"Fossies" - the Fresh Open Source Software Archive

Member "scanssh-2.1/compat/sys/queue.h" (6 Mar 2001, 17299 Bytes) of package /linux/privat/old/scanssh-2.1.tar.gz:


As a special service "Fossies" has tried to format the requested source page into HTML format using (guessed) C and C++ source code syntax highlighting (style: standard) with prefixed line numbers and code folding option. Alternatively you can here view or download the uninterpreted source code file.

    1 /*  $OpenBSD: queue.h,v 1.17 2000/11/16 20:02:20 provos Exp $   */
    2 /*  $NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $   */
    3 
    4 /*
    5  * Copyright (c) 1991, 1993
    6  *  The Regents of the University of California.  All rights reserved.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 3. All advertising materials mentioning features or use of this software
   17  *    must display the following acknowledgement:
   18  *  This product includes software developed by the University of
   19  *  California, Berkeley and its contributors.
   20  * 4. Neither the name of the University nor the names of its contributors
   21  *    may be used to endorse or promote products derived from this software
   22  *    without specific prior written permission.
   23  *
   24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   34  * SUCH DAMAGE.
   35  *
   36  *  @(#)queue.h 8.5 (Berkeley) 8/20/94
   37  */
   38 
   39 #ifndef _SYS_QUEUE_H_
   40 #define _SYS_QUEUE_H_
   41 
   42 /*
   43  * This file defines five types of data structures: singly-linked lists, 
   44  * lists, simple queues, tail queues, and circular queues.
   45  *
   46  *
   47  * A singly-linked list is headed by a single forward pointer. The elements
   48  * are singly linked for minimum space and pointer manipulation overhead at
   49  * the expense of O(n) removal for arbitrary elements. New elements can be
   50  * added to the list after an existing element or at the head of the list.
   51  * Elements being removed from the head of the list should use the explicit
   52  * macro for this purpose for optimum efficiency. A singly-linked list may
   53  * only be traversed in the forward direction.  Singly-linked lists are ideal
   54  * for applications with large datasets and few or no removals or for
   55  * implementing a LIFO queue.
   56  *
   57  * A list is headed by a single forward pointer (or an array of forward
   58  * pointers for a hash table header). The elements are doubly linked
   59  * so that an arbitrary element can be removed without a need to
   60  * traverse the list. New elements can be added to the list before
   61  * or after an existing element or at the head of the list. A list
   62  * may only be traversed in the forward direction.
   63  *
   64  * A simple queue is headed by a pair of pointers, one the head of the
   65  * list and the other to the tail of the list. The elements are singly
   66  * linked to save space, so elements can only be removed from the
   67  * head of the list. New elements can be added to the list before or after
   68  * an existing element, at the head of the list, or at the end of the
   69  * list. A simple queue may only be traversed in the forward direction.
   70  *
   71  * A tail queue is headed by a pair of pointers, one to the head of the
   72  * list and the other to the tail of the list. The elements are doubly
   73  * linked so that an arbitrary element can be removed without a need to
   74  * traverse the list. New elements can be added to the list before or
   75  * after an existing element, at the head of the list, or at the end of
   76  * the list. A tail queue may be traversed in either direction.
   77  *
   78  * A circle queue is headed by a pair of pointers, one to the head of the
   79  * list and the other to the tail of the list. The elements are doubly
   80  * linked so that an arbitrary element can be removed without a need to
   81  * traverse the list. New elements can be added to the list before or after
   82  * an existing element, at the head of the list, or at the end of the list.
   83  * A circle queue may be traversed in either direction, but has a more
   84  * complex end of list detection.
   85  *
   86  * For details on the use of these macros, see the queue(3) manual page.
   87  */
   88 
   89 /*
   90  * Singly-linked List definitions.
   91  */
   92 #define SLIST_HEAD(name, type)                      \
   93 struct name {                               \
   94     struct type *slh_first; /* first element */         \
   95 }
   96  
   97 #define SLIST_HEAD_INITIALIZER(head)                    \
   98     { NULL }
   99  
  100 #define SLIST_ENTRY(type)                       \
  101 struct {                                \
  102     struct type *sle_next;  /* next element */          \
  103 }
  104  
  105 /*
  106  * Singly-linked List access methods.
  107  */
  108 #define SLIST_FIRST(head)   ((head)->slh_first)
  109 #define SLIST_END(head)     NULL
  110 #define SLIST_EMPTY(head)   (SLIST_FIRST(head) == SLIST_END(head))
  111 #define SLIST_NEXT(elm, field)  ((elm)->field.sle_next)
  112 
  113 #define SLIST_FOREACH(var, head, field)                 \
  114     for((var) = SLIST_FIRST(head);                  \
  115         (var) != SLIST_END(head);                   \
  116         (var) = SLIST_NEXT(var, field))
  117 
  118 /*
  119  * Singly-linked List functions.
  120  */
  121 #define SLIST_INIT(head) {                      \
  122     SLIST_FIRST(head) = SLIST_END(head);                \
  123 }
  124 
  125 #define SLIST_INSERT_AFTER(slistelm, elm, field) do {           \
  126     (elm)->field.sle_next = (slistelm)->field.sle_next;     \
  127     (slistelm)->field.sle_next = (elm);             \
  128 } while (0)
  129 
  130 #define SLIST_INSERT_HEAD(head, elm, field) do {            \
  131     (elm)->field.sle_next = (head)->slh_first;          \
  132     (head)->slh_first = (elm);                  \
  133 } while (0)
  134 
  135 #define SLIST_REMOVE_HEAD(head, field) do {             \
  136     (head)->slh_first = (head)->slh_first->field.sle_next;      \
  137 } while (0)
  138 
  139 #define SLIST_REMOVE(head, elm, type, field) do {           \
  140     if ((head)->slh_first == (elm)) {               \
  141         SLIST_REMOVE_HEAD((head), field);           \
  142     }                               \
  143     else {                              \
  144         struct type *curelm = (head)->slh_first;        \
  145         while( curelm->field.sle_next != (elm) )        \
  146             curelm = curelm->field.sle_next;        \
  147         curelm->field.sle_next =                \
  148             curelm->field.sle_next->field.sle_next;     \
  149     }                               \
  150 } while (0)
  151 
  152 /*
  153  * List definitions.
  154  */
  155 #define LIST_HEAD(name, type)                       \
  156 struct name {                               \
  157     struct type *lh_first;  /* first element */         \
  158 }
  159 
  160 #define LIST_HEAD_INITIALIZER(head)                 \
  161     { NULL }
  162 
  163 #define LIST_ENTRY(type)                        \
  164 struct {                                \
  165     struct type *le_next;   /* next element */          \
  166     struct type **le_prev;  /* address of previous next element */  \
  167 }
  168 
  169 /*
  170  * List access methods
  171  */
  172 #define LIST_FIRST(head)        ((head)->lh_first)
  173 #define LIST_END(head)          NULL
  174 #define LIST_EMPTY(head)        (LIST_FIRST(head) == LIST_END(head))
  175 #define LIST_NEXT(elm, field)       ((elm)->field.le_next)
  176 
  177 #define LIST_FOREACH(var, head, field)                  \
  178     for((var) = LIST_FIRST(head);                   \
  179         (var)!= LIST_END(head);                 \
  180         (var) = LIST_NEXT(var, field))
  181 
  182 /*
  183  * List functions.
  184  */
  185 #define LIST_INIT(head) do {                        \
  186     LIST_FIRST(head) = LIST_END(head);              \
  187 } while (0)
  188 
  189 #define LIST_INSERT_AFTER(listelm, elm, field) do {         \
  190     if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)  \
  191         (listelm)->field.le_next->field.le_prev =       \
  192             &(elm)->field.le_next;              \
  193     (listelm)->field.le_next = (elm);               \
  194     (elm)->field.le_prev = &(listelm)->field.le_next;       \
  195 } while (0)
  196 
  197 #define LIST_INSERT_BEFORE(listelm, elm, field) do {            \
  198     (elm)->field.le_prev = (listelm)->field.le_prev;        \
  199     (elm)->field.le_next = (listelm);               \
  200     *(listelm)->field.le_prev = (elm);              \
  201     (listelm)->field.le_prev = &(elm)->field.le_next;       \
  202 } while (0)
  203 
  204 #define LIST_INSERT_HEAD(head, elm, field) do {             \
  205     if (((elm)->field.le_next = (head)->lh_first) != NULL)      \
  206         (head)->lh_first->field.le_prev = &(elm)->field.le_next;\
  207     (head)->lh_first = (elm);                   \
  208     (elm)->field.le_prev = &(head)->lh_first;           \
  209 } while (0)
  210 
  211 #define LIST_REMOVE(elm, field) do {                    \
  212     if ((elm)->field.le_next != NULL)               \
  213         (elm)->field.le_next->field.le_prev =           \
  214             (elm)->field.le_prev;               \
  215     *(elm)->field.le_prev = (elm)->field.le_next;           \
  216 } while (0)
  217 
  218 #define LIST_REPLACE(elm, elm2, field) do {             \
  219     if (((elm2)->field.le_next = (elm)->field.le_next) != NULL) \
  220         (elm2)->field.le_next->field.le_prev =          \
  221             &(elm2)->field.le_next;             \
  222     (elm2)->field.le_prev = (elm)->field.le_prev;           \
  223     *(elm2)->field.le_prev = (elm2);                \
  224 } while (0)
  225 
  226 /*
  227  * Simple queue definitions.
  228  */
  229 #define SIMPLEQ_HEAD(name, type)                    \
  230 struct name {                               \
  231     struct type *sqh_first; /* first element */         \
  232     struct type **sqh_last; /* addr of last next element */     \
  233 }
  234 
  235 #define SIMPLEQ_HEAD_INITIALIZER(head)                  \
  236     { NULL, &(head).sqh_first }
  237 
  238 #define SIMPLEQ_ENTRY(type)                     \
  239 struct {                                \
  240     struct type *sqe_next;  /* next element */          \
  241 }
  242 
  243 /*
  244  * Simple queue access methods.
  245  */
  246 #define SIMPLEQ_FIRST(head)     ((head)->sqh_first)
  247 #define SIMPLEQ_END(head)       NULL
  248 #define SIMPLEQ_EMPTY(head)     (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
  249 #define SIMPLEQ_NEXT(elm, field)    ((elm)->field.sqe_next)
  250 
  251 #define SIMPLEQ_FOREACH(var, head, field)               \
  252     for((var) = SIMPLEQ_FIRST(head);                \
  253         (var) != SIMPLEQ_END(head);                 \
  254         (var) = SIMPLEQ_NEXT(var, field))
  255 
  256 /*
  257  * Simple queue functions.
  258  */
  259 #define SIMPLEQ_INIT(head) do {                     \
  260     (head)->sqh_first = NULL;                   \
  261     (head)->sqh_last = &(head)->sqh_first;              \
  262 } while (0)
  263 
  264 #define SIMPLEQ_INSERT_HEAD(head, elm, field) do {          \
  265     if (((elm)->field.sqe_next = (head)->sqh_first) == NULL)    \
  266         (head)->sqh_last = &(elm)->field.sqe_next;      \
  267     (head)->sqh_first = (elm);                  \
  268 } while (0)
  269 
  270 #define SIMPLEQ_INSERT_TAIL(head, elm, field) do {          \
  271     (elm)->field.sqe_next = NULL;                   \
  272     *(head)->sqh_last = (elm);                  \
  273     (head)->sqh_last = &(elm)->field.sqe_next;          \
  274 } while (0)
  275 
  276 #define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do {        \
  277     if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
  278         (head)->sqh_last = &(elm)->field.sqe_next;      \
  279     (listelm)->field.sqe_next = (elm);              \
  280 } while (0)
  281 
  282 #define SIMPLEQ_REMOVE_HEAD(head, elm, field) do {          \
  283     if (((head)->sqh_first = (elm)->field.sqe_next) == NULL)    \
  284         (head)->sqh_last = &(head)->sqh_first;          \
  285 } while (0)
  286 
  287 /*
  288  * Tail queue definitions.
  289  */
  290 #define TAILQ_HEAD(name, type)                      \
  291 struct name {                               \
  292     struct type *tqh_first; /* first element */         \
  293     struct type **tqh_last; /* addr of last next element */     \
  294 }
  295 
  296 #define TAILQ_HEAD_INITIALIZER(head)                    \
  297     { NULL, &(head).tqh_first }
  298 
  299 #define TAILQ_ENTRY(type)                       \
  300 struct {                                \
  301     struct type *tqe_next;  /* next element */          \
  302     struct type **tqe_prev; /* address of previous next element */  \
  303 }
  304 
  305 /* 
  306  * tail queue access methods 
  307  */
  308 #define TAILQ_FIRST(head)       ((head)->tqh_first)
  309 #define TAILQ_END(head)         NULL
  310 #define TAILQ_NEXT(elm, field)      ((elm)->field.tqe_next)
  311 #define TAILQ_LAST(head, headname)                  \
  312     (*(((struct headname *)((head)->tqh_last))->tqh_last))
  313 /* XXX */
  314 #define TAILQ_PREV(elm, headname, field)                \
  315     (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
  316 #define TAILQ_EMPTY(head)                       \
  317     (TAILQ_FIRST(head) == TAILQ_END(head))
  318 
  319 #define TAILQ_FOREACH(var, head, field)                 \
  320     for((var) = TAILQ_FIRST(head);                  \
  321         (var) != TAILQ_END(head);                   \
  322         (var) = TAILQ_NEXT(var, field))
  323 
  324 #define TAILQ_FOREACH_REVERSE(var, head, field, headname)       \
  325     for((var) = TAILQ_LAST(head, headname);             \
  326         (var) != TAILQ_END(head);                   \
  327         (var) = TAILQ_PREV(var, headname, field))
  328 
  329 /*
  330  * Tail queue functions.
  331  */
  332 #define TAILQ_INIT(head) do {                       \
  333     (head)->tqh_first = NULL;                   \
  334     (head)->tqh_last = &(head)->tqh_first;              \
  335 } while (0)
  336 
  337 #define TAILQ_INSERT_HEAD(head, elm, field) do {            \
  338     if (((elm)->field.tqe_next = (head)->tqh_first) != NULL)    \
  339         (head)->tqh_first->field.tqe_prev =         \
  340             &(elm)->field.tqe_next;             \
  341     else                                \
  342         (head)->tqh_last = &(elm)->field.tqe_next;      \
  343     (head)->tqh_first = (elm);                  \
  344     (elm)->field.tqe_prev = &(head)->tqh_first;         \
  345 } while (0)
  346 
  347 #define TAILQ_INSERT_TAIL(head, elm, field) do {            \
  348     (elm)->field.tqe_next = NULL;                   \
  349     (elm)->field.tqe_prev = (head)->tqh_last;           \
  350     *(head)->tqh_last = (elm);                  \
  351     (head)->tqh_last = &(elm)->field.tqe_next;          \
  352 } while (0)
  353 
  354 #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do {      \
  355     if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
  356         (elm)->field.tqe_next->field.tqe_prev =         \
  357             &(elm)->field.tqe_next;             \
  358     else                                \
  359         (head)->tqh_last = &(elm)->field.tqe_next;      \
  360     (listelm)->field.tqe_next = (elm);              \
  361     (elm)->field.tqe_prev = &(listelm)->field.tqe_next;     \
  362 } while (0)
  363 
  364 #define TAILQ_INSERT_BEFORE(listelm, elm, field) do {           \
  365     (elm)->field.tqe_prev = (listelm)->field.tqe_prev;      \
  366     (elm)->field.tqe_next = (listelm);              \
  367     *(listelm)->field.tqe_prev = (elm);             \
  368     (listelm)->field.tqe_prev = &(elm)->field.tqe_next;     \
  369 } while (0)
  370 
  371 #define TAILQ_REMOVE(head, elm, field) do {             \
  372     if (((elm)->field.tqe_next) != NULL)                \
  373         (elm)->field.tqe_next->field.tqe_prev =         \
  374             (elm)->field.tqe_prev;              \
  375     else                                \
  376         (head)->tqh_last = (elm)->field.tqe_prev;       \
  377     *(elm)->field.tqe_prev = (elm)->field.tqe_next;         \
  378 } while (0)
  379 
  380 #define TAILQ_REPLACE(head, elm, elm2, field) do {          \
  381     if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL)   \
  382         (elm2)->field.tqe_next->field.tqe_prev =        \
  383             &(elm2)->field.tqe_next;                \
  384     else                                \
  385         (head)->tqh_last = &(elm2)->field.tqe_next;     \
  386     (elm2)->field.tqe_prev = (elm)->field.tqe_prev;         \
  387     *(elm2)->field.tqe_prev = (elm2);               \
  388 } while (0)
  389 
  390 /*
  391  * Circular queue definitions.
  392  */
  393 #define CIRCLEQ_HEAD(name, type)                    \
  394 struct name {                               \
  395     struct type *cqh_first;     /* first element */     \
  396     struct type *cqh_last;      /* last element */      \
  397 }
  398 
  399 #define CIRCLEQ_HEAD_INITIALIZER(head)                  \
  400     { CIRCLEQ_END(&head), CIRCLEQ_END(&head) }
  401 
  402 #define CIRCLEQ_ENTRY(type)                     \
  403 struct {                                \
  404     struct type *cqe_next;      /* next element */      \
  405     struct type *cqe_prev;      /* previous element */      \
  406 }
  407 
  408 /*
  409  * Circular queue access methods 
  410  */
  411 #define CIRCLEQ_FIRST(head)     ((head)->cqh_first)
  412 #define CIRCLEQ_LAST(head)      ((head)->cqh_last)
  413 #define CIRCLEQ_END(head)       ((void *)(head))
  414 #define CIRCLEQ_NEXT(elm, field)    ((elm)->field.cqe_next)
  415 #define CIRCLEQ_PREV(elm, field)    ((elm)->field.cqe_prev)
  416 #define CIRCLEQ_EMPTY(head)                     \
  417     (CIRCLEQ_FIRST(head) == CIRCLEQ_END(head))
  418 
  419 #define CIRCLEQ_FOREACH(var, head, field)               \
  420     for((var) = CIRCLEQ_FIRST(head);                \
  421         (var) != CIRCLEQ_END(head);                 \
  422         (var) = CIRCLEQ_NEXT(var, field))
  423 
  424 #define CIRCLEQ_FOREACH_REVERSE(var, head, field)           \
  425     for((var) = CIRCLEQ_LAST(head);                 \
  426         (var) != CIRCLEQ_END(head);                 \
  427         (var) = CIRCLEQ_PREV(var, field))
  428 
  429 /*
  430  * Circular queue functions.
  431  */
  432 #define CIRCLEQ_INIT(head) do {                     \
  433     (head)->cqh_first = CIRCLEQ_END(head);              \
  434     (head)->cqh_last = CIRCLEQ_END(head);               \
  435 } while (0)
  436 
  437 #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do {        \
  438     (elm)->field.cqe_next = (listelm)->field.cqe_next;      \
  439     (elm)->field.cqe_prev = (listelm);              \
  440     if ((listelm)->field.cqe_next == CIRCLEQ_END(head))     \
  441         (head)->cqh_last = (elm);               \
  442     else                                \
  443         (listelm)->field.cqe_next->field.cqe_prev = (elm);  \
  444     (listelm)->field.cqe_next = (elm);              \
  445 } while (0)
  446 
  447 #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do {       \
  448     (elm)->field.cqe_next = (listelm);              \
  449     (elm)->field.cqe_prev = (listelm)->field.cqe_prev;      \
  450     if ((listelm)->field.cqe_prev == CIRCLEQ_END(head))     \
  451         (head)->cqh_first = (elm);              \
  452     else                                \
  453         (listelm)->field.cqe_prev->field.cqe_next = (elm);  \
  454     (listelm)->field.cqe_prev = (elm);              \
  455 } while (0)
  456 
  457 #define CIRCLEQ_INSERT_HEAD(head, elm, field) do {          \
  458     (elm)->field.cqe_next = (head)->cqh_first;          \
  459     (elm)->field.cqe_prev = CIRCLEQ_END(head);          \
  460     if ((head)->cqh_last == CIRCLEQ_END(head))          \
  461         (head)->cqh_last = (elm);               \
  462     else                                \
  463         (head)->cqh_first->field.cqe_prev = (elm);      \
  464     (head)->cqh_first = (elm);                  \
  465 } while (0)
  466 
  467 #define CIRCLEQ_INSERT_TAIL(head, elm, field) do {          \
  468     (elm)->field.cqe_next = CIRCLEQ_END(head);          \
  469     (elm)->field.cqe_prev = (head)->cqh_last;           \
  470     if ((head)->cqh_first == CIRCLEQ_END(head))         \
  471         (head)->cqh_first = (elm);              \
  472     else                                \
  473         (head)->cqh_last->field.cqe_next = (elm);       \
  474     (head)->cqh_last = (elm);                   \
  475 } while (0)
  476 
  477 #define CIRCLEQ_REMOVE(head, elm, field) do {               \
  478     if ((elm)->field.cqe_next == CIRCLEQ_END(head))         \
  479         (head)->cqh_last = (elm)->field.cqe_prev;       \
  480     else                                \
  481         (elm)->field.cqe_next->field.cqe_prev =         \
  482             (elm)->field.cqe_prev;              \
  483     if ((elm)->field.cqe_prev == CIRCLEQ_END(head))         \
  484         (head)->cqh_first = (elm)->field.cqe_next;      \
  485     else                                \
  486         (elm)->field.cqe_prev->field.cqe_next =         \
  487             (elm)->field.cqe_next;              \
  488 } while (0)
  489 
  490 #define CIRCLEQ_REPLACE(head, elm, elm2, field) do {            \
  491     if (((elm2)->field.cqe_next = (elm)->field.cqe_next) ==     \
  492         CIRCLEQ_END(head))                      \
  493         (head).cqh_last = (elm2);               \
  494     else                                \
  495         (elm2)->field.cqe_next->field.cqe_prev = (elm2);    \
  496     if (((elm2)->field.cqe_prev = (elm)->field.cqe_prev) ==     \
  497         CIRCLEQ_END(head))                      \
  498         (head).cqh_first = (elm2);              \
  499     else                                \
  500         (elm2)->field.cqe_prev->field.cqe_next = (elm2);    \
  501 } while (0)
  502 
  503 #endif  /* !_SYS_QUEUE_H_ */