As a special service "Fossies" has tried to format the requested source page into HTML format using (guessed) C and C++ source code syntax highlighting (style: standard) with prefixed line numbers and code folding option. Alternatively you can here view or download the uninterpreted source code file.

    1 // Copyright 2005, Google Inc.
    2 // All rights reserved.
    3 //
    4 // Redistribution and use in source and binary forms, with or without
    5 // modification, are permitted provided that the following conditions are
    6 // met:
    7 //
    8 //     * Redistributions of source code must retain the above copyright
    9 // notice, this list of conditions and the following disclaimer.
   10 //     * Redistributions in binary form must reproduce the above
   11 // copyright notice, this list of conditions and the following disclaimer
   12 // in the documentation and/or other materials provided with the
   13 // distribution.
   14 //     * Neither the name of Google Inc. nor the names of its
   15 // contributors may be used to endorse or promote products derived from
   16 // this software without specific prior written permission.
   17 //
   18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
   22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
   24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
   28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   29 //
   30 // The Google C++ Testing and Mocking Framework (Google Test)
   31 //
   32 // This header file declares functions and macros used internally by
   33 // Google Test.  They are subject to change without notice.
   34 
   35 // GOOGLETEST_CM0001 DO NOT DELETE
   36 
   37 #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
   38 #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
   39 
   40 #include "gtest/internal/gtest-port.h"
   41 
   42 #if GTEST_OS_LINUX
   43 # include <stdlib.h>
   44 # include <sys/types.h>
   45 # include <sys/wait.h>
   46 # include <unistd.h>
   47 #endif  // GTEST_OS_LINUX
   48 
   49 #if GTEST_HAS_EXCEPTIONS
   50 # include <stdexcept>
   51 #endif
   52 
   53 #include <ctype.h>
   54 #include <float.h>
   55 #include <string.h>
   56 #include <iomanip>
   57 #include <limits>
   58 #include <map>
   59 #include <set>
   60 #include <string>
   61 #include <vector>
   62 
   63 #include "gtest/gtest-message.h"
   64 #include "gtest/internal/gtest-filepath.h"
   65 #include "gtest/internal/gtest-string.h"
   66 #include "gtest/internal/gtest-type-util.h"
   67 
   68 // Due to C++ preprocessor weirdness, we need double indirection to
   69 // concatenate two tokens when one of them is __LINE__.  Writing
   70 //
   71 //   foo ## __LINE__
   72 //
   73 // will result in the token foo__LINE__, instead of foo followed by
   74 // the current line number.  For more details, see
   75 // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
   76 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
   77 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
   78 
   79 // Stringifies its argument.
   80 #define GTEST_STRINGIFY_(name) #name
   81 
   82 class ProtocolMessage;
   83 namespace proto2 { class Message; }
   84 
   85 namespace testing {
   86 
   87 // Forward declarations.
   88 
   89 class AssertionResult;                 // Result of an assertion.
   90 class Message;                         // Represents a failure message.
   91 class Test;                            // Represents a test.
   92 class TestInfo;                        // Information about a test.
   93 class TestPartResult;                  // Result of a test part.
   94 class UnitTest;                        // A collection of test cases.
   95 
   96 template <typename T>
   97 ::std::string PrintToString(const T& value);
   98 
   99 namespace internal {
  100 
  101 struct TraceInfo;                      // Information about a trace point.
  102 class TestInfoImpl;                    // Opaque implementation of TestInfo
  103 class UnitTestImpl;                    // Opaque implementation of UnitTest
  104 
  105 // The text used in failure messages to indicate the start of the
  106 // stack trace.
  107 GTEST_API_ extern const char kStackTraceMarker[];
  108 
  109 // Two overloaded helpers for checking at compile time whether an
  110 // expression is a null pointer literal (i.e. NULL or any 0-valued
  111 // compile-time integral constant).  Their return values have
  112 // different sizes, so we can use sizeof() to test which version is
  113 // picked by the compiler.  These helpers have no implementations, as
  114 // we only need their signatures.
  115 //
  116 // Given IsNullLiteralHelper(x), the compiler will pick the first
  117 // version if x can be implicitly converted to Secret*, and pick the
  118 // second version otherwise.  Since Secret is a secret and incomplete
  119 // type, the only expression a user can write that has type Secret* is
  120 // a null pointer literal.  Therefore, we know that x is a null
  121 // pointer literal if and only if the first version is picked by the
  122 // compiler.
  123 char IsNullLiteralHelper(Secret* p);
  124 char (&IsNullLiteralHelper(...))[2];  // NOLINT
  125 
  126 // A compile-time bool constant that is true if and only if x is a
  127 // null pointer literal (i.e. NULL or any 0-valued compile-time
  128 // integral constant).
  129 #ifdef GTEST_ELLIPSIS_NEEDS_POD_
  130 // We lose support for NULL detection where the compiler doesn't like
  131 // passing non-POD classes through ellipsis (...).
  132 # define GTEST_IS_NULL_LITERAL_(x) false
  133 #else
  134 # define GTEST_IS_NULL_LITERAL_(x) \
  135     (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1)
  136 #endif  // GTEST_ELLIPSIS_NEEDS_POD_
  137 
  138 // Appends the user-supplied message to the Google-Test-generated message.
  139 GTEST_API_ std::string AppendUserMessage(
  140     const std::string& gtest_msg, const Message& user_msg);
  141 
  142 #if GTEST_HAS_EXCEPTIONS
  143 
  144 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4275 \
  145 /* an exported class was derived from a class that was not exported */)
  146 
  147 // This exception is thrown by (and only by) a failed Google Test
  148 // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
  149 // are enabled).  We derive it from std::runtime_error, which is for
  150 // errors presumably detectable only at run time.  Since
  151 // std::runtime_error inherits from std::exception, many testing
  152 // frameworks know how to extract and print the message inside it.
  153 class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
  154  public:
  155   explicit GoogleTestFailureException(const TestPartResult& failure);
  156 };
  157 
  158 GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4275
  159 
  160 #endif  // GTEST_HAS_EXCEPTIONS
  161 
  162 namespace edit_distance {
  163 // Returns the optimal edits to go from 'left' to 'right'.
  164 // All edits cost the same, with replace having lower priority than
  165 // add/remove.
  166 // Simple implementation of the Wagner-Fischer algorithm.
  167 // See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm
  168 enum EditType { kMatch, kAdd, kRemove, kReplace };
  169 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
  170     const std::vector<size_t>& left, const std::vector<size_t>& right);
  171 
  172 // Same as above, but the input is represented as strings.
  173 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
  174     const std::vector<std::string>& left,
  175     const std::vector<std::string>& right);
  176 
  177 // Create a diff of the input strings in Unified diff format.
  178 GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left,
  179                                          const std::vector<std::string>& right,
  180                                          size_t context = 2);
  181 
  182 }  // namespace edit_distance
  183 
  184 // Calculate the diff between 'left' and 'right' and return it in unified diff
  185 // format.
  186 // If not null, stores in 'total_line_count' the total number of lines found
  187 // in left + right.
  188 GTEST_API_ std::string DiffStrings(const std::string& left,
  189                                    const std::string& right,
  190                                    size_t* total_line_count);
  191 
  192 // Constructs and returns the message for an equality assertion
  193 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
  194 //
  195 // The first four parameters are the expressions used in the assertion
  196 // and their values, as strings.  For example, for ASSERT_EQ(foo, bar)
  197 // where foo is 5 and bar is 6, we have:
  198 //
  199 //   expected_expression: "foo"
  200 //   actual_expression:   "bar"
  201 //   expected_value:      "5"
  202 //   actual_value:        "6"
  203 //
  204 // The ignoring_case parameter is true iff the assertion is a
  205 // *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will
  206 // be inserted into the message.
  207 GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
  208                                      const char* actual_expression,
  209                                      const std::string& expected_value,
  210                                      const std::string& actual_value,
  211                                      bool ignoring_case);
  212 
  213 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
  214 GTEST_API_ std::string GetBoolAssertionFailureMessage(
  215     const AssertionResult& assertion_result,
  216     const char* expression_text,
  217     const char* actual_predicate_value,
  218     const char* expected_predicate_value);
  219 
  220 // This template class represents an IEEE floating-point number
  221 // (either single-precision or double-precision, depending on the
  222 // template parameters).
  223 //
  224 // The purpose of this class is to do more sophisticated number
  225 // comparison.  (Due to round-off error, etc, it's very unlikely that
  226 // two floating-points will be equal exactly.  Hence a naive
  227 // comparison by the == operation often doesn't work.)
  228 //
  229 // Format of IEEE floating-point:
  230 //
  231 //   The most-significant bit being the leftmost, an IEEE
  232 //   floating-point looks like
  233 //
  234 //     sign_bit exponent_bits fraction_bits
  235 //
  236 //   Here, sign_bit is a single bit that designates the sign of the
  237 //   number.
  238 //
  239 //   For float, there are 8 exponent bits and 23 fraction bits.
  240 //
  241 //   For double, there are 11 exponent bits and 52 fraction bits.
  242 //
  243 //   More details can be found at
  244 //   http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
  245 //
  246 // Template parameter:
  247 //
  248 //   RawType: the raw floating-point type (either float or double)
  249 template <typename RawType>
  250 class FloatingPoint {
  251  public:
  252   // Defines the unsigned integer type that has the same size as the
  253   // floating point number.
  254   typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
  255 
  256   // Constants.
  257 
  258   // # of bits in a number.
  259   static const size_t kBitCount = 8*sizeof(RawType);
  260 
  261   // # of fraction bits in a number.
  262   static const size_t kFractionBitCount =
  263     std::numeric_limits<RawType>::digits - 1;
  264 
  265   // # of exponent bits in a number.
  266   static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
  267 
  268   // The mask for the sign bit.
  269   static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
  270 
  271   // The mask for the fraction bits.
  272   static const Bits kFractionBitMask =
  273     ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
  274 
  275   // The mask for the exponent bits.
  276   static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
  277 
  278   // How many ULP's (Units in the Last Place) we want to tolerate when
  279   // comparing two numbers.  The larger the value, the more error we
  280   // allow.  A 0 value means that two numbers must be exactly the same
  281   // to be considered equal.
  282   //
  283   // The maximum error of a single floating-point operation is 0.5
  284   // units in the last place.  On Intel CPU's, all floating-point
  285   // calculations are done with 80-bit precision, while double has 64
  286   // bits.  Therefore, 4 should be enough for ordinary use.
  287   //
  288   // See the following article for more details on ULP:
  289   // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
  290   static const size_t kMaxUlps = 4;
  291 
  292   // Constructs a FloatingPoint from a raw floating-point number.
  293   //
  294   // On an Intel CPU, passing a non-normalized NAN (Not a Number)
  295   // around may change its bits, although the new value is guaranteed
  296   // to be also a NAN.  Therefore, don't expect this constructor to
  297   // preserve the bits in x when x is a NAN.
  298   explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
  299 
  300   // Static methods
  301 
  302   // Reinterprets a bit pattern as a floating-point number.
  303   //
  304   // This function is needed to test the AlmostEquals() method.
  305   static RawType ReinterpretBits(const Bits bits) {
  306     FloatingPoint fp(0);
  307     fp.u_.bits_ = bits;
  308     return fp.u_.value_;
  309   }
  310 
  311   // Returns the floating-point number that represent positive infinity.
  312   static RawType Infinity() {
  313     return ReinterpretBits(kExponentBitMask);
  314   }
  315 
  316   // Returns the maximum representable finite floating-point number.
  317   static RawType Max();
  318 
  319   // Non-static methods
  320 
  321   // Returns the bits that represents this number.
  322   const Bits &bits() const { return u_.bits_; }
  323 
  324   // Returns the exponent bits of this number.
  325   Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
  326 
  327   // Returns the fraction bits of this number.
  328   Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
  329 
  330   // Returns the sign bit of this number.
  331   Bits sign_bit() const { return kSignBitMask & u_.bits_; }
  332 
  333   // Returns true iff this is NAN (not a number).
  334   bool is_nan() const {
  335     // It's a NAN if the exponent bits are all ones and the fraction
  336     // bits are not entirely zeros.
  337     return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
  338   }
  339 
  340   // Returns true iff this number is at most kMaxUlps ULP's away from
  341   // rhs.  In particular, this function:
  342   //
  343   //   - returns false if either number is (or both are) NAN.
  344   //   - treats really large numbers as almost equal to infinity.
  345   //   - thinks +0.0 and -0.0 are 0 DLP's apart.
  346   bool AlmostEquals(const FloatingPoint& rhs) const {
  347     // The IEEE standard says that any comparison operation involving
  348     // a NAN must return false.
  349     if (is_nan() || rhs.is_nan()) return false;
  350 
  351     return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
  352         <= kMaxUlps;
  353   }
  354 
  355  private:
  356   // The data type used to store the actual floating-point number.
  357   union FloatingPointUnion {
  358     RawType value_;  // The raw floating-point number.
  359     Bits bits_;      // The bits that represent the number.
  360   };
  361 
  362   // Converts an integer from the sign-and-magnitude representation to
  363   // the biased representation.  More precisely, let N be 2 to the
  364   // power of (kBitCount - 1), an integer x is represented by the
  365   // unsigned number x + N.
  366   //
  367   // For instance,
  368   //
  369   //   -N + 1 (the most negative number representable using
  370   //          sign-and-magnitude) is represented by 1;
  371   //   0      is represented by N; and
  372   //   N - 1  (the biggest number representable using
  373   //          sign-and-magnitude) is represented by 2N - 1.
  374   //
  375   // Read http://en.wikipedia.org/wiki/Signed_number_representations
  376   // for more details on signed number representations.
  377   static Bits SignAndMagnitudeToBiased(const Bits &sam) {
  378     if (kSignBitMask & sam) {
  379       // sam represents a negative number.
  380       return ~sam + 1;
  381     } else {
  382       // sam represents a positive number.
  383       return kSignBitMask | sam;
  384     }
  385   }
  386 
  387   // Given two numbers in the sign-and-magnitude representation,
  388   // returns the distance between them as an unsigned number.
  389   static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
  390                                                      const Bits &sam2) {
  391     const Bits biased1 = SignAndMagnitudeToBiased(sam1);
  392     const Bits biased2 = SignAndMagnitudeToBiased(sam2);
  393     return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
  394   }
  395 
  396   FloatingPointUnion u_;
  397 };
  398 
  399 // We cannot use std::numeric_limits<T>::max() as it clashes with the max()
  400 // macro defined by <windows.h>.
  401 template <>
  402 inline float FloatingPoint<float>::Max() { return FLT_MAX; }
  403 template <>
  404 inline double FloatingPoint<double>::Max() { return DBL_MAX; }
  405 
  406 // Typedefs the instances of the FloatingPoint template class that we
  407 // care to use.
  408 typedef FloatingPoint<float> Float;
  409 typedef FloatingPoint<double> Double;
  410 
  411 // In order to catch the mistake of putting tests that use different
  412 // test fixture classes in the same test case, we need to assign
  413 // unique IDs to fixture classes and compare them.  The TypeId type is
  414 // used to hold such IDs.  The user should treat TypeId as an opaque
  415 // type: the only operation allowed on TypeId values is to compare
  416 // them for equality using the == operator.
  417 typedef const void* TypeId;
  418 
  419 template <typename T>
  420 class TypeIdHelper {
  421  public:
  422   // dummy_ must not have a const type.  Otherwise an overly eager
  423   // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
  424   // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
  425   static bool dummy_;
  426 };
  427 
  428 template <typename T>
  429 bool TypeIdHelper<T>::dummy_ = false;
  430 
  431 // GetTypeId<T>() returns the ID of type T.  Different values will be
  432 // returned for different types.  Calling the function twice with the
  433 // same type argument is guaranteed to return the same ID.
  434 template <typename T>
  435 TypeId GetTypeId() {
  436   // The compiler is required to allocate a different
  437   // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
  438   // the template.  Therefore, the address of dummy_ is guaranteed to
  439   // be unique.
  440   return &(TypeIdHelper<T>::dummy_);
  441 }
  442 
  443 // Returns the type ID of ::testing::Test.  Always call this instead
  444 // of GetTypeId< ::testing::Test>() to get the type ID of
  445 // ::testing::Test, as the latter may give the wrong result due to a
  446 // suspected linker bug when compiling Google Test as a Mac OS X
  447 // framework.
  448 GTEST_API_ TypeId GetTestTypeId();
  449 
  450 // Defines the abstract factory interface that creates instances
  451 // of a Test object.
  452 class TestFactoryBase {
  453  public:
  454   virtual ~TestFactoryBase() {}
  455 
  456   // Creates a test instance to run. The instance is both created and destroyed
  457   // within TestInfoImpl::Run()
  458   virtual Test* CreateTest() = 0;
  459 
  460  protected:
  461   TestFactoryBase() {}
  462 
  463  private:
  464   GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
  465 };
  466 
  467 // This class provides implementation of TeastFactoryBase interface.
  468 // It is used in TEST and TEST_F macros.
  469 template <class TestClass>
  470 class TestFactoryImpl : public TestFactoryBase {
  471  public:
  472   virtual Test* CreateTest() { return new TestClass; }
  473 };
  474 
  475 #if GTEST_OS_WINDOWS
  476 
  477 // Predicate-formatters for implementing the HRESULT checking macros
  478 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
  479 // We pass a long instead of HRESULT to avoid causing an
  480 // include dependency for the HRESULT type.
  481 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
  482                                             long hr);  // NOLINT
  483 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
  484                                             long hr);  // NOLINT
  485 
  486 #endif  // GTEST_OS_WINDOWS
  487 
  488 // Types of SetUpTestCase() and TearDownTestCase() functions.
  489 typedef void (*SetUpTestCaseFunc)();
  490 typedef void (*TearDownTestCaseFunc)();
  491 
  492 struct CodeLocation {
  493   CodeLocation(const std::string& a_file, int a_line)
  494       : file(a_file), line(a_line) {}
  495 
  496   std::string file;
  497   int line;
  498 };
  499 
  500 // Creates a new TestInfo object and registers it with Google Test;
  501 // returns the created object.
  502 //
  503 // Arguments:
  504 //
  505 //   test_case_name:   name of the test case
  506 //   name:             name of the test
  507 //   type_param        the name of the test's type parameter, or NULL if
  508 //                     this is not a typed or a type-parameterized test.
  509 //   value_param       text representation of the test's value parameter,
  510 //                     or NULL if this is not a type-parameterized test.
  511 //   code_location:    code location where the test is defined
  512 //   fixture_class_id: ID of the test fixture class
  513 //   set_up_tc:        pointer to the function that sets up the test case
  514 //   tear_down_tc:     pointer to the function that tears down the test case
  515 //   factory:          pointer to the factory that creates a test object.
  516 //                     The newly created TestInfo instance will assume
  517 //                     ownership of the factory object.
  518 GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
  519     const char* test_case_name,
  520     const char* name,
  521     const char* type_param,
  522     const char* value_param,
  523     CodeLocation code_location,
  524     TypeId fixture_class_id,
  525     SetUpTestCaseFunc set_up_tc,
  526     TearDownTestCaseFunc tear_down_tc,
  527     TestFactoryBase* factory);
  528 
  529 // If *pstr starts with the given prefix, modifies *pstr to be right
  530 // past the prefix and returns true; otherwise leaves *pstr unchanged
  531 // and returns false.  None of pstr, *pstr, and prefix can be NULL.
  532 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
  533 
  534 #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
  535 
  536 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \
  537 /* class A needs to have dll-interface to be used by clients of class B */)
  538 
  539 // State of the definition of a type-parameterized test case.
  540 class GTEST_API_ TypedTestCasePState {
  541  public:
  542   TypedTestCasePState() : registered_(false) {}
  543 
  544   // Adds the given test name to defined_test_names_ and return true
  545   // if the test case hasn't been registered; otherwise aborts the
  546   // program.
  547   bool AddTestName(const char* file, int line, const char* case_name,
  548                    const char* test_name) {
  549     if (registered_) {
  550       fprintf(stderr, "%s Test %s must be defined before "
  551               "REGISTER_TYPED_TEST_CASE_P(%s, ...).\n",
  552               FormatFileLocation(file, line).c_str(), test_name, case_name);
  553       fflush(stderr);
  554       posix::Abort();
  555     }
  556     registered_tests_.insert(
  557         ::std::make_pair(test_name, CodeLocation(file, line)));
  558     return true;
  559   }
  560 
  561   bool TestExists(const std::string& test_name) const {
  562     return registered_tests_.count(test_name) > 0;
  563   }
  564 
  565   const CodeLocation& GetCodeLocation(const std::string& test_name) const {
  566     RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name);
  567     GTEST_CHECK_(it != registered_tests_.end());
  568     return it->second;
  569   }
  570 
  571   // Verifies that registered_tests match the test names in
  572   // defined_test_names_; returns registered_tests if successful, or
  573   // aborts the program otherwise.
  574   const char* VerifyRegisteredTestNames(
  575       const char* file, int line, const char* registered_tests);
  576 
  577  private:
  578   typedef ::std::map<std::string, CodeLocation> RegisteredTestsMap;
  579 
  580   bool registered_;
  581   RegisteredTestsMap registered_tests_;
  582 };
  583 
  584 GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4251
  585 
  586 // Skips to the first non-space char after the first comma in 'str';
  587 // returns NULL if no comma is found in 'str'.
  588 inline const char* SkipComma(const char* str) {
  589   const char* comma = strchr(str, ',');
  590   if (comma == NULL) {
  591     return NULL;
  592   }
  593   while (IsSpace(*(++comma))) {}
  594   return comma;
  595 }
  596 
  597 // Returns the prefix of 'str' before the first comma in it; returns
  598 // the entire string if it contains no comma.
  599 inline std::string GetPrefixUntilComma(const char* str) {
  600   const char* comma = strchr(str, ',');
  601   return comma == NULL ? str : std::string(str, comma);
  602 }
  603 
  604 // Splits a given string on a given delimiter, populating a given
  605 // vector with the fields.
  606 void SplitString(const ::std::string& str, char delimiter,
  607                  ::std::vector< ::std::string>* dest);
  608 
  609 // The default argument to the template below for the case when the user does
  610 // not provide a name generator.
  611 struct DefaultNameGenerator {
  612   template <typename T>
  613   static std::string GetName(int i) {
  614     return StreamableToString(i);
  615   }
  616 };
  617 
  618 template <typename Provided = DefaultNameGenerator>
  619 struct NameGeneratorSelector {
  620   typedef Provided type;
  621 };
  622 
  623 template <typename NameGenerator>
  624 void GenerateNamesRecursively(Types0, std::vector<std::string>*, int) {}
  625 
  626 template <typename NameGenerator, typename Types>
  627 void GenerateNamesRecursively(Types, std::vector<std::string>* result, int i) {
  628   result->push_back(NameGenerator::template GetName<typename Types::Head>(i));
  629   GenerateNamesRecursively<NameGenerator>(typename Types::Tail(), result,
  630                                           i + 1);
  631 }
  632 
  633 template <typename NameGenerator, typename Types>
  634 std::vector<std::string> GenerateNames() {
  635   std::vector<std::string> result;
  636   GenerateNamesRecursively<NameGenerator>(Types(), &result, 0);
  637   return result;
  638 }
  639 
  640 // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
  641 // registers a list of type-parameterized tests with Google Test.  The
  642 // return value is insignificant - we just need to return something
  643 // such that we can call this function in a namespace scope.
  644 //
  645 // Implementation note: The GTEST_TEMPLATE_ macro declares a template
  646 // template parameter.  It's defined in gtest-type-util.h.
  647 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
  648 class TypeParameterizedTest {
  649  public:
  650   // 'index' is the index of the test in the type list 'Types'
  651   // specified in INSTANTIATE_TYPED_TEST_CASE_P(Prefix, TestCase,
  652   // Types).  Valid values for 'index' are [0, N - 1] where N is the
  653   // length of Types.
  654   static bool Register(const char* prefix, const CodeLocation& code_location,
  655                        const char* case_name, const char* test_names, int index,
  656                        const std::vector<std::string>& type_names =
  657                            GenerateNames<DefaultNameGenerator, Types>()) {
  658     typedef typename Types::Head Type;
  659     typedef Fixture<Type> FixtureClass;
  660     typedef typename GTEST_BIND_(TestSel, Type) TestClass;
  661 
  662     // First, registers the first type-parameterized test in the type
  663     // list.
  664     MakeAndRegisterTestInfo(
  665         (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name +
  666          "/" + type_names[index])
  667             .c_str(),
  668         StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(),
  669         GetTypeName<Type>().c_str(),
  670         NULL,  // No value parameter.
  671         code_location, GetTypeId<FixtureClass>(), TestClass::SetUpTestCase,
  672         TestClass::TearDownTestCase, new TestFactoryImpl<TestClass>);
  673 
  674     // Next, recurses (at compile time) with the tail of the type list.
  675     return TypeParameterizedTest<Fixture, TestSel,
  676                                  typename Types::Tail>::Register(prefix,
  677                                                                  code_location,
  678                                                                  case_name,
  679                                                                  test_names,
  680                                                                  index + 1,
  681                                                                  type_names);
  682   }
  683 };
  684 
  685 // The base case for the compile time recursion.
  686 template <GTEST_TEMPLATE_ Fixture, class TestSel>
  687 class TypeParameterizedTest<Fixture, TestSel, Types0> {
  688  public:
  689   static bool Register(const char* /*prefix*/, const CodeLocation&,
  690                        const char* /*case_name*/, const char* /*test_names*/,
  691                        int /*index*/,
  692                        const std::vector<std::string>& =
  693                            std::vector<std::string>() /*type_names*/) {
  694     return true;
  695   }
  696 };
  697 
  698 // TypeParameterizedTestCase<Fixture, Tests, Types>::Register()
  699 // registers *all combinations* of 'Tests' and 'Types' with Google
  700 // Test.  The return value is insignificant - we just need to return
  701 // something such that we can call this function in a namespace scope.
  702 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
  703 class TypeParameterizedTestCase {
  704  public:
  705   static bool Register(const char* prefix, CodeLocation code_location,
  706                        const TypedTestCasePState* state, const char* case_name,
  707                        const char* test_names,
  708                        const std::vector<std::string>& type_names =
  709                            GenerateNames<DefaultNameGenerator, Types>()) {
  710     std::string test_name = StripTrailingSpaces(
  711         GetPrefixUntilComma(test_names));
  712     if (!state->TestExists(test_name)) {
  713       fprintf(stderr, "Failed to get code location for test %s.%s at %s.",
  714               case_name, test_name.c_str(),
  715               FormatFileLocation(code_location.file.c_str(),
  716                                  code_location.line).c_str());
  717       fflush(stderr);
  718       posix::Abort();
  719     }
  720     const CodeLocation& test_location = state->GetCodeLocation(test_name);
  721 
  722     typedef typename Tests::Head Head;
  723 
  724     // First, register the first test in 'Test' for each type in 'Types'.
  725     TypeParameterizedTest<Fixture, Head, Types>::Register(
  726         prefix, test_location, case_name, test_names, 0, type_names);
  727 
  728     // Next, recurses (at compile time) with the tail of the test list.
  729     return TypeParameterizedTestCase<Fixture, typename Tests::Tail,
  730                                      Types>::Register(prefix, code_location,
  731                                                       state, case_name,
  732                                                       SkipComma(test_names),
  733                                                       type_names);
  734   }
  735 };
  736 
  737 // The base case for the compile time recursion.
  738 template <GTEST_TEMPLATE_ Fixture, typename Types>
  739 class TypeParameterizedTestCase<Fixture, Templates0, Types> {
  740  public:
  741   static bool Register(const char* /*prefix*/, const CodeLocation&,
  742                        const TypedTestCasePState* /*state*/,
  743                        const char* /*case_name*/, const char* /*test_names*/,
  744                        const std::vector<std::string>& =
  745                            std::vector<std::string>() /*type_names*/) {
  746     return true;
  747   }
  748 };
  749 
  750 #endif  // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
  751 
  752 // Returns the current OS stack trace as an std::string.
  753 //
  754 // The maximum number of stack frames to be included is specified by
  755 // the gtest_stack_trace_depth flag.  The skip_count parameter
  756 // specifies the number of top frames to be skipped, which doesn't
  757 // count against the number of frames to be included.
  758 //
  759 // For example, if Foo() calls Bar(), which in turn calls
  760 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
  761 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
  762 GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(
  763     UnitTest* unit_test, int skip_count);
  764 
  765 // Helpers for suppressing warnings on unreachable code or constant
  766 // condition.
  767 
  768 // Always returns true.
  769 GTEST_API_ bool AlwaysTrue();
  770 
  771 // Always returns false.
  772 inline bool AlwaysFalse() { return !AlwaysTrue(); }
  773 
  774 // Helper for suppressing false warning from Clang on a const char*
  775 // variable declared in a conditional expression always being NULL in
  776 // the else branch.
  777 struct GTEST_API_ ConstCharPtr {
  778   ConstCharPtr(const char* str) : value(str) {}
  779   operator bool() const { return true; }
  780   const char* value;
  781 };
  782 
  783 // A simple Linear Congruential Generator for generating random
  784 // numbers with a uniform distribution.  Unlike rand() and srand(), it
  785 // doesn't use global state (and therefore can't interfere with user
  786 // code).  Unlike rand_r(), it's portable.  An LCG isn't very random,
  787 // but it's good enough for our purposes.
  788 class GTEST_API_ Random {
  789  public:
  790   static const UInt32 kMaxRange = 1u << 31;
  791 
  792   explicit Random(UInt32 seed) : state_(seed) {}
  793 
  794   void Reseed(UInt32 seed) { state_ = seed; }
  795 
  796   // Generates a random number from [0, range).  Crashes if 'range' is
  797   // 0 or greater than kMaxRange.
  798   UInt32 Generate(UInt32 range);
  799 
  800  private:
  801   UInt32 state_;
  802   GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
  803 };
  804 
  805 // Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a
  806 // compiler error iff T1 and T2 are different types.
  807 template <typename T1, typename T2>
  808 struct CompileAssertTypesEqual;
  809 
  810 template <typename T>
  811 struct CompileAssertTypesEqual<T, T> {
  812 };
  813 
  814 // Removes the reference from a type if it is a reference type,
  815 // otherwise leaves it unchanged.  This is the same as
  816 // tr1::remove_reference, which is not widely available yet.
  817 template <typename T>
  818 struct RemoveReference { typedef T type; };  // NOLINT
  819 template <typename T>
  820 struct RemoveReference<T&> { typedef T type; };  // NOLINT
  821 
  822 // A handy wrapper around RemoveReference that works when the argument
  823 // T depends on template parameters.
  824 #define GTEST_REMOVE_REFERENCE_(T) \
  825     typename ::testing::internal::RemoveReference<T>::type
  826 
  827 // Removes const from a type if it is a const type, otherwise leaves
  828 // it unchanged.  This is the same as tr1::remove_const, which is not
  829 // widely available yet.
  830 template <typename T>
  831 struct RemoveConst { typedef T type; };  // NOLINT
  832 template <typename T>
  833 struct RemoveConst<const T> { typedef T type; };  // NOLINT
  834 
  835 // MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above
  836 // definition to fail to remove the const in 'const int[3]' and 'const
  837 // char[3][4]'.  The following specialization works around the bug.
  838 template <typename T, size_t N>
  839 struct RemoveConst<const T[N]> {
  840   typedef typename RemoveConst<T>::type type[N];
  841 };
  842 
  843 #if defined(_MSC_VER) && _MSC_VER < 1400
  844 // This is the only specialization that allows VC++ 7.1 to remove const in
  845 // 'const int[3] and 'const int[3][4]'.  However, it causes trouble with GCC
  846 // and thus needs to be conditionally compiled.
  847 template <typename T, size_t N>
  848 struct RemoveConst<T[N]> {
  849   typedef typename RemoveConst<T>::type type[N];
  850 };
  851 #endif
  852 
  853 // A handy wrapper around RemoveConst that works when the argument
  854 // T depends on template parameters.
  855 #define GTEST_REMOVE_CONST_(T) \
  856     typename ::testing::internal::RemoveConst<T>::type
  857 
  858 // Turns const U&, U&, const U, and U all into U.
  859 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
  860     GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T))
  861 
  862 // ImplicitlyConvertible<From, To>::value is a compile-time bool
  863 // constant that's true iff type From can be implicitly converted to
  864 // type To.
  865 template <typename From, typename To>
  866 class ImplicitlyConvertible {
  867  private:
  868   // We need the following helper functions only for their types.
  869   // They have no implementations.
  870 
  871   // MakeFrom() is an expression whose type is From.  We cannot simply
  872   // use From(), as the type From may not have a public default
  873   // constructor.
  874   static typename AddReference<From>::type MakeFrom();
  875 
  876   // These two functions are overloaded.  Given an expression
  877   // Helper(x), the compiler will pick the first version if x can be
  878   // implicitly converted to type To; otherwise it will pick the
  879   // second version.
  880   //
  881   // The first version returns a value of size 1, and the second
  882   // version returns a value of size 2.  Therefore, by checking the
  883   // size of Helper(x), which can be done at compile time, we can tell
  884   // which version of Helper() is used, and hence whether x can be
  885   // implicitly converted to type To.
  886   static char Helper(To);
  887   static char (&Helper(...))[2];  // NOLINT
  888 
  889   // We have to put the 'public' section after the 'private' section,
  890   // or MSVC refuses to compile the code.
  891  public:
  892 #if defined(__BORLANDC__)
  893   // C++Builder cannot use member overload resolution during template
  894   // instantiation.  The simplest workaround is to use its C++0x type traits
  895   // functions (C++Builder 2009 and above only).
  896   static const bool value = __is_convertible(From, To);
  897 #else
  898   // MSVC warns about implicitly converting from double to int for
  899   // possible loss of data, so we need to temporarily disable the
  900   // warning.
  901   GTEST_DISABLE_MSC_WARNINGS_PUSH_(4244)
  902   static const bool value =
  903       sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
  904   GTEST_DISABLE_MSC_WARNINGS_POP_()
  905 #endif  // __BORLANDC__
  906 };
  907 template <typename From, typename To>
  908 const bool ImplicitlyConvertible<From, To>::value;
  909 
  910 // IsAProtocolMessage<T>::value is a compile-time bool constant that's
  911 // true iff T is type ProtocolMessage, proto2::Message, or a subclass
  912 // of those.
  913 template <typename T>
  914 struct IsAProtocolMessage
  915     : public bool_constant<
  916   ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
  917   ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> {
  918 };
  919 
  920 // When the compiler sees expression IsContainerTest<C>(0), if C is an
  921 // STL-style container class, the first overload of IsContainerTest
  922 // will be viable (since both C::iterator* and C::const_iterator* are
  923 // valid types and NULL can be implicitly converted to them).  It will
  924 // be picked over the second overload as 'int' is a perfect match for
  925 // the type of argument 0.  If C::iterator or C::const_iterator is not
  926 // a valid type, the first overload is not viable, and the second
  927 // overload will be picked.  Therefore, we can determine whether C is
  928 // a container class by checking the type of IsContainerTest<C>(0).
  929 // The value of the expression is insignificant.
  930 //
  931 // In C++11 mode we check the existence of a const_iterator and that an
  932 // iterator is properly implemented for the container.
  933 //
  934 // For pre-C++11 that we look for both C::iterator and C::const_iterator.
  935 // The reason is that C++ injects the name of a class as a member of the
  936 // class itself (e.g. you can refer to class iterator as either
  937 // 'iterator' or 'iterator::iterator').  If we look for C::iterator
  938 // only, for example, we would mistakenly think that a class named
  939 // iterator is an STL container.
  940 //
  941 // Also note that the simpler approach of overloading
  942 // IsContainerTest(typename C::const_iterator*) and
  943 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
  944 typedef int IsContainer;
  945 #if GTEST_LANG_CXX11
  946 template <class C,
  947           class Iterator = decltype(::std::declval<const C&>().begin()),
  948           class = decltype(::std::declval<const C&>().end()),
  949           class = decltype(++::std::declval<Iterator&>()),
  950           class = decltype(*::std::declval<Iterator>()),
  951           class = typename C::const_iterator>
  952 IsContainer IsContainerTest(int /* dummy */) {
  953   return 0;
  954 }
  955 #else
  956 template <class C>
  957 IsContainer IsContainerTest(int /* dummy */,
  958                             typename C::iterator* /* it */ = NULL,
  959                             typename C::const_iterator* /* const_it */ = NULL) {
  960   return 0;
  961 }
  962 #endif  // GTEST_LANG_CXX11
  963 
  964 typedef char IsNotContainer;
  965 template <class C>
  966 IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
  967 
  968 // Trait to detect whether a type T is a hash table.
  969 // The heuristic used is that the type contains an inner type `hasher` and does
  970 // not contain an inner type `reverse_iterator`.
  971 // If the container is iterable in reverse, then order might actually matter.
  972 template <typename T>
  973 struct IsHashTable {
  974  private:
  975   template <typename U>
  976   static char test(typename U::hasher*, typename U::reverse_iterator*);
  977   template <typename U>
  978   static int test(typename U::hasher*, ...);
  979   template <typename U>
  980   static char test(...);
  981 
  982  public:
  983   static const bool value = sizeof(test<T>(0, 0)) == sizeof(int);
  984 };
  985 
  986 template <typename T>
  987 const bool IsHashTable<T>::value;
  988 
  989 template<typename T>
  990 struct VoidT {
  991     typedef void value_type;
  992 };
  993 
  994 template <typename T, typename = void>
  995 struct HasValueType : false_type {};
  996 template <typename T>
  997 struct HasValueType<T, VoidT<typename T::value_type> > : true_type {
  998 };
  999 
 1000 template <typename C,
 1001           bool = sizeof(IsContainerTest<C>(0)) == sizeof(IsContainer),
 1002           bool = HasValueType<C>::value>
 1003 struct IsRecursiveContainerImpl;
 1004 
 1005 template <typename C, bool HV>
 1006 struct IsRecursiveContainerImpl<C, false, HV> : public false_type {};
 1007 
 1008 // Since the IsRecursiveContainerImpl depends on the IsContainerTest we need to
 1009 // obey the same inconsistencies as the IsContainerTest, namely check if
 1010 // something is a container is relying on only const_iterator in C++11 and
 1011 // is relying on both const_iterator and iterator otherwise
 1012 template <typename C>
 1013 struct IsRecursiveContainerImpl<C, true, false> : public false_type {};
 1014 
 1015 template <typename C>
 1016 struct IsRecursiveContainerImpl<C, true, true> {
 1017   #if GTEST_LANG_CXX11
 1018   typedef typename IteratorTraits<typename C::const_iterator>::value_type
 1019       value_type;
 1020 #else
 1021   typedef typename IteratorTraits<typename C::iterator>::value_type value_type;
 1022 #endif
 1023   typedef is_same<value_type, C> type;
 1024 };
 1025 
 1026 // IsRecursiveContainer<Type> is a unary compile-time predicate that
 1027 // evaluates whether C is a recursive container type. A recursive container
 1028 // type is a container type whose value_type is equal to the container type
 1029 // itself. An example for a recursive container type is
 1030 // boost::filesystem::path, whose iterator has a value_type that is equal to
 1031 // boost::filesystem::path.
 1032 template <typename C>
 1033 struct IsRecursiveContainer : public IsRecursiveContainerImpl<C>::type {};
 1034 
 1035 // EnableIf<condition>::type is void when 'Cond' is true, and
 1036 // undefined when 'Cond' is false.  To use SFINAE to make a function
 1037 // overload only apply when a particular expression is true, add
 1038 // "typename EnableIf<expression>::type* = 0" as the last parameter.
 1039 template<bool> struct EnableIf;
 1040 template<> struct EnableIf<true> { typedef void type; };  // NOLINT
 1041 
 1042 // Utilities for native arrays.
 1043 
 1044 // ArrayEq() compares two k-dimensional native arrays using the
 1045 // elements' operator==, where k can be any integer >= 0.  When k is
 1046 // 0, ArrayEq() degenerates into comparing a single pair of values.
 1047 
 1048 template <typename T, typename U>
 1049 bool ArrayEq(const T* lhs, size_t size, const U* rhs);
 1050 
 1051 // This generic version is used when k is 0.
 1052 template <typename T, typename U>
 1053 inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
 1054 
 1055 // This overload is used when k >= 1.
 1056 template <typename T, typename U, size_t N>
 1057 inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
 1058   return internal::ArrayEq(lhs, N, rhs);
 1059 }
 1060 
 1061 // This helper reduces code bloat.  If we instead put its logic inside
 1062 // the previous ArrayEq() function, arrays with different sizes would
 1063 // lead to different copies of the template code.
 1064 template <typename T, typename U>
 1065 bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
 1066   for (size_t i = 0; i != size; i++) {
 1067     if (!internal::ArrayEq(lhs[i], rhs[i]))
 1068       return false;
 1069   }
 1070   return true;
 1071 }
 1072 
 1073 // Finds the first element in the iterator range [begin, end) that
 1074 // equals elem.  Element may be a native array type itself.
 1075 template <typename Iter, typename Element>
 1076 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
 1077   for (Iter it = begin; it != end; ++it) {
 1078     if (internal::ArrayEq(*it, elem))
 1079       return it;
 1080   }
 1081   return end;
 1082 }
 1083 
 1084 // CopyArray() copies a k-dimensional native array using the elements'
 1085 // operator=, where k can be any integer >= 0.  When k is 0,
 1086 // CopyArray() degenerates into copying a single value.
 1087 
 1088 template <typename T, typename U>
 1089 void CopyArray(const T* from, size_t size, U* to);
 1090 
 1091 // This generic version is used when k is 0.
 1092 template <typename T, typename U>
 1093 inline void CopyArray(const T& from, U* to) { *to = from; }
 1094 
 1095 // This overload is used when k >= 1.
 1096 template <typename T, typename U, size_t N>
 1097 inline void CopyArray(const T(&from)[N], U(*to)[N]) {
 1098   internal::CopyArray(from, N, *to);
 1099 }
 1100 
 1101 // This helper reduces code bloat.  If we instead put its logic inside
 1102 // the previous CopyArray() function, arrays with different sizes
 1103 // would lead to different copies of the template code.
 1104 template <typename T, typename U>
 1105 void CopyArray(const T* from, size_t size, U* to) {
 1106   for (size_t i = 0; i != size; i++) {
 1107     internal::CopyArray(from[i], to + i);
 1108   }
 1109 }
 1110 
 1111 // The relation between an NativeArray object (see below) and the
 1112 // native array it represents.
 1113 // We use 2 different structs to allow non-copyable types to be used, as long
 1114 // as RelationToSourceReference() is passed.
 1115 struct RelationToSourceReference {};
 1116 struct RelationToSourceCopy {};
 1117 
 1118 // Adapts a native array to a read-only STL-style container.  Instead
 1119 // of the complete STL container concept, this adaptor only implements
 1120 // members useful for Google Mock's container matchers.  New members
 1121 // should be added as needed.  To simplify the implementation, we only
 1122 // support Element being a raw type (i.e. having no top-level const or
 1123 // reference modifier).  It's the client's responsibility to satisfy
 1124 // this requirement.  Element can be an array type itself (hence
 1125 // multi-dimensional arrays are supported).
 1126 template <typename Element>
 1127 class NativeArray {
 1128  public:
 1129   // STL-style container typedefs.
 1130   typedef Element value_type;
 1131   typedef Element* iterator;
 1132   typedef const Element* const_iterator;
 1133 
 1134   // Constructs from a native array. References the source.
 1135   NativeArray(const Element* array, size_t count, RelationToSourceReference) {
 1136     InitRef(array, count);
 1137   }
 1138 
 1139   // Constructs from a native array. Copies the source.
 1140   NativeArray(const Element* array, size_t count, RelationToSourceCopy) {
 1141     InitCopy(array, count);
 1142   }
 1143 
 1144   // Copy constructor.
 1145   NativeArray(const NativeArray& rhs) {
 1146     (this->*rhs.clone_)(rhs.array_, rhs.size_);
 1147   }
 1148 
 1149   ~NativeArray() {
 1150     if (clone_ != &NativeArray::InitRef)
 1151       delete[] array_;
 1152   }
 1153 
 1154   // STL-style container methods.
 1155   size_t size() const { return size_; }
 1156   const_iterator begin() const { return array_; }
 1157   const_iterator end() const { return array_ + size_; }
 1158   bool operator==(const NativeArray& rhs) const {
 1159     return size() == rhs.size() &&
 1160         ArrayEq(begin(), size(), rhs.begin());
 1161   }
 1162 
 1163  private:
 1164   enum {
 1165     kCheckTypeIsNotConstOrAReference = StaticAssertTypeEqHelper<
 1166         Element, GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>::value
 1167   };
 1168 
 1169   // Initializes this object with a copy of the input.
 1170   void InitCopy(const Element* array, size_t a_size) {
 1171     Element* const copy = new Element[a_size];
 1172     CopyArray(array, a_size, copy);
 1173     array_ = copy;
 1174     size_ = a_size;
 1175     clone_ = &NativeArray::InitCopy;
 1176   }
 1177 
 1178   // Initializes this object with a reference of the input.
 1179   void InitRef(const Element* array, size_t a_size) {
 1180     array_ = array;
 1181     size_ = a_size;
 1182     clone_ = &NativeArray::InitRef;
 1183   }
 1184 
 1185   const Element* array_;
 1186   size_t size_;
 1187   void (NativeArray::*clone_)(const Element*, size_t);
 1188 
 1189   GTEST_DISALLOW_ASSIGN_(NativeArray);
 1190 };
 1191 
 1192 }  // namespace internal
 1193 }  // namespace testing
 1194 
 1195 #define GTEST_MESSAGE_AT_(file, line, message, result_type) \
 1196   ::testing::internal::AssertHelper(result_type, file, line, message) \
 1197     = ::testing::Message()
 1198 
 1199 #define GTEST_MESSAGE_(message, result_type) \
 1200   GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
 1201 
 1202 #define GTEST_FATAL_FAILURE_(message) \
 1203   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
 1204 
 1205 #define GTEST_NONFATAL_FAILURE_(message) \
 1206   GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
 1207 
 1208 #define GTEST_SUCCESS_(message) \
 1209   GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
 1210 
 1211 // Suppress MSVC warning 4702 (unreachable code) for the code following
 1212 // statement if it returns or throws (or doesn't return or throw in some
 1213 // situations).
 1214 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
 1215   if (::testing::internal::AlwaysTrue()) { statement; }
 1216 
 1217 #define GTEST_TEST_THROW_(statement, expected_exception, fail) \
 1218   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
 1219   if (::testing::internal::ConstCharPtr gtest_msg = "") { \
 1220     bool gtest_caught_expected = false; \
 1221     try { \
 1222       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
 1223     } \
 1224     catch (expected_exception const&) { \
 1225       gtest_caught_expected = true; \
 1226     } \
 1227     catch (...) { \
 1228       gtest_msg.value = \
 1229           "Expected: " #statement " throws an exception of type " \
 1230           #expected_exception ".\n  Actual: it throws a different type."; \
 1231       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
 1232     } \
 1233     if (!gtest_caught_expected) { \
 1234       gtest_msg.value = \
 1235           "Expected: " #statement " throws an exception of type " \
 1236           #expected_exception ".\n  Actual: it throws nothing."; \
 1237       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
 1238     } \
 1239   } else \
 1240     GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \
 1241       fail(gtest_msg.value)
 1242 
 1243 #define GTEST_TEST_NO_THROW_(statement, fail) \
 1244   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
 1245   if (::testing::internal::AlwaysTrue()) { \
 1246     try { \
 1247       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
 1248     } \
 1249     catch (...) { \
 1250       goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
 1251     } \
 1252   } else \
 1253     GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
 1254       fail("Expected: " #statement " doesn't throw an exception.\n" \
 1255            "  Actual: it throws.")
 1256 
 1257 #define GTEST_TEST_ANY_THROW_(statement, fail) \
 1258   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
 1259   if (::testing::internal::AlwaysTrue()) { \
 1260     bool gtest_caught_any = false; \
 1261     try { \
 1262       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
 1263     } \
 1264     catch (...) { \
 1265       gtest_caught_any = true; \
 1266     } \
 1267     if (!gtest_caught_any) { \
 1268       goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
 1269     } \
 1270   } else \
 1271     GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
 1272       fail("Expected: " #statement " throws an exception.\n" \
 1273            "  Actual: it doesn't.")
 1274 
 1275 
 1276 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
 1277 // either a boolean expression or an AssertionResult. text is a textual
 1278 // represenation of expression as it was passed into the EXPECT_TRUE.
 1279 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
 1280   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
 1281   if (const ::testing::AssertionResult gtest_ar_ = \
 1282       ::testing::AssertionResult(expression)) \
 1283     ; \
 1284   else \
 1285     fail(::testing::internal::GetBoolAssertionFailureMessage(\
 1286         gtest_ar_, text, #actual, #expected).c_str())
 1287 
 1288 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
 1289   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
 1290   if (::testing::internal::AlwaysTrue()) { \
 1291     ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
 1292     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
 1293     if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
 1294       goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
 1295     } \
 1296   } else \
 1297     GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
 1298       fail("Expected: " #statement " doesn't generate new fatal " \
 1299            "failures in the current thread.\n" \
 1300            "  Actual: it does.")
 1301 
 1302 // Expands to the name of the class that implements the given test.
 1303 #define GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \
 1304   test_case_name##_##test_name##_Test
 1305 
 1306 // Helper macro for defining tests.
 1307 #define GTEST_TEST_(test_case_name, test_name, parent_class, parent_id)\
 1308 class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : public parent_class {\
 1309  public:\
 1310   GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {}\
 1311  private:\
 1312   virtual void TestBody();\
 1313   static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;\
 1314   GTEST_DISALLOW_COPY_AND_ASSIGN_(\
 1315       GTEST_TEST_CLASS_NAME_(test_case_name, test_name));\
 1316 };\
 1317 \
 1318 ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_case_name, test_name)\
 1319   ::test_info_ =\
 1320     ::testing::internal::MakeAndRegisterTestInfo(\
 1321         #test_case_name, #test_name, NULL, NULL, \
 1322         ::testing::internal::CodeLocation(__FILE__, __LINE__), \
 1323         (parent_id), \
 1324         parent_class::SetUpTestCase, \
 1325         parent_class::TearDownTestCase, \
 1326         new ::testing::internal::TestFactoryImpl<\
 1327             GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>);\
 1328 void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody()
 1329 
 1330 #endif  // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_