The SymPy CAS can be installed on virtually any computer with Python. SymPy does require `mpmath` Python library to be installed first. The recommended method of installation is through Anaconda, which includes mpmath, as well as several other useful libraries. Alternatively, some Linux distributions have SymPy packages available.

SymPy officially supports Python 3.8, 3.9, 3.10, and PyPy.

1.1 Anaconda

Anaconda is a free Python distribution from Continuum Analytics that includes SymPy, Matplotlib, IPython, NumPy, and many more useful packages for scientific computing. This is recommended because many nice features of SymPy are only enabled when certain libraries are installed. For example, without Matplotlib, only simple text-based plotting is enabled. With the IPython notebook or qtconsole, you can get nicer LATEX printing by running `init_printing()`.

If you already have Anaconda and want to update SymPy to the latest version, use:

```
conda update sympy
```

1.2 Git

If you wish to contribute to SymPy or like to get the latest updates as they come, install SymPy from git. To download the repository, execute the following from the command line:

```
git clone https://github.com/sympy/sympy.git
```

To update to the latest version, go into your repository and execute:

```
git pull origin master
```

If you want to install SymPy, but still want to use the git version, you can run from your repository:

```
python -m pip install -e .
```

This will cause the installed version to always point to the version in the git directory.
1.3 Other Methods

You may also install SymPy using pip or from source. In addition, most Linux and Python distributions have some SymPy version available to install using their package manager. Here is a list of several such Python distributions:

- Anaconda
- Enthought Deployment Manager
- ActivePython
- Spack

1.4 Run SymPy

After installation, it is best to verify that your freshly-installed SymPy works. To do this, start up Python and import the SymPy libraries:

```
$ python
>>> from sympy import *
```

From here, execute some simple SymPy statements like the ones below:

```
>>> x = Symbol('x
>>> limit(sin(x)/x, x, 0)
1
>>> integrate(1/x, x)
log(x)
```

For a starter guide on using SymPy effectively, refer to the *Introductory Tutorial* (page 5).

1.5 mpmath

Versions of SymPy prior to 1.0 included mpmath, but it now depends on it as an external dependency. If you installed SymPy with Anaconda, it will already include mpmath. Use:

```
conda install mpmath
```

to ensure that it is installed.

If you do not wish to use Anaconda, you can use `pip install mpmath`.

If you use mpmath via `sympy.mpmath` in your code, you will need to change this to use just `mpmath`. If you depend on code that does this that you cannot easily change, you can work around it by doing:

```
import sys
import mpmath
sys.modules['sympy.mpmath'] = mpmath
```

before the code that imports `sympy.mpmath`. It is recommended to change code that uses `sympy.mpmath` to use `mpmath` directly wherever possible.
1.6 Questions

If you have a question about installation or SymPy in general, feel free to visit our chat on Gitter. In addition, our mailing list is an excellent source of community support.

If you think there’s a bug or you would like to request a feature, please open an issue ticket.
Tutorials are the best place to start for anyone new to SymPy or one of SymPy’s features.

2.1 Introductory Tutorial

If you are new to SymPy, start here.

2.1.1 Introductory Tutorial

This tutorial aims to give an introduction to SymPy for someone who has not used the library before. Many features of SymPy will be introduced in this tutorial, but they will not be exhaustive. In fact, virtually every functionality shown in this tutorial will have more options or capabilities than what will be shown. The rest of the SymPy documentation serves as API documentation, which extensively lists every feature and option of each function.

These are the goals of this tutorial:

- To give a guide, suitable for someone who has never used SymPy (but who has used Python and knows the necessary mathematics).
- To be written in a narrative format, which is both easy and fun to follow. It should read like a book.
- To give insightful examples and exercises, to help the reader learn and to make it entertaining to work through.
- To introduce concepts in a logical order.
- To use good practices and idioms, and avoid antipatterns. Functions or methodologies that tend to lead to antipatterns are avoided. Features that are only useful to advanced users are not shown.
- To be consistent. If there are multiple ways to do it, only the best way is shown.
- To avoid unnecessary duplication, it is assumed that previous sections of the tutorial have already been read.

Feedback on this tutorial, or on SymPy in general is always welcome. Just write to our mailing list.

Content
Preliminaries

This tutorial assumes that the reader already knows the basics of the Python programming language. If you do not, the official Python tutorial is excellent.

This tutorial assumes a decent mathematical background. Most examples require knowledge lower than a calculus level, and some require knowledge at a calculus level. Some of the advanced features require more than this. If you come across a section that uses some mathematical function you are not familiar with, you can probably skip over it, or replace it with a similar one that you are more familiar with. Or look up the function on Wikipedia and learn something new. Some important mathematical concepts that are not common knowledge will be introduced as necessary.

Installation

You will need to install SymPy first. See the installation guide (page 1).

Exercises

This tutorial was the basis for a tutorial given at the 2013 SciPy conference in Austin, TX. The website for that tutorial is here. It has links to videos, materials, and IPython notebook exercises. The IPython notebook exercises in particular are recommended to anyone going through this tutorial.

Introduction

What is Symbolic Computation?

Symbolic computation deals with the computation of mathematical objects symbolically. This means that the mathematical objects are represented exactly, not approximately, and mathematical expressions with unevaluated variables are left in symbolic form.

Let’s take an example. Say we wanted to use the built-in Python functions to compute square roots. We might do something like this

```
>>> import math
>>> math.sqrt(9)
3.0
```

9 is a perfect square, so we got the exact answer, 3. But suppose we computed the square root of a number that isn’t a perfect square

```
>>> math.sqrt(8)
2.82842712475
```

Here we got an approximate result. 2.82842712475 is not the exact square root of 8 (indeed, the actual square root of 8 cannot be represented by a finite decimal, since it is an irrational number). If all we cared about was the decimal form of the square root of 8, we would be done.

But suppose we want to go further. Recall that $\sqrt{8} = \sqrt{4 \cdot 2} = 2\sqrt{2}$. We would have a hard time deducing this from the above result. This is where symbolic computation comes in. With
a symbolic computation system like SymPy, square roots of numbers that are not perfect squares are left unevaluated by default

```python
>>> import sympy
>>> sympy.sqrt(3)
sqrt(3)
```

Furthermore—and this is where we start to see the real power of symbolic computation—symbolic results can be symbolically simplified.

```python
>>> sympy.sqrt(8)
2*sqrt(2)
```

A More Interesting Example

The above example starts to show how we can manipulate irrational numbers exactly using SymPy. But it is much more powerful than that. Symbolic computation systems (which by the way, are also often called computer algebra systems, or just CASs) such as SymPy are capable of computing symbolic expressions with variables.

As we will see later, in SymPy, variables are defined using `symbols`. Unlike many symbolic manipulation systems, variables in SymPy must be defined before they are used (the reason for this will be discussed in the next section (page 10)).

Let us define a symbolic expression, representing the mathematical expression \(x + 2y \).

```python
>>> from sympy import symbols
>>> x, y = symbols('x y')
>>> expr = x + 2*y
>>> expr
x + 2*y
```

Note that we wrote \(x + 2y \) just as we would if \(x \) and \(y \) were ordinary Python variables. But in this case, instead of evaluating to something, the expression remains as just \(x + 2y \). Now let us play around with it:

```python
>>> expr + 1
x + 2*y + 1
>>> expr - x
2*y
```

Notice something in the above example. When we typed `expr - x`, we did not get \(x + 2y - x \), but rather just \(2y \). The \(x \) and the \(-x\) automatically canceled one another. This is similar to how `sqrt(8)` automatically turned into `2*sqrt(2)` above. This isn’t always the case in SymPy, however:

```python
>>> x*expr
x*(x + 2*y)
```

Here, we might have expected \(x(x + 2y) \) to transform into \(x^2 + 2xy \), but instead we see that the expression was left alone. This is a common theme in SymPy. Aside from obvious simplifications like \(x - x = 0 \) and \(\sqrt{8} = 2\sqrt{2} \), most simplifications are not performed automatically. This is because we might prefer the factored form \(x(x + 2y) \), or we might prefer the expanded form \(x^2 + 2xy \). Both forms are useful in different circumstances. In SymPy, there are functions to go from one form to the other.
The Power of Symbolic Computation

The real power of a symbolic computation system such as SymPy is the ability to do all sorts of computations symbolically. SymPy can simplify expressions, compute derivatives, integrals, and limits, solve equations, work with matrices, and much, much more, and do it all symbolically. It includes modules for plotting, printing (like 2D pretty printed output of math formulas, or \LaTeX), code generation, physics, statistics, combinatorics, number theory, geometry, logic, and more. Here is a small sampling of the sort of symbolic power SymPy is capable of, to whet your appetite.

This will make all further examples pretty print with unicode characters.

Take the derivative of $\sin(x)e^x$.

Compute $\int (e^x \sin(x) + e^x \cos(x)) \, dx$.

Compute $\int_{-\infty}^{\infty} \sin(x^2) \, dx$.

Find $\lim_{x \to 0} \frac{\sin(x)}{x}$.

Solve $x^2 - 2 = 0$.

```python
>>> from sympy import expand, factor
>>> expanded_expr = expand(x*expr)
>>> expanded_expr
x**2 + 2*x*y
>>> factor(expanded_expr)
x*(x + 2*y)
```
Solve the differential equation \(y'' - y = e^t \).

\[
\begin{align*}
\text{>>> } & y = \text{Function('y')} \\
\text{>>> } & \text{dsolve(Eq(y(t).diff(t, t) - y(t), exp(t)), y(t))} \\
& y(t) = C_2 \cdot e^{-t} + \left(C_1 + \frac{t}{2}\right) \cdot e^t
\end{align*}
\]

Find the eigenvalues of \([\begin{array}{cc}1 & 2 \\ 2 & 2 \end{array}\])

\[
\begin{align*}
\text{>>> } & \text{Matrix([[1, 2], [2, 2]]).eigvals()} \\
& \left\{\begin{array}{c}
\frac{3}{2} \sqrt{17} : 1, \frac{3}{2} \sqrt{17} : 1 \\
\frac{2}{2} : 1, \frac{2}{2} : 1
\end{array}\right\}
\end{align*}
\]

Rewrite the Bessel function \(J_\nu(z) \) in terms of the spherical Bessel function \(j_\nu(z) \).

\[
\begin{align*}
\text{>>> } & \text{besselj(nu, z).rewrite(jn)} \\
& \frac{\sqrt{2} \cdot \sqrt{z} \cdot j_n(\nu - 1/2, z)}{\sqrt{\pi}}
\end{align*}
\]

Print \(\int_0^\pi \cos^2(x) \, dx \) using \LaTeX{}.

\[
\begin{align*}
\text{>>> } & \text{latex(Integral(cos(x)**2, (x, 0, pi)))} \\
& \int_0^\pi \cos^2(x) \, dx
\end{align*}
\]

Why SymPy?

There are many computer algebra systems out there. This Wikipedia article lists many of them. What makes SymPy a better choice than the alternatives?

First off, SymPy is completely free. It is open source, and licensed under the liberal BSD license, so you can modify the source code and even sell it if you want to. This contrasts with popular commercial systems like Maple or Mathematica that cost hundreds of dollars in licenses.

Second, SymPy uses Python. Most computer algebra systems invent their own language. Not SymPy. SymPy is written entirely in Python, and is executed entirely in Python. This means that if you already know Python, it is much easier to get started with SymPy, because you already know the syntax (and if you don’t know Python, it is really easy to learn). We already know that Python is a well-designed, battle-tested language. The SymPy developers are confident in their abilities in writing mathematical software, but programming language design is a completely different thing. By reusing an existing language, we are able to focus on those things that matter: the mathematics.

Another computer algebra system, Sage also uses Python as its language. But Sage is large, with a download of over a gigabyte. An advantage of SymPy is that it is lightweight. In addition to being relatively small, it has no dependencies other than Python, so it can be used almost anywhere easily. Furthermore, the goals of Sage and the goals of SymPy are different. Sage aims to be a full featured system for mathematics, and aims to do so by compiling all the major open source mathematical systems together into one. When you call some function in Sage, such as \text{integrate}, it calls out to one of the open source packages that it includes. In

2.1. Introductory Tutorial
fact, SymPy is included in Sage. SymPy on the other hand aims to be an independent system, with all the features implemented in SymPy itself.

A final important feature of SymPy is that it can be used as a library. Many computer algebra systems focus on being usable in interactive environments, but if you wish to automate or extend them, it is difficult to do. With SymPy, you can just as easily use it in an interactive Python environment or import it in your own Python application. SymPy also provides APIs to make it easy to extend it with your own custom functions.

Gotchas

To begin, we should make something about SymPy clear: SymPy is nothing more than a Python library, like NumPy, Django, or even modules in the Python standard library sys or re. What this means is that SymPy does not add anything to the Python language. Limitations that are inherent in the Python language are also inherent in SymPy. It also means that SymPy tries to use Python idioms whenever possible, making programming with SymPy easy for those already familiar with programming with Python. As a simple example, SymPy uses Python syntax to build expressions. Implicit multiplication (like 3x or 3 \times x) is not allowed in Python, and thus not allowed in SymPy. To multiply 3 and \(x\), you must type 3\times x with the \(*\).

Symbols

One consequence of this fact is that SymPy can be used in any environment where Python is available. We just import it, like we would any other library:

```python
>>> from sympy import *
```

This imports all the functions and classes from SymPy into our interactive Python session. Now, suppose we start to do a computation.

```python
>>> x + 1
Traceback (most recent call last):
... NameError: name 'x' is not defined
```

Oops! What happened here? We tried to use the variable \(x\), but it tells us that \(x\) is not defined. In Python, variables have no meaning until they are defined. SymPy is no different. Unlike many symbolic manipulation systems you may have used, in SymPy, variables are not defined automatically. To define variables, we must use `symbols`.

```python
>>> x = symbols('x')
>>> x + 1
x + 1
```

`symbols` takes a string of variable names separated by spaces or commas, and creates Symbols out of them. We can then assign these to variable names. Later, we will investigate some convenient ways we can work around this issue. For now, let us just define the most common variable names, \(x\), \(y\), and \(z\), for use through the rest of this section

```python
>>> x, y, z = symbols('x y z')
```

As a final note, we note that the name of a Symbol and the name of the variable it is assigned to need not have anything to do with one another.
Here we have done the very confusing thing of assigning a Symbol with the name `a` to the variable `b`, and a Symbol of the name `b` to the variable `a`. Now the Python variable named `a` points to the SymPy Symbol named `b`, and vice versa. How confusing. We could have also done something like

```
>>> crazy = symbols('unrelated')
>>> crazy + 1
unrelated + 1
```

This also shows that Symbols can have names longer than one character if we want.

Usually, the best practice is to assign Symbols to Python variables of the same name, although there are exceptions: Symbol names can contain characters that are not allowed in Python variable names, or may just want to avoid typing long names by assigning Symbols with long names to single letter Python variables.

To avoid confusion, throughout this tutorial, Symbol names and Python variable names will always coincide. Furthermore, the word “Symbol” will refer to a SymPy Symbol and the word “variable” will refer to a Python variable.

Finally, let us be sure we understand the difference between SymPy Symbols and Python variables. Consider the following:

```
x = symbols('x')
expr = x + 1
x = 2
print(expr)
```

What do you think the output of this code will be? If you thought 3, you’re wrong. Let’s see what really happens

```
>>> x = symbols('x')
>>> expr = x + 1
>>> x = 2
>>> print(expr)
2 + 1
```

Changing `x` to 2 had no effect on `expr`. This is because `x = 2` changes the Python variable `x` to 2, but has no effect on the SymPy Symbol `x`, which was what we used in creating `expr`. When we created `expr`, the Python variable `x` was a Symbol. After we created, it, we changed the Python variable `x` to 2. But `expr` remains the same. This behavior is not unique to SymPy. All Python programs work this way: if a variable is changed, expressions that were already created with that variable do not change automatically. For example

```
>>> x = 'abc'
>>> expr = x + 'def'
>>> expr
'abcdef'
>>> x = 'ABC'
```

(continues on next page)
Quick Tip

To change the value of a Symbol in an expression, use subs

```python
>>> x = symbols('x')
>>> expr = x + 1
>>> expr.subs(x, 2)
3
```

In this example, if we want to know what `expr` is with the new value of `x`, we need to reevaluate the code that created `expr`, namely, `expr = x + 1`. This can be complicated if several lines created `expr`. One advantage of using a symbolic computation system like SymPy is that we can build a symbolic representation for `expr`, and then substitute `x` with values. The correct way to do this in SymPy is to use `subs`, which will be discussed in more detail later.

```python
>>> x = symbols('x')
>>> expr = x + 1
>>> expr.subs(x, 2)
3
```

Equals signs

Another very important consequence of the fact that SymPy does not extend Python syntax is that `=` does not represent equality in SymPy. Rather it is Python variable assignment. This is hard-coded into the Python language, and SymPy makes no attempts to change that.

You may think, however, that `==`, which is used for equality testing in Python, is used for SymPy as equality. This is not quite correct either. Let us see what happens when we use `==`.

```python
>>> x + 1 == 4
False
```

Instead of treating `x + 1 == 4` symbolically, we just got `False`. In SymPy, `==` represents exact structural equality testing. This means that `a == b` means that we are asking if `a = b`. We always get a bool as the result of `==`. There is a separate object, called `Eq`, which can be used to create symbolic equalities

```python
>>> Eq(x + 1, 4)
Eq(x + 1, 4)
```

There is one additional caveat about `==` as well. Suppose we want to know if \((x+1)^2 = x^2 + 2x + 1\). We might try something like this:

```python
>>> (x + 1)**2 == x**2 + 2*x + 1
False
```

We got `False` again. However, \((x + 1)^2\ does equal \(x^2 + 2x + 1\). What is going on here? Did we find a bug in SymPy, or is it just not powerful enough to recognize this basic algebraic fact?
Recall from above that \texttt{==} represents \textit{exact} structural equality testing. “Exact” here means that two expressions will compare equal with \texttt{==} only if they are exactly equal structurally. Here, \((x+1)^2\) and \(x^2 + 2x + 1\) are not the same structurally. One is the power of an addition of two terms, and the other is the addition of three terms.

It turns out that when using SymPy as a library, having \texttt{==} test for exact structural equality is far more useful than having it represent symbolic equality, or having it test for mathematical equality. However, as a new user, you will probably care more about the latter two. We have already seen an alternative to representing equalities symbolically, \texttt{Eq}. To test if two things are equal, it is best to recall the basic fact that if \(a = b\), then \(a - b = 0\). Thus, the best way to check if \(a = b\) is to take \(a - b\) and simplify it, and see if it goes to 0. We will learn later (page 25) that the function to do this is called \texttt{simplify}. This method is not infallible—in fact, it can be \textit{theoretically proven} that it is impossible to determine if two symbolic expressions are identically equal in general—but for most common expressions, it works quite well.

```python
>>> a = (x + 1)**2
>>> b = x**2 + 2*x + 1
>>> simplify(a - b)
0
>>> c = x**2 - 2*x + 1
>>> simplify(a - c)
4*x
```

There is also a method called \texttt{equals} that tests if two expressions are equal by evaluating them numerically at random points.

```python
>>> a = cos(x)**2 - sin(x)**2
>>> b = cos(2*x)
>>> a.equals(b)
True
```

\textbf{Two Final Notes: ^ and /}

You may have noticed that we have been using \texttt{**} for exponentiation instead of the standard \texttt{^}. That’s because SymPy follows Python’s conventions. In Python, \texttt{^} represents logical exclusive or. SymPy follows this convention:

```python
>>> True ^ False
True
>>> True ^ True
False
>>> Xor(x, y)
x ^ y
```

Finally, a small technical discussion on how SymPy works is in order. When you type something like \(x + 1\), the SymPy Symbol \(x\) is added to the Python int \(1\). Python’s operator rules then allow SymPy to tell Python that SymPy objects know how to be added to Python ints, and so \(1\) is automatically converted to the SymPy Integer object.

This sort of operator magic happens automatically behind the scenes, and you rarely need to even know that it is happening. However, there is one exception. Whenever you combine a SymPy object and a SymPy object, or a SymPy object and a Python object, you get a SymPy object, but whenever you combine two Python objects, SymPy never comes into play, and so you get a Python object.
This is usually not a big deal. Python ints work much the same as SymPy Integers, but there is one important exception: division. In SymPy, the division of two Integers gives a Rational:

```python
>>> Integer(1)/Integer(3)
1/3
>>> type(Integer(1)/Integer(3))
<class 'sympy.core.numbers.Rational'>
```

But in Python `/` represents either integer division or floating point division, depending on whether you are in Python 2 or Python 3, and depending on whether or not you have run `from __future__ import division` in Python 2 which is no longer supported from versions above SymPy 1.5.1:

```python
>>> from __future__ import division
>>> 1/2
0.5
```

To avoid this, we can construct the rational object explicitly

```python
>>> Rational(1, 2)
1/2
```

This problem also comes up whenever we have a larger symbolic expression with int/int in it. For example:

```python
>>> x + 1/2
x + 0.5
```

This happens because Python first evaluates 1/2 into 0.5, and then that is cast into a SymPy type when it is added to x. Again, we can get around this by explicitly creating a Rational:

```python
>>> x + Rational(1, 2)
x + 1/2
```

There are several tips on avoiding this situation in the *Gotchas and Pitfalls* (page 189) document.

Further Reading

For more discussion on the topics covered in this section, see *Gotchas and Pitfalls* (page 189).
SymPy Features

This section discusses the common and advanced SymPy operations and features.

Content

Basic Operations

Here we discuss some of the most basic operations needed for expression manipulation in SymPy. Some more advanced operations will be discussed later in the advanced expression manipulation (page 61) section.

```python
>>> from sympy import *
>>> x, y, z = symbols("x y z")
```

Substitution

One of the most common things you might want to do with a mathematical expression is substitution. Substitution replaces all instances of something in an expression with something else. It is done using the subs method. For example

```python
>>> expr = cos(x) + 1
>>> expr.subs(x, y)
cos(y) + 1
```

Substitution is usually done for one of two reasons:

1. Evaluating an expression at a point. For example, if our expression is \(\cos(x) + 1 \) and we want to evaluate it at the point \(x = 0 \), so that we get \(\cos(0) + 1 \), which is 2.

```python
>>> expr.subs(x, 0)
2
```

2. Replacing a subexpression with another subexpression. There are two reasons we might want to do this. The first is if we are trying to build an expression that has some symmetry, such as \(x^{x^x} \). To build this, we might start with \(x^{xy} \), and replace \(y \) with \(x^{xy} \). We would then get \(x^{x^{x^{xy}}} \). If we replaced \(y \) in this new expression with \(x^{xx} \), we would get \(x^{x^{x^{x^{xx}}}} \), the desired expression.

```python
>>> expr = x**y
>>> expr
x**y
>>> expr = expr.subs(y, x**y)
>>> expr
x**(x**y)
>>> expr = expr.subs(y, x**x)
>>> expr
x**(x**(x**x))
```

The second is if we want to perform a very controlled simplification, or perhaps a simplification that SymPy is otherwise unable to do. For example, say we have \(\sin(2x) + \cos(2x) \), and we want to replace \(\sin(2x) \) with \(2\sin(x)\cos(x) \). As we will learn later, the function
expand_trig does this. However, this function will also expand \(\cos(2x) \), which we may not want. While there are ways to perform such precise simplification, and we will learn some of them in the *advanced expression manipulation* (page 61) section, an easy way is to just replace \(\sin(2x) \) with \(2\sin(x)\cos(x) \).

```python
>>> expr = sin(2*x) + cos(2*x)
>>> expand_trig(expr)
2*sin(x)*cos(x) + 2*cos(x)**2 - 1
```

There are two important things to note about \texttt{subs}. First, it returns a new expression. SymPy objects are immutable. That means that \texttt{subs} does not modify it in-place. For example

```python
>>> expr = cos(x)
>>> expr.subs(x, 0)
1
>>> expr
cos(x)
>>> x
x
```

Quick Tip

SymPy expressions are immutable. No function will change them in-place.

Here, we see that performing \texttt{expr.subs(x, 0)} leaves \texttt{expr} unchanged. In fact, since SymPy expressions are immutable, no function will change them in-place. All functions will return new expressions.

To perform multiple substitutions at once, pass a list of \texttt{(old, new)} pairs to \texttt{subs}.

```python
>>> expr = x**3 + 4*x*y - z
>>> expr.subs([(x, 2), (y, 4), (z, 0)])
40
```

It is often useful to combine this with a list comprehension to do a large set of similar replacements all at once. For example, say we had \(x^4 - 4x^3 + 4x^2 - 2x + 3 \) and we wanted to replace all instances of \(x \) that have an even power with \(y \), to get \(y^4 - 4y^3 + 4y^2 - 2y + 3 \).

```python
>>> expr = x**4 - 4*x**3 + 4*x**2 - 2*x + 3
>>> replacements = [(x**i, y**i) for i in range(5) if i % 2 == 0]
>>> expr.subs(replacements)
-4*x**3 - 2*x + y**4 + 4*y**2 + 3
```
Converting Strings to SymPy Expressions

The `sympify` function (that's `sympify`, not to be confused with `simplify`) can be used to convert strings into SymPy expressions. For example:

```python
>>> str_expr = "x**2 + 3*x - 1/2"
>>> expr = sympify(str_expr)
>>> expr
x**2 + 3*x - 1/2
>>> expr.subs(x, 2)
19/2
```

Warning: `sympify` uses `eval`. Don’t use it on unsanitized input.

evalf

To evaluate a numerical expression into a floating point number, use `evalf`.

```python
>>> expr = sqrt(8)
>>> expr.evalf()
2.82842712474619
```

SymPy can evaluate floating point expressions to arbitrary precision. By default, 15 digits of precision are used, but you can pass any number as the argument to `evalf`. Let’s compute the first 100 digits of π.

```python
>>> pi.evalf(100)
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348
```

To numerically evaluate an expression with a Symbol at a point, we might use `subs` followed by `evalf`, but it is more efficient and numerically stable to pass the substitution to `evalf` using the `subs` flag, which takes a dictionary of Symbol: point pairs.

```python
>>> expr = cos(2*x)
>>> expr.evalf(subs={x: 2.4})
0.0874989834394464
```

Sometimes there are roundoff errors smaller than the desired precision that remain after an expression is evaluated. Such numbers can be removed at the user’s discretion by setting the `chop` flag to True.

```python
>>> one = cos(1)**2 + sin(1)**2
>>> (one - 1).evalf()
-0.e-124
>>> (one - 1).evalf(chop=True)
0
```
lambdify

subs and evalf are good if you want to do simple evaluation, but if you intend to evaluate an expression at many points, there are more efficient ways. For example, if you wanted to evaluate an expression at a thousand points, using SymPy would be far slower than it needs to be, especially if you only care about machine precision. Instead, you should use libraries like NumPy and SciPy.

The easiest way to convert a SymPy expression to an expression that can be numerically evaluated is to use the lambdify function. lambdify acts like a lambda function, except it converts the SymPy names to the names of the given numerical library, usually NumPy. For example

```python
>>> import numpy
>>> a = numpy.arange(10)
>>> expr = sin(x)
>>> f = lambdify(x, expr, "numpy")
>>> f(a)
[ 0.  0.84147098  0.90929743  0.14112001 -0.7568025  -0.95892427
 -0.2794155  0.6569866  0.98935825  0.41211849]
```

Warning: lambdify uses eval. Don’t use it on unsanitized input.

You can use other libraries than NumPy. For example, to use the standard library math module, use "math".

```python
>>> f = lambdify(x, expr, "math")
>>> f(0.1)
0.0998334166468
```

To use lambdify with numerical libraries that it does not know about, pass a dictionary of sympy_name:numerical_function pairs. For example

```python
>>> def mysin(x):
...     ...         """My sine. Note that this is only accurate for small x.""
...     ...     return x
... >>> f = lambdify(x, expr, {"sin":mysin})
... >>> f(0.1)
0.1
```
Printing

As we have already seen, SymPy can pretty print its output using Unicode characters. This is a short introduction to the most common printing options available in SymPy.

Printers

There are several printers available in SymPy. The most common ones are

- str
- srepr
- ASCII pretty printer
- Unicode pretty printer
- LaTeX
- MathML
- Dot

In addition to these, there are also “printers” that can output SymPy objects to code, such as C, Fortran, Javascript, Theano, and Python. These are not discussed in this tutorial.

Setting up Pretty Printing

If all you want is the best pretty printing, use the init_printing() function. This will automatically enable the best printer available in your environment.

```python
>>> from sympy import init_printing
>>> init_printing()
```

If you plan to work in an interactive calculator-type session, the init_session() function will automatically import everything in SymPy, create some common Symbols, setup plotting, and run init_printing().

```python
>>> from sympy import init_session
>>> init_session()
```

These commands were executed:

```python
>>> from __future__ import division
>>> from sympy import *
>>> x, y, z, t = symbols('x y z t')
>>> k, m, n = symbols('k m n', integer=True)
>>> f, g, h = symbols('f g h', cls=Function)
>>> init_printing() # doctest: +SKIP
```

Documentation can be found at https://www.sympy.org/
In any case, this is what will happen:

- In the IPython QTConsole, if \LaTeX{} is installed, it will enable a printer that uses \LaTeX{}.

 \begin{verbatim}
 >>>

 In [1]: from sympy import init_session
 In [2]: init_session(quiet=True)
 Welcome to pylab, a matplotlib-based Python environment [backend: MacOSX].
 For more information, type 'help(pylab)'.
 IPython console for SymPy 0.7.2-git (Python 2.7.5-64-bit) (ground types: python)
 In [3]: Integral(sqrt(1/x), x)
 Out[3]:
 \int \sqrt{\frac{1}{x}} \, dx

 In [4]:
 \end{verbatim}

If \LaTeX{} is not installed, but Matplotlib is installed, it will use the Matplotlib rendering engine. If Matplotlib is not installed, it uses the Unicode pretty printer.

- In the IPython notebook, it will use MathJax to render \LaTeX{}.

 \begin{verbatim}
 In [1]: from sympy import *
 x, y, z = symbols('x y z')
 init_printing()

 In [2]: Integral(sqrt(1/x), x)
 Out[2]:
 \int \sqrt{\frac{1}{x}} \, dx
 \end{verbatim}
• In an IPython console session, or a regular Python session, it will use the Unicode pretty printer if the terminal supports Unicode.

```python
>>> from sympy import init_session
>>> init_session()

Python console for SymPy 0.7.2-git (Python 2.7.5-64-bit) (ground types: gmpy)

These commands were executed:
>>> from __future__ import division
>>> from sympy import *
>>> x, y, z, t = symbols('x y z t')
>>> k, m, n = symbols('k m n', integer=True)
>>> f, g, h = symbols('f g h', cls=Function)

Documentation can be found at http://www.sympy.org

>>> Integral(sqrt(1/x), x)

\[
\int_1^x \frac{1}{dx}
\]

• In a terminal that does not support Unicode, the ASCII pretty printer is used.

```python
>>> from sympy import init_session
>>> init_session()

Python console for SymPy 0.7.2-git (Python 2.7.5-64-bit) (ground types: gmpy)

These commands were executed:
>>> from __future__ import division
>>> from sympy import *
>>> x, y, z, t = symbols('x y z t')
>>> k, m, n = symbols('k m n', integer=True)
>>> f, g, h = symbols('f g h', cls=Function)

Documentation can be found at http://www.sympy.org

>>> Integral(sqrt(1/x), x)

\[
\int \frac{1}{x} \, dx
\]

To explicitly not use \LaTeX, pass use_latex=False to init_printing() or init_session().

2.1. Introductory Tutorial 21
To explicitly not use Unicode, pass use_unicode=False.

Printing Functions

In addition to automatic printing, you can explicitly use any one of the printers by calling the appropriate function.

str

To get a string form of an expression, use str(expr). This is also the form that is produced by print(expr). String forms are designed to be easy to read, but in a form that is correct Python syntax so that it can be copied and pasted. The str() form of an expression will usually look exactly the same as the expression as you would enter it.

```python
>>> from sympy import *
>>> x, y, z = symbols('x y z')
>>> str(Integral(sqrt(1/x), x))
'Integral(sqrt(1/x), x)'
>>> print(Integral(sqrt(1/x), x))
Integral(sqrt(1/x), x)
```

srepr

The srepr form of an expression is designed to show the exact form of an expression. It will be discussed more in the *Advanced Expression Manipulation* (page 61) section. To get it, use srepr()\(^1\).

```python
>>> srepr(Integral(sqrt(1/x), x))
"Integral(Pow(Pow(Symbol('x'), Integer(-1)), Rational(1, 2)), Tuple(Symbol('x →')))"
```

The srepr form is mostly useful for understanding how an expression is built internally.

ASCII Pretty Printer

The ASCII pretty printer is accessed from pprint(). If the terminal does not support Unicode, the ASCII printer is used by default. Otherwise, you must pass use_unicode=False.

```python
>>> pprint(Integral(sqrt(1/x), x), use_unicode=False)
\/
| \\ 1
| | / - dx
| \/ x
```

\(^1\) SymPy does not use the Python builtin repr() function for repr printing, because in Python str(list) calls repr() on the elements of the list, and some SymPy functions return lists (such as solve()). Since srepr() is so verbose, it is unlikely that anyone would want it called by default on the output of solve().
pprint() prints the output to the screen. If you want the string form, use pretty().

```python
>>> pretty(Integral(sqrt(1/x), x), use_unicode=False)
' / 
| 
| ___ 
| / 1 
| / - dx
\| \x \n| 
| 
\ / '  

>>> print(pretty(Integral(sqrt(1/x), x), use_unicode=False))
/  
| 
| 1 
| - dx 
\| \x  

Unicode Pretty Printer

The Unicode pretty printer is also accessed from pprint() and pretty(). If the terminal supports Unicode, it is used automatically. If pprint() is not able to detect that the terminal supports unicode, you can pass use_unicode=True to force it to use Unicode.

```python
>>> pprint(Integral(sqrt(1/x), x), use_unicode=True)
⌠
⎮
⎮ 1
⎮ - dx
⎮ \x
⌡

LaTeX

To get the LaTeX form of an expression, use latex().

```python
>>> print(latex(Integral(sqrt(1/x), x)))
\int \sqrt{\frac{1}{x}}\, dx
```

The latex() function has many options to change the formatting of different things. See its documentation (page 2245) for more details.
MathML

There is also a printer to MathML, called print_mathml(). It must be imported from sympy.printing.mathml.

```python
>>> from sympy.printing.mathml import print_mathml
>>> print_mathml(Integral(sqrt(1/x), x))
<apply>
  <int/>
  <bvar>
    <ci>x</ci>
  </bvar>
  <apply>
    <root/>
    <apply>
      <power/>
      <ci>x</ci>
      <cn>-1</cn>
    </apply>
  </apply>
</apply>
```

print_mathml() prints the output. If you want the string, use the function mathml()

Dot

The dotprint() function in sympy.printing.dot prints output to dot format, which can be rendered with Graphviz. See the Advanced Expression Manipulation (page 61) section for some examples of the output of this printer.

Here is an example of the raw output of the dotprint() function

```python
>>> from sympy.printing.dot import dotprint
>>> from sympy.abc import x
>>> print(dotprint(x+2))
digraph{
  # Graph style
  "ordering"="out"
  "rankdir"="TD"

  "Add(Integer(2), Symbol('x'))_()" ["color"="black", "label"="Add", "shape"="ellipse"];
  "Integer(2)_([0])" ["color"="black", "label"="2", "shape"="ellipse"];
  "Symbol('x')_([1])" ["color"="black", "label"="x", "shape"="ellipse"];

  # Edges #

(continues on next page)
Simplification

To make this document easier to read, we are going to enable pretty printing.

```python
from sympy import *
>>> x, y, z = symbols('x y z')
>>> init_printing(use_unicode=True)
```

**simplify**

Now let’s jump in and do some interesting mathematics. One of the most useful features of a symbolic manipulation system is the ability to simplify mathematical expressions. SymPy has dozens of functions to perform various kinds of simplification. There is also one general function called `simplify()` that attempts to apply all of these functions in an intelligent way to arrive at the simplest form of an expression. Here are some examples

```python
>>> simplify(sin(x)**2 + cos(x)**2)
1
>>> simplify((x**3 + x**2 - x - 1)/(x**2 + 2*x + 1))
x - 1
>>> simplify(gamma(x)/gamma(x - 2))
(x - 2)*(x - 1)
```

Here, `gamma(x)` is $\Gamma(x)$, the **gamma function**. We see that `simplify()` is capable of handling a large class of expressions.

But `simplify()` has a pitfall. It just applies all the major simplification operations in SymPy, and uses heuristics to determine the simplest result. But “simplest” is not a well-defined term. For example, say we wanted to “simplify” $x^2 + 2x + 1$ into $(x + 1)^2$:

```python
>>> simplify(x**2 + 2*x + 1)
2
x + 2*x + 1
```

We did not get what we want. There is a function to perform this simplification, called `factor()`, which will be discussed below.

Another pitfall to `simplify()` is that it can be unnecessarily slow, since it tries many kinds of simplifications before picking the best one. If you already know exactly what kind of simplification you are after, it is better to apply the specific simplification function(s) that apply those simplifications.

Applying specific simplification functions instead of `simplify()` also has the advantage that specific functions have certain guarantees about the form of their output. These will be discussed with each function below. For example, `factor()`, when called on a polynomial
with rational coefficients, is guaranteed to factor the polynomial into irreducible factors. `simplify()` has no guarantees. It is entirely heuristic, and, as we saw above, it may even miss a possible type of simplification that SymPy is capable of doing.

`simplify()` is best when used interactively, when you just want to whittle down an expression to a simpler form. You may then choose to apply specific functions once you see what `simplify()` returns, to get a more precise result. It is also useful when you have no idea what form an expression will take, and you need a catchall function to simplify it.

**Polynomial/Rational Function Simplification**

**expand**

`expand()` is one of the most common simplification functions in SymPy. Although it has a lot of scopes, for now, we will consider its function in expanding polynomial expressions. For example:

```python
>>> expand((x + 1)**2)
 2
x + 2⋅x + 1
```

```python
>>> expand((x + 2)*(x - 3))
 2
x - x - 6
```

Given a polynomial, `expand()` will put it into a canonical form of a sum of monomials.

`expand()` may not sound like a simplification function. After all, by its very name, it makes expressions bigger, not smaller. Usually this is the case, but often an expression will become smaller upon calling `expand()` on it due to cancellation.

```python
>>> expand((x + 1)*(x - 2) - (x - 1)*x)
 -2
```

**factor**

`factor()` takes a polynomial and factors it into irreducible factors over the rational numbers. For example:

```python
>>> factor(x**3 - x**2 + x - 1)
(x - 1)⋅(x + 1)
```

```python
>>> factor(x**2*z + 4*x*y*z + 4*y**2*z)
z⋅(x + 2⋅y)
```

For polynomials, `factor()` is the opposite of `expand()`. `factor()` uses a complete multivariate factorization algorithm over the rational numbers, which means that each of the factors returned by `factor()` is guaranteed to be irreducible.

If you are interested in the factors themselves, `factor_list` returns a more structured output.

```python
>>> factor_list(x**2*z + 4*x*y*z + 4*y**2*z)
(1, [(z, 1), (x + 2*y, 2)])
```
Note that the input to `factor` and `expand` need not be polynomials in the strict sense. They will intelligently factor or expand any kind of expression (though note that the factors may not be irreducible if the input is no longer a polynomial over the rationals).

```python
>>> expand((cos(x) + sin(x))**2)
 2
sin(x) + 2⋅sin(x)⋅cos(x) + cos(x)
>>> factor(cos(x)**2 + 2*cos(x)*sin(x) + sin(x)**2)
 2
(sin(x) + cos(x))
```

**collect**

`collect()` collects common powers of a term in an expression. For example

```python
>>> expr = x*y + x - 3 + 2*x**2 - z*x**2 + x**3
>>> expr
 3 2
x - x ⋅z + 2⋅x + x⋅y + x - 3
>>> collected_expr = collect(expr, x)
>>> collected_expr
 3 2
x + x ⋅(2 - z) + x⋅(y + 1) - 3
```

`collect()` is particularly useful in conjunction with the `.coeff()` method. `expr.coeff(x, n)` gives the coefficient of `x**n` in `expr`:

```python
>>> collected_expr.coeff(x, 2)
2 - z
```

**cancel**

`cancel()` will take any rational function and put it into the standard canonical form, \( \frac{p}{q} \), where \( p \) and \( q \) are expanded polynomials with no common factors, and the leading coefficients of \( p \) and \( q \) do not have denominators (i.e., are integers).

```python
>>> cancel((x**2 + 2*x + 1)/(x**2 + x))
 x + 1

x
```

```python
>>> expr = 1/x + (3*x/2 - 2)/(x - 4)
>>> expr
 3⋅x
2 - 2
 1
____ + --
x - 4 x
>>> cancel(expr)
 2
```

(continues on next page)
Note that since `factor()` will completely factorize both the numerator and the denominator of an expression, it can also be used to do the same thing:

```python
>>> factor(expr)
 2
(x - z)

 x - 1
```

However, if you are only interested in making sure that the expression is in canceled form, `cancel()` is more efficient than `factor()`.

**apart**

`apart()` performs a **partial fraction decomposition** on a rational function.

```python
>>> expr = (4*x**3 + 21*x**2 + 10*x + 12)/(x**4 + 5*x**3 + 5*x**2 + 4*x)
>>> apart(expr)
 2
2⋅x - 1 1 3
----- - - + ----
 x + 1 2 x + x + 1
```

```
3⋅x - 2⋅x - 8

2
2⋅x - 8⋅x
```
Trigonometric Simplification

**Note:** SymPy follows Python’s naming conventions for inverse trigonometric functions, which is to append an a to the front of the function’s name. For example, the inverse cosine, or arc cosine, is called acos().

```python
>>> acos(x)
acos(x)
>>> cos(acos(x))
x
>>> asin(1)
π
- 2
```

**trigsimp**

To simplify expressions using trigonometric identities, use trigsimp().

```python
>>> trigsimp(sin(x)**2 + cos(x)**2)
1
>>> trigsimp(sin(x)**4 - 2*cos(x)**2*sin(x)**2 + cos(x)**4)
\[\cos(4\cdot x) + \frac{1}{2} - \frac{1}{2}\]
>>> trigsimp(sin(x)*tan(x)/sec(x))
\[\frac{2\sin(x)}{2}\]
```

trigsimp() also works with hyperbolic trig functions.

```python
>>> trigsimp(cosh(x)**2 + sinh(x)**2)
cosh(2\cdot x)
>>> trigsimp(sinh(x)/tanh(x))
cosh(x)
```

Much like simplify(), trigsimp() applies various trigonometric identities to the input expression, and then uses a heuristic to return the “best” one.

**expand_trig**

To expand trigonometric functions, that is, apply the sum or double angle identities, use expand_trig().

```python
>>> expand_trig(sin(x + y))
sin(x)\cdot\cos(y) + \sin(y)\cdot\cos(x)
>>> expand_trig(tan(2*x))
\[\frac{2\tan(x)}{1}\]
```

(continues on next page)
Because \( \text{expand}_{\text{trig}}() \) tends to make trigonometric expressions larger, and \( \text{trigsimp}() \) tends to make them smaller, these identities can be applied in reverse using \( \text{trigsimp}() \)

```python
>>> \text{trigsimp}(\sin(x) \cdot \cos(y) + \sin(y) \cdot \cos(x))
\sin(x + y)
```

### Powers

Before we introduce the power simplification functions, a mathematical discussion on the identities held by powers is in order. There are three kinds of identities satisfied by exponents

1. \( x^a x^b = x^{a+b} \)
2. \( x^a y^a = (xy)^a \)
3. \( (x^a)^b = x^{ab} \)

Identity 1 is always true.

Identity 2 is not always true. For example, if \( x = y = -1 \) and \( a = \frac{1}{2} \), then \( x^a y^a = \sqrt{-1} \cdot \sqrt{-1} = i \cdot i = -1 \), whereas \( (xy)^a = \sqrt{-1} \cdot \sqrt{-1} = \sqrt{1} = 1 \). However, identity 2 is true at least if \( x \) and \( y \) are nonnegative and \( a \) is real (it may also be true under other conditions as well). A common consequence of the failure of identity 2 is that \( \sqrt{x} \sqrt{y} \neq \sqrt{xy} \).

Identity 3 is not always true. For example, if \( x = -1 \), \( a = 2 \), and \( b = \frac{1}{2} \), then \( (x^a)^b = \left((-1)^2\right)^{1/2} = \sqrt{1} = 1 \) and \( x^{ab} = (-1)^{2\cdot1/2} = (-1)^1 = -1 \). However, identity 3 is true when \( b \) is an integer (again, it may also hold in other cases as well). Two common consequences of the failure of identity 3 are that \( \sqrt{x^2} \neq x \) and that \( \sqrt{\frac{1}{x}} \neq \frac{1}{\sqrt{x}} \).

To summarize

<table>
<thead>
<tr>
<th>Identity</th>
<th>Sufficient conditions to hold</th>
<th>Counterexample when conditions are not met</th>
<th>Important consequences</th>
<th>consequences in general</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ( x^a x^b = x^{a+b} )</td>
<td>always true</td>
<td>None</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>2. ( x^a y^a = (xy)^a )</td>
<td>( x, y \geq 0 ) and ( a \in \mathbb{R} )</td>
<td>( (1)^{1/2}(1)^{1/2} \neq (1 \cdot 1)^{1/2} )</td>
<td>( \sqrt{x} \sqrt{y} \neq \sqrt{xy} ) in general</td>
<td></td>
</tr>
<tr>
<td>3. ( (x^a)^b = x^{ab} )</td>
<td>( b \in \mathbb{Z} )</td>
<td>( ((-1)^2)^{1/2} \neq (-1)^{2\cdot1/2} )</td>
<td>( \sqrt{x^2} \neq x ) and ( \sqrt{\frac{1}{x}} \neq \frac{1}{\sqrt{x}} ) in general</td>
<td></td>
</tr>
</tbody>
</table>

This is important to remember, because by default, SymPy will not perform simplifications if they are not true in general.

In order to make SymPy perform simplifications involving identities that are only true under certain assumptions, we need to put assumptions on our Symbols. We will undertake a full discussion of the assumptions system later, but for now, all we need to know are the following.
- By default, SymPy Symbols are assumed to be complex (elements of \( \mathbb{C} \)). That is, a simplification will not be applied to an expression with a given Symbol unless it holds for all complex numbers.

- Symbols can be given different assumptions by passing the assumption to `symbols()`. For the rest of this section, we will be assuming that \( x \) and \( y \) are positive, and that \( a \) and \( b \) are real. We will leave \( z \), \( t \), and \( c \) as arbitrary complex Symbols to demonstrate what happens in that case.

```python
>>> x, y = symbols('x y', positive=True)
>>> a, b = symbols('a b', real=True)
>>> z, t, c = symbols('z t c')
```

**Note:** In SymPy, \( \sqrt{x} \) is just a shortcut to \( x^{\frac{1}{2}} \). They are exactly the same object.

```python
>>> sqrt(x) == x**Rational(1, 2)
True
```

### powsimp

`powsimp()` applies identities 1 and 2 from above, from left to right.

```python
>>> powsimp(x**a*x**b)
a + b
x
>>> powsimp(x**a*y**a)
a
(x*y)
```

Notice that `powsimp()` refuses to do the simplification if it is not valid.

```python
>>> powsimp(t**c*z**c)
c
t * z
```

If you know that you want to apply this simplification, but you don’t want to mess with assumptions, you can pass the `force=True` flag. This will force the simplification to take place, regardless of assumptions.

```python
>>> powsimp(t**c*z**c, force=True)
c
(t * z)
```

Note that in some instances, in particular, when the exponents are integers or rational numbers, and identity 2 holds, it will be applied automatically.

```python
>>> (z*t)**2
2
2
z * t
>>> sqrt(x*y)
\sqrt{x * y}
```
This means that it will be impossible to undo this identity with \texttt{powsimp()}, because even if \texttt{powsimp()} were to put the bases together, they would be automatically split apart again.

\begin{verbatim}
>>> powsimp(z**2*t**2)
  2 2
  t⋅z
>>> powsimp(sqrt(x)*sqrt(y))
  √x⋅√y
\end{verbatim}

\textbf{expand\_power\_exp / expand\_power\_base}

\texttt{expand\_power\_exp()} and \texttt{expand\_power\_base()} apply identities 1 and 2 from right to left, respectively.

\begin{verbatim}
>>> expand\_power\_exp(x**(a + b))
  a  b
  x⋅x

>>> expand\_power\_base((x*y)**a)
  a  a
  x⋅y
\end{verbatim}

As with \texttt{powsimp()}, identity 2 is not applied if it is not valid.

\begin{verbatim}
>>> expand\_power\_base((z*t)**c)
  c
  (t⋅z)
\end{verbatim}

And as with \texttt{powsimp()}, you can force the expansion to happen without fiddling with assumptions by using \texttt{force=True}.

\begin{verbatim}
>>> expand\_power\_base((z*t)**c, force=True)
  c  c
  t⋅z
\end{verbatim}

As with identity 2, identity 1 is applied automatically if the power is a number, and hence cannot be undone with \texttt{expand\_power\_exp()}.

\begin{verbatim}
>>> x**2*x**3
  5
  x
>>> expand\_power\_exp(x**5)
  5
  x
\end{verbatim}
powdenest

powdenest() applies identity 3, from left to right.

```python
given_expression = powdenest((x**a)**b)
given_expression
```

As before, the identity is not applied if it is not true under the given assumptions.

```python
given_expression = powdenest((z**a)**b)
given_expression
```

And as before, this can be manually overridden with force=True.

```python
given_expression = powdenest((z**a)**b, force=True)
given_expression
```

Exponentials and logarithms

**Note:** In SymPy, as in Python and most programming languages, log is the natural logarithm, also known as ln. SymPy automatically provides an alias \( \ln = \log \) in case you forget this.

```python
logarithm_expression = ln(x)
logarithm_expression
```

Logarithms have similar issues as powers. There are two main identities

1. \( \log(xy) = \log(x) + \log(y) \)
2. \( \log(x^n) = n \log(x) \)

Neither identity is true for arbitrary complex \( x \) and \( y \), due to the branch cut in the complex plane for the complex logarithm. However, sufficient conditions for the identities to hold are if \( x \) and \( y \) are positive and \( n \) is real.

```python
x, y = symbols('x y', positive=True)
n = symbols('n', real=True)
```

As before, \( z \) and \( t \) will be Symbols with no additional assumptions.

Note that the identity \( \log(\frac{x}{y}) = \log(x) - \log(y) \) is a special case of identities 1 and 2 by \( \log(\frac{x}{y}) = \log(x \cdot \frac{1}{y}) = \log(x) + \log(y^{-1}) = \log(x) - \log(y) \), and thus it also holds if \( x \) and \( y \) are positive, but may not hold in general.

We also see that \( \log(e^x) = x \) comes from \( \log(e^x) = x \log(e) = x \), and thus holds when \( x \) is real (and it can be verified that it does not hold in general for arbitrary complex \( x \), for example, \( \log(e^{x+2\pi i}) = \log(e^x) = x \neq x + 2\pi i \)).
**expand_log**

To apply identities 1 and 2 from left to right, use `expand_log()`. As always, the identities will not be applied unless they are valid.

```python
>>> expand_log(log(x*y))
log(x) + log(y)
>>> expand_log(log(x/y))
log(x) - log(y)
>>> expand_log(log(x**2))
2⋅log(x)
>>> expand_log(log(x**n))
n⋅log(x)
>>> expand_log(log(z**t))
log(t⋅z)
```

As with `powsimp()` and `powdenest()`, `expand_log()` has a force option that can be used to ignore assumptions.

```python
>>> expand_log(log(z**2))
log(z**2)
>>> expand_log(log(z**2), force=True)
2⋅log(z)
```

**logcombine**

To apply identities 1 and 2 from right to left, use `logcombine()`.

```python
>>> logcombine(log(x) + log(y))
log(x⋅y)
>>> logcombine(n*log(x))
n⋅log(x)
>>> logcombine(n*log(z))
n⋅log(z)
```

`logcombine()` also has a force option that can be used to ignore assumptions.

```python
>>> logcombine(n*log(z), force=True)
(n)
log(z)
```
**Special Functions**

SymPy implements dozens of special functions, ranging from functions in combinatorics to mathematical physics.

An extensive list of the special functions included with SymPy and their documentation is at the *Functions Module* (page 442) page.

For the purposes of this tutorial, let's introduce a few special functions in SymPy.

Let's define $x$, $y$, and $z$ as regular, complex Symbols, removing any assumptions we put on them in the previous section. We will also define $k$, $m$, and $n$.

```python
>>> x, y, z = symbols('x y z')
>>> k, m, n = symbols('k m n')
```

The **factorial** function is *factorial*. 

$\text{factorial}(n)$ represents $n! = 1 \cdot 2 \cdots (n - 1) \cdot n$. $n!$ represents the number of permutations of $n$ distinct items.

```python
>>> factorial(n)
```

The **binomial coefficient** function is *binomial*. 

$\text{binomial}(n, k)$ represents $\binom{n}{k}$, the number of ways to choose $k$ items from a set of $n$ distinct items. It is also often written as $nCk$, and is pronounced "$n$ choose $k$".

```python
>>> binomial(n, k)
```

The factorial function is closely related to the **gamma function**, *gamma*. $\text{gamma}(z)$ represents $\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} \, dt$, which for positive integer $z$ is the same as $(z - 1)!$.

```python
>>> gamma(z)
```

The **generalized hypergeometric function** is *hyper*. $\text{hyper}([a_1, \ldots, a_p], [b_1, \ldots, b_q], z)$ represents $\left._pF_q\right(a_1, \ldots, a_p \left| \begin{array}{c} b_1, \ldots, b_q \\ z \end{array} \right. )$. The most common case is $\left._2F_1\right.$, which is often referred to as the **ordinary hypergeometric function**.

```python
>>> hyper([1, 2], [3], z)
```
rewrite

A common way to deal with special functions is to rewrite them in terms of one another. This works for any function in SymPy, not just special functions. To rewrite an expression in terms of a function, use expr.rewrite(function). For example,

```
>>> tan(x).rewrite(cos)
\cos\left(x - \frac{\pi}{2}\right)
\cos(x)
```

```
>>> factorial(x).rewrite(gamma)
\Gamma(x + 1)
```

For some tips on applying more targeted rewriting, see the Advanced Expression Manipulation (page 61) section.

expand_func

To expand special functions in terms of some identities, use expand_func(). For example

```
>>> expand_func(gamma(x + 3))
x\cdot(x + 1)\cdot(x + 2)\cdot\Gamma(x)
```

hyperexpand

To rewrite hyper in terms of more standard functions, use hyperexpand().

```
>>> hyperexpand(hyper([1, 1], [2], z))
-\log(1 - z)
\frac{1}{z}
```

hyperexpand() also works on the more general Meijer G-function (see its documentation (page 579) for more information).

```
>>> expr = meijerg([[1],[1]], [[1],[1]], -z)
>>> expr
\begin{bmatrix}
1, 1 & 1, 1 \\
2, 1 & 1, -z
\end{bmatrix}
```

```
>>> hyperexpand(expr)
1
-\frac{1}{z}
e
```
combsimp

To simplify combinatorial expressions, use combsimp().

```python
>>> n, k = symbols('n k', integer=True)
>>> combsimp(factorial(n)/factorial(n-3))
n⋅(n - 2)⋅(n - 1)
```

```python
>>> combsimp(binomial(n+1, k+1)/binomial(n, k))
n + 1
─────
k + 1
```

gammasimp

To simplify expressions with gamma functions or combinatorial functions with non-integer argument, use gammasimp().

```python
>>> gammasimp(gamma(x)*gamma(1-x))
π
────────
sin(π⋅x)
```

Example: Continued Fractions

Let’s use SymPy to explore continued fractions. A continued fraction is an expression of the form

\[ a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \cdots + \frac{1}{a_n} \cdots}} \]

where \( a_0, \ldots, a_n \) are integers, and \( a_1, \ldots, a_n \) are positive. A continued fraction can also be infinite, but infinite objects are more difficult to represent in computers, so we will only examine the finite case here.

A continued fraction of the above form is often represented as a list \([a_0; a_1, \ldots, a_n]\). Let’s write a simple function that converts such a list to its continued fraction form. The easiest way to construct a continued fraction from a list is to work backwards. Note that despite the apparent symmetry of the definition, the first element, \( a_0 \), must usually be handled differently from the rest.

```python
>>> def list_to_frac(l):
... expr = Integer(0)
... for i in reversed(l[1:]):
... expr += i
... expr = 1/expr
... return l[0] + expr
>>> list_to_frac([x, y, z])
```

(continues on next page)
We use Integer(0) in list_to_frac so that the result will always be a SymPy object, even if we only pass in Python ints.

```
>>> list_to_frac([1, 2, 3, 4])
43
──
30
```

Every finite continued fraction is a rational number, but we are interested in symbolics here, so let's create a symbolic continued fraction. The symbols() function that we have been using has a shortcut to create numbered symbols. symbols('a0:5') will create the symbols a0, a1, ..., a4.

```
>>> syms = symbols('a0:5')
>>> syms
(a0, a1, a2, a3, a4)
>>> a0, a1, a2, a3, a4 = syms
>>> frac = list_to_frac(syms)
>>> frac
a0 + ─────
a1 + ─
a2 + ─
a3 + ─
a4
```

This form is useful for understanding continued fractions, but let's put it into standard rational function form using cancel().

```
>>> frac = cancel(frac)
>>> frac
a0⋅a1⋅a2⋅a3⋅a4 + a0⋅a1⋅a2 + a0⋅a1⋅a4 + a0⋅a3⋅a4 + a0 + a2⋅a3⋅a4 + a2 + a4
───
a0⋅a1⋅a2⋅a3⋅a4 + a0⋅a2⋅a4 + a1⋅a2 + a1⋅a4 + a3⋅a4 + 1
```

Now suppose we were given frac in the above canceled form. In fact, we might be given the fraction in any form, but we can always put it into the above canonical form with cancel(). Suppose that we knew that it could be rewritten as a continued fraction. How could we do this with SymPy? A continued fraction is recursively \( c + \frac{1}{f} \), where \( c \) is an integer and \( f \) is a (smaller) continued fraction. If we could write the expression in this form, we could pull out each \( c \) recursively and add it to a list. We could then get a continued fraction with our list_to_frac() function.

The key observation here is that we can convert an expression to the form \( c + \frac{1}{f} \) by doing a partial fraction decomposition with respect to \( c \). This is because \( f \) does not contain \( c \). This
means we need to use the `apart()` function. We use `apart()` to pull the term out, then subtract it from the expression, and take the reciprocal to get the \( f \) part.

```python
>>> l = []
>>> frac = apart(frac, a0)
>>> frac
\[
\frac{a_2 \cdot a_3 \cdot a_4 + a_2 + a_4}{a_1 \cdot a_2 \cdot a_3 \cdot a_4 + a_1 \cdot a_2 + a_1 \cdot a_4 + a_3 \cdot a_4 + 1}
\]
>>> l.append(a0)
>>> frac = 1/(frac - a0)
>>> frac
\[
\frac{a_1 \cdot a_2 \cdot a_3 \cdot a_4 + a_1 \cdot a_2 + a_1 \cdot a_4 + a_3 \cdot a_4 + 1}{a_2 \cdot a_3 \cdot a_4 + a_2 + a_4}
\]

Now we repeat this process

```python
>>> frac = apart(frac, a1)
>>> frac
\[
\frac{a_3 \cdot a_4 + 1}{a_2 \cdot a_3 \cdot a_4 + a_2 + a_4}
\]
>>> l.append(a1)
>>> frac = 1/(frac - a1)
>>> frac = apart(frac, a2)
>>> frac
\[
\frac{a_4}{a_3 \cdot a_4 + 1}
\]
```
Of course, this exercise seems pointless, because we already know that our frac is `list_to_frac([a0, a1, a2, a3, a4])`. So try the following exercise. Take a list of symbols and randomize them, and create the canceled continued fraction, and see if you can reproduce the original list. For example

```
>>> import random
>>> l = list(symbols('a0:5'))
>>> random.shuffle(l)
>>> orig_frac = frac = cancel(list_to_frac(l))
>>> del l
```

In SymPy, on the above example, try to reproduce `l` from frac. I have deleted `l` at the end to remove the temptation for peeking (you can check your answer at the end by calling `cancel(list_to_frac(l))` on the list that you generate at the end, and comparing it to `orig_frac`.

See if you can think of a way to figure out what symbol to pass to `apart()` at each stage (hint: think of what happens to a_0 in the formula $a_0 + \frac{1}{a_1 + \cdots}$ when it is canceled).

Calculus

This section covers how to do basic calculus tasks such as derivatives, integrals, limits, and series expansions in SymPy. If you are not familiar with the math of any part of this section, you may safely skip it.

```
>>> from sympy import *
>>> x, y, z = symbols('x y z')
>>> init_printing(use_unicode=True)
```

Derivatives

To take derivatives, use the `diff` function.

```
>>> diff(cos(x), x)
-sin(x)
```

```
>>> diff(exp(x**2), x)
\[ 2 \cdot x \cdot e^x \]
```

diff can take multiple derivatives at once. To take multiple derivatives, pass the variable as many times as you wish to differentiate, or pass a number after the variable. For example, both of the following find the third derivative of x^4.

```
>>> diff(x**4, x, x, x)
24 \cdot x
```

```
>>> diff(x**4, x, 3)
24 \cdot x
```

You can also take derivatives with respect to many variables at once. Just pass each derivative in order, using the same syntax as for single variable derivatives. For example, each of the following will compute $\frac{\partial^7}{\partial x \partial y \partial z} e^{xyz}$.
diff can also be called as a method. The two ways of calling diff are exactly the same, and are provided only for convenience.

To create an unevaluated derivative, use the Derivative class. It has the same syntax as diff.

To evaluate an unevaluated derivative, use the doit method.

These unevaluated objects are useful for delaying the evaluation of the derivative, or for printing purposes. They are also used when SymPy does not know how to compute the derivative of an expression (for example, if it contains an undefined function, which are described in the Solving Differential Equations section).

Derivatives of unspecified order can be created using tuple \((x, n)\) where \(n\) is the order of the derivative with respect to \(x\).
Integrals

To compute an integral, use the integrate function. There are two kinds of integrals, definite and indefinite. To compute an indefinite integral, that is, an antiderivative, or primitive, just pass the variable after the expression.

```python
>>> integrate(cos(x), x)
sin(x)
```

Note that SymPy does not include the constant of integration. If you want it, you can add one yourself, or rephrase your problem as a differential equation and use `dsolve` to solve it, which does add the constant (see Solving Differential Equations (page 50)).

Quick Tip

∞ in SymPy is oo (that’s the lowercase letter “oh” twice). This is because oo looks like ∞, and is easy to type.

To compute a definite integral, pass the argument `(integration_variable, lower_limit, upper_limit)`. For example, to compute

\[
\int_{0}^{\infty} e^{-x} \, dx,
\]

we would do

```python
>>> integrate(exp(-x), (x, 0, oo))
1
```

As with indefinite integrals, you can pass multiple limit tuples to perform a multiple integral. For example, to compute

\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^2-y^2} \, dx \, dy,
\]

do

```python
>>> integrate(exp(-x**2 - y**2), (x, -oo, oo), (y, -oo, oo))
π
```

If `integrate` is unable to compute an integral, it returns an unevaluated `Integral` object.

```python
>>> expr = integrate(x**x, x)
>>> print(expr)
Integral(x**x, x)
>>> expr
\[
\left\{ \begin{array}{l}
x \\
x \, dx
\end{array} \right.
\]
```

As with `Derivative`, you can create an unevaluated integral using `Integral`. To later evaluate this integral, call `doit`.
integrate uses powerful algorithms that are always improving to compute both definite and indefinite integrals, including heuristic pattern matching type algorithms, a partial implementation of the Risch algorithm, and an algorithm using Meijer G-functions that is useful for computing integrals in terms of special functions, especially definite integrals. Here is a sampling of some of the power of integrate.

```python
>>> integ = Integral((x**4 + x**2*exp(x) - x**2 - 2*x*exp(x) - 2*x - ... exp(x))**exp(x)/((x - 1)**2*(x + 1)**2*(exp(x) + 1)), x)
>>> integ
\int \left( \frac{4 \cdot 2 \cdot x^2 \cdot x^2 \cdot x^2}{x^4 + x^2 \cdot e - x^2 - 2 \cdot x \cdot e - 2 \cdot x - e} \right) \cdot e \, dx

\int \left( \frac{2 \cdot x}{x - 1} \cdot (x + 1) \cdot (e + 1) \right) dx

>>> integ.doit()
\frac{x \cdot \log(e + 1) + e}{2 \cdot x - 1}
```

```python
>>> integ = Integral(sin(x**2), x)
>>> integ
\int \sin(x^2) \, dx

>>> integ.doit()
\sqrt{2} \cdot x \sqrt{\pi} \cdot S \left( \frac{\sqrt{2} \cdot x}{\sqrt{\pi}} \right) \cdot \Gamma(3/4) \cdot 8 \cdot \Gamma(7/4)
```

```python
>>> integ = Integral(x**y*exp(-x), (x, 0, oo))
>>> integ
\int x^y \cdot e^{-x} \, dx
```

(continues on next page)
This last example returned a Piecewise expression because the integral does not converge unless \(\Re(y) > 1 \).

Limits

SymPy can compute symbolic limits with the `limit` function. The syntax to compute

\[
\lim_{x \to x_0} f(x)
\]

is `limit(f(x), x, x0)`.

```python
>>> limit(sin(x)/x, x, 0)
1
```

`limit` should be used instead of `subs` whenever the point of evaluation is a singularity. Even though SymPy has objects to represent \(\infty \), using them for evaluation is not reliable because they do not keep track of things like rate of growth. Also, things like \(\infty - \infty \) and \(\frac{\infty}{\infty} \) return `nan` (not-a-number). For example

```python
>>> expr = x**2/exp(x)
>>> expr.subs(x, oo)
nan
>>> limit(expr, x, oo)
0
```

Like `Derivative` and `Integral`, `limit` has an unevaluated counterpart, `Limit`. To evaluate it, use `doit`.

```python
>>> expr = Limit((cos(x) - 1)/x, x, 0)
>>> expr
\lim_{x \to 0^+} \frac{\cos(x) - 1}{x}
>>> expr.doit()
0
```
To evaluate a limit at one side only, pass `'+` or `'-` as a fourth argument to `limit`. For example, to compute

\[\lim_{x \to 0^+} \frac{1}{x} \]

do

```python
>>> limit(1/x, x, 0, '+')
\infty
```

As opposed to

```python
>>> limit(1/x, x, 0, '-')
-\infty
```

Series Expansion

Sympy can compute asymptotic series expansions of functions around a point. To compute the expansion of \(f(x) \) around the point \(x = x_0 \) terms of order \(x^n \), use \(f(x).series(x, x_0, n) \). \(x_0 \) and \(n \) can be omitted, in which case the defaults \(x_0=0 \) and \(n=6 \) will be used.

```python
>>> expr = exp(sin(x))
>>> expr.series(x, 0, 4)
2
\quad x + \frac{4}{2} + \frac{0\{x\}}{2}
```

The \(O(x^4) \) term at the end represents the Landau order term at \(x = 0 \) (not to be confused with big O notation used in computer science, which generally represents the Landau order term at \(x \) where \(x \to \infty \)). It means that all \(x \) terms with power greater than or equal to \(x^4 \) are omitted. Order terms can be created and manipulated outside of `series`. They automatically absorb higher order terms.

```python
>>> x + x**3 + x**6 + 0(x**4)
3
\quad x + \frac{4}{0\{x\}}
>>> x*O(1)
0(x)
```

If you do not want the order term, use the `removeO` method.

```python
>>> expr.series(x, 0, 4).removeO()
2
\quad x + x + 1
```

The \(O \) notation supports arbitrary limit points (other than 0):

```python
>>> exp(x - 6).series(x, x0=6)
2 \quad 3 \quad 4 \quad 5
```

(continues on next page)
Finite differences

So far we have looked at expressions with analytic derivatives and primitive functions respectively. But what if we want to have an expression to estimate a derivative of a curve for which we lack a closed form representation, or for which we don’t know the functional values for yet. One approach would be to use a finite difference approach.

The simplest way the differentiate using finite differences is to use the differentiate_finite function:

```python
>>> f, g = symbols('f g', cls=Function)
>>> differentiate_finite(f(x)*g(x))
-f(x - 1/2)\cdot g(x - 1/2) + f(x + 1/2)\cdot g(x + 1/2)
```

If you already have a Derivative instance, you can use the as_finite_difference method to generate approximations of the derivative to arbitrary order:

```python
>>> f = Function('f')
>>> dfdx = f(x).diff(x)
>>> dfdx.as_finite_difference()
-f(x - 1/2) + f(x + 1/2)
```

Here the first order derivative was approximated around x using a minimum number of points (2 for 1st order derivative) evaluated equidistantly using a step-size of 1. We can use arbitrary steps (possibly containing symbolic expressions):

```python
>>> f = Function('f')
>>> d2fdx2 = f(x).diff(x, 2)
>>> h = Symbol('h')
>>> d2fdx2.as_finite_difference([-3*h, -h, 2*h])
f(-3\cdot h) - f(-h) + 2\cdot f(2\cdot h)
\begin{align*}
&\frac{1}{2} &\frac{1}{2} &\frac{2}{15} \\
&5\cdot h &3\cdot h &15\cdot h
\end{align*}
```

If you are just interested in evaluating the weights, you can do so manually:

```python
>>> finite_diff_weights(2, [-3, -1, 2], 0)[-1][-1]
[1/5, -1/3, 2/15]
```

Note that we only need the last element in the last sublist returned from finite_diff_weights. The reason for this is that the function also generates weights for lower derivatives and using fewer points (see the documentation of finite_diff_weights for more details).

If using finite_diff_weights directly looks complicated, and the as_finite_difference method of Derivative instances is not flexible enough, you can use apply_finite_diff which takes order, x_list, y_list and x0 as parameters:
```python
>>> x_list = [-3, 1, 2]
>>> y_list = symbols('a b c')
>>> apply_finite_diff(1, x_list, y_list, 0)
   3⋅a  b  2⋅c
- ─── - ─ + ───
   20  4  5
```

Solvers

Note: For a beginner-friendly guide focused on solving common types of equations, refer to *Solve Equations* (page 131).

```python
>>> from sympy import *
>>> x, y, z = symbols('x y z')
>>> init_printing(use_unicode=True)
```

A Note about Equations

Recall from the *gotchas* (page 12) section of this tutorial that symbolic equations in SymPy are not represented by = or ==, but by `Eq`.

```python
>>> Eq(x, y)
x = y
```

However, there is an even easier way. In SymPy, any expression not in an `Eq` is automatically assumed to equal 0 by the solving functions. Since \(a = b \) if and only if \(a - b = 0 \), this means that instead of using \(x == y \), you can just use \(x - y \). For example

```python
>>> solveset(Eq(x**2, 1), x)
{-1, 1}
>>> solveset(Eq(x**2 - 1, 0), x)
{-1, 1}
>>> solveset(x**2 - 1, x)
{-1, 1}
```

This is particularly useful if the equation you wish to solve is already equal to 0. Instead of typing `solveset(Eq(expr, 0), x)`, you can just use `solveset(expr, x)`.

2.1. Introductory Tutorial
Solving Equations Algebraically

The main function for solving algebraic equations is `solve`. The syntax for `solve` is `solve(equation, variable=None, domain=S.Complexes)` where equations may be in the form of `Eq` instances or expressions that are assumed to be equal to zero.

Please note that there is another function called `solve` which can also be used to solve equations. The syntax is `solve(equations, variables)` However, it is recommended to use `solve` instead.

When solving a single equation, the output of `solve` is a `FiniteSet` or an `Interval` or `ImageSet` of the solutions.

```
>>> solveset(x**2 - x, x)
{0, 1}
>>> solveset(x - x, x, domain=S.Reals)
ℝ
>>> solveset(sin(x) - 1, x, domain=S.Reals)
⎧ π │ ⎫
⎨2⋅n⋅π + ─ │ n ∊ ℤ⎬
⎩ 2 │ ⎭
```

If there are no solutions, an `EmptySet` is returned and if it is not able to find solutions then a `ConditionSet` is returned.

```
>>> solveset(exp(x), x)  # No solution exists
∅
>>> solveset(cos(x) - x, x)  # Not able to find solution
{x | x ∈ ℂ ∧ (-x + cos(x) = 0)}
```

In the `solve` module, the non linear system of equations is solved using `nonlinsolve`. Following are examples of `nonlinsolve`.

```
• List of Equations Form:
    >>> nonlinsolve([x + y + z - 1, x + y + 2*z - 3], (x, y, z))
    {(-y - 1, y, 2)}

• Augmented Matrix Form:
    >>> nonlinsolve(Matrix(([1, 1, 1], [1, 2, 3])), (x, y, z))
    {(-y - 1, y, 2)}

• A*x = b Form
    >>> M = Matrix(([1, 1, 1], (1, 1, 2, 3)))
    >>> system = A, b = M[:, :-1], M[:, -1]
    >>> nonlinsolve(system, x, y)
    {(-y - 1, y, 2)}
```

Note: The order of solution corresponds the order of given symbols.

In the `solve` module, the non linear system of equations is solved using `nonlinsolve`. Following are examples of `nonlinsolve`.
1. When only real solution is present:

```python
>>> a, b, c, d = symbols('a, b, c, d', real=True)
>>> nonlinsolve([a**2 + a, a - b], [a, b])
{(-1, -1), (0, 0)}
>>> nonlinsolve([x*y - 1, x - 2], x, y)
{(2, 1/2)}
```

2. When only complex solution is present:

```python
>>> nonlinsolve([x**2 + 1, y**2 + 1], [x, y])
{(-i, -i), (i, i)}
```

3. When both real and complex solution are present:

```python
>>> from sympy import sqrt
>>> system = [x**2 - 2*y**2 - 2, x*y - 2]
>>> vars = [x, y]
>>> nonlinsolve(system, vars)
{(-2, -1), (2, 1), (-sqrt(2)*i, sqrt(2)*i), (sqrt(2)*i, -sqrt(2)*i)}
```

```python
>>> system = [exp(x) - sin(y), 1/y - 3]
>>> nonlinsolve(system, vars)
{{(2·n·i·π + log(sin(1/3)) │ n ∊ ℤ}, 1/3}
```

4. When the system is positive-dimensional system (has infinitely many solutions):

```python
>>> nonlinsolve([x*y, x**y - x], [x, y])
{(0, y)}
```

```python
>>> system = [a**2 + a*c, a - b]
>>> nonlinsolve(system, [a, b])
{(0, 0), (-c, -c)}
```

Note:

1. The order of solution corresponds the order of given symbols.
2. Currently `nonlinsolve` doesn’t return solution in form of LambertW (if there is solution present in the form of LambertW).

`solve` can be used for such cases:

```python
>>> solve([x**2 - y**2/exp(x)], [x, y], dict=True)
[[{x: y/sqrt(exp(x))}, {y: -x/sqrt(exp(x))}]]
>>> solve(x**2 - y**2/exp(x), x, dict=True)
[[{x: 2·W[y]}, {x: -2·W[y]}]]
```

3. Currently `nonlinsolve` is not properly capable of solving the system of equations having trigonometric functions.
solve can be used for such cases (but does not give all solution):

```python
>>> solve([sin(x + y), cos(x - y)], [x, y])
```

\[
\begin{bmatrix}
\left(-3\pi, 3\pi\right), \\
\left(-\pi, -\pi\right), \\
\left(\pi, 3\pi\right), \\
\left(3\pi, -\pi\right)
\end{bmatrix}
\]

solveset reports each solution only once. To get the solutions of a polynomial including multiplicity use roots.

```python
>>> solveset(x**3 - 6*x**2 + 9*x, x)
{0, 3}
```
```python
>>> roots(x**3 - 6*x**2 + 9*x, x)
{0: 1, 3: 2}
```

The output \{0: 1, 3: 2\} of roots means that 0 is a root of multiplicity 1 and 3 is a root of multiplicity 2.

Note: Currently solveset is not capable of solving the following types of equations:

- Equations solvable by LambertW (Transcendental equation solver).

solve can be used for such cases:

```python
>>> solve(x*exp(x) - 1, x )
```

```
[W(1)]
```

Solving Differential Equations

To solve differential equations, use `dsolve`. First, create an undefined function by passing `cls=Function` to the `symbols` function.

```python
>>> f, g = symbols('f g', cls=Function)
```

f and g are now undefined functions. We can call f(x), and it will represent an unknown function.

```python
>>> f(x)
```

```
f(x)
```

Derivatives of f(x) are unevaluated.

```python
>>> f(x).diff(x)
```

```
d (f(x))
--
dx
```

(see the Derivatives (page 40) section for more on derivatives).

To represent the differential equation \(f''(x) - 2f'(x) + f(x) = \sin(x)\), we would thus use
```python
>>> diffeq = Eq(f(x).diff(x, x) - 2*f(x).diff(x) + f(x), sin(x))
>>> diffeq
\[
\frac{d^2}{dx^2}f(x) - 2\frac{d}{dx}(f(x)) + \frac{1}{2}(f(x)) = \sin(x)
\]
```

To solve the ODE, pass it and the function to solve for to `dsolve`.

```python
>>> dsolve(diffeq, f(x))
f(x) = (C_1 + C_2\cdot x)\cdot e^{\frac{\cos(x)}{2}}
```

`dsolve` returns an instance of `Eq`. This is because, in general, solutions to differential equations cannot be solved explicitly for the function.

```python
>>> dsolve(f(x).diff(x)*(1 - sin(f(x))) - 1, f(x))
x - f(x) - \cos(f(x)) = C_1
```

The arbitrary constants in the solutions from `dsolve` are symbols of the form `C1`, `C2`, `C3`, and so on.

Matrices

```python
>>> from sympy import *
>>> init_printing(use_unicode=True)
```

To make a matrix in SymPy, use the `Matrix` object. A matrix is constructed by providing a list of row vectors that make up the matrix. For example, to construct the matrix

\[
\begin{bmatrix}
1 & -1 \\
3 & 4 \\
0 & 2
\end{bmatrix}
\]

use

```python
>>> Matrix([[1, -1], [3, 4], [0, 2]])
```

To make it easy to make column vectors, a list of elements is considered to be a column vector.

```python
>>> Matrix([[1, 2, 3]])
```

2.1. Introductory Tutorial
Matrices are manipulated just like any other object in SymPy or Python.

```python
>>> M = Matrix([[1, 2, 3], [3, 2, 1]])
>>> N = Matrix([0, 1, 1])
>>> M*N
[5]
[3]
```

One important thing to note about SymPy matrices is that, unlike every other object in SymPy, they are mutable. This means that they can be modified in place, as we will see below. The downside to this is that `Matrix` cannot be used in places that require immutability, such as inside other SymPy expressions or as keys to dictionaries. If you need an immutable version of `Matrix`, use `ImmutableMatrix`.

Basic Operations

Here are some basic operations on `Matrix`.

Shape

To get the shape of a matrix, use `shape()` (page 1199) function.

```python
>>> from sympy import shape
>>> M = Matrix([[1, 2, 3], [-2, 0, 4]])
>>> M
[1  2  3]
[-2  0  4]
>>> shape(M)
(2, 3)
```

Accessing Rows and Columns

To get an individual row or column of a matrix, use `row` or `col`. For example, `M.row(0)` will get the first row. `M.col(-1)` will get the last column.

```python
>>> M.row(0)
[1 2 3]
>>> M.col(-1)
[3]
[4]
```
Deleting and Inserting Rows and Columns

To delete a row or column, use row_del or col_del. These operations will modify the Matrix in place.

```python
>>> M.col_del(0)
>>> M
[2 3]
[0 4]
>>> M.row_del(1)
>>> M
[2 3]
```

To insert rows or columns, use row_insert or col_insert. These operations do not operate in place.

```python
>>> M
[2 3]
>>> M = M.row_insert(1, Matrix([[0, 4]]))
>>> M
[2 3]
[0 4]
>>> M = M.col_insert(0, Matrix([1, -2]))
>>> M
[1 2 3]
[-2 0 4]
```

Unless explicitly stated, the methods mentioned below do not operate in place. In general, a method that does not operate in place will return a new Matrix and a method that does operate in place will return None.

Basic Methods

As noted above, simple operations like addition, multiplication and power are done just by using +, *, and **. To find the inverse of a matrix, just raise it to the -1 power.

```python
>>> M = Matrix([[1, 3], [-2, 3]])
>>> N = Matrix([[0, 3], [0, 7]])
>>> M + N
[1  6]
[ 10]
>>> M*N
[0 24]
[0 15]
>>> 3*M
[3  9]
```
To take the transpose of a Matrix, use T.

```python
>>> M = Matrix([[1, 2, 3], [4, 5, 6]])
>>> M
[1 2 3]
[4 5 6]
>>> M.T
[1 4]
[2 5]
[3 6]
```

Matrix Constructors

Several constructors exist for creating common matrices. To create an identity matrix, use eye. eye(n) will create an \(n \times n \) identity matrix.

```python
>>> eye(3)
[1 0 0]
[0 1 0]
[0 0 1]
>>> eye(4)
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
```
To create a matrix of all zeros, use zeros. `zeros(n, m)` creates an $n \times m$ matrix of 0s.

```python
>>> zeros(2, 3)
[[0, 0, 0],
 [0, 0, 0]]
```

Similarly, ones creates a matrix of ones.

```python
>>> ones(3, 2)
[[1, 1],
 [1, 1],
 [1, 1]]
```

To create diagonal matrices, use diag. The arguments to diag can be either numbers or matrices. A number is interpreted as a 1×1 matrix. The matrices are stacked diagonally. The remaining elements are filled with 0s.

```python
>>> diag(1, 2, 3)
[[1, 0, 0],
 [0, 2, 0],
 [0, 0, 3]]

>>> diag(-1, ones(2, 2), Matrix([[5, 7, 5]]))
[[-1, 0, 0, 0],
 [0, 1, 1, 0],
 [0, 1, 1, 0],
 [0, 0, 0, 5],
 [0, 0, 0, 7],
 [0, 0, 0, 5]]
```

Advanced Methods

Determinant

To compute the determinant of a matrix, use det.

```python
>>> M = Matrix([[1, 0, 1], [2, -1, 3], [4, 3, 2]])
>>> M
[1 0 1]
[2 -1 3]
```

(continues on next page)
RREF

To put a matrix into reduced row echelon form, use \texttt{rref}. \texttt{rref} returns a tuple of two elements. The first is the reduced row echelon form, and the second is a tuple of indices of the pivot columns.

\begin{verbatim}
>>> M = Matrix([[1, 0, 1, 3], [2, 3, 4, 7], [-1, -3, -3, -4]])
>>> M

\begin{bmatrix}
1 & 0 & 1 & 3 \\
2 & 3 & 4 & 7 \\
-1 & -3 & -3 & -4 \\
\end{bmatrix}

>>> M.rref()

\begin{bmatrix}
1 & 0 & 1 & 3 \\
0 & 1 & 2/3 & 1/3 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}, (0, 1)
\end{verbatim}

Note: The first element of the tuple returned by \texttt{rref} is of type \texttt{Matrix}. The second is of type \texttt{tuple}.

Nullspace

To find the nullspace of a matrix, use \texttt{nullspace}. \texttt{nullspace} returns a list of column vectors that span the nullspace of the matrix.

\begin{verbatim}
>>> M = Matrix([[1, 2, 3, 0, 0], [4, 10, 0, 0, 1]])
>>> M

\begin{bmatrix}
1 & 2 & 3 & 0 & 0 \\
4 & 10 & 0 & 0 & 1 \\
\end{bmatrix}

>>> M.nullspace()

\begin{bmatrix}
-15 & 0 & 1 \\
6 & 0 & -1/2 \\
1 & 0 & 0 \\
\end{bmatrix}
\end{verbatim}
Columnspace

To find the columnspace of a matrix, use columnspace. columnspace returns a list of column vectors that span the columnspace of the matrix.

```
>>> M = Matrix([[1, 1, 2], [2, 1, 3], [3, 1, 4]])
>>> M
[1 1 2]
[2 1 3]
[3 1 4]
>>> M.columnspace()
[1 1]
[2 1]
[3 1]
```

Eigenvalues, Eigenvectors, and Diagonalization

To find the eigenvalues of a matrix, use eigenvals. eigenvals returns a dictionary of eigenvalue: algebraic_multiplicity pairs (similar to the output of roots (page 50)).

```
>>> M = Matrix([[3, -2, 4, -2], [5, 3, -3, -2], [5, -2, 2, -2], [5, -2, -3, 3]])
>>> M
[3 -2 4 -2]
[5  3 -3 -2]
[5 -2 2 -2]
[5 -2 -3 3]
>>> M.eigenvals()
{-2: 1, 3: 1, 5: 2}
```

This means that M has eigenvalues -2, 3, and 5, and that the eigenvalues -2 and 3 have algebraic multiplicity 1 and that the eigenvalue 5 has algebraic multiplicity 2.

To find the eigenvectors of a matrix, use eigenvects. eigenvects returns a list of tuples of the form (eigenvalue, algebraic_multiplicity, [eigenvectors]).
This shows us that, for example, the eigenvalue 5 also has geometric multiplicity 2, because it has two eigenvectors. Because the algebraic and geometric multiplicities are the same for all the eigenvalues, \(M \) is diagonalizable.

To diagonalize a matrix, use `diagonalize`. `diagonalize` returns a tuple \((P, D)\), where \(D \) is diagonal and \(M = PDP^{-1} \).

```
>>> P, D = M.diagonalize()
>>> P
[ 0  1  1  0 ]
[ 1  1  1 -1]
[ 1  1  1  0 ]
[ 1  1  0  1 ]

>>> D
[-2  0  0  0]
[ 0  3  0  0]
[ 0  0  5  0]
[ 0  0  0  5]

>>> P*D*P**-1
[ 3 -2  4 -2]
[ 5  3 -3 -2]
[ 5 -2  2 -2]
[ 5 -2 -3  3]

>>> P*D*P**-1 == M
True
```

Quick Tip

`lambda` is a reserved keyword in Python, so to create a Symbol called \(\lambda \), while using the same names for SymPy Symbols and Python variables, use `lamda` (without the `b`). It will still pretty print as \(\lambda \).
Note that since eigenvects also includes the eigenvalues, you should use it instead of eigenvals if you also want the eigenvectors. However, as computing the eigenvectors may often be costly, eigenvals should be preferred if you only wish to find the eigenvalues.

If all you want is the characteristic polynomial, use charpoly. This is more efficient than eigenvals, because sometimes symbolic roots can be expensive to calculate.

```python
>>> lamda = symbols('lamda')
>>> p = M.charpoly(lamda)
>>> factor(p.as_expr())
2
(λ - 5) ⋅(λ - 3)⋅(λ + 2)
```

Possible Issues

Zero Testing

If your matrix operations are failing or returning wrong answers, the common reasons would likely be from zero testing. If there is an expression not properly zero-tested, it can possibly bring issues in finding pivots for gaussian elimination, or deciding whether the matrix is invertible, or any high level functions which relies on the prior procedures.

Currently, the SymPy’s default method of zero testing `_iszero` is only guaranteed to be accurate in some limited domain of numerics and symbols, and any complicated expressions beyond its decidability are treated as `None`, which behaves similarly to logical `False`.

The list of methods using zero testing procedures are as follows:

```python
echelon_form, is_echelon, rank, rref, nullspace, eigenvects, inverse_ADJ, inverse_GE, inverse_LU, LUdecomposition, LUdecomposition_Simple, LSolve
```

They have property `iszerofunc` opened up for us to specify zero testing method, which can accept any function with single input and boolean output, while being defaulted with `_iszero`.

Here is an example of solving an issue caused by undertested zero. While the output for this particular matrix has since been improved, the technique below is still of interest.\(^1\)

```python
>>> from sympy import *
>>> q = Symbol("q", positive = True)
>>> m = Matrix([... [-2*cosh(q/3), exp(-q), 1],
... [exp(q), -2*cosh(q/3), 1],
... [1, 1, -2*cosh(q/3)]])
>>> m.nullspace()
[]
```

You can trace down which expression is being underevaluated, by injecting a custom zero test with warnings enabled.

```python
>>> import warnings
>>> (continues on next page)
```

1. Inspired by https://gitter.im/sympy/sympy?at=5b7c3e8ee5b40332abdb206c
2. Discovered from https://github.com/sympy/sympy/issues/15141
3. Improved by https://github.com/sympy/sympy/pull/19548
>>> def my_iszero(x):
... try:
... result = x.is_zero
... except AttributeError:
... result = None
... # Warnings if evaluated into None
... if result is None:
... warnings.warn("Zero testing of {} evaluated into None".format(x))
... return result

```python
>>> m.nullspace(iszerofunc=my_iszero)
```

In this case, \((-\exp(q) - 2\cosh(q/3))(-2\cosh(q/3) - \exp(q)) - (4\cosh(q/3)**2 - 1)**2\) should yield zero, but the zero testing had failed to catch. Possibly meaning that a stronger zero test should be introduced. For this specific example, rewriting to exponentials and applying simplify would make zero test stronger for hyperbolics, while being harmless to other polynomials or transcendental functions.

```python
>>> def my_iszero(x):
...     try:
...         result = x.rewrite(exp).simplify().is_zero
...     except AttributeError:
...         result = None
...     # Warnings if evaluated into None
...     if result is None:
...         warnings.warn("Zero testing of {} evaluated into None".format(x))
...     return result

```python

```
```

(continues on next page)
You can clearly see nullspace returning proper result, after injecting an alternative zero test. Note that this approach is only valid for some limited cases of matrices containing only numerics, hyperbolics, and exponentials. For other matrices, you should use different method opted for their domains.

Possible suggestions would be either taking advantage of rewriting and simplifying, with tradeoff of speed\(^4\), or using random numeric testing, with tradeoff of accuracy\(^5\).

If you wonder why there is no generic algorithm for zero testing that can work with any symbolic entities, it’s because of the constant problem stating that zero testing is undecidable\(^6\), and not only the SymPy, but also other computer algebra systems\(^7\) would face the same fundamental issue.

However, discovery of any zero test failings can provide some good examples to improve SymPy, so if you have encountered one, you can report the issue to SymPy issue tracker\(^8\) to get detailed help from the community.

Advanced Expression Manipulation

In this section, we discuss some ways that we can perform advanced manipulation of expressions.

Understanding Expression Trees

Before we can do this, we need to understand how expressions are represented in SymPy. A mathematical expression is represented as a tree. Let us take the expression \(x^2 + xy\), i.e., \(x**2 + x*y\). We can see what this expression looks like internally by using \texttt{srepr}

\begin{verbatim}
>>> from sympy import *
>>> x, y, z = symbols('x y z')

>>> expr = x**2 + x*y
>>> srepr(expr)
"Add(Pow(Symbol('x'), Integer(2)), Mul(Symbol('x'), Symbol('y')))"
\end{verbatim}

\(^4\) Suggested from https://github.com/sympy/sympy/issues/10120
\(^5\) Suggested from https://github.com/sympy/sympy/issues/10279
\(^6\) https://en.wikipedia.org/wiki/Constant_problem
\(^7\) How mathematica tests zero https://reference.wolfram.com/language/ref/PossibleZeroQ.html
\(^9\) https://github.com/sympy/sympy/issues
The easiest way to tear this apart is to look at a diagram of the expression tree:

```
Add
 /   \
|     |
Pow   Mul
 /     /
|     |
Symbol('x')   Integer(2)   Symbol('x')   Symbol('y')
```

Note: The above diagram was made using Graphviz and the `dotprint` (page 2263) function.

First, let’s look at the leaves of this tree. Symbols are instances of the class `Symbol`. While we have been doing

```python
>>> x = symbols('x')
```

we could have also done

```python
>>> x = Symbol('x')
```

Either way, we get a `Symbol` with the name “x”\(^1\). For the number in the expression, 2, we got `Integer(2)`. `Integer` is the SymPy class for integers. It is similar to the Python built-in type `int`, except that `Integer` plays nicely with other SymPy types.

When we write `x**2`, this creates a `Pow` object. `Pow` is short for “power”.

```python
>>> srepr(x**2)
"Pow(Symbol('x'), Integer(2))"
```

We could have created the same object by calling `Pow(x, 2)`

```python
>>> Pow(x, 2)
x**2
```

Note that in the `srepr` output, we see `Integer(2)`, the SymPy version of integers, even though technically, we input 2, a Python int. In general, whenever you combine a SymPy object with a non-SymPy object via some function or operation, the non-SymPy object will be converted into a SymPy object. The function that does this is `sympify`\(^2\).

\(^1\) We have been using `symbols` instead of `Symbol` because it automatically splits apart strings into multiple `Symbol`s. `symbols('x y z')` returns a tuple of three `Symbol`s. `Symbol('x y z')` returns a single `Symbol` called `x y z`.

\(^2\) Technically, it is an internal function called `_sympify`, which differs from `sympify` in that it does not convert strings. `x + '2'` is not allowed.
We have seen that x^2 is represented as $\text{Pow}(x, 2)$. What about $x*y$? As we might expect, this is the multiplication of x and y. The SymPy class for multiplication is Mul.

Thus, we could have created the same object by writing $\text{Mul}(x, y)$.

Now we get to our final expression, $x^2 + x*y$. This is the addition of our last two objects, $\text{Pow}(x, 2)$, and $\text{Mul}(x, y)$. The SymPy class for addition is Add, so, as you might expect, to create this object, we use $\text{Add}(\text{Pow}(x, 2), \text{Mul}(x, y))$.

SymPy expression trees can have many branches, and can be quite deep or quite broad. Here is a more complicated example

This expression reveals some interesting things about SymPy expression trees. Let’s go through them one by one.

Let’s first look at the term x^2. As we expected, we see $\text{Pow}(x, 2)$. One level up, we see we
have \(\text{Mul}(-1, \text{Pow}(x, 2)) \). There is no subtraction class in SymPy. \(x - y \) is represented as \(x + -y \), or, more completely, \(x + -1*y \), i.e., \(\text{Add}(x, \text{Mul}(-1, y)) \).

```python
>>> srepr(x - y)
"Add(Symbol('x'), Mul(Integer(-1), Symbol('y')))"
```

Next, look at \(1/y \). We might expect to see something like \(\text{Div}(1, y) \), but similar to subtraction, there is no class in SymPy for division. Rather, division is represented by a power of \(-1\). Hence, we have \(\text{Pow}(y, -1) \). What if we had divided something other than 1 by \(y \), like \(x/y \)? Let's see.

```python
>>> expr = x/y
>>> srepr(expr)
"Mul(Symbol('x'), Pow(Symbol('y'), Integer(-1)))"
```
We see that x/y is represented as $x*y^{-1}$, i.e., $\text{Mul}(x, \text{Pow}(y, -1))$.

Finally, let’s look at the $\sin(x*y)/2$ term. Following the pattern of the previous example, we might expect to see $\text{Mul}(\sin(x*y), \text{Pow}(\text{Integer}(2), -1))$. But instead, we have $\text{Mul}(\text{Rational}(1, 2), \sin(x*y))$. Rational numbers are always combined into a single term in a multiplication, so that when we divide by 2, it is represented as multiplying by $1/2$.

Finally, one last note. You may have noticed that the order we entered our expression and the order that it came out from `srepr` or in the graph were different. You may have also noticed this phenomenon earlier in the tutorial. For example

```python
>>> 1 + x
x + 1
```

This because in SymPy, the arguments of the commutative operations `Add` and `Mul` are stored in an arbitrary (but consistent!) order, which is independent of the order inputted (if you’re worried about noncommutative multiplication, don’t be). In SymPy, you can create noncommutative Symbols using `Symbol('A', commutative=False)`, and the order of multiplication for noncommutative Symbols is kept the same as the input). Furthermore, as we shall see in the next section, the printing order and the order in which things are stored internally need not be the same either.

Quick Tip

The way an expression is represented internally and the way it is printed are often not the same.

In general, an important thing to keep in mind when working with SymPy expression trees is this: the internal representation of an expression and the way it is printed need not be the same. The same is true for the input form. If some expression manipulation algorithm is not working in the way you expected it to, chances are, the internal representation of the object is different from what you thought it was.
Recursing through an Expression Tree

Now that you know how expression trees work in SymPy, let’s look at how to dig our way through an expression tree. Every object in SymPy has two very important attributes, `func`, and `args`.

func

`func` is the head of the object. For example, `(x*y).func` is `Mul`. Usually it is the same as the class of the object (though there are exceptions to this rule).

Two notes about `func`. First, the class of an object need not be the same as the one used to create it. For example

```python
>>> expr = Add(x, x)
>>> expr.func
<class 'sympy.core.mul.Mul'>
```

We created `Add(x, x)`, so we might expect `expr.func` to be `Add`, but instead we got `Mul`. Why is that? Let’s take a closer look at `expr`.

```python
>>> expr
2*x
```

Add(x, x), i.e., x + x, was automatically converted into `Mul(2, x)`, i.e., 2*x, which is a `Mul`. SymPy classes make heavy use of the `_new_` class constructor, which, unlike `_init_`, allows a different class to be returned from the constructor.

Second, some classes are special-cased, usually for efficiency reasons

```python
>>> Integer(2).func
<class 'sympy.core.numbers.Integer'>
>>> Integer(0).func
<class 'sympy.core.numbers.Zero'>
>>> Integer(-1).func
<class 'sympy.core.numbers.NegativeOne'>
```

For the most part, these issues will not bother us. The special classes `Zero`, `One`, `NegativeOne`, and so on are subclasses of `Integer`, so as long as you use `isinstance`, it will not be an issue.

3 Classes like `One` and `Zero` are singletonized, meaning that only one object is ever created, no matter how many times the class is called. This is done for space efficiency, as these classes are very common. For example, `Zero` might occur very often in a sparse matrix represented densely. As we have seen, `NegativeOne` occurs any time we have -x or 1/x. It is also done for speed efficiency because singletonized objects can be compared by `is`. The unique objects for each singletonized class can be accessed from the `S` object.
args

args are the top-level arguments of the object. \((x\cdot y).\text{args}\) would be \((x, y)\). Let’s look at some examples

```python
>>> expr = 3*y**2*x
>>> expr.func
<class 'sympy.core.mul.Mul'>
>>> expr.args
(3, x, y**2)
```

From this, we can see that \(expr == \text{Mul}(3, y**2, x)\). In fact, we can see that we can completely reconstruct \(expr\) from its \(func\) and its \(args\).

```python
>>> expr.func(*expr.args)
3*x*y**2
>>> expr == expr.func(*expr.args)
True
```

Note that although we entered \(3*y**2*x\), the \(args\) are \((3, x, y**2)\). In a \(\text{Mul}\), the Rational coefficient will come first in the \(args\), but other than that, the order of everything else follows no special pattern. To be sure, though, there is an order.

```python
>>> expr = y**2*3*x
>>> expr.args
(3, x, y**2)
```

\(\text{Mul}\)'s \(args\) are sorted, so that the same \(\text{Mul}\) will have the same \(args\). But the sorting is based on some criteria designed to make the sorting unique and efficient that has no mathematical significance.

The \(s\text{repr}\) form of our \(expr\) is \(\text{Mul}(3, x, \text{Pow}(y, 2))\). What if we want to get at the \(args\) of \(\text{Pow}(y, 2)\). Notice that the \(y**2\) is in the third slot of \(expr.args\), i.e., \(expr.args[2]\).

```python
>>> expr.args[2]
y**2
```

So to get the \(args\) of this, we call \(expr.args[2].args\).

```python
>>> expr.args[2].args
(y, 2)
```

Now what if we try to go deeper. What are the \(args\) of \(y\). Or 2. Let’s see.

```python
>>> y.args
()
>>> Integer(2).args
()
```

They both have empty \(args\). In SymPy, empty \(args\) signal that we have hit a leaf of the expression tree.

So there are two possibilities for a SymPy expression. Either it has empty \(args\), in which case it is a leaf node in any expression tree, or it has \(args\), in which case, it is a branch node of any expression tree. When it has \(args\), it can be completely rebuilt from its \(func\) and its \(args\). This is expressed in the key invariant.
Key Invariant

Every well-formed SymPy expression must either have empty args or satisfy `expr == expr.func(*expr.args)`.

(Recall that in Python if `a` is a tuple, then `f(*a)` means to call `f` with arguments from the elements of `a`, e.g., `f(*(1, 2, 3))` is the same as `f(1, 2, 3)`.)

This key invariant allows us to write simple algorithms that walk expression trees, change them, and rebuild them into new expressions.

Walking the Tree

With this knowledge, let’s look at how we can recurse through an expression tree. The nested nature of args is a perfect fit for recursive functions. The base case will be empty args. Let’s write a simple function that goes through an expression and prints all the args at each level.

```python
>>> def pre(expr):
...   print(expr)
...   for arg in expr.args:
...     pre(arg)
```

See how nice it is that `()` signals leaves in the expression tree. We don’t even have to write a base case for our recursion; it is handled automatically by the for loop.

Let’s test our function.

```python
>>> expr = x*y + 1
>>> pre(expr)
x*y + 1
1
x*y
x
y
```

Can you guess why we called our function `pre`? We just wrote a pre-order traversal function for our expression tree. See if you can write a post-order traversal function.

Such traversals are so common in SymPy that the generator functions `preorder_traversal` and `postorder_traversal` are provided to make such traversals easy. We could have also written our algorithm as

```python
>>> for arg in preorder_traversal(expr):
...   print(arg)
```

```plaintext
x*y + 1
1
x*y
x
y
```
Prevent expression evaluation

There are generally two ways to prevent the evaluation, either pass an evaluate=False parameter while constructing the expression, or create an evaluation stopper by wrapping the expression with UnevaluatedExpr.

For example:

```python
>>> from sympy import Add
>>> from sympy.abc import x, y, z
>>> x + x
2*x
>>> Add(x, x)
2*x
>>> Add(x, x, evaluate=False)
x + x
```

If you don’t remember the class corresponding to the expression you want to build (operator overloading usually assumes evaluate=True), just use `sympify` and pass a string:

```python
>>> from sympy import sympify
>>> sympify("x + x", evaluate=False)
x + x
```

Note that `evaluate=False` won’t prevent future evaluation in later usages of the expression:

```python
>>> expr = Add(x, x, evaluate=False)
>>> expr
x + x
>>> expr + x
3*x
```

That’s why the class UnevaluatedExpr comes handy. UnevaluatedExpr is a method provided by SymPy which lets the user keep an expression unevaluated. By unevaluated it is meant that the value inside of it will not interact with the expressions outside of it to give simplified outputs. For example:

```python
>>> from sympy import UnevaluatedExpr
>>> expr = x + UnevaluatedExpr(S.One*5/7)*UnevaluatedExpr(S.One*3/4)
>>> expr
x + UnevaluatedExpr(S.One*5/7)*UnevaluatedExpr(S.One*3/4)
```

The `x` remaining alone is the `x` wrapped by UnevaluatedExpr. To release it:

```python
>>> (x + expr).doit()
3*x
```

Other examples:

```python
>>> from sympy import *
>>> from sympy.abc import x, y, z
>>> uexpr = UnevaluatedExpr(S.One*5/7)*UnevaluatedExpr(S.One*3/4)
>>> uexpr
(continues on next page)
```
A point to be noted is that `UnevaluatedExpr` cannot prevent the evaluation of an expression which is given as argument. For example:

```
>>> expr1 = UnevaluatedExpr(x + x)
2*x
>>> expr2 = sympify('x + x', evaluate=False)
>>> expr2
x + x
```

Remember that `expr2` will be evaluated if included into another expression. Combine both of the methods to prevent both inside and outside evaluations:

```
>>> UnevaluatedExpr(sympify("x + x", evaluate=False)) + y
y + (x + x)
```

`UnevaluatedExpr` is supported by SymPy printers and can be used to print the result in different output forms. For example

```
>>> from sympy import latex
>>> uexpr = UnevaluatedExpr(S.One*5/7)*UnevaluatedExpr(S.One*3/4)
>>> print(latex(uexpr))
\frac{5}{7} \cdot \frac{3}{4}
```

In order to release the expression and get the evaluated LaTeX form, just use `.doit()`:

```
>>> print(latex(uexpr.doit()))
\frac{15}{28}
```

What’s Next

Congratulations on finishing the SymPy tutorial!

If you are a developer interested in using SymPy in your code, please visit the *How-to Guides* (page 71) which discuss key developer tasks.

Intermediate SymPy users and developers might want to visit the *Explanations* (page 189) section for common pitfalls and advanced topics.

The *SymPy API Reference* (page 243) has a detailed description of the SymPy API.

If you are interested in contributing to SymPy, visit the *contribution guides* (page 3067) and the full *Development Workflow* guide on the SymPy wiki.
How-to guides are step-by-step instructions on how to do specific tasks.

For a deeper and elaborate exploration of other SymPy topics, see the *Explanations* (page 189) and *API reference* (page 243) sections.

3.1 Assumptions

This page outlines the core assumptions system in SymPy. It explains what the core assumptions system is, how the assumptions system is used and what the different assumptions predicates mean.

Note: This page describes the core assumptions system also often referred to as the “old assumptions” system. There is also a “new assumptions” system which is described elsewhere. Note that the system described here is actually the system that is widely used in SymPy. The “new assumptions” system is not really used anywhere in SymPy yet and the “old assumptions” system will not be removed. At the time of writing (SymPy 1.7) it is still recommended for users to use the old assumption system.

Firstly we consider what happens when taking the square root of the square of a concrete integer such as 2 or −2:

```python
>>> from sympy import sqrt
>>> sqrt(2**2)
2
>>> sqrt((-2)**2)
2
>>> x = 2
>>> sqrt(x**2)
2
>>> sqrt(x**2) == x
True
>>> y = -2
>>> sqrt(y**2) == y
False
>>> sqrt(y**2) == -y
True
```

What these examples demonstrate is that for a positive number x we have $\sqrt{x^2} = x$ whereas for a negative number we would instead have $\sqrt{x^2} = -x$. That may seem obvious but the
situation can be more surprising when working with a symbol rather than an explicit number. For example

```python
>>> from sympy import Symbol, simplify
>>> x = Symbol('x')
>>> sqrt(x**2)
sqrt(x**2)
```

It might look as if that should simplify to \(x \) but it does not even if `simplify()` (page 719) is used:

```python
>>> simplify(sqrt(x**2))
sqrt(x**2)
```

This is because SymPy will refuses to simplify this expression if the simplification is not valid for every possible value of \(x \). By default the symbol \(x \) is considered only to represent something roughly like an arbitrary complex number and the obvious simplification here is only valid for positive real numbers. Since \(x \) is not known to be positive or even real no simplification of this expression is possible.

We can tell SymPy that a symbol represents a positive real number when creating the symbol and then the simplification will happen automatically:

```python
>>> y = Symbol('y', positive=True)
>>> sqrt(y**2)
y
```

This is what is meant by “assumptions” in SymPy. If the symbol \(y \) is created with `positive=True` then SymPy will assume that it represents a positive real number rather than an arbitrary complex or possibly infinite number. That assumption can make it possible to simplify expressions or might allow other manipulations to work. It is usually a good idea to be as precise as possible about the assumptions on a symbol when creating it.

3.1.1 The (old) assumptions system

There are two sides to the assumptions system. The first side is that we can declare assumptions on a symbol when creating the symbol. The other side is that we can query the assumptions on any expression using the corresponding `is_*` attribute. For example:

```python
>>> x = Symbol('x', positive=True)
>>> x.is_positive
True
```

We can query assumptions on any expression not just a symbol:

```python
>>> x = Symbol('x', positive=True)
>>> expr = 1 + x**2
>>> expr
x**2 + 1
>>> expr.is_positive
True
>>> expr.is_negative
False
```
The values given in an assumptions query use three-valued “fuzzy” logic. Any query can return True, False, or None where None should be interpreted as meaning that the result is unknown.

```python
>>> x = Symbol('x')
>>> y = Symbol('y', positive=True)
>>> z = Symbol('z', negative=True)
>>> print(x.is_positive)
None
>>> print(y.is_positive)
True
>>> print(z.is_positive)
False
```

Note: We need to use print in the above examples because the special value None does not display by default in the Python interpreter.

There are several reasons why an assumptions query might give None. It is possible that the query is unknowable as in the case of \(x \) above. Since \(x \) does not have any assumptions declared it roughly represents an arbitrary complex number. An arbitrary complex number might be a positive real number but it also might not be. Without further information there is no way to resolve the query \(x.\text{is_positive} \).

Another reason why an assumptions query might give None is that there does in many cases the problem of determining whether an expression is e.g. positive is undecidable. That means that there does not exist an algorithm for answering the query in general. For some cases an algorithm or at least a simple check would be possible but has not yet been implemented although it could be added to SymPy.

The final reason that an assumptions query might give None is just that the assumptions system does not try very hard to answer complicated queries. The system is intended to be fast and uses simple heuristic methods to conclude a True or False answer in common cases. For example any sum of positive terms is positive so:

```python
>>> from sympy import symbols
>>> x, y = symbols('x, y', positive=True)
>>> expr = x + y
>>> expr
x + y
>>> expr.is_positive
True
```

The last example is particularly simple so the assumptions system is able to give a definite answer. If the sum involved a mix of positive or negative terms it would be a harder query:

```python
>>> x = Symbol('x', real=True)
>>> expr = 1 + (x - 2)**2
>>> expr
(x - 2)**2 + 1
>>> expr.is_positive
True
>>> expr2 = expr.expand()
>>> expr2
(continues on next page)
```
x**2 - 4*x + 5
>>> print(expr2.is_positive)
None

Ideally that last example would give True rather than None because the expression is always positive for any real value of x (and x has been assumed real). The assumptions system is intended to be efficient though: it is expected many more complex queries will not be fully resolved. This is because assumptions queries are primarily used internally by SymPy as part of low-level calculations. Making the system more comprehensive would slow SymPy down.

Note that in fuzzy logic giving an indeterminate result None is never a contradiction. If it is possible to infer a definite True or False result when resolving a query then that is better than returning None. However a result of None is not a bug. Any code that uses the assumptions system needs to be prepared to handle all three cases for any query and should not presume that a definite answer will always be given.

The assumptions system is not just for symbols or for complex expressions. It can also be used for plain SymPy integers and other objects. The assumptions predicates are available on any instance of Basic (page 979) which is the superclass for most classes of SymPy objects. A plain Python int is not a Basic (page 979) instance and can not be used to query assumptions predicates. We can “sympify” regular Python objects to become SymPy objects with sympify() (page 970) or S (SingletonRegistry (page 997)) and then the assumptions system can be used:

```python
>>> from sympy import S
>>> x = 2
>>> x.is_positive
Traceback (most recent call last):
... AttributeError: 'int' object has no attribute 'is_positive'
>>> x = S(2)
>>> type(x)
<class 'sympy.core.numbers.Integer'>
>>> x.is_positive
True
```

3.1.2 Gotcha: symbols with different assumptions

In SymPy it is possible to declare two symbols with different names and they will implicitly be considered equal under structural equality:

```python
>>> x1 = Symbol('x')
>>> x2 = Symbol('x')
>>> x1
x
>>> x2
x
>>> x1 == x2
True
```

However if the symbols have different assumptions then they will be considered to represent distinct symbols:
>>> x1 = Symbol('x', positive=True)
>>> x2 = Symbol('x')
>>> x1
x
>>> x2
x
>>> x1 == x2
False

One way to simplify an expression is to use the `posify()` (page 725) function which will replace all symbols in an expression with symbols that have the assumption `positive=True` (unless that contradicts any existing assumptions for the symbol):

```python
>>> from sympy import posify, exp
>>> x = Symbol('x')
>>> expr = exp(sqrt(x**2))
>>> expr
exp(sqrt(x**2))
>>> posify(expr)
(exp(_x), {_x: x})
>>> expr2, rep = posify(expr)
>>> expr2
exp(_x)
```

The `posify()` (page 725) function returns the expression with all symbols replaced (which might lead to simplifications) and also a dict which maps the new symbols to the old that can be used with `subs()` (page 993). This is useful because otherwise the new expression with the new symbols having the `positive=True` assumption will not compare equal to the old:

```python
>>> expr2
exp(_x)
>>> expr2 == exp(x)
False
>>> expr2.subs(rep)
exp(x)
>>> expr2.subs(rep) == exp(x)
True
```

3.1.3 Applying assumptions to string inputs

We have seen how to set assumptions when `Symbol` (page 1028) or `symbols()` (page 1030) explicitly. A natural question to ask is in what other situations can we assign assumptions to an object?

It is common for users to use strings as input to SymPy functions (although the general feeling among SymPy developers is that this should be discouraged) e.g.:

```python
>>> from sympy import solve
>>> solve('x**2 - 1')
[-1, 1]
```

When creating symbols explicitly it would be possible to assign assumptions that would affect the behaviour of `solve()` (page 882):
>>> x = Symbol('x', positive=True)
>>> solve(x**2 - 1)
[1]

When using string input SymPy will create the expression and create all of the symbol implicitly so the question arises how can the assumptions be specified? The answer is that rather than depending on implicit string conversion it is better to use the `parse_expr()` (page 2195) function explicitly and then it is possible to provide assumptions for the symbols e.g.:

```python
>>> from sympy import parse_expr
>>> parse_expr('x**2 - 1')
x**2 - 1
>>> eq = parse_expr('x**2 - 1', {'x':Symbol('x', positive=True)})
>>> solve(eq)
[1]
```

Note: The `solve()` (page 882) function is unusual as a high level API in that it actually checks the assumptions on any input symbols (the unknowns) and uses that to tailor its output. The assumptions system otherwise affects low-level evaluation but is not necessarily handled explicitly by high-level APIs.

3.1.4 Predicates

There are many different predicates that can be assumed for a symbol or can be queried for an expression. It is possible to combine multiple predicates when creating a symbol. Predicates are logically combined using `and` so if a symbol is declared with `positive=True` and also with `integer=True` then it is both positive and integer:

```python
>>> x = Symbol('x', positive=True, integer=True)
>>> x.is_positive
True
>>> x.is_integer
True
```

The full set of known predicates for a symbol can be accessed using the `assumptions0` (page 981) attribute:

```python
>>> x.assumptions0
{'algebraic': True, 'commutative': True, 'complex': True, 'extended_negative': False, 'extended_nonnegative': True, 'extended_nonpositive': False, 'extended_nonzero': True, 'extended_positive': True, 'extended_real': True, 'finite': True, 'hermitian': True, 'imaginary': False,
(continues on next page)```
We can see that there are many more predicates listed than the two that were used to create \(x\). This is because the assumptions system can infer some predicates from combinations of other predicates. For example if a symbol is declared with \(\text{positive=True}\) then it is possible to infer that it should have \(\text{negative=False}\) because a positive number can never be negative. Similarly if a symbol is created with \(\text{integer=True}\) then it is possible to infer that it should have \(\text{rational=True}\) because every integer is a rational number.

A full table of the possible predicates and their definitions is given below.

<table>
<thead>
<tr>
<th>Predicate</th>
<th>Definition</th>
<th>Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>commutative</td>
<td>A commutative expression. A commutative expression commutes with all other expressions under multiplication. If an expression (a) has (\text{commutative=True}) then (a * b == b * a) for any other expression (b) (even if (b) is not commutative). Unlike all other assumptions predicates commutative must always be (\text{True}) or (\text{False}) and can never be (\text{None}). Also unlike all other predicates commutative defaults to (\text{True}) in e.g. Symbol('x').</td>
<td></td>
</tr>
<tr>
<td>infinite</td>
<td>An infinite expression such as (\infty), (-\infty) or zoo. [infinite]</td>
<td>== !finite</td>
</tr>
<tr>
<td>finite</td>
<td>A finite expression. Any expression that is not infinite is considered finite. [finite]</td>
<td>== !infinite</td>
</tr>
<tr>
<td>hermitian</td>
<td>An element of the field of Hermitian operators. [antihermitian]</td>
<td></td>
</tr>
<tr>
<td>antihermitian</td>
<td>An element of the field of antihermitian operators. [antihermitian]</td>
<td></td>
</tr>
</tbody>
</table>

continues on next page
<table>
<thead>
<tr>
<th>Predicate</th>
<th>Definition</th>
<th>Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>complex</td>
<td>A complex number, ( z \in \mathbb{C} ). Any number of the form ( x + iy ) where ( x ) and ( y ) are real and ( i = \sqrt{-1} ). All complex numbers are finite. Includes all real numbers.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>( \rightarrow ) commutative</td>
</tr>
<tr>
<td></td>
<td></td>
<td>( \rightarrow ) finite</td>
</tr>
<tr>
<td>algebraic</td>
<td>An algebraic number, ( z \in \mathbb{Q} ). Any number that is a root of a non-zero polynomial ( p(z) \in \mathbb{Q}[z] ) having rational coefficients. All algebraic numbers are complex. An algebraic number may or may not be real. Includes all rational numbers.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>( \rightarrow ) complex</td>
</tr>
<tr>
<td>transcendental</td>
<td>A complex number that is not algebraic, ( z \in \mathbb{C} - \mathbb{Q} ). All transcendental numbers are complex. A transcendental number may or may not be real but can never be rational.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>( = (\text{complex} &amp; \neg \text{algebraic}) )</td>
</tr>
<tr>
<td>extended_real</td>
<td>An element of the extended real number line, ( x \in \mathbb{R} ) where ( \mathbb{R} = \mathbb{R} \cup {-\infty, +\infty} ). An extended_real number is either real or ( \pm\infty ). The relational operators (&lt;, \leq, \geq ) and ( &gt; ) are defined only for expressions that are extended_real.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>( \rightarrow ) commutative</td>
</tr>
<tr>
<td>real</td>
<td>A real number, ( x \in \mathbb{R} ). All real numbers are finite and complex (the set of reals is a subset of the set of complex numbers). Includes all rational numbers. A real number is either negative, zero or positive.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>( = (\text{extended_real} &amp; \text{finite}) )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>( = (\text{negative} \lor \text{zero} \lor \text{positive}) )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>( \rightarrow ) hermitian</td>
</tr>
<tr>
<td>imaginary</td>
<td>An imaginary number, ( z \in \mathbb{I} - {0} ). A number of the form ( z = yi ) where ( y ) is real, ( y \neq 0 ) and ( i = \sqrt{-1} ). All imaginary numbers are complex and not real. Note in particular that zero is not considered imaginary in SymPy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>( \rightarrow ) complex</td>
</tr>
<tr>
<td></td>
<td></td>
<td>( \rightarrow ) antihermitian</td>
</tr>
<tr>
<td></td>
<td></td>
<td>( \rightarrow \neg \text{extended_real} )</td>
</tr>
<tr>
<td>rational</td>
<td>A rational number, ( q \in \mathbb{Q} ). Any number of the form ( \frac{a}{b} ) where ( a ) and ( b ) are integers and ( b \neq 0 ). All rational numbers are real and algebraic. Includes all integer numbers.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>( \rightarrow ) real</td>
</tr>
<tr>
<td></td>
<td></td>
<td>( \rightarrow ) algebraic</td>
</tr>
<tr>
<td>irrational</td>
<td>A real number that is not rational, ( x \in \mathbb{R} - \mathbb{Q} ).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>( = (\text{real} &amp; \neg \text{rational}) )</td>
</tr>
<tr>
<td>Predicate</td>
<td>Definition</td>
<td>Implications</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------------------------------------------------------</td>
<td>------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>integer</td>
<td>An integer, ( a \in \mathbb{Z} ). All integers are rational. Includes zero and all prime, composite, even and odd numbers.</td>
<td>( \rightarrow ) rational</td>
</tr>
<tr>
<td>noninteger</td>
<td>An extended real number that is not an integer, ( x \in \mathbb{R} - \mathbb{Z} ).</td>
<td>( \equiv (\text{extended_real} &amp; \lnot \text{integer}) )</td>
</tr>
<tr>
<td>even</td>
<td>An even number, ( e \in {2k : k \in \mathbb{Z}} ). All even numbers are integer numbers. Includes zero.</td>
<td>( \text{parity} ) ( \rightarrow ) integer ( \rightarrow \lnot \text{odd} )</td>
</tr>
<tr>
<td>odd</td>
<td>An odd number, ( o \in {2k + 1 : k \in \mathbb{Z}} ). All odd numbers are integer numbers.</td>
<td>( \text{parity} ) ( \rightarrow ) integer ( \rightarrow \lnot \text{even} )</td>
</tr>
<tr>
<td>prime</td>
<td>A prime number, ( p \in \mathbb{P} ). All prime numbers are positive and integer.</td>
<td>( \rightarrow ) integer ( \rightarrow ) positive</td>
</tr>
<tr>
<td>composite</td>
<td>A composite number, ( c \in \mathbb{N} - (\mathbb{P} \cup {1}) ). A positive integer that is the product of two or more primes.</td>
<td>( \rightarrow ) (integer &amp; positive &amp; \lnot \text{prime}) ( \lor ) ( \text{composite} \rightarrow \lnot ) (positive ( \lor ) \lnot even ( \lor ) prime)</td>
</tr>
<tr>
<td>zero</td>
<td>The number 0. An expression with ( \text{zero=}\text{True} ) represents the number 0 which is an integer.</td>
<td>( \rightarrow ) even &amp; finite ( \equiv ) extended_nonnegative &amp; extended_nonpositive ( \equiv ) (nonnegative &amp; nonpositive)</td>
</tr>
<tr>
<td>nonzero</td>
<td>A nonzero real number, ( x \in \mathbb{R} - {0} ). A nonzero number is always real and can not be zero.</td>
<td>( \rightarrow ) real ( \equiv ) extended_nonzero &amp; finite</td>
</tr>
<tr>
<td>extended_nonzero</td>
<td>A member of the extended reals that is not zero, ( x \in \mathbb{R} - {0} ).</td>
<td>( \equiv ) extended_real &amp; \lnot zero</td>
</tr>
<tr>
<td>positive</td>
<td>A positive real number, ( x \in \mathbb{R}, x &gt; 0 ). All positive numbers are finite so ( \text{oo} ) is not positive.</td>
<td>( \equiv ) (nonnegative &amp; nonzero) ( \equiv ) (extended_positive &amp; finite)</td>
</tr>
</tbody>
</table>

Table 1 – continued from previous page

3.1. Assumptions
Table 1 – continued from previous page

<table>
<thead>
<tr>
<th>Predicate</th>
<th>Definition</th>
<th>Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>nonnegative</td>
<td>A nonnegative real number, $x \in \mathbb{R}, x \geq 0$. All nonnegative numbers are finite so $\infty$ is not nonnegative. [positive]</td>
<td>$\Rightarrow (\text{real} &amp; \neg \text{negative})$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\Rightarrow (\text{extended_nonnegative} &amp; \text{finite})$</td>
</tr>
<tr>
<td>negative</td>
<td>A negative real number, $x \in \mathbb{R}, x &lt; 0$. All negative numbers are finite so $-\infty$ is not negative. [negative]</td>
<td>$\Rightarrow (\neg \text{positive})$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\Rightarrow (\neg \text{extended_negative} &amp; \text{finite})$</td>
</tr>
<tr>
<td>nonpositive</td>
<td>A nonpositive real number, $x \in \mathbb{R}, x \leq 0$. All nonpositive numbers are finite so $-\infty$ is not nonpositive. [negative]</td>
<td>$\Rightarrow (\neg \text{positive})$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\Rightarrow (\neg \text{extended_nonpositive} &amp; \text{finite})$</td>
</tr>
<tr>
<td>extended_positive</td>
<td>A positive extended real number, $x \in \mathbb{R}, x &gt; 0$. An extended_positive number is either positive or $\infty$. [extended_real]</td>
<td>$\Rightarrow (\text{extended_nonnegative} &amp; \text{extended_nonzero})$</td>
</tr>
<tr>
<td>extended_nonnegative</td>
<td>A nonnegative extended real number; $x \in \mathbb{R}, x \geq 0$. An extended_nonnegative number is either nonnegative or $\infty$. [extended_real]</td>
<td>$\Rightarrow (\text{extended_real} &amp; \neg \text{extended_negative})$</td>
</tr>
<tr>
<td>extended_negative</td>
<td>A negative extended real number; $x \in \mathbb{R}, x &lt; 0$. An extended_negative number is either negative or $-\infty$. [extended_real]</td>
<td>$\Rightarrow (\text{extended_nonpositive} &amp; \text{extended_nonzero})$</td>
</tr>
<tr>
<td>extended_nonpositive</td>
<td>A nonpositive extended real number; $x \in \mathbb{R}, x \leq 0$. An extended_nonpositive number is either nonpositive or $-\infty$. [extended_real]</td>
<td>$\Rightarrow (\text{extended_real} &amp; \neg \text{extended_positive})$</td>
</tr>
</tbody>
</table>

References for the above definitions

3.1.5 Implications

The assumptions system uses the inference rules to infer new predicates beyond those immediately specified when creating a symbol:

```python
>>> x = Symbol('x', real=True, negative=False, zero=False)
>>> x.is_positive
True
```

Although $x$ was not explicitly declared positive it can be inferred from the predicates that were given explicitly. Specifically one of the inference rules is real $\Rightarrow$ negative | zero | positive so if real is True and both negative and zero are False then positive must be True.
In practice the assumption inference rules mean that it is not necessary to include redundant predicates for example a positive real number can be simply be declared as positive:

```python
>>> x1 = Symbol('x1', positive=True, real=True)
>>> x2 = Symbol('x2', positive=True)
>>> x1.is_real
True
>>> x2.is_real
True
>>> x1.assumptions0 == x2.assumptions0
True
```

Combining predicates that are inconsistent will give an error:

```python
>>> x = Symbol('x', commutative=False, real=True)
Traceback (most recent call last):
...
InconsistentAssumptions: {
 algebraic: False,
 commutative: False,
 complex: False,
 composite: False,
 even: False,
 extended_negative: False,
 extended_nonnegative: False,
 extended_nonpositive: False,
 extended_nonzero: False,
 extended_positive: False,
 extended_real: False,
 imaginary: False,
 integer: False,
 irrational: False,
 negative: False,
 noninteger: False,
 nonnegative: False,
 nonpositive: False,
 nonzero: False,
 odd: False,
 positive: False,
 prime: False,
 rational: False,
 real: False,
 transcendental: False,
 zero: False}, real=True
```
3.1.6 Interpretation of the predicates

Although the predicates are defined in the table above it is worth taking some time to think about how to interpret them. Firstly many of the concepts referred to by the predicate names like “zero”, “prime”, “rational” etc have a basic meaning in mathematics but can also have more general meanings. For example when dealing with matrices a matrix of all zeros might be referred to as “zero”. The predicates in the assumptions system do not allow any generalizations such as this. The predicate zero is strictly reserved for the plain number 0. Instead matrices have an is_zero_matrix() (page 1390) property for this purpose (although that property is not strictly part of the assumptions system):

```python
>>> from sympy import Matrix
>>> M = Matrix([[0, 0], [0, 0]])
>>> M.is_zero
False
>>> M.is_zero_matrix
True
```

Similarly there are generalisations of the integers such as the Gaussian integers which have a different notion of prime number. The prime predicate in the assumptions system does not include those and strictly refers only to the standard prime numbers $\mathbb{P} = \{2, 3, 5, 7, 11, \ldots\}$. Likewise integer only means the standard concept of the integers $\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}$, rational only means the standard concept of the rational numbers $\mathbb{Q}$ and so on.

The predicates set up schemes of subsets such as the chain beginning with the complex numbers which are considered as a superset of the reals which are in turn a superset of the rationals and so on. The chain of subsets

$$Z \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$$

corresponds to the chain of implications in the assumptions system

| integer -> rational -> real -> complex |

A “vanilla” symbol with no assumptions explicitly attached is not known to belong to any of these sets and is not even known to be finite:

```python
>>> x = Symbol('x')
>>> x.assumptions0
{'commutative': True}
>>> print(x.is_commutative)
True
>>> print(x.is_rational)
None
>>> print(x.is_complex)
None
>>> print(x.is_real)
None
>>> print(x.is_integer)
None
>>> print(x.is_finite)
None
```

It is hard for SymPy to know what it can do with such a symbol that is not even known to be finite or complex so it is generally better to give some assumptions to the symbol explicitly.
Many parts of SymPy will implicitly treat such a symbol as complex and in some cases SymPy will permit manipulations that would not strictly be valid given that \( x \) is not known to be finite. In a formal sense though very little is known about a vanilla symbol which makes manipulations involving it difficult.

Defining *something* about a symbol can make a big difference. For example if we declare the symbol to be an integer then this implies a suite of other predicates that will help in further manipulations:

```python
>>> n = Symbol('n', integer=True)
>>> n.assumptions0
{'algebraic': True,
 'commutative': True,
 'complex': True,
 'extended_real': True,
 'finite': True,
 'hermitian': True,
 'imaginary': False,
 'infinite': False,
 'integer': True,
 'irrational': False,
 'noninteger': False,
 'rational': True,
 'real': True,
 'transcendental': False}
```

These assumptions can lead to very significant simplifications e.g. \( \text{integer}=\text{True} \) gives:

```python
>>> from sympy import sin, pi
>>> n1 = Symbol('n1')
>>> n2 = Symbol('n2', integer=True)
>>> sin(n1 * pi)
sin(pi*n1)
>>> sin(n2 * pi)
0
```

Replacing a whole expression with 0 is about as good as simplification can get!

It is normally advisable to set as many assumptions as possible on any symbols so that expressions can be simplified as much as possible. A common misunderstanding leads to defining a symbol with a False predicate e.g.:

```python
>>> x = Symbol('x', negative=False)
>>> print(x.is_negative)
False
>>> print(x.is_nonnegative)
None
>>> print(x.is_real)
None
>>> print(x.is_complex)
None
>>> print(x.is_finite)
None
```

If the intention is to say that \( x \) is a real number that is not positive then that needs to be explicitly stated. In the context that the symbol is known to be real, the predicate \( \text{positive}=\text{False} \)
becomes much more meaningful:

```python
>>> x = Symbol('x', real=True, negative=False)
>>> print(x.is_negative)
False
>>> print(x.is_nonnegative)
True
>>> print(x.is_real)
True
>>> print(x.is_complex)
True
>>> print(x.is_finite)
True
```

A symbol declared as `Symbol('x', real=True, negative=False)` is equivalent to a symbol declared as `Symbol('x', nonnegative=True)`. Simply declaring a symbol as `Symbol('x', positive=False)` does not allow the assumptions system to conclude much about it because a vanilla symbol is not known to be finite or even complex.

A related confusion arises with `Symbol('x', complex=True)` and `Symbol('x', real=False)`. Often when either of these is used neither is what is actually wanted. The first thing to understand is that all real numbers are complex so a symbol created with `real=True` will also have `complex=True` and a symbol created with `complex=True` will not have `real=True`. If the intention was to create a complex number that is not a real number then it should be `Symbol('x', complex=True, real=False)`. On the other hand declaring `real=False` alone is not sufficient to conclude that `complex=True` because knowing that it is not a real number does not tell us whether it is finite or whether or not it is some completely different kind of object from a complex number.

A vanilla symbol is defined by not knowing whether it is finite etc but there is no clear definition of what it should actually represent. It is tempting to think of it as an “arbitrary complex number or possibly one of the infinities” but there is no way to query an arbitrary (non-symbol) expression in order to determine if it meets those criteria. It is important to bear in mind that within the SymPy codebase and potentially in downstream libraries many other kinds of mathematical objects can be found that might also have `commutative=True` while being something very different from an ordinary number (in this context even SymPy’s standard infinities are considered “ordinary”).

The only predicate that is applied by default for a symbol is commutative. We can also declare a symbol to be noncommutative e.g.:

```python
>>> x, y = symbols('x, y', commutative=False)
>>> z = Symbol('z') # defaults to commutative=True
>>> x*y + y*x
x*y + y*x
>>> x*z + z*x
2*z*x
```

Note here that since `x` and `y` are both noncommutative `x` and `y` do not commute so `x*y != y*x`. On the other hand since `z` is commutative `x` and `z` commute and `x*z == z*x` even though `x` is noncommutative.

The interpretation of what a vanilla symbol represents is unclear but the interpretation of an expression with `commutative=False` is entirely obscure. Such an expression is necessarily not a complex number or an extended real or any of the standard infinities (even `zoo` is commutative). We are left with very little that we can say about what such an expression *does*
represent.

### 3.1.7 Other is_* properties

There are many properties and attributes in SymPy that have names beginning with `is_` that look similar to the properties used in the (old) assumptions system but are not in fact part of the assumptions system. Some of these have a similar meaning and usage as those of the assumptions system such as the `is_zero_matrix()` (page 1390) property shown above. Another example is the `is_empty` property of sets:

```python
>>> from sympy import FiniteSet, Intersection
>>> S1 = FiniteSet(1, 2)
>>> print(S1.is_empty)
False
>>> S2 = Intersection(FiniteSet(1), FiniteSet(Symbol('x')))
>>> print(S2.is_empty)
None
```

The `is_empty` property gives a fuzzy-bool indicating whether or not a `Set` (page 1229) is the empty set. In the example of `S2` it is not possible to know whether or not the set is empty without knowing whether or not `x` is equal to `1` so `S2.is_empty` gives `None`. The `is_empty` property for sets plays a similar role to the `is_zero` property for numbers in the assumptions system: `is_empty` is normally only `True` for the `EmptySet` (page 1245) object but it is still useful to be able to distinguish between the cases where `is_empty=False` and `is_empty=None`.

Although `is_zero_matrix` and `is_empty` are used for similar purposes to the assumptions properties such as `is_zero` they are not part of the (old) assumptions system. There are no associated inference rules connecting e.g. `Set.is_empty` and `Set.is_finite_set` because the inference rules are part of the (old) assumptions system which only deals with the predicates listed in the table above. It is not possible to declare a `MatrixSymbol` (page 1417) with e.g. `zero_matrix=False` and there is no `SetSymbol` class but if there was it would not have a system for understanding predicates like `empty=False`.

The properties `is_zero_matrix()` (page 1390) and `is_empty` are similar to those of the assumptions system because they concern *semantic* aspects of an expression. There are a large number of other properties that focus on *structural* aspects such as `is_Number`, `is_number()` (page 1019), `is_comparable()` (page 987). Since these properties refer to structural aspects of an expression they will always give `True` or `False` rather than a fuzzy bool that also has the possibility of being `None`. Capitalised properties such as `is_Number` are usually shorthand for `isinstance` checks e.g.:

```python
>>> from sympy import Number, Rational
>>> x = Rational(1, 2)
>>> isinstance(x, Number)
True
>>> x.is_Number
True
>>> y = Symbol('y', rational=True)
>>> isinstance(y, Number)
```

(continues on next page)
The `Number` (page 1033) class is the superclass for `Integer` (page 1038), `Rational` (page 1036) and `Float` (page 1033) so any instance of `Number` (page 1033) represents a concrete number with a known value. A symbol such as `y` that is declared with `rational=True` might represent the same value as `x` but it is not a concrete number with a known value so this is a structural rather than a semantic distinction. Properties like `is_Number` are sometimes used in SymPy in place of e.g. `isinstance(obj, Number)` because they do not have problems with circular imports and checking `x.is_Number` can be faster than a call to `isinstance`.

The `is_number` (page 1019) (lower-case) property is very different from `is_Number`. The `is_number` property is `True` for any expression that can be numerically evaluated to a floating point complex number with `evalf` (page 1111):

```python
>>> from sympy import I
>>> expr1 = I + sqrt(2)
>>> expr1
sqrt(2) + I
>>> expr1.is_number
True
>>> expr1.evalf()
1.4142135623731 + 1.0*I
>>> x = Symbol('x')
>>> expr2 = 1 + x
>>> expr2
x + 1
>>> expr2.is_number
False
>>> expr2.evalf()
x + 1.0
```

The primary reason for checking `expr.is_number` is to predict whether a call to `evalf` (page 1111) will fully evaluate. The `is_comparable()` (page 987) property is similar to `is_number()` (page 1019) except that if `is_comparable` gives `True` then the expression is guaranteed to numerically evaluate to a `real Float` (page 1033). When `a.is_comparable` and `b.is_comparable` the inequality `a < b` should be resolvable as something like `a.evalf() < b.evalf()`.

The full set of `is_*` properties, attributes and methods in SymPy is large. It is important to be clear though that only those that are listed in the table of predicates above are actually part of the assumptions system. It is only those properties that are involved in the `mechanism` that implements the assumptions system which is explained below.
3.1.8 Implementing assumptions handlers

We will now work through an example of how to implement a SymPy symbolic function so that we can see how the old assumptions are used internally. SymPy already has an exp function which is defined for all complex numbers but we will define an expreal function which is restricted to real arguments.

```python
>>> from sympy import Function
>>> from sympy.core.logic import fuzzy_and, fuzzy_or

>>> class expreal(Function): # exponentail function E**x restricted to the extended reals
...
... is_extended_nonnegative = True
...
... @classmethod
... def eval(cls, x):
... # Validate the argument
... if x.is_extended_real is False:
... raise ValueError("non-real argument to expreal")
... # Evaluate for special values
... if x.is_zero:
... return S.One
... elif x.is_infinite:
... if x.is_extended_negative:
... return S.Zero
... elif x.is_extended_positive:
... return S.Infinity
...
... @property
... def x(self):
... return self.args[0]
...
... def _eval_is_finite(self):
... return fuzzy_or([self.x.is_real, self.x.is_extended_nonpositive])
...
... def _eval_is_algebraic(self):
... if fuzzy_and([self.x.is_rational, self.x.is_nonzero]):
... return False
...
... def _eval_is_integer(self):
... if self.x.is_zero:
... return True
...
... def _eval_is_zero(self):
... return fuzzy_and([self.x.is_infinite, self.x.is_extended_negative])
```

The `Function.eval` method is used to pick up on special values of the function so that we can return a different object if it would be a simplification. When `expreal(x)` is called the `expreal.__new__` class method (defined in the superclass `Function`) will call `expreal.eval(x)`. If `expreal.eval` returns something other than `None` then that will be returned instead of an unevaluated `expreal(x)`: 

3.1. Assumptions 87
>>> from sympy import oo
>>> expreal(1)
expreal(1)
>>> expreal(0)
1
>>> expreal(-oo)
0
>>> expreal(oo)
oo

Note that the `expreal.eval` method does not compare the argument using `==`. The special values are verified using the assumptions system to query the properties of the argument. That means that the `expreal` method can also evaluate for different forms of expression that have matching properties e.g.

```python
>>> x = Symbol('x', extended_negative=True, infinite=True)
>>> x
x
>>> expreal(x)
0
```

Of course the assumptions system can only resolve a limited number of special values so most `eval` methods will also check against some special values with `==` but it is preferable to check e.g. `x.is_zero` rather than `x==0`.

Note also that the `expreal.eval` method validates that the argument is real. We want to allow ±∞ as arguments to `expreal` so we check for `extended_real` rather than `real`. If the argument is not extended real then we raise an error:

```python
>>> expreal(I)
Traceback (most recent call last):
...
ValueError: non-real argument to expreal
```

Importantly we check `x.is_extended_real is False` rather than not `x.is_extended_real` which means that we only reject the argument if it is definitely not extended real: if `x.is_extended_real` gives `None` then the argument will not be rejected. The first reason for allowing `x.is_extended_real=None` is so that a vanilla symbol can be used with `expreal`. The second reason is that an assumptions query can always give `None` even in cases where an argument is definitely real e.g.:

```python
>>> x = Symbol('x')
>>> print(x.is_extended_real)
None
>>> expreal(x)
expreal(x)
>>> expr = (1 + I)/sqrt(2) + (1 - I)/sqrt(2)
>>> print(expr.is_extended_real)
None
>>> expr.expand()
sqrt(2)
>>> expr.expand().is_extended_real
True

(continues on next page)
Validating the argument in `expreal.eval` does mean that it will not be validated when `evaluate=False` is passed but there is not really a better place to perform the validation:

```python
>>> expreal(I, evaluate=False)
expreal(I)
```

The `extended_nonnegative` class attribute and the `_eval_is_*` methods on the `expreal` class implement queries in the assumptions system for instances of `expreal`:

```python
>>> expreal(2)
expreal(2)
>>> expreal(2).is_finite
True
>>> expreal(2).is_integer
False
>>> expreal(2).is_rational
False
>>> expreal(2).is_algebraic
False
>>> z = expreal(-oo, evaluate=False)
>>> z
expreal(-oo)
>>> z.is_integer
True
>>> x = Symbol('x', real=True)
>>> expreal(x)
expreal(x)
>>> expreal(x).is_nonnegative
True
```

The assumptions system resolves queries like `expreal(2).is_finite` using the corresponding handler `expreal._eval_is_finite` and also the implication rules. For example it is known that `expreal(2).is_rational` is `False` because `expreal(2)._eval_is_algebraic` returns `False` and there is an implication rule `rational -> algebraic`. This means that an `is_rational` query can be resolved in this case by the `_eval_is_algebraic` handler. It is actually better not to implement assumptions handlers for every possible predicate but rather to try and identify a minimal set of handlers that can resolve as many queries as possible with as few checks as possible.

Another point to note is that the `_eval_is_*` methods only make assumptions queries on the argument `x` and do not make any assumptions queries on `self`. Recursive assumptions queries on the same object will interfere with the assumptions implications resolver potentially leading to non-deterministic behaviour so they should not be used (there are examples of this in the SymPy codebase but they should be removed).

Many of the `expreal` methods implicitly return `None`. This is a common pattern in the assumptions system. The `eval` method and the `_eval_is_*` methods can all return `None` and often will. A Python function that ends without reaching a `return` statement will implicitly return `None`. We take advantage of this by leaving out many of the `else` clauses from the `if` statements and allowing `None` to be returned implicitly. When following the control flow of these methods it is important to bear in mind firstly that any queried property can give `True`,

3.1. Assumptions
False or None and also that any function will implicitly return None if all of the conditionals fail.

3.1.9 Mechanism of the assumptions system

Note: This section describes internal details that could change in a future SymPy version.

This section will explain the inner workings of the assumptions system. It is important to understand that these inner workings are implementation details and could change from one SymPy version to another. This explanation is written as of SymPy 1.7. Although the (old) assumptions system has many limitations (discussed in the next section) it is a mature system that is used extensively in SymPy and has been well optimised for its current usage. The assumptions system is used implicitly in most SymPy operations to control evaluation of elementary expressions.

There are several stages in the implementation of the assumptions system within a SymPy process that lead up to the evaluation of a single query in the assumptions system. Briefly these are:

1. At import time the assumptions rules defined in `sympy/core/assumptions.py` are processed into a canonical form ready for efficiently applying the implication rules. This happens once when SymPy is imported before even the `Basic` class is defined.

2. The `Basic.__init_subclass__` method will post-process every `Basic` subclass to add the relevant properties needed for assumptions queries. This also adds the `default_assumptions` attribute to the class. This happens each time a `Basic` subclass is defined (when its containing module is imported).

3. Every `Basic` instance initially uses the `default_assumptions` class attribute. When an assumptions query is made on a `Basic` instance in the first instance the query will be answered from the `default_assumptions` for the class.

4. If there is no cached value for the assumptions query in the `default_assumptions` for the class then the default assumptions will be copied to make an assumptions cache for the instance. Then the `_ask()` function is called to resolve the query which will firstly call the relevant instance handler `_eval_is` method. If the handler returns non-None then the result will be cached and returned.

5. If the handler does not exist or gives None then the implications resolver is tried. This will enumerate (in a randomised order) all possible combinations of predicates that could potentially be used to resolve the query under the implication rules. In each case the handler `_eval_is` method will be called to see if it gives non-None. If any combination of handlers and implication rules leads to a definitive result for the query then that result is cached in the instance cache and returned.

6. Finally if the implications resolver failed to resolve the query then the query is considered unresolvable. The value of None for the query is cached in the instance cache and returned.

The assumptions rules defined in `sympy/core/assumptions.py` are given in forms like `real == negative | zero | positive`. When this module is imported these are converted into a `FactRules` instance called `_assume_rules`. This preprocesses the implication rules into the form of "A" and "B" rules that can be used for the implications resolver. This is explained in
the code in sympy/core/facts.py. We can access this internal object directly like (full output omitted):

```python
>>> from sympy.core.assumptions import _assume_rules
>>> _assume_rules.defined_facts
{'algebraic',
 'antihermitian',
 'commutative',
 'complex',
 'composite',
 'even',
 ...

>>> _assume_rules.full_implications
defaultdict(set,
    {('extended_positive', False): {('composite', False),
      ('positive', False),
      ('prime', False)},
     ('finite', False): {('algebraic', False),
      ('complex', False),
      ('composite', False),
      ...

The Basic.__init_subclass__ method will inspect the attributes of each Basic class to see if any assumptions related attributes are defined. An example of these is the `is_extended_nonnegative = True` attribute defined in the `expreal` class. The implications of any such attributes will be used to precompute any statically knowable assumptions. For example `is_extended_nonnegative=True` implies `real=True` etc. A StdFactKB instance is created for the class which stores those assumptions whose values are known at this stage. The StdFactKB instance is assigned as the class attribute `default_assumptions`. We can see this with

```python
>>> from sympy import Expr
...
>>> class A(Expr):
 ...
 is_positive = True
 ...
 ...
 def _eval_is_rational(self):
 ...
 # Let's print something to see when this method is called...
 ...
 print('!!! calling _eval_is_rational')
 ...
 return True
 ...

>>> A.is_positive
True
>>> A.is_real # inferred from is_positive
True
```

Although only `is_positive` was defined in the class `A` it also has attributes such as `is_real` which are inferred from `is_positive`. The set of all such assumptions for class `A` can be seen in `default_assumptions` which looks like a dict but is in fact a StdFactKB instance:

```python
>>> type(A.default_assumptions)
<class 'sympy.core.assumptions.StdFactKB'>
>>> A.default_assumptions
{'commutative': True,
 (continues on next page)}
When an instance of any `Basic` (page 979) subclass is created, `Basic.__new__` will assign its `_assumptions` attribute, which will initially be a reference to `cls.default_assumptions` shared amongst all instances of the same class. The instance will use this to resolve any assumptions queries until that fails to give a definitive result at which point a copy of `cls.default_assumptions` will be created and assigned to the instance’s `_assumptions` attribute. The copy will be used as a cache to store any results computed for the instance by its `_eval_is_` handlers.

When the `_assumptions` attribute fails to give the relevant result it is time to call the `_eval_is_` handlers. At this point the `_ask()` function is called. The `_ask()` function will initially try to resolve a query such as `is_rational` by calling the corresponding method i.e. `_eval_is_rational`. If that gives non-None then the result is stored in `_assumptions` and any implications of that result are computed and stored as well. At that point the query is resolved and the value returned.

```python
>>> a = A()
>>> a._assumptions is A.default_assumptions
True
>>> a.is_rational
!!! calling _eval_is_rational
True
>>> a._assumptions is A.default_assumptions
False
>>> a._assumptions  # rational now shows as True
{'algebraic': True,
 'commutative': True,
 'complex': True,
 'extended_negative': False,
 'extended_nonnegative': True,
 'extended_nonpositive': False,
 'extended_nonzero': True,
 'extended_positive': True,
 'extended_real': True,
 'finite': True,
 'hermitian': True,
 'imaginary': False,
 'infinite': False,
 'negative': False,
 'nonnegative': True,
 'nonpositive': False,
 'nonzero': True,
 'positive': True,
 'real': True,
 'zero': False}
```
If e.g. `_eval_is_rational` does not exist or gives `None` then `_ask()` will try all possibilities to use the implication rules and any other handler methods such as `_eval_is_integer`, `_eval_is_algebraic` etc that might possibly be able to give an answer to the original query. If any method leads to a definite result being known for the original query then that is returned. Otherwise once all possibilities for using a handler and the implication rules to resolve the query are exhausted `None` will be cached and returned.

```python
>>> b = A()
>>> b.is_algebraic  # called _eval_is_rational indirectly
!!! calling _eval_is_rational
True
>>> c = A()
>>> print(c.is_prime)  # called _eval_is_rational indirectly
!!! calling _eval_is_rational
None
>>> c.assumptions  # prime now shows as None
```
Note: In the ask() function the handlers are called in a randomised order which can mean that execution at this point is non-deterministic. Provided all of the different handler methods are consistent (i.e. there are no bugs) then the end result will still be deterministic. However a bug where two handlers are inconsistent can manifest in non-deterministic behaviour because this randomisation might lead to the handlers being called in different orders when the same program is run multiple times.

3.1.10 Limitations

Combining predicates with or

In the old assumptions we can easily combine predicates with and when creating a Symbol e.g.:

```python
>>> x = Symbol('x', integer=True, positive=True)
>>> x.is_positive
True
>>> x.is_integer
True
```

We can also easily query whether two conditions are jointly satisfied with

```python
>>> fuzzy_and([x.is_positive, x.is_integer])
True
>>> x.is_positive and x.is_integer
True
```

However there is no way in the old assumptions to create a Symbol (page 1028) with assumptions predicates combined with or. For example if we wanted to say that “x is positive or x is an integer” then it is not possible to create a Symbol (page 1028) with those assumptions.

It is also not possible to ask an assumptions query based on or e.g. “is expr an expression that is positive or an integer”. We can use e.g.

```python
>>> fuzzy_or([x.is_positive, x.is_integer])
True
```

However if all that is known about x is that it is possibly positive or otherwise a negative integer then both queries x.is_positive and x.is_integer will resolve to None. That means that the query becomes

```python
>>> fuzzy_or([None, None])
```

which then also gives None.
Relations between different symbols

A fundamental limitation of the old assumptions system is that all explicit assumptions are properties of an individual symbol. There is no way in this system to make an assumption about the relationship between two symbols. One of the most common requests is the ability to assume something like \(x < y \) but there is no way to even specify that in the old assumptions.

The new assumptions have the theoretical capability that relational assumptions can be specified. However, the algorithms to make use of that information are not yet implemented and the exact API for specifying relational assumptions has not been decided upon.

3.2 Symbolic and fuzzy booleans

This page describes what a symbolic Boolean (page 1207) in SymPy is and also how that relates to three-valued fuzzy-bools that are used in many parts of SymPy. It also discusses some common problems that arise when writing code that uses three-valued logic and how to handle them correctly.

3.2.1 Symbolic Boolean vs three valued bool

Assumptions queries like \(\text{x.ispositive} \) give fuzzy-bool True, False or None results\(^1\). These are low-level Python objects rather than SymPy’s symbolic Boolean (page 1207) expressions.

\[
\begin{align*}
>>> & \text{from sympy import Symbol, symbols} \\
& \text{xpos = Symbol('xpos', positive=True)} \\
& \text{xneg = Symbol('xneg', negative=True)} \\
& \text{x = Symbol('x')} \\
& \text{print(xpos.is_positive)} \\
& \text{True} \\
& \text{print(xneg.is_positive)} \\
& \text{False} \\
& \text{print(x.is_positive)} \\
& \text{None}
\end{align*}
\]

A None result as a fuzzy-bool should be interpreted as meaning “maybe” or “unknown”.

An example of a symbolic Boolean (page 1207) class in SymPy can be found when using inequalities. When an inequality is not known to be true or false a Boolean (page 1207) can represent indeterminate results symbolically:

\[
\begin{align*}
>>> & \text{xpos > 0} \\
& \text{True} \\
& \text{xneg > 0} \\
& \text{False} \\
& \text{x > 0} \\
& \text{x > 0} \\
& \text{type(x > 0)} \\
& \text{<class 'sympy.core.relational.StrictGreaterThan'>}
\end{align*}
\]

\(^1\) Note that what is referred to in SymPy as a “fuzzy bool” is really about using three-valued logic. In normal usage “fuzzy logic” refers to a system where logical values are continuous in between zero and one which is something different from three-valued logic.
The last example shows what happens when an inequality is indeterminate: we get an instance of `StrictGreaterThan` (page 1079) which represents the inequality as a symbolic expression. Internally when attempting to evaluate an inequality like \(a > b \) SymPy will compute \((a - b)\).\text{is\,extended\,positive}. If the result is True or False then SymPy’s symbolic \(S.true \) or \(S.false \) will be returned. If the result is None then an unevaluated `StrictGreaterThan` (page 1079) is returned as shown for \(x > 0 \) above.

It is not obvious that queries like `xpos > 0` return `S.true` rather than `True` because both objects display in the same way but we can check this using the Python `is` operator:

```python
>>> from sympy import S
>>> xpos.is_positive is True
True
>>> xpos.is_positive is S.true
False
>>> (xpos > 0) is True
False
>>> (xpos > 0) is S.true
True
```

There is no general symbolic analogue of None in SymPy. In the cases where a low-level assumptions query gives None the symbolic query will result in an unevaluated symbolic `Boolean` (page 1207) (e.g, \(x > 0 \)). We can use a symbolic `Boolean` (page 1207) as part of a symbolic expression such as a `Piecewise` (page 472):

```python
>>> from sympy import Piecewise
>>> p = Piecewise((1, x > 0), (2, True))
>>> p
Piecewise((1, x > 0), (2, True))
>>> p.subs(x, 3)
1
```

Here \(p \) represents an expression that will be equal to 1 if \(x > 0 \) or otherwise it will be equal to 2. The unevaluated `Boolean` (page 1207) inequality \(x > 0 \) represents the condition for deciding the value of the expression symbolically. When we substitute a value for \(x \) the inequality will resolve to \(S.true \) and then the `Piecewise` (page 472) can evaluate to 1 or 2.

The same will not work when using a fuzzy-bool instead of a symbolic `Boolean` (page 1207):

```python
>>> p2 = Piecewise((1, x.is_positive), (2, True))
Traceback (most recent call last):
...
TypeError: Second argument must be a Boolean, not `NoneType`
```

The `Piecewise` (page 472) cannot use None as the condition because unlike the inequality \(x > 0 \) it gives no information. With the inequality it is possible to decide in future if the condition might True or False once a value for \(x \) is known. A value of None can not be used in that way so it is rejected.

Note: We can use True in the `Piecewise` (page 472) because True sympifies to \(S.true \). Sympifying None just gives None again which is not a valid symbolic SymPy object.

There are many other symbolic `Boolean` (page 1207) types in SymPy. The same considerations about the differences between fuzzy bool and symbolic `Boolean` (page 1207) apply to all other
SymPy Boolean types. To give a different example there is Contains (page 1258) which represents the statement that an object is contained in a set:

```
>>> from sympy import Reals, Contains
>>> x = Symbol('x', real=True)
>>> y = Symbol('y')
>>> Contains(x, Reals)
True
>>> Contains(y, Reals)
Contains(y, Reals)
>>> Contains(y, Reals).subs(y, 1)
True
```

The Python operator corresponding to Contains (page 1258) is `in`. A quirk of `in` is that it can only evaluate to a bool (True or False) so if the result is indeterminate then an exception will be raised:

```
>>> from sympy import I
>>> 2 in Reals
True
>>> I in Reals
False
>>> x in Reals
True
>>> y in Reals
Traceback (most recent call last):
  ...
TypeError: did not evaluate to a bool: (-oo < y) & (y < oo)
```

The exception can be avoided by using `Contains(x, Reals)` or `Reals.contains(x)` rather than `x in Reals`.

3.2.2 Three-valued logic with fuzzy bools

Whether we use the fuzzy-bool or symbolic Boolean (page 1207) we always need to be aware of the possibility that a query might be indeterminate. How to write code that handles this is different in the two cases though. We will look at fuzzy-bools first.

Consider the following function:

```
>>> def both_positive(a, b):
...     """ask whether a and b are both positive""
...     if a.is_positive and b.is_positive:
...         return True
...     else:
...         return False
```

The `both_positive` function is supposed to tell us whether or not `a` and `b` are both positive. However the `both_positive` function will fail if either of the `is_positive` queries gives `None`:

```
>>> print(both_positive(S(1), S(1)))
True
>>> print(both_positive(S(1), S(-1)))
```

(continues on next page)
>>> print(both_positive(S(-1), S(-1)))
False
>>> x = Symbol('x') # may or may not be positive
>>> print(both_positive(S(1), x))
False

Note: We need to sympify the arguments to this function using S because the assumptions are only defined on SymPy objects and not regular Python int objects.

Here False is incorrect because it is possible that x is positive in which case both arguments would be positive. We get False here because x.is_positive gives None and Python will treat None as “falsey”.

In order to handle all possible cases correctly we need to separate the logic for identifying the True and False cases. An improved function might be:

```python
>>> def both_positive_better(a, b):
...     """ask whether a and b are both positive""
...     if a.is_positive is False or b.is_positive is False:
...         return False
...     elif a.is_positive is True and b.is_positive is True:
...         return True
...     else:
...         return None

This function now can handle all cases of True, False or None for both a and b and will always return a fuzzy bool representing whether the statement “a and b are both positive” is true, false or unknown:

```python
>>> print(both_positive_better(S(1), S(1)))
True
>>> print(both_positive_better(S(1), S(-1)))
False
>>> x = Symbol('x')
>>> y = Symbol('y', positive=True)
>>> print(both_positive_better(S(1), x))
None
>>> print(both_positive_better(S(-1), x))
False
>>> print(both_positive_better(S(1), y))
True
```

Another case that we need to be careful of when using fuzzy-bools is negation with Python’s not operator e.g.:

```python
>>> x = Symbol('x')
>>> print(x.is_positive)
None
>>> not x.is_positive
True
```
The correct negation of a fuzzy bool None is None again. If we do not know whether the statement “x is positive” is True or False then we also do not know whether its negation “x is not positive” is True or False. The reason we get True instead is again because None is considered “falsey”. When None is used with a logical operator such as not it will first be converted to a bool and then negated:

```python
>>> bool(None)
False
>>> not bool(None)
True
>>> not None
True
```

The fact that None is treated as falsey can be useful if used correctly. For example we may want to do something only if x is known to positive in which case we can do:

```python
>>> x = Symbol('x', positive=True)
>>> if x.is_positive:
... print("x is definitely positive")
... else:
... print("x may or may not be positive")
x is definitely positive
```

Provided we understand that an alternate condition branch refers to two cases (False and None) then this can be a useful way of writing conditionals. When we really do need to distinguish all cases then we need to use things like x.is_positive is False. What we need to be careful of though is using Python’s binary logic operators like not or and with fuzzy bools as they will not handle the indeterminate case correctly.

In fact SymPy has internal functions that are designed to handle fuzzy-bools correctly:

```python
>>> from sympy.core.logic import fuzzy_not, fuzzy_and
>>> print(fuzzy_not(True))
False
>>> print(fuzzy_not(False))
True
>>> print(fuzzy_not(None))
None
>>> print(fuzzy_and([True, True]))
True
>>> print(fuzzy_and([True, None]))
None
>>> print(fuzzy_and([False, None]))
False
```

Using the fuzzy_and function we can write the both_positive function more simply:

```python
>>> def both_positive_best(a, b):
... """ask whether a and b are both positive""
... return fuzzy_and([a.is_positive, b.is_positive])
```

Making use of fuzzy_and, fuzzy_or and fuzzy_not leads to simpler code and can also reduce the chance of introducing a logic error because the code can look more like it would in the case of ordinary binary logic.
3.2.3 Three-valued logic with symbolic Booleans

When working with symbolic Boolean (page 1207) rather than fuzzy-bool the issue of None silently being treated as falsey does not arise so it is easier not to end up with a logic error. However instead the indeterminate case will often lead to an exception being raised if not handled carefully.

We will try to implement the both_positive function this time using symbolic Boolean (page 1207):

```python
>>> def both_positive(a, b):
...
... """ask whether a and b are both positive""
...
... if a > 0 and b > 0:
... return S.true
...
... else:
... return S.false

The first difference is that we return the symbolic Boolean (page 1207) objects S.true and S.false rather than True and False. The second difference is that we test e.g. a > 0 rather than a.is_positive. Trying this out we get

```python
>>> both_positive(1, 2)
True
>>> both_positive(-1, 1)
False
>>> x = Symbol('x')  # may or may not be positive
>>> both_positive(x, 1)
Traceback (most recent call last):
...
TypeError: cannot determine truth value of Relational
```

What happens now is that testing x > 0 gives an exception when x is not known to be positive or not positive. More precisely x > 0 does not give an exception but if x > 0 does and that is because the if statement implicitly calls bool(x > 0) which raises.

```python
>>> x > 0
x > 0
>>> bool(x > 0)
Traceback (most recent call last):
...
TypeError: cannot determine truth value of Relational
>>> if x > 0:
...
print("x is positive")
Traceback (most recent call last):
...
TypeError: cannot determine truth value of Relational
```

The Python expression x > 0 creates a SymPy Boolean (page 1207). Since in this case the Boolean (page 1207) can not evaluate to True or False we get an unevaluated StrictGreaterThan (page 1079). Attempting to force that into a bool with bool(x > 0) raises an exception. That is because a regular Python bool must be either True or False and neither of those are known to be correct in this case.

The same kind of issue arises when using and, or or not with symbolic Boolean (page 1207). The solution is to use SymPy’s symbolic And (page 1210), Or (page 1211) and Not (page 1211) or equivalently Python’s bitwise logical operators & and | and ~:
As before we can make a better version of `both_positive` if we avoid directly using a SymPy Boolean (page 1207) in an if, and, or, or not. Instead we can test whether or not the Boolean (page 1207) has evaluated to `S.true` or `S.false`:

```python
>>> def both_positive_better(a, b):
...     
...     """ask whether a and b are both positive""
...     ...         if (a > 0) is S.false or (b > 0) is S.false:
...         ...             return S.false
...     ...         elif (a > 0) is S.true and (b > 0) is S.true:
...         ...             return S.true
...     ...         else:
...         ...             return And(a > 0, b > 0)
```

Now with this version we don’t get any exceptions and if the result is indeterminate we will get a symbolic Boolean (page 1207) representing the conditions under which the statement “a and b are both positive” would be true:

```python
>>> both_positive_better(S(1), S(2))
True
>>> both_positive_better(S(1), S(-1))
False
>>> x, y = symbols("x, y")
>>> both_positive_better(x, y + 1)
(x > 0) & (y + 1 > 0)
>>> both_positive_better(x, S(3))
x > 0
```

The last case shows that actually using the `And` (page 1210) with a condition that is known to be true simplifies the `And` (page 1210). In fact we have

```python
>>> And(x > 0, 3 > 0)
x > 0
>>> And(4 > 0, 3 > 0)
True
>>> And(-1 > 0, 3 > 0)
False
```
What this means is that we can improve `both_positive_better`. The different cases are not needed at all. Instead we can simply return the `And` and let it simplify if possible:

```python
>>> def both_positive_best(a, b):
...     
...
...     return And(a > 0, b > 0)
```

Now this will work with any symbolic real objects and produce a symbolic result. We can also substitute into the result to see how it would work for particular values:

```python
>>> both_positive_best(2, 1)
True
>>> both_positive_best(-1, 2)
False
>>> both_positive_best(x, 3)
x > 0
>>> condition = both_positive_best(x/y, x + y)
>>> condition
(x + y > 0) & (x/y > 0)
>>> condition.subs(x, 1)
(1/y > 0) & (y + 1 > 0)
>>> condition.subs(x, 1).subs(y, 2)
True
```

The idea when working with symbolic `Boolean` objects is as much as possible to avoid trying to branch on them with `if`/`else` and other logical operators like and etc. Instead think of computing a condition and passing it around as a variable. The elementary symbolic operations like `And` (page 1210), `Or` (page 1211) and `Not` (page 1211) can then take care of the logic for you.

3.3 Writing Custom Functions

This guide will describe how to create custom function classes in SymPy. Custom user defined functions use the same mechanisms as the `functions` (page 441) that are included with SymPy such as the common `elementary functions` (page 442) like `exp()` (page 468) or `sin()` (page 449), `special functions` (page 506) like `gamma()` (page 515) or `Si()` (page 548), and `combinatorial functions` (page 483) and `number theory functions` (page 1522) like `factorial()` (page 490) or `primepi()` (page 1525). Consequently, this guide serves both as a guide to end users who want to define their own custom functions and to SymPy developers wishing to extend the functions included with SymPy.

This guide describes how to define complex valued functions, that is functions that map a subset of \(\mathbb{C}^n \) to \(\mathbb{C} \). Functions that accept or return other kinds of objects than complex numbers should subclass another class, such as `Boolean` (page 1207), `MatrixExpr` (page 1414), `Expr` (page 999), or `Basic` (page 979). Some of what is written here will apply to general `Basic` (page 979) or `Expr` (page 999) subclasses, but much of it only applies to `Function` (page 1096) subclasses.
3.3.1 Easy Cases: Fully Symbolic or Fully Evaluated

Before digging into the more advanced functionality for custom functions, we should mention two common cases, the case where the function is fully symbolic, and the case where the function is fully evaluated. Both of these cases have much simpler alternatives than the full mechanisms described in this guide.

The Fully Symbolic Case

If your function \(f \) has no mathematical properties you want to define on it, and should never evaluate on any arguments, you can create an undefined function using \(\text{Function}(\text{'}f\text{'}) \)

```
>>> from sympy import symbols, Function
>>> x = symbols('x')
>>> f = Function('f')
```

```
>>> f(x)
f(x)
>>> f(0)
f(0)
```

This is useful, for instance, when solving **ODEs** (page 807).

This is also useful if you only wish to create a symbol that depends on another symbol for the purposes of differentiation. By default, SymPy assumes all symbols are independent of one another:

```
>>> from sympy.abc import x, y
>>> y.diff(x)
0
```

To make a symbol that depends on another symbol, you can use a function that explicitly depends on that symbol.

```
>>> y = Function('y')
>>> y(x).diff(x)
Derivative(y(x), x)
```

If you want your function to have additional behavior, for example, to have a custom derivative, or to evaluate on certain arguments, you should create a custom Function subclass as **described below** (page 105). However, undefined functions do support one additional feature, which is that assumptions can be defined on them, using the same syntax as used by symbols. This defines the assumptions of the output of the function, not the input (that is, it defines the function’s range, not its domain).

```
>>> g = Function('g', real=True)
```

```
>>> g(x)
g(x)
>>> g(x).is_real
True
```

To make a function’s assumptions depend on its input in some way, you should create a custom Function subclass and define assumptions handlers as **described below** (page 111).
The Fully Evaluated Case

At the other end of the spectrum are functions that always evaluate to something no matter what their inputs are. These functions are never left in an unevaluated, symbolic form like \(f(x) \).

In this case, you should use a normal Python function using the `def` keyword:

```python
>>> def f(x):
...     if x == 0:
...         return 0
...     else:
...         return x + 1

>>> f(0)
0
>>> f(1)
2
>>> f(x)
x + 1
```

If you find yourself defining an `eval()` (page 106) method on a Function subclass where you always return a value and never return `None`, you should consider just using a normal Python function instead, as there is no benefit to using a symbolic Function subclass in that case (see the Best Practices for `eval()` (page 107) section below).

Note that in many cases, functions like these can be represented directly using SymPy classes. For example, the above function can be represented symbolically using `Piecewise` (page 472). The `Piecewise` expression can be evaluated for specific values of \(x \) using `subs()` (page 993).

```python
>>> from sympy import Piecewise, Eq, pprint

>>> f = Piecewise((0, Eq(x, 0)), (x + 1, True))

>>> pprint(f, use_unicode=True)
\[
\begin{cases}
0 & \text{for } x = 0 \\
x + 1 & \text{otherwise}
\end{cases}
\]

>>> f.subs(x, 0)
0
>>> f.subs(x, 1)
2
```

Fully symbolic representations like `Piecewise` have the advantage that they accurately represent symbolic values. For example, in the above Python def definition of \(f \), \(f(x) \) implicitly assumes that \(x \) is nonzero. The `Piecewise` version handles this case correctly and won’t evaluate to the \(x \neq 0 \) case unless \(x \) is known to not be zero.

Another option, if you want a function that not only evaluates, but always evaluates to a numerical value, is to use `lambdify()` (page 2173). This will convert a SymPy expression into a function that can be evaluated using NumPy.

```python
>>> from sympy import lambdify

>>> func = lambdify(x, Piecewise((0, Eq(x, 0)), (x + 1, True)))

>>> import numpy as np

(continues on next page)
Ultimately, the correct tool for the job depends on what you are doing and what exact behavior you want.

### 3.3.2 Creating a Custom Function

The first step to creating a custom function is to subclass `Function` (page 1096). The name of the subclass will be the name of the function. Different methods should then be defined on this subclass, depending on what functionality you want to provide.

As a motivating example for this document, let’s create a custom function class representing the versine function. Versine is a trigonometric function which was used historically alongside some of the more familiar trigonometric functions like sine and cosine. It is rarely used today. Versine can be defined by the identity

\[
\text{versin}(x) = 1 - \cos(x).
\]

SymPy does not already include versine because it is used so rarely in modern mathematics and because it is so easily defined in terms of the more familiar cosine.

Let us start by subclassing `Function`.

```python
>>> class versin(Function):
... pass
```

At this point, `versin` has no behaviors defined on it. It is very similar to the undefined functions (page 103) we discussed above. Note that `versin` is a class, and `versin(x)` is an instance of this class.

```python
>>> versin(x)
versin(x)
>>> isinstance(versin(x), versin)
True
```

**Note:** All the methods described below are optional. They can be included if you want to define the given behavior, but if they are omitted, SymPy will default to leaving things unevaluated. For example, if you do not define differentiation (page 118), `diff()` (page 1094) will just return an unevaluated `Derivative` (page 1088).
Defining Automatic Evaluation with eval()

Reminder

Remember that eval() should be defined with the @classmethod decorator.

The first and most common thing we might want to define on our custom function is automatic evaluation, that is, the cases where it will return an actual value instead of just remaining unevaluated as-is.

This is done by defining the class method eval(). eval() should take the arguments of the function and return either a value or None. If it returns None, the function will remain unevaluated in that case. This also serves to define the signature of the function (by default, without an eval() method, a Function subclass will accept any number of arguments).

For our function versin, we might recall that \( \cos(n\pi) = (-1)^n \) for integer \( n \), so versin\((n\pi) = 1 - (-1)^n \). We can make versin automatically evaluate to this value when passed an integer multiple of pi:

```python
>>> from sympy import pi, Integer
>>> class versin(Function):
... @classmethod
... def eval(cls, x):
... # If x is an integer multiple of pi, x/pi will cancel and be an Integer
... n = x/pi
... if isinstance(n, Integer):
... return 1 - (-1)**n
```

```python
>>> versin(pi)
2
>>> versin(2*pi)
0
```

Here we make use of the fact that if a Python function does not explicitly return a value, it automatically returns None. So in the cases where the if isinstance\((n, Integer)\) statement is not triggered, eval() returns None and versin remains unevaluated.

```python
>>> versin(x*pi)
versin(pi*x)
```

Note: Function subclasses should not redefine __new__ or __init__. If you want to implement behavior that isn’t possible with eval(), it might make more sense to subclass Expr (page 999) rather than Function.

eval() can take any number of arguments, including an arbitrary number with *args and optional keyword arguments. The .args of the function will always be the arguments that were passed in by the user. For example:

```python
>>> class f(Function):
... @classmethod
```
def eval(cls, x, y=1, *args):
    return None

>>> f(1).args
(1,)

>>> f(1, 2).args
(1, 2)

>>> f(1, 2, 3).args
(1, 2, 3)

Finally, note that automatic evaluation on floating-point inputs happens automatically once `evalf()` is defined (page 114), so you do not need to handle it explicitly in `eval()`.

**Best Practices for eval()**

Certain antipatterns are common when defining `eval()` methods and should be avoided.

- **Don’t just return an expression.**

  In the above example, we might have been tempted to write

  ```python
 >>> from sympy import cos
 >>> class versin(Function):
 ... @classmethod
 ... def eval(cls, x):
 ... # !! Not actually a good eval() method !!
 ... return 1 - cos(x)
 ...

 However, this would make it so that `versin(x)` would always return `1 - cos(x)`, regardless of what `x` is. If all you want is a quick shorthand to `1 - cos(x)`, that is fine, but would be much simpler and more explicit to just use a Python function as described above (page 104). If we defined `versin` like this, it would never actually be represented as `versin(x)`, and none of the other behavior we define below would matter, because the other behaviors we are going to define on the `versin` class only apply when the returned object is actually a `versin` instance. So for example, `versin(x).diff(x)` would actually just be `(1 - cos(x)).diff(x)`, instead of calling the `fdiff()` method we define below (page 118).

  ```python
  
  Key Point
  
  The purpose of `eval()` is not to define what the function *is*, mathematically, but rather to specify on what inputs it should automatically evaluate. The mathematical definition of a function is determined through the specification of various mathematical properties with the methods outlined below, like numerical evaluation (page 114), differentiation (page 118), and so on.

  If you find yourself doing this, you should think about what you actually want to achieve. If you just want a shorthand function for an expression, it will be simpler to just define a Python function (page 104). If you really do want a symbolic function, think about when you want it to evaluate to something else and when you want it to stay unevaluated. One option is to make your function unevaluated in `eval()` and define a `doit()` method (page 116) to evaluate it.

3.3. Writing Custom Functions
• **Avoid too much automatic evaluation.**

It is recommended to minimize what is evaluated automatically by `eval()`. It is typically better to put more advanced simplifications in other methods (page 115), like `doit()` (page 116). Remember that whatever you define for automatic evaluation will always evaluate.¹ As in the previous point, if you evaluate every value, there is little point to even having a symbolic function in the first place. For example, we might be tempted to evaluate some trig identities on `versin` in `eval()`, but then these identities would always evaluate, and it wouldn’t be possible to represent one half of the identity.

One should also avoid doing anything in `eval()` that is slow to compute. SymPy generally assumes that it is cheap to create expressions, and if this is not true, it can lead to performance issues.

Finally, it is recommended to avoid performing automatic evaluation in `eval()` based on assumptions. Instead, `eval()` should typically only evaluate explicit numerical special values and return `None` for everything else. You might have noticed in the example above (page 106) that we used `isinstance(n, Integer)` instead of checking `n.is_integer` using the assumptions system. We could have done that instead, which would make `versin(n*pi)` evaluate even if `n = Symbol('n', integer=True)`. But this is a case where we might not always want evaluation to happen, and if `n` is a more complicated expression, `n.is_integer` might be more expensive to compute.

Let’s consider an example. Using the identity \( \cos(x + y) = \cos(x)\cos(y) - \sin(x)\sin(y) \), we can derive the identity

\[
\text{versin}(x + y) = \text{versin}(x)\text{versin}(y) - \text{versin}(x) - \text{versin}(y) - \sin(x)\sin(y) + 1.
\]

Suppose we decided to automatically expand this in `eval()`:

```python
>>> from sympy import Add, sin
>>> class versin(Function):
... @classmethod
... def eval(cls, x):
... # !! Not actually a good eval() method !!
... if isinstance(x, Add):
... a, b = x.as_two_terms()
... return (versin(a)*versin(b) - versin(a) - versin(b) - sin(a)*sin(b) + 1)
```

This method recursively splits `Add` terms into two parts and applies the above identity.

```python
>>> x, y, z = symbols('x y z')
>>> versin(x + y)
-sin(x)*sin(y) + versin(x)*versin(y) - versin(x) - versin(y) + 1
```

But now it’s impossible to represent `versin(x + y)` without it expanding. This will affect other methods too. For example, suppose we define differentiation (see below) (page 118):

¹ While it is technically possible to bypass automatic evaluation by using `evaluate=False`, this is recommended against for two reasons. Firstly, `evaluate=False` is fragile because any function that rebuilds the expression from its `.args` will not keep the `evaluate=False` flag, causing it to evaluate. Secondly, `evaluate=False` tends to be bug prone, because other code may be written expecting the invariants from the automatic evaluation to hold. It is much better to not evaluate such cases at all in `eval()`, and move such simplifications to `doit()` (page 116) instead.
>> class versin(Function):
...    @classmethod
...    def eval(cls, x):
...        # !! Not actually a good eval() method !!
...        if isinstance(x, Add):
...            a, b = x.as_two_terms()
...            return (versin(a)*versin(b) - versin(a) - versin(b)
...                    - sin(a)*sin(b) + 1)
...    def fdiff(self, argindex=1):
...        return sin(self.args[0])

We would expect \( \text{versin}(x + y) \).\text{diff}(x) \) to return \( \sin(x + y) \), and indeed, if we hadn't expanded this identity in eval(), it would (page 119). But with this version, \( \text{versin}(x + y) \) gets automatically expanded before \text{diff}() \ gets called, instead we get a more complicated expression:

>> \text{versin}(x + y).\text{diff}(x)
\sin(x)\text{versin}(y) - \sin(x) - \sin(y)\cos(x)

And things are even worse than that. Let's try an Add with three terms:

>> \text{versin}(x + y + z)
\(-\sin(y)\sin(z) + \text{versin}(y)\text{versin}(z) - \text{versin}(y) - \text{versin}(z) +
1)\text{versin}(x) - \sin(x)\sin(y + z) + \sin(y)\sin(z) - \text{versin}(x) -
\text{versin}(y)\text{versin}(z) + \text{versin}(y) + \text{versin}(z)

We can see that things are getting out of control quite quickly. In fact, \( \text{versin}(\text{Add(*symbols('x:100'))}) \) (\text{versin}() \ on \ an \ Add \ with \ 100 \ terms) \ takes \ over \ a \ second \ to \ evaluate, \ and \ that's \ just \ to \ create \ the \ expression, \ without \ even \ doing \ anything \ with \ it \ yet.

Identities like this are better left out of eval and implemented in other methods instead (in the case of this identity, \text{expand_trig}() \ (page 118)).

• **When restricting the input domain: allow None input assumptions.**

Our example function \( \text{versin}(x) \) is a function from \( \mathbb{C} \) to \( \mathbb{C} \), so it can accept any input. But suppose we had a function that only made sense with certain inputs. As a second example, let's define a function divides as

\[
\text{divides}(m, n) = \begin{cases} 
1 & \text{for } m \mid n \\
0 & \text{for } m \nmid n.
\end{cases}
\]

That is, \( \text{divides}(m, n) \) \ will \ be \ 1 \ if \ \text{m} \ \text{divides} \ n \ and \ 0 \ otherwise. \ \text{divides} \ clearly \ only \ makes \ sense \ if \ \text{m} \ and \ n \ are \ integers.

We might be tempted to define the eval() method for divides like this:

>> class divides(Function):
...    @classmethod
...    def eval(cls, m, n):
...        # !! Not actually a good eval() method !!

(continues on next page)
The problem here is that by using `if not m.is_integer`, we are requiring `m.is_integer` to be `True`. If it is `None`, it will fail (see the [guide on booleans and three-valued logic](page95) for details on what it means for an assumption to be `None`). This is problematic for two reasons. Firstly, it forces the user to define assumptions on any input variable. If the user omits them, it will fail:

```
>>> n, m = symbols('n m')
>>> print(n.is_integer)
None
>>> divides(m, n)
Traceback (most recent call last):
 ...TypeError: m and n should be integers
```

Instead they have to write:

```
>>> n, m = symbols('n m', integer=True)
>>> divides(m, n)
divides(m, n)
```

This may seem like an acceptable restriction, but there is a bigger problem. Sometimes, SymPy’s assumptions system cannot deduce an assumption, even though it is mathematically true. In this case, it will give `None` (`None` means both “undefined” and “cannot compute” in SymPy’s assumptions). For example:

```
>>> # n and m are still defined as integer=True as above
>>> divides(2, (m**2 + m)/2)
Traceback (most recent call last):
 ...TypeError: m and n should be integers
```

Here the expression `(m**2 + m)/2` is always an integer, but SymPy’s assumptions system is not able to deduce this:

```
>>> print(((m**2 + m)/2).is_integer)
None
```

SymPy’s assumptions system is always improving, but there will always be cases like this that it cannot deduce, due to the fundamental computational complexity of the problem, and the fact that the general problem is often undecidable.

Consequently, one should always test *negated* assumptions for input variables, that is, fail if the assumption is `False` but allow the assumption to be `None`. 
```python
>>> class divides(Function):
... @classmethod
... def eval(cls, m, n):
... # Evaluate for explicit integer m and n. This part is fine.
... if isinstance(m, Integer) and isinstance(n, Integer):
... return int(n % m == 0)
... # For symbolic arguments, require m and n to be integer.
... # This is the better way to write this logic.
... if m.is_integer is False or n.is_integer is False:
... raise TypeError("m and n should be integers")

This still disallows non-integer inputs as desired:

```python
>>> divides(1.5, 1)
Traceback (most recent call last):
...
TypeError: m and n should be integers
```

But it does not fail in cases where the assumption is None:

```python
>>> divides(2, (m**2 + m)/2)
>>> _.subs(m, 2)
0
>>> n, m = symbols('n m') # Redefine n and m without the integer assumption
>>> divides(m, n)
divides(m, n)
```

Note: This rule of allowing None assumptions only applies to instances where an exception would be raised, such as type checking an input domain. In cases where simplifications or other operations are done, one should treat a None assumption as meaning “can be either True or False” and not perform an operation that might not be mathematically valid.

Assumptions

The next thing you might want to define are the assumptions on our function. The assumptions system allows defining what mathematical properties your function has given its inputs, for example, “$f(x)$ is positive when x is real.”

The guide on the assumptions system (page 71) goes into the assumptions system in great detail. It is recommended to read through that guide first to understand what the different assumptions mean and how the assumptions system works.

The simplest case is a function that always has a given assumption regardless of its input. In this case, you can define is_assumption directly on the class.

For example, our example divides function (page 109) is always an integer, because its value is always either 0 or 1:
Note

From here on out in this guide, in the interest of space, we will omit the previous method definitions in the examples unless they are needed for the given example to work. There are complete examples (page 122) at the end of this guide with all the methods.

```python
>>> class divides(Function):
...       is_integer = True
...       is_negative = False
```

```python
>>> divides(m, n).is_integer
True
>>> divides(m, n).is_nonnegative
True
```

In general, however, the assumptions of a function depend on the assumptions of its inputs. In this case, you should define an _eval_assumption method.

For our versin(x) example (page 105), the function is always in [0,2] when x is real, and it is 0 exactly when x is an even multiple of π. So versin(x) should be nonnegative whenever x is real and positive whenever x is real and not an even multiple of π. Remember that by default, a function’s domain is all of C, and indeed versin(x) makes perfect sense with non-real x.

To see if x is an even multiple of pi, we can use as_independent() (page 1004) to match x structurally as coeff*π. Pulling apart subexpressions structurally like this in assumptions handlers is preferable to using something like (x/pi).is_even, because that will create a new expression x/pi. The creation of a new expression is much slower. Furthermore, whenever an expression is created, the constructors that are called when creating the expression will often themselves cause assumptions to be queried. If you are not careful, this can lead to infinite recursion. So a good general rule for assumptions handlers is, never create a new expression in an assumptions handler. Always pull apart the args of the function using structural methods like as_independent.

Note that versin(x) can be nonnegative for nonreal x, for example:

```python
>>> from sympy import I
>>> 1 - cos(pi + I*pi)
1 + cosh(pi)
>>> (1 - cos(pi + I*pi)).evalf()
12.5919532755215
```

So for the _eval_is_nonnegative handler, we want to return True if x.is_real is True but None if x.is_real is either False or None. It is left as an exercise to the reader to handle the cases for nonreal x that make versin(x) nonnegative, using similar logic from the _eval_is_positive handler.

In the assumptions handler methods, as in all methods, we can access the arguments of the function using self.args.

```python
>>> from sympy.core.logic import fuzzy_and, fuzzy_not
>>> class versin(Function):
...       def _eval_is_nonnegative(self):
...           # versin(x) is nonnegative if x is real
...           x = self.args[0]
```

(continues on next page)
... if x.is_real is True:
 return True
...
...
 def _eval_is_positive(self):
 # versin(x) is positive if x is real and not an even multiple of pi
 x = self.args[0]
 # x.as_independent(pi, as_Add=False) will split x as a Mul of the
 # form coeff*pi
 coeff, pi_ = x.as_independent(pi, as_Add=False)
 # If pi_ == pi, x = coeff*pi. Otherwise x is not (structurally) of
 # the form coeff*pi.
 if pi_ == pi:
 return fuzzy_and([x.is_real, fuzzy_not(coeff.is_even)])
 elif x.is_real is False:
 return False
 # else: return None. We do not know for sure whether x is an even
 # multiple of pi

>>> versin(1).is_nonnegative
True
>>> versin(2*pi).is_positive
False
>>> versin(3*pi).is_positive
True

Note the use of fuzzy_ functions in the more complicated _eval_is_positive() handler, and the careful handling of the if/elif. It is important when working with assumptions to always be careful about handling three-valued logic correctly (page 95). This ensures that the method returns the correct answer when x.is_real or coeff.is_even are None.

Warning: Never define is_assumption as a @property method. Doing so will break the automatic deduction of other assumptions. is_assumption should only ever be defined as a class variable equal to True or False. If the assumption depends on the .args of the function somehow, define the _eval_assumption method.

In this example, it is not necessary to define _eval_is_real() because it is deduced automatically from the other assumptions, since nonnegative -> real. In general, you should avoid defining assumptions that the assumptions system can deduce automatically given its known facts (page 77).

>>> versin(1).is_real
True

The assumptions system is often able to deduce more than you might think. For example, from the above, it can deduce that versin(2*n*pi) is zero when n is an integer.

>>> n = symbols('n', integer=True)
>>> versin(2*n*pi).is_zero
True
It’s always worth checking if the assumptions system can deduce something automatically before manually coding it.

Finally, a word of warning: be very careful about correctness when coding assumptions. Make sure to use the exact definitions (page 77) of the various assumptions, and always check that you’re handling None cases correctly with the fuzzy three-valued logic functions. Incorrect or inconsistent assumptions can lead to subtle bugs. It’s recommended to use unit tests to check all the various cases whenever your function has a nontrivial assumption handler. All functions defined in SymPy itself are required to be extensively tested.

Numerical Evaluation with evalf()

Here we show how to define how a function should numerically evaluate to a floating point Float (page 1033) value, for instance, via evalf(). Implementing numerical evaluation enables several behaviors in SymPy. For example, once evalf() is defined, you can plot your function, and things like inequalities can evaluate to explicit values.

If your function has the same name as a function in mpmath, which is the case for most functions included with SymPy, numerical evaluation will happen automatically and you do not need to do anything.

If this is not the case, numerical evaluation can be specified by defining the method _eval_evalf(self, prec), where prec is the binary precision of the input. The method should return the expression evaluated to the given precision, or None if this is not possible.

Note: The prec argument to _eval_evalf() is the binary precision, that is, the number of bits in the floating-point representation. This differs from the first argument to the evalf() method, which is the decimal precision, or dps. For example, the default binary precision of Float is 53, corresponding to a decimal precision of 15. Therefore, if your _eval_evalf() method recursively calls evalf on another expression, it should call expr._eval_evalf(prec) rather than expr.evalf(prec), as the latter will incorrectly use prec as the decimal precision.

We can define numerical evaluation for our example versin(x) function (page 105) by recursively evaluating $2\sin^2 \left(\frac{x}{2}\right)$, which is a more numerically stable way of writing $1 - \cos(x)$.

```python
>>> from sympy import sin
>>> class versin(Function):
...     def _eval_evalf(self, prec):
...         return (2*sin(self.args[0]/2)**2)._eval_evalf(prec)
```

```bash
0.459697694131860
```

Once _eval_evalf() is defined, this enables the automatic evaluation of floating-point inputs. It is not required to implement this manually in eval() (page 106).

```bash
0.459697694131860
```

Note that evalf() may be passed any expression, not just one that can be evaluated numerically. In this case, it is expected that the numerical parts of an expression will be evaluated. A general pattern to follow is to recursively call _eval_evalf(prec) on the arguments of the function.
Whenever possible, it’s best to reuse the `evalf` functionality defined in existing SymPy functions. However, in some cases it will be necessary to use `mpmath` directly.

Rewriting and Simplification

Various simplification functions and methods allow specifying their behavior on custom subclasses. Not every function in SymPy has such hooks. See the documentation of each individual function for details.

rewrite()

The `rewrite()` (page 991) method allows rewriting an expression in terms of a specific function or rule. For example,

```python
>>> sin(x).rewrite(cos)
cos(x - pi/2)
```

To implement rewriting, define a method `_eval_rewrite(self, rule, args, **hints)`, where

- `rule` is the `rule` passed to the `rewrite()` method. Typically `rule` will be the class of the object to be rewritten to, although for more complex rewrites, it can be anything. Each object that defines `_eval_rewrite()` defines what rule(s) it supports. Many SymPy functions rewrite to common classes, like `expr.rewrite(Add)`, to perform simplifications or other computations.

- `args` are the arguments of the function to be used for rewriting. This should be used instead of `self.args` because any recursive expressions in the `args` will be rewritten in `args` (assuming the caller used `rewrite(deep=True)`, which is the default).

- `**hints` are additional keyword arguments which may be used to specify the behavior of the rewrite. Unknown hints should be ignored as they may be passed to other `_eval_rewrite()` methods.

The method should return a rewritten expression, using `args` as the arguments to the function, or `None` if the expression should be unchanged.

For our `versin` example (page 105), an obvious rewrite we can implement is rewriting `versin(x)` as `1 - cos(x):

```python
>>> class versin(Function):
...     def _eval_rewrite(self, rule, args, **hints):
...         if rule == cos:
...             return 1 - cos(*args)
...     versin(x).rewrite(cos)
1 - cos(x)
```

Once we’ve defined this, `simplify()` (page 719) is now able to simplify some expressions containing `versin`:

```python
>>> from sympy import simplify
>>> simplify(versin(x) + cos(x))
1
```
doit()

The `doit()` (page 983) method is used to evaluate “unevaluated” functions. To define `doit()` implement `doit(self, deep=True, **hints)`. If `deep=True`, `doit()` should recursively call `doit()` on the arguments. **hints** will be any other keyword arguments passed to the user, which should be passed to any recursive calls to `doit()`. You can use hints to allow the user to specify specific behavior for `doit()`.

The typical usage of `doit()` in custom `Function` subclasses is to perform more advanced evaluation which is not performed in `eval()` (page 106).

For example, for our `divides` example (page 109), there are several instances that could be simplified using some identities. For example, we defined `eval()` to evaluate on explicit integers, but we might also want to evaluate examples like `divides(k, k*n)` where the divisibility is symbolically true. One of the best practices for `eval()` (page 107) is to avoid too much automatic evaluation. Automatically evaluating in this case might be considered too much, as it would make use of the assumptions system, which could be expensive. Furthermore, we might want to be able to represent `divides(k, k*n)` without it always evaluating.

The solution is to implement these more advanced evaluations in `doit()`. That way, we can explicitly perform them by calling `expr.doit()`, but they won’t happen by default. An example `doit()` for `divides` that performs this simplification (along with the above definition of `eval()` (page 111)) might look like this:

```
>>> from sympy import Integer
>>> class divides(Function):
...     # Define evaluation on basic inputs, as well as type checking that the
...     # inputs are not nonintegral.
...     @classmethod
...     def eval(cls, m, n):
...         # Evaluate for explicit integer m and n.
...         if isinstance(m, Integer) and isinstance(n, Integer):
...             return int(n % m == 0)
...         # For symbolic arguments, require m and n to be integer.
...         if m.is_integer is False or n.is_integer is False:
...             raise TypeError("m and n should be integers")
...     # Define doit() as further evaluation on symbolic arguments using
...     # assumptions.
...     def doit(self, deep=False, **hints):
...         m, n = self.args
...         # Recursively call doit() on the args whenever deep=True.
...         # Be sure to pass deep=True and **hints through here.
...         if deep:
...             m, n = m.doit(deep=deep, **hints), n.doit(deep=deep, **hints)
...         # divides(m, n) is 1 iff n/m is an integer. Note that m and n are
...         # already assumed to be integers because of the logic in eval().
...         isnt = (n/m).is_integer
```
... if isint is True:
 return Integer(1)
... elif isint is False:
 return Integer(0)
... else:
 return divides(m, n)

(Not that this uses the convention that \(k \mid 0 \) for all \(k \) so that we do not need to check if \(m \) or \(n \) are nonzero. If we used a different convention we would need to check if \(m\.is_zero \) and \(n\.is_zero \) before performing the simplification.)

```
>>> n, m, k = symbols('n m k', integer=True)
>>> divides(k, k*n)
```

```
divides(k, k*n)
```

```
>>> divides(k, k*n).doit()
```

```
1
```

Another common way to implement \(\text{doit()} \) is for it to always return another expression. This effectively treats the function as an “unevaluated” form of another expression.

For example, let’s define a function for fused multiply-add: \(\text{FMA}(x, y, z) = xy + z \). It may be useful to express this function as a distinct function, e.g., for the purposes of code generation, but it would also be useful in some contexts to “evaluate” \(\text{FMA}(x, y, z) \) to \(xy + z \) so that it can properly simplify with other expressions.

```
>>> from sympy import Number
```

```
>>> class FMA(Function):
```

```
    """
    FMA(x, y, z) = x*y + z
    """
    ...

    @classmethod
    ... def eval(cls, x, y, z):
    ...
        # Number is the base class of Integer, Rational, and Float
        if all(isinstance(i, Number) for i in [x, y, z]):
            return x*y + z
    ...

    def doit(self, deep=True, **hints):
    ...
        x, y, z = self.args
        # Recursively call doit() on the args whenever deep=True.
        # Be sure to pass deep=True and **hints through here.
        if deep:
            ...
            x = x.doit(deep=deep, **hints)
            ...
            y = y.doit(deep=deep, **hints)
            ...
            z = z.doit(deep=deep, **hints)
    ...
        return x*y + z
```

```
>>> x, y, z = symbols('x y z')
```

```
>>> FMA(x, y, z)
```

```
FMA(x, y, z)
```

```
>>> FMA(x, y, z).doit()
```

```
x*y + z
```

Most custom functions will not want to define \(\text{doit()} \) in this way. However, this can provide
a happy medium between having a function that always evaluates and a function that never evaluates, producing a function that doesn’t evaluate by default but can be evaluated on demand (see the discussion above (page 107)).

expand()

The **expand()** (page 1099) function “expands” an expression in various ways. It is actually a wrapper around several sub-expansion hints. Each function corresponds to a hint to the expand() function/method. A specific expand hint can be defined in a custom function by defining _eval_expand_hint(self, **hints). See the documentation of **expand()** (page 1099) for details on which hints are defined and the documentation for each specific expand_hint() function (e.g., **expand_trig()** (page 1107)) for details on what each hint is designed to do.

The **hints** keyword arguments are additional hints that may be passed to the expand function to specify additional behavior (these are separate from the predefined hints described in the previous paragraph). Unknown hints should be ignored as they may apply to other functions’ custom expand() methods. A common hint to define is force, where force=True would force an expansion that might not be mathematically valid for all the given input assumptions. For example, expand_log(log(x*y), force=True) produces log(x) + log(y) even though this identity is not true for all complex x and y (typically force=False is the default).

Note that expand() automatically takes care of recursively expanding expressions using its own deep flag, so _eval_expand_ methods should not recursively call expand on the arguments of the function.

For our versin example (page 105), we can define rudimentary trig expansion by defining an _eval_expand_trig method, which recursively calls expand_trig() on 1 - cos(x):

```python
>>> from sympy import expand_trig
>>> y = symbols('y')
>>> class versin(Function):
...     def _eval_expand_trig(self, **hints):
...         x = self.args[0]
...         return expand_trig(1 - cos(x))
>>> versin(x + y).expand(trig=True)
sin(x)*sin(y) - cos(x)*cos(y) + 1
```

A more sophisticated implementation might attempt to rewrite the result of expand_trig(1 - cos(x)) back into versin functions. This is left as an exercise for the reader.

Differentiation

To define differentiation via **diff()** (page 1094), define a method fdiff(self, argindex). fdiff() should return the derivative of the function, without considering the chain rule, with respect to the argindex-th variable. argindex is indexed starting at 1.

That is, f(x1, ..., xi, ..., xn).fdiff(i) should return $\frac{df}{dx_i}(x_1, ..., x_{i-1}, x_{i+1}, ..., x_n)$, where x_k are independent of one another. diff() will automatically apply the chain rule using the result of fdiff(). User code should use diff() and not call fdiff() directly.

Note: Function subclasses should define differentiation using fdiff(). Subclasses of Expr (page 999) that aren’t Function subclasses will need to define _eval_derivative() instead.
It is not recommended to redefine _eval_derivative() on a Function subclass.

For our \texttt{versin} example function (page 105), the derivative is \(\sin(x)\).

```python
>>> class versin(Function):
...     def fdiff(self, argindex=1):
...         # argindex indexes the args, starting at 1
...         return sin(self.args[0])
```

```python
>>> versin(x).diff(x)
\sin(x)
>>> versin(x**2).diff(x)
2x\sin(x^2)
>>> versin(x + y).diff(x)
\sin(x + y)
```

As an example of a function that has multiple arguments, consider the \textit{fused multiply-add (FMA) example} (page 117) defined above (\(FMA(x, y, z) = xy + z\)).

We have

\[
\frac{d}{dx} FMA(x, y, z) = y,
\]

\[
\frac{d}{dy} FMA(x, y, z) = x,
\]

\[
\frac{d}{dz} FMA(x, y, z) = 1.
\]

So the \texttt{fdiff()} method for FMA would look like this:

```python
>>> from sympy import Number, symbols
>>> x, y, z = symbols('x y z')
>>> class FMA(Function):
...     """
FMA(x, y, z) = x*y + z
"""
...     def fdiff(self, argindex):
...         # argindex indexes the args, starting at 1
...         x, y, z = self.args
...         if argindex == 1:
...             return y
...         elif argindex == 2:
...             return x
...         elif argindex == 3:
...             return 1
```

```python
>>> FMA(x, y, z).diff(x)
y
>>> FMA(x, y, z).diff(y)
x
>>> FMA(x, y, z).diff(z)
1
>>> FMA(x**2, x + 1, y).diff(x)
x**2 + 2x*(x + 1)
```

3.3. Writing Custom Functions
To leave a derivative unevaluated, raise `sympy.core.function.ArgumentIndexError(self, argindex)`. This is the default behavior if `fdiff()` is not defined. Here is an example function $f(x, y)$ that is linear in the first argument and has an unevaluated derivative on the second argument.

```python
>>> from sympy.core.function import ArgumentIndexError
>>> class f(Function):
...     @classmethod
...     def eval(cls, x, y):
...         pass
...     def fdiff(self, argindex):
...         if argindex == 1:
...             return 1
...         raise ArgumentIndexError(self, argindex)
```

```python
>>> f(x, y).diff(x)
1
>>> f(x, y).diff(y)
Derivative(f(x, y), y)
```

Printing

You can define how a function prints itself with the various printers (page 2207) such as the string printer (page 2253), pretty printers (page 2212), and LaTeX printer (page 2245), as well as code printers for various languages like C (page 2214) and Fortran (page 2222).

In most cases, you will not need to define any printing methods. The default behavior is to print functions using their name. However, in some cases we may want to define special printing for a function.

For example, for our divides example above (page 109), we may want the LaTeX printer to print a more mathematical expression. Let’s make the LaTeX printer represent `divides(m, n)` as \left \lfloor m \middle| n \right \rfloor, which looks like $\lfloor m|n \rfloor$ (here P is the Iverson bracket, which is 1 if P is true and 0 if P is false).

There are two primary ways to define printing for SymPy objects. One is to define a printer on the printer class. Most classes that are part of the SymPy library should use this method, by defining the printers on the respective classes in *sympy.printing*. For user code, this may be preferable if you are defining a custom printer, or if you have many custom functions that you want to define printing for. See Example of Custom Printer (page 2209) for an example of how to define a printer in this way.

The other way is to define the printing as a method on the function class. To do this, first look up the printmethod attribute on the printer you want to define the printing for. This is the name of the method you should define for that printer. For the LaTeX printer, `LatexPrinter.printmethod` (page 2245) is __latex_. The print method always takes one argument, printer. printer. print should be used to recursively print any other expressions, including the arguments of the function.

So to define our divides LaTeX printer, we will define the function __latex(self, printer) on the class, like this:
SymPy Documentation, Release 1.12.1

```python
>>> from sympy import latex
>>> class divides(Function):
...     def _latex(self, printer):
...         m, n = self.args
...         return r'\left [ %s \middle | %s \right ]' % (_m, _n)

>>> print(latex(divides(m, n)))
\left [ m \middle | n \right ]
```

See "Example of Custom Printing Method" (page 2210) for more details on how to define printer methods and some pitfalls to avoid. Most importantly, you should always use `printer._print()` to recursively print the arguments of the function inside of a custom printer.

Other Methods

Several other methods can be defined on custom functions to specify various behaviors.

inverse()

The `inverse(self, argindex=1)` method can be defined to specify the inverse of the function. This is used by `solve()` (page 882) and `solveset()` (page 913). The `argindex` argument is the argument of the function, starting at 1 (similar to the same argument name for the `fdiff()` method (page 118)).

`inverse()` should return a function (not an expression) for the inverse. If the inverse is a larger expression than a single function, it can return a lambda function.

`inverse()` should only be defined for functions that are one-to-one. In other words, f(x). `inverse()` is the left inverse of f(x). Defining `inverse()` on a function that is not one-to-one may result in `solve()` not giving all possible solutions to an expression containing the function.

Our example versine function (page 105) is not one-to-one (because cosine is not), but its inverse arcversine is. We may define it as follows (using the same naming convention as other inverse trig functions in SymPy):

```python
>>> class aversin(Function):
...     def inverse(self, argindex=1):
...         return versin
```

This makes `solve()` work on `aversin(x):

```python
>>> from sympy import solve
>>> solve(aversin(x) - y, x)
[versin(y)]
```
as_real_imag()

The method `as_real_imag()` (page 1008) method defines how to split a function into its real and imaginary parts. It is used by various SymPy functions that operate on the real and imaginary parts of an expression separately.

`as_real_imag(self, deep=True, **hints)` should return a 2-tuple containing the real part and imaginary part of the function. That is `expr.as_real_imag()` returns `(re(expr), im(expr))`, where `expr == re(expr) + im(expr)*I`, and `re(expr)` and `im(expr)` are real.

If `deep=True`, it should recursively call `as_real_imag(deep=True, **hints)` on its arguments. As with `doit()` (page 116) and the `_eval_expand_*()` methods (page 118), **hints** may be any hints to allow the user to specify the behavior of the method. Unknown hints should be ignored and passed through on any recursive calls in case they are meant for other `as_real_imag()` methods.

For our `versin` example (page 105), we can recursively use the `as_real_imag()` that is already defined for `1 - cos(x)`.

```python
>>> class versin(Function):
...     def as_real_imag(self, deep=True, **hints):
...         return (1 - cos(self.args[0])).as_real_imag(deep=deep, **hints)

>>> versin(x).as_real_imag()
(-cos(re(x))*cosh(im(x)) + 1, sin(re(x))*sinh(im(x)))
```

Defining `as_real_imag()` also automatically makes `expand_complex()` (page 1108) work.

```python
>>> versin(x).expand(complex=True)
I*sin(re(x))*sinh(im(x)) - cos(re(x))*cosh(im(x)) + 1
```

Miscellaneous _eval_* methods

There are many other functions in SymPy whose behavior can be defined on custom functions via a custom _eval_* method, analogous to the ones described above. See the documentation of the specific function for details on how to define each method.

3.3.3 Complete Examples

Here are complete examples for the example functions defined in this guide. See the above sections for details on each method.

Versine

The versine (versed sine) function is defined as

\[\text{versin}(x) = 1 - \cos(x). \]

Versine is an example of a simple function defined for all complex numbers. The mathematical definition is simple, which makes it straightforward to define all the above methods on it (in most cases we can just reuse the existing SymPy logic defined on `1 - \cos(x)`).
Definition

```python
>>> from sympy import Function, cos, expand_trig, Integer, pi, sin
>>> from sympy.core.logic import fuzzy_and, fuzzy_not

>>> class versin(Function):
...     r""
...     The versine function.
...     
...     $\operatorname{versin}(x) = 1 - \cos(x) = 2\sin(x/2)^2.$
...     
...     Geometrically, given a standard right triangle with angle x in the unit circle, the versine of x is the positive horizontal distance from the right angle of the triangle to the rightmost point on the unit circle. It was historically used as a more numerically accurate way to compute $1 - \cos(x)$, but it is rarely used today.
...

References
==========


""
```

Define evaluation on basic inputs.
@classmethod
def eval(cls, x):
 # If x is an explicit integer multiple of pi, x/pi will cancel and be an Integer.
 n = x/pi
 if isinstance(n, Integer):
 return 1 - (-1)**n

Define numerical evaluation with evalf().
def _eval_evalf(self, prec):
 return (2*sin(self.args[0]/2)**2).evalf(prec)

Define basic assumptions.
def _eval_is_nonnegative(self):
 # versin(x) is nonnegative if x is real
 x = self.args[0]
 if x.is_real is True:
 return True

def _eval_is_positive(self):
 # versin(x) is positive if x is real and not an even multiple of pi
 x = self.args[0]
 # x.as_independent(pi, as_Add=False) will split x as a Mul of the form n*pi
 coeff, pi_ = x.as_independent(pi, as_Add=False)
 # If pi_ = pi, x = coeff*pi. Otherwise pi_ = 1 and x is not
```

(continues on next page)
... # (structurally) of the form n*pi.
... if pi_ == pi:
...     return fuzzy_and([x.is_real, fuzzy_not(coef.is_even)])
... elif x.is_real is False:
...     return False
... # else: return None. We do not know for sure whether x is an even
... # multiple of pi
...
...

# Define the behavior for various simplification and rewriting
# functions.
... def _eval_rewrite(self, rule, args, **hints):
...     if rule == cos:
...         return 1 - cos(*args)
...     elif rule == sin:
...         return 2*sin(x/2)**2
...
...
... def _eval_expand_trig(self, **hints):
...     x = self.args[0]
...     return expand_trig(1 - cos(x))
...
...
... def as_real_imag(self, deep=True, **hints):
...     # reuse _eval_rewrite(cos) defined above
...     return self.rewrite(cos).as_real_imag(deep=deep, **hints)
...
...
# Define differentiation.
... def fdiff(self, argindex=1):
...     return sin(self.args[0])

Examples

Evaluation:

>>> x, y = symbols('x y')
>>> versin(x)
versin(x)
>>> versin(2*pi)
0
>>> versin(1.0)
0.459697694131860

Assumptions:

>>> n = symbols('n', integer=True)
>>> versin(n).is_real
True
>>> versin((2*n + 1)*pi).is_positive
True
>>> versin(2*n*pi).is_zero
True
>>> print(versin(n*pi).is_positive)
None
SymPy Documentation, Release 1.12.1

(continued from previous page)

```
>>> r = symbols('r', real=True)
>>> print(versin(r).is_positive)
None
>>> nr = symbols('nr', real=False)
>>> print(versin(nr).is_nonnegative)
None

Simplification:

```r
>>> a, b = symbols('a b', real=True)
>>> from sympy import I
>>> versin(x).rewrite(cos)
1 - cos(x)
```

```r
>>> versin(x).rewrite(sin)
2*sin(x/2)**2
```

```r
>>> versin(2*x).expand(trig=True)
2 - 2*cos(x)**2
```

```r
>>> versin(a + b*I).expand(complex=True)
I*sin(a)*sinh(b) - cos(a)*cosh(b) + 1
```

Differentiation:

```r
>>> versin(x).diff(x)
sin(x)
```

Solving:

(a more general version of aversin would have all the above methods defined as well)

```r
>>> class aversin(Function):
...     def inverse(self, argindex=1):
...         return versin
```

```r
>>> from sympy import solve
>>> solve(aversin(x**2) - y, x)
[-sqrt(versin(y)), sqrt(versin(y))]
```

divides

divides is a function defined by

\[
divides(m, n) = \begin{cases}
1 & \text{for } m \mid n \\
0 & \text{for } m \not\mid n
\end{cases}
\]

that is, divides(m, n) is 1 if m divides n and 0 if m does not divide m. It is only defined for integer m and n. For the sake of simplicity, we use the convention that \(m \mid 0 \) for all integer \(m \).

divides is an example of a function that is only defined for certain input values (integers).
divides also gives an example of defining a custom printer (_latex()).

3.3. Writing Custom Functions 125
Definition

```python
>>> from sympy import Function, Integer
>>> from sympy.core.logic import fuzzy_not
>>> class divides(Function):
...     r""
...     \[
...     \text{divides}(m, n) = \begin{cases} 1 & \text{for } m \mid n \\ 0 & \text{for } m \not\mid n \end{cases}.
...     \]
...     That is, \text{\texttt{divides}}(m, n) is 1 if \( m \) divides \( n \) and 0 if \( m \) does not divide \( n \). It is undefined if \( m \) or \( n \) are not integers. For simplicity, the convention is used that \text{\texttt{divides}}(m, 0) = 1 for all integers \( m \).

References
=======


# Define evaluation on basic inputs, as well as type checking that the inputs are not nonintegral.
@classmethod
def eval(cls, m, n):
    # Evaluate for explicit integer m and n.
    if isinstance(m, Integer) and isinstance(n, Integer):
        return int(n % m == 0)
    # For symbolic arguments, require m and n to be integer.
    if m.is_integer is False or n.is_integer is False:
        raise TypeError("m and n should be integers")

    # Define basic assumptions.
    # divides is always either 0 or 1.
    is_integer = True
    is_negative = False
    # Whether divides(m, n) is 0 or 1 depends on m and n. Note that this method only makes sense because we don't automatically evaluate on such cases, but instead simplify these cases in doit() below.
    def _eval_is_zero(self):
        m, n = self.args
        if m.is_integer and n.is_integer:
            return fuzzy_not((n/m).is_integer)
    # Define doit() as further evaluation on symbolic arguments using assumptions.
    def doit(self, deep=False, **hints):
        m, n = self.args
        # Recursively call doit() on the args whenever deep=True.
        # Be sure to pass deep=True and **hints through here.
        if deep:
```

(continues on next page)
... m, n = m.doit(deep=deep, **hints), n.doit(deep=deep, **hints)
...
... # divides(m, n) is 1 iff n/m is an integer. Note that m and n are
... # already assumed to be integers because of the logic in eval().
... isint = (n/m).is_integer
... if isint is True:
... return Integer(1)
... elif isint is False:
... return Integer(0)
... else:
... return divides(m, n)
...
... # Define LaTeX printing for use with the latex() function and the
... # Jupyter notebook.
... def _latex(self, printer):
... m, n = self.args
... _m, _n = printer._print(m), printer._print(n)
... return r'\left [%s \middle | %s \right]' % (_m, _n)
...

Examples

Evaluation

```python
>>> from sympy import symbols
>>> n, m, k = symbols('n m k', integer=True)
>>> divides(3, 10)
0
>>> divides(3, 12)
1
>>> divides(m, n).is_integer
True
>>> divides(k, 2*k)
divides(k, 2*k)
>>> divides(k, 2*k).is_zero
False
>>> divides(k, 2*k).doit()
1
```

Printing:

```python
>>> str(divides(m, n))  # This is using the default str printer
'divides(m, n)'
>>> print(latex(divides(m, n)))
\left [ m \middle | n \right ]
```
Fused Multiply-Add (FMA)

Fused Multiply-Add (FMA) is a multiplication followed by an addition:

\[\text{FMA}(x, y, z) = xy + z. \]

It is often implemented in hardware as a single floating-point operation that has better rounding and performance than the equivalent combination of multiplication and addition operations.

FMA is an example of a custom function that is defined as an unevaluated “shorthand” to another function. This is because the \texttt{doit()} (page 116) method is defined to return \(xy + z \), meaning the FMA function can easily be evaluated to the expression is represents, but the \texttt{eval()} (page 106) method does not return anything (except when \(x, y, \) and \(z \) are all explicit numeric values), meaning that it stays unevaluated by default.

Contrast this with the \texttt{versine} (page 122) example, which treats versin as a first-class function in its own regard. Even though \(\text{versin}(x) \) can be expressed in terms of other functions (\(1 - \cos(x) \)) it does not evaluate on general symbolic inputs in \texttt{versin.eval()}, and \texttt{versin.doit()} is not defined at all.

FMA also represents an example of a continuous function defined on multiple variables, which demonstrates how \texttt{argindex} works in the \texttt{fdiff} (page 118) example.

Finally, FMA shows an example of defining some code printers for C and C++ (using the method names from \texttt{C99CodePrinter.printmethod} (page 2214) and \texttt{CXX11CodePrinter.printmethod} (page 2217)), since that is a typical use-case for this function.

The mathematical definition of FMA is very simple and it would be easy to define every method on it, but only a handful are shown here. The \texttt{versine} (page 122) and \texttt{divides} (page 125) examples show how to define the other important methods discussed in this guide.

Note that if you want to actually use fused-multiply add for code generation, there is already a version in SymPy \texttt{sympy.codegen.cfunctions.fma()} which is supported by the existing code printers. The version here is only designed to serve as an example.

Definition

```python
>>> from sympy import Number, symbols, Add, Mul
>>> x, y, z = symbols('x y z')
>>> class FMA(Function):
   ...
   ...
   FMA(x, y, z) = x*y + z
   ...
   ...
   FMA is often defined as a single operation in hardware for better rounding and performance.
   ...
   ...
   FMA can be evaluated by using the doit() method.
   ...
   ...
   References
   ........
   ...
   .. [1] https://en.wikipedia.org/wiki/Multiply%E2%80%93accumulate_operation#Fused_multiply%E2%80%93add
   .....```

(continues on next page)
# Define automatic evaluation on explicit numbers
@classmethod
def eval(cls, x, y, z):
    # Number is the base class of Integer, Rational, and Float
    if all(isinstance(i, Number) for i in [x, y, z]):
        return x*y + z

# Define numerical evaluation with evalf().
def _eval_evalf(self, prec):
    return self.doit(deep=False)._eval_evalf(prec)

# Define full evaluation to Add and Mul in doit(). This effectively
# treats FMA(x, y, z) as just a shorthand for x*y + z that is useful
# to have as a separate expression in some contexts and which can be
# evaluated to its expanded form in other contexts.
def doit(self, deep=True, **hints):
    x, y, z = self.args
    # Recursively call doit() on the args whenever deep=True.
    # Be sure to pass deep=True and **hints through here.
    if deep:
        x = x.doit(deep=deep, **hints)
        y = y.doit(deep=deep, **hints)
        z = z.doit(deep=deep, **hints)
    return x*y + z

# Define FMA.rewrite(Add) and FMA.rewrite(Mul).
def _eval_rewrite(self, rule, args, **hints):
    x, y, z = self.args
    if rule in [Add, Mul]:
        return self.doit()

# Define differentiation.
def fdiff(self, argindex):
    # argindex indexes the args, starting at 1
    x, y, z = self.args
    if argindex == 1:
        return y
    elif argindex == 2:
        return x
    elif argindex == 3:
        return 1

# Define code printers for ccode() and cxxcode()
def _ccode(self, printer):
    x, y, z = self.args
    _x, _y, _z = printer._print(x), printer._print(y), printer._print(z)
    return "fma(%s, %s, %s)" % (_x, _y, _z)

def _cxxcode(self, printer):
    x, y, z = self.args
    _x, _y, _z = printer._print(x), printer._print(y), printer._print(z)
Examples

Evaluation:

```python
>>> x, y, z = symbols('x y z')
>>> FMA(2, 3, 4)
10
>>> FMA(x, y, z)
FMA(x, y, z)
>>> FMA(x, y, z).doit()
x*y + z
>>> FMA(x, y, z).rewrite(Add)
x*y + z
>>> FMA(2, pi, 1).evalf()
7.28318530717959
```

Differentiation

```python
>>> FMA(x, x, y).diff(x)
2*x
>>> FMA(x, y, x).diff(x)
y + 1
```

Code Printers

```python
>>> from sympy import ccode, cxxcode
>>> ccode(FMA(x, y, z))
'fma(x, y, z)'
>>> cxxcode(FMA(x, y, z))
'std::fma(x, y, z)'
```

3.3.4 Additional Tips

- SymPy includes dozens of functions. These can serve as useful examples for how to write a custom function, especially if the function is similar to one that is already implemented. Remember that everything in this guide applies equally well to functions that are included with SymPy and user-defined functions. Indeed, this guide is designed to serve as both a developer guide for contributors to SymPy and a guide for end-users of SymPy.

- If you have many custom functions that share common logic, you can use a common base class to contain this shared logic. For an example of this, see the source code for the trigonometric functions in SymPy, which use TrigonometricFunction, InverseTrigonometricFunction, and ReciprocalTrigonometricFunction base classes with some shared logic.

- As with any code, it is a good idea to write extensive tests for your function. The SymPy test suite is a good resource for examples of how to write tests for such functions. All
code included in SymPy itself is required to be tested. Functions included in SymPy should also always contain a docstring with references, a mathematical definition, and doctest examples.

## 3.4 Solve Equations

The Python package SymPy can symbolically solve equations, differential equations, linear equations, nonlinear equations, matrix problems, inequalities, Diophantine equations, and evaluate integrals. SymPy can also solve numerically.

The *Solving Guidance* (page 132) page provides recommendations applicable to many types of solving tasks.

Learn how to use SymPy computer algebra system to:

<table>
<thead>
<tr>
<th>Description</th>
<th>Example</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Solve an equation algebraically</strong> (page 137)</td>
<td>(x^2 = y)</td>
<td>(x \in {-\sqrt{y}, \sqrt{y}})</td>
</tr>
<tr>
<td><strong>Solve a system of equations algebraically</strong> (page 143)</td>
<td>(x^2 + y = { (x = \frac{-\sqrt{6z} + y}{2z}, y = -4z), (x = \sqrt{6z}, y = -4z) } )</td>
<td></td>
</tr>
<tr>
<td><strong>Solve one or a system of equations numerically</strong> (page 146)</td>
<td>(\cos(x) = x)</td>
<td>(x \approx 0.739085133215161)</td>
</tr>
<tr>
<td><strong>Solve an ordinary differential equation algebraically</strong> (page 150)</td>
<td>(y''(x) + \frac{y(x)}{9} = 0)</td>
<td>(C_1 \sin(3x) + C_2 \cos(3x))</td>
</tr>
<tr>
<td><strong>Find the roots of a polynomial algebraically or numerically</strong> (page 160)</td>
<td>(ax^2 + bx + c = 0)</td>
<td>(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a})</td>
</tr>
<tr>
<td><strong>Solve a matrix equation algebraically</strong> (page 170)</td>
<td>(\begin{bmatrix} c &amp; d \ 1 &amp; -c \ 2 \end{bmatrix} \begin{bmatrix} x \ y \end{bmatrix} = \begin{bmatrix} \frac{2c}{c^2 + d} \ \frac{d}{c^2 + d} \end{bmatrix})</td>
<td></td>
</tr>
<tr>
<td><strong>Reduce one or a system of inequalities for a single variable algebraically</strong> (page 177)</td>
<td>(x^2 &lt; 0 &lt; x &lt; \sqrt{\pi})</td>
<td></td>
</tr>
<tr>
<td><strong>Solve a Diophantine equation algebraically</strong> (page 181)</td>
<td>(a^2 + b^2 = c^2)</td>
<td>(a = 2pq, b = p^2 - q^2, c = p^2 + q^2)</td>
</tr>
</tbody>
</table>

Notes:

- SymPy has a function called `solve()` (page 882) which is designed to find the solutions of an equation or system of equations, or the roots of a function. SymPy `solve()` (page 882) may or may not be what you need for a particular problem, so we recommend you use the links on this page to learn how to “solve” your problem.

- While a common, colloquial expression is, for example, “solve an integral (page 633),” in SymPy’s terminology it would be “evaluate an integral (page 633).” This page does not provide guidance for such tasks. Please search the documentation for the type of expression you want to evaluate.
3.4.1 Solving Guidance

These guidelines apply to many types of solving.

Numeric Solutions

Equations With no Closed-Form Solution

The vast majority of arbitrary nonlinear equations have no closed-form solution. The classes of equations that are solvable are basically:

1. Linear equations
2. Polynomials, except where limited by the Abel-Ruffini theorem (learn more about solving polynomials using a GroebnerBasis (page 2499))
3. Equations that can be solved by inverting some transcendental functions
4. Problems that can be transformed into the cases above (e.g., by turning trigonometric functions into polynomials)
5. A few other special cases that can be solved with something like the Lambert W function (page 469)
6. Equations that you can decompose() (page 2445) via any of the above

SymPy may reflect that your equation has no solutions that can be expressed algebraically (symbolically), or that SymPy lacks an algorithm to find a closed-form solution that does exist, by returning an error such as NotImplementedError:

```python
>>> from sympy import solve, cos
>>> from sympy.abc import x
>>> solve(cos(x) - x, x, dict=True)
Traceback (most recent call last):
 ... NotImplementedError: multiple generators [x, cos(x)]
No algorithms are implemented to solve equation -x + cos(x)
```

so you may have to solve your equation numerically instead, for example using nsolve() (page 895)

```python
>>> from sympy import nsolve, cos
>>> from sympy.abc import x
>>> nsolve(cos(x) - x, x, 2)
0.739085133215161
```

If you receive non-closed-form solutions such as CRootOf() (page 2507) (which represents an indexed complex root of a polynomial), you can evaluate them numerically using evalf() (page 1111):

```python
>>> from sympy import solve
>>> from sympy.abc import x
>>> solutions = solve(x**5 - x - 1, x, dict=True)
>>> solutions
[{x: CRootOf(x**5 - x - 1, 0)}, {x: CRootOf(x**5 - x - 1, 1)}, {x: CRootOf(x**5 - x - 1, 2)}, {x: CRootOf(x**5 - x - 1, 3)}, {x: CRootOf(x**5 - x - 1, 4)}]
```
When You Might Prefer a Numeric Solution

Even if your problem has a closed-form solution, you might prefer a numeric solution.

Solving functions such as `solve()` (page 882) and `solveset()` (page 913) will not try to find a numeric solution, only a mathematically-exact symbolic solution. So if you want a numeric solution, consider `nsolve()` (page 895).

In some situations, even though a closed-form solution is available, it may be too cumbersome to be desirable. In that case, you can use `evalf()` (page 1111) instead if a numerical solution is acceptable. For example, the following solution set contains more than 40 terms total when expressed exactly (scroll horizontally in the code block below if you want to view them all), compared to eight when expressed numerically:

```python
>>> from sympy import symbols, solve
>>> x = symbols('x')
>>> solutions = solve(x**4 + 10*x**2 + x + 1, x, dict=True)
>>> solutions
[(x: -sqrt(-20/3 + 56/(9*(1307/432 + sqrt(434607)*I/144)**(1/3)) + 2*(1307/432 + sqrt(434607)*I/144)**(1/3))/2 - sqrt(-40/3 - 2*(1307/432 + sqrt(434607)*I/144)**(1/3))/2], {x: sqrt(-20/3 + 56/(9*(1307/432 + sqrt(434607)*I/144)**(1/3)) + 2*(1307/432 + sqrt(434607)*I/144)**(1/3))/2}, {x: -sqrt(-20/3 + 56/(9*(1307/432 + sqrt(434607)*I/144)**(1/3)) + 2*(1307/432 + sqrt(434607)*I/144)**(1/3))/2}, {x: sqrt(-40/3 - 2*(1307/432 + sqrt(434607)*I/144)**(1/3))/2}, {x: -sqrt(-20/3 + 56/(9*(1307/432 + sqrt(434607)*I/144)**(1/3)) + 2*(1307/432 + sqrt(434607)*I/144)**(1/3))/2}, {x: sqrt(-20/3 + 56/(9*(1307/432 + sqrt(434607)*I/144)**(1/3)) + 2*(1307/432 + sqrt(434607)*I/144)**(1/3))/2}, {x: -sqrt(-40/3 - 2*(1307/432 + sqrt(434607)*I/144)**(1/3))/2}, {x: sqrt(-20/3 + 56/(9*(1307/432 + sqrt(434607)*I/144)**(1/3)) + 2*(1307/432 + sqrt(434607)*I/144)**(1/3))/2}, {x: -sqrt(-20/3 + 56/(9*(1307/432 + sqrt(434607)*I/144)**(1/3)) + 2*(1307/432 + sqrt(434607)*I/144)**(1/3))/2}, {x: sqrt(-20/3 + 56/(9*(1307/432 + sqrt(434607)*I/144)**(1/3)) + 2*(1307/432 + sqrt(434607)*I/144)**(1/3))/2}, {x: -sqrt(-20/3 + 56/(9*(1307/432 + sqrt(434607)*I/144)**(1/3)) + 2*(1307/432 + sqrt(434607)*I/144)**(1/3))/2}, {x: sqrt(-20/3 + 56/(9*(1307/432 + sqrt(434607)*I/144)**(1/3)) + 2*(1307/432 + sqrt(434607)*I/144)**(1/3))/2}, {x: -sqrt(-20/3 + 56/(9*(1307/432 + sqrt(434607)*I/144)**(1/3)) + 2*(1307/432 + sqrt(434607)*I/144)**(1/3))/2}, {x: sqrt(-20/3 + 56/(9*(1307/432 + sqrt(434607)*I/144)**(1/3)) + 2*(1307/432 + sqrt(434607)*I/144)**(1/3))/2}, {x: -sqrt(-20/3 + 56/(9*(1307/432 + sqrt(434607)*I/144)**(1/3)) + 2*(1307/432 + sqrt(434607)*I/144)**(1/3))/2}, {x: sqrt(-20/3 + 56/(9*(1307/432 + sqrt(434607)*I/144)**(1/3)) + 2*(1307/432 + sqrt(434607)*I/144)**(1/3))/2}, {x: -sqrt(-20/3 + 56/(9*(1307/432 + sqrt(434607)*I/144)**(1/3)) + 2*(1307/432 + sqrt(434607)*I/144)**(1/3))/2}, {x: sqrt(-20/3 + 56/(9*(1307/432 + sqrt(434607)*I/144)**(1/3)) + 2*(1307/432 + sqrt(434607)*I/144)**(1/3))/2}, {x: -sqrt(-20/3 + 56/(9*(1307/432 + sqrt(434607)*I/144)**(1/3)) + 2*(1307/432 + sqrt(434607)*I/144)**(1/3))/2}, {x: sqrt(-20/3 + 56/(9*(1307/432 + sqrt(434607)*I/144)**(1/3)) + 2*(1307/432 + sqrt(434607)*I/144)**(1/3))/2}]
```

In other situations, even if the exact solution has few terms, you may want a numeric solution so you know its approximate numerical value. For example, it may be difficult to estimate that $\sqrt{2e^\pi}/2$ is approximately 16:
Use Exact Values

If you want to preserve the exact mathematical values of symbols such as transcendental numbers and square roots (page 6), define them so that SymPy can interpret them symbolically, for example use SymPy’s $\pi$ (page 1050):

```python
>>> from sympy import symbols, solve, pi
>>> x = symbols('x')
>>> solve(x**2 - pi, x, dict=True)
[{-sqrt(pi)}, {sqrt(pi)}]
```

If you use the standard Python math version of $\pi$, Python will pass that inexact value to SymPy, leading to an inexact, numerical solution:

```python
>>> from sympy import symbols, solve
>>> from math import pi
>>> x = symbols('x')
>>> solve(x**2 - pi, x, dict=True)
[{-1.77245385090552}, {1.77245385090552}]
```

To use exact values for numbers such as 6.2 or 1/2, refer to *Python numbers vs. SymPy Numbers* (page 194).

In certain cases, using an inexact value will prevent SymPy from finding a result. For example, this exact equation can be solved:

```python
>>> from sympy import symbols, solve, sqrt
>>> x = symbols('x')
>>> eq = x**sqrt(2) - 2
>>> solve(eq, x, dict=True)
[[2**(sqrt(2)/2)]]
```

but if you use the inexact equation $eq = x**1.4142135623730951 - 2$, SymPy will not return a result despite attempting for a long time.

Include the Variable to be Solved for in the Function Call

We recommend you include the variable to be solved for as the second argument for solving functions including `solve()` (page 882) and `solveset()` (page 913). While this is optional for univariate equations, it is a good practice because it ensures SymPy will solve for the desired symbol. For example, you might be interested in a solution for $x$, but SymPy solves for $y$:

```python
>>> from sympy.abc import x, y
>>> from sympy import solve
```

(continues on next page)
Specifying the variable to solve for ensures that SymPy solves for it:

```python
>>> from sympy.abc import x, y
>>> from sympy import solve
>>> solve(x**2 - y, x, dict=True)
[{x: -sqrt(y)}, {x: sqrt(y)}]
```

### Ensure Consistent Formatting From `solve()`

`solve()` (page 882) produces a variety of output as explained in *Solve Output by Type* (page 204). Using `dict=True` will give a consistent output format which is especially important when extracting information about the solution programmatically.

To extract the solutions, you can iterate through the list of dictionaries:

```python
>>> from sympy import parse_expr, solve, solveset
>>> from sympy.abc import x
>>> expr = "x^2 = y"
>>> parsed = parse_expr(expr, transformations="all")
>>> parsed
Eq(x**2, y)
>>> solutions = solve(parsed, x, dict=True)
>>> [solution[x] for solution in solutions]
[-sqrt(y), sqrt(y)]
>>> solveset(parsed, x)
{(-sqrt(y), sqrt(y))}
```

### Options That Can Speed up `solve()`

#### Include Solutions Making Any Denominator Zero

Normally, `solve()` (page 882) checks whether any solutions make any denominator zero, and automatically excludes them. If you want to include those solutions, and speed up `solve()` (page 882) (at the risk of obtaining invalid solutions), set `check=False`:

```python
>>> from sympy import Symbol, sin, solve
>>> x = Symbol("x")
>>> solve(sin(x)/x, x, dict=True) # 0 is excluded
[{x: pi}]
>>> solve(sin(x)/x, x, dict=True, check=False) # 0 is not excluded
[{x: 0}, {x: pi}]
```
Do Not Simplify Solutions

Normally, `solve()` (page 882) simplifies many results before returning them and (if `check` is not `False`) uses the general `simplify()` (page 719) function on the solutions and the expression obtained when they are substituted into the function which should be zero. If you do not want the solutions simplified, and want to speed up `solve()` (page 882), use `simplify=False`.

```python
>>> from sympy import solve
>>> from sympy.abc import x, y
>>> expr = x**2 - (y**5 - 3*y**3 + y**2 - 3)
>>> solve(expr, x, dict=True)

[{x: -sqrt(y**5 - 3*y**3 + y**2 - 3)}, {x: sqrt(y**5 - 3*y**3 + y**2 - 3)}]

>>> solve(expr, x, dict=True, simplify=False)

[{x: -sqrt((y + 1)*(y**2 - 3)*(y**2 - y + 1))}, {x: sqrt((y + 1)*(y**2 - 3)*(y**2 - y + 1))}]
```

Parse a String Representing the Equation

If you are creating the expression yourself, we advise against using string parsing to create expressions. But if you are programmatically reading in a string, this approach is convenient.

You can parse a string representing the equation into a form that SymPy can understand (for example, `Eq` (page 1070) form), then solve the parsed expression. Parsing an equation from a string requires you to use `transformations` (page 2195) for SymPy to

- interpret equals signs
- create symbols from your variables
- use more mathematical (rather than standard Python) notation, for example the exponent operator can be parsed from `^` rather than having to use Python’s `**`.

If you already have the equation in `Eq` (page 1070) (equation) form, you can parse that string:

```python
>>> from sympy import parse_expr, solve, solveset
>>> from sympy.abc import x
>>> expr = "Eq(x^2, y)"
>>> parsed = parse_expr(expr, transformations="all")
>>> parsed

Eq(x**2, y)
```

SymPy can also parse LaTeX into expressions using `parse_latex()` (page 2202).

Report a Bug

If you find a bug with these commands, please post the problem on the SymPy mailing list.
3.4.2 Solve an Equation Algebraically

Use SymPy to solve an equation algebraically (symbolically). For example, solving $x^2 = y$ for $x$ yields $x \in \{-\sqrt{y}, \sqrt{y}\}$.

Alternatives to consider

- SymPy can also solve many other types of problems including sets of equations (page 131).
- Some equations cannot be solved algebraically (either at all or by SymPy), so you may have to solve your equation numerically (page 895) instead.

Solving Functions

There are two high-level functions to solve equations, solve() (page 882) and solveset() (page 913). Here is an example of each:

solve() (page 882)

```python
>>> from sympy.abc import x, y
>>> from sympy import solve
>>> solve(x**2 - y, x, dict=True)
[\{x: -\sqrt{y}\}, \{x: \sqrt{y}\}]
```

solveset() (page 913)

```python
>>> from sympy import solveset
>>> from sympy.abc import x, y
>>> solveset(x**2 - y, x)
\{-\sqrt{y}, \sqrt{y}\}
```

Here are recommendations on when to use:

- solve() (page 882)
  - You want to get explicit symbolic representations of the different values a variable could take that would satisfy the equation.
  - You want to substitute those explicit solution values into other equations or expressions involving the same variable using subs() (page 993)

- solveset() (page 913)
  - You want to represent the solutions in a mathematically precise way, using mathematical sets (page 1229).
  - You want a representation of all the solutions, including if there are infinitely many.
  - You want a consistent input interface.
  - You want to limit the domain of the solutions to any arbitrary set.
  - You do not need to programmatically extract solutions from the solution set: solution sets cannot necessarily be interrogated programmatically.
Guidance

Refer to *Include the Variable to be Solved for in the Function Call* (page 134) and *Ensure Consistent Formatting From solve()* (page 135).

Solve an Equation Algebraically

You can solve an equation in several ways. The examples below demonstrate using both *solve()* (page 882) and *solveset()* (page 913) where applicable. You can choose the function best suited to your equation.

Make Your Equation Into an Expression That Equals Zero

Use the fact that any expression not in an Eq (equation) is automatically assumed to equal zero (0) by the solving functions. You can rearrange the equation \( x^2 = y \) to \( x^2 - y = 0 \), and solve that expression. This approach is convenient if you are interactively solving an expression which already equals zero, or an equation that you do not mind rearranging to \( expression = 0 \).

```python
>>> from sympy import solve, solveset
>>> from sympy.abc import x, y
>>> solve(x**2 - y, x, dict=True)
[{-sqrt(y)}, {x: sqrt(y)}]
>>> solveset(x**2 - y, x)
{-sqrt(y), sqrt(y)}
```

Put Your Equation Into Eq Form

Put your equation into Eq form, then solve the Eq. This approach is convenient if you are interactively solving an equation which you already have in the form of an equation, or which you think of as an equality. It also helps to prevent sign errors when subtracting one side from the other.

```python
>>> from sympy import Eq, solve, solveset
>>> from sympy.abc import x, y
>>> eqn = Eq(x**2, y)
>>> solutions = solve(eqn, x, dict=True)
>>> print(solutions)
[{-sqrt(y)}, {x: sqrt(y)}]
>>> solutions_set = solveset(eqn, x)
>>> print(solutions_set)
{-sqrt(y), sqrt(y)}
>>> for solution_set in solutions_set:
... print(solution_set)
 sqrt(y)
 -sqrt(y)
```
Restrict the Domain of Solutions

By default, SymPy will return solutions in the complex domain, which also includes purely real and imaginary values. Here, the first two solutions are real, and the last two are imaginary:

```python
>>> from sympy import Symbol, solve, solveset
>>> x = Symbol('x')
>>> solve(x**4 - 256, x, dict=True)
[{x: -4}, {x: 4}, {x: -4*I}, {x: 4*I}]
>>> solveset(x**4 - 256, x)
{-4, 4, -4*I, 4*I}
```

To restrict returned solutions to real numbers, or another domain or range, the different solving functions use different methods.

For `solve()` (page 882), place an assumption on the symbol to be solved for, `x`

```python
>>> from sympy import Symbol, solve
>>> x = Symbol('x', real=True)
>>> solve(x**4 - 256, x, dict=True)
[{x: -4}, {x: 4}]
```

or restrict the solutions with standard Python techniques for filtering a list such as a list comprehension:

```python
>>> from sympy import Or, Symbol, solve
>>> expr = (x-4)*(x-3)*(x-2)*(x-1)
>>> solution = solve(expr, x)
>>> print(solution)
[1, 2, 3, 4]
>>> solution_outside_2_3 = [v for v in solution if (v.is_real and Or(v<2,v>3))]
>>> print(solution_outside_2_3)
[1, 4]
```

For `solveset()` (page 913), limit the output domain in the function call by setting a domain

```python
>>> from sympy import S, solveset
>>> from sympy.abc import x
>>> solveset(x**4 - 256, x, domain=S.Reals)
{-4, 4}
```

or by restricting returned solutions to any arbitrary set, including an interval:

```python
>>> from sympy import Interval, pi, sin, solveset
>>> from sympy.abc import x
>>> solveset(sin(x), x, Interval(-pi, pi))
{0, -pi, pi}
```

and if you restrict the solutions to a domain in which there are no solutions, `solveset()` (page 913) will return the empty set, `EmptySet` (page 1229):

```python
>>> from sympy import solveset, S
>>> from sympy.abc import x
```

(continues on next page)
Explicitly Represent Infinite Sets of Possible Solutions

`solveset()` (page 913) can represent infinite sets of possible solutions (page 906) and express them in standard mathematical notation, for example \(\sin(x) = 0\) for \(x = n \pi\) for every integer value of \(n\):

```python
>>> from sympy import pprint, sin, solveset
>>> solution = solveset(sin(x), x)
>>> pprint(solution)
{2*n*pi | n in Integers} U {2*n*pi + pi | n in Integers}
```

However, `solve()` (page 882) will return only a finite number of solutions:

```python
>>> from sympy import sin, solve
>>> from sympy.calculus.util import periodicity
>>> f = sin(x)
>>> solve(f, x)
[0, pi]
>>> periodicity(f, x)
2*pi
```

`solve()` (page 882) tries to return just enough solutions so that all (infinitely many) solutions can generated from the returned solutions by adding integer multiples of the `periodicity()` (page 304) of the equation, here \(2\pi\).

Use the Solution Result

Substitute Solutions From `solve()` Into an Expression

You can substitute solutions from `solve()` (page 882) into an expression.

A common use case is finding the critical points and values for a function \(f\). At the critical points, the Derivative (page 1088) equals zero (or is undefined). You can then obtain the function values at those critical points by substituting the critical points back into the function using `subs()` (page 993). You can also tell if the critical point is a maxima or minima by substituting the values into the expression for the second derivative: a negative value indicates a maximum, and a positive value indicates a minimum.

```python
>>> from sympy.abc import x
>>> f = x**3 + x**2 - x
>>> derivative = diff(f, x)
>>> critical_points = solve(derivative, x, dict=True)
>>> print(critical_points)
[[x: -1], [x: 1/3]]
```
```python
>>> point1, point2 = critical_points
>>> print(f.subs(point1))
1
>>> print(f.subs(point2))
-5/27
>>> curvature = diff(f, x, 2)
>>> print(curvature.subs(point1))
-4
>>> print(curvature.subs(point2))
4
```

**solve()**  
_Solution Sets Cannot Necessarily Be Interrogated Programmatically_

If `solve()` (page 913) returns a finite set (class `FiniteSet` (page 1241)), you can iterate through the solutions:

```python
>>> from sympy import solveset
>>> from sympy.abc import x, y
>>> solution_set = solveset(x**2 - y, x)
>>> print(solution_set)
{-sqrt(y), sqrt(y)}
>>> solution_list = list(solution_set)
[sqrt(y), -sqrt(y)]
```

However, for more complex results, it may not be possible to list the solutions:

```python
>>> from sympy import S, solveset, symbols
>>> x, y = symbols('x, y')
>>> solution_set = solveset(x**2 - y, x, domain=S.Reals)
>>> print(solution_set)
Intersection({-sqrt(y), sqrt(y)}, Reals)
>>> list(solution_set)
Traceback (most recent call last):
 ...
TypeError: The computation had not completed because of the undecidable set membership is found in every candidates.
```

In this case, it is because, if \(y\) is negative, its square root would be imaginary rather than real and therefore outside the declared domain of the solution set. By declaring \(y\) to be real and positive, SymPy can determine that its square root is real, and thus resolve the intersection between the solutions and the set of real numbers:

```python
>>> from sympy import S, Symbol, solveset
>>> x = Symbol('x')
>>> y = Symbol('y', real=True, positive=True)
>>> solution_set = solveset(x**2 - y, x, domain=S.Reals)
>>> print(solution_set)
{-sqrt(y), sqrt(y)}
>>> list(solution_set)
[sqrt(y), -sqrt(y)]
```

3.4. Solve Equations
Alternatively, you can extract the sets from the solution set using `args` (page 980), then create a list from the set containing the symbolic solutions:

```python
>>> from sympy import S, solveset, symbols
>>> x, y = symbols('x, y')
>>> solution_set = solveset(x**2 - y, x, domain=S.Reals)
>>> print(solution_set)
Intersection({-sqrt(y), sqrt(y)}, Reals)
>>> solution_set_args = solution_set.args
>>> print(solution_set_args)
(Reals, {-sqrt(y), sqrt(y)})
>>> list(solution_set_args[1])
[sqrt(y), -sqrt(y)]
```

**Options That Can Speed up solve()**

Refer to *solving guidance* (page 135).

**Not All Equations Can Be Solved**

**Equations With No Closed-Form Solution**

Some equations have no closed-form solution, in which case SymPy may return an empty set or give an error. For example, the following transcendental equation has no closed-form solution:

```python
>>> from sympy import cos, solve
>>> from sympy.abc import x
>>> solve(cos(x) - x, x, dict=True)
Traceback (most recent call last):
 ... NotImplementedError: multiple generators [x, cos(x)]
No algorithms are implemented to solve equation -x + cos(x)
```

**Equations Which Have a Closed-Form Solution, and SymPy Cannot Solve**

It is also possible that there is an algebraic solution to your equation, and SymPy has not implemented an appropriate algorithm. If that happens, or SymPy returns an empty set or list when there is a mathematical solution (indicating a bug in SymPy), please post it on the mailing list, or open an issue on SymPy’s GitHub page. Until the issue is resolved, you can *solve your equation numerically* (page 895) instead.
Report a Bug

If you find a bug with a solving function, please post the problem on the SymPy mailing list. Until the issue is resolved, you can use a different method listed in Alternatives to consider (page 137).

3.4.3 Solve a System of Equations Algebraically

Use SymPy to algebraically solve a system of equations, whether linear or nonlinear. For example, solving \( x^2 + y = 2z, y = -4z \) for \( x \) and \( y \) (assuming \( z \) is a constant or parameter) yields \( \{ (x = -\sqrt{6}z, y = -4z), (x = \sqrt{6}z, y = -4z) \} \).

Alternatives to Consider

- Some systems of equations cannot be solved algebraically (either at all or by SymPy), so you may have to solve your system of equations numerically (page 146) using nsolve() (page 895) instead.

Examples of Solving a System of Equations Algebraically

Whether your equations are linear or nonlinear, you can use solve() (page 882):

Solve a System of Linear Equations Algebraically

\[
\begin{align*}
\text{from sympy import solve} \\
\text{from sympy.abc import } x, y, z \\
\text{solve([}x + y - 2*z, y + 4*z\text{], }[x, y], \text{dict=True}) \\
\{x: 6*z, y: -4*z\}
\end{align*}
\]

Solve a System of Nonlinear Equations Algebraically

\[
\begin{align*}
\text{from sympy import solve} \\
\text{from sympy.abc import } x, y, z \\
\text{solve([}x^2 + y - 2*z, y + 4*z\text{], }[x, y], \text{dict=True}) \\
\{x: -sqrt(6)*sqrt(z), y: -4*z\}, \{x: sqrt(6)*sqrt(z), y: -4*z\}
\end{align*}
\]

Guidance

Refer to Include the Variable to be Solved for in the Function Call (page 134) and Ensure Consistent Formatting From solve() (page 135).

There are two methods below for containing solution results: dictionary (page 144) or set (page 144). A dictionary is easier to interrogate programatically, so if you need to extract solutions using code, we recommend the dictionary approach.
Solve and Use Results in a Dictionary

Solve Into a Solution Given as a Dictionary

You can solve a system of equations for some variables (for example, \(x\) and \(y\)) leaving another symbol as a constant or parameter (for example, \(z\)). You can specify the variables to solve for as multiple separate arguments, or as a list (or tuple):

```python
>>> from sympy import solve
>>> from sympy.abc import x, y, z
>>> equations = [x**2 + y - 2*z, y + 4*z]
>>> solutions = solve(equations, x, y, dict=True)
>>> solutions
[{x: -sqrt(6)*sqrt(z), y: -4*z}, {x: sqrt(6)*sqrt(z), y: -4*z}]
```

Use a Solution Given as a Dictionary

You can then extract solutions by indexing (specifying in brackets) the solution number, and then the symbol. For example `solutions[0][x]` gives the result for \(x\) in the first solution:

```python
>>> solutions[0][x]
-sqrt(6)*sqrt(z)
>>> solutions[0][y]
-4*z
```

Solve Results in a Set

To get a list of symbols and set of solutions, use `set=True` instead of `dict=True`:

```python
from sympy import solve
from sympy.abc import x, y, z
solve([x**2 + y - 2*z, y + 4*z], [x, y], set=True)
([x, y], {(-sqrt(6)*sqrt(z), -4*z), (sqrt(6)*sqrt(z), -4*z)})
```

Options That Can Speed up `solve()`

Refer to `Options That Can Speed up solve()` (page 135).

Not All Systems of Equations Can be Solved

Systems of Equations With no Solution

Some systems of equations have no solution. For example, the following two systems have no solution because they reduce to \(1 == 0\), so SymPy returns an empty list:
The following system reduces to \( z = 2z \), so it has no general solution, but it could be satisfied if \( z = 0 \). Note that \( \text{solve}() \) (page 882) will not assume that \( z = 0 \), even though that is the only value of \( z \) that makes the system of equations consistent, because \( z \) is a parameter rather than an unknown. That is, \( \text{solve}() \) (page 882) does not treat \( z \) as an unknown because it is not in the list of symbols specified as unknowns ([\( x, y \)]) and all such symbols are treated like parameters with arbitrary value. Whether a symbol is treated as a variable or a parameter is determined only by whether it is specified as a symbol to solve for in \( \text{solve}() \) (page 882). There is no such distinction made when creating the symbol using \( \text{symbols}() \) (page 1030) (or importing from \( \text{abc} \) (page 931)).

The following system is overconstrained, meaning there are more equations (three) than unknowns to be solved for (two, namely \( x \) and \( y \)). It has no solution:

Note that some overconstrained systems do have solutions (for example, if an equation is a linear combination of the others), in which case SymPy can solve the overconstrained system.

### Systems of Equations With no Closed-Form Solution

Some systems of equations cannot be solved algebraically, for example those containing transcendental equations:

So you can use \( \text{nsolve}() \) (page 895) to find a numerical solution (page 146):
Equations Which Have a Closed-Form Solution, and SymPy Cannot Solve

It is also possible that there is an algebraic solution to your equation, and SymPy has not implemented an appropriate algorithm. If SymPy returns an empty set or list when you know there is a closed-form solution (indicating a bug in SymPy), please post it on the mailing list, or open an issue on SymPy's GitHub page. Until the issue is resolved, you can use a different method listed in Alternatives to Consider (page 143).

Report a Bug

If you find a bug with solve() (page 882), please post the problem on the SymPy mailing list. Until the issue is resolved, you can use a different method listed in Alternatives to Consider (page 143).

3.4.4 Solve One or a System of Equations Numerically

Use SymPy to numerically solve a system of one or more equations. For example, numerically solving $\cos(x) = x$ returns $x \approx 0.739085133215161$.

Solving numerically is useful if:

- You only need a numeric solution, not a symbolic one
- A closed-form solution is not available or is overly complicated; refer to When You Might Prefer a Numeric Solution (page 133)

solve() (page 882) and solveset() (page 913) will not try to find a numeric solution, only a mathematically-exact symbolic solution. So if you want a numeric solution, use nsolve() (page 895).

SymPy is designed for symbolic mathematics. If you do not need to do symbolic operations, then for numerical operations you can use another free and open-source package such as NumPy or SciPy which will be faster, work with arrays, and have more algorithms implemented. The main reasons to use SymPy (or its dependency mpmath) for numerical calculations are:

- to do a simple numerical calculation within the context of a symbolic calculation using SymPy
- if you need the arbitrary precision capabilities to get more digits of precision than you would get from float64.
Alternatives to Consider

- SciPy's `scipy.optimize.fsolve()` can solve a system of (non-linear) equations
- NumPy's `numpy.linalg.solve()` can solve a system of linear scalar equations
- mpmath's `findroot()`, which `nsolve()` (page 895) calls and can pass parameters to

Example of Numerically Solving an Equation

Here is an example of numerically solving one equation:

```python
>>> from sympy import cos, nsolve, Symbol
>>> x = Symbol('x')
>>> nsolve(cos(x) - x, x, 1)
0.739085133215161
```

Guidance

Overdetermined systems of equations are supported.

Find Complex Roots of a Real Function

To solve for complex roots of real functions, specify a nonreal (either purely imaginary, or complex) initial point:

```python
>>> from sympy import nsolve
>>> from sympy.abc import x
>>> nsolve(x**2 + 2, 1) # Real initial point returns no root
Traceback (most recent call last):
 ... ValueError: Could not find root within given tolerance. (4.18466446988997098217 > 2.16840434497100886801e-19)
Try another starting point or tweak arguments.
>>> nsolve(x**2 + 2, I) # Imaginary initial point returns a complex root
1.4142135623731*I
>>> nsolve(x**2 + 2, 1 + I) # Complex initial point returns a complex root
1.4142135623731*I
```

Ensure the Root Found is in a Given Interval

It is not guaranteed that `nsolve()` (page 895) will find the root closest to the initial point. Here, even though the root -1 is closer to the initial point of -0.1, `nsolve()` (page 895) finds the root 1:

```python
>>> from sympy import nsolve
>>> from sympy.abc import x
>>> nsolve(x**2 - 1, -0.1)
1.0000000000000
```
You can ensure the root found is in a given interval, if such a root exists, using `solver='bisect'` by specifying the interval in a tuple. Here, specifying the interval `(-10, 0)` ensures that the root `-1` is found:

```python
>>> from sympy import nsolve
>>> from sympy.abc import x
>>> nsolve(x**2 - 1, (-10, 0), solver='bisect')
-1.00000000000000
```

### Solve a System of Equations Numerically

To solve a system of multidimensional functions, supply a tuple of

- functions `(f1, f2)`
- variables to solve for `(x1, x2)`
- starting values `(-1, 1)`

```python
>>> from sympy import Symbol, nsolve
>>> x1 = Symbol('x1')
>>> x2 = Symbol('x2')
>>> f1 = 3 * x1**2 - 2 * x2**2 - 1
>>> f2 = x1**2 - 2 * x1 + x2**2 + 2 * x2 - 8
>>> print(nsolve((f1, f2), (x1, x2), (-1, 1)))
Matrix([[1.19287309935246], [1.27844411169911]])
```

### Increase Precision of the Solution

You can increase the precision of the solution using `prec`:

```python
>>> from sympy import Symbol, nsolve
>>> x1 = Symbol('x1')
>>> x2 = Symbol('x2')
>>> f1 = 3 * x1**2 - 2 * x2**2 - 1
>>> f2 = x1**2 - 2 * x1 + x2**2 + 2 * x2 - 8
>>> print(nsolve((f1, f2), (x1, x2), (-1, 1), prec=25))
Matrix([[1.192873099352460791205211], [1.278444111699106966687122]])
```

### Create a Function That Can Be Solved With SciPy

As noted above, SymPy focuses on symbolic computation and is not optimized for numerical calculations. If you need to make many calls to a numerical solver, it can be much faster to use a solver optimized for numerical calculations such as SciPy’s `root_scalar()`. A recommended workflow is:

1. use SymPy to generate (by symbolically simplifying or solving an equation) the mathematical expression
2. convert it to a lambda function using `lambdify()` (page 2173)
3. use a numerical library such as SciPy to generate numerical solutions
Use the Solution Result

Substitute the Result Into an Expression

The best practice is to use `evalf()` (page 1111) to substitute numerical values into expressions. The following code demonstrates that the numerical value is not an exact root because substituting it back into the expression produces a result slightly different from zero:

```python
>>> from sympy import cos, nsolve, Symbol
>>> x = Symbol('x')
>>> f = cos(x) - x
>>> x_value = nsolve(f, x, 1); x_value
0.739085133215161
>>> f.evalf(subs={x: x_value})
-5.12757857962640e-17
```

Using `subs` (page 993) can give an incorrect result due to precision errors, here effectively rounding -5.12757857962640e-17 to zero:

```python
>>> f.subs(x, x_value)
0
```

When substituting in values, you can also leave some symbols as variables:

```python
>>> from sympy import cos, nsolve, Symbol
>>> x = Symbol('x')
>>> f = cos(x) - x
>>> x_value = nsolve(f, x, 1); x_value
0.739085133215161
>>> y = Symbol('y')
>>> z = Symbol('z')
>>> g = x * y**2
>>> values = {x: x_value, y: 1}
>>> (x + y - z).evalf(subs=values)
1.73908513321516 - z
```
**Not all Equations Can be Solved**

`nsolve()` (page 895) is a numerical solving function, so it can often provide a solution for equations which cannot be solved algebraically.

**Equations With no Solution**

Some equations have no solution, in which case SymPy may return an error. For example, the equation $e^x = 0$ (exp(x) in SymPy) has no solution:

```python
>>> from sympy import nsolve, exp
>>> from sympy.abc import x
>>> nsolve(exp(x), x, 1, prec=20)
Traceback (most recent call last):
 ... ValueError: Could not find root within given tolerance. (5.4877893607115270300540019e-18 > 1.6543612251060553497428174e-24)
Try another starting point or tweak arguments.
```

**Report a Bug**

If you find a bug with `nsolve()` (page 895), please post the problem on the SymPy mailing list. Until the issue is resolved, you can use a different method listed in *Alternatives to Consider* (page 147).

**3.4.5 Solve an Ordinary Differential Equation (ODE) Algebraically**

Use SymPy to solve an ordinary differential equation (ODE) algebraically. For example, solving $y''(x) + 9y(x) = 0$ yields $y(x) = C_1 \sin(3x) + C_2 \cos(3x)$.

**Alternatives to Consider**

- To numerically solve a system of ODEs, use a SciPy ODE solver such as `solve_ivp`. You can also use SymPy to create and then `lambdify()` (page 2173) an ODE to be solved numerically using SciPy’s as `solve_ivp` as described below in *Numerically Solve an ODE in SciPy* (page 156).

**Solve an Ordinary Differential Equation (ODE)**

Here is an example of solving the above ordinary differential equation algebraically using `dsolve()` (page 807). You can then use `checkodesol()` (page 814) to verify that the solution is correct.

```python
>>> from sympy import Function, dsolve, Derivative, checkodesol
>>> from sympy.abc import x
>>> y = Function('y')
>>> # Solve the ODE
```
>>> result = dsolve(Derivative(y(x), x, x) + 9*y(x), y(x))
>>> result
Eq(y(x), C1*sin(3*x) + C2*cos(3*x))
>>> # Check that the solution is correct
>>> checkodesol(Derivative(y(x), x, x) + 9*y(x), result)
(True, 0)

The output of `checkodesol()` (page 814) is a tuple where the first item, a boolean, tells whether substituting the solution into the ODE results in 0, indicating the solution is correct.

**Guidance**

**Defining Derivatives**

There are many ways to express derivatives of functions. For an undefined function, both `Derivative` (page 1088) and `diff()` (page 1094) represent the undefined derivative. Thus, all of the following `ypp` (“y prime prime”) represent $y''$, the second derivative with respect to $x$ of a function $y(x)$:

```python
ypp = y(x).diff(x, x)
ypp = y(x).diff(x, 2)
ypp = y(x).diff((x, 2))
ypp = diff(y(x), x, x)
ypp = diff(y(x), x, 2)
ypp = Derivative(y(x), x, x)
ypp = Derivative(y(x), x, 2)
ypp = Derivative(Derivative(y(x), x), x)
ypp = diff(diff(y(x), x), x)
yp = y(x).diff(x)
ypp = yp.diff(x)
```

We recommend specifying the function to be solved for, as the second argument to `dsolve()` (page 807). Note that it must be a function rather than a variable (symbol). SymPy will give an error if you specify a variable ($x$) rather than a function ($f(x)$):

```python
>>> dsolve(Derivative(y(x), x, x) + 9*y(x), x)
Traceback (most recent call last):
...
ValueError: dsolve() and classify_ode() only work with functions of one variable, not x
```

Similarly, you must specify the argument of the function: $y(x)$, not just $y$.
**Options to Define an ODE**

You can define the function to be solved for in two ways. The subsequent syntax for specifying initial conditions depends on your choice.

### Option 1: Define a Function Without Including Its Independent Variable

You can define a function without including its independent variable:

```python
>>> from sympy import symbols, Eq, Function, dsolve
>>> f, g = symbols("f g", cls=Function)
>>> x = symbols("x")
>>> eqs = [Eq(f(x).diff(x), g(x)), Eq(g(x).diff(x), f(x))]
>>> dsolve(eqs, [f(x), g(x)])
[Eq(f(x), -C1*exp(-x) + C2*exp(x)), Eq(g(x), C1*exp(-x) + C2*exp(x))]
```

Note that you supply the functions to be solved for as a list as the second argument of `dsolve()` (page 807), here `[f(x), g(x)]`.

### Specify Initial Conditions or Boundary Conditions

If your differential equation(s) have initial or boundary conditions, specify them with the `dsolve()` (page 807) optional argument `ics`. Initial and boundary conditions are treated the same way (even though the argument is called `ics`). It should be given in the form of `{f(x0): y0, f(x).diff(x).subs(x, x1): y1}` and so on where, for example, the value of \( f(x) \) at \( x = x_0 \) is \( y_0 \). For power series solutions, if no initial conditions are specified \( f(0) \) is assumed to be \( C_0 \) and the power series solution is calculated about \( 0 \).

Here is an example of setting the initial values for functions, namely namely \( f(0) = 1 \) and \( g(2) = 3 \):

```python
>>> from sympy import symbols, Eq, Function, dsolve
>>> f, g = symbols("f g", cls=Function)
>>> x = symbols("x")
>>> eqs = [Eq(f(x).diff(x), g(x)), Eq(g(x).diff(x), f(x))]
>>> dsolve(eqs, [f(x), g(x)], ics={f(0): 1, g(2): 3})
[Eq(f(x), (1 + 3*exp(2))*exp(x)/(1 + exp(4)) - (-exp(4) + 3*exp(2))*exp(-x)/
 → (1 + exp(4)), Eq(g(x), (1 + 3*exp(2))*exp(x)/(1 + exp(4)) + (-exp(4) +
 → 3*exp(2))*exp(-x)/(1 + exp(4)))]
```

Here is an example of setting the initial value for the derivative of a function, namely \( f'(1) = 2 \):

```python
>>> eqn = Eq(f(x).diff(x), f(x))
>>> dsolve(eqn, f(x), ics={f(x).diff(x).subs(x, 1): 2})
Eq(f(x), 2*exp(-1)*exp(x))
```
Option 2: Define a Function of an Independent Variable

You may prefer to specify a function (for example $y$) of its independent variable (for example $t$), so that $y$ represents $y(t)$:

```python
>>> from sympy import symbols, Function, dsolve
>>> t = symbols('t')
>>> y = Function('y')(t)
>>> y
y(t)
>>> yp = y.diff(t)
>>> ypp = yp.diff(t)
>>> eq = ypp + 2*yp + y
>>> eq
y(t) + 2*Derivative(y(t), t) + Derivative(y(t), (t, 2))
>>> dsolve(eq, y)
Eq(y(t), (C1 + C2*t)*exp(-t))
```

Using this convention, the second argument of `dsolve()` (page 807), $y$, represents $y(t)$, so SymPy recognizes it as a valid function to solve for.

Specify Initial Conditions or Boundary Conditions

Using that syntax, you specify initial or boundary conditions by substituting in values of the independent variable using `subs()` (page 993) because the function $y$ already has its independent variable as an argument $t$:

```python
>>> dsolve(eq, y, ics={y.subs(t, 0): 0})
Eq(y(t), C2*t*exp(-t))
```

Beware Copying and Pasting Results

If you choose to define a function of an independent variable, note that copying a result and pasting it into subsequent code may cause an error because $x$ is already defined as $y(t)$, so if you paste in $y(t)$ it is interpreted as $y(t)(t)$:

```python
>>> dsolve(y(t).diff(y), y)
Traceback (most recent call last):
 ...
TypeError: 'y' object is not callable
```

So remember to exclude the independent variable call $(t)$:

```python
>>> dsolve(y.diff(t), y)
Eq(y(t), C1)
```
**Use the Solution Result**

Unlike other solving functions, `dsolve()` (page 807) returns an `Equality` (page 1071) (equation) formatted as, for example, \( Eq(y(x), C1\sin(3x) + C2\cos(3x)) \) which is equivalent to the mathematical notation \( y(x) = C_1 \sin(3x) + C_2 \cos(3x) \).

**Extract the Result for One Solution and Function**

You can extract the result from an `Equality` (page 1071) using the right-hand side property `rhs` (page 1070):

```python
>>> from sympy import Function, dsolve, Derivative
>>> from sympy.abc import x
>>> y = Function('y')
>>> result = dsolve(Derivative(y(x), x, x) + 9*y(x), y(x))
>>> result
Eq(y(x), C1*sin(3*x) + C2*cos(3*x))
>>> result.rhs
C1*sin(3*x) + C2*cos(3*x)
```

**Some ODEs Cannot Be Solved Explicitly, Only Implicitly**

The above ODE can be solved explicitly, specifically \( y(x) \) can be expressed in terms of functions of \( x \). However, some ODEs cannot be solved explicitly, for example:

```python
>>> from sympy import dsolve, exp, symbols, Function
>>> f = symbols("f", cls=Function)
>>> x = symbols("x")
>>> dsolve(f(x).diff(x) + exp(-f(x))*f(x))
Eq(Ei(f(x)), C1 - x)
```

This gives no direct expression for \( f(x) \). Instead, `dsolve()` (page 807) expresses a solution as \( g(f(x)) \) where \( g \) is \( Ei \) (page 540), the classical exponential integral function. \( Ei \) does not have a known closed-form inverse, so a solution cannot be explicitly expressed as \( f(x) \) equaling a function of \( x \). Instead, `dsolve` returns an implicit solution.

When `dsolve` returns an implicit solution, extracting the right-hand side of the returned equality will not give an explicitly expression for the function to be solved for, here \( f(x) \). So before extracting an expression for the function to be solved for, check that `dsolve` was able to solve for the function explicitly.

**Extract the Result for Multiple Function-Solution Pairs**

If you are solving a system of equations with multiple unknown functions, the form of the output of `dsolve()` (page 807) depends on whether there is one or multiple solutions.
If There is One Solution Set

If there is only one solution set to a system of equations with multiple unknown functions, `dsolve()` (page 807) will return a non-nested list containing an equality. You can extract the solution expression using a single loop or comprehension:

```python
>>> from sympy import symbols, Eq, Function, dsolve
>>> y, z = symbols("y z", cls=Function)
>>> x = symbols("x")
>>> eqs_one_soln_set = [Eq(y(x).diff(x), z(x)**2), Eq(z(x).diff(x), z(x))]
>>> solutions_one_soln_set = dsolve(eqs_one_soln_set, [y(x), z(x)])
>>> solutions_one_soln_set
[Eq(y(x), C1 + C2**2*exp(2*x)/2), Eq(z(x), C2*exp(x))]
>>> # Loop through list approach
>>> solution_one_soln_set_dict = {}
>>> for fn in solutions_one_soln_set:
... solution_one_soln_set_dict.update({fn.lhs: fn.rhs})
>>> solution_one_soln_set_dict
{y(x): C1 + C2**2*exp(2*x)/2, z(x): C2*exp(x)}
>>> # List comprehension approach
>>> solution_one_soln_set_dict =
{fn.lhs:fn.rhs for fn in solutions_one_soln_set}
>>> solution_one_soln_set_dict
{y(x): C1 + C2**2*exp(2*x)/2, z(x): C2*exp(x)}
>>> # Extract expression for y(x)
>>> solution_one_soln_set_dict[y(x)]
C1 + C2**2*exp(2*x)/2
```

If There are Multiple Solution Sets

If there are multiple solution sets to a system of equations with multiple unknown functions, `dsolve()` (page 807) will return a nested list of equalities, the outer list representing each solution and the inner list representing each function. While you can extract results by specifying the index of each function, we recommend an approach which is robust with respect to function ordering. The following converts each solution into a dictionary so you can easily extract the result for the desired function. It uses standard Python techniques such as loops or comprehensions, in a nested fashion.

```python
>>> from sympy import symbols, Eq, Function, dsolve
>>> y, z = symbols("y z", cls=Function)
>>> x = symbols("x")
>>> eqs = [Eq(y(x).diff(x)**2, z(x)**2), Eq(z(x).diff(x), z(x))]
>>> solutions = dsolve(eqs, [y(x), z(x)])
>>> solutions
[[Eq(y(x), C1 - C2*exp(x)), Eq(z(x), C2*exp(x))], [Eq(y(x), C1 + C2*exp(x)), Eq(z(x), C2*exp(x))]]
>>> # Nested list approach
>>> solutions_list = []
>>> for solution in solutions:
... solution_dict = {}
... for fn in solution:
... solution_dict.update({fn.lhs: fn.rhs})
>>> solutions_list
[[{y(x): C1 - C2*exp(x), z(x): C2*exp(x)}], [{y(x): C1 + C2*exp(x), z(x): C2*exp(x)}]]
```
Work With Arbitrary Constants

You can manipulate arbitrary constants such as \( C_1 \), \( C_2 \), and \( C_3 \), which are generated automatically by \texttt{dsolve()} (page 807), by creating them as symbols. For example, if you want to assign values to arbitrary constants, you can create them as symbols and then substitute in their values using \texttt{subs()} (page 993):

```python
>>> from sympy import Function, dsolve, Derivative, symbols, pi
>>> y = Function('y')
>>> x, C1, C2 = symbols("x, C1, C2")
>>> result = dsolve(Derivative(y(x), x, x) + 9*y(x), y(x)).rhs
>>> result
C1*sin(3*x) + C2*cos(3*x)
>>> result.subs({C1: 7, C2: pi})
7*sin(3*x) + pi*cos(3*x)
```

Numerically Solve an ODE in SciPy

A common workflow which leverages SciPy’s fast numerical ODE solving is

1. set up an ODE in SymPy
2. convert it to a numerical function using \texttt{lambdify()} (page 2173)
3. solve the initial value problem by numerically integrating the ODE using SciPy’s \texttt{solve_ivp}.

Here is an example from the field of chemical kinetics where the nonlinear ordinary differen-
Partial differential equations take this form:

\[ r_f = k_f y_0(t)^2 y_1(t) \]
\[ r_b = k_b y_2(t)^2 \]
\[ \frac{dy_0(t)}{dt} = 2(r_b - r_f) \]
\[ \frac{dy_1(t)}{dt} = r_b - r_f \]
\[ \frac{dy_2(t)}{dt} = 2(r_f - r_b) \]

and

\[ \ddot{y}(t) = \begin{bmatrix} y_0(t) \\ y_1(t) \\ y_2(t) \end{bmatrix} \]

```python
>>> from sympy import symbols, lambdify
>>> import numpy as np
>>> import scipy.integrate
>>> import matplotlib.pyplot as plt
>>> # Create symbols y0, y1, and y2
>>> y = symbols('y:3')
>>> kf, kb = symbols('kf kb')
>>> rf = kf * y[0]**2 * y[1]
>>> rb = kb * y[2]**2
>>> # Derivative of the function y(t); values for the three chemical species
>>> # for input values y, kf, and kb
>>> ydot = [2*(rb - rf), rb - rf, 2*(rf - rb)]
>>> t = symbols('t') # not used in this case
>>> # Convert the SymPy symbolic expression for ydot into a form that
>>> # SciPy can evaluate numerically, f
>>> f = lambdify((t, y, kf, kb), ydot)
>>> k_vals = np.array([0.42, 0.17]) # arbitrary in this case
>>> y0 = [1, 1, 0] # initial condition (initial values)
>>> t_eval = np.linspace(0, 10, 50) # evaluate integral from t = 0-10 for 50 points
>>> # Call SciPy's ODE initial value problem solver solve_ivp by passing it
>>> # the function f,
>>> # the interval of integration,
>>> # the initial state, and
>>> # the arguments to pass to the function f
>>> solution = scipy.integrate.solve_ivp(f, (0, 10), y0, t_eval=t_eval, args=k_vals)
>>> # Extract the y (concentration) values from SciPy solution result
>>> y = solution.y
>>> # Plot the result graphically using matplotlib
>>> plt.plot(t_eval, y.T)
>>> # Add title, legend, and axis labels to the plot
>>> plt.title('Chemical Kinetics')
```

(continues on next page)
SciPy's `solve_ivp` returns a result containing \( y \) (numerical function result, here, concentration) values for each of the three chemical species, corresponding to the time points \( t_{\text{eval}} \).

### Ordinary Differential Equation Solving Hints

#### Return Unevaluated Integrals

By default, `dsolve()` (page 807) attempts to evaluate the integrals it produces to solve your ordinary differential equation. You can disable evaluation of the integrals by using `Hint Functions` (page 818) ending with `_Integral`, for example `separable_Integral`. This is useful because `integrate()` (page 1016) is an expensive routine. SymPy may hang (appear to never complete the operation) because of a difficult or impossible integral, so using an `_Integral` hint will at least return an (unintegrated) result, which you can then consider. The simplest way to disable integration is with the `all_Integral` hint because you do not need to know
which hint to supply: for any hint with a corresponding _Integral hint, all_Integral only returns the _Integral hint.

**Select a Specific Solver**

You may wish to select a specific solver using a hint for a couple of reasons:

- educational purposes: for example if you are learning about a specific method to solve ODEs and want to get a result that exactly matches that method
- form of the result: sometimes an ODE can be solved by many different solvers, and they can return different results. They will be mathematically equivalent, though the arbitrary constants may not be. *dsolve()* (page 807) by default tries to use the “best” solvers first, which are most likely to return the most usable output, but it is not a perfect heuristic. For example, the “best” solver may produce a result with an integral that SymPy cannot solve, but another solver may produce a different integral that SymPy can solve. So if the solution isn’t in a form you like, you can try other hints to check whether they give a preferable result.

**Not All Equations Can Be Solved**

**Equations With No Solution**

Not all differential equations can be solved, for example:

```python
>>> from sympy import Function, dsolve, Derivative, symbols
>>> y = Function('y')
>>> x, C1, C2 = symbols("x, C1, C2")
>>> dsolve(Derivative(y(x), x, 3) - (y(x)**2), y(x)).rhs
Traceback (most recent call last):
... NotImplementedError: solve: Cannot solve -y(x)**2 + Derivative(y(x), (x, 3))
```

**Equations With No Closed-Form Solution**

As noted above, *Some ODEs Cannot Be Solved Explicitly, Only Implicitly* (page 154).

Also, some systems of differential equations have no closed-form solution because they are chaotic, for example the Lorenz system or a double pendulum described by these two differential equations (simplified from *ScienceWorld*):

\[
2\dot{\theta}_1''(t) + \theta_2''(t) \cos(\theta_1 - \theta_2) + \theta_2''(t) \sin(\theta_1 - \theta_2) + 2g \sin(\theta_1) = 0
\]

\[
\theta_2''(t) + \theta_1''(t) \cos(\theta_1 - \theta_2) - \theta_2''(t) \sin(\theta_1 - \theta_2) + g \sin(\theta_2) = 0
\]

```python
>>> from sympy import symbols, Function, cos, sin, dsolve
>>> theta1, theta2 = symbols('thetal theta2', cls=Function)
>>> g, t = symbols('g t')
>>> eq1 = 2*theta1(t).diff(t, t) + theta2(t).diff(t, t)*cos(theta1(t) - theta2(t)) + 2*theta1(t).diff(t)*sin(theta1(t) - theta2(t)) + 2*g*sin(theta1(t))
>>> eq2 = theta2(t).diff(t, t) + theta1(t).diff(t, t)*cos(theta1(t) - theta2(t)) - theta2(t).diff(t)*sin(theta1(t) - theta2(t)) + g*sin(theta2(t))
```

(continues on next page)
... \( \sin(\theta_1(t)) \)

>>> eq2 = theta2(t).diff(t, t) + theta1(t).diff(t)**2 * sin(theta1(t) - theta2(t))

>>> dsolve([eq1, eq2], [theta1(t), theta2(t)])
Traceback (most recent call last):
... 
NotImplementedError

For such cases, you can solve the equations numerically as mentioned in *Alternatives to Consider* (page 150).

**Report a Bug**

If you find a bug with *dsolve()* (page 807), please post the problem on the SymPy mailing list. Until the issue is resolved, you can use a different method listed in *Alternatives to Consider* (page 150).

### 3.4.6 Find the Roots of a Polynomial Algebraically or Numerically

Use SymPy to find the roots of a univariate polynomial algebraically. For example, finding the roots of \( ax^2 + bx + c \) for \( x \) yields \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \).

**Alternatives to Consider**

- If you need a numeric (rather than algebraic) solution, you can use either
  - NumPy’s *roots()
  - SciPy’s *root()
- If you need to solve systems of polynomial equations algebraically, use *solve()* (page 882)

**Example of Finding the Roots of a Polynomial Algebraically**

Here is an example of finding the roots of a polynomial algebraically:

>>> from sympy import roots
>>> from sympy.abc import x, a, b, c
>>> roots(a*x**2 + b*x + c, x)
{-b/(2*a) - sqrt(-4*a*c + b**2)/(2*a): 1, 
  -b/(2*a) + sqrt(-4*a*c + b**2)/(2*a): 1}

This example reproduces the quadratic formula.
Functions to Find the Roots of a Polynomial

There are several functions that you can use to find the roots of a polynomial:

- `solve()` (page 882) is a general solving function which can find roots, though is less efficient than `all_roots()` (page 2456) and is the only function in this list that does not convey the multiplicity of roots; `solve()` (page 882) also works on non-polynomial equations (page 137) and systems of non-polynomial equations (page 143)

- `roots()` (page 2512) computes the symbolic roots of a univariate polynomial; will fail for most high-degree polynomials (five or greater)

- `nroots()` (page 2450) computes numerical approximations of the roots of any polynomial whose coefficients can be numerically evaluated, whether the coefficients are rational or irrational

- `RootOf()` (page 2507) can represent all the roots exactly of a polynomial of arbitrarily large degree, as long as the coefficients are rational numbers. `RootOf()` (page 2507) can avoid both ill-conditioning and returning spurious complex parts because it uses a more exact, but much slower, numerical algorithm based on isolating intervals. The following two functions use `RootOf()` (page 2507) so they have the same properties:
  - `real_roots()` (page 2449) can find all the real roots exactly of a polynomial of arbitrarily large degree; because it finds only the real roots, it can be more efficient than functions that find all roots.
  - `all_roots()` (page 2456) can find all the roots exactly of a polynomial of arbitrarily large degree

- `factor()` (page 2447) factors a polynomial into irreducibles and can reveal that roots lie in the coefficient ring

Each will be used on this page.

Guidance

Refer to Include the Variable to be Solved for in the Function Call (page 134) and Use Exact Values (page 134).

Find the Roots of a Polynomial

You can find the roots of a polynomial algebraically in several ways. The one to use depends on whether you

- want an algebraic or numeric answer

- want the multiplicity of each root (how many times each root is a solution). In the expression below representing \((x + 2)^2(x - 3)\), the root -2 has a multiplicity of two because \(x + 2\) is squared, whereas 3 has a multiplicity of one because \(x - 3\) has no exponent. Similarly, for the symbolic expression, the root \(-a\) has a multiplicity of two and the root \(b\) has a multiplicity of one.

```python
>>> from sympy import solve, roots, real_roots, factor, nroots, RootOf, expand
>>> from sympy import Poly
>>> expression = (x+2)**2 * (x-3)
>>> symbolic = (x+a)**2 * (x-b)```
Algebraic Solution Without Root Multiplicities

You can use SymPy’s standard `solve()` (page 882) function, though it will not return the multiplicity of roots:

```python
>>> solve(expression, x, dict=True)
[{x: -2}, {x: 3}]
>>> solve(symbolic, x, dict=True)
[{x: -a}, {x: b}]
```

`solve()` (page 882) will first try using `roots()` (page 2512); if that doesn’t work, it will try using `all_roots()` (page 2456). For cubics (third-degree polynomials) and quartics (fourth-degree polynomials), that means that `solve()` (page 882) will use radical formulae from roots rather than `RootOf()` (page 2507) even if RootOf is possible. The cubic and quartic formulae often give very complex expressions that are not useful in practice. As a result, you may want to set the `solve()` (page 882) parameter cubics or quartics to False to return `RootOf()` (page 2507) results:

```python
>>> from sympy import solve
>>> from sympy.abc import x

>>> # By default, solve() uses the radical formula, yielding very complex terms
>>> solve(x**4 - x + 1, x)
[-sqrt(2/(3*(1/16 + sqrt(687)*I/144)**(1/3)) + 2*(1/16 + sqrt(687)*I/144)**(1/3))/2 - sqrt(-2*(1/16 + sqrt(687)*I/144)**(1/3) - 2/sqrt(2/(3*(1/16 + sqrt(687)*I/144)**(1/3)) + 2*(1/16 + sqrt(687)*I/144)**(1/3)) - 2/(3*(1/16 + sqrt(687)*I/144)**(1/3)))/2, 
  sqrt(2/(3*(1/16 + sqrt(687)*I/144)**(1/3)) + 2*(1/16 + sqrt(687)*I/144)**(1/3)) - 2/sqrt(2/(3*(1/16 + sqrt(687)*I/144)**(1/3)) + 2*(1/16 + sqrt(687)*I/144)**(1/3)) - 2/(3*(1/16 + sqrt(687)*I/144)**(1/3)))/2, 
  sqrt(-2*(1/16 + sqrt(687)*I/144)**(1/3) + 2/(3*(1/16 + sqrt(687)*I/144)**(1/3)) + sqrt(-2*(1/16 + sqrt(687)*I/144)**(1/3))/(3*(1/16 + sqrt(687)*I/144)**(1/3)))/2 - sqrt(2/(3*(1/16 + sqrt(687)*I/144)**(1/3)) - 2/sqrt(2/(3*(1/16 + sqrt(687)*I/144)**(1/3)) + 2*(1/16 + sqrt(687)*I/144)**(1/3)) - 2/(3*(1/16 + sqrt(687)*I/144)**(1/3)))/2]
```

```python
>>> # If you set quartics=False, solve() uses RootOf()
>>> solve(x**4 - x + 1, x, quartics=False)
[CRootOf(x**4 + x + 1, 0), 
  CRootOf(x**4 + x + 1, 1), 
  CRootOf(x**4 + x + 1, 2), 
  CRootOf(x**4 + x + 1, 3)]
```

Writing the first root from `solve()` (page 882) in standard mathematical notation emphasizes how complex it is:

\[
\sqrt[3]{\frac{2}{3\sqrt[3]{\frac{1}{16} + \frac{\sqrt{687}}{144}}}} + 2\sqrt[3]{\frac{1}{16} + \frac{\sqrt{687}}{144}} - \sqrt[3]{\frac{-2\sqrt[3]{\frac{1}{16} + \frac{\sqrt{687}}{144}} - \frac{2}{3\sqrt[3]{\frac{1}{16} + \frac{\sqrt{687}}{144}}} + 2\sqrt[3]{\frac{1}{16} + \frac{\sqrt{687}}{144}}}{3\sqrt[3]{\frac{1}{16} + \frac{\sqrt{687}}{144}}}}
\]

Further, there is no general radical formula for quintics (fifth degree) or higher polynomials,
so their `RootOf()` (page 2507) representations may be the best option.

Refer to *Solve an Equation Algebraically* (page 137) for more about using `solve()` (page 882).

Algebraic Solution With Root Multiplicities

roots

`roots()` (page 2512) can give explicit expressions for the roots of polynomials that have symbolic coefficients (that is, if there are symbols in the coefficients) if `factor()` (page 2447) does not reveal them. However, it may fail for some polynomials. Here are examples of `roots()` (page 2512):

```python
>>> roots(expression, x)
{-2: 2, 3: 1}
>>> roots(symbolic, x)
{-a: 2, b: 1}
```

It returns results as a dictionary, where the key is the root (for example, -2) and the value is the multiplicity of that root (for example, 2).

`roots()` (page 2512) function uses a combination of techniques (factorization, decomposition, radical formulae) to find expressions in radicals if possible for the roots. When it can find some radical expressions for the roots, it returns them along with their multiplicity. This function will fail for most high-degree polynomials (five or greater) because they do not have radical solutions, and there is no guarantee that they have closed-form solutions at all, as explained by the *Abel-Ruffini theorem*.

Factor the Equation

A different approach is to factor a polynomial using `factor()` (page 2447), which does not give the roots directly but can give you simpler expressions:

```python
>>> expression_expanded = expand(expression)
>>> expression_expanded
x**3 + x**2 - 8*x - 12
>>> factor(expression_expanded)
(x - 3)*(x + 2)**2
>>> symbolic_expanded = expand(symbolic)
>>> symbolic_expanded
-a**2*b + a**2*x - 2*a*b*x + 2*a*x**2 - b*x**2 + x**3
>>> factor(symbolic_expanded)
(a + x)**2*(-b + x)
```

`factor()` (page 2447) can also factorize a polynomial in a given *polynomial ring* (page 2417) which can reveal roots lie in the coefficient ring. For example, if the polynomial has rational coefficients, then `factor()` (page 2447) will reveal any rational roots. If the coefficients are polynomials involving, for example, symbol `a` with rational coefficients then any roots that are polynomial functions of `a` with rational coefficients will be revealed. In this example, `factor()` (page 2447) reveals that \(x = a^2\) and \(x = -a^3 - a\) are roots.
>>> from sympy import expand, factor
>>> from sympy.abc import x, a
>>> p = expand((x - a**2)*(x + a + a**3))
>>> p
-a**5 + a**3*x - a**3 - a**2*x + a*x + x**2
>>> factor(p)
(-a**2 + x)*(a**3 + a + x)

Exact Numeric Solution With Root Multiplicities

`real_roots`

If the roots to your polynomial are real, using `real_roots()` (page 2449) ensures that only real (not complex or imaginary) roots will be returned.

```python
>>> from sympy import real_roots
>>> from sympy.abc import x
>>> cubed = x**3 - 1
>>> # roots() returns real and complex roots
>>> roots(cubed)
{1: 1, -1/2 - sqrt(3)*I/2: 1, -1/2 + sqrt(3)*I/2: 1}
>>> # real_roots() returns only real roots
>>> real_roots(cubed)[1]
[1]
```

`real_roots()` (page 2449) calls `RootOf()` (page 2507), so for equations whose roots are all real, you can get the same results by iterating over the number of roots of your equation:

```python
>>> [RootOf(expression, n) for n in range(3)]
[-2, -2, 3]
```

Approximate Numeric Solution With Root Multiplicities

`nroots`

`nroots()` (page 2450) gives an approximate numerical approximation to the roots of a polynomial. This example demonstrates that it can include numerical noise, for example a (negligible) imaginary component in what should be a real root:

```python
>>> nroots(expression)
[3.0, -2.0 - 4.18482169793536e-14*I, -2.0 + 4.55872552179222e-14*I]
```

If you want numeric approximations of the real roots, but you want to know exactly which roots are real, then the best method is `real_roots()` (page 2449) with `evalf()` (page 1111):

```python
>>> [r.n(2) for r in real_roots(expression)]
[-2.0, -2.0, 3.0]
>>> [r.is_real for r in real_roots(expression)]
[True, True, True]
```
nroots() (page 2450) is analogous to NumPy’s roots() function. Usually the difference between these two is that nroots() (page 2450) is more accurate but slower.

A major advantage of nroots() (page 2450) is that it can compute numerical approximations of the roots of any polynomial whose coefficients can be numerically evaluated with evalf() (page 1111) (that is, they do not have free symbols). Contrarily, symbolic solutions may not be possible for higher-order (fifth or greater) polynomials as explained by the Abel-Ruffini theorem. Even if closed-form solutions are available, they may have so many terms that they are not useful in practice. You may therefore want to use nroots() (page 2450) to find approximate numeric solutions even if closed-form symbolic solutions are available. For example, the closed-form roots of a fourth-order (quartic) polynomial may be rather complicated:

```plaintext
>>> rq0, rq1, rq2, rq3 = roots(x**4 + 3*x**2 + 2*x + 1)
>>> rq0
sqrt(-4 - 2*(-1/8 + sqrt(237)*I/36)**(1/3) + 4/sqrt(-2 + 7/(6*(-1/8 + sqrt(237)*I/36)**(1/3)) + 2*(-1/8 + sqrt(237)*I/36)**(1/3)) - 7/(6*(-1/8 + sqrt(237)*I/36)**(1/3)) + 2*(-1/8 + sqrt(237)*I/36)**(1/3))/2 - sqrt(-2 + 7/(6*(-1/8 + sqrt(237)*I/36)**(1/3)) + 2*(-1/8 + sqrt(237)*I/36)**(1/3))/2
```

so you may prefer an approximate numerical solution:

```plaintext
>>> rq0.n()
-0.349745826211722 - 0.438990337475312*I
```

nroots() (page 2450) can fail sometimes for polynomials that are numerically ill conditioned, for example Wilkinson’s polynomial. Using RootOf() (page 2507) and evalf() (page 1111) as described in Numerically Evaluate CRootOf Roots (page 168) can avoid both ill-conditioning and returning spurious complex parts because it uses a more exact, but much slower, numerical algorithm based on isolating intervals.

Complex Roots

For complex roots, similar functions can be used, for example solve() (page 882):

```plaintext
>>> from sympy import solve, roots, nroots, real_roots, expand, RootOf, CRootOf, Symbol
>>> from sympy import Poly
>>> from sympy.abc import x
>>> expression_complex = (x**2+4)**2 * (x-3)
>>> solve(expression_complex, x, dict=True)

{{x: 3}, {x: -2*I}, {x: 2*I}}
```

If the constants are symbolic, you may need to specify their domain for SymPy to recognize that the solutions are not real. For example, specifying that a is positive leads to imaginary roots:

```plaintext
>>> a = Symbol("a", positive=True)
>>> symbolic_complex = (x**2+a)**2 * (x-3)
>>> solve(symbolic_complex, x, dict=True)

{{x: 3}, {x: -I*sqrt(a)}, {x: I*sqrt(a)}}
```

roots() (page 2512) will also find imaginary or complex roots:
```python
>>> roots(expression_complex, x)
{3: 1, -2*I: 2, 2*I: 2}
```

RootOf() (page 2507) will also return complex roots:

```python
>>> [RootOf(expression_complex, n) for n in range(0, 3)]
[3, -2*I, -2*I]
```

real_roots() (page 2449) will return only the real roots.

```python
>>> real_roots(expression_complex)
[3]
```

An advantage of *real_roots()* (page 2449) is that it can be more efficient than generating all the roots: *RootOf()* (page 2507) can be slow for complex roots.

If you make the expression into a polynomial class *Poly* (page 2453), you can use its *all_roots()* (page 2456) method to find the roots:

```python
>>> expression_complex_poly = Poly(expression_complex)
>>> expression_complex_poly.all_roots()
```

Use the Solution Result

The way to extract solutions from the result depends on the form of the result.

List (all_roots, real_roots, nroots)

You can use standard Python list traversal techniques such as looping. Here, we substitute each root into the expression to verify that the result is 0:

```python
>>> expression = (x+2)**2 * (x-3)
>>> my_real_roots = real_roots(expression)
>>> my_real_roots
[-2, -2, 3]
>>> for root in my_real_roots:
...     print(f"expression({root}) = {expression.subs(x, root)}")
expression(-2) = 0
expression(-2) = 0
expression(3) = 0
```
List of dictionaries (solve)

Refer to Use the Solution Result (page 140).

Dictionary (roots)

You can use standard Python list traversal techniques such as looping through the keys and values in a dictionary. Here we print the value and multiplicity of each root:

```python
>>> my_roots = roots(expression)
>>> my_roots
{-2: 2, 3: 1}
>>> for root, multiplicity in my_roots.items():
...     print(f"Root {root} has multiplicity of {multiplicity}"")
Root -2 has multiplicity of 1
Root -2 has multiplicity of 2
```

Expression (factor)

You can manipulate an algebraic expression using various SymPy techniques, for example substituting in a symbolic or numeric value for x:

```python
>>> from sympy.abc import y
>>> factored = factor(expression_expanded)
>>> factored
(x - 3)*(x + 2)**2
>>> factored.subs(x, 2*y)
(2*y - 3)*(2*y + 2)**2
>>> factored.subs(x, 7)
324
```

Tradeoffs

Mathematical Exactness, Completeness of List of Roots, and Speed

Consider the high-order polynomial $x^5 - x + 1 = 0$. `nroots()` (page 2450) returns numerical approximations to all five roots:

```python
>>> from sympy import roots, solve, real_roots, nroots
>>> from sympy.abc import x
>>> fifth_order = x**5 - x + 1
>>> nroots(fifth_order)
[-1.16730397826142, -0.181232444469875 - 1.08395410131771*I, -0.181232444469875 + 1.08395410131771*I, 0.764884433600585 - 0.352471546031726*I, 0.764884433600585 + 0.352471546031726*I]
```

`roots()` (page 2512) can sometimes return only a subset of the roots or nothing if it can’t express any roots in radicals. In this case, it returns no roots (an empty set):
But if you set the flag \texttt{strict=True}, \texttt{roots()} will inform you that all roots cannot be returned:

```
>>> roots(x**5 - x + 1, x, strict=True)
Traceback (most recent call last):
...  
sympy.polys.polyerrors.UnsolvableFactorError: Strict mode: some factors cannot be solved in radicals, so a complete list of solutions cannot be returned. Call roots with strict=False to get solutions expressible in radicals (if there are any).
```

Get All Roots, Perhaps Implicitly

\texttt{solve()} will return all five roots as \texttt{CRootOf} (\texttt{ComplexRootOf}) class members:

```
>>> fifth_order_solved = solve(fifth_order, x, dict=True)
>>> fifth_order_solved
[{{x: CRootOf(x**5 - x + 1, 0)}},
 {x: CRootOf(x**5 - x + 1, 1)},
 {x: CRootOf(x**5 - x + 1, 2)},
 {x: CRootOf(x**5 - x + 1, 3)},
 {x: CRootOf(x**5 - x + 1, 4)}]
```

where the second argument in each \texttt{CRootOf} is the index of the root.

Numerically Evaluate \texttt{CRootOf} Roots

You can then numerically evaluate those \texttt{CRootOf} roots using \texttt{n from evalf()}:

```
>>> for root in fifth_order_solved:
...         print(root[x].n(10))
-1.167303978
-0.1812324445 - 1.083954101*I
-0.1812324445 + 1.083954101*I
0.7648844336 - 0.352471546*I
0.7648844336 + 0.352471546*I
```

If you are only interested in the sole real root, it is faster to use \texttt{real_roots()} because it will not attempt to find the complex roots:

```
>>> real_root = real_roots(fifth_order, x)
>>> real_root
[CRootOf(x**5 - x + 1, 0)]
>>> real_root[0].n(10)
-1.167303978
```
Representing Roots

RootOf() (page 2507), real_roots() (page 2449), and all_roots() (page 2456) can find all the roots exactly of a polynomial of arbitrarily large degree despite the Abel-Ruffini theorem. Those functions allow the roots to be categorized precisely and manipulated symbolically.

```python
>>> from sympy import init_printing
>>> init_printing()

>>> real_roots(fifth_order)

\[ 5 \]
\[ \text{CRootOf}(x - x + 1, 0) \]

```Poly(fifth_order, x).all_roots()

\[5 \]
\[\text{CRootOf}(x - x + 1, 0), \text{CRootOf}(x - x + 1, 1), \text{CRootOf}(x - x + 1, 2), \text{CRootOf}(x - x + 1, 3), \text{CRootOf}(x - x + 1, 4) \]

```r0, r1, r2, r3, r4 = Poly(fifth_order, x).all_roots()

```r0

\[5 \]
\[\text{CRootOf}(x - x + 1, 0) \]

```r1

\[ 5 \]
\[ \text{CRootOf}(x - x + 1, 1) \]

```r1.conjugate()

\[5 \]
\[\text{CRootOf}(x - x + 1, 2) \]

```r1.is_real

False

Now that the roots have been found exactly, their properties can be determined free of numerical noise. For example, we can tell whether roots are real or not. If we request the conjugate() (page 1012) (same real part and imaginary part with opposite sign) of a root, for example r1, and that is exactly equal to another root r2, that root r2 will be returned:

```python
>>> r0.n()
-1.16730397826142
>>> r0.is_real
True
>>> r1.n()
-0.181232444469875 - 1.08395410131771*I
>>> r2.n()
-0.181232444469875 + 1.08395410131771*I
>>> r1

\[5 \]
\[\text{CRootOf}(x - x + 1, 1) \]

```r1.conjugate()

\[ 5 \]
\[ \text{CRootOf}(x - x + 1, 2) \]

```r1.is_real

False

solve() (page 882) will also give the complex roots where possible but it is less efficient than using all_roots() (page 2456) directly.

RootOf() (page 2507) exactly represents the root in a way that can be manipulated symbolically, and computed to arbitrary precision. The RootOf() (page 2507) representation makes it possible to precisely:

- Compute all roots of a polynomial with exact rational coefficients.
- Decide exactly the multiplicity of every root.
- Determine exactly whether roots are real or not.

3.4. Solve Equations 169
• Order the real and complex roots precisely.
• Know which roots are complex conjugate pairs of each other.
• Determine precisely which roots are rational vs irrational.
• Represent every possible algebraic number exactly.

The other numerical methods such NumPy’s roots(), nroots() (page 2450), and nsolve() (page 895) cannot do any of these things robustly, if at all. Similarly, when numerically evaluated using evalf() (page 1111), the radical expressions returned by solve() (page 882) or roots() (page 2512) cannot do these things robustly.

Not All Equations Can Be Solved

Equations With No Closed-Form Solution

As mentioned above, higher-order polynomials (fifth or greater) are unlikely to have closed-form solutions, so you may have to represent them using, for example, RootOf as described above (page 169), or use a numerical method such as nroots as described above (page 164).

Report a Bug

If you encounter a bug with these commands, please post the problem on the SymPy mailing list. Until the issue is resolved, you can use another of the Functions to Find the Roots of a Polynomial (page 161) or try one of the Alternatives to Consider (page 160).

3.4.7 Solve a Matrix Equation Algebraically

Use SymPy to solve a matrix (linear) equation. For example, solving \[
\begin{bmatrix}
c & d \\
1 & -c \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
\end{bmatrix} =
\begin{bmatrix}
2 \\
0 \\
\end{bmatrix}
\]
yields \[
\begin{bmatrix}
x \\
y \\
\end{bmatrix} =
\begin{bmatrix}
\frac{2c}{ce^2 + d} \\
\frac{2}{ce + d} \\
\end{bmatrix}
\].

Alternatives to Consider

• If your matrix and constant vector contain only numbers, not symbols, for example \[
\begin{bmatrix}
1 & 2 \\
3 & 4 \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
\end{bmatrix} =
\begin{bmatrix}
2 \\
0 \\
\end{bmatrix}
\], you can use one of these other free and open-source packages instead of SymPy:
 - NumPy’s numpy.linalg.solve()
 - SciPy’s scipy.linalg.solve()
 - mpmath’s lu_solve()

• Solving a matrix equation is equivalent to solving a system of linear equations, so if you prefer you can Solve a System of Equations Algebraically (page 143)

• If you formulated your problem as a system of linear equations, and want to convert it to matrix form, you can use linear_eq_to_matrix() (page 917) and then follow the procedures in this guide.
Solve a Matrix Equation

Here is an example of solving a matrix equation with SymPy’s \texttt{sympy.matrices.matrices.MatrixBase.solve()} (page 1353). We use the standard matrix equation formulation $Ax = b$ where

- A is the matrix representing the coefficients in the linear equations
- x is the column vector of unknowns to be solved for
- b is the column vector of constants, where each row is the value of an equation

```python
>>> from sympy import init_printing
>>> init_printing(use_unicode=True)
```

```python
>>> from sympy import symbols
>>> from sympy.matrices import Matrix

>>> c, d, e = symbols("c, d, e")
>>> A = Matrix([[c,d], [1, -e]])
```

```latex
\begin{bmatrix}
c & d \\
1 & -e 
\end{bmatrix}
```

```python
>>> b = Matrix([2, 0])
>>> b
```

```latex
\begin{bmatrix}
2 \\
0 
\end{bmatrix}
```

```python
>>> A.solve(b)
```

```latex
\begin{bmatrix}
\frac{2 \cdot e}{c \cdot e + d} \\
\frac{2}{c \cdot e + d}
\end{bmatrix}
```

Guidance

Matrix Usually Must Be Square

The matrix A usually must be square to represent a system of linear equations with the same number of unknowns as equations. If not, SymPy will give the error \texttt{ShapeError: `self` and `rhs` must have the same number of rows}.

The exception to the requirement that a matrix be square comes from SymPy’s use of the Moore-Penrose pseudoinverse (page 1346).
Methods for Solving Matrix Equations

SymPy’s matrix solving method, `sympy.matrices.matrices.MatrixBase.solve()` (page 1353), can use several different methods, which are listed at that API reference link. Depending on the nature of the matrix, a given method may be more efficient. By default, Gauss-Jordan elimination will be used.

Specifying a method in `solve` is equivalent to using a specialized solving function. For example, using `solve` with `method='LU'` calls `LUsolve()` (page 1328).

Solving Several Matrix Equations With the Same Matrix

If you need to repeatedly solve matrix equations with the same matrix A but different constant vectors b, it is more efficient to use one of the following methods.

You can use LU decomposition via `LUsolve()` (page 1328):

```python
>>> from sympy import symbols, Matrix, eye, simplify
>>> c, d, e = symbols("c, d, e")
>>> A = Matrix([[c, d], [1, -e]])
>>> A
\begin{bmatrix}
c & d \\
1 & -e
\end{bmatrix}
>>> b = Matrix([2, 0])
>>> b
\begin{bmatrix}
2 \\
0
\end{bmatrix}
>>> solution = A.LUsolve(b)
>>> solution
\begin{bmatrix}
2⋅e \\
\frac{c⋅e + d}{c⋅e + d}
\end{bmatrix}
>>> # Demonstrate that solution is correct
>>> simplify(A * solution)
\begin{bmatrix}
2 \\
0
\end{bmatrix}
>>> b2 = Matrix([4, 0])
>>> b2
\begin{bmatrix}
4 \\
0
\end{bmatrix}
>>> solution2 = A.LUsolve(b2)
>>> solution2
\begin{bmatrix}
4⋅e \\
\end{bmatrix}
```

(continues on next page)
Another approach is to compute the inverse matrix, but this is almost always slower, and significantly slower for larger matrices. If efficient computation is not a priority, you can use `inv()` (page 1340):

```python
>>> from sympy import symbols, Matrix, simplify
>>> c, d, e = symbols("c, d, e")
>>> A = Matrix([[c, d], [1, -e]])
>>> b = Matrix([2, 0])
>>> b
[2]
[0]
>>> b2 = Matrix([4, 0])
>>> b2
[4]
[0]
>>> inv = A.inv()
```
Determining the inverse of a large symbolic matrix may not be computationally tractable.

Work With Symbolic Matrices

The computational complexity of manipulating symbolic matrices can increase rapidly with matrix size. For example, the number of terms in the determinant of a symbolic matrix increases with the factorial of the matrix dimension. As a result, the maximum dimensionality of matrices that can be solved is more limited than for numerical matrices. For example, the determinant of this 4x4 symbolic matrix has 24 terms with four elements in each term:

```python
>>> from sympy import MatrixSymbol
>>> A = MatrixSymbol('A', 4, 4).as_explicit()
>>> A
\[
\begin{bmatrix}
A_{00} & A_{01} & A_{02} & A_{03} \\
A_{10} & A_{11} & A_{12} & A_{13} \\
A_{20} & A_{21} & A_{22} & A_{23} \\
A_{30} & A_{31} & A_{32} & A_{33}
\end{bmatrix}
\]
```

and solving a matrix equation of it takes about a minute, whereas the analogous 3x3 matrix takes less than one second. The more unrelated, symbolic entries in a matrix, the more likely it is to be slow to manipulate. This example, finding a general solution to a matrix where all
elements are independent symbols, is the extreme case and thus the slowest for a matrix of its size.

Speed up Solving Matrix Equations

Here are some suggestions:

- If matrix elements are zero, ensure that they are recognized as zero. You can do this by either making them zero or by applying *assumptions* (page 244).
- Selecting a solve method suited to the properties of the matrix, for example hermitian, symmetric, or triangular. Refer to *Methods for Solving Matrix Equations* (page 172).
- Use the *DomainMatrix* (page 2753) class, which can be faster to operate on because it limits the domain of matrix elements.

Use the Solution Result

Use the Solution as a Vector

You can use the solution result as a vector. For example, to prove that the solution x is correct, you can multiply it the matrix A and verify that it produces the constants vector b:

```python
>>> from sympy import symbols, simplify
>>> from sympy.matrices import Matrix
>>> c, d, e = symbols("c, d, e")
>>> A = Matrix([[c,d], [1, -e]])
>>> b = Matrix([2, 0])
>>> solution = A.solve(b)

>>> solution
```

```plaintext
[ 2⋅e
 c⋅e + d
 2
 c⋅e + d]
```

```python
>>> # Not immediately obvious whether this result is a zeroes vector
>>> (A * solution) - b
```

```plaintext
[2⋅c⋅e 2⋅d]
[c⋅e + d c⋅e + d]

[0]
```

```python
>>> # simplify reveals that this result is a zeroes vector
>>> simplify((A * solution) - b)
```

```plaintext
[0]
```

Note that we had to use `simplify()` (page 719) to make SymPy simplify the expression in a matrix element to make it immediately obvious that the solution is correct.
Extract Elements From the Solution

Because you can iterate through the elements in a column vector, you can extract its elements using standard Python techniques. For example, you can create a list of the elements using list comprehension:

```python
>>> [element for element in solution]
```

or you can extract individual elements by subscripting:

```python
>>> solution[0]
```

Equations With No Solution

If the determinant of a matrix is zero, matrix equations with it have no solution:

```python
>>> from sympy import symbols
>>> from sympy.matrices import Matrix
>>> c, d, e = symbols("c, d, e")
>>> A = Matrix([[c*e**2, d*e], [c*e, d]])
>>> A
```

```python
>>> b = Matrix([2, 0])
>>> A.LUsolve(b)
Traceback (most recent call last):
... NonInvertibleMatrixError: Matrix det == 0; not invertible.
```

Report a Bug

If you find a bug with matrix-solving functions, please post the problem on the SymPy mailing list. Until the issue is resolved, you can use a different method listed in Alternatives to Consider (page 170).
3.4.8 Reduce One or a System of Inequalities for a Single Variable Algebraically

Use SymPy to reduce one or a system of inequalities for a single variable algebraically. For example, reducing $x^2 < \pi$, $x > 0$ yields $0 < x < \sqrt{\pi}$.

Note: SymPy can currently reduce for only one symbol (variable) in an inequality.

SymPy can reduce a system containing more than one symbol, if there is only one symbol per inequality.

Alternatives to Consider

- To reduce for more than one symbol in an inequality, try SciPy’s `linprog()`
- To reduce Boolean expressions, use `as_set` (page 1207)

Examples

Reducing a System of Inequalities for a Single Variable Algebraically

`reduce_inequalities()` (page 805) accepts a list or tuple of inequalities to be reduced as a system:

```python
>>> from sympy import symbols, reduce_inequalities, pi
>>> x = symbols('x')
>>> reduce_inequalities([x >= 0, x**2 <= pi], x)
(0 <= x) & (x <= sqrt(pi))
```

Note: While `solve()` (page 882) currently accomplishes the same thing (by calling `reduce_inequalities()` (page 805) internally), that functionality may be deprecated or removed from `solve()` (page 882). We thus recommend using `reduce_inequalities()` (page 805).

`reduce_inequalities()` (page 805) is the top-level inequality-reducing function which will internally call any other lower-level inequality-reducing functions (page 803) as needed.

Reducing One Inequality for a Single Variable Algebraically

If you have only one inequality, you can optionally exclude the list construct and simply pass `reduce_inequalities()` (page 805) the inequality as an expression:

```python
>>> from sympy import symbols, reduce_inequalities, pi
>>> x = symbols('x')
>>> reduce_inequalities(x**2 <= pi, x)
(x <= sqrt(pi)) & (-sqrt(pi) <= x)
```
Guidance

Include the Variable to Be Reduced for in the Function Call

We recommend you include the variable to be reduced for as the second argument for `reduce_inequalities()` (page 805) to ensure that it reduces for the desired variable.

Reduce a System of Inequalities Algebraically

You can create your inequalities, then reduce the system as a list:

```python
>>> from sympy import symbols, reduce_inequalities, pi
>>> x = symbols('x')
>>> reduce_inequalities([3*x >= 1, x**2 <= pi], x)
(1/3 <= x) & (x <= sqrt(pi))
```

Use the Result

A common way to use the result is to extract the bounds for the symbol (variable). For example, for a solution of $0 < x < \sqrt{\pi}$, you might want to extract 0 and $\sqrt{\pi}$.

Extract a List of Decomposed Relations

You can decompose a set of relations which is joined by ^ (Or (page 1211)) or & (And (page 1210)) into individual relations using relational atoms. Using `canonical` (page 1068) will put order each relation so the symbol is on the left, so you can take the right-hand side `rhs` (page 1070) to extract the constants:

```python
>>> from sympy import symbols, reduce_inequalities, pi
>>> from sympy.core.relational import Relational
>>> x = symbols('x')
>>> eq = reduce_inequalities([3*x >= 1, x**2 <= pi], x); eq
(1/3 <= x) & (x <= sqrt(pi))
>>> relations = [(i.lhs, i.rel_op, i.rhs) for i in eq if i.canonical]
>>> relations_sorted = sorted(relations, key=lambda x: float(x[2])) # Sorting
>>> relations_sorted
[(x, '>=', 1/3), (x, '<=', sqrt(pi))]
```
Extract a Tuple of Relations

The args (page 980) (arguments) of reduced relations are the individual relations, so you can extract the constants from the left- or right-hand side of the args:

```python
>>> from sympy import symbols, reduce_inequalities, pi
>>> x = symbols('x')
>>> eq = reduce_inequalities([3*x >= 1, x**2 <= pi], x);
eq
(1/3 <= x) & (x <= sqrt(pi))
>>> eq.args
(1/3 <= x, x <= sqrt(pi))
>>> constants = []
>>> for arg in eq.args:
...    if arg.lhs == x:
...        constants.append(arg.rhs)
...    else:
...        constants.append(arg.lhs)
>>> constants
[1/3, sqrt(pi)]
```

Limitations of Inequality Reduction Using SymPy

SymPy Can Reduce for Only One Symbol of Interest Per Inequality

SymPy can currently reduce for only one symbol (variable) of interest in a given inequality.

```python
>>> from sympy import reduce_inequalities, symbols
>>> x, y = symbols("x y")
>>> reduce_inequalities([x + y > 1, y > 0], [x, y])
Traceback (most recent call last):
... NotImplementedError: inequality has more than one symbol of interest.
```

You can use SciPy's linprog() to reduce this system of inequalities.

SymPy can reduce for more than one symbol in a system, if there is only one symbol of interest per inequality. For example, the following system of inequalities has two variables, \(x\) and \(y\). SymPy can reduce for \(x\), and gives the constraints on \(y\).

```python
>>> from sympy import reduce_inequalities, symbols
>>> x, y = symbols("x y")
>>> reduce_inequalities([x + y > 1, y > 0], x)
(0 < y) & (1 < x) & (x < oo) & (y < oo)
```

(oo is Infinity (page 1048).)

If each inequality contains only one symbol to be reduced for, SymPy can reduce the set of inequalities for multiple symbols:

```python
>>> from sympy import reduce_inequalities, symbols
>>> x, y = symbols("x y")
>>> x_y_reduced = reduce_inequalities([x > 1, y > 0], [x, y]); x_y_reduced
(0 < y) & (1 < x) & (x < oo) & (y < oo)
```

3.4. Solve Equations
Note that this provides no mathematical insight beyond reducing the inequalities separately:

```python
>>> from sympy import And
>>> x_reduced = reduce_inequalities(x > 1, x); x_reduced
(1 < x) & (x < oo)
>>> y_reduced = reduce_inequalities(y > 0, y); y_reduced
(0 < y) & (y < oo)
>>> And(x_reduced, y_reduced) == x_y_reduced
True
```

so the benefit of solving such inequalities as a set maybe only convenience.

Limitations on Types of Inequalities That SymPy Can Solve

`reduce_inequalities()` (page 805) can solve a system of inequalities involving a power of the symbol to be reduced for, or involving another symbol, but not both:

```python
>>> from sympy import reduce_inequalities
>>> from sympy.abc import x, y
>>> reduce_inequalities([x**2 < 4, x > 0], x)
(0 < x) & (x < 2)
>>> reduce_inequalities([x < y, x > 0], x)
(0 < x) & (x < oo) & (x < y)
>>> reduce_inequalities([x**2 - y < 4, x > 0], x)
Traceback (most recent call last):
  ... NotImplementedError: The inequality, -y + x**2 - 4 < 0, cannot be solved using solve_univariante_inequality.
```

Not All Results Are Returned for Periodic Functions

The results returned for trigonometric inequalities are restricted in its periodic interval. `reduce_inequalities()` (page 805) tries to return just enough solutions so that all (infinitely many) solutions can generated from the returned solutions by adding integer multiples of the `periodicity()` (page 304) of the equation, here 2π.

```python
>>> from sympy import reduce_inequalities, cos
>>> from sympy.abc import x, y
>>> from sympy.calculus.util import periodicity
>>> reduce_inequalities([2*cos(x) < 1, x > 0], x)
(0 < x) & (x < oo) & (pi/3 < x) & (x < 5*pi/3)
>>> periodicity(2*cos(x), x)
2*pi
```
Not All Systems of Inequalities Can Be Reduced

Systems of Inequalities Which Cannot Be Satisfied

If the system of inequalities has incompatible conditions, for example \(x < 0 \) and \(x > \pi \), SymPy will return False:

```python
>>> from sympy import symbols, reduce_inequalities, pi
>>> x = symbols('x')
>>> reduce_inequalities([x < 0, x > pi], x)
False
```

Systems of Inequalities That Cannot Be Reduced Analytically

SymPy may reflect that your system of inequalities has no solutions that can be expressed algebraically (symbolically) by returning an error such as `NotImplementedError`:

```python
>>> from sympy import symbols, reduce_inequalities, cos
>>> x = symbols('x')
>>> reduce_inequalities([cos(x) - x > 0, x > 0], x)
Traceback (most recent call last):
  ...  
NotImplementedError: The inequality, \(-x + \cos(x) > 0\), cannot be solved using
  _solve_univariate_inequality.
```

so you may have to reduce your inequalities numerically instead using SciPy’s `linprog()`.

Inequalities Which Can Be Reduced Analytically, and SymPy Cannot Reduce

Refer to *Limitations of Inequality Reduction Using SymPy* (page 179) above.

Report a Bug

If you find a bug with `diophantine()` (page 775), please post the problem on the SymPy mailing list. Until the issue is resolved, you can use a different method listed in *Alternatives to Consider* (page 177).

3.4.9 Solve a Diophantine Equation Algebraically

Use SymPy to solve a Diophantine equation (find integer solutions to a polynomial equation) algebraically, returning a parameterized general solution if possible. For example, solving the Pythagorean equation \(a^2 + b^2 = c^2 \) yields \((a = 2pq, b = p^2 - q^2, c = p^2 + q^2) \). Here, \(p \) and \(q \) are new parameters introduced in the solution. \(p \) and \(q \) can take on any integer value to parameterize the full set of solutions. More formally, \(p, q \in \mathbb{Z} \) parameterize the infinite set of Pythagorean triples.
Alternatives to Consider

There are few alternatives for finding a parameterized general solution for a Diophantine equation.

- **Numerical alternatives:**
 - Sage’s EllipticCurve command may be able to find a set of relative numerical values for each variable.
 - You can test explicit integer values, for example using a nested for loop of ranges of values. This is inefficient, but fine if you are only interested in solutions that are relatively small.

- `solve()` (page 882) treats the variables as real or complex numbers, and simply solves for one variable in terms of the others, which produces a different type of solution. For example, attempting to solve \(a^2 + b^2 = c^2 \) for \(a, b, \) and \(c \) can only reveal that \(a = \pm \sqrt{c^2 - b^2} \).

Example of Solving a Diophantine Equation

Here is an example of solving a Diophantine equation, specifically \(a^2 + b^2 = c^2 \), using `diophantine()` (page 775):

```python
>>> from sympy.solvers.diophantine import diophantine
>>> from sympy import symbols, Eq
>>> a, b, c = symbols("a, b, c", integer=True)
>>> my_syms = (a, b, c)
>>> pythag_eq = Eq(a**2 + b**2, c**2)
>>> # Solve Diophantine equation
>>> d = diophantine(pythag_eq, syms=my_syms)
>>> d
{(2*p*q, p**2 - q**2, p**2 + q**2)}
```

Refer to the [Diophantine API reference](page 769) for more examples of solving various types of Diophantine equations.

Guidance

Diophantine Equation Can be Expressed as Expression That Equals Zero

If you already have an expression that equals zero, you can solve that expression. For example, expressing the Pythagorean equation as \(a^2 + b^2 - c^2 \) is also valid:

```python
>>> from sympy.solvers.diophantine import diophantine
>>> from sympy import symbols
>>> a, b, c = symbols("a, b, c", integer=True)
>>> my_syms = (a, b, c)
>>> pythag = a**2 + b**2 - c**2
>>> diophantine(pythag, syms=my_syms)
{(2*p*q, p**2 - q**2, p**2 + q**2)}
```
Specify the Order of Symbols in the Result

We recommend you specify the order of symbols in the result to avoid confusion. Use the `syms` parameter and pass it a tuple or list of symbols to ensure the result will be in that order, for example `syms=my_syms`, as in the examples on this page.

Limitations

Currently, following five types of Diophantine equations can be solved using `diophantine()` (page 775) and other helper functions of the Diophantine module.

- **Linear Diophantine equations**: \(a_1x_1 + a_2x_2 + \ldots + a_nx_n = b\)
- **General binary quadratic equation**: \(ax^2 + bxy + cy^2 + dx + ey + f = 0\)
- **Homogeneous ternary quadratic equation**: \(ax^2 + by^2 + cz^2 + dxy + eyz + fzx = 0\)
- **Extended Pythagorean equation**: \(a_1x_1^2 + a_2x_2^2 + \ldots + a_nx_n^2 = a_{n+1}x_{n+1}^2\)
- **General sum of squares**: \(x_1^2 + x_2^2 + \ldots + x_n^2 = k\)

Use the Solution Result

Extract Expressions From the Result

`diophantine()` (page 775) returns results as a set of tuples, where each element in a tuple is an expression for a variable in your equation. For example, for the Pythagorean equation, the result is a set containing one tuple where the expressions correspond to \((a, b, c)\). That is, the tuple represents \(a = 2pq, \ b = p^2 - q^2, \ c = p^2 - q^2\). Because you cannot extract an element (here, a tuple) from a set by subscripting the set, you can create a dictionary of symbol-expression pairs to extract an expression by its symbol:

```
>>> from sympy.solvers.diophantine import diophantine
>>> from sympy import symbols
>>> a, b, c = symbols("a, b, c", integer=True)
>>> my_syms = (a, b, c)
>>> pythag = a**2 + b**2 - c**2
>>> solution, = diophantine(pythag, syms=my_syms)
>>> solution
(2*p*q, p**2 - q**2, p**2 + q**2)
>>> # Convert set to list
>>> solution_dict = dict(zip(my_syms, solution))
>>> solution_dict
{a: 2*p*q, b: p**2 - q**2, c: p**2 + q**2}
>>> # Extract an expression for one variable using its symbol, here a
>>> solution_dict[a]
2*p*q
```

Less elegantly, you can convert the set to a list, and then subscript the list. It is a common mistake to forget the order of parameters, so this method is more prone to errors:

```
>>> from sympy.solvers.diophantine import diophantine
>>> from sympy import symbols
```

(continues on next page)
>>> a, b, c, p, q = symbols(“a, b, c, p, q”, integer=True)
>>> my_syms = (a, b, c)
>>> pythag = a**2 + b**2 - c**2
>>> d = diophantine(pythag, syms=my_syms)
>>> d
{(2*p*q, p**2 - q**2, p**2 + q**2)}

Work With Parameters

You can manipulate parameters such as p and q, which are generated automatically by `diophantine()` (page 775), by creating them as symbols. For example, to find a particular set of values that satisfies the Diophantine equation, you can substitute in values for the parameters by

1. creating the parameters as symbols
2. substituting in their values using `subs()` (page 993).

Here, we express the set of values as a dictionary to associate each variable (a, b, c) with its example value:

>>> from sympy.solvers.diophantine import diophantine
>>> from sympy import symbols
>>> my_syms = (a, b, c)
>>> pythag = a**2 + b**2 - c**2
>>> d = diophantine(pythag, syms=my_syms)
>>> solution_list = list(d)
>>> solution_list
[(2*p*q, p**2 - q**2, p**2 + q**2)]
>>> p, q = symbols(“p, q”, integer=True)

Note that you need to include the integer=True assumption for the generated parameters (p and q) to substitute numerical values for them. Conversely, you do not need to include the integer=True assumption for the symbols in the original equation (a, b, and c), although it is a good practice.
To iterate the set of solutions, you can iterate over value of the parameters (p and q) in a nested loop:

```python
>>> from sympy.solvers.diophantine import diophantine
>>> from sympy import symbols
>>> a, b, c, p, q = symbols("a, b, c, p, q", integer=True)
>>> my_syms = (a, b, c)
>>> pythag = a**2 + b**2 - c**2
>>> d = diophantine(pythag, syms=my_syms)
>>> solution_list = list(d)
>>> # Iterate over the value of parameters p and q
>>> for p_val in range(-1, 2):
...     for q_val in range(-1, 2):
...         # Substitute in the values of p and q
...         pythag_vals = dict(zip(my_syms, [var.subs({p:p_val, q:q_val}) for var in solution_list[0]]))
...         # Print out the values of the generated parameters, and the Pythagorean triple a, b, c
...         print(f"p: {p_val}, q: {q_val} -> {pythag_vals}"")
```

Verify a Solution

You can verify a solution is correct by substituting its integer values back into the original equation (expression which equals zero) and checking that the result is zero, either by using the dictionary approach from Work With Parameters (page 184), or by manually substituting in values determined by any procedure:

```python
>>> from sympy.solvers.diophantine import diophantine
>>> from sympy import symbols
>>> a, b, c, p, q = symbols("a, b, c, p, q", integer=True)
>>> my_syms = (a, b, c)
>>> pythag = a**2 + b**2 - c**2
>>> d = diophantine(pythag, syms=my_syms)
>>> solution_list = list(d)
>>> solution_p4q3 = dict(zip(my_syms, [var.subs({p:4, q:3}) for var in solution_list[0]]))
>>> # Substitute values in using a dictionary
>>> pythag.subs({a: solution_p4q3[a], b: solution_p4q3[b], c: solution_p4q3[c]})
0
>>> # Manually substitute in values
>>> pythag.subs({a: 24, b: 7, c: 25})
0
```
Programmatically Extract Parameter Symbols

If you want to programmatically obtain the set of auto-generated parameters for one solution, you can use the following code:

```python
>>> from sympy.solvers.diophantine import diophantine
>>> from sympy import symbols

>>> a, b, c, p, q = symbols("a, b, c, p, q", integer=True)
>>> my_syms = (a, b, c)
>>> pythag = a**2 + b**2 - c**2
>>> # Solve Diophantine equation
>>> solution, = diophantine(pythag, syms=my_syms)
>>> solution
(2*p*q, p**2 - q**2, p**2 + q**2)
>>> # Extract parameter symbols
>>> set().union(*(s.free_symbols for s in solution))
{p, q}
```

Not All Equations Can Be Solved

Equations With No Solution

Some Diophantine equations have no solution, in which case `diophantine()` (page 775) will return an empty set, set(). For example, in the expression $2x + 4y - 3$ (which we will try to set to zero), the coefficients are both even (2 and 4), so the sum of the terms $(2x + 4y)$ can only be even. However, the constant 3 is odd, so there is no solution.

```python
>>> from sympy.solvers.diophantine import diophantine
>>> from sympy import symbols

>>> x, y = symbols("x, y", integer=True)
>>> diophantine(2*x + 4*y - 3, syms=(x, y))
set()
```

Report a Bug

If you find a bug with `diophantine()` (page 775), please post the problem on the SymPy mailing list. Until the issue is resolved, you can use a different method listed in Alternatives to Consider (page 182).

3.5 Citing SymPy

To cite SymPy in publications use

symbolic computing in Python. *PeerJ Computer Science* 3:e103
https://doi.org/10.7717/peerj-cs.103

A BibTeX entry for LaTeX users is

```latex
@article{10.7717/peerj-cs.103,
  title = {SymPy: symbolic computing in Python},
  author = {Meurer, Aaron and Smith, Christopher P. and Paprocki, Mateusz and \'{C}ert\'{i}k, Ond\'{r}ej and Kirpichev, Sergey B. and Rocklin, Matthew and Kumar, AMiT and Ivanov, Sergiu and Moore, Jason K. and Singh, Sartaj and Rathnayake, Thilina and Vig, Sean and Granger, Brian E. and Muller, Richard P. and Bonazzi, Francesco and Gupta, Harsh and Vats, Shivam and Johansson, Fredrik and Pedregosa, Fabian and Curry, Matthew J. and Terrel, Andy R. and Rou\'{c}ka, \'{S}t\'{e}fan and Saboo, Ashutosh and Fernando, Isuru and Kulal, Sumith and Cimrman, Robert and Scopatz, Anthony},
  year = 2017,
  month = jan,
  keywords = {Python, Computer algebra system, Symbolics},
  abstract = {SymPy is an open source computer algebra system written in pure Python. It is built with a focus on extensibility and ease of use, through both interactive and programmatic applications. These characteristics have led SymPy to become a popular symbolic library for the scientific Python ecosystem. This paper presents the architecture of SymPy, a description of its features, and a discussion of select submodules. The supplementary material provide additional examples and further outline details of the architecture and features of SymPy.},
  volume = 3,
  pages = {e103},
  journal = {PeerJ Computer Science},
  issn = {2376-5992},
  url = {https://doi.org/10.7717/peerj-cs.103},
  doi = {10.7717/peerj-cs.103}
}
```

SymPy is BSD licensed, so you are free to use it however you like, be it academic, commercial, creating forks or derivatives, as long as you copy the BSD statement if you redistribute it (see the LICENSE file for details). That said, although not required by the SymPy license, if it is convenient for you, please cite SymPy when using it in your work and also consider contributing all your changes back, so that we can incorporate it and all of us will benefit in the end.

The SymPy development team members are listed in the AUTHORS file on GitHub.

A list of papers citing SymPy can be found on Zotero.
Explanations provide in-depth discussions about select SymPy features. These topic guides talk about things like the motivation behind design decisions, technical implementation details, and opinionated recommendations.

Content

4.1 Gotchas and Pitfalls

4.1.1 Introduction

SymPy runs under the Python Programming Language, so there are some things that may behave differently than they do in other, independent computer algebra systems like Maple or Mathematica. These are some of the gotchas and pitfalls that you may encounter when using SymPy. See also the FAQ, the introductory tutorial (page 5), the remainder of the SymPy Docs, and the official Python Tutorial.

If you are already familiar with C or Java, you might also want to look at this 4 minute Python tutorial.

Ignore #doctest: +SKIP in the examples. That has to do with internal testing of the examples.

4.1.2 Equals Signs (=)

Single Equals Sign

The equals sign (=) is the assignment operator, not equality. If you want to do \(x = y \), use Eq(x, y) for equality. Alternatively, all expressions are assumed to equal zero, so you can just subtract one side and use \(x - y \).

The proper use of the equals sign is to assign expressions to variables.

For example:

```python
>>> from sympy.abc import x, y
>>> a = x - y
>>> print(a)
x - y
```
Double Equals Signs

Double equals signs (==) are used to test equality. However, this tests expressions exactly, not symbolically. For example:

```python
>>> (x + 1)**2 == x**2 + 2*x + 1
False
>>> (x + 1)**2 == (x + 1)**2
True
```

If you want to test for symbolic equality, one way is to subtract one expression from the other and run it through functions like `expand()` (page 1099), `simplify()` (page 719), and `trigsimp()` (page 735) and see if the equation reduces to 0.

```python
>>> from sympy import simplify, cos, sin, expand
>>> simplify((x + 1)**2 - (x**2 + 2*x + 1))
0
>>> eq = sin(2*x) - 2*sin(x)*cos(x)
>>> simplify(eq)
0
>>> expand(eq, trig=True)
0
```

Note: See also Why does SymPy say that two equal expressions are unequal? in the FAQ.

4.1.3 Variables

Variables Assignment does not Create a Relation Between Expressions

When you use = to do assignment, remember that in Python, as in most programming languages, the variable does not change if you change the value you assigned to it. The equations you are typing use the values present at the time of creation to “fill in” values, just like regular Python definitions. They are not altered by changes made afterwards. Consider the following:

```python
>>> from sympy import Symbol
>>> a = Symbol('a')  # Symbol, ‘a’, stored as variable “a”
>>> b = a + 1        # an expression involving ‘a’ stored as variable “b”
>>> print(b)
a + 1
>>> a = 4            # “a” now points to literal integer 4, not Symbol('a')
>>> print(a)
4
>>> print(b)         # “b” is still pointing at the expression involving ‘a’
a + 1
```

Changing quantity a does not change b; you are not working with a set of simultaneous equations. It might be helpful to remember that the string that gets printed when you print a variable referring to a SymPy object is the string that was given to it when it was created; that string does not have to be the same as the variable that you assign it to.
If you need variables that have dependence on each other, you can define functions. Use the `def` operator. Indent the body of the function. See the Python docs for more information on defining functions.

```
>>> c, d = var('c d')
>>> print(c)
c
>>> print(d)
d
>>> def ctimesd():
...     return c*d
...     
>>> c timesd()
c*d
>>> c = 2
>>> print(c)
2
>>> c timesd()
2*d
```

If you define a circular relationship, you will get a `RuntimeError`.

```
>>> def a():
...     return b()
...
>>> def b():
...     return a()
...
>>> a()
Traceback (most recent call last):
  File "...", line ..., in ...
    compileflags, 1) in test.globs
  File "<...>", line 1, in <module>
    a()
  File "<...>", line 2, in a
    return b()
  File "<...>", line 2, in b
```
Symbols

Symbols are variables, and like all other variables, they need to be assigned before you can use them. For example:

```python
>>> import sympy
>>> z**2  # z is not defined yet
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
NameError: name 'z' is not defined
>>> sympy.var('z')  # This is the easiest way to define z as a standard symbol
z
>>> z**2
z**2
```

If you use `isympy`, it runs the following commands for you, giving you some default Symbols and Functions.

```python
>>> from __future__ import division
>>> from sympy import *
>>> x, y, z, t = symbols('x y z t')
>>> k, m, n = symbols('k m n', integer=True)
>>> f, g, h = symbols('f g h', cls=Function)
```

You can also import common symbol names from `sympy.abc` (page 931).

```python
>>> from sympy.abc import w
>>> w
```

Note: See also Why doesn’t changing one variable change another that depends on it? in the FAQ.
If you want control over the assumptions of the variables, use `Symbol` (page 1028) and `symbols()` (page 1030). See `Keyword Arguments` (page 201) below.

Lastly, it is recommended that you not use `I` (page 1050), `E` (page 3045), `S` (page 1914), `N` (page 1113), `C`, `O` (page 686), or `Q` (page 249) for variable or symbol names, as those are used for the imaginary unit (`i`), the base of the natural logarithm (`e`), the `sympify()` (page 970) function (see `Symbolic Expressions` (page 194) below), numeric evaluation (`N()` (page 1113) is equivalent to `evalf()` (page 1139)), the big O order symbol (as in `O(n log n)`), and the assumptions object that holds a list of supported ask keys (such as `Q.real`), respectively. You can use the mnemonic OSINEQ to remember what Symbols are defined by default in SymPy. Or better yet, always use lowercase letters for Symbol names. Python will not prevent you from overriding default SymPy names or functions, so be careful.

```python
>>> cos(pi)  # cos and pi are a built-in sympy names.
-1
>>> pi = 3  # Notice that there is no warning for overriding pi.
>>> cos(pi)
\cos(3)
>>> def cos(x):
    # No warning for overriding built-in functions either.
    ...
    return 5*x
    ...
>>> cos(pi)
15
>>> from sympy import cos  # reimport to restore normal behavior
```

To get a full list of all default names in SymPy do:

```python
>>> import sympy
>>> dir(sympy)
# A big list of all default sympy names and functions follows.
# Ignore everything that starts and ends with __.
```

If you have IPython installed and use `isympy`, you can also press the TAB key to get a list of all built-in names and to autocomplete. Also, see this page for a trick for getting tab completion in the regular Python console.

Note: See also What is the best way to create symbols? in the FAQ.

Functions

A function like `f(x)` can be created by defining the Function and the variable:

```python
>>> from sympy import Function
>>> f = Function('f')
>>> x = Symbol('x')
>>> f(x)
f(x)
```

If you assign `f(x)` to a Python variable `f` you will lose your ability to copy and paste that function or to create a function with a different argument: `Function('f')` is callable, but `Function('f')(x)` is not:
4.1.4 Symbolic Expressions

Python numbers vs. SymPy Numbers

SymPy uses its own classes for integers, rational numbers, and floating point numbers instead of the default Python int and float types because it allows for more control. But you have to be careful. If you type an expression that just has numbers in it, it will default to a Python expression. Use the `sympify()` (page 970) function, or just `S` (page 1914), to ensure that something is a SymPy expression.

```python
>>> 6.2  # Python float. Notice the floating point accuracy problems.
6.2000000000000002
>>> type(6.2)  # <type 'float'> in Python 2.x, <class 'float'> in Py3k
<... 'float'>
>>> S(6.2)  # SymPy Float has no such problems because of arbitrary precision.
6.2000000000000
>>> type(S(6.2))
<class 'sympy.core.numbers.Float'>
```

If you include numbers in a SymPy expression, they will be sympified automatically, but there is one gotcha you should be aware of. If you do `<number>/<number>` inside of a SymPy expression, Python will evaluate the two numbers before SymPy has a chance to get to them. The solution is to `sympify()` (page 970) one of the numbers, or use `Rational` (page 1036).

```python
>>> x**(1/2)  # evaluates to x**0 or x**0.5
x**0.5
>>> x**(S(1)/2)  # sympify one of the ints
sqrt(x)
>>> x**Rational(1, 2)  # use the Rational class
sqrt(x)
```

With a power of 1/2 you can also use `sqrt` shorthand:

```python
>>> sqrt(x) == x**Rational(1, 2)
True
```
If the two integers are not directly separated by a division sign then you don’t have to worry about this problem:

```python
>>> x**(2*x/3)
```

Note: A common mistake is copying an expression that is printed and reusing it. If the expression has a `Rational` (page 1036) (i.e., `<number>/<number>`) in it, you will not get the same result, obtaining the Python result for the division rather than a SymPy Rational.

```python
>>> x = Symbol('x')
>>> print(solve(7*x - 22, x))
[22/7]
>>> 22/7  # If we just copy and paste we get int 3 or a float
3.142857142857143
>>> # One solution is to just assign the expression to a variable
>>> # If we need to use it again.
>>> a = solve(7*x - 22, x)[0]
>>> a
22/7

The other solution is to put quotes around the expression and run it through S() (i.e., sympify it):

```python
>>> S("22/7")
22/7
```

Also, if you do not use `isympy`, you could use from `__future__` import division to prevent the / sign from performing integer division.

```python
>>> from __future__ import division
>>> 1/2 # With division imported it evaluates to a python float
0.5
>>> 1//2 # You can still achieve integer division with //
0
```

But be careful: you will now receive floats where you might have desired a Rational:

```python
>>> x**(1/2)
```

`Rational` (page 1036) only works for number/number and is only meant for rational numbers. If you want a fraction with symbols or expressions in it, just use /. If you do number/expression or expression/number, then the number will automatically be converted into a SymPy Number. You only need to be careful with number/number.

```python
>>> Rational(2, x)
Traceback (most recent call last):
 ...TypeError: invalid input: x
>>> 2/x
2/x
```
Evaluating Expressions with Floats and Rationals

SymPy keeps track of the precision of Float objects. The default precision is 15 digits. When an expression involving a Float is evaluated, the result will be expressed to 15 digits of precision but those digits (depending on the numbers involved with the calculation) may not all be significant.

The first issue to keep in mind is how the Float is created: it is created with a value and a precision. The precision indicates how precise of a value to use when that Float (or an expression it appears in) is evaluated.

The values can be given as strings, integers, floats, or rationals.

- strings and integers are interpreted as exact
  ```python
 >>> Float(100)
 100.000000000000
 >>> Float('100', 5)
 100.0
  ```

- to have the precision match the number of digits, the null string can be used for the precision
  ```python
 >>> Float(100, '')
 100.
 >>> Float('12.34')
 12.3400000000000
 >>> Float('12.34', '')
 12.34
  ```

Next, notice that each of those values looks correct to 3 digits. But if we try to evaluate them to 20 digits, a difference will become apparent:

The 0.25 (with precision of 3) represents a number that has a non-repeating binary decimal; 1/7 is repeating in binary and decimal – it cannot be represented accurately too far past those first 3 digits (the correct decimal is a repeating 142857):

```python
>>> s, r = [Float(j, 3) for j in ('0.25', Rational(1, 7))]
>>> for f in [s, r]:
... print(f)
0.250
0.143
``` 

It is important to realize that although a Float is being displayed in decimal at arbitrary precision, it is actually stored in binary. Once the Float is created, its binary information is set at the given precision. The accuracy of that value cannot be subsequently changed; so 1/7, at a precision of 3 digits, can be padded with binary zeros, but these will not make it a more accurate value of 1/7.

If inexact, low-precision numbers are involved in a calculation with higher precision values, the evalf engine will increase the precision of the low precision values and inexact results will be obtained. This is feature of calculations with limited precision:
Although the `evalf` engine tried to maintain 10 digits of precision (since that was the highest precision represented) the 3-digit precision used limits the accuracy to about 4 digits - not all the digits you see are significant. `evalf` doesn’t try to keep track of the number of significant digits.

That very simple expression involving the addition of two numbers with different precisions will hopefully be instructive in helping you understand why more complicated expressions (like trig expressions that may not be simplified) will not evaluate to an exact zero even though, with the right simplification, they should be zero. Consider this unsimplified trig identity, multiplied by a big number:

```python
big = 12345678901234567890
big_trig_identity = big*cos(x)**2 + big*sin(x)**2 - big*1
abs(big_trig_identity.subs(x, .1).n(2)) > 1000
```

When the cos and sin terms were evaluated to 15 digits of precision and multiplied by the big number, they gave a large number that was only precise to 15 digits (approximately) and when the 20 digit big number was subtracted the result was not zero.

There are three things that will help you obtain more precise numerical values for expressions:

1) Pass the desired substitutions with the call to evaluate. By doing the subs first, the `Float` values cannot be updated as necessary. By passing the desired substitutions with the call to `evalf` the ability to re-evaluate as necessary is gained and the results are impressively better:

```python
big_trig_identity.n(2, {x: 0.1})
```

2) Use Rationals, not Floats. During the evaluation process, the Rational can be computed to an arbitrary precision while the Float, once created - at a default of 15 digits - cannot. Compare the value of -1.4e+3 above with the nearly zero value obtained when replacing x with a Rational representing 1/10 - before the call to evaluate:

```python
big_trig_identity.subs(x, S('1/10')).n(2)
```

3) Try to simplify the expression. In this case, SymPy will recognize the trig identity and simplify it to zero so you don’t even have to evaluate it numerically:
Immutability of Expressions

Expressions in SymPy are immutable, and cannot be modified by an in-place operation. This means that a function will always return an object, and the original expression will not be modified. The following example snippet demonstrates how this works:

```python
def main():
 var('x y a b')
 expr = 3*x + 4*y
 print('original =', expr)
 expr_modified = expr.subs({x: a, y: b})
 print('modified =', expr_modified)

if __name__ == '__main__':
 main()
```

The output shows that the `subs()` function has replaced variable x with variable a, and variable y with variable b:

```
original = 3*x + 4*y
modified = 3*a + 4*b
```

The `subs()` function does not modify the original expression `expr`. Rather, a modified copy of the expression is returned. This returned object is stored in the variable `expr_modified`. Note that unlike C/C++ and other high-level languages, Python does not require you to declare a variable before it is used.

Mathematical Operators

SymPy uses the same default operators as Python. Most of these, like */+-, are standard. Aside from integer division discussed in Python numbers vs. SymPy Numbers (page 194) above, you should also be aware that implied multiplication is not allowed. You need to use * whenever you wish to multiply something. Also, to raise something to a power, use **, not ^ as many computer algebra systems use. Parentheses () change operator precedence as you would normally expect.

In isympy, with the ipython shell:

```
>>> 2*x
Traceback (most recent call last):
 ...
SyntaxError: invalid syntax
>>> 2*x
2*x
>>> (x + 1)^2 # This is not power. Use ** instead.
Traceback (most recent call last):
 ...
TypeError: unsupported operand type(s) for ^: 'Add' and 'int'
>>> (x + 1)**2
(x + 1)**2
>>> pprint(3 - x**2/(x + 1))
 2*x
 x
```

(continues on next page)
Inverse Trig Functions

SymPy uses different names for some functions than most computer algebra systems. In particular, the inverse trig functions use the python names of \texttt{asin} (page 454), \texttt{acos} (page 455) and so on instead of the usual \texttt{arcsin} and \texttt{arccos}. Use the methods described in \textit{Symbols} (page 192) above to see the names of all SymPy functions.

\textbf{Sqrt is not a Function}

There is no \texttt{sqrt} function in the same way that there is an exponential function (\texttt{exp}). \texttt{sqrt(x)} is used to represent \texttt{Pow(x, S(1)/2)} so if you want to know if an expression has any square roots in it, \texttt{expr.has(sqrt)} will not work. You must look for \texttt{Pow} with an exponent of one half (or negative one half if it is in a denominator; e.g.

\begin{verbatim}
>>> (y + sqrt(x)).find(Wild('w')**S.Half)
{sqrt(x)}
>>> (y + 1/sqrt(x)).find(Wild('w')**-S.Half)
{1/sqrt(x)}
\end{verbatim}

If you are interested in any power of the \texttt{sqrt} then the following pattern would be appropriate

\begin{verbatim}
>>> sq = lambda s: s.is_Pow and s.exp.is_Rational and s.exp.q == 2
>>> (y + sqrt(x)**3).find(sq)
{x**(3/2)}
\end{verbatim}

4.1.5 Special Symbols

The symbols [], {}, =, and () have special meanings in Python, and thus in SymPy. See the Python docs linked to above for additional information.

Lists

Square brackets [] denote a list. A list is a container that holds any number of different objects. A list can contain anything, including items of different types. Lists are mutable, which means that you can change the elements of a list after it has been created. You access the items of a list also using square brackets, placing them after the list or list variable. Items are numbered using the space before the item.

\textbf{Note:} List indexes begin at 0.

Example:
>>> a = [x, 1] # A simple list of two items
>>> a
[x, 1]
>>> a[0] # This is the first item
x
>>> a[0] = 2 # You can change values of lists after they have been created
>>> print(a)
[2, 1]
>>> print(solve(x**2 + 2*x - 1, x)) # Some functions return lists
[-1 + sqrt(2), -sqrt(2) - 1]

Note: See the Python docs for more information on lists and the square bracket notation for accessing elements of a list.

Dictionaries

Curly brackets {} denote a dictionary, or a dict for short. A dictionary is an unordered list of non-duplicate keys and values. The syntax is {key: value}. You can access values of keys using square bracket notation.

>>> d = {'a': 1, 'b': 2} # A dictionary.
>>> d
{'a': 1, 'b': 2}
>>> d['a'] # How to access items in a dict
1
>>> roots((x - 1)**2*(x - 2), x) # Some functions return dicts
{1: 2, 2: 1}
>>> # Some SymPy functions return dictionaries. For example,
>>> # roots returns a dictionary of root:multiplicity items.
>>> roots((x - 5)**2*(x + 3), x)
{3: 1, 5: 2}
>>> # This means that the root -3 occurs once and the root 5 occurs twice.

Note: See the Python docs for more information on dictionaries.

Tuples

Parentheses (), aside from changing operator precedence and their use in function calls, (like cos(x)), are also used for tuples. A tuple is identical to a list (page 199), except that it is not mutable. That means that you cannot change their values after they have been created. In general, you will not need tuples in SymPy, but sometimes it can be more convenient to type parentheses instead of square brackets.

>>> t = (1, 2, x) # Tuples are like lists
>>> t
(1, 2, x)
>>> t[0]
Single element tuples, unlike lists, must have a comma in them:

```python
>>> (x,)
(x,)
```

Without the comma, a single expression without a comma is not a tuple:

```python
>>> (x)
x
```

integrate takes a sequence as the second argument if you want to integrate with limits (and a tuple or list will work):

```python
>>> integrate(x**2, (x, 0, 1))
1/3
>>> integrate(x**2, [x, 0, 1])
1/3
```

**Note:** See the Python docs for more information on tuples.

### Keyword Arguments

Aside from the usage described *above* (page 189), equals signs (=) are also used to give named arguments to functions. Any function that has key=value in its parameters list (see below on how to find this out), then key is set to value by default. You can change the value of the key by supplying your own value using the equals sign in the function call. Also, functions that have ** followed by a name in the parameters list (usually **kwargs or **assumptions) allow you to add any number of key=value pairs that you want, and they will all be evaluated according to the function.

sqrt(x**2) doesn’t auto simplify to x because x is assumed to be complex by default, and, for example, sqrt((-1)**2) == sqrt(1) == 1 != -1:

```python
>>> sqrt(x**2)
sqrt(x**2)
```

Giving assumptions to Symbols is an example of using the keyword argument:

```python
>>> x = Symbol('x', positive=True)
```

The square root will now simplify since it knows that x >= 0:

```python
>>> sqrt(x**2)
x
```
powsimp has a default argument of combine='all':

```
>>> pprint(powsimp(x**n*x**m*y**n*y**m))
 m + n
(x*y)
```

Setting combine to the default value is the same as not setting it.

```
>>> pprint(powsimp(x**n*x**m*y**n*y**m, combine='all'))
 m + n
(x*y)
```

The non-default options are 'exp', which combines exponents...

```
>>> pprint(powsimp(x**n*x**m*y**n*y**m, combine='exp'))
 m + n
x * y
```

...and 'base', which combines bases.

```
>>> pprint(powsimp(x**n*x**m*y**n*y**m, combine='base'))
 m * n
(x*y) * (x*y)
```

**Note:** See the Python docs for more information on function parameters.

### 4.1.6 Getting help from within SymPy

`help()`

Although all docs are available at [docs.sympy.org](https://docs.sympy.org) or on the SymPy Wiki, you can also get info on functions from within the Python interpreter that runs SymPy. The easiest way to do this is to do `help(function), or function? if you are using ipython:

```
In [1]: help(powsimp) # help() works everywhere
In [2]: # But in ipython, you can also use ?, which is better because it
In [3]: # it gives you more information
In [4]: powsimp?
```

These will give you the function parameters and docstring for `powsimp()` (page 736). The output will look something like this:

```
sympy.simplify.simplify.powsimp(expr, deep=False, combine='all', force=False,
measure=<function count_ops>)
```

Reduce expression by combining powers with similar bases and exponents.
Explanation

If deep is True then powsimp() will also simplify arguments of functions. By default deep is set to False.

If force is True then bases will be combined without checking for assumptions, e.g. \(\sqrt{x} \cdot \sqrt{y} \rightarrow \sqrt{x \cdot y}\) which is not true if \(x\) and \(y\) are both negative.

You can make powsimp() only combine bases or only combine exponents by changing combine='base' or combine='exp'. By default, combine='all', which does both. combine='base' will only combine:

\[
\begin{align*}
\text{a a a} & \rightarrow (x^y) \quad \text{as well as things like} \quad 2 \rightarrow 4
\end{align*}
\]

and combine='exp' will only combine

\[
\begin{align*}
\text{a b} \rightarrow (a + b) \\
x \cdot x & \rightarrow x
\end{align*}
\]

combine='exp' will strictly only combine exponents in the way that used to be automatic. Also use deep=True if you need the old behavior.

When combine='all', 'exp' is evaluated first. Consider the first example below for when there could be an ambiguity relating to this. This is done so things like the second example can be completely combined. If you want 'base' combined first, do something like powsimp(powsimp(expr, combine='base'), combine='exp').

Examples

```python
>>> from sympy import powsimp, exp, log, symbols
>>> from sympy.abc import x, y, z, n

>>> powsimp(x**y*x**z*y**z, combine='all')
(x**(y + z)*y**z)

>>> powsimp(x**y*x**z*y**z, combine='exp')
(x**(y + z)*y**z)

>>> powsimp(x**y*x**z*y**z, combine='base', force=True)
(x**(y + z)*y**z)

>>> powsimp(x**z*x**y*n**z*n**y, combine='all', force=True)
(n*x)**(y + z)

>>> powsimp(x**z*x**y*n**z*n**y, combine='exp')
n**(y + z)*x**(y + z)

>>> powsimp(x**z*x**y*n**z*n**y, combine='base', force=True)
(n*x)**y*(n*x)**z

>>> x, y = symbols('x y', positive=True)

>>> powsimp(log(exp(x)*exp(y)))
log(exp(x)*exp(y))

>>> powsimp(log(exp(x)*exp(y)), deep=True)
x + y
```

Radicals with Mul bases will be combined if combine='exp'
Two radicals are automatically joined through Mul:

```python
>>> a = sqrt(x * sqrt(y))
>>> a * a**3 == a**4
True
```

But if an integer power of that radical has been autoexpanded then Mul does not join the resulting factors:

```python
>>> a**4 # auto expands to a Mul, no longer a Pow
x**2*y
>>> a # so Mul doesn't combine them
x**2*y*sqrt(x*sqrt(y))
>>> powsimp(_)) # but powsimp will
(x*sqrt(y))**(5/2)
>>> powsimp(x**y*a) # but won't when doing so would violate assumptions
x*y*sqrt(x*sqrt(y))
```

### 4.2 Solve Output by Type

The output of the `solve()` function can seem very unwieldy since it may appear to arbitrarily return one of six different types of output (in addition to raising errors). The reasons for this are historical and are biased toward human interaction rather than programmatic use. The type of output will depend on the type of equation(s) (and how they are entered) and the number of symbols that are provided (and how they are provided).

```python
>>> from sympy import sqrt, exp, solve, Symbol, Eq
>>> from sympy.abc import x, y, z, a, b
```

The `solve()` function attempts to find all values for as many symbols as possible that will make each expression given equal to zero. The format of the output can be controlled by using the `dict` or `set` keyword:

```python
>>> solve(x - 1, dict=True)
{x: 1}
>>> solve([x**2 - y, x + y - 6], set=True)
([x, y], {(-3, 9), (2, 4)})
```

The following discussion provides an explanation for the output obtained when not using those keywords.
4.2.1 Empty List

When there is no solution, an empty list is returned.

```python
>>> solve(sqrt(x) + 1) # or solve(sqrt(x) + 1, dict=True)
[]
>>> solve(sqrt(x) + 1, set=True)
([x], set())
```

4.2.2 List Of Values

A list of values is given when the symbol to solve for was unambiguous in context because a) the equation was univariate or b) a single symbol was specified as being of interest.

```python
>>> solve(x**2 - 4)
[-2, 2]
>>> solve(x - y - 1, x)
[y + 1]
```

4.2.3 Single Dictionary

A single dictionary with keys being symbols and values being the solutions for those symbols is the result when equations are passed as a list and are all linear in the symbols given. Note: such a system is automatically generated for a single equation (not passed as a list) if there is an undetermined-coefficients solution for the symbols specified. If this is not what was intended, then pass the expression in a list.

```python
>>> solve([x + y - 2, x - y + 2], x, y)
{x: 0, y: 2}
>>> eq = a*x - 2*x + b - 5
>>> solve(eq, {a, b}) # undetermined coefficients
{a: 2, b: 5}
>>> solve([eq], {a, b}) # algebraic
{a: -b/x + (2*x + 5)/x}
```

4.2.4 List of Tuples

Each tuple in the list gives a solution for the symbols in the order they were given. This format is used when a) a list of equations contains at least one nonlinear equation or b) a list of symbols is given in a well defined order. (This is also the format for the tuples in the set returned when using the flag set=True.)

```python
>>> solve(x - 1, x, y) # more than one symbol
[(1, y)]
>>> solve([x**2], x) # list with nonlinear equation
[(0,)]
>>> solve([x**2 - 1], x)
[(-1,), (1,)]
```

(continues on next page)
>>> solve([x**2 - y, x - 3], x, y)  # nonlinear and multiple symbols
[(3, 9)]

### 4.2.5 List of Dictionaries

The list of dictionaries is returned when the expression was not univariate or there was a nonlinear expression in a list and the order of symbols would otherwise be ambiguous because a) no symbols were passed or b) the symbols were passed as a set. (This is also the format selected with dict=True.)

```python
>>> solve(x - y)
[{x: y}]
>>> solve([exp(x) - 1, x*(x - 1)])
[\{x: 0\}]
>>> system = [x + y - z, x**2 - y + z, exp(z) + 1/x + 1/y - 2]
>>> sol = solve(system[:2]); sol
[{x: -1, y: z + 1}, {x: 0, y: z}]
```

The dictionaries only contain values that are distinct from the keys. In the last example above, there is no key for z in the dictionary since only two of the three equations were insufficient to determine its value. These solutions can be used to eliminate those variables from the third equation, however, to give a relationship in a single variable that can be solved (perhaps numerically) to obtain a full solution with the advantage of only needing to guess a single value instead of three.

```python
>>> from sympy import nsolve
>>> [system[-1].subs(s) for s in sol]
[exp(z) - 3 + 1/(z + 1), exp(z) + zoo + 1/z]
>>> z_eq = [0]
>>> zsol = nsolve(z_eq, 1); zsol
0.906425478894557
>>> sol0 = {k: v.subs(z, zsol) for k, v in sol[0].items()}
>>> sol0[z] = zsol; sol0
{x: -1, y: 1.90642547889456, z: 0.906425478894557}
```

### 4.2.6 Boolean or Relational

A boolean expression is returned when a relational expression other than an Equality (page 1071) is given as an expression to solve. A single Equality or a more complicated relational expression might be returned. The use of `solve()` (page 882) here is equivalent to passing the equation set and symbols to `reduce_inequalities()` (page 805) (and dict, set, and check flags are ignored).

```python
>>> solve([x**2 > 4, x > 0])
(2 < x) & (x < oo)
>>> from sympy import Unequality as Ne
>>> solve([x**2 - 4, Ne(x, -2)])
Eq(x, 2)
```
Any returned *Equality* can be converted to a dictionary:

```python
>>> {_.lhs: _.rhs}
{x: 2}
```

## 4.3 SymPy Special Topics

The purpose of this collection of documents is to provide users of SymPy with topics which are not strictly tutorial or are longer than tutorials and tests. The documents will hopefully fill a gap as SymPy matures and users find more ways to show how SymPy can be used in more advanced topics.

### 4.3.1 Finite Difference Approximations to Derivatives

**Introduction**

Finite difference approximations to derivatives is quite important in numerical analysis and in computational physics. In this tutorial we show how to use SymPy to compute approximations of varying accuracy. The hope is that these notes could be useful for the practicing researcher who is developing code in some language and needs to be able to efficiently generate finite difference formulae for various approximations.

In order to establish notation, we first state that we envision that there exists a continuous function $F$ of a single variable $x$, with $F$ having as many derivatives as desired. We sample $x$ values uniformly at points along the real line separated by $h$. In most cases we want $h$ to be small in some sense. $F(x)$ may be expanded about some point $x_0$ via the usual Taylor series expansion. Let $x = x_0 + h$. Then the Taylor expansion is

$$
F(x_0 + h) = F(x_0) + \left( \frac{dF}{dx} \right)_{x_0} h + \frac{1}{2!} \left( \frac{d^2F}{dx^2} \right)_{x_0} h^2 + \frac{1}{3!} \left( \frac{d^3F}{dx^3} \right)_{x_0} h^3 + \cdots
$$

In order to simplify the notation, we now define a set of coefficients $c_n$, where

$$
c_n := \frac{1}{n!} \left( \frac{d^n F}{dx^n} \right)_{x_0}.
$$

So now our series has the form:

$$
F(x_0 + h) = F(x_0) + c_1 h + c_2 h^2 + c_3 h^3 + \cdots
$$

In the following we will only use a finite grid of values $x_i$ with $i$ running from 1,...,$N$ and the corresponding values of our function $F$ at these grid points denoted by $F_i$. So the problem is how to generate approximate values for the derivatives of $F$ with the constraint that we use a subset of the finite set of pairs $(x_i, F_i)$ of size $N$.

What follows are manipulations using SymPy to formulate approximations for derivatives of a given order and to assess its accuracy. First, we use SymPy to derive the approximations by using a rather brute force method frequently covered in introductory treatments. Later we shall make use of other SymPy functions which get the job done with more efficiency.
A Direct Method Using SymPy Matrices

If we let \( x_0 = x_i \), evaluate the series at \( x_i + 1 = x_i + h \) and truncate all terms above \( O(h^1) \) we can solve for the single coefficient \( c_1 \) and obtain an approximation to the first derivative:

\[
\left( \frac{dF}{dx} \right)_{x_0} \approx \frac{F_{i+1} - F_i}{h} + O(h)
\]

where the \( O(h) \) refers to the lowest order term in the series in \( h \). This establishes that the derivative approximation is of first order accuracy. Put another way, if we decide that we can only use the two pairs \((x_i, F_i)\) and \((x_{i+1}, F_{i+1})\) we obtain a “first order accurate” derivative.

In addition to \((x_i, F_i)\) we next use the two points \((x_{i+1}, F_{i+1})\) and \((x_{i+2}, F_{i+2})\). Then we have two equations:

\[
F_{i+1} = F_i + c_1 \cdot h + \frac{1}{2} \cdot c_2 \cdot h^2 + \frac{1}{3!} \cdot c_3 \cdot h^3 + \ldots
\]

\[
F_{i+2} = F_i + c_1 \cdot (2h) + \frac{1}{2} \cdot c_2 \cdot (2h)^2 + \frac{1}{3!} \cdot c_3 \cdot (2h)^3 + \ldots
\]

If we again want to find the first derivative \((c_1)\), we can do that by eliminating the term involving \( c_2 \) from the two equations. We show how to do it using SymPy.

```python
>>> from __future__ import print_function
>>> from sympy import *
>>> x, x0, h = symbols('x, x_0, h')
>>> Fi, Fip1, Fip2 = symbols('F_{i}, F_{i+1}, F_{i+2}')
>>> n = 3 # there are the coefficients c_0=F_i, c_1=dF/dx, c_2=d**2F/dx**2
>>> c = symbols('c:3')
>>> def P(x, x0, c, n):
... return sum(((1/factorial(i))*c[i] * (x-x0)**i for i in range(n)))

Vector of right hand sides:

```python
>>> R = Matrix([[Fi], [Fip1], [Fip2]])
```

Now we make a matrix consisting of the coefficients of the \(c_i \) in the nth degree polynomial \(P \).

Coefficient of \(c_i \) evaluated at \(x_i \):

```python
>>> m11 = P(x0 , x0, c, n).diff(c[0])
>>> m12 = P(x0 , x0, c, n).diff(c[1])
>>> m13 = P(x0 , x0, c, n).diff(c[2])
```

Coefficient of \(c_i \) evaluated at \(x_i + h \):

```python
>>> m21 = P(x0+h, x0, c, n).diff(c[0])
>>> m22 = P(x0+h, x0, c, n).diff(c[1])
>>> m23 = P(x0+h, x0, c, n).diff(c[2])
```

Coefficient of \(c_i \) evaluated at \(x_i + 2 \cdot h \):

```python
>>> m31 = P(x0+2*h, x0, c, n).diff(c[0])
>>> m32 = P(x0+2*h, x0, c, n).diff(c[1])
>>> m33 = P(x0+2*h, x0, c, n).diff(c[2])
```

Matrix of the coefficients is 3x3 in this case:
Matrix form of the three equations for the c_i is $M \times X = R$:

The solution is obtained by directly inverting the 3x3 matrix M:

```python
>>> X = M.inv() * R
```

Note that all three coefficients make up the solution. The desired first derivative is coefficient c_1 which is $X[1]$.

```python
>>> print(together(X[1]))
(4*F_{i+1} - F_{i+2} - 3*F_{i})/(2*h)
```

It is instructive to compute another three-point approximation to the first derivative, except centering the approximation at x_i, and thus using points at x_{i-1}, x_i, and x_{i+1}. So here is how this can be done using the ‘brute force’ method:

```python
from __future__ import print_function
from sympy import *

x, x0, h = symbols('x, x_i, h')
Fi, Fim1, Fip1 = symbols('F_{i}, F_{i-1}, F_{i+1}')
n = 3 # there are the coefficients c_0=F_i, c_1=dF/h, c_2=d^2F/h^2

c = symbols('c:3')
# define a polynomial of degree n
# coefficients of c_i evaluated at x_i
m11 = P(x0 , x0, c, n).diff(c[0])
m12 = P(x0 , x0, c, n).diff(c[1])
m13 = P(x0 , x0, c, n).diff(c[2])
# coefficients of c_i evaluated at x_i - h
m21 = P(x0-h, x0, c, n).diff(c[0])
m22 = P(x0-h, x0, c, n).diff(c[1])
m23 = P(x0-h, x0, c, n).diff(c[2])
# coefficients of c_i evaluated at x_i + h
m31 = P(x0+h, x0, c, n).diff(c[0])
m32 = P(x0+h, x0, c, n).diff(c[1])
m33 = P(x0+h, x0, c, n).diff(c[2])
# matrix of the coefficients is 3x3 in this case
M = Matrix([[m11, m12, m13], [m21, m22, m23], [m31, m32, m33]])

Now that we have the matrix of coefficients we next form the right-hand-side and solve by inverting $M$:

```python
>>> R = Matrix([[Fi], [Fim1], [Fip1]])
matrix form of the three equations for the c_i is M*X = R
solution directly inverting the 3x3 matrix M:
X = M.inv() * R
note that all three coefficients make up the solution
the first derivative is coefficient c_1 which is X[1].
```
The second-order accurate approximation for the first derivative is:

\[
\frac{F_{i+1} - F_{i-1}}{2h}
\]

These two examples serve to show how one can directly find second order accurate first derivatives using SymPy. The first example uses values of \(x\) and \(F\) at all three points \(x_i, x_{i+1},\) and \(x_{i+2}\) whereas the second example only uses values of \(x\) at the two points \(x_{i-1}\) and \(x_{i+1}\) and thus is a bit more efficient.

From these two simple examples a general rule is that if one wants a first derivative to be accurate to \(O(h^n)\) then one needs \(n+1\) function values in the approximating polynomial (here provided via the function \(P(x, x_0, c, n)\)).

Now let’s assess the question of the accuracy of the centered difference result to see how we determine that it is really second order. To do this we take the result for \(dF/dx\) and substitute in the polynomial expansion for a higher order polynomial and see what we get. To this end, we make a set of eight coefficients \(d\) and use them to perform the check:

\[
\text{dfdxcheck} = \frac{P(x_0 + h, x_0, d, 8) - P(x_0 - h, x_0, d, 8)}{2h}
\]

Thus we see that indeed the derivative is \(c_1\) with the next term in the series of order \(h^2\).

However, it can quickly become rather tedious to generalize the direct method as presented above when attempting to generate a derivative approximation to high order, such as 6 or 8 although the method certainly works and using the present method is certainly less tedious than performing the calculations by hand.

As we have seen in the discussion above, the simple centered approximation for the first derivative only uses two point values of the \((x_i, F_i)\) pairs. This works fine until one encounters the last point in the domain, say at \(i = N\). Since our centered derivative approximation would use data at the point \((x_{N+1}, F_{N+1})\) we see that the derivative formula will not work. So, what to do? Well, a simple way to handle this is to devise a different formula for this last point which uses points for which we do have values. This is the so-called backward difference formula. To obtain it, we can use the same direct approach, except now we the three points \((x_N, F_N)\), \((x_{N-1}, F_{N-1})\), and \((x_{N-2}, F_{N-2})\) and center the approximation at \((x_N, F_N)\). Here is how it can be done using SymPy:

```python
>>> from __future__ import print_function
>>> from symy import *
>>> x, xN, h = symbols('x, x_N, h')
>>> FN, FNm1, FNm2 = symbols('F_{N}, F_{N-1}, F_{N-2}')
>>> n = 8 # there are the coefficients c_0=F1, c_1=dF/h, c_2=d**2F/h**2
>>> c = symbols('c:8')
>>> # define a polynomial of degree d
>>> def P(x, x0, c, n):
... return sum(((i/factorial(i))*c[i] * (x-x0)**i for i in range(n)))
```

Now we make a matrix consisting of the coefficients of the \(c_i\) in the dth degree polynomial \(P\) coefficients of \(c_i\) evaluated at \(x_i, x_{i-1},\) and \(x_{i+1}\):
Next we construct the $3 \times 3$ matrix of the coefficients:

```python
>>> M = Matrix([[m11, m12, m13], [m21, m22, m23], [m31, m32, m33]])
```

Then we invert $M$ and write the solution to the $3 \times 3$ system.

The matrix form of the three equations for the $c_i$ is $M \cdot C = R$. The solution is obtained by directly inverting $M$:

```python
>>> X = M.inv() * R
```

The first derivative is coefficient $c_1$ which is $X[1]$. Thus the second order accurate approximation for the first derivative is:

```python
>>> print("The first derivative centered at the last point on the right is:"))
```

```python
>>> print(together(X[1]))
```

```python
(-4*F_{N-1} + F_{N-2} + 3*F_{N})/(2*h)
```

Of course, we can devise a similar formula for the value of the derivative at the left end of the set of points at $(x_1, F_1)$ in terms of values at $(x_2, F_2)$ and $(x_3, F_3)$.

Also, we note that output of formats appropriate to Fortran, C, etc. may be done in the examples given above.

Next we show how to perform these and many other discretizations of derivatives, but using a much more efficient approach originally due to Bengt Fornberg and now incorporated into SymPy.

**Finite differences** (page 46)

**Finite difference weights** (page 294)
4.3.2 Classification of SymPy objects

There are several ways of how SymPy object is classified.

class

Like any other object in Python, SymPy expression is an instance of class. You can get the class of the object with built-in \texttt{type()} function, and check it with \texttt{isinstance()} function.

```
>>> from sympy import Add
>>> from sympy.abc import x,y
>>> type(x + y)
<class 'sympy.core.add.Add'>
>>> isinstance(x + y, Add)
True
```

Classes represent only the programmatic structures of the objects, and does not distinguish the mathematical difference between them. For example, the integral of number and the integral of matrix both have the class \texttt{Integral}, although the former is number and the latter is matrix.

```
>>> from sympy import MatrixSymbol, Integral
>>> A = MatrixSymbol('A', 2, 2)
>>> type(Integral(1, x))
<class 'sympy.integrals.integrals.Integral'>
>>> type(Integral(A, x))
<class 'sympy.integrals.integrals.Integral'>
```

kind

Kind indicates what mathematical object does the expression represent. You can retrieve the kind of expression with \texttt{kind} property.

```
>>> Integral(1, x).kind
NumberKind
>>> Integral(A, x).kind
MatrixKind(NumberKind)
```

This result shows that \texttt{Integral(1,x)} is number, and \texttt{Integral(A,x)} is matrix with number element.

Since the class cannot guarantee to catch this difference, kind of the object is very important. For example, if you are building a function or class that is designed to work only for numbers, you should consider filtering the arguments with \texttt{NumberKind} so that the user does not naively pass unsupported objects such as \texttt{Integral(A,x)}.

For the performance, set theory is not implemented in kind system. For example, \texttt{NumberKind} does not distinguish the real number and complex number.

```
>>> from sympy import pi, I
>>> pi.kind
NumberKind
```
SymPy’s `Set` and `kind` are not compatible.

```python
>>> from sympy import S
>>> from sympy.core.kind import NumberKind
>>> S.Reals.is_subset(S.Complexes)
True
>>> S.Reals.is_subset(NumberKind)
Traceback (most recent call last):
... ValueError: Unknown argument 'NumberKind'
```

### sets and assumptions

If you want to classify the object in strictly mathematical way, you may need SymPy’s `sets` and `assumptions`.

```python
>>> from sympy import ask, Q
>>> S.One in S.Reals
True
>>> ask(Q.even(2*x), Q.odd(x))
True
```

See `assumptions` module and `sets` module for more information.

### func

`func` is the head of the object, and it is used to recurse over the expression tree.

```python
>>> Add(x + y).func
<class 'sympy.core.add.Add'>
>>> Add(x + x).func
<class 'sympy.core.mul.Mul'>
>>> Q.even(x).func
<class 'sympy.assumptions.assume.AppliedPredicate'>
```

As you can see, resulting head may be a class or another SymPy object. Keep this in mind when you classify the object with this attribute. See `Advanced Expression Manipulation` (page 61) for detailed information.
4.4 List of active deprecations

This page lists all active deprecations in the SymPy codebase. See the *Deprecation Policy* (page 3101) page for a description of SymPy's deprecation policy, as well as instructions for contributors on how to deprecate things.

In particular, the deprecation policy for SymPy is for deprecations to last at least 1 year after the first major release that includes the deprecation. After that period, the deprecated functionality may be removed from SymPy, and code will need to be updated to use the replacement feature to continue working.

During the deprecation period, a `SymPyDeprecationWarning` message will be printed whenever the deprecated functionality is used. It is recommended for users to update their code so that it does not use deprecated functionality, as described below for each given deprecation.

4.4.1 Silencing SymPy Deprecation Warnings

To silence SymPy deprecation warnings, add a filter using the `warnings` module. For example:

```python
import warnings
from sympy.utilities.exceptions import SymPyDeprecationWarning

warnings.filterwarnings(
 # replace "ignore" with "error" to make the warning raise an exception.
 # This useful if you want to test you aren't using deprecated code.
 "ignore",

 # message may be omitted to filter all SymPyDeprecationWarnings
 message=r"(?s).*<regex matching the warning message>",

 category=SymPyDeprecationWarning,
 module=r"<regex matching your module>"
)
```

Here (?s).*<regex matching the warning message> is a regular expression matching the warning message. For example, to filter a warning about `sympy.printing`, you might use `message=r"(?s).*sympy\.printing"`. The leading (?s).* is there because the warnings module matches `message` against the start of the warning message, and because typical warning messages span multiple lines.

<regex matching your module> should be a regular expression matching your module that uses the deprecated code. It is recommended to include this so that you don't also silence the same warning for unrelated modules.

This same pattern may be used to instead turn `SymPyDeprecationWarning` into an error so that you can test that you aren't using deprecated code. To do this, replace "ignore" with "error" in the above example. You may also omit `message` to make this apply to all `SymPyDeprecationWarning` warnings.

If you are using pytest, you can use the `pytest warnings filtering capabilities` to either ignore `SymPyDeprecationWarning` or turn them into errors.

**Note:** The Python `-W` flag and `PYTHONWARNINGS` environment variable will NOT work to filter SymPy deprecation warnings (see this blog post by Ned Batchelder and this SymPy issue for
details on why). You will need to either add a warnings filter as above or use pytest to filter SymPy deprecation warnings.

4.4.2 Version 1.12

The ManagedProperties metaclass

The ManagedProperties metaclass was previously the metaclass for Basic. Now Basic does not use metaclasses and so its metaclass is just type. Any code that previously subclassed Basic and wanted to do anything with metaclasses would have needed to subclass ManagedProperties to make the relevant metaclass. The only relevant method of ManagedProperties has been moved to Basic.__init_subclass__. Since ManagedProperties is not used as the metaclass for Basic any more and no longer does anything useful it should be possible for such code to just subclass type instead for any metaclass.

New Joint coordinate format

The format, i.e. type and auto generated name, of the generalized coordinates and generalized speeds of the joints in the sympy.physics.mechanics module has changed. The data type has changed from list to Matrix, which is the same as the type for the generalized coordinates within the KanesMethod. The auto naming of the generalized coordinates and generalized speeds of the PinJoint and PrismaticJoint have also changed to q_<joint.name> and u_<joint.name>. Previously each of those joints had an unique template for auto generating these names.

New Joint intermediate frames

The definition of the joint axis in the sympy.physics.mechanics module has changed. Instead of using the arguments parent_axis and child_axis to automatically determine the joint axis and an intermediate reference frame, the joints now use an intermediate frame argument for both the parent and the child body, i.e. parent_interframe and child_interframe. This means that you can now fully define the joint attachment, consisting of a point and frame, for both bodies. Furthermore, if a joint like the PinJoint has a specific joint axis, e.g. the axis about which the rotation occurs, then this axis can be specified using the joint_axis argument. An advantage of this setup is that one can more accurately define the transformation from the parent body to the child body.

For example, suppose you want a PinJoint that rotates the child body about the parent.z axis and -child.z axis. The previous way to specify this joint was:

```python
>>> from sympy.physics.mechanics import Body, PinJoint
>>> parent, child = Body('parent'), Body('child')
>>> pin = PinJoint('pin', parent, child, parent_axis=parent.z,
... child_axis=-child.z)
>>> parent.dcm(child)
Matrix(
 [[-cos(q_pin(t)), -sin(q_pin(t)), 0],
 [-sin(q_pin(t)), cos(q_pin(t)), 0],
 [0, 0, -1]])
```
When inspecting this matrix you will notice that for \( \theta_{\text{pin}} = 0 \) the child body is rotated \( \pi \) rad about the parent.y axis. In the new definition you can see that we get the same result, but this time we have also specified this exact rotation:

```python
>>> from sympy import pi
>>> from sympy.physics.mechanics import Body, PinJoint, ReferenceFrame
>>> parent, child, = Body('parent'), Body('child')
>>> int_frame = ReferenceFrame('int_frame')
>>> int_frame.orient_axis(child.frame, child.y, pi)
>>> pin = PinJoint('pin', parent, child, joint_axis=parent.z, child_interframe=int_frame)
>>> parent.dcm(child)
Matrix([[-cos(q_pin(t)), -sin(q_pin(t)), 0],
 [-sin(q_pin(t)), cos(q_pin(t)), 0],
 [0, 0, -1]])
```

However if you liked the fact that the deprecated arguments aligned the frames for you, then you can still make use of this feature by providing vectors to `parent_interframe` and `child_interframe`, which are then oriented such that the joint axis expressed in the intermediate frame is aligned with the given vector:

```python
>>> from sympy.physics.mechanics import Body, PinJoint
>>> parent, child, = Body('parent'), Body('child')
>>> pin = PinJoint('pin', parent, child, parent_interframe=parent.z, child_interframe=-child.z)
>>> parent.dcm(child)
Matrix([[-cos(q_pin(t)), -sin(q_pin(t)), 0],
 [-sin(q_pin(t)), cos(q_pin(t)), 0],
 [0, 0, -1]])
```

### Change in joint attachment point argument

The argument names for specifying the attachment points of a joint in `sympy.physics.mechanics`, i.e. `parent_joint_pos` and `child_joint_pos`, have been changed to `parent_point` and `child_point`. This is because these arguments can now also be `Point` objects, so they can be exactly the same as the `parent_point` and `child_point` attributes.

For example, suppose you want a PinJoint in the parent to be positioned at `parent.frame.x` with respect to the mass center, and in the child at `-child.frame.x`. The previous way to specify this was:

```python
>>> from sympy.physics.mechanics import Body, PinJoint
>>> parent, child, = Body('parent'), Body('child')
>>> pin = PinJoint('pin', parent, child, parent_joint_pos=parent.frame.x,
... child_joint_pos=-child.frame.x)
>>> pin.parent_point.pos_from(parent.masscenter)
parent_frame.x
>>> pin.child_point.pos_from(child.masscenter)
- child_frame.x
```

Now you can do the same with either
>>> from sympy.physics.mechanics import Body, PinJoint
>>> parent, child = Body('parent'), Body('child')
>>> pin = PinJoint('pin', parent, child, parent_point=parent.frame.x,
...                child_point=-child.frame.x)
>>> pin.parent_point.pos_from(parent.masscenter)
parent_frame.x
>>> pin.child_point.pos_from(child.masscenter)
- child_frame.x

Or

>>> from sympy.physics.mechanics import Body, PinJoint, Point
>>> parent, child = Body('parent'), Body('child')
>>> parent_point = parent.masscenter.locatenew('parent_point', parent.frame.x)
>>> child_point = child.masscenter.locatenew('child_point', -child.frame.x)
>>> pin = PinJoint('pin', parent, child, parent_point=parent_point,
...                child_point=child_point)
>>> pin.parent_point.pos_from(parent.masscenter)
parent_frame.x
>>> pin.child_point.pos_from(child.masscenter)
- child_frame.x

4.4.3 Version 1.11

Modules sympy.tensor.array.expressions.conv_* renamed to sympy.tensor.array.expressions.from_*

In order to avoid possible naming and tab-completion conflicts with functions with similar names to the names of the modules, all modules whose name starts with conv_* in sympy.tensor.array.expressions have been renamed to from_*.

New Mathematica code parser

The old mathematica code parser defined in the module sympy.parsing.mathematica in the function mathematica is deprecated. The function parse_mathematica with a new and more comprehensive parser should be used instead.

The additional_translations parameter for the Mathematica parser is not available in parse_mathematica. Additional translation rules to convert Mathematica expressions into SymPy ones should be specified after the conversion using SymPy's .replace() or .subs() methods on the output expression. If the translator fails to recognize the logical meaning of a Mathematica expression, a form similar to Mathematica's full form will be returned, using SymPy's Function object to encode the nodes of the syntax tree.

For example, suppose you want F to be a function that returns the maximum value multiplied by the minimum value, the previous way to specify this conversion was:

>>> from sympy.parsing.mathematica import mathematica
>>> mathematica('F[7,5,3]', {'F[*x]': 'Max(*x)*Min(*x)'}
21

Now you can do the same with

4.4. List of active deprecations
from sympy.parsing.mathematica import parse_mathematica
from sympy import Function, Max, Min
>>> parse_mathematica("F[7,5,3]").replace(Function("F"), lambda *x: Max(*x)*Min(*x))
21

Redundant static methods in carmichael

A number of static methods in ~.carmichael are just wrappers around other functions. Instead of carmichael.is_perfect_square use sympy.ntheory.primetest.is_square and instead of carmichael.is_prime use ~.isprime. Finally, carmichael.divides can be replaced by instead checking

n % p == 0

The check argument to HadamardProduct, MatAdd and MatMul

This argument can be used to pass incorrect values to ~.HadamardProduct, ~.MatAdd, and ~.MatMul leading to later problems. The check argument will be removed and the arguments will always be checked for correctness, i.e., the arguments are matrices or matrix symbols.

4.4.4 Version 1.10

Some traversal functions have been moved

Some traversal functions have moved. Specifically, the functions

• bottom_up
• interactive_traversal
• postorder_traversal
• preorder_traversal
• use

have moved to different SymPy submodules.

These functions should be used from the top-level sympy namespace, like

sympy.preorder_traversal

or

from sympy import preorder_traversal

In general, end-users should use the top-level sympy namespace for any functions present there. If a name is in the top-level namespace, its specific SymPy submodule should not be relied on, as functions may move around due to internal refactorings.
**sympy.core.trace**

The trace object `sympy.core.trace.Tr()` was moved to `sympy.physics.quantum.trace.Tr()`. This was because it was only used in the `sympy.physics.quantum` submodule, so it was better to have it there than in the core.

**The sympy.core.compatibility submodule**

The `sympy.core.compatibility` submodule is deprecated.

This submodule was only ever intended for internal use. Now that SymPy no longer supports Python 2, this module is no longer necessary, and the remaining helper functions have been moved to more convenient places in the SymPy codebase.

Some of the functions that were in this module are available from the top-level SymPy namespace, i.e.,

```python
sympy.ordered
sympy.default_sort_key
```

or

```python
from sympy import ordered, default_sort_key
```

In general, end-users should use the top-level `sympy` namespace for any functions present there. If a name is in the top-level namespace, its specific SymPy submodule should not be relied on, as functions may move around due to internal refactorings.

The remaining functions in `sympy.core.compatibility` were only intended for internal SymPy use and should not be used by user code.

Additionally, these two functions, `ordered` and `default_sort_key`, also used to be in `sympy.utilities.iterables` but have been moved from there as well.

### 4.4.5 Version 1.9

**expr_free_symbols**

The `expr_free_symbols` attribute of various SymPy objects is deprecated.

`expr_free_symbols` was meant to represent indexed objects such as `MatrixElement` and `Indexed` (page 1449) as free symbols. This was intended to make derivatives of free symbols work. However, this now works without making use of the method:

```python
>>> from sympy import Indexed, MatrixSymbol, diff
>>> a = Indexed("A", 0)
>>> diff(a**2, a)
2*A[0]
>>> X = MatrixSymbol("X", 3, 3)
>>> diff(X[0, 0]**2, X[0, 0])
2*X[0, 0]
```

This was a general property that was added to solve a very specific problem but it added a layer of abstraction that is not necessary in general.
1. objects that have structural “non-expression” nodes already allow one to focus on the expression node if desired, e.g.

```python
>>> from sympy import Derivative, symbols, Function
>>> x = symbols('x')
>>> f = Function('f')
>>> Derivative(f(x), x).expr
f(x)
```

introduction of this property encourages imprecise thinking when requesting free_symbols since it allows one to get symbols from a specific node of an object without specifying the node

2. the property was incorrectly added to AtomicExpr so numbers are returned as expr_free_symbols:

```python
>>> S(2).expr_free_symbols
2
```

3. the application of the concept was misapplied to define Subs.expr_free_symbols: it added in expr_free_symbols of the point but the point is a Tuple so nothing was added

4. it was not used anywhere else in the codebase except in the context of differentiating a Subs object, which suggested that it was not something of general use, this is also confirmed by the fact that,

5. it was added without specific tests except for test of the derivatives of the Subs object for which it was introduced

See issue #21494 for more discussion.

**sympy.stats.sample(numsamples=n)**

The numsamples parameter to `sympy.stats.sample()` (page 3055) is deprecated. numsamples makes sample() return a list of size numsamples, like

```python
>>> from sympy.stats import Die, sample
>>> X = Die('X', 6)
>>> sample(X, numsamples=3)
[3, 2, 3]
```

However, this functionality can be easily implemented by the user with a list comprehension

```python
>>> [sample(X) for i in range(3)]
[5, 4, 3]
```

Additionally, it is redundant with the size parameter, which makes sample return a NumPy array with the given shape.

```python
>>> sample(X, size=(3,))
array([6, 6, 1])
```

Historically, sample was changed in SymPy 1.7 so it returned an iterator instead of sample value. Since an iterator was returned, a numsamples parameter was added to specify the length of the iterator.
However, this new behavior was considered confusing, as discussed in issue #21563, so it was reverted. Now, sample_iter should be used if a iterator is needed. Consequently, the numsamples parameter is no longer needed for sample().

**sympy.polys.solvers.RawMatrix**

The RawMatrix class is deprecated. The RawMatrix class was a subclass of Matrix that used domain elements instead of Expr as the elements of the matrix. This breaks a key internal invariant of Matrix and this kind of subclassing limits improvements to the Matrix class.

The only part of SymPy that documented the use of the RawMatrix class was the Smith normal form code, and that has now been changed to use DomainMatrix instead. It is recommended that anyone using RawMatrix with the previous Smith Normal Form code should switch to using DomainMatrix as shown in issue #21402. A better API for the Smith normal form will be added later.

**Non-Expr objects in a Matrix**

In SymPy 1.8 and earlier versions it was possible to put non-Expr elements in a Matrix and the matrix elements could be any arbitrary Python object:

```python
>>> M = Matrix([[1, 2], {'dict': None}])
```

This is not useful and does not really work, e.g.:

```python
>>> M + M
Traceback (most recent call last):
... TypeError: unsupported operand type(s) for +: 'Dict' and 'Dict'
```

The main reason for making this possible was that there were a number of Matrix subclasses in the SymPy codebase that wanted to work with objects from the polys module, e.g.

1. RawMatrix (see above) was used in solve_lin_sys which was part of heurisch and was also used by smith_normal_form. The NewMatrix class used domain elements as the elements of the Matrix rather than Expr.

2. NewMatrix was used in the holonomic module and also used domain elements as matrix elements

3. PolyMatrix used a mix of Poly and Expr as the matrix elements and was used by risch.

All of these matrix subclasses were broken in different ways and the introduction of DomainMatrix provides a better solution for all cases. Previous PRs have removed the dependence of these other use cases on Matrix (#21441, #21427, #21402) and now #21496 has deprecated having non-Expr in a Matrix.

This change makes it possible to improve the internals of the Matrix class but it potentially impacts on some downstream use cases that might be similar to the uses of Matrix with non-Expr elements that were in the SymPy codebase. A potential replacement for code that used Matrix with non-Expr elements is DomainMatrix if the elements are something like domain elements and a domain object can be provided for them. Alternatively if the goal is just printing support then perhaps TableForm can be used.
It isn’t clear what to advise as a replacement here without knowing more about the use case. If you are unclear how to update your code, please open an issue or write to our mailing list so we can discuss it.

The `get_segments` attribute of plotting objects

The `get_segments` method implemented in `Line2DBaseSeries` (page 2949) is used to convert two list of coordinates, x and y, into a list of segments used by Matplotlib’s LineCollection to plot a line.

Since the list of segments is only required by Matplotlib (for example, Bokeh, Plotly, Mayavi, K3D only require lists of coordinates), this has been moved inside the MatplotlibBackend class.

Note that previously, the method `get_points()` (page 2950) always returned uniformly sampled points, which meant that some functions were not plotted correctly when using `get_points()` to plot with Matplotlib.

To avoid this problem, the method `get_segments()` could be used, which used adaptive sampling and which could be used with Matplotlib’s LineCollection. However, this has been changed, and now `get_points()` can also use adaptive sampling. The `get_data()` (page 2950) method can also be used.

The `mdft` function in `sympy.physics.matrices`

The `sympy.physics.matrices.mdft()` function is deprecated. It can be replaced with the DFT class in `sympy.matrices.expressions.fourier`.

In particular, replace `mdft(n)` with `DFT(n).as_explicit()`. For example:

```python
>>> from sympy.physics.matrices import mdft
>>> mdft(3) # DEPRECATED
Matrix([[sqrt(3)/3, sqrt(3)/3, sqrt(3)/3],
 [sqrt(3)/3, sqrt(3)*exp(-2*I*pi/3)/3, sqrt(3)*exp(2*I*pi/3)/3],
 [sqrt(3)/3, sqrt(3)*exp(2*I*pi/3)/3, sqrt(3)*exp(-2*I*pi/3)/3]])
```

```python
>>> from sympy.matrices.expressions.fourier import DFT
>>> DFT(3)
DFT(3)
>>> DFT(3).as_explicit()
Matrix([[sqrt(3)/3, sqrt(3)/3, sqrt(3)/3],
 [sqrt(3)/3, sqrt(3)*exp(-2*I*pi/3)/3, sqrt(3)*exp(2*I*pi/3)/3],
 [sqrt(3)/3, sqrt(3)*exp(2*I*pi/3)/3, sqrt(3)*exp(-2*I*pi/3)/3]])
```

This was changed because the sympy.physics submodule is supposed to only contain things that are specific to physics, but the discrete Fourier transform matrix is a more general mathematical concept, so it is better located in the sympy.matrices module. Furthermore, the DFT class is a matrix expression (page 1414), meaning it can be unevaluated and support symbolic shape.
The private SparseMatrix._smat and DenseMatrix._mat attributes

The .mat attribute of Matrix (page 1406) and the ._smat attribute of SparseMatrix (page 1409) are deprecated.

The internal representation of Matrix and SparseMatrix was changed to be a DomainMatrix (page 2753) in #21626 so that it is no longer possible to expose a mutable list/dict as a way of mutating a Matrix. Instead of .mat the new .flat() method can be used, which returns a new list that cannot be used to mutate the Matrix itself. Instead of ._smat the .todok() method can be used which returns a new dict.

Note that these attributes are already changed in SymPy 1.9 to return read-only copies, so that any code that relied on mutating them will be broken. Also these attributes were technically always private (they started with an underscore), so user code should not really have been using them in the first place.

laplace_transform of a Matrix with noconds=False

Prior to version 1.9, calling laplace_transform() (page 635) on a Matrix (page 1406) with noconds=False (which is the default), resulted in a Matrix of tuples:

```python
>>> from sympy import laplace_transform, symbols, eye
>>> t, z = symbols('t z')
>>> laplace_transform(eye(2), t, z)
Matrix([[(1/z, 0, True), (0, 0, True)],
 [(0, 0, True), (1/z, 0, True)]])
```

However, Matrix is only designed to work with Expr objects (see Non-Expr objects in a Matrix (page 221) above).

To avoid this, either use noconds=True to remove the convergence conditions

```python
>>> laplace_transform(eye(2), t, z, noconds=True)
Matrix([[1/z, 0],
 [0, 1/z]])
```

or use legacy_matrix=False to return the new behavior, which will be to return a single tuple with the Matrix in the first argument and the convergence conditions combined into a single condition for the whole matrix.

```python
>>> laplace_transform(eye(2), t, z, legacy_matrix=False)
(Matrix([[1/z, 0],
 [0, 1/z]]), 0, True)
```

When this deprecation is removed the legacy_matrix=False behavior will become the default, but the flag will be left intact for compatibility.
4.4.6 Version 1.8

sympy.printing.theanocode

Theano has been discontinued, and forked into a new project called Aesara. The sympy.printing.theanocode module has been renamed to sympy.printing.aesaracode (page 2241), and all the corresponding functions have been renamed (e.g., theano_code has been renamed to aesara_code() (page 2242), TheanoPrinter has been renamed to AesaraPrinter (page 2241), and so on).

sympy.assumptions.handlers.AskHandler and related methods

Predicate has experienced a big design change. Previously, its handler was a list of AskHandler classes and registration was done by add_handler() and remove_handler() functions. Now, its handler is a multipledispatch instance and registration is done by register() or register_many() methods. Users must define a predicate class to introduce a new one.

Previously, handlers were defined and registered this way:

```python
class AskPrimeHandler(AskHandler):
 @staticmethod
 def Integer(expr, assumptions):
 return expr.is_prime

register_handler('prime', AskPrimeHandler)
```

It should be changed to this:

```python
Predicate definition.
Not needed if you are registering the handler to existing predicate.
class PrimePredicate(Predicate):
 name = 'prime'
Q.prime = PrimePredicate()

Handler registration
@Q.prime.register(Integer)
def _(expr, assumptions):
 return expr.is_prime
```

See GitHub issue #20209.

4.4.7 Version 1.7.1

Calling sympy.stats.StochasticProcess.distribution with RandomIndexedSymbol

The distribution method of sympy.stats stochastic processes (page 3028) used to accept a RandomIndexedSymbol (that is, a stochastic process indexed with a timestamp), but should now only be called with the timestamp.

For example, if you have
from sympy import symbols
from sympy.stats import WienerProcess
W = WienerProcess('W')
t = symbols('t', positive=True)

Previously this would work
W.distribution(W(t)) # DEPRECATED

It should now be called like
>>> W.distribution(t)
NormalDistribution(0, sqrt(t))

This was change was made as part of a change to store only Basic objects in sympy.stats.args. See issue #20078 for details.

4.4.8 Version 1.7

sympy.stats.DiscreteMarkovChain.absorbing_probabilites()

The absorbing_probabilites method name was misspelled. The correct spelling absorbing_probabilities() (page 3030) ("absorbing probabilities") should be used instead.

sympy.utilities.misc.find_executable()

The function sympy.utilities.misc.find_executable() is deprecated. Instead use the standard library shutil.which() function, which has been in the standard library since Python 3.3 and is more powerful.

Mutable attributes in sympy.diffgeom

Several parts of sympy.diffgeom (page 2883) have been updated to no longer be mutable, which better matches the immutable design used in the rest of SymPy.

• Passing strings for symbol names in CoordSystem (page 2885) is deprecated. Instead you should be explicit and pass symbols with the appropriate assumptions, for instance, instead of

CoordSystem(name, patch, ['x', 'y']) # DEPRECATED

use

CoordSystem(name, patch, symbols('x y', real=True))

• Similarly, the names keyword argument has been renamed to symbols, which should be a list of symbols.

• The Manifold.patches attribute is deprecated. Patches should be tracked separately.

• The Patch.coord_systems attribute is deprecated. Coordinate systems should be tracked separately.

4.4. List of active deprecations
• The CoordSystem.transforms attribute, CoordSystem.connect_to() method, and CoordSystem.coord_tuple_transform_to() method are deprecated. Instead, use the relations keyword to the CoordSystem class constructor and the CoordSystem.transformation() (page 2889) and CoordSystem.transform() (page 2889) methods (see the docstring of CoordSystem (page 2885) for examples).

The unicode argument and attribute to sympy.printing.pretty.stringpict.prettyForm and the sympy.printing.pretty.pretty_symbology.xstr function

The sympy.printing.pretty.pretty_symbology.xstr function, and the unicode argument and attribute to sympy.printing.pretty.stringpict.prettyForm (page 2263) were both present to support the Unicode behavior of Python 2. Since Unicode strings are the default in Python 3, these are not needed any more. xstr() should be replaced with just str(), the unicode argument to prettyForm should be omitted, and the prettyForm.unicode attribute should be replaced with the prettyForm.s attribute.

Passing the arguments to lambdify as a set

Passing the function arguments to lambdify as a set is deprecated. Instead pass them as a list or tuple. For example, instead of

\[
\text{lambdify}({x, y}, x + 2*y) \ # \text{WRONG}
\]

use

\[
\text{lambdify}((x, y), x + 2*y) \ # \text{RIGHT}
\]

This is because sets are unordered. For instance, in the above example it would be impossible for lambdify to know if it was called with \{x, y\} or \{y, x\}. Thus, when passed the arguments as a set lambdify would have to guess their order, which would lead to an incorrect function if it guessed incorrectly.

Core operators no longer accept non-Expr args

The core operator classes Add (page 1062), Mul (page 1058), and Pow (page 1055) can no longer be constructed directly with objects that are not subclasses of Expr (page 999).

Expr (page 999) is the superclass of all SymPy classes that represent scalar numeric quantities. For example, sin (page 449), Symbol (page 1028), and Add (page 1062) are all subclasses of Expr (page 999). However, may objects in SymPy are not Expr (page 999) because they represent some other type of mathematical object. For example, Set (page 1229), Poly (page 2453), and Boolean (page 1207) are all non-Expr. These do not make mathematical sense inside of Add, Mul, and Pow, which are designed specifically to represent the addition, multiplication, and exponentiation of scalar complex numbers.

Manually constructing one of these classes with such an object is possible, but it will generally create something that will then break. For example

\[
\text{Mul}(1, \text{Tuple}(2)) \ # \text{This is deprecated}
\]

works and creates Tuple(2), but only because Mul is “tricked” by always treating \(1 \cdot x = x\). If instead you try
SymPy Documentation, Release 1.12.1

Mul(2, Tuple(2)) # This is deprecated

it fails with an exception

```
AttributeError: 'Tuple' object has no attribute 'as_coeff_Mul'
```

because it tries to call a method of Expr on the Tuple object, which does not have all the Expr methods (because it is not a subclass of Expr).

If you want to use the +, *, or ** operation on a non-Expr object, use the operator directly rather than using Mul, Add or Pow. If functional versions of these are desired, you can use a lambda or the operator module.

### 4.4.9 Version 1.6

Various sympy.utilities submodules have moved

The following submodules have been renamed.

- sympy.utilities.benchmarking → sympy.testing.benchmarking
- sympy.utilities.pytest → sympy.testing.pytest
- sympy.utilities.randtests → sympy.core.random
- sympy.utilities.runtests → sympy.testing.runtests
- sympy.utilities.tmpfiles → sympy.testing.tmpfiles

**sympy.testing.randtest**

sympy.testing.randtest is deprecated. The functions in it have been moved to sympy.core.random. The following functions have been moved.

- sympy.testing.randtest.random_complex_number → sympy.core.random.random_complex_number
- sympy.testing.randtest.verify_numerically → sympy.core.random.verify_numerically
- sympy.testing.randtest.test_derivative_numerically → sympy.core.random.test_derivative_numerically
- sympy.testing.randtest._randrange → sympy.core.random._randrange
- sympy.testing.randtest._randint → sympy.core.random._randint

4.4. List of active deprecations 227
Mixing Poly and non-polynomial expressions in binary operations

In previous versions of SymPy, Poly (page 2453) was a subclass of Expr (page 999), but it has been changed to only be a subclass of Basic (page 979). This means that some things that used to work with Poly are now deprecated because they are only designed to work with Expr (page 999) objects.

This includes combining Poly with Expr objects using binary operations, for example

```
Poly(x) * sin(x) # DEPRECATED
```

To do this, either explicitly convert the non-Poly operand to a Poly using Expr.as_poly() (page 1007) or convert the Poly operand to an Expr (page 999) using Poly.as_expr() (page 2457), depending on which type you want the result to be.

The print_cyclic flag of sympy.combinatorics.Permutation

The print_cyclic attribute of sympy.combinatorics.Permutation (page 312) controls whether permutations print as cycles or arrays. This would be done by setting Permutation.print_cyclic = True or Permutation.print_cyclic = False. However, this method of controlling printing is bad because it is a global flag, but printing should not depend on global behavior.

Instead, users should use the perm_cyclic flag of the corresponding printer. The easiest way to configure this is to set the flag when calling init_printing() (page 2192), like

```python
>>> from sympy import init_printing
>>> init_printing(perm_cyclic=False) # Makes Permutation print in array form
>>> from sympy.combinatorics import Permutation
>>> Permutation((1, 2)(3, 4))
(0 1 2 3 4)
(0 2 1 4 3)
```

The Permutation (page 312) docstring contains more details on the perm_cyclic flag.

Using integrate with Poly

In previous versions of SymPy, Poly (page 2453) was a subclass of Expr (page 999), but it has been changed to only be a subclass of Basic (page 979). This means that some things that used to work with Poly are now deprecated because they are only designed to work with Expr (page 999) objects.

This includes calling integrate() (page 657) or Integral (page 660) with Poly.

To integrate a Poly, use the Poly.integrate() (page 2473) method. To compute the integral as an Expr (page 999) object, call the Poly.as_expr() (page 2457) method first.

See also Mixing Poly and non-polynomial expressions in binary operations (page 228) above.
The string fallback in `sympify()`

The current behavior of `sympify()` (page 970) is that `sympify(expr)` tries various methods to try to convert `expr` into a SymPy objects. If all these methods fail, it takes `str(expr)` and tries to parse it using `parse_expr()` (page 2195). This string fallback feature is deprecated. It is problematic for a few reasons:

- It can affect performance in major ways. See for instance issues #18056 and #15416 where it caused up to 100x slowdowns. The issue is that SymPy functions automatically call `sympify` on their arguments. Whenever a function is passed something that `sympify` doesn’t know how to convert to a SymPy object, for instance, a Python function type, it passes the string to `parse_expr()` (page 2195). This is significantly slower than the direct conversions that happen by default. This occurs specifically whenever `sympify()` is used in library code instead of `_sympify()` (or equivalently `sympify(strict=True)`), but presently this is done a lot. Using `strict=True` will at some point be the default for all library code, but this is a harder change to make.

- It can cause security issues, since strings are evaled, and objects can return whatever string they want in their `__repr__`. See also https://github.com/sympy/sympy/pull/12524.

- It really isn’t very useful to begin with. Just because an object’s string form can be parsed into a SymPy expression doesn’t mean it should be parsed that way. This is usually correct for custom numeric types, but an object’s repr could be anything. For instance, if the string form of an object looks like a valid Python identifier, it will parse as a Symbol.

There are plenty of ways to make custom objects work inside of `sympify()` (page 970).

- Firstly, if an object is intended to work alongside other SymPy expressions, it should subclass from `Basic` (page 979) (or `Expr` (page 999)). If it does, `sympify()` (page 970) will just return it unchanged because it will already be a valid SymPy object.

- For objects that you control, you can add the `_sympy_` method. The `sympify` docstring (page 970) has an example of this.

- For objects that you don’t control, you can add a custom converter to the `sympy.core.sympify.converter` dictionary. The `sympify()` (page 970) docstring also has an example of this.

To silence this deprecation warning in all cases, you can pass `strict=True` to `sympify()`. However, note that this will also disable some other conversions such as conversion of strings (for converting strings to SymPy types, you can explicitly use `parse_expr()` (page 2195)).

Creating an indefinite Integral with an Eq argument

Passing an `Eq()` (page 1071) object to `integrate()` (page 657) is deprecated in the case where the integral is indefinite. This is because if \( f(x) = g(x) \), then \( \int f(x) \, dx = \int g(x) \, dx \) is not true in general, due to the arbitrary constants (which `integrate` does not include).

If you want to make an equality of indefinite integrals, use `Eq(integrate(f(x), x), integrate(g(x), x))` explicitly.

If you already have an equality object `eq`, you can use `Eq(integrate(eq.lhs, x), integrate(eq.rhs, x))`. 
4.4.10 Version 1.5

Tensor.fun_eval and Tensor.__call__

TensExpr.fun_eval and Tensor.__call__ (i.e., calling a tensor to evaluate it) are deprecated. The Tensor.substitute_indices() method should be used. This was changed because fun_eval was considered a confusing name and using function evaluation was considered both confusing and dangerous.

TensorType

The TensorType class is deprecated. Use tensor_heads() (page 1461) instead. The TensorType class had no purpose except shorter creation of TensorHead (page 1459) objects. See also The tensorhead() function (page 231) below.

The dummy_fmt argument to TensorIndexType

The dummy_fmt keyword argument to TensorIndexType (page 1457) is deprecated. Setting dummy_fmt='L' leads to _dummy_fmt='L_%d', which is confusing and uses obsolete string formatting. dummy_name should be used instead. This change was made because dummy_name is a clearer name.

The metric argument to TensorIndexType

The metric keyword argument to TensorIndexType (page 1457) is deprecated. The name “metric” was ambiguous because it meant “metric symmetry” in some places and “metric tensor” in others.

Either the metric_symmetry keyword or the TensorIndexType.set_metric() method should be used instead.

The get_kronecker_delta() and get_epsilon() methods of TensorIndexType

The get_kronecker_delta() and get_epsilon() methods of TensorIndexType (page 1457) are deprecated. Use the TensorIndexType.delta and TensorIndexType.epsilon properties instead, respectively.

The tensorsymmetry() function

The tensorsymmetry() function in symy.tensor is deprecated. Use the TensorSymmetry (page 1467) class constructor instead.

TensorSymmetry is preferred over tensorsymmetry() because the latter
  1. Does not have any extra functionality
  2. Involves obscure Young tableau
  3. Is not a member of the TensorSymmetry class
The tensorhead() function

The tensorhead() function is deprecated in favor of tensor_heads() (page 1461). tensor_heads() is more consistent with other SymPy names (i.e., Symbol and symbols() or TensorIndex and tensor_indices()). It also does not use Young tableau to denote symmetries.

The is_EmptySet attribute of sets

The is_EmptySet attribute of Set (page 1229) objects is deprecated. Instead either use

```
from sympy import S
s is S.EmptySet
```
or

```
s.is_empty
```
The difference is that s.is_empty may return None if it is unknown if the set is empty.

ProductSet(iterable)

Passing a single iterable as the first argument to ProductSet (page 1242) is deprecated. Creating a product set from an iterable should be done using ProductSet(*iterable), or as each individual argument. For example

```
>>> from sympy import ProductSet
>>> sets = [{i} for i in range(3)]
>>> ProductSet(*sets)
ProductSet({0}, {1}, {2})
>>> ProductSet({1, 2}, {1})
ProductSet({1, 2}, {1})
```
This is done because sets themselves can be iterables, and sets of sets are allowed. But the product set of a single set should mathematically be that set itself (or more exactly, the set of 1-tuples of elements of that set). Automatically denesting a single iterable makes it impossible to represent this object and makes ProductSet not generalize correctly when passed 1 argument. On the other hand, treating the first argument differently if it is a set than if it is another type of iterable (which is what is currently done in the deprecated code path) is confusing behavior.

The set_potential_energy method in sympy.physics.mechanics

The set_potential_energy() methods of sympy.physics.mechanics.particle.Particle (page 1790) and sympy.physics.mechanics.rigidbody.RigidBody (page 1793) are deprecated.

Instead one should set the Particle.potential_energy (page 1793) and RigidBody. potential_energy (page 1796) attributes to set the potential energy, like

```
P.potential_energy = scalar
```
This change was made to be more Pythonic, by using setters and getters of a @property method rather than an explicit set_method.

**Using a set for the condition in ConditionSet**

Using a set for the condition in ConditionSet is deprecated. A boolean should be used instead. This is because the condition is mathematically a boolean, and it is ambiguous what a set should mean in this context.

To fix this deprecation, replace

```python
ConditionSet(symbol, set_condition)
```

with

```python
ConditionSet(symbol, And(*[Eq(lhs, 0) for lhs in set_condition]))
```

For example,

```python
ConditionSet((x, y), {x + 1, x + y}, S.Reals) # DEPRECATED
```

would become

```python
ConditionSet((x, y), Eq(x + 1, 0) & Eq(x + y, 0), S.Reals)
```

**The max_degree and get_upper_degree properties of sympy.polys.multiivariate_resultants.DixonResultant**

The max_degree property and get_upper_degree() methods of DixonResultant are deprecated. See issue #17749 for details.

**Non-tuple iterable for the first argument to Lambda**

Using a non-tuple as the first argument to Lambda (page 1087) is deprecated. If you have a non-tuple, convert it to a tuple first, like Lambda(tuple(args), expr).

This was done so that Lambda could support general tuple unpacking, like

```python
from sympy import Lambda, symbols
x, y, z = symbols('x y z')
f = Lambda((x, (y, z)), x + y + z)
f(1, (2, 3))
6
```
The evaluate flag to differentiate_finite

The evaluate flag to differentiate_finite() (page 296) is deprecated.

differentiate_finite(expr, x, evaluate=True) expands the intermediate derivatives before computing differences. But this usually not what you want, as it does not satisfy the product rule.

If you really do want this behavior, you can emulate it with

```python
diff(expr, x).replace(
 lambda arg: arg.is_Derivative,
 lambda arg: arg.as_finite_difference())
```

See the discussion on issue #17881.

4.4.11 Version 1.4

TensorIndexType.data and related methods

The TensorIndexType.data property is deprecated, as well as several methods which made use of it including the get_matrix(), the __getitem__() (indexing), __iter__() (iteration), _components_data_full_destroy(), and __pow__() (** methods. Storing data on tensor objects was a design flaw and not consistent with how the rest of SymPy works.

Instead, the TensExpr.replace_with_arrays() (page 1461) method should be used.

4.5 Glossary

This page is a glossary for various terms used throughout the SymPy documentation. This glossary is primarily for terms that are specific to SymPy. For more general Python terms, refer to the Python glossary. Mathematical terms are only included here if they have a specific meaning in SymPy. For general mathematical definitions, refer to other sources such as Wikipedia or MathWorld, as well as the references in the documentation for the specific SymPy functions.

Antiderivative

An antiderivative of a function \(f(x)\) with respect to \(x\) is a function \(F(x)\) such that \(\frac{d}{dx} F(x) = f(x)\). It is also sometimes called an “indefinite integral” of \(f(x)\), and written as \(\int f(x) \, dx\). Antiderivatives in SymPy can be computed with integrate() (page 657).

Note some sources call this the “primitive” of \(f(x)\), but this terminology is not used in SymPy because it is not as universally used as “antiderivative”, and because “primitive” has other meanings in mathematics and in SymPy (page 2444).

args

The args property of a SymPy expression is a tuple of the top-level subexpressions used to create it. They are the arguments to the class used to create the expression. The args of any expression can be obtained by the .args attribute. For example, \((1 + x*y).args\) is \((1, x*y)\), because it equals Add(1, x*y). The args together with func completely define an expression. It is always possible to walk the expression tree and extract any subexpression of a SymPy expression by repeated use of .args. Every SymPy expression can be rebuilt exactly with func and args, that is, expr.func(*expr.args) == expr will
always be true of any SymPy expression expr. The args of an expression may be the empty tuple (), meaning the expression is an atom.

Assumptions

Assumptions are a set of predicates on a symbol or expression that define the set of possible values it can take. Some examples of assumptions are positive, real, and integer. Assumptions are related to one another logically, for example, an assumption of integer automatically implies real. Assumptions use a three-valued logic system where predicates are either True, False, or None.

Assumptions are either assumed or queried. For example, a symbol x might be assumed to be positive by defining it as x = symbols('x', positive=True). Then an assumption might be queried on the expression containing this symbol, like (x + 1).is_real, which in this case would return True.

If no assumptions are assumed on a symbol, then by default symbols are assumed to be general complex numbers. Setting assumptions is important because certain simplifications are only mathematically true in a restricted domain, for example, $\sqrt{x^2} = x$ is not true for general complex $x$ but it is true when $x$ is positive. SymPy functions will never perform an operation on an expression unless it is true for all values allowed by its assumptions.

SymPy has two separate assumptions systems, which are closely related to one another. In the first, which is sometimes called the “old assumptions” because it is older, assumptions are assumed on Symbol objects and queried with is_* attributes. In the second, which is sometimes called the “new assumptions”, assumptions are assumed using separate predicate objects like Q.positive and queried using the ask() (page 249) function. The newer assumptions system is able to support more complex queries, but is also not as well developed as the older one. Most users of SymPy should prefer the older assumptions system at this time.

See the assumptions guide (page 71) for more details on assumptions.

Atom

An atom is an expression whose args is the empty tuple (). Atoms are the leaves of the expression tree. For example, if a function uses recursion to walk an expression tree using args, the atomic expressions will be the base case of the recursion.

Note that the class Atom (page 996) is sometimes used as the base class of atomic expressions, but it is not a requirement for atomic expressions to subclass this class. The only requirement for an expression to be atomic is for its args to be empty.

Automatic Simplification

Automatic Simplification refers to any simplification that happens automatically inside of a class constructor. For example, x + x is automatically simplified to 2*x in the Add (page 1062) constructor. Unlike manual simplification, automatic simplification can only be disabled by setting evaluate=False (see Unevaluated). Automatic simplification is often done so that expressions become canonicalized. Excessive automatic simplification is discouraged, as it makes it impossible to represent the non-simplified form of the expression without using tricks like evaluate=False, and it can often be an expensive thing to do in a class constructor. Instead, manual simplification/canonicalization is generally preferred.

Basic (page 979)

Basic (page 979) is the superclass of all SymPy expressions. It defines the basic methods required for a SymPy expression, such as args, func, equality, immutability, and some useful expression manipulation functions such as substitution. Most SymPy classes will subclass a more specific Basic subclass such as Boolean, Expr, Function, or Matrix. An
object that is not a Basic instance typically cannot be used in SymPy functions, unless it can be turned into one via `sympify()`.

**Boolean** (page 1207)

Boolean (page 1207) is the base class for the classes in the logic (page 1204) module. Boolean instances represent logical predicates that are elements of a boolean algebra and can be thought of as having a “true” or “false” value (note that Boolean objects do not use the three-valued logic used by the assumptions).

**Bound symbols**

A symbol in an expression is bound if it is not free. A bound symbol can be replaced everywhere with a new symbol and the resulting expression will still be mathematically equivalent. Examples of bound symbols are integration variables in definite integrals and substituted variables in a Subs (page 1098). Bound symbols are sometimes represented by dummy symbols, but the are not always Dummy (page 1029) objects, and Dummy (page 1029) objects are not always bound symbols.

**Canonical Form**

**Canonicalize**

Often expressions can be written in multiple, mathematically equivalent ways. A canonical form is a single way of writing an expression, which all equivalent expressions can be transformed to. An expression that is put into a canonical form is said to be canonicalized. Often canonical forms are unique and have properties that make them easier to work with. For example, a common canonical form used for rational functions is $\frac{p}{q}$, where $p$ and $q$ are expanded polynomials with no common factors.

**Code Generation**

**Code generation** refers to the process of taking a SymPy expression and converting it into code for a language or library so that it can be evaluated numerically. SymPy supports code generation for dozens of languages (page 1153) and libraries including C, C++, Fortran, and NumPy.

**Core**

The core (page 970) is the submodule that contains the important functionality used by all SymPy objects. This includes the Basic and Expr base classes, classes like Add (page 1062), Mul (page 1058), and Pow (page 1055), and the assumptions.

**Dummy**

A dummy symbol is a symbol that is automatically unequal to any other dummy symbol other than itself, even if it has the same name. Dummy symbols are used when a function needs to return an expression with a new symbol, so that it cannot accidentally clash with a symbol of the same name. Dummy symbols can be created with Dummy (page 1029).

**Equation**

An equation is an expression that has an equals sign $\equal{}$. Equations in SymPy are represented using the Eq (page 1071) class. Equations are not created using the == operator. The == operator does a structural equality check between two expressions, and always returns True or False. To contrast, a symbolic equation may be unevaluated. Equations are considered booleans since they mathematically represent a predicate value that is either true or false.

**_eval_***

Various methods on Basic and Expr can be defined on subclasses using special _eval_* methods. For example, an object can define how it will be processed by the `diff()` (page 1094) function by defining a _eval_derivative method. _eval_* methods used are instead of overriding the method itself so that the method defined on the base class can do pre-processing before dispatching to the _eval_* method.
evalf

evalf (page 1111) is the method present on every Expr object that evaluates it to a floating-point numerical value, or converts the constant parts of the expression to a numerical value if it contains symbols. The \( .n() \) (page 1112) method and \( N() \) (page 1113) function are both shorthands for evalf. “evalf” stands for “evaluate floating-point”.
evalf uses mpmath under the hood to evaluate expressions to arbitrary precision.

Evaluate

Evaluate can refer to:

• The process of converting an expression into a numerical value (see evalf).
• The process of automatic simplification that occurs when creating an expression (see Unevaluated).
• The process of replacing one or more symbols in an expression with numeric values or with other expressions using substitution.

Expr (page 999)

Expr (page 999) is the superclass of all algebraic SymPy expressions. It is itself a subclass of Basic. SymPy expressions that can be in an Add (page 1062), Mul (page 1058), or Pow (page 1055) should be Expr subclasses. Not all SymPy classes are subclasses of Expr, for example, Boolean objects are Basic but not Expr, because boolean expressions do not make mathematical sense in classes like Add (page 1062) or Mul (page 1058).

Expression

Any SymPy object, that is, any instance of Basic, may be called an expression. Sometimes, the term “expression” is reserved for Expr objects, which are algebraic expressions. Expressions are not to be confused with equations, which are a specific types of expressions that represents mathematical equalities.

Expression Tree

An expression tree is a tree of expressions. Every expression is built up from smaller expressions as a tree. The nodes of an expression tree are expressions and the children of each node are the direct subexpressions that constitute that expression. Alternatively, one can view an expression tree as a tree where the non-leaf nodes are funcs and the leaf nodes are atoms. An example expression tree is shown in the tutorial (page 61). The expression tree of any SymPy expression can be obtained by recursing through args. Note that because SymPy expressions are immutable and are treated equal strictly by structural equality, one may also think of an expression tree as being a DAG, where identical subexpressions are only represented in the graph once.

Free symbols

A symbol in an expression is free if the expression mathematically depends on the value of that symbol. That is, if the symbol were replaced with a new symbol, the result would be a different expression. Symbols that are not free are bound. The free symbols of an expression can be accessed with the free_symbols (page 984) attribute.

func

The func property is the function of an expression, which can be obtained by expr. func. This is usually the same as type(expr), but may differ in some cases, so it should be preferred to use expr.func instead of type(expr) when rebuilding expressions with args. Every SymPy expression can be rebuilt exactly with func and args, that is, expr.func(*expr.args) == expr will always be true of any SymPy expression expr.

Function

Function may refer to:

• A mathematical function, that is, something which maps values from a domain to a
range. Sometimes an expression containing a symbol is colloquially called a “function” because the symbol can be replaced with a value using substitution, evaluating the expression. This usage is colloquial because one must use the subs (page 993) method to do this rather than the typical Python function calling syntax, and because it is not specific about what variable(s) the expression is a function of, so generally the term “expression” should be preferred unless something is an actual function. An expression can be converted into a function object that can be called using the Python \( f(x) \) syntax using \texttt{Lambda} (page 1087).

- An instance of the SymPy \texttt{Function} class.

- A Python function, i.e., a function defined using the \texttt{def} keyword. Python functions are not \texttt{symbolic}, since they must always return a value and thus cannot be \texttt{unevaluated}.

\textbf{Function (page 1096) (class)}

\texttt{Function} (page 1096) is the base class of symbolic functions in SymPy. This includes common functions like \texttt{sin()} (page 449) and \texttt{exp()} (page 468), special functions like \texttt{zeta()} (page 571) and \texttt{hyper()} (page 577), and integral functions like \texttt{primepi()} (page 1525) and \texttt{divisor_sigma()} (page 1547). Function classes are always \texttt{symbolic}, meaning that they typically remain \texttt{unevaluated} when passed a \texttt{symbol}, like \( f(x) \). Not every symbolic expression class is a Function subclass, for example, \texttt{core} classes like \texttt{Add} and \texttt{Mul} are not Function subclasses.

Function may also be used to create an \texttt{undefined function} by passing it a string name for the function, like \texttt{Function('f')}.

Not every function in SymPy is a symbolic Function class; some are just Python functions which always return a value. For example, most simplification functions like \texttt{simplify()} cannot be represented symbolically.

\textbf{Immutable}

In Python, objects are \texttt{immutable} if they cannot be modified in-place. In order to change an immutable object, a new object must be created. In SymPy, all \texttt{Basic} objects are immutable. This means that all functions that operate on \texttt{expressions} will return a new expression and leave the original unchanged. Performing an operation on an expression will never change other objects or expressions that reference that expression. This also means that any two objects that are \texttt{equal} are completely interchangeable and may be thought of as being the same object, even if they happen to be two different objects in memory. Immutability makes it easier to maintain a mental model of code, because there is no hidden state. SymPy objects being immutable also means that they are hashable, which allows them to be used as dictionary keys.

\textbf{Interactive}

\texttt{Interactive} usage refers to using SymPy in an interactive REPL environment such as the Python prompt, \texttt{isymy}, IPython, or the Jupyter notebook. When using SymPy interactively, all commands are typed in real time by the user and all intermediate results are shown. Interactive use is in contrast with \texttt{programmatic} use, which is where the code is written in a file which is either executed as a script or is part of a larger Python library. Some SymPy idioms are only recommended for interactive use and are considered anti-patterns when used programmatically. For example, running \texttt{from sympy import *} is convenient when using SymPy interactively, but is generally frowned upon for programmatic usage, where importing names explicitly just using \texttt{import sympy} is preferred.

\texttt{is_}

Attributes in SymPy that start with \texttt{is_} and use a \texttt{lowercase} name query the given \texttt{assumption} on that object (note: there are a few properties that are an exception to this because they do not use the assumptions system, see \texttt{the assumptions guide} (page 85)).
For example, `x.is_integer` will query the integer assumption on `x`. `is_*` attributes that use a `Capitalized` name test if an object is an instance of the given class. Sometimes the same name will exist for both the lowercase and `Capitalized` property, but they are different things. For example, `x.is_Integer` is only `True` if `x` is an instance of `Integer` (page 1038), whereas `x.is_integer` is `True` if `x` is integer in the assumptions system, such as `x = symbols('x', integer=True)`. In general, it is recommended to not use `is_Capitalized` properties. They exist for historical purposes, but they are unneeded because the same thing can be achieved with `isinstance()`. See also `Number`.

**isymy**

`isymy` is a command that ships with SymPy that starts an `interactive` session on the command line with all SymPy names imported and `printing` enabled. It uses IPython by default when it is installed.

**Kind**

The `kind` of a SymPy object represents what sort of mathematical object it represents. The kind of an object can be accessed with the `kind` attribute. Example kinds are `NumberKind` (page 1118), which represents complex numbers, `MatrixKind` (page 1405), which represents matrices of some other kind, and `BooleanKind` (page 1119), which represents boolean predicates. The kind of a SymPy object is distinct from its Python type, since sometimes a single Python type may represent many different kinds of objects. For example, `Matrix` could be a matrix of complex numbers or a matrix of objects from some other ring of values. See the *classification of SymPy objects* (page 212) page for more details about kinds in SymPy.

**Lamda**

“Lamda” is just an alternate spelling of the Greek letter “lambda”. It is used sometimes in SymPy because `lambda` is a reserved keyword in Python, so a symbol representing $\lambda$ must be named something else.

**lambdify() (page 2173)**

`lambdify()` (page 2173) is a function that converts a SymPy expression into a Python function that can be evaluated numerically, typically making use of a numeric library such as NumPy.

**Matrix**

`Matrix` refers to the set of classes used by SymPy to represent matrices. SymPy has several internal classes to represent matrices, depending on whether the matrix is symbolic (`MatrixExpr` (page 1414)) or explicit, mutable or immutable, dense or sparse, and what type the underlying elements are, but these are often all just called “Matrix”.

**mpmath**

`mpmath` is a pure Python library for arbitrary precision numerics. It is a hard dependency (page 3069) of SymPy. `mpmath` is capable of computing numerical functions to any given number of digits. `mpmath` is used under the hood whenever SymPy evaluates an expression numerically, such as when using `evalf`.

**Numeric**

A numeric representation or algorithm is one that operates directly on numeric inputs. It is in contrast with a symbolic representation or algorithm, which can work with objects in an unevaluated form. Often a numerical algorithm is quite different from a symbolic one. For example, numerically solving an ODE typically means evaluating the ODE using an algorithm like Runge–Kutta to find a set of numeric points given an initial condition, whereas symbolically solving an ODE (such as with SymPy’s `dsolve()` (page 807)) means mathematically manipulating the ODE to produce a symbolic equation that represents the solution. A symbolic ODE solution may including symbolic constants which can represent any numerical value. Numeric algorithms are typically designed around
issues caused by floating-point numbers such as loss of precision and numerical stability, whereas symbolic algorithms are not concerned with these things because they compute things exactly.

Most scientific libraries other than SymPy, such as NumPy or SciPy, are strictly numerical, meaning the functions in those libraries can only operate on specific numeric inputs. They will not work with SymPy expressions, because their algorithms are not designed to work with symbolic inputs. SymPy focuses on symbolic functions, leaving purely numerical code to other tools like NumPy. However, SymPy does interface with numerical libraries via tools like code generation and lambdify().

**Number**

*Number* can refer to two things in SymPy:

- The class *Number* (page 1033), which is the base class for explicit numbers (*Integer* (page 1038), *Rational* (page 1036), and *Float* (page 1033)). Symbolic numeric constants like *pi* (page 1050) are not instances of *Number*.
- Lowercase “number”, as in the *is_number* property, refers to any *expression* that can be *evalf* into an explicit *Number*. This includes symbolic constants like *pi* (page 1050). Note that *is_number* is not part of the *assumptions* system.

This distinction is important for the *is_Number* and *is_number* properties. *x.is_Number* will check if *x* is an instance of the class *Number* (page 1033).

**oo (page 1048)**

*oo* (page 1048) is the SymPy object representing positive infinity. It is spelled this way, as two lower case letter Os, because it resembles the symbol ∞ and is easy to type. See also *zoo*.

**Polys**

The *polys* refers to the *sympy.polys* (page 2435) submodule, which implements the basic data structures and algorithms for polynomial manipulation. The *polys* are a key part of SymPy (though not typically considered part of the *core*), because many basic symbolic manipulations can be represented as manipulations on polynomials. Many algorithms in SymPy make use of the *polys* under the hood. For example, *factor*() (page 2447) is a wrapper around the polynomial factorization algorithms that are implemented in the *polys*. The classes in the *polys* are implemented using efficient data structures, and are not subclasses of *Basic* like the other classes in SymPy.

**Printing**

*Printing* refers to the act of taking an *expression* and converting it into a form that can be viewed on screen. *Printing* is also often used to refer to *code generation*. SymPy has several printers which represent expressions using different formats. Some of the more common printers are the string printer (*str*()), the pretty printer (*pprint*()) (page 2212)) the LaTeX printer (*latex*()) (page 2245)), and code printers.

**Relational**

A *relational* is an *expression* that is a *symbolic equality* (like *a = b*), or a symbolic inequality like “less than” (*a < b*). Equality (=) and non-equality (≠) relationals are created with *Eq* (page 1071) and *Ne* (page 1079), respectively. For example, *Eq(x, 0)* represents *x = 0*. These should be used instead of == or !=, as these are used for *structural* rather than symbolic equality. Inequality relationals can be created directly using <, <=, >, and >=, like *x < 0*.

**S (page 998)**

The *S* (page 998) object in SymPy has two purposes:
• It holds all singleton classes as attributes. Some special classes in SymPy are singletonized, meaning that there is always exactly one instance of them. This is an optimization that allows saving memory. For instance, there is only ever one instance of `Integer(0)`, which is available as `S.Zero`.

• It serves as a shorthand for `sympify()`, that is $S(a)$ is the same as `sympify(a)`. This is useful for converting integers to SymPy Integers in expressions to avoid dividing Python ints (see the gotchas section of the tutorial (page 13)).

Simplification

Simplification (not to be confused with `sympify`) refers to the process of taking an expression and transforming it into another expression that is mathematically equivalent but which is somehow “simpler”. The adjective “simple” is actually not very well-defined. What counts as simpler depends on the specific use-case and personal aesthetics.

The SymPy function `simplify()` (page 719) heuristically tries various simplification algorithms to try to find a “simpler” form of an expression. If you aren’t particular about what you want from “simplify”, it may be a good fit. But if you have an idea about what sort of simplification you want to apply, it is generally better to use one or more of targeted simplification functions (page 719) which apply very specific mathematical manipulations to an expression.

Solve

Solvers

To solve an equation or system of equations means to find a set of expressions that make the equation(s) true when the given symbol(s) are substituted with them. For example, the solution to the equation $x^2 = 1$ with respect to $x$ would be the set $\{-1, 1\}$. Different types of equations can be solved by SymPy using different solvers (page 131) functions. For instance, algebraic equations can be solved with `solve()` (page 882), differential equations can be solved with `dsolve()` (page 807), and so on.

SymPy generally uses the word “solve” and “solvers” to mean equation solving in this sense. It is not used in the sense of “solving a problem”. For instance, one would generally prefer to say “compute an integral” or “evaluate an integral” rather than “solve an integral” to refer to symbolic integration using the function `integrate()` (page 657).

Structural Equality

Two SymPy objects are structurally equal if they are equal as expressions, that is, they have the same expression trees. Two structurally equal expressions are considered to be identical by SymPy, since all SymPy expressions are immutable. Structural equality can be checked with the $==$ operator, which always returns `True` or `False`. Symbolic equality can be represented using `Eq` (page 1071).

Typically, two expressions are structurally equal if they are the same class and (recursively) have the same `args`. Two expressions may be mathematically identical but not structurally equal. For example, $(x + 1)^2$ and $x^2 + 2x + 1$ are mathematically equal, but they are not structurally equal, because the first is a `Pow` (page 1055) whose `args` consist of an `Add` (page 1062) and an `Integer` (page 1038), and the second is an `Add` (page 1062) whose `args` consist of a `Pow` (page 1055), a `Mul` (page 1058), and an `Integer` (page 1038).

Two apparently different expressions may be structurally equal if they are canonicalized to the same thing by automatic simplification. For example, $x + y$ and $y + x$ are structurally equal because the `Add` (page 1062) constructor automatically sorts its arguments, making them both the same.

Subexpression

A subexpression is an expression that is contained within a larger expression. A subex-
expression appears somewhere in the expression tree. For Add and Mul terms, commutative and associative laws may be taken into account when determining what is a subexpression. For instance, $x + y$ may sometimes be considered a subexpression of $x + y + z$, even though the expression tree for $Add(x, y)$ is not a direct child of the expression tree for $Add(x, y, z)$.

**Substitution**

Substitution refers to the act of replacing a symbol or subexpression inside of an expression with another expression. There are different methods in SymPy for performing substitution, including `subs` (page 993), `replace` (page 989), and `xreplace` (page 995). The methods may differ depending on whether they perform substitution using only strict structural equality or by making use of mathematical knowledge when determining where a subexpression appears in an expression. Substitution is the standard way to treat an expression as a mathematical function and evaluate it at a point.

**Symbolic**

A symbolic representation of a mathematical object is a representation that is partially or completely unevaluated at runtime. It may include named symbolic constants in place of explicit numeric values. A symbolic representation is often contrasted with a numeric one. Symbolic representations are mathematically exact, to contrast with numeric representations which are typically rounded so they can fit within a floating-point value. Symbolic expressions representing mathematical objects may be aware of mathematical properties of these objects and be able to simplify to equivalent symbolic expressions using those properties. The goal of SymPy is to represent and manipulate symbolic expressions representing various mathematical objects.

Some sources use the phrases “analytic solution” or “closed-form” to refer to the concept of “symbolic”, but this terminology is not used in SymPy. If used in SymPy, “analytic” would refer to the property of being an analytic function, and in SymPy `solve` refers only to a certain type of symbolic operation. “Closed-form” in SymPy would typically refer to the mathematical sense of the term, whereas “symbolic” would generally refer to the implementation detail of how a mathematical concept is implemented, and be in contrast with a numeric implementation of the same mathematical concept.

**Symbol** (page 1028)

Symbol (page 1028) is the class for symbol objects. A symbol represents a single mathematical variable in an expression. The Symbol (page 1028) class is a subclass of Expr and is atomic. A Symbol contains a name, which is any string, and assumptions. Symbols are typically defined with the Symbol constructor or the `symbols()` (page 1030) function. Two Symbols with the same name and assumptions are considered equal. Symbols are implicitly assumed to be independent or constant with respect to one another. Constants, variables, and parameters are all represented by Symbols. The distinction is generally made in the way the Symbols are used in a given SymPy function.

**sympify()** (page 970)

`sympify()` (page 970) (not to be confused with `simplify()`) is a function that converts non-SymPy objects into SymPy objects. The result of `sympify()` will be an instance of Basic. Objects that can be sympified include native Python numeric types such as int and float, strings that are parsable as SymPy expressions, and iterables containing sympifiable objects (see the documentation for `sympify()` (page 970) for more information).

Since all SymPy expressions must be instances of Basic, all SymPy functions and operations will implicitly call `sympify()` on their inputs. For example, $x + 1$ implicitly calls `sympify(1)` to convert the 1 that is a Python int into a SymPy Integer (page 1038). Functions that accept SymPy expressions should typically call `sympify()` on their arguments so that they work even when the input is not a SymPy type.
Three-valued logic

Three-valued logic is a logic with three values, True, False, and None. It is also sometimes called fuzzy logic, although this term also has different meanings in the mathematical literature, so “three-valued logic” is preferred. True and False work the same as in the usual two-valued predicate logic. None is an additional term that represents “unknown”, “noncomputable”, or “could be either True or False” (philosophically these are distinct concepts, but logically they all function identically). The semantics of None are that it absorbs other terms in logical operations whenever the result would differ if it were replaced with True or False. For example, None OR False is None, but None OR True is True because the predicate is True whether the None “really” represents a value of True or False. One must be careful when using the usual Python logical operators like and, or and not on three-valued logic, since None is false. See the guide for symbolic and fuzzy bools (page 95) for more details on how to code with three-valued logic.

Three-valued logic is used by the assumptions system to represent assumptions that are not known. For instance, x.is_positive might be None if x could be positive or negative under its given assumptions. Note that the predicate logic defined by Boolean subclasses represents a standard two-valued logic, not three-valued logic.

Undefined Function

An undefined function is a Function that has no mathematical properties defined on it. It always remains unevaluated, like f(x). An undefined function can be created by passing a string name of the function to Function, like f = Function('f'). Undefined functions are commonly used when working with ODEs (page 807). Undefined functions are also the easiest way to make symbols that mathematically depend on other symbols. For example, if f = Function('f') and x = Symbol('x'), then SymPy will know that f(x) depends on x, meaning, for instance, that the derivative diff(f(x), x) will not be evaluated to 0.

Unevaluated

An expression is unevaluated if the automatic simplification that typically occurs when the expression is created is disabled. This is typically done by setting evaluate=False, using with evaluate(False), or using UnevaluatedExpr (page 1027). While unevaluated expressions are supported, they can sometimes lead to surprising behavior because the expressions are not properly canonicalized.

The term unevaluated is also sometimes used to denote the fact that an expression does not evaluate to a specific value when its arguments are symbolic.

zoo (page 1048)

zoo (page 1048) represents complex infinity, i.e., the north pole of the Riemann sphere. The reason it is spelled this way is that it is “z-oo”, where “z” is the symbol commonly used for complex variables, and oo is the symbol SymPy uses for real positive infinity.
This section contains a summary of SymPy modules, functions, classes, and methods. All functions and objects implemented in the sympy core subpackage are documented below.

5.1 Basics

Contains a description of operations for the basic modules. Subcategories include: absolute basics, manipulation, assumptions, functions, simplification, calculus, solvers, and some other subcategories.

5.2 Code Generation

Contains a description of methods for the generation of compilable and executable code.

5.3 Logic

Contains method details for the logic and sets modules.

5.4 Matrices

Discusses methods for the matrices, tensor and vector modules.
5.5 Number Theory

Documents methods for the Number theory module.

5.6 Physics

Contains documentation for Physics methods.

5.7 Utilities

Contains docstrings for methods of several utility modules. Subcategories include: Interactive, Parsing, Printing, Testing, Utilities.

5.8 Topics


5.8.1 Basics

Contents

Assumptions

A module to implement logical predicates and assumption system.

Predicate

class sympy.assumptions.assume.Predicate(*args, **kwargs)

Base class for mathematical predicates. It also serves as a constructor for undefined predicate objects.
Explanation

Predicate is a function that returns a boolean value [1].

Predicate function is object, and it is instance of predicate class. When a predicate is applied to arguments, AppliedPredicate instance is returned. This merely wraps the argument and remain unevaluated. To obtain the truth value of applied predicate, use the function ask.

Evaluation of predicate is done by multiple dispatching. You can register new handler to the predicate to support new types.

Every predicate in SymPy can be accessed via the property of Q. For example, Q.even returns the predicate which checks if the argument is even number.

To define a predicate which can be evaluated, you must subclass this class, make an instance of it, and register it to Q. After then, dispatch the handler by argument types.

If you directly construct predicate using this class, you will get UndefinedPredicate which cannot be dispatched. This is useful when you are building boolean expressions which do not need to be evaluated.

Examples

Applying and evaluating to boolean value:

```python
>>> from sympy import Q, ask
>>> ask(Q.prime(7))
True
```

You can define a new predicate by subclassing and dispatching. Here, we define a predicate for sexy primes [2] as an example.

```python
>>> from sympy import Predicate, Integer
>>> class SexyPrimePredicate(Predicate):
... name = "sexyprime"
>>> Q.sexyprime = SexyPrimePredicate()
>>> @Q.sexyprime.register(Integer, Integer)
... def _(int1, int2, assumptions):
... args = sorted([int1, int2])
... if not all(ask(Q.prime(a), assumptions) for a in args):
... return False
... return args[1] - args[0] == 6
>>> ask(Q.sexyprime(5, 11))
True
```

Direct constructing returns UndefinedPredicate, which can be applied but cannot be dispatched.

```python
>>> from sympy import Predicate, Integer
>>> Q.P = Predicate("P")
>>> type(Q.P)
<class 'sympy.assumptions.assume.UndefPredicate'>
>>> Q.P(1)
Q.P(1)
```

(continues on next page)
>>> Q.P.register(Integer)(lambda expr, assump: True)
Traceback (most recent call last):
  ...
TypeError: <class 'sympy.assumptions.assume.UndefinedPredicate'> cannot be dispatched.

References

[R7], [R8]

eval(args, assumptions=True)
   Evaluate self(*args) under the given assumptions.
   This uses only direct resolution methods, not logical inference.

handler = <dispatched AskPredicateHandler>

classmethod register(*types, **kwargs)
   Register the signature to the handler.

classmethod register_many(*types, **kwargs)
   Register multiple signatures to same handler.

class sympy.assumptions.assume.AppliedPredicate(predicate, *args)
   The class of expressions resulting from applying Predicate to the arguments.
   AppliedPredicate merely wraps its argument and remain unevaluated. To evaluate
   it, use the ask() function.

Examples

>>> from sympy import Q, ask
>>> Q.integer(1)
Q.integer(1)

The function attribute returns the predicate, and the arguments attribute returns the
tuple of arguments.

>>> type(Q.integer(1))
<class 'sympy.assumptions.assume.AppliedPredicate'>
>>> Q.integer(1).function
Q.integer
>>> Q.integer(1).arguments
(1,)

Applied predicates can be evaluated to a boolean value with ask:

>>> ask(Q.integer(1))
True

property arg
   Return the expression used by this assumption.
Examples

```python
>>> from sympy import Q, Symbol
>>> x = Symbol('x')
>>> a = Q.integer(x + 1)
>>> a.arg
x + 1
```

**property arguments**
Return the arguments which are applied to the predicate.

**property function**
Return the predicate.

Querying

Queries are used to ask information about expressions. Main method for this is `ask()`:

```python
sympy.assumptions.ask(proposition, assumptions=True, context={})
```

Function to evaluate the proposition with assumptions.

**Parameters**

- `proposition` : Boolean
  Proposition which will be evaluated to boolean value. If this is not AppliedPredicate, it will be wrapped by `Q.is_true`.

- `assumptions` : Boolean, optional
  Local assumptions to evaluate the `proposition`.

- `context` : AssumptionsContext, optional
  Default assumptions to evaluate the `proposition`. By default, this is `sympy.assumptions.global_assumptions` variable.

**Returns**

True, False, or None

**Raises**

- `TypeError` : `proposition` or `assumptions` is not valid logical expression.
- `ValueError` : assumptions are inconsistent.

**Explanation**

This function evaluates the proposition to True or False if the truth value can be determined. If not, it returns None.

It should be discerned from `refine()` (page 255) which, when applied to a proposition, simplifies the argument to symbolic Boolean instead of Python built-in True, False or None.

**Syntax**

- `ask(proposition)`
  Evaluate the `proposition` in global assumption context.
• `ask(proposition, assumptions)`

Evaluate the `proposition` with respect to `assumptions` in global assumption context.

**Examples**

```python
>>> from sympy import ask, Q, pi
>>> from sympy import x, y
>>> ask(Q.rational(pi))
False
>>> ask(Q.even(x*y), Q.even(x) & Q.integer(y))
True
>>> ask(Q.prime(4*x), Q.integer(x))
False
```

If the truth value cannot be determined, `None` will be returned.

```python
>>> print(ask(Q.odd(3*x))) # cannot determine unless we know x
None
```

`ValueError` is raised if assumptions are inconsistent.

```python
>>> ask(Q.integer(x), Q.even(x) & Q.odd(x))
Traceback (most recent call last):
...
ValueError: inconsistent assumptions Q.even(x) & Q.odd(x)
```

**Notes**

Relations in assumptions are not implemented (yet), so the following will not give a meaningful result.

```python
>>> ask(Q.positive(x), x > 0)
```

It is however a work in progress.

**See also:**

`sympy.assumptions.refine.refine` (page 255)

Simplification using assumptions. Proposition is not reduced to `None` if the truth value cannot be determined.

`ask`'s optional second argument should be a boolean expression involving assumptions about objects in `expr`. Valid values include:

- `Q.integer(x)`
- `Q.positive(x)`
- `Q.integer(x) & Q.positive(x)`
- etc.
Q is an object holding known predicates.

See documentation for the logic module for a complete list of valid boolean expressions.

You can also define a context so you don’t have to pass that argument each time to function ask(). This is done by using the assuming context manager from module sympy.assumptions.

```python
from sympy import *
>>> x = Symbol('x')
>>> y = Symbol('y')
>>> facts = Q.positive(x), Q.positive(y)
>>> with assuming(*facts):
... print(ask(Q.positive(2*x + y)))
True
```

## Contents

### Ask

Module for querying SymPy objects about assumptions.

```python
class sympy.assumptions.ask.AssumptionKeys
 This class contains all the supported keys by ask. It should be accessed via the instance sympy.Q.
```

```python
sympy.assumptions.ask.ask(proposition, assumptions=True, context={})
Function to evaluate the proposition with assumptions.
```

**Parameters**

- **proposition**: Boolean
  
  Proposition which will be evaluated to boolean value. If this is not AppliedPredicate, it will be wrapped by Q.is_true.

- **assumptions**: Boolean, optional
  
  Local assumptions to evaluate the `proposition`.

- **context**: AssumptionsContext, optional
  
  Default assumptions to evaluate the `proposition`. By default, this is sympy.assumptions.global_assumptions variable.

**Returns**

- True, False, or None

**Raises**

- **TypeError**: `proposition or assumptions` is not valid logical expression.

  - **ValueError**: assumptions are inconsistent.
Explanation

This function evaluates the proposition to True or False if the truth value can be determined. If not, it returns None.

It should be discerned from *refine()* (page 255) which, when applied to a proposition, simplifies the argument to symbolic Boolean instead of Python built-in True, False or None.

Syntax

- **ask(proposition)**
  Evaluate the *proposition* in global assumption context.

- **ask(proposition, assumptions)**
  Evaluate the *proposition* with respect to *assumptions* in global assumption context.

Examples

```python
from sympy import ask, Q, pi
from sympy.abc import x, y

>>> ask(Q.rational(pi))
False

>>> ask(Q.even(x*y), Q.even(x) & Q.integer(y))
True

>>> ask(Q.prime(4*x), Q.integer(x))
False
```

If the truth value cannot be determined, None will be returned.

```python
>>> print(ask(Q.odd(3*x))) # cannot determine unless we know x
None
```

ValueError is raised if assumptions are inconsistent.

```python
>>> ask(Q.integer(x), Q.even(x) & Q.odd(x))
Traceback (most recent call last):
...
ValueError: inconsistent assumptions Q.even(x) & Q.odd(x)
```

Notes

Relations in assumptions are not implemented (yet), so the following will not give a meaningful result.

```python
>>> ask(Q.positive(x), x > 0)
```

It is however a work in progress.

See also:
**sympy.assumptions.refine.refine** *(page 255)*
Simplification using assumptions. Proposition is not reduced to None if the truth value cannot be determined.

**sympy.assumptions.ask.register_handler(key, handler)**
Register a handler in the ask system. key must be a string and handler a class inheriting from AskHandler.
Deprecation since version 1.8: Use multipledispatch handler instead. See `Predicate` (page 253).

**sympy.assumptions.ask.remove_handler(key, handler)**
Removes a handler from the ask system.
Deprecation since version 1.8: Use multipledispatch handler instead. See `Predicate` (page 253).

**Assume**
A module which implements predicates and assumption context.

**class** sympy.assumptions.assume.AppliedPredicate(predicate, *args)
The class of expressions resulting from applying Predicate to the arguments. AppliedPredicate merely wraps its argument and remain unevaluated. To evaluate it, use the ask() function.

**Examples**

```python
>>> from sympy import Q, ask
>>> Q.integer(1)
Q.integer(1)
```
The function attribute returns the predicate, and the arguments attribute returns the tuple of arguments.

```python
>>> type(Q.integer(1))
<class 'sympy.assumptions.assume.AppliedPredicate'>
>>> Q.integer(1).function
Q.integer
>>> Q.integer(1).arguments
(1,)
```

Applied predicates can be evaluated to a boolean value with ask:

```python
>>> ask(Q.integer(1))
True
```

**property** arg
Return the expression used by this assumption.
Examples

```python
>>> from sympy import Q, Symbol
>>> x = Symbol('x')
>>> a = Q.integer(x + 1)
>>> a.arg
x + 1
```

**property arguments**

Return the arguments which are applied to the predicate.

**property function**

Return the predicate.

**class** sympy.assumptions.assume.AssumptionsContext

Set containing default assumptions which are applied to the ask() function.

**Explanation**

This is used to represent global assumptions, but you can also use this class to create your own local assumptions contexts. It is basically a thin wrapper to Python’s set, so see its documentation for advanced usage.

**Examples**

The default assumption context is global_assumptions, which is initially empty:

```python
>>> from sympy import ask, Q
>>> from sympy.assumptions import global_assumptions
>>> global_assumptions
AssumptionsContext()
```

You can add default assumptions:

```python
>>> from sympy.abc import x
>>> global_assumptions.add(Q.real(x))
>>> global_assumptions
AssumptionsContext({Q.real(x)})
>>> ask(Q.real(x))
True
```

And remove them:

```python
>>> global_assumptions.remove(Q.real(x))
>>> print(ask(Q.real(x)))
None
```

The clear() method removes every assumption:

```python
>>> global_assumptions.add(Q.positive(x))
>>> global_assumptions
AssumptionsContext({Q.positive(x)})
```
See also:

assuming (page 255)

add(*assumptions)
Add assumptions.

class sympy.assumptions.assume.Predicate(*args, **kwargs)
Base class for mathematical predicates. It also serves as a constructor for undefined predicate objects.

Explanation

Predicate is a function that returns a boolean value [1].

Predicate function is object, and it is instance of predicate class. When a predicate is applied to arguments, AppliedPredicate instance is returned. This merely wraps the argument and remain unevaluated. To obtain the truth value of applied predicate, use the function ask.

Evaluation of predicate is done by multiple dispatching. You can register new handler to the predicate to support new types.

Every predicate in SymPy can be accessed via the property of Q. For example, Q.even returns the predicate which checks if the argument is even number.

To define a predicate which can be evaluated, you must subclass this class, make an instance of it, and register it to Q. After then, dispatch the handler by argument types.

If you directly construct predicate using this class, you will get UndefinedPredicate which cannot be dispatched. This is useful when you are building boolean expressions which do not need to be evaluated.

Examples

Applying and evaluating to boolean value:

```python
>>> from sympy import Q, ask
>>> ask(Q.prime(7))
True
```

You can define a new predicate by subclassing and dispatching. Here, we define a predicate for sexy primes [2] as an example.

```python
>>> from sympy import Predicate, Integer
>>> class SexyPrimePredicate(Predicate):
... name = "sexyprime"
>>> Q.sexyprime = SexyPrimePredicate()
>>> @Q.sexyprime.register(Integer, Integer)
... def _(int1, int2, assumptions):
```

(continues on next page)
...    args = sorted([int1, int2])
...    if not all(ask(Q.prime(a), assumptions) for a in args):
...        return False
...    return args[1] - args[0] == 6
>>> ask(Q.sexyprime(5, 11))
True

Direct constructing returns UndefinedPredicate, which can be applied but cannot be dispatched.

```python
>>> from sympy import Predicate, Integer
>>> Q.P = Predicate("P")
>>> type(Q.P)
<class 'sympy.assumptions.assume.UndefinedPredicate'>
>>> Q.P(1)
Q.P(1)
>>> Q.P.register(Integer)(lambda expr, assum: True)
Traceback (most recent call last):
...
TypeError: <class 'sympy.assumptions.assume.UndefinedPredicate'> cannot be dispatched.
```

References

[R5], [R6]

`eval(args, assumptions=True)`

Evaluate `self(*args)` under the given assumptions.

This uses only direct resolution methods, not logical inference.

```
handler = <dispatched AskPredicateHandler>
```

```
classmethod register(*types, **kwargs)
 Register the signature to the handler.

classmethod register_many(*types, **kwargs)
 Register multiple signatures to same handler.
```

```
class sympy.assumptions.assume.UndefinedPredicate(name, handlers=None)
 Predicate without handler.
```

Explanation

This predicate is generated by using Predicate directly for construction. It does not have a handler, and evaluating this with arguments is done by SAT solver.
Examples

```python
>>> from sympy import Predicate, Q
>>> Q.P = Predicate('P')
>>> Q.P.func
<class 'sympy.assumptions.assume.UndefinedPredicate'>
>>> Q.P.name
Str('P')
```

sympy.assumptions.assume.assuming(*assumptions)

Context manager for assumptions.

Examples

```python
>>> from sympy import assuming, Q, ask
>>> from sympy.abc import x, y

print(ask(Q.integer(x + y)))
None

>>> with assuming(Q.integer(x), Q.integer(y)):
... print(ask(Q.integer(x + y)))
True
```

Refine

sympy.assumptions.refine.refine(expr, assumptions=True)

Simplify an expression using assumptions.

Explanation

Unlike simplify() (page 719) which performs structural simplification without any assumption, this function transforms the expression into the form which is only valid under certain assumptions. Note that simplify() is generally not done in refining process.

Refining boolean expression involves reducing it to S.true or S.false. Unlike ask() (page 249), the expression will not be reduced if the truth value cannot be determined.

Examples

```python
>>> from sympy import refine, sqrt, Q
>>> from sympy.abc import x

refine(sqrt(x**2), Q.real(x))
Abs(x)

refine(sqrt(x**2), Q.positive(x))
x
```
>>> refine(Q.real(x), Q.positive(x))
True
>>> refine(Q.positive(x), Q.real(x))
Q.positive(x)

See also:

sympy.simplify.simplify.simplify (page 719)
Structural simplification without assumptions.
sympy.assumptions.ask.ask (page 249)
Query for boolean expressions using assumptions.

sympy.assumptions.refine.refine_Pow(expr, assumptions)
Handler for instances of Pow.

Examples

>>> from sympy import Q
>>> from sympy.assumptions.refine import refine_Pow
>>> from sympy.abc import x, y, z
>>> refine_Pow((-1)**x, Q.real(x))
1
>>> refine_Pow((-1)**x, Q.even(x))
-1

For powers of -1, even parts of the exponent can be simplified:

>>> refine_Pow((-1)**(x+y), Q.even(x))
(-1)**y
>>> refine_Pow((-1)**(x+y+z), Q.odd(x) & Q.odd(z))
(-1)**y
>>> refine_Pow((-1)**(x+y+2), Q.odd(x))
(-1)**(y + 1)
>>> refine_Pow((-1)**(x+3), True)
(-1)**(x + 1)

sympy.assumptions.refine.refine_abs(expr, assumptions)
Handler for the absolute value.

Examples

>>> from sympy import Q, Abs
>>> from sympy.assumptions.refine import refine_abs
>>> from sympy.abc import x
>>> refine_abs(Abs(x), Q.real(x))
x
>>> refine_abs(Abs(x), Q.positive(x))
x
>>> refine_abs(Abs(x), Q.negative(x))
-x
**sympy.assumptions.refine**. **refine_arg**(expr, assumptions)

Handler for complex argument

**Explanation**

```python
>>> from sympy.assumptions.refine import refine_arg
>>> from sympy import Q, arg
>>> from sympy.abc import x
>>> refine_arg(arg(x), Q.positive(x))
0
>>> refine_arg(arg(x), Q.negative(x))
pi
```

**sympy.assumptions.refine**. **refine_atan2**(expr, assumptions)

Handler for the atan2 function.

**Examples**

```python
>>> from sympy import Q, atan2
>>> from sympy.assumptions.refine import refine_atan2
>>> from sympy.abc import x, y
>>> refine_atan2(atan2(y,x), Q.real(y) & Q.positive(x))
atan(y/x)
>>> refine_atan2(atan2(y,x), Q.negative(y) & Q.negative(x))
atan(y/x) - pi
>>> refine_atan2(atan2(y,x), Q.positive(y) & Q.negative(x))
atan(y/x) + pi
>>> refine_atan2(atan2(y,x), Q.zero(y) & Q.negative(x))
pi
>>> refine_atan2(atan2(y,x), Q.positive(y) & Q.zero(x))
pi/2
>>> refine_atan2(atan2(y,x), Q.negative(y) & Q.zero(x))
-pi/2
>>> refine_atan2(atan2(y,x), Q.zero(y) & Q.zero(x))
nan
```

**sympy.assumptions.refine**. **refine_im**(expr, assumptions)

Handler for imaginary part.

**Explanation**

```python
>>> from sympy.assumptions.refine import refine_im
>>> from sympy import Q, im
>>> from sympy.abc import x
>>> refine_im(im(x), Q.real(x))
0
>>> refine_im(im(x), Q.imaginary(x))
-I*x
```
**SymPy Documentation, Release 1.12.1**

`sympy.assumptions.refine.refine_matrixelement(expr, assumptions)`

Handler for symmetric part.

**Examples**

```python
>>> from sympy.assumptions.refine import refine_matrixelement
>>> from sympy import MatrixSymbol, Q
>>> X = MatrixSymbol('X', 3, 3)
>>> refine_matrixelement(X[0, 1], Q.symmetric(X))
X[0, 1]
>>> refine_matrixelement(X[1, 0], Q.symmetric(X))
X[0, 1]
```

`sympy.assumptions.refine.refine_re(expr, assumptions)`

Handler for real part.

**Examples**

```python
>>> from sympy.assumptions.refine import refine_re
>>> from sympy import Q, re
>>> from sympy.abc import x
>>> refine_re(re(x), Q.real(x))
x
>>> refine_re(re(x), Q.imaginary(x))
0
```

`sympy.assumptions.refine.refine_sign(expr, assumptions)`

Handler for sign.

**Examples**

```python
>>> from sympy.assumptions.refine import refine_sign
>>> from sympy import Symbol, Q, sign, im
>>> x = Symbol('x', real = True)
>>> expr = sign(x)
>>> refine_sign(expr, Q.positive(x) & Q.nonzero(x))
1
>>> refine_sign(expr, Q.negative(x) & Q.nonzero(x))
-1
>>> refine_sign(expr, Q.zero(x))
0
>>> y = Symbol('y', imaginary = True)
>>> expr = sign(y)
>>> refine_sign(expr, Q.positive(im(y)))
I
>>> refine_sign(expr, Q.negative(im(y)))
-I
```
Predicates

Common

class sympy.assumptions.predicates.common.IsTruePredicate(*args, **kwargs)
    Generic predicate.

Explanation

ask(Q.is_true(x)) is true iff x is true. This only makes sense if x is a boolean object.

Examples

>>> from sympy import ask, Q
>>> from sympy.abc import x, y
>>> ask(Q.is_true(True))
True

Wrapping another applied predicate just returns the applied predicate.

>>> Q.is_true(Q.even(x))
Q.even(x)

Wrapping binary relation classes in SymPy core returns applied binary relational predicates.

>>> from sympy import Eq, Gt
>>> Q.is_true(Eq(x, y))
Q.eq(x, y)
>>> Q.is_true(Gt(x, y))
Q.gt(x, y)

Notes

This class is designed to wrap the boolean objects so that they can behave as if they are applied predicates. Consequently, wrapping another applied predicate is unnecessary and thus it just returns the argument. Also, binary relation classes in SymPy core have binary predicates to represent themselves and thus wrapping them with Q.is_true converts them to these applied predicates.
Handler

Multiply dispatched method: IsTrueHandler
Wrapper allowing to query the truth value of a boolean expression.
handler = <dispatched IsTrueHandler>

class sympy.assumptions.predicates.common.CommutativePredicate(*args, **kwargs)
Commutative predicate.

Explanation

ask(Q.commutative(x)) is true iff x commutes with any other object with respect to multiplication operation.

Handler

Multiply dispatched method: CommutativeHandler
Handler for key ‘commutative’.
handler = <dispatched CommutativeHandler>

Calculus

class sympy.assumptions.predicates.calculus.FinitePredicate(*args, **kwargs)
Finite number predicate.

Explanation

Q.finite(x) is true if x is a number but neither an infinity nor a NaN. In other words, ask(Q.finite(x)) is true for all numerical x having a bounded absolute value.

Examples

>>> from sympy import Q, ask, S, oo, I, zoo
>>> from sympy.abc import x
>>> ask(Q.finite(oo))
False
>>> ask(Q.finite(-oo))
False
>>> ask(Q.finite(zoo))
False
>>> ask(Q.finite(1))
True
>>> ask(Q.finite(2 + 3*I))
True
>>> ask(Q.finite(x), Q.positive(x))

(continues on next page)
True
>>> print(ask(Q.finite(S.NaN)))
None

**Handler**

Multiply dispatched method: FiniteHandler
Handler for Q.finite. Test that an expression is bounded respect to all its variables.

**References**

[R9]

handler = <dispatched FiniteHandler>

```python
class sympy.assumptions.predicates.calculus.InfinitePredicate(*args, **kwargs)
```

Infinite number predicate.
Q.infinite(x) is true iff the absolute value of x is infinity.

**Handler**

Multiply dispatched method: InfiniteHandler
Handler for Q.infinite key.
handler = <dispatched InfiniteHandler>

**Matrix**

```python
class sympy.assumptions.predicates.matrices.SymmetricPredicate(*args, **kwargs)
```

Symmetric matrix predicate.

**Explanation**

Q.symmetric(x) is true iff x is a square matrix and is equal to its transpose. Every square diagonal matrix is a symmetric matrix.
Examples

```python
from sympy import Q, ask, MatrixSymbol

X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 3)
Z = MatrixSymbol('Z', 2, 2)
ask(Q.symmetric(X*Z), Q.symmetric(X) & Q.symmetric(Z))
True
ask(Q.symmetric(X + Z), Q.symmetric(X) & Q.symmetric(Z))
True
ask(Q.symmetric(Y))
False
```

Handler

Multiply dispatched method: SymmetricHandler
Handler for Q.symmetric.

References

[R10]

```python
class sympy.assumptions.predicates.matrices.InvertiblePredicate(*args,
 **kwargs)
```

Invertible matrix predicate.

Explanation

Q.invertible(x) is true iff x is an invertible matrix. A square matrix is called invertible only if its determinant is 0.

Examples

```python
from sympy import Q, ask, MatrixSymbol

X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 3)
Z = MatrixSymbol('Z', 2, 2)
ask(Q.invertible(X*Y), Q.invertible(X))
False
ask(Q.invertible(X*Z), Q.invertible(X) & Q.invertible(Z))
True
ask(Q.invertible(X), Q.fullrank(X) & Q.square(X))
True
```
**Handler**

Multiply dispatched method: InvertibleHandler
Handler for Q.invertible.

**References**

[R11]

```python
definition = <dispatched InvertibleHandler>
```

**Explanation**

Q.orthogonal(x) is true iff x is an orthogonal matrix. A square matrix M is an orthogonal matrix if it satisfies $M^T M = M M^T = I$ where $M^T$ is the transpose matrix of $M$ and $I$ is an identity matrix. Note that an orthogonal matrix is necessarily invertible.

**Examples**

```python
>>> from sympy import Q, ask, MatrixSymbol, Identity
>>> X = MatrixSymbol('X', 2, 2)
>>> Y = MatrixSymbol('Y', 2, 3)
>>> Z = MatrixSymbol('Z', 2, 2)
>>> ask(Q.orthogonal(Y))
False
>>> ask(Q.orthogonal(X*Z*X), Q.orthogonal(X) & Q.orthogonal(Z))
True
>>> ask(Q.orthogonal(Identity(3)))
True
>>> ask(Q.invertible(X), Q.orthogonal(X))
True
```

**Handler**

Multiply dispatched method: OrthogonalHandler
Handler for key 'orthogonal'.
References

[R12]

handler = <dispatched OrthogonalHandler>

class sympy.assumptions.predicates.matrices.UnitaryPredicate(*args, **kwargs)

Unitary matrix predicate.

Explanation

Q.unitary(x) is true iff x is a unitary matrix. Unitary matrix is an analogue to orthogonal matrix. A square matrix \( M \) with complex elements is unitary if \( M^TM = MM^T = I \) where \( M^T \) is the conjugate transpose matrix of \( M \).

Examples

```python
>>> from sympy import Q, ask, MatrixSymbol, Identity
>>> X = MatrixSymbol('X', 2, 2)
>>> Y = MatrixSymbol('Y', 2, 3)
>>> Z = MatrixSymbol('Z', 2, 2)
>>> ask(Q.unitary(Y))
False
>>> ask(Q.unitary(X*Z*X), Q.unitary(X) & Q.unitary(Z))
True
>>> ask(Q.unitary(Identity(3)))
True
```

Handler

Multiply dispatched method: UnitaryHandler

Handler for key ‘unitary’.

References

[R13]

handler = <dispatched UnitaryHandler>

class sympy.assumptions.predicates.matrices.PositiveDefinitePredicate(*args, **kwargs)

Positive definite matrix predicate.
Explanation

If $M$ is a $n \times n$ symmetric real matrix, it is said to be positive definite if $Z^T M Z$ is positive for every non-zero column vector $Z$ of $n$ real numbers.

Examples

```python
>>> from sympy import Q, ask, MatrixSymbol, Identity
>>> X = MatrixSymbol('X', 2, 2)
>>> Y = MatrixSymbol('Y', 2, 3)
>>> Z = MatrixSymbol('Z', 2, 2)
>>> ask(Q.positive_definite(Y))
False
>>> ask(Q.positive_definite(Identity(3)))
True
>>> ask(Q.positive_definite(X + Z), Q.positive_definite(X) & ...
... Q.positive_definite(Z))
True
```

Handler

Multiply dispatched method: PositiveDefiniteHandler

Handler for key ‘positive_definite’.

References

[R14]

handler = <dispatched PositiveDefiniteHandler>

class sympy.assumptions.predicates.matrices.UpperTriangularPredicate(*args,
**kwargs)

Upper triangular matrix predicate.

Explanation

A matrix $M$ is called upper triangular matrix if $M_{ij} = 0$ for $i < j$.

Examples

```python
>>> from sympy import Q, ask, ZeroMatrix, Identity
>>> ask(Q.upper_triangular(Identity(3)))
True
>>> ask(Q.upper_triangular(ZeroMatrix(3, 3)))
True
```
**Handler**

Multiply dispatched method: UpperTriangularHandler
Handler for key ‘upper_triangular’.

**References**

[R15]
handler = <dispatched UpperTriangularHandler>

class sympy.assumptions.predicates.matrices.LowerTriangularPredicate(*args, **kwargs)

Lower triangular matrix predicate.

**Explanation**

A matrix $M$ is called lower triangular matrix if $M_{ij} = 0$ for $i > j$.

**Examples**

```python
>>> from sympy import Q, ask, ZeroMatrix, Identity
>>> ask(Q.lower_triangular(Identity(3)))
True
>>> ask(Q.lower_triangular(ZeroMatrix(3, 3)))
True
```

**Handler**

Multiply dispatched method: LowerTriangularHandler
Handler for key ‘lower_triangular’.

**References**

[R16]
handler = <dispatched LowerTriangularHandler>

class sympy.assumptions.predicates.matrices.DiagonalPredicate(*args, **kwargs)

Diagonal matrix predicate.
**Explanation**

`Q.diagonal(x)` is true iff `x` is a diagonal matrix. A diagonal matrix is a matrix in which the entries outside the main diagonal are all zero.

**Examples**

```python
>>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix
>>> X = MatrixSymbol('X', 2, 2)
>>> ask(Q.diagonal(ZeroMatrix(3, 3)))
True
>>> ask(Q.diagonal(X), Q.lower_triangular(X) & ... Q.upper_triangular(X))
True
```

**Handler**

Multiply dispatched method: DiagonalHandler

Handler for key ‘diagonal’.

**References**

[R17]

handler = <dispatched DiagonalHandler>

*class* sympy.assumptions.predicates.matrices.FullRankPredicate(*args, **kwargs)*

Fullrank matrix predicate.

**Explanation**

`Q.fullrank(x)` is true iff `x` is a full rank matrix. A matrix is full rank if all rows and columns of the matrix are linearly independent. A square matrix is full rank iff its determinant is nonzero.

**Examples**

```python
>>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix, Identity
>>> X = MatrixSymbol('X', 2, 2)
>>> ask(Q.fullrank(X.T), Q.fullrank(X))
True
>>> ask(Q.fullrank(ZeroMatrix(3, 3)))
False
>>> ask(Q.fullrank(Identity(3)))
True
```
**Handler**

Multiply dispatched method: FullRankHandler
Handler for key ‘fullrank’.
handler = <dispatched FullRankHandler>

```python
class sympy.assumptions.predicates.matrices.SquarePredicate(*args, **kwargs)
```
Square matrix predicate.

**Explanation**

Q.square(x) is true iff x is a square matrix. A square matrix is a matrix with the same number of rows and columns.

**Examples**

```python
>>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix, Identity
>>> X = MatrixSymbol('X', 2, 2)
>>> Y = MatrixSymbol('X', 2, 3)
>>> ask(Q.square(X))
True
>>> ask(Q.square(Y))
False
>>> ask(Q.square(ZeroMatrix(3, 3)))
True
>>> ask(Q.square(Identity(3)))
True
```

**Handler**

Multiply dispatched method: SquareHandler
Handler for Q.square.

**References**

[R18]

handler = <dispatched SquareHandler>

```python
class sympy.assumptions.predicates.matrices.IntegerElementsPredicate(*args, **kwargs)
```
Integer elements matrix predicate.
Explanation

Q.integer_elements(x) is true iff all the elements of x are integers.

Examples

```python
>>> from sympy import Q, ask, MatrixSymbol
>>> X = MatrixSymbol('X', 4, 4)
>>> ask(Q.integer(X[1, 2]), Q.integer_elements(X))
True
```

Handler

Multiply dispatched method: IntegerElementsHandler
Handler for key 'integer_elements'.
```python
handler = <dispatched IntegerElementsHandler>
```

class sympy.assumptions.predicates.matrices.RealElementsPredicate(*args, **kwargs)

Real elements matrix predicate.

Explanation

Q.real_elements(x) is true iff all the elements of x are real numbers.

Examples

```python
>>> from sympy import Q, ask, MatrixSymbol
>>> X = MatrixSymbol('X', 4, 4)
>>> ask(Q.real(X[1, 2]), Q.real_elements(X))
True
```

Handler

Multiply dispatched method: RealElementsHandler
Handler for key 'real_elements'.
```python
handler = <dispatched RealElementsHandler>
```

class sympy.assumptions.predicates.matrices.ComplexElementsPredicate(*args, **kwargs)

Complex elements matrix predicate.
Explanation

Q.complex_elements(x) is true iff all the elements of x are complex numbers.

Examples

```python
>>> from sympy import Q, ask, MatrixSymbol
>>> X = MatrixSymbol('X', 4, 4)
>>> ask(Q.complex(X[1, 2]), Q.complex_elements(X))
True
>>> ask(Q.complex_elements(X), Q.integer_elements(X))
True
```

Handler

Multiply dispatched method: ComplexElementsHandler
Handler for key ‘complex_elements’.
handler = <dispatched ComplexElementsHandler>

```python
class sympy.assumptions.predicates.matrices.SingularPredicate(*args, **kwargs)
Singular matrix predicate.
A matrix is singular iff the value of its determinant is 0.
```

Examples

```python
>>> from sympy import Q, ask, MatrixSymbol
>>> X = MatrixSymbol('X', 4, 4)
>>> ask(Q.singular(X), Qinvertible(X))
False
>>> ask(Q.singular(X), ~Q.invertible(X))
True
```

Handler

Multiply dispatched method: SingularHandler
Predicate fore key ‘singular’.
References

[R19]
handler = <dispatched SingularHandler>

class sympy.assumptions.predicates.matrices.NormalPredicate(*args, **kwargs)
Normal matrix predicate.
A matrix is normal if it commutes with its conjugate transpose.

Examples

```python
>>> from sympy import Q, ask, MatrixSymbol
>>> X = MatrixSymbol('X', 4, 4)
>>> ask(Q.normal(X), Q.unitary(X))
True
```

Handler

Multiply dispatched method: NormalHandler
Predicate fore key ‘normal’.

References

[R20]
handler = <dispatched NormalHandler>

class sympy.assumptions.predicates.matrices.TriangularPredicate(*args, **kwargs)
Triangular matrix predicate.

Explanation

Q.triangular(X) is true if X is one that is either lower triangular or upper triangular.

Examples

```python
>>> from sympy import Q, ask, MatrixSymbol
>>> X = MatrixSymbol('X', 4, 4)
>>> ask(Q.triangular(X), Q.upper_triangular(X))
True
>>> ask(Q.triangular(X), Q.lower_triangular(X))
True
```
**Handler**

Multiply dispatched method: TriangularHandler
Predicate fore key ‘triangular’.

**References**

[R21]

```
handler = <dispatched TriangularHandler>
```

class sympy.assumptions.predicates.matrices.UnitTriangularPredicate(*args, **kwargs)

Unit triangular matrix predicate.

**Explanation**

A unit triangular matrix is a triangular matrix with 1s on the diagonal.

**Examples**

```
>>> from sympy import Q, ask, MatrixSymbol
>>> X = MatrixSymbol('X', 4, 4)
>>> ask(Q.triangular(X), Q.unit_triangular(X))
True
```

**Handler**

Multiply dispatched method: UnitTriangularHandler
Predicate fore key ‘unit_triangular’.
```
handler = <dispatched UnitTriangularHandler>
```

**Number Theory**

class sympy.assumptions.predicates.ntheory.EvenPredicate(*args, **kwargs)

Even number predicate.
**Explanation**

ask(Q.even(x)) is true iff x belongs to the set of even integers.

**Examples**

```python
>>> from sympy import Q, ask, pi
>>> ask(Q.even(0))
True
>>> ask(Q.even(2))
True
>>> ask(Q.even(3))
False
>>> ask(Q.even(pi))
False
```

**Handler**

Multiply dispatched method: EvenHandler

Handler for key ‘even’.

`handler = <dispatched EvenHandler>`

```python
class sympy.assumptions.predicates.ntheory.OddPredicate(*args, **kwargs)
```

Odd number predicate.

**Explanation**

ask(Q.odd(x)) is true iff x belongs to the set of odd numbers.

**Examples**

```python
>>> from sympy import Q, ask, pi
>>> ask(Q.odd(0))
False
>>> ask(Q.odd(2))
False
>>> ask(Q.odd(3))
True
>>> ask(Q.odd(pi))
False
```
SymPy Documentation, Release 1.12.1

**Handler**

Multiply dispatched method: OddHandler

Handler for key ‘odd’. Test that an expression represents an odd number.

```
handler = <dispatched OddHandler>
```

```python
class sympy.assumptions.predicates.ntheory.PrimePredicate(*args, **kwargs)
Prime number predicate.
```

**Explanation**

`ask(Q.prime(x))` is true iff `x` is a natural number greater than 1 that has no positive divisors other than 1 and the number itself.

**Examples**

```python
>>> from sympy import Q, ask
>>> ask(Q.prime(0))
False
>>> ask(Q.prime(1))
False
>>> ask(Q.prime(2))
True
>>> ask(Q.prime(20))
False
>>> ask(Q.prime(-3))
False
```

**Handler**

Multiply dispatched method: PrimeHandler

Handler for key ‘prime’. Test that an expression represents a prime number. When the expression is an exact number, the result (when True) is subject to the limitations of `isprime()` which is used to return the result.

```
handler = <dispatched PrimeHandler>
```

```python
class sympy.assumptions.predicates.ntheory.CompositePredicate(*args, **kwargs)
Composite number predicate.
```
Explanation

ask(Q.composite(x)) is true iff x is a positive integer and has at least one positive divisor other than 1 and the number itself.

Examples

```python
>>> from sympy import Q, ask
>>> ask(Q.composite(0))
False
>>> ask(Q.composite(1))
False
>>> ask(Q.composite(2))
False
>>> ask(Q.composite(20))
True
```

Handler

Multiply dispatched method: CompositeHandler

Handler for key ‘composite’.

```
handler = <dispatched CompositeHandler>
```

Order

```python
class sympy.assumptions.predicates.order_positivePredicate(*args, **kwargs)
```

Positive real number predicate.

Explanation

Q.positive(x) is true iff x is real and x > 0, that is if x is in the interval (0, ∞). In particular, infinity is not positive.

A few important facts about positive numbers:

- **Note that Q.nonpositive and ~Q.positive are not the same** thing. ~Q.positive(x) simply means that x is not positive, whereas Q.nonpositive(x) means that x is real and not positive, i.e., Q.nonpositive(x) is logically equivalent to Q.negative(x)|Q.zero(x)’. So for example, ~Q.positive(I) is true, whereas Q.nonpositive(I) is false.

- **See the documentation of Q.real for more information about** related facts.
Examples

```python
>>> from sympy import Q, ask, symbols, I
>>> x = symbols('x')
>>> ask(Q.positive(x), Q.real(x) & ~Q.negative(x) & ~Q.zero(x))
True
>>> ask(Q.positive(1))
True
>>> ask(Q.nonpositive(I))
False
>>> ask(~Q.positive(I))
True
```

Handler

Multiply dispatched method: PositiveHandler

Handler for key ‘positive’. Test that an expression is strictly greater than zero.

```python
handler = <dispatched PositiveHandler>
```

class sympy.assumptions.predicates.order.NegativePredicate(*args, **kwargs)

Negative number predicate.

Explanation

Q.negative(x) is true iff x is a real number and x < 0, that is, it is in the interval (−∞, 0). Note in particular that negative infinity is not negative.

A few important facts about negative numbers:

- **Note that Q.nonnegative and ~Q.negative are not the same** thing. ~Q.negative(x) simply means that x is not negative, whereas Q.nonnegative(x) means that x is real and not negative, i.e., Q.nonnegative(x) is logically equivalent to Q.zero(x) | Q.positive(x). So for example, ~Q.negative(I) is true, whereas Q.nonnegative(I) is false.

- **See the documentation of Q.real for more information about related facts.**

Examples

```python
>>> from sympy import Q, ask, symbols, I
>>> x = symbols('x')
>>> ask(Q.negative(x), Q.real(x) & ~Q.positive(x) & ~Q.zero(x))
True
>>> ask(Q.negative(-1))
True
>>> ask(Q.nonnegative(I))
False
>>> ask(~Q.negative(I))
True
```
**Handler**

Multiply dispatched method: NegativeHandler

Handler for \(Q.negative\). Test that an expression is strictly less than zero.

```python
def handler = <dispatched NegativeHandler>
```

```python
class sympy.assumptions.predicates.order.ZeroPredicate(*args, **kwargs)
```

Zero number predicate.

**Explanation**

ask\((Q.zero(x))\) is true iff the value of \(x\) is zero.

**Examples**

```python
>>> from sympy import ask, Q, oo, symbols
>>> x, y = symbols('x, y')
>>> ask(Q.zero(0))
True
>>> ask(Q.zero(1/oo))
True
>>> print(ask(Q.zero(0*oo)))
None
>>> ask(Q.zero(1))
False
>>> ask(Q.zero(x*y), Q.zero(x) | Q.zero(y))
True
```

**Handler**

Multiply dispatched method: ZeroHandler

Handler for key ‘zero’.

```python
def handler = <dispatched ZeroHandler>
```

```python
class sympy.assumptions.predicates.order.NonZeroPredicate(*args, **kwargs)
```

Nonzero real number predicate.

**Explanation**

ask\((Q.nonzero(x))\) is true iff \(x\) is real and \(x\) is not zero. Note in particular that \(Q.nonzero(x)\) is false if \(x\) is not real. Use \(~Q.zero(x)\) if you want the negation of being zero without any real assumptions.

A few important facts about nonzero numbers:

- \(Q.nonzero\) is logically equivalent to \(Q.positive | Q.negative\).
- **See the documentation of \(Q.real\) for more information about related facts.**
Examples

```python
>>> from sympy import Q, ask, symbols, I, oo
>>> x = symbols('x')
>>> print(ask(Q.nonzero(x), ~Q.zero(x)))
None
>>> ask(Q.nonzero(x), Q.positive(x))
True
>>> ask(Q.nonzero(x), Q.zero(x))
False
>>> ask(Q.nonzero(0))
False
>>> ask(Q.nonzero(I))
False
>>> ask(~Q.zero(I))
True
>>> ask(Q.nonzero(oo))
False
```

Handler

Multiply dispatched method: NonZeroHandler

Handler for key ‘zero’. Test that an expression is not identically zero.

```python
handler = <dispatched NonZeroHandler>
```

class sympy.assumptions.predicates.order.NonPositivePredicate(*args, **kwargs)

Nonpositive real number predicate.

Explanation

ask(Q.nonpositive(x)) is true iff x belongs to the set of negative numbers including zero.

- **Note that Q.nonpositive and ~Q.positive are not the same** thing. ~Q.positive(x) simply means that x is not positive, whereas Q.nonpositive(x) means that x is real and not positive, i.e., Q.nonpositive(x) is logically equivalent to Q.negative(x) | Q.zero(x). So for example, ~Q.positive(I) is true, whereas Q.nonpositive(I) is false.

Examples

```python
>>> from sympy import Q, ask, I
```

```python
>>> ask(Q.nonpositive(-1))
True
>>> ask(Q.nonpositive(0))
True
>>> ask(Q.nonpositive(1))
```

(continues on next page)
False
>>> ask(Q.nonpositive(I))
False
>>> ask(Q.nonpositive(-I))
False

**Handler**

Multiply dispatched method: NonPositiveHandler

Handler for key ‘nonpositive’.

```
handler = <dispatched NonPositiveHandler>
```

```
class sympy.assumptions.predicates.order.NonNegativePredicate(*args, **kwargs)
```

Nonnegative real number predicate.

**Explanation**

`ask(Q.nonnegative(x))` is true iff x belongs to the set of positive numbers including zero.

- **Note that Q.nonnegative and ~Q.negative are not the same** thing.  
  `~Q.negative(x)` simply means that x is not negative, whereas Q.nonnegative(x) means that x is real and not negative, i.e., Q.nonnegative(x) is logically equivalent to Q.zero(x) | Q.positive(x).  So for example, ~Q.negative(I) is true, whereas Q.nonnegative(I) is false.

**Examples**

```python
>>> from sympy import Q, ask, I
>>> ask(Q.nonnegative(1))
True
>>> ask(Q.nonnegative(0))
True
>>> ask(Q.nonnegative(-1))
False
>>> ask(Q.nonnegative(I))
False
>>> ask(Q.nonnegative(-I))
False
```
**Handler**

Multiply dispatched method: NonNegativeHandler
Handler for Q.nonnegative.

```
handler = <dispatched NonNegativeHandler>
```

**Sets**

```
class sympy.assumptions.predicates.sets.IntegerPredicate(*args, **kwargs)
Integer predicate.
```

**Explanation**

Q.integer(x) is true iff x belongs to the set of integer numbers.

**Examples**

```
>>> from sympy import Q, ask, S
>>> ask(Q.integer(5))
True
>>> ask(Q.integer(S(1)/2))
False
```

**Handler**

Multiply dispatched method: IntegerHandler
Handler for Q.integer.
Test that an expression belongs to the field of integer numbers.

**References**

[R22]
```
handler = <dispatched IntegerHandler>
```

```
class sympy.assumptions.predicates.sets.RationalPredicate(*args, **kwargs)
Rational number predicate.
```
**Explanation**

Q.rational(x) is true iff x belongs to the set of rational numbers.

**Examples**

```python
>>> from sympy import ask, Q, pi, S
>>> ask(Q.rational(0))
True
>>> ask(Q.rational(S(1)/2))
True
>>> ask(Q.rational(pi))
False
```

**Handler**

Multiply dispatched method: RationalHandler

Handler for Q.rational.

Test that an expression belongs to the field of rational numbers.

**References**

[R23]

handler = <dispatched RationalHandler>

class sympy.assumptions.predicates.sets.IrrationalPredicate(*args, **kwargs)

Irrational number predicate.

**Explanation**

Q.irrational(x) is true iff x is any real number that cannot be expressed as a ratio of integers.

**Examples**

```python
>>> from sympy import ask, Q, pi, S, I
>>> ask(Q.irrational(0))
False
>>> ask(Q.irrational(S(1)/2))
False
>>> ask(Q.irrational(pi))
True
>>> ask(Q.irrational(I))
False
```
**Handler**

Multiply dispatched method: IrrationalHandler

Handler for `Q.irrational`.

Test that an expression is irrational numbers.

**References**

[R24]

```
handler = <dispatched IrrationalHandler>
```

class sympy.assumptions.predicates.sets.RealPredicate(*args, **kwargs)

Real number predicate.

**Explanation**

`Q.real(x)` is true iff `x` is a real number, i.e., it is in the interval \((-\infty, \infty)\). Note that, in particular the infinities are not real. Use `Q.extended_real` if you want to consider those as well.

A few important facts about reals:

- **Every real number is positive, negative, or zero.** Furthermore, because these sets are pairwise disjoint, each real number is exactly one of those three.

- Every real number is also complex.

- Every real number is finite.

- Every real number is either rational or irrational.

- Every real number is either algebraic or transcendental.

- **The facts `Q.negative`, `Q.zero`, `Q.positive`,**
  `Q.nonnegative`, `Q.nonpositive`, `Q.nonzero`, `Q.integer`, `Q.rational`, and `Q. irrational` all imply `Q.real`, as do all facts that imply those facts.

- **The facts `Q.algebraic`, and `Q.transcendental` do not imply**
  `Q.real`; they imply `Q.complex`. An algebraic or transcendental number may or may not be real.

- **The “non” facts (i.e., `Q.nonnegative`, `Q.nonzero`,**
  `Q.nonpositive` and `Q.noninteger`) are not equivalent to not the fact, but rather, not the fact and `Q.real`. For example, `Q.nonnegative` means \(~Q.negative \& \ Q.real\). So for example, `I` is not nonnegative, nonzero, or nonpositive.
Explanations

5.8. Topics
**Handler**

Multiply dispatched method: ExtendedRealHandler
Handler for `Q.extended_real`.
Test that an expression belongs to the field of extended real numbers, that is real numbers union {Infinity, -Infinity}.

```python
handler = <dispatched ExtendedRealHandler>
```

**Explanation**

`ask(Q.hermitian(x))` is true iff `x` belongs to the set of Hermitian operators.

**Handler**

Multiply dispatched method: HermitianHandler
Handler for `Q.hermitian`.
Test that an expression belongs to the field of Hermitian operators.

**References**

[R26]

```python
handler = <dispatched HermitianHandler>
```

**ComplexPredicate**

```python
class sympy.assumptions.predicates.sets.ComplexPredicate(*args, **kwargs)
Complex number predicate.
```

**Explanation**

`Q.complex(x)` is true iff `x` belongs to the set of complex numbers. Note that every complex number is finite.

**Examples**

```python
>>> from sympy import Q, Symbol, ask, I, oo
>>> x = Symbol('x')
>>> ask(Q.complex(0))
True
>>> ask(Q.complex(2 + 3*I))
True
>>> ask(Q.complex(oo))
False
```
**Handler**

Multiply dispatched method: ComplexHandler
Handler for Q.complex.
Test that an expression belongs to the field of complex numbers.

**References**

[R27]

```python
handler = <dispatched ComplexHandler>
```

```python
class sympy.assumptions.predicates.sets.ImaginaryPredicate(*args, **kwargs)
```

Imaginary number predicate.

**Explanation**

Q.imaginary(x) is true iff x can be written as a real number multiplied by the imaginary unit I. Please note that 0 is not considered to be an imaginary number.

**Examples**

```python
>>> from sympy import Q, ask, I
>>> ask(Q.imaginary(3*I))
True
>>> ask(Q.imaginary(2 + 3*I))
False
>>> ask(Q.imaginary(0))
False
```

**Handler**

Multiply dispatched method: ImaginaryHandler
Handler for Q.imaginary.
Test that an expression belongs to the field of imaginary numbers, that is, numbers in the form x*I, where x is real.
References

[R28]
handler = <dispatched ImaginaryHandler>

class sympy.assumptions.predicates.sets.AntihermitianPredicate(*args, **kwargs)
Antihermitian predicate.

Explanation

Q.antihermitian(x) is true iff x belongs to the field of antihermitian operators, i.e.,
operators in the form x*I, where x is Hermitian.

Handler

Multiply dispatched method: AntiHermitianHandler
Handler for Q.antihermitian.
Test that an expression belongs to the field of anti-Hermitian
operators, that is, operators in the form x*I, where x is Hermitian.

References

[R29]
handler = <dispatched AntiHermitianHandler>

class sympy.assumptions.predicates.sets.AlgebraicPredicate(*args, **kwargs)
Algebraic number predicate.

Explanation

Q.algebraic(x) is true iff x belongs to the set of algebraic numbers. x is algebraic if
there is some polynomial in p(x)\in \mathbb\{Q\}[x] such that p(x) = 0.

Examples

```python
>>> from sympy import ask, Q, sqrt, I, pi
>>> ask(Q.algebraic(sqrt(2)))
True
>>> ask(Q.algebraic(I))
True
>>> ask(Q.algebraic(pi))
False
```
**Handler**

Multiply dispatched method: AskAlgebraicpredicateHandler
Handler for key AskAlgebraicpredicateHandler

**References**

[R30]

```python
AlgebraicHandler = <dispatched AlgebraicHandler>
handler = <dispatched AskAlgebraicpredicateHandler>
```

**class** sympy.assumptions.predicates.sets.TranscendentalPredicate(*args, **kwargs)**

Transcendental number predicate.

**Explanation**

Q.transcendental(x) is true iff x belongs to the set of transcendental numbers. A transcendental number is a real or complex number that is not algebraic.

**Handler**

Multiply dispatched method: Transcendental
Handler for Q.transcendental key.

```python
handler = <dispatched Transcendental>
```

**Performance improvements**

On queries that involve symbolic coefficients, logical inference is used. Work on improving satisfiable function (sympy.logic.inference.satisfiable) should result in notable speed improvements.

Logic inference used in one ask could be used to speed up further queries, and current system does not take advantage of this. For example, a truth maintenance system ([https://en.wikipedia.org/wiki/Truth_maintenance_system](https://en.wikipedia.org/wiki/Truth_maintenance_system)) could be implemented.

**Misc**

You can find more examples in the form of tests in the directory sympy/assumptions/tests/
Calculus

Calculus-related methods. This module implements a method to find Euler-Lagrange Equations for given Lagrangian.

```python
sympy.calculus.euler.euler_equations(L, funcs=(), vars=())
```

Find the Euler-Lagrange equations [R31] for a given Lagrangian.

**Parameters**

- `L` : Expr
  The Lagrangian that should be a function of the functions listed in the second argument and their derivatives.
  For example, in the case of two functions \( f(x, y), g(x, y) \) and two independent variables \( x, y \) the Lagrangian has the form:

  \[
  L \left( f(x, y), g(x, y), \frac{\partial f(x, y)}{\partial x}, \frac{\partial f(x, y)}{\partial y}, \frac{\partial g(x, y)}{\partial x}, \frac{\partial g(x, y)}{\partial y}, x, y \right)
  \]

  In many cases it is not necessary to provide anything, except the Lagrangian, it will be auto-detected (and an error raised if this cannot be done).

- `funcs` : Function or an iterable of Functions
  The functions that the Lagrangian depends on. The Euler equations are differential equations for each of these functions.

- `vars` : Symbol or an iterable of Symbols
  The Symbols that are the independent variables of the functions.

**Returns**

- `eqns` : list of Eq
  The list of differential equations, one for each function.

**Examples**

```python
>>> from sympy import euler_equations, Symbol, Function
>>> x = Function('x')
>>> t = Symbol('t')
>>> L = (x(t).diff(t))**2/2 - x(t)**2/2
>>> euler_equations(L, x(t), t)
[Eq(-x(t) - Derivative(x(t), (t, 2)), 0)]
>>> u = Function('u')
>>> x = Symbol('x')
>>> L = (u(t, x).diff(t))**2/2 - (u(t, x).diff(x))**2/2
>>> euler_equations(L, u(t, x), [t, x])
[Eq(-Derivative(u(t, x), (t, 2)) + Derivative(u(t, x), (x, 2)), 0)]
```
References

[R31]

Singularity

This module implements algorithms for finding singularities for a function and identifying types of functions.

The differential calculus methods in this module include methods to identify the following function types in the given Interval: - Increasing - Strictly Increasing - Decreasing - Strictly Decreasing - Monotonic

```
sympy.calculus.singularities.is_decreasing(expression, interval=Reals, symbol=None)
```

Return whether the function is decreasing in the given interval.

**Parameters**

- **expression**: Expr
  The target function which is being checked.

- **interval**: Set, optional
  The range of values in which we are testing (defaults to set of all real numbers).

- **symbol**: Symbol, optional
  The symbol present in expression which gets varied over the given range.

**Returns**

- **Boolean**
  True if expression is decreasing (either strictly decreasing or constant) in the given interval, False otherwise.

**Examples**

```python
>>> from sympy import is_decreasing
>>> from sympy.abc import x, y
>>> from sympy import S, Interval, oo
>>> is_decreasing(1/(x**2 - 3*x), Interval.open(S(3)/2, 3))
True
>>> is_decreasing(1/(x**2 - 3*x), Interval.open(1.5, 3))
True
>>> is_decreasing(1/(x**2 - 3*x), Interval.Lopen(3, oo))
True
>>> is_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, S(3)/2))
False
>>> is_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, 1.5))
False
>>> is_decreasing(-x**2, Interval(-oo, 0))
False
```

(continues on next page)
is_decreasing(-x**2 + y, Interval(-oo, 0), x)
False

sympy.calculus.singularities.is_increasing(expression, interval=Reals, symbol=None)

Return whether the function is increasing in the given interval.

Parameters

expression : Expr
    The target function which is being checked.

interval : Set, optional
    The range of values in which we are testing (defaults to set of all real numbers).

symbol : Symbol, optional
    The symbol present in expression which gets varied over the given range.

Returns

Boolean
    True if expression is increasing (either strictly increasing or constant) in the given interval, False otherwise.

Examples

>>> from sympy import is_increasing
>>> from sympy.abc import x, y
>>> from sympy import S, Interval, oo
>>> is_increasing(x**3 - 3*x**2 + 4*x, S.Reals)
True
>>> is_increasing(-x**2, Interval(-oo, 0))
True
>>> is_increasing(-x**2, Interval(0, oo))
False
>>> is_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval(-2, 3))
False
>>> is_increasing(x**2 + y, Interval(1, 2), x)
True

sympy.calculus.singularities.is_monotonic(expression, interval=Reals, symbol=None)

Return whether the function is monotonic in the given interval.

Parameters

expression : Expr
    The target function which is being checked.

interval : Set, optional
    The range of values in which we are testing (defaults to set of all real numbers).
symbol : Symbol, optional

The symbol present in expression which gets varied over the given range.

Returns

Boolean

True if expression is monotonic in the given interval, False otherwise.

Raises

NotImplementedError

Monotonicity check has not been implemented for the queried function.

Examples

```python
>>> from sympy import is_monotonic
>>> from sympy.abc import x, y
>>> from sympy import S, Interval, oo
>>> is_monotonic(1/(x**2 - 3*x), Interval.open(S(3)/2, 3))
True
>>> is_monotonic(1/(x**2 - 3*x), Interval.open(1.5, 3))
True
>>> is_monotonic(1/(x**2 - 3*x), Interval.Lopen(3, oo))
True
>>> is_monotonic(x**3 - 3*x**2 + 4*x, S.Reals)
True
>>> is_monotonic(-x**2, S.Reals)
False
>>> is_monotonic(x**2 + y + 1, Interval(1, 2), x)
True
```

sympy.calculus.singularities.is_strictly_decreasing(expression, interval=S.Reals, symbol=None)

Return whether the function is strictly decreasing in the given interval.

Parameters

expression : Expr

The target function which is being checked.

interval : Set, optional

The range of values in which we are testing (defaults to set of all real numbers).

symbol : Symbol, optional

The symbol present in expression which gets varied over the given range.

Returns

Boolean

True if expression is strictly decreasing in the given interval, False otherwise.
Examples

```python
>>> from sympy import is_strictly_decreasing
>>> from sympy import x, y
>>> from sympy import S, Interval, oo

is_strictly_decreasing(1/(x**2 - 3*x), Interval.Lopen(3, oo))
True

is_strictly_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, S(3)/2))
False

is_strictly_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, 1.5))
False

is_strictly_decreasing(-x**2, Interval(-oo, 0))
False

is_strictly_decreasing(-x**2 + y, Interval(-oo, 0), x)
False
```

```python
sympy.calculus.singularities.is_strictly_increasing(expression, interval=Reals, symbol=None)
```

Return whether the function is strictly increasing in the given interval.

Parameters

- **expression**: Expr
  
The target function which is being checked.

- **interval**: Set, optional
  
The range of values in which we are testing (defaults to set of all real numbers).

- **symbol**: Symbol, optional
  
The symbol present in expression which gets varied over the given range.

Returns

Boolean

True if expression is strictly increasing in the given interval, False otherwise.

Examples

```python
>>> from sympy import is_strictly_increasing
>>> from sympy import x, y
>>> from sympy import Interval, oo

is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.Ropen(-oo, -2))
True

is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.Lopen(3, oo))
True

is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.open(-2, 3))
False
```

(continues on next page)
sympy.calculus.singularities.
monotonicity_helper(expression, predicate, interval=Reals, symbol=None)

Helper function for functions checking function monotonicity.

**Parameters**

- **expression**: Expr
  - The target function which is being checked

- **predicate**: function
  - The property being tested for. The function takes in an integer and returns a boolean. The integer input is the derivative and the boolean result should be true if the property is being held, and false otherwise.

- **interval**: Set, optional
  - The range of values in which we are testing, defaults to all reals.

- **symbol**: Symbol, optional
  - The symbol present in expression which gets varied over the given range.

**It returns a boolean indicating whether the interval in which the function’s derivative satisfies given predicate is a superset of the given interval.**

**Returns**

- **Boolean**
  - True if predicate is true for all the derivatives when symbol is varied in range, False otherwise.

sympy.calculus.singularities.
singularities(expression, symbol, domain=None)

Find singularities of a given function.

**Parameters**

- **expression**: Expr
  - The target function in which singularities need to be found.

- **symbol**: Symbol
  - The symbol over the values of which the singularity in expression in being searched for.

**Returns**

- **Set**
  - A set of values for symbol for which expression has a singularity. An EmptySet is returned if expression has no singularities for any given value of Symbol.

**Raises**

- **NotImplementedError**
Methods for determining the singularities of this function have not been developed.

**Notes**

This function does not find non-isolated singularities nor does it find branch points of the expression.

**Currently supported functions are:**

- univariate continuous (real or complex) functions

**Examples**

```python
>>> from sympy import singularities, Symbol, log
>>> x = Symbol('x', real=True)
>>> y = Symbol('y', real=False)
>>> singularities(x**2 + x + 1, x)
EmptySet
>>> singularities(1/(x + 1), x)
{-1}
>>> singularities(1/(y**2 + 1), y)
{-I, I}
>>> singularities(1/(y**3 + 1), y)
{-1, 1/2 - sqrt(3)*I/2, 1/2 + sqrt(3)*I/2}
>>> singularities(log(x), x)
{0}
```

**References**

[R32]

**Finite difference weights**

This module implements an algorithm for efficient generation of finite difference weights for ordinary differentials of functions for derivatives from 0 (interpolation) up to arbitrary order.

The core algorithm is provided in the finite difference weight generating function (`finite_diff_weights`), and two convenience functions are provided for:

- **estimating a derivative (or interpolate) directly from a series of points** is also provided (apply_finite_diff).

- **differentiating by using finite difference approximations** (differentiate_finite).

```python
sympy.calculus.finite_diff.apply_finite_diff(order, x_list, y_list, x0=0)
```

Calculates the finite difference approximation of the derivative of requested order at x0 from points provided in x_list and y_list.

**Parameters**

- order: int
order of derivative to approximate. 0 corresponds to interpolation.

**x_list:** sequence
Sequence of (unique) values for the independent variable.

**y_list:** sequence
The function value at corresponding values for the independent variable in x_list.

**x0:** Number or Symbol
At what value of the independent variable the derivative should be evaluated. Defaults to 0.

Returns
sympy.core.add.Add or sympy.core.numbers.Number
The finite difference expression approximating the requested derivative order at x0.

### Examples

```python
>>> from sympy import apply_finite_diff
>>> cube = lambda arg: (1.0*arg)**3
>>> xlist = range(-3,3+1)
>>> apply_finite_diff(2, xlist, map(cube, xlist), 2) - 12
-3.55271367880050e-15
```

we see that the example above only contain rounding errors. apply_finite_diff can also be used on more abstract objects:

```python
>>> from sympy import IndexedBase, Idx
>>> x, y = map(IndexedBase, 'xy')
>>> i = Idx('i')
>>> x_list, y_list = zip(*[(x[i+j], y[i+j]) for j in range(-1,2)])
>>> apply_finite_diff(1, x_list, y_list, x[i])
((x[i + 1] - x[i])/(-x[i - 1] + x[i]) - 1)*y[i]/(x[i + 1] - x[i]) -
(x[i + 1] - x[i])*y[i - 1]/((-x[i - 1] + x[i])) +
(-x[i - 1] + x[i])*y[i + 1]/((x[i + 1] - x[i - 1])*(x[i + 1] - x[i]))
```

### Notes

Order = 0 corresponds to interpolation. Only supply so many points you think makes sense to around x0 when extracting the derivative (the function need to be well behaved within that region). Also beware of Runge’s phenomenon.

See also:
```
sympy.calculus.finite_diff.finite_diff_weights (page 296)
```
References

Fortran 90 implementation with Python interface for numerics: finitediff
sympy.calculus.finite_diff.differentiate_finite(expr, *symbols, points=1, x0=None, wrt=None, evaluate=False)

Differentiate expr and replace Derivatives with finite differences.

Parameters

expr : expression
  *symbols : differentiate with respect to symbols
  points: sequence, coefficient or undefined function, optional
    see Derivative.as_finite_difference
  x0: number or Symbol, optional
    see Derivative.as_finite_difference
  wrt: Symbol, optional
    see Derivative.as_finite_difference

Examples

```python
>>> from sympy import sin, Function, differentiate_finite
>>> from sympy.abc import x, y, h
>>> f, g = Function('f'), Function('g')
>>> differentiate_finite(f(x)*g(x), x, points=[x-h, x+h])
-f(-h + x)*g(-h + x)/(2*h) + f(h + x)*g(h + x)/(2*h)
```
differentiate_finite works on any expression, including the expressions with embedded derivatives:

```python
>>> differentiate_finite(f(x) + sin(x), x, 2)
-2*f(x) + f(x - 1) + f(x + 1) - 2*sin(x) + sin(x - 1) + sin(x + 1)
```
```python
>>> differentiate_finite(f(x)*g(x).diff(x), x)
(-g(x) + g(x + 1))*f(x + 1/2) - (g(x) - g(x - 1))*f(x - 1/2)
```
To make finite difference with non-constant discretization step use undefined functions:

```python
>>> dx = Function('dx')
>>> differentiate_finite(f(x)*g(x).diff(x), points=dx(x))
-(g(x - dx(x)/2 - dx(x - dx(x)/2)/2)/dx(x - dx(x)/2) + g(x - dx(x)/2 + dx(x - dx(x)/2)/2)/dx(x - dx(x)/2))*f(x - dx(x)/2)/dx(x) +
(-g(x + dx(x)/2 - dx(x + dx(x)/2)/2)/dx(x + dx(x)/2) + g(x + dx(x)/2 + dx(x + dx(x)/2)/2)/dx(x + dx(x)/2))*f(x + dx(x)/2)/dx(x)
```
sympy.calculus.finite_diff.finite_diff_weights(order, x_list, x0=1)

Calculates the finite difference weights for an arbitrarily spaced one-dimensional grid (x_list) for derivatives at x0 of order 0, 1, ..., up to order using a recursive formula. Order of accuracy is at least len(x_list) - order, if x_list is defined correctly.

Parameters

order: int
Up to what derivative order weights should be calculated. 0 corresponds to interpolation.

x_list: sequence
Sequence of (unique) values for the independent variable. It is useful (but not necessary) to order x_list from nearest to furthest from x0; see examples below.

x0: Number or Symbol
Root or value of the independent variable for which the finite difference weights should be generated. Default is S.One.

Returns

list
A list of sublists, each corresponding to coefficients for increasing derivative order, and each containing lists of coefficients for increasing subsets of x_list.

Examples

>>> from sympy import finite_diff_weights, S
>>> res = finite_diff_weights(1, [-S(1)/2, S(1)/2, S(3)/2, S(5)/2], 0)
>>> res
[[[1, 0, 0, 0],
  [1/2, 1/2, 0, 0],
  [3/8, 3/4, -1/8, 0],
  [5/16, 15/16, -5/16, 1/16]],
 [[0, 0, 0, 0],
  [-1, 1, 0, 0],
  [-1, 1, 0, 0],
  [-23/24, 7/8, 1/8, -1/24]]]
>>> res[0][-1] # FD weights for 0th derivative, using full x_list
[5/16, 15/16, -5/16, 1/16]
>>> res[1][-1] # FD weights for 1st derivative
[-23/24, 7/8, 1/8, -1/24]
>>> res[1][-2] # FD weights for 1st derivative, using x_list[:1]
[-1, 1, 0, 0]
>>> res[1][-1][0] # FD weight for 1st deriv. for x_list[0]
-23/24
>>> res[1][-1][1] # FD weight for 1st deriv. for x_list[1], etc.
7/8

Each sublist contains the most accurate formula at the end. Note, that in the above example res[1][1] is the same as res[1][2]. Since res[1][2] has an order of accuracy of len(x_list[:3]) - order = 3 - 1 = 2, the same is true for res[1][1]!
Let us compare this to a differently defined `x_list`. Pay attention to `foo[i][k]` corresponding to the gridpoint defined by `x_list[k]`.

```python
>>> foo = finite_diff_weights(1, [-S(2), -S(1), S(0), S(1), S(2)], 0)[1]
>>> foo
[[0, 0, 0, 0, 0],
 [-1, 1, 0, 0, 0],
 [1/2, -2, 3/2, 0, 0],
 [1/6, -1, 1/2, 1/3, 0],
 [1/12, -2/3, 0, 2/3, -1/12]]
>>> foo[1] # not the same and of lower accuracy as res[1]!
[-1, 1, 0, 0, 0]
>>> foo[2] # classic double backward step approximation
[1/2, -2, 3/2, 0, 0]
[1/12, -2/3, 0, 2/3, -1/12]
```

Note that, unless you plan on using approximations based on subsets of `x_list`, the order of gridpoints does not matter.

The capability to generate weights at arbitrary points can be used e.g. to minimize Runge's phenomenon by using Chebyshev nodes:

```python
>>> from sympy import cos, symbols, pi, simplify
>>> N, (h, x) = 4, symbols('h x')
>>> x_list = [x+h*cos(i*pi/(N)) for i in range(N,-1,-1)] # chebyshev nodes
>>> print(x_list)
[-h + x, -sqrt(2)*h/2 + x, x, sqrt(2)*h/2 + x, h + x]
>>> mycoeffs = finite_diff_weights(1, x_list, 0)[1][4]
>>> simplify(c) for c in mycoeffs]
[(h**3/2 + h**2*x - 3*h*x**2 - 4*x**3)/h**4,
 (-sqrt(2)*h**3 - 4*h**2*x + 3*sqrt(2)*h*x**2 + 8*x**3)/h**4,
 (6*h**2*x - 8*x**3)/h**4,
 (sqrt(2)*h**3 - 4*h**2*x + 3*sqrt(2)*h*x**2 + 8*x**3)/h**4,
 (-h**3/2 + h**2*x + 3*h*x**2 - 4*x**3)/h**4]
```
Notes

If weights for a finite difference approximation of 3rd order derivative is wanted, weights
for 0th, 1st and 2nd order are calculated “for free”, so are formulae using subsets of
x_list. This is something one can take advantage of to save computational cost. Be
aware that one should define x_list from nearest to furthest from x0. If not, subsets of
x_list will yield poorer approximations, which might not grand an order of accuracy of
len(x_list) - order.

See also:
sympy.calculus.finite_diff.applyFiniteDiff (page 294)

References

[R33]
sympy.calculus.util.continuous_domain(f, symbol, domain)
Returns the intervals in the given domain for which the function is continuous. This
method is limited by the ability to determine the various singularities and discontinuities
of the given function.

Parameters

f : Expr (page 999)
The concerned function.
symbol : Symbol (page 1028)
The variable for which the intervals are to be determined.
domain : Interval (page 1239)
The domain over which the continuity of the symbol has to be
checked.

Returns

Interval (page 1239)
Union of all intervals where the function is continuous.

Raises

NotImplementedError
If the method to determine continuity of such a function has not yet
been developed.

Examples

```python
>>> from sympy import Interval, Symbol, S, tan, log, pi, sqrt
>>> from sympy.calculus.util import continuous_domain
>>> x = Symbol('x')
>>> continuous_domain(1/x, x, S.Reals)
Union(Interval.open(-oo, 0), Interval.open(0, oo))
>>> continuous_domain(tan(x), x, Interval(0, pi))
Union(Interval.Ropen(0, pi/2), Interval.Lopen(pi/2, pi))
>>> continuous_domain(sqrt(x - 2), x, Interval(-5, 5))
```
(continues on next page)
sympy.calculus.util.function_range \( f, \) \( symbol, \) \( domain \)

Finds the range of a function in a given domain. This method is limited by the ability to determine the singularities and determine limits.

**Parameters**
- \( f : \) \textit{Expr} (page 999)
  - The concerned function.
- \( symbol : \) \textit{Symbol} (page 1028)
  - The variable for which the range of function is to be determined.
- \( domain : \) \textit{Interval} (page 1239)
  - The domain under which the range of the function has to be found.

**Returns**
- \( Interval \) (page 1239)
  - Union of all ranges for all intervals under domain where function is continuous.

**Raises**
- \textit{NotImplementedError}
  - If any of the intervals, in the given domain, for which function is continuous are not finite or real, OR if the critical points of the function on the domain cannot be found.

**Examples**

```python
>>> from sympy import Interval, Symbol, S, exp, log, pi, sqrt, sin, tan
>>> from sympy.calculus.util import function_range
>>> x = Symbol('x')
>>> function_range(sin(x), x, Interval(0, 2*pi))
Interval(-1, 1)
>>> function_range(tan(x), x, Interval(-pi/2, pi/2))
Interval(-oo, oo)
>>> function_range(1/x, x, S.Reals)
Union(Interval.open(-oo, 0), Interval.open(0, oo))
>>> function_range(exp(x), x, S.Reals)
Interval.open(0, oo)
>>> function_range(log(x), x, S.Reals)
Interval(-oo, oo)
>>> function_range(sqrt(x), x, Interval(-5, 9))
Interval(0, 3)
```

sympy.calculus.util.is_convex \( f, *syms, domain=\textit{Reals} \)

Determines the convexity of the function passed in the argument.
Parameters

- **f**: `Expr` (page 999)
  - The concerned function.
- **syms**: Tuple of `Symbol` (page 1028)
  - The variables with respect to which the convexity is to be determined.
- **domain**: `Interval` (page 1239), optional
  - The domain over which the convexity of the function has to be checked. If unspecified, `S.Reals` will be the default domain.

Returns

- **bool**
  - The method returns `True` if the function is convex otherwise it returns `False`.

Raises

- **NotImplementedError**
  - The check for the convexity of multivariate functions is not implemented yet.

Notes

To determine concavity of a function pass \(-f\) as the concerned function. To determine logarithmic convexity of a function pass \(\log(f)\) as concerned function. To determine logarithmic concavity of a function pass \(-\log(f)\) as concerned function.

Currently, convexity check of multivariate functions is not handled.

Examples

```python
>>> from sympy import is_convex, symbols, exp, oo, Interval
>>> x = symbols('x')
>>> is_convex(exp(x), x)
True
>>> is_convex(x**3, x, domain = Interval(-1, oo))
False
>>> is_convex(1/x**2, x, domain=Interval.open(0, oo))
True
```

References

[R34], [R35], [R36], [R37], [R38]

**sympy.calculus.util.lcim(numbers)**

Returns the least common integral multiple of a list of numbers.

The numbers can be rational or irrational or a mixture of both. *None* is returned for incommensurable numbers.
Parameters
numbers : list
    Numbers (rational and/or irrational) for which lcm is to be found.

Returns
number
    lcm if it exists, otherwise None for incommensurable numbers.

Examples

```python
>>> from sympy.calculus.util import lcm
>>> from sympy import S, pi
>>> lcm([S(1)/2, S(3)/4, S(5)/6])
15/2
>>> lcm([2*pi, 3*pi, pi, pi/2])
6*pi
>>> lcm([S(1), 2*pi])
```

SymPy.calculus.util.maximum(f, symbol, domain=Reals)
Returns the maximum value of a function in the given domain.

Parameters
f : Expr (page 999)
    The concerned function.
symbol : Symbol (page 1028)
    The variable for maximum value needs to be determined.
domain : Interval (page 1239)
    The domain over which the maximum have to be checked. If unspecified, then the global maximum is returned.

Returns
number
    Maximum value of the function in given domain.

Examples

```python
>>> from sympy import Interval, Symbol, S, sin, cos, pi, maximum
>>> x = Symbol('x')

>>> f = -x**2 + 2*x + 5
>>> maximum(f, x, S.Reals)
6

>>> maximum(sin(x), x, Interval(-pi, pi/4))
sqrt(2)/2
```
sympy.calculus.util.minimum(f, symbol, domain=Reals)
Returns the minimum value of a function in the given domain.

Parameters
f : Expr
   The concerned function.
symbol : Symbol
   The variable for minimum value needs to be determined.
domain : Interval
   The domain over which the minimum have to be checked. If unspecified, then the global minimum is returned.

Returns
number
   Minimum value of the function in the given domain.

Examples
>>> from sympy import Interval, Symbol, S, sin, cos, minimum
>>> x = Symbol('x')

>>> f = x**2 + 2*x + 5
>>> minimum(f, x, S.Reals)
4

>>> minimum(sin(x), x, Interval(2, 3))
sin(3)

>>> minimum(sin(x)*cos(x), x)
-1/2

sympy.calculus.util.not_empty_in(finset_intersection, *syms)
Finds the domain of the functions in finset_intersection in which the finite_set is not-empty.

Parameters
finset_intersection : Intersection of FiniteSet
   The unevaluated intersection of FiniteSet containing real-valued functions with Union of Sets
syms : Tuple of symbols
   Symbol for which domain is to be found

Raises
NotImplementedError
The algorithms to find the non-emptiness of the given \( \text{FiniteSet} \) are not yet implemented.

**ValueError**

The input is not valid.

**RuntimeError**

It is a bug, please report it to the github issue tracker (https://github.com/sympy/sympy/issues).

**Examples**

```python
>>> from sympy import FiniteSet, Interval, not_empty_in, oo
>>> from sympy.abc import x
>>> not_empty_in(FiniteSet(x/2).intersect(Interval(0, 1)), x)
Interval(0, 2)
>>> not_empty_in(FiniteSet(x, x**2).intersect(Interval(1, 2)), x)
Union(Interval(1, 2), Interval(-sqrt(2), -1))
>>> not_empty_in(FiniteSet(x**2/(x + 2)).intersect(Interval(1, oo)), x)
Union(Interval.Lopen(-2, -1), Interval(2, oo))
```

**sympy.calculus.util.peri**

The concerned function.

**symbol** : \( Symbol \) (page 1028)

The variable for which the period is to be determined.

**check** : bool, optional

The flag to verify whether the value being returned is a period or not.

**Returns**

<table>
<thead>
<tr>
<th>period</th>
</tr>
</thead>
</table>
| The period of the function is returned. None is returned when the function is aperiodic or has a complex period. The value of 0 is returned as the period of a constant function.

**Raises**

**NotImplementedError**

The value of the period computed cannot be verified.
Notes

Currently, we do not support functions with a complex period. The period of functions having complex periodic values such as \( \exp \), \( \sinh \) is evaluated to None.

The value returned might not be the “fundamental” period of the given function i.e. it may not be the smallest periodic value of the function.

The verification of the period through the check flag is not reliable due to internal simplification of the given expression. Hence, it is set to False by default.

Examples

```python
>>> from sympy import periodicity, Symbol, sin, cos, tan, exp
>>> x = Symbol('x')
>>> f = sin(x) + sin(2*x) + sin(3*x)
>>> periodicity(f, x)
2*pi
>>> periodicity(sin(x)**cos(x), x)
pi
>>> periodicity(exp(tan(2*x) - 1), x)
pi/2
>>> periodicity(sin(4*x)**cos(2*x), x)
pi
>>> periodicity(exp(x), x)
```

`sympy.calculus.util.stationary_points(f, symbol, domain=Reals)`

Returns the stationary points of a function (where derivative of the function is 0) in the given domain.

Parameters

- **f**: `Expr` (page 999)
  - The concerned function.

- **symbol**: `Symbol` (page 1028)
  - The variable for which the stationary points are to be determined.

- **domain**: `Interval` (page 1239)
  - The domain over which the stationary points have to be checked. If unspecified, `S.Reals` will be the default domain.

Returns

Set

A set of stationary points for the function. If there are no stationary point, an `EmptySet` (page 1245) is returned.
Examples

```python
>>> from sympy import Interval, Symbol, S, sin, pi, pprint, stationary_points
>>> x = Symbol('x')
```

```python
>>> stationary_points(1/x, x, S.Reals)
EmptySet
```

```python
>>> pprint(stationary_points(sin(x), x), use_unicode=False)
\{2*n*pi + -- | n in Integers\} U \{2*n*pi + ---- | n in Integers\}
 2
```

```python
>>> stationary_points(sin(x), x, Interval(0, 4*pi))
\{pi/2, 3*pi/2, 5*pi/2, 7*pi/2\}
```

Combinatorics

Contents

Partitions

```python
class sympy.combinatorics.partitions.Particle(*partition)
```
This class represents an abstract partition.

A partition is a set of disjoint sets whose union equals a given set.

See also:

* `sympy.utilities.iterables.partitions` (page 2159), `sympy.utilities.iterables.multiset_partitions` (page 2154)

**property RGS**

Returns the “restricted growth string” of the partition.

Explanation

The RGS is returned as a list of indices, L, where L[i] indicates the block in which element i appears. For example, in a partition of 3 elements (a, b, c) into 2 blocks ([c], [a, b]) the RGS is [1, 1, 0]: “a” is in block 1, “b” is in block 1 and “c” is in block 0.
Examples

```python
>>> from sympy.combinatorics import Partition
>>> a = Partition([1, 2], [3], [4, 5])
>>> a.members
(1, 2, 3, 4, 5)
>>> a.RGS
(0, 0, 1, 2, 2)
>>> a + 1
Partition({3}, {4}, {5}, {1, 2})
>>> _.RGS
(0, 0, 1, 2, 3)
```

classmethod `from_rgs`(rgs, elements)

Creates a set partition from a restricted growth string.

Explanation

The indices given in rgs are assumed to be the index of the element as given in elements as provided (the elements are not sorted by this routine). Block numbering starts from 0. If any block was not referenced in rgs an error will be raised.

Examples

```python
>>> from sympy.combinatorics import Partition
>>> Partition.from_rgs([0, 1, 2, 0, 1], list('abcde'))
Partition({c}, {a, d}, {b, e})
>>> Partition.from_rgs([0, 1, 2, 0, 1], list('cbead'))
Partition({e}, {a, c}, {b, d})
>>> a = Partition([1, 4], [2], [3, 5])
>>> Partition.from_rgs(a.RGS, a.members)
Partition({2}, {1, 4}, {3, 5})
```

property `partition`

Return partition as a sorted list of lists.

Examples

```python
>>> from sympy.combinatorics import Partition
>>> Partition([1], [2, 3]).partition
[[[1], [2, 3]]]
```

property `rank`

Gets the rank of a partition.
Examples

```python
>>> from sympy.combinatorics import Partition
>>> a = Partition([1, 2], [3], [4, 5])
>>> a.rank
13
```

**sort_key**(order=None)

Return a canonical key that can be used for sorting.

Ordering is based on the size and sorted elements of the partition and ties are broken with the rank.

Examples

```python
>>> from sympy import default_sort_key
>>> from sympy.combinatorics import Partition
>>> from sympy.abc import x
>>> a = Partition([1, 2])
>>> b = Partition([3, 4])
>>> c = Partition([1, x])
>>> d = Partition(list(range(4)))
>>> l = [d, b, a + 1, a, c]
>>> l.sort(key=default_sort_key); l
[Partition({1, 2}), Partition({1}, {2}), Partition({1, x}), Partition({0, 1, 2, 3})]
```

class sympy.combinatorics.partitions.IntegerPartition(partition, integer=None)

This class represents an integer partition.

Explanation

In number theory and combinatorics, a partition of a positive integer, \( n \), also called an integer partition, is a way of writing \( n \) as a list of positive integers that sum to \( n \). Two partitions that differ only in the order of summands are considered to be the same partition; if order matters then the partitions are referred to as compositions. For example, \( 4 \) has five partitions: [4], [3, 1], [2, 2], [2, 1, 1], and [1, 1, 1, 1]; the compositions [1, 2, 1] and [1, 1, 2] are the same as partition [2, 1, 1].

See also:

- `sympy.utilities.iterables.partitions` (page 2159), `sympy.utilities.iterables.multiset_partitions` (page 2154)
References

[R55]

\texttt{as\_dict()}

Return the partition as a dictionary whose keys are the partition integers and the values are the multiplicity of that integer.

\textbf{Examples}

\begin{verbatim}
>>> from sympy.combinatorics.partitions import IntegerPartition
>>> IntegerPartition([1]*3 + [2] + [3]*4).as_dict()
{1: 3, 2: 1, 3: 4}
\end{verbatim}

\texttt{as\_ferrers(char='\#')}

Prints the ferrer diagram of a partition.

\textbf{Examples}

\begin{verbatim}
>>> from sympy.combinatorics.partitions import IntegerPartition
>>> print(IntegerPartition([1, 1, 5]).as_ferrers())
#####
#
#
\end{verbatim}

\texttt{property conjugate}

Computes the conjugate partition of itself.

\textbf{Examples}

\begin{verbatim}
>>> from sympy.combinatorics.partitions import IntegerPartition
>>> a = IntegerPartition([6, 3, 3, 2, 1])
>>> a.conjugate
[5, 4, 3, 1, 1, 1]
\end{verbatim}

\texttt{next\_lex()}

Return the next partition of the integer, \( n \), in lexical order, wrapping around to \([n]\) if the partition is \([1, \ldots, 1]\).

\textbf{Examples}

\begin{verbatim}
>>> from sympy.combinatorics.partitions import IntegerPartition
>>> p = IntegerPartition([3, 1])
>>> print(p.next_lex())
[4]
>>> p.partition < p.next_lex().partition
True
\end{verbatim}
**prev_lex()**

Return the previous partition of the integer, \(n\), in lexical order, wrapping around to [1, ..., 1] if the partition is \([n]\).

**Examples**

```python
>>> from sympy.combinatorics.partitions import IntegerPartition
>>> p = IntegerPartition([4])
>>> print(p.prev_lex())
[3, 1]
>>> p.partition > p.prev_lex().partition
True
```

**sympy.combinatorics.partitions.random_integer_partition\((n, seed=None)\)**

Generates a random integer partition summing to \(n\) as a list of reverse-sorted integers.

**Examples**

```python
>>> from sympy.combinatorics.partitions import random_integer_partition
```

For the following, a seed is given so a known value can be shown; in practice, the seed would not be given.

```python
>>> random_integer_partition(100, seed=[1, 1, 12, 1, 2, 1, 85, 1])
[85, 12, 2, 1]
>>> random_integer_partition(10, seed=[1, 2, 3, 1, 5, 1])
[5, 3, 1, 1]
>>> random_integer_partition(1)
[1]
```

**sympy.combinatorics.partitions.RGS_generalized\((m)\)**

Computes the \(m + 1\) generalized unrestricted growth strings and returns them as rows in matrix.

**Examples**

```python
>>> from sympy.combinatorics.partitions import RGS_generalized
>>> RGS_generalized(6)
Matrix([
[1, 1, 1, 1, 1, 1],
[1, 2, 3, 4, 5, 6],
[2, 5, 10, 17, 26, 0],
[5, 15, 37, 77, 0, 0],
[15, 52, 151, 0, 0, 0],
[52, 203, 0, 0, 0, 0],
[203, 0, 0, 0, 0, 0])
```

**sympy.combinatorics.partitions.RGS_enum\((m)\)**

RGS_enum computes the total number of restricted growth strings possible for a super-set of size \(m\).
Examples

```python
>>> from sympy.combinatorics.partitions import RGS_enum
>>> from sympy.combinatorics import Partition
>>> RGS_enum(4)
15
>>> RGS_enum(5)
52
>>> RGS_enum(6)
203
```

We can check that the enumeration is correct by actually generating the partitions. Here, the 15 partitions of 4 items are generated:

```python
>>> a = Partition(list(range(4)))
>>> s = set()
>>> for i in range(20):
... s.add(a)
... a += 1
...
>>> assert len(s) == 15
```

sympy.combinatorics.partitions.RGS_unrank(rank, m)

Gives the unranked restricted growth string for a given superset size.

Examples

```python
>>> from sympy.combinatorics.partitions import RGS_unrank
>>> RGS_unrank(14, 4)
[0, 1, 2, 3]
>>> RGS_unrank(0, 4)
[0, 0, 0, 0]
```

sympy.combinatorics.partitions.RGS_rank(rgs)

Computes the rank of a restricted growth string.

Examples

```python
>>> from sympy.combinatorics.partitions import RGS_rank, RGS_unrank
>>> RGS_rank([0, 1, 2, 1, 3])
42
>>> RGS_rank(RGS_unrank(4, 7))
4
```
Permutations

class sympy.combinatorics.permutations.Permutation(*args, size=None, **kwargs)

A permutation, alternatively known as an ‘arrangement number’ or ‘ordering’ is an arrangement of the elements of an ordered list into a one-to-one mapping with itself. The permutation of a given arrangement is given by indicating the positions of the elements after re-arrangement [R74]. For example, if one started with elements [x, y, a, b] (in that order) and they were reordered as [x, y, b, a] then the permutation would be [0, 1, 3, 2]. Notice that (in SymPy) the first element is always referred to as 0 and the permutation uses the indices of the elements in the original ordering, not the elements (a, b, ...) themselves.

```python
>>> from sympy.combinatorics import Permutation
>>> from sympy import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
```

Permutations Notation

Permutations are commonly represented in disjoint cycle or array forms.

Array Notation And 2-line Form

In the 2-line form, the elements and their final positions are shown as a matrix with 2 rows:

```
[0 1 2 ... n-1] [p(0) p(1) p(2) ... p(n-1)]
```

Since the first line is always range(n), where n is the size of p, it is sufficient to represent the permutation by the second line, referred to as the “array form” of the permutation. This is entered in brackets as the argument to the Permutation class:

```python
>>> p = Permutation([0, 2, 1]); p
Permutation([0, 2, 1])
```

Given i in range(p.size), the permutation maps i to i^p

```python
>>> [i^p for i in range(p.size)]
[0, 2, 1]
```

The composite of two permutations p*q means first apply p, then q, so i^(p*q) = (i^p)^q which is i^p^q according to Python precedence rules:

```python
>>> q = Permutation([2, 1, 0])
>>> [i^p^q for i in range(3)]
[2, 0, 1]
>>> [i^(p*q) for i in range(3)]
[2, 0, 1]
```

One can use also the notation p(i) = i^p, but then the composition rule is (p*q)(i) = q(p(i)), not p(q(i)):  

```python
```
Disjoint Cycle Notation

In disjoint cycle notation, only the elements that have shifted are indicated.

For example, [1, 3, 2, 0] can be represented as (0, 1, 3)(2). This can be understood from the 2 line format of the given permutation. In the 2-line form, [0 1 2 3][1 3 2 0]

The element in the 0th position is 1, so 0 -> 1. The element in the 1st position is three, so 1 -> 3. And the element in the third position is again 0, so 3 -> 0. Thus, 0 -> 1 -> 3 -> 0, and 2 -> 2. Thus, this can be represented as 2 cycles: (0, 1, 3)(2). In common notation, singular cycles are not explicitly written as they can be inferred implicitly.

Only the relative ordering of elements in a cycle matter:

```python
>>> Permutation(1,2,3) == Permutation(2,3,1) == Permutation(3,1,2)
True
```

The disjoint cycle notation is convenient when representing permutations that have several cycles in them:

```python
>>> Permutation(1, 2)(3, 5) == Permutation([[1, 2], [3, 5]])
True
```

It also provides some economy in entry when computing products of permutations that are written in disjoint cycle notation:

```python
>>> Permutation(1, 2)(1, 3)(2, 3)
Permutation([0, 3, 2, 1])
>>> _ == Permutation([[1, 2]])*Permutation([[1, 3]])*Permutation([[2, 3]])
True
```

Caution: when the cycles have common elements between them then the order in which the permutations are applied matters. This module applies the permutations from left to right.

```python
>>> Permutation(1, 2)(2, 3) == Permutation([[1, 2], (2, 3)])
True
>>> Permutation(1, 2)(2, 3).list()
[0, 3, 1, 2]
```

In the above case, (1,2) is computed before (2,3). As 0 -> 0, 0 -> 0, element in position 0 is 0. As 1 -> 2, 2 -> 3, element in position 1 is 3. As 2 -> 1, 1 -> 1, element in position 2 is 1. As 3 -> 3, 3 -> 2, element in position 3 is 2.

If the first and second elements had been swapped first, followed by the swapping of the second and third, the result would have been [0, 2, 3, 1]. If, you
want to apply the cycles in the conventional right to left order, call the function
with arguments in reverse order as demonstrated below:

```python
>>> Permutation([(1, 2), (2, 3)][::-1]).list()
[0, 2, 3, 1]
```

Entering a singleton in a permutation is a way to indicate the size of the permutation. The `size` keyword can also be used.

**Array-form entry:**

```python
>>> Permutation([[1, 2], [9]])
Permutation([0, 2, 1], size=10)

>>> Permutation([[1, 2]], size=10)
Permutation([0, 2, 1], size=10)
```

**Cyclic-form entry:**

```python
>>> Permutation(1, 2, size=10)
Permutation([0, 2, 1], size=10)

>>> Permutation(9)(1, 2)
Permutation([0, 2, 1], size=10)
```

Caution: no singleton containing an element larger than the largest in any previous
 cycle can be entered. This is an important difference in how `Permutation` and `Cycle` handle the `__call__` syntax. A singleton argument at the start of a `Permutation` performs instantiation of the `Permutation` and is permitted:

```python
>>> Permutation(5)
Permutation([], size=6)
```

A singleton entered after instantiation is a call to the permutation – a function call – and if the argument is out of range it will trigger an error. For this reason, it is better to start the cycle with the singleton:

The following fails because there is no element 3:

```python
>>> Permutation(1, 2)(3)
Traceback (most recent call last):
...
IndexError: list index out of range
```

This is ok: only the call to an out of range singleton is prohibited; otherwise the permutation autosizes:

```python
>>> Permutation(3)(1, 2)
Permutation([0, 2, 1, 3])

>>> Permutation(1, 2)(3, 4) == Permutation(3, 4)(1, 2)
True
```
Equality Testing

The array forms must be the same in order for permutations to be equal:

```python
>>> Permutation([1, 0, 2, 3]) == Permutation([1, 0])
False
```

Identity Permutation

The identity permutation is a permutation in which no element is out of place. It can be entered in a variety of ways. All the following create an identity permutation of size 4:

```python
>>> I = Permutation([0, 1, 2, 3])
>>> all(p == I for p in [...
... Permutation(3),
... Permutation(range(4)),
... Permutation([], size=4),
... Permutation(size=4)])
True
```

Watch out for entering the range `inside` a set of brackets (which is cycle notation):

```python
>>> I == Permutation([range(4)])
False
```

Permutation Printing

There are a few things to note about how Permutations are printed.

Deprecated since version 1.6: Configuring Permutation printing by setting `Permutation.print_cyclic` is deprecated. Users should use the `perm_cyclic` flag to the printers, as described below.

1) If you prefer one form (array or cycle) over another, you can set `init_printing` with the `perm_cyclic` flag.

```python
>>> from sympy import init_printing
>>> p = Permutation(1, 2)(4, 5)(3, 4)
```

```python
>>> p
Permutation([0, 2, 1, 4, 5, 3])
```

```python
>>> init_printing(perm_cyclic=True, pretty_print=False)
```

```python
>>> p
(1 2)(3 4 5)
```

2) Regardless of the setting, a list of elements in the array for cyclic form can be obtained and either of those can be copied and supplied as the argument to `Permutation`:

```python
>>> p.array_form
[0, 2, 1, 4, 5, 3]
```

```python
>>> p.cyclic_form
[[1, 2], [3, 4, 5]]
```

(continues on next page)
>>> Permutation(_) == p
True

3) Printing is economical in that as little as possible is printed while retaining all information about the size of the permutation:

```python
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> Permutation([1, 0, 2, 3])
Permutation([1, 0, 2, 3])
```

```python
>>> Permutation([1, 0, 2, 3], size=20)
Permutation([1, 0], size=20)
```

```python
>>> Permutation([1, 0, 2, 4, 3, 5, 6], size=20)
Permutation([1, 0, 2, 4, 3], size=20)
```

```python
>>> p = Permutation([1, 0, 2, 3])
>>> init_printing(perm_cyclic=True, pretty_print=False)
>>> p
(0 1)
>>> init_printing(perm_cyclic=False, pretty_print=False)
```

The 2 was not printed but it is still there as can be seen with the array_form and size methods:

```python
>>> p.array_form
[1, 0, 2, 3]
```

```python
>>> p.size
4
```

**Short Introduction To Other Methods**

The permutation can act as a bijective function, telling what element is located at a given position

```python
>>> q = Permutation([5, 2, 3, 4, 1, 0])
>>> q.array_form[1] # the hard way
2
>>> q(1) # the easy way
2
>>> {i: q(i) for i in range(q.size)} # showing the bijection
{0: 5, 1: 2, 2: 3, 3: 4, 4: 1, 5: 0}
```

The full cyclic form (including singletons) can be obtained:

```python
>>> p.full_cyclic_form
[[0, 1], [2], [3]]
```

Any permutation can be factored into transpositions of pairs of elements:

```python
>>> Permutation([[1, 2], [3, 4, 5]]).transpositions()
[(1, 2), (3, 5), (3, 4)]
>>> Permutation.rmul(*[Permutation([ti], size=6) for ti in _]).cyclic_`
The number of permutations on a set of n elements is given by n! and is called the cardinality.

```python
>>> p.size
4
>>> p.cardinality
24
```

A given permutation has a rank among all the possible permutations of the same elements, but what that rank is depends on how the permutations are enumerated. (There are a number of different methods of doing so.) The lexicographic rank is given by the rank method and this rank is used to increment a permutation with addition/subtraction:

```python
>>> p.rank()
6
>>> p + 1
Permutation([1, 0, 3, 2])
>>> p.next_lex()
Permutation([1, 0, 3, 2])
>>> _.rank()
7
>>> p.unrank_lex(p.size, rank=7)
Permutation([1, 0, 3, 2])
```

The product of two permutations p and q is defined as their composition as functions, \((p \circ q)(i) = q(p(i))\) [R78].

```python
>>> p = Permutation([1, 0, 2, 3])
>>> q = Permutation([2, 3, 1, 0])
>>> list(q*p)
[2, 3, 0, 1]
>>> list(p*q)
[3, 2, 1, 0]
>>> [q(p(i)) for i in range(p.size)]
[3, 2, 1, 0]
```

The permutation can be ‘applied’ to any list-like object, not only Permutations:

```python
>>> p(["zero", "one", "four", "two"])
["one", "zero", "four", "two"]
>>> p(['zo42'])
['o', 'z', '4', '2']
```

If you have a list of arbitrary elements, the corresponding permutation can be found with the from_sequence method:

```python
>>> Permutation.from_sequence('SymPy')
Permutation([1, 3, 2, 0, 4])
```
Checking If A Permutation Is Contained In A Group

Generally if you have a group of permutations G on n symbols, and you’re checking if a permutation on less than n symbols is part of that group, the check will fail.

Here is an example for $n=5$ and we check if the cycle $(1,2,3)$ is in G:

```python
>>> from sympy import init_printing
>>> init_printing(perms_cyclic=True, pretty_print=False)
>>> from sympy.combinatorics import Cycle, Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> G = PermutationGroup(Cycle(2,3)(4,5), Cycle(1,2,3,4,5))
>>> p1 = Permutation(Cycle(2,5,3))
>>> p2 = Permutation(Cycle(1,2,3))
>>> a1 = Permutation(Cycle(1,2,3).list(6))
>>> a2 = Permutation(Cycle(1,2,3)(5))
>>> a3 = Permutation(Cycle(1,2,3), size=6)
>>> for p in [p1,p2,a1,a2,a3]: p, G.contains(p)
((2 5 3), True)
((1 2 3), False)
((5)(1 2 3), True)
((5)(1 2 3), True)
((5)(1 2 3), True)
```

The check for p_2 above will fail.

Checking if p_1 is in G works because SymPy knows G is a group on 5 symbols, and p_1 is also on 5 symbols (its largest element is 5).

For a_1, the `.list(6)` call will extend the permutation to 5 symbols, so the test will work as well. In the case of a_2 the permutation is being extended to 5 symbols by using a singleton, and in the case of a_3 it’s extended through the constructor argument `size=6`.

There is another way to do this, which is to tell the `contains` method that the number of symbols the group is on does not need to match perfectly the number of symbols for the permutation:

```python
>>> G.contains(p2, strict=False)
True
```

This can be via the `strict` argument to the `contains` method, and SymPy will try to extend the permutation on its own and then perform the containment check.

See also:

Cycle (page 339)
apply(i)

Apply the permutation to an expression.

Parameters

i : Expr

It should be an integer between 0 and \(n - 1 \) where \(n \) is the size of the permutation.

If it is a symbol or a symbolic expression that can have integer values, an AppliedPermutation object will be returned which can represent an unevaluated function.

Notes

Any permutation can be defined as a bijective function \(\sigma : \{0, 1, \ldots, n-1\} \rightarrow \{0, 1, \ldots, n-1\} \) where \(n \) denotes the size of the permutation.

The definition may even be extended for any set with distinctive elements, such that the permutation can even be applied for real numbers or such, however, it is not implemented for now for computational reasons and the integrity with the group theory module.

This function is similar to the _call_ magic, however, _call_ magic already has some other applications like permuting an array or attaching new cycles, which would not always be mathematically consistent.

This also guarantees that the return type is a SymPy integer, which guarantees the safety to use assumptions.

property array_form

Returns a copy of the attribute _array_form_

Examples == ======

```python
>>> from sympy.combinatorics import Permutation
>>> p = Permutation([[2, 0], [3, 1]])
>>> p.array_form
[2, 3, 0, 1]
>>> Permutation([[2, 0, 3, 1]]).array_form
[3, 2, 0, 1]
>>> Permutation([[2, 0, 3, 1]]).array_form
[2, 0, 3, 1]
>>> Permutation([[1, 2], [4, 5]]).array_form
[0, 2, 1, 3, 5, 4]
```

ascents()

Returns the positions of ascents in a permutation, ie, the location where \(p[i] < p[i+1] \)
Examples

```python
>>> from sympy.combinatorics import Permutation
>>> p = Permutation([4, 0, 1, 3, 2])
>>> p.ascents()
[1, 2]
```

See also:
- `descents` (page 322), `inversions` (page 327), `min` (page 331), `max` (page 330)

`atoms()`
Returns all the elements of a permutation

Examples

```python
>>> from sympy.combinatorics import Permutation
>>> Permutation([0, 1, 2, 3, 4, 5]).atoms()
{0, 1, 2, 3, 4, 5}
>>> Permutation([[0, 1], [2, 3], [4, 5]]).atoms()
{0, 1, 2, 3, 4, 5}
```

property `cardinality`
Returns the number of all possible permutations.

Examples

```python
>>> from sympy.combinatorics import Permutation
>>> p = Permutation([0, 1, 2, 3])
>>> p.cardinality
24
```

See also:
- `length` (page 330), `order` (page 332), `rank` (page 334), `size` (page 337)

`commutator`(x)
Return the commutator of self and x: ~x*~self*x*self
If f and g are part of a group, G, then the commutator of f and g is the group identity iff f and g commute, i.e. fg == gf.

Examples

```python
>>> from sympy.combinatorics import Permutation
>>> from sympy import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> p = Permutation([0, 2, 3, 1])
>>> x = Permutation([2, 0, 3, 1])
>>> c = p.commutor(x); c
```

(continues on next page)
References

[R80]

\texttt{commutes_with}(\texttt{other})

Checks if the elements are commuting.

Examples

```python
>>> from sympy.combinatorics import Permutation
>>> a = Permutation([1, 4, 3, 0, 2, 5])
>>> b = Permutation([0, 1, 2, 3, 4, 5])
>>> a.commutes_with(b)
True
>>> b = Permutation([2, 3, 5, 4, 1, 0])
>>> a.commutes_with(b)
False
```

property \texttt{cycle_structure}

Return the cycle structure of the permutation as a dictionary indicating the multiplicity of each cycle length.

Examples

```python
>>> from sympy.combinatorics import Permutation
>>> Permutation(3).cycle_structure
{1: 4}
>>> Permutation([0, 4, 3])(1, 2)(5, 6).cycle_structure
{2: 2, 3: 1}
```

property \texttt{cycles}

Returns the number of cycles contained in the permutation (including singletons).

5.8. Topics
Examples

```python
>>> from sympy.combinatorics import Permutation
>>> Permutation([0, 1, 2]).cycles
3
>>> Permutation([0, 1, 2]).full_cyclic_form
[[0], [1], [2]]
>>> Permutation([0, 1, 2]).cycles
2
```

See also:

* sympy.functions.combinatorial.numbers.stirling (page 501)

property cyclic_form

This is used to convert to the cyclic notation from the canonical notation. Singletons are omitted.

Examples

```python
>>> from sympy.combinatorics import Permutation
>>> p = Permutation([0, 3, 1, 2])
>>> p.cyclic_form
[[1, 3, 2]]
>>> Permutation([1, 0, 2, 4, 3, 5]).cyclic_form
[[0, 1], [3, 4]]
```

See also:

* array_form (page 319), full_cyclic_form (page 323)

descents()

Returns the positions of descents in a permutation, ie, the location where p[i] > p[i+1]

Examples

```python
>>> from sympy.combinatorics import Permutation
>>> p = Permutation([4, 0, 1, 3, 2])
>>> p.descents()
[0, 3]
```

See also:

* ascents (page 319), inversions (page 327), min (page 331), max (page 330)

classmethod from_inversion_vector(inversion)

Calculates the permutation from the inversion vector.
Examples

```python
>>> from sympy.combinatorics import Permutation
>>> from sympy import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> Permutation.from_inversion_vector([3, 2, 1, 0, 0])
Permutation([3, 2, 1, 0, 4, 5])

classmethod from_sequence(i, key=None)

Return the permutation needed to obtain i from the sorted elements of i. If custom sorting is desired, a key can be given.

Examples

```python
>>> from sympy.combinatorics import Permutation

```python
>>> Permutation.from_sequence('SymPy')
(4)(0 1 3)
>>> _((sorted("SymPy"))
['S', 'y', 'm', 'P', 'y']
>>> Permutation.from_sequence('SymPy', key=lambda x: x.lower())
(4)(0 2)(1 3)

property full_cyclic_form

Return permutation in cyclic form including singletons.

Examples

```python
>>> from sympy.combinatorics import Permutation

```python
>>> Permutation([0, 2, 1]).full_cyclic_form
[[0], [1, 2]]

get_adjacency_distance(other)

Computes the adjacency distance between two permutations.

Explanation

This metric counts the number of times a pair i,j of jobs is adjacent in both p and p'. If n_adj is this quantity then the adjacency distance is n - n_adj - 1 [1]

**Examples**

```python
>>> from sympy.combinatorics import Permutation
>>> p = Permutation([0, 3, 1, 2, 4])
>>> q = Permutation.josephus(4, 5, 2)
>>> p.get_adjacency_distance(q)
3
>>> r = Permutation([0, 2, 1, 4, 3])
>>> p.get_adjacency_distance(r)
4
```

See also:

*get_precedence_matrix* (page 325), *get_precedence_distance* (page 325),
*get_adjacency_matrix* (page 324)

**get_adjacency_matrix()**

Computes the adjacency matrix of a permutation.

**Explanation**

If job $i$ is adjacent to job $j$ in a permutation $p$ then we set $m[i, j] = 1$ where $m$ is the adjacency matrix of $p$.

**Examples**

```python
>>> from sympy.combinatorics import Permutation
>>> p = Permutation.josephus(3, 6, 1)
>>> p.get_adjacency_matrix()
Matrix([[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 1],
[0, 1, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0]])
>>> q = Permutation([0, 1, 2, 3])
>>> q.get_adjacency_matrix()
Matrix([[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],
[0, 0, 0, 0]])
```

See also:

*get_precedence_matrix* (page 325), *get_precedence_distance* (page 325),
*get_adjacency_distance* (page 323)

**get_positional_distance**(other)

Computes the positional distance between two permutations.
Examples

```python
>>> from sympy.combinatorics import Permutation
>>> p = Permutation([0, 3, 1, 2, 4])
>>> q = Permutation.josephus(4, 5, 2)
>>> r = Permutation([3, 1, 4, 0, 2])
>>> p.get_positional_distance(q)
12
>>> p.get_positional_distance(r)
12
```

See also:

* get_precedence_distance (page 325), get_adjacency_distance (page 323)

**get_precedence_distance**(other)

Computes the precedence distance between two permutations.

Explanation

Suppose p and p' represent n jobs. The precedence metric counts the number of times a job j is preceded by job i in both p and p'. This metric is commutative.

Examples

```python
>>> from sympy.combinatorics import Permutation
>>> p = Permutation([2, 0, 4, 3, 1])
>>> q = Permutation([3, 1, 2, 4, 0])
>>> p.get_precedence_distance(q)
7
>>> q.get_precedence_distance(p)
7
```

See also:

* get_precedence_matrix (page 325), get_adjacency_matrix (page 324), get_adjacency_distance (page 323)

**get_precedence_matrix**()

Gets the precedence matrix. This is used for computing the distance between two permutations.

Examples

```python
>>> from sympy.combinatorics import Permutation
>>> from sympy import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> p = Permutation.josephus(3, 6, 1)
>>> p
Permutation([2, 5, 3, 1, 4, 0])
```

(continues on next page)
See also:

- `get_precedence_distance` (page 325), `get_adjacency_matrix` (page 324),
- `get_adjacency_distance` (page 323)

### index()

Returns the index of a permutation.

The index of a permutation is the sum of all subscripts \( j \) such that \( p[j] \) is greater than \( p[j+1] \).

#### Examples

```python
>>> from sympy.combinatorics import Permutation
>>> p = Permutation([3, 0, 2, 1, 4])
>>> p.index()
2
```

### inversion_vector()

Return the inversion vector of the permutation.

The inversion vector consists of elements whose value indicates the number of elements in the permutation that are lesser than it and lie on its right hand side.

The inversion vector is the same as the Lehmer encoding of a permutation.

#### Examples

```python
>>> from sympy.combinatorics import Permutation
>>> p = Permutation([4, 8, 0, 7, 1, 5, 3, 6, 2])
>>> p.inversion_vector()
[4, 7, 0, 5, 0, 2, 1, 1]
>>> p = Permutation([3, 2, 1, 0])
>>> p.inversion_vector()
[3, 2, 1]
```

The inversion vector increases lexicographically with the rank of the permutation, the \( i \)th element cycling through \( 0..i \).
p = p.next_lex()

(2) [0, 0] 0
(1 2) [0, 1] 1
(2)(0 1) [1, 0] 2
(0 1 2) [1, 1] 3
(0 2 1) [2, 0] 4
(0 2) [2, 1] 5

See also:

from_inversion_vector (page 322)

inversions()
Computes the number of inversions of a permutation.

Explanation
An inversion is where i > j but p[i] < p[j].
For small length of p, it iterates over all i and j values and calculates the number of inversions. For large length of p, it uses a variation of merge sort to calculate the number of inversions.

Examples

>>> from sympy.combinatorics import Permutation
>>> p = Permutation([0, 1, 2, 3, 4, 5])
>>> p.inversions()
0
>>> Permutation([3, 2, 1, 0]).inversions()
6

See also:

descents (page 322), ascents (page 319), min (page 331), max (page 330)

References

[R81]

property is_Empty
Checks to see if the permutation is a set with zero elements
Examples

```python
>>> from sympy.combinatorics import Permutation
>>> Permutation([]).is_Empty
True
>>> Permutation([0]).is_Empty
False
```

See also:

* is_Singleton (page 328)

property is_Identity

Returns True if the Permutation is an identity permutation.

Examples

```python
>>> from sympy.combinatorics import Permutation
>>> p = Permutation([])
>>> p.is_Identity
True
>>> p = Permutation([0, 1, 2])
>>> p.is_Identity
True
>>> p = Permutation([0, 2, 1])
>>> p.is_Identity
False
```

See also:

* order (page 332)

property is_Singleton

Checks to see if the permutation contains only one number and is thus the only possible permutation of this set of numbers

Examples

```python
>>> from sympy.combinatorics import Permutation
>>> Permutation([0]).is_Singleton
True
>>> Permutation([0, 1]).is_Singleton
False
```

See also:

* is_Empty (page 327)

property is_even

Checks if a permutation is even.
Examples

```python
>>> from sympy.combinatorics import Permutation
>>> p = Permutation([0, 1, 2, 3])
>>> p.is_even
True
>>> p = Permutation([3, 2, 1, 0])
>>> p.is_even
True
```

See also:

* `is_odd` (page 329)

**property is_odd**

Checks if a permutation is odd.

Examples

```python
>>> from sympy.combinatorics import Permutation
>>> p = Permutation([0, 1, 2, 3])
>>> p.is_odd
False
>>> p = Permutation([3, 2, 0, 1])
>>> p.is_odd
True
```

See also:

* `is_even` (page 328)

**classmethod josephus** *(m, n, s=1)*

Return as a permutation the shuffling of range(n) using the Josephus scheme in which every m-th item is selected until all have been chosen. The returned permutation has elements listed by the order in which they were selected.

The parameter `s` stops the selection process when there are `s` items remaining and these are selected by continuing the selection, counting by 1 rather than by `m`.

Consider selecting every 3rd item from 6 until only 2 remain:

<table>
<thead>
<tr>
<th>choices</th>
<th>chosen</th>
</tr>
</thead>
<tbody>
<tr>
<td>012345</td>
<td>0145</td>
</tr>
<tr>
<td>01 345</td>
<td>2</td>
</tr>
<tr>
<td>01 34</td>
<td>25</td>
</tr>
<tr>
<td>01  4</td>
<td>253</td>
</tr>
<tr>
<td>0   4</td>
<td>2531</td>
</tr>
<tr>
<td>0</td>
<td>25314</td>
</tr>
<tr>
<td></td>
<td>253140</td>
</tr>
</tbody>
</table>
Examples

```python
>>> from sympy.combinatorics import Permutation
>>> Permutation.josephus(3, 6, 2).array_form
[2, 5, 3, 1, 4, 0]
```

References

[R82], [R83], [R84]

```
length()
```

Returns the number of integers moved by a permutation.

Examples

```python
>>> from sympy.combinatorics import Permutation
>>> Permutation([0, 3, 2, 1]).length()
2
>>> Permutation([[0, 1], [2, 3]]).length()
4
```

See also:

`min` (page 331), `max` (page 330), `support` (page 337), `cardinality` (page 320), `order` (page 332), `rank` (page 334), `size` (page 337)

```
list(size=None)
```

Return the permutation as an explicit list, possibly trimming unmoved elements if size is less than the maximum element in the permutation; if this is desired, setting size=-1 will guarantee such trimming.

Examples

```python
>>> from sympy.combinatorics import Permutation
>>> p = Permutation(2, 3)(4, 5)
>>> p.list()
[0, 1, 3, 2, 5, 4]
>>> p.list(10)
[0, 1, 3, 2, 5, 4, 6, 7, 8, 9]
```

Passing a length too small will trim trailing, unchanged elements in the permutation:

```python
>>> Permutation(2, 4)(1, 2, 4).list(-1)
[0, 2, 1]
>>> Permutation(3).list(-1)
[]
```

```
max()
```

The maximum element moved by the permutation.
Examples

```python
>>> from sympy.combinatorics import Permutation
>>> p = Permutation([1, 0, 2, 3, 4])
>>> p.max()
1
```

See also:
min (page 331), descents (page 322), ascents (page 319), inversions (page 327)

min()
The minimum element moved by the permutation.

Examples

```python
>>> from sympy.combinatorics import Permutation
>>> p = Permutation([0, 1, 4, 3, 2])
>>> p.min()
2
```

See also:
max (page 330), descents (page 322), ascents (page 319), inversions (page 327)

mul_inv (other)
other*~self, self and other have _array_form

Examples

```python
>>> from sympy.combinatorics import Permutation
>>> p = Permutation([2, 3, 1, 0])
>>> p = Permutation([2, 3, 1, 0]); p.rank()
17
>>> p = p.next_lex(); p.rank()
18
```

See also:
rank (page 334), unrank_lex (page 338)

next_nonlex()
Returns the next permutation in nonlex order [3]. If self is the last permutation in this order it returns None.
Examples

```python
>>> from sympy.combinatorics import Permutation
>>> from sympy import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> p = Permutation([2, 0, 3, 1]); p.rank_nonlex()
5
>>> p = p.next_nonlex(); p
Permutation([3, 0, 1, 2])
>>> p.rank_nonlex()
6
```

See also:

`rank_nonlex` (page 334), `unrank_nonlex` (page 339)

`next_trotterjohnson()`

Returns the next permutation in Trotter-Johnson order. If self is the last permutation it returns None. See [4] section 2.4. If it is desired to generate all such permutations, they can be generated in order more quickly with the `generate_bell` function.

Examples

```python
>>> from sympy.combinatorics import Permutation
>>> from sympy import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> p = Permutation([3, 0, 2, 1])
>>> p.rank_trotterjohnson()
4
>>> p = p.next_trotterjohnson(); p
Permutation([0, 3, 2, 1])
>>> p.rank_trotterjohnson()
5
```

See also:

`rank_trotterjohnson` (page 334), `unrank_trotterjohnson` (page 339), `sympy.utilities.iterables.generate_bell` (page 2144)

`order()`

Computes the order of a permutation.

When the permutation is raised to the power of its order it equals the identity permutation.
Examples

```python
>>> from sympy.combinatorics import Permutation
>>> from sympy import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> p = Permutation([3, 1, 5, 2, 4, 0])
>>> p.order()
4
>>> (p**(p.order()))
Permutation([], size=6)
```

See also:

`identity` (page 364), `cardinality` (page 320), `length` (page 330), `rank` (page 334), `size` (page 337)

`parity()`

Computes the parity of a permutation.

Explanation

The parity of a permutation reflects the parity of the number of inversions in the permutation, i.e., the number of pairs of \( x \) and \( y \) such that \( x > y \) but \( p[x] < p[y] \).

Examples

```python
>>> from sympy.combinatorics import Permutation
>>> p = Permutation([0, 1, 2, 3])
>>> p.parity()
0
>>> p = Permutation([3, 2, 0, 1])
>>> p.parity()
1
```

See also:

`_af_parity` (page 341)

`classmethod random(n)`

Generates a random permutation of length \( n \).

Uses the underlying Python pseudo-random number generator.
Examples

```python
>>> from sympy.combinatorics import Permutation
>>> Permutation.random(2) in (Permutation([1, 0]), Permutation([0, 1]))
True
```

`rank()`

Returns the lexicographic rank of the permutation.

Examples

```python
>>> from sympy.combinatorics import Permutation
>>> p = Permutation([0, 1, 2, 3])
>>> p.rank()
0
>>> p = Permutation([3, 2, 1, 0])
>>> p.rank()
23
```

See also:

[next_lex](page 331), [unrank_lex](page 338), [cardinality](page 320), [length](page 330), [order](page 332), [size](page 337)

`rank_nonlex(inv_perm=None)`

This is a linear time ranking algorithm that does not enforce lexicographic order [3].

Examples

```python
>>> from sympy.combinatorics import Permutation
>>> p = Permutation([0, 1, 2, 3])
>>> p.rank_nonlex()
23
```

See also:

[next_nonlex](page 331), [unrank_nonlex](page 339)

`rank_trotterjohnson()`

Returns the Trotter Johnson rank, which we get from the minimal change algorithm. See [4] section 2.4.
Examples

```python
>>> from sympy.combinatorics import Permutation
>>> p = Permutation([0, 1, 2, 3])
>>> p.rank_trotterjohnson()
0
>>> p = Permutation([0, 2, 1, 3])
>>> p.rank_trotterjohnson()
7
```

See also:

*unrank_trotterjohnson* (page 339), *next_trotterjohnson* (page 332)

### resize(n)

Resize the permutation to the new size \( n \).

**Parameters**

\( n \) : int  

The new size of the permutation.

**Raises**

*ValueError*  

If the permutation cannot be resized to the given size. This may only happen when resized to a smaller size than the original.

Examples

```python
>>> from sympy.combinatorics import Permutation

Increasing the size of a permutation:

```python
>>> p = Permutation([0, 1, 2])
>>> p = p.resize(5)
>>> p
(4)(0 1 2)
```

Decreasing the size of the permutation:

```python
>>> p = p.resize(4)
>>> p
(3)(0 1 2)
```

If resizing to the specific size breaks the cycles:

```python
>>> p.resize(2)
Traceback (most recent call last):
...
ValueError: The permutation cannot be resized to 2 because the cycle (0, 1, 2) may break.
```
static rmul(*args)
 Return product of Permutations [a, b, c, ...] as the Permutation whose ith value is
 a(b(c(i))).
 a, b, c, ... can be Permutation objects or tuples.

Examples

>>> from sympy.combinatorics import Permutation

>>> a, b = [1, 0, 2], [0, 2, 1]
>>> a = Permutation(a); b = Permutation(b)
>>> list(Permutation.rmul(a, b))
[1, 2, 0]
>>> [a(b(i)) for i in range(3)]
[1, 2, 0]

This handles the operands in reverse order compared to the * operator:

>>> a = Permutation(a); b = Permutation(b)
>>> list(a*b)
[2, 0, 1]
>>> [b(a(i)) for i in range(3)]
[2, 0, 1]

Notes

All items in the sequence will be parsed by Permutation as necessary as long as the
first item is a Permutation:

>>> Permutation.rmul(a, [0, 2, 1]) == Permutation.rmul(a, b)
True

The reverse order of arguments will raise a TypeError.

classmethod rmul_with_af(*args)
 same as rmul, but the elements of args are Permutation objects which have _array_form

runs()
 Returns the runs of a permutation.
 An ascending sequence in a permutation is called a run [5].
Examples

```python
>>> from sympy.combinatorics import Permutation
>>> p = Permutation([2, 5, 7, 3, 6, 0, 1, 4, 8])
>>> p.runs()
[[2, 5, 7], [3, 6], [0, 1, 4, 8]]
>>> q = Permutation([1, 3, 2, 0])
>>> q.runs()
[[1, 3], [2], [0]]
```

signature()

Gives the signature of the permutation needed to place the elements of the permutation in canonical order.

The signature is calculated as \((-1)^{\text{number of inversions}}\)

Examples

```python
>>> from sympy.combinatorics import Permutation
>>> p = Permutation([0, 1, 2])
>>> p.inversions()
0
>>> p.signature()
1
>>> q = Permutation([0, 2, 1])
>>> q.inversions()
1
>>> q.signature()
-1
```

See also: `inversions` (page 327)

property size

Returns the number of elements in the permutation.

Examples

```python
>>> from sympy.combinatorics import Permutation
>>> Permutation([[3, 2], [0, 1]]).size
4
```

See also: `cardinality` (page 320), `length` (page 330), `order` (page 332), `rank` (page 334)

support()

Return the elements in permutation, P, for which P[i] != i.
Examples

```python
>>> from sympy.combinatorics import Permutation
>>> p = Permutation([[3, 2], [0, 1], [4]])
>>> p.array_form
[1, 0, 3, 2, 4]
>>> p.support()
[0, 1, 2, 3]
```

transpositions()

Return the permutation decomposed into a list of transpositions.

Explanation

It is always possible to express a permutation as the product of transpositions, see [1]

Examples

```python
>>> from sympy.combinatorics import Permutation
>>> p = Permutation([[1, 2, 3], [0, 4, 5, 6, 7]])
>>> t = p.transpositions()
>>> print(''.join(str(c) for c in t))
(0, 7)(0, 6)(0, 5)(0, 4)(1, 3)(1, 2)
>>> Permutation.rmul(*[Permutation([ti], size=p.size) for ti in t])
True
```

References

[R85]

classmethod unrank_lex(size, rank)

Lexicographic permutation unranking.

Examples

```python
>>> from sympy.combinatorics import Permutation
>>> from sympy import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> a = Permutation.unrank_lex(5, 10)
>>> a.rank()
10
>>> a
Permutation([0, 2, 4, 1, 3])
```
See also:

rank (page 334), *next_lex* (page 331)

classmethod unrank_nonlex\(n, r\)

This is a linear time unranking algorithm that does not respect lexicographic order [3].

Examples

```python
>>> from sympy.combinatorics import Permutation
>>> from sympy import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> Permutation.unrank_nonlex(4, 5)
Permutation([2, 0, 3, 1])
>>> Permutation.unrank_nonlex(4, -1)
Permutation([0, 1, 2, 3])
```

See also:

next_nonlex (page 331), *rank_nonlex* (page 334)

classmethod unrank_trotterjohnson\(size, rank\)

Examples

```python
>>> from sympy.combinatorics import Permutation
>>> from sympy import init_printing
>>> init_printing(perm_cyclic=False, pretty_print=False)
>>> Permutation.unrank_trotterjohnson(5, 10)
Permutation([0, 3, 1, 2, 4])
```

See also:

rank_trotterjohnson (page 334), *next_trotterjohnson* (page 332)

class sympy.combinatorics.permutations.Cycle(*args)

Wrapper around dict which provides the functionality of a disjoint cycle.

Explanation

A cycle shows the rule to use to move subsets of elements to obtain a permutation. The Cycle class is more flexible than Permutation in that 1) all elements need not be present in order to investigate how multiple cycles act in sequence and 2) it can contain singletons:

```python
>>> from sympy.combinatorics.permutations import Perm, Cycle
```

A Cycle will automatically parse a cycle given as a tuple on the rhs:

```python
>>> Cycle(1, 2)(2, 3)
(1 3 2)
```
The identity cycle, Cycle(), can be used to start a product:

```python
>>> Cycle()(1, 2)(2, 3)
(1 3 2)
```

The array form of a Cycle can be obtained by calling the list method (or passing it to the list function) and all elements from 0 will be shown:

```python
>>> a = Cycle(1, 2)
>>> a.list()
[0, 2, 1]
>>> list(a)
[0, 2, 1]
```

If a larger (or smaller) range is desired use the list method and provide the desired size – but the Cycle cannot be truncated to a size smaller than the largest element that is out of place:

```python
>>> b = Cycle(2, 4)(1, 2)(3, 1, 4)(1, 3)
>>> b.list()
[0, 2, 1, 3, 4]
>>> b.list(b.size + 1)
[0, 2, 1, 3, 4, 5]
>>> b.list(-1)
[0, 2, 1]
```

Singletons are not shown when printing with one exception: the largest element is always shown – as a singleton if necessary:

```python
>>> Cycle(1, 4, 10)(4, 5)
(1 5 4 10)
>>> Cycle(1, 2)(4)(5)(10)
(1 2)(10)
```

The array form can be used to instantiate a Permutation so other properties of the permutation can be investigated:

```python
>>> Perm(Cycle(1, 2)(3, 4).list()).transpositions()
[(1, 2), (3, 4)]
```

Notes

The underlying structure of the Cycle is a dictionary and although the _iter_ method has been redefined to give the array form of the cycle, the underlying dictionary items are still available with the such methods as items():

```python
>>> list(Cycle(1, 2).items())
[(1, 2), (2, 1)]
```

See also:

Permutation (page 312)
list(size=None)

Return the cycles as an explicit list starting from 0 up to the greater of the largest value in the cycles and size.

Truncation of trailing unmoved items will occur when size is less than the maximum element in the cycle; if this is desired, setting size=-1 will guarantee such trimming.

Examples

```
>>> from sympy.combinatorics import Cycle
>>> p = Cycle(2, 3)(4, 5)
>>> p.list()
[0, 1, 3, 2, 5, 4]
>>> p.list(10)
[0, 1, 3, 2, 5, 4, 6, 7, 8, 9]
```

Passing a length too small will trim trailing, unchanged elements in the permutation:

```
>>> Cycle(2, 4)(1, 2, 4).list(-1)
[0, 2, 1]
```

sympy.combinatorics.permutations._af_parity(pi)

Computes the parity of a permutation in array form.

Explanation

The parity of a permutation reflects the parity of the number of inversions in the permutation, i.e., the number of pairs of x and y such that x > y but p[x] < p[y].

Examples

```
>>> from sympy.combinatorics.permutations import _af_parity
>>> _af_parity([0, 1, 2, 3])
0
>>> _af_parity([3, 2, 0, 1])
1
```

See also:

Permutation (page 312)
Generators

generators.symmetric()
Generates the symmetric group of order n, Sn.

Examples

```python
>>> from sympy.combinatorics.generators import symmetric
>>> list(symmetric(3))
[(2), (1 2), (2)(0 1), (0 1 2), (0 2 1), (0 2)]
```

generators.cyclic()
Generates the cyclic group of order n, Cn.

Examples

```python
>>> from sympy.combinatorics.generators import cyclic
>>> list(cyclic(5))
[(4), (0 1 2 3 4), (0 2 4 1 3), (0 3 1 4 2), (0 4 3 2 1)]
```

See also:
dihedral (page 342)

generators.alternating()
Generates the alternating group of order n, An.

Examples

```python
>>> from sympy.combinatorics.generators import alternating
>>> list(alternating(3))
[(2), (0 1 2), (0 2 1)]
```

generators.dihedral()
Generates the dihedral group of order 2n, Dn.

The result is given as a subgroup of Sn, except for the special cases n=1 (the group S2) and n=2 (the Klein 4-group) where that’s not possible and embeddings in S2 and S4 respectively are given.
Examples

```python
from sympy.combinatorics.generators import dihedral
list(dihedral(3))
[[(2), (0 2), (0 1 2), (1 2), (0 2 1), (2)(0 1)]
```

See also:
cyclic (page 342)

Permutation Groups

```python
class sympy.combinatorics.perm_groups.PermutationGroup(*args, dups=True, **kwargs)
```

The class defining a Permutation group.

Explanation

PermutationGroup([p1, p2, ..., pn]) returns the permutation group generated by
the list of permutations. This group can be supplied to Polyhedron if one desires to
decorate the elements to which the indices of the permutation refer.

Examples

```python
from sympy.combinatorics import Permutation, PermutationGroup
from sympy.combinatorics import Polyhedron
```

The permutations corresponding to motion of the front, right and bottom face of a 2 x 2
Rubik’s cube are defined:

```python
F = Permutation((2, 19, 21, 8)(3, 17, 20, 10)(4, 6, 7, 5)
R = Permutation((1, 5, 21, 14)(3, 7, 23, 12)(8, 10, 11, 9)
D = Permutation((6, 18, 14, 10)(7, 19, 15, 11)(20, 22, 23, 21)
```

These are passed as permutations to PermutationGroup:

```python
G = PermutationGroup(F, R, D)
G.order()
3674160
```

The group can be supplied to a Polyhedron in order to track the objects being moved.
An example involving the 2 x 2 Rubik’s cube is given there, but here is a simple demon-
stration:

```python
a = Permutation((2, 1))
b = Permutation((1, 0))
G = PermutationGroup(a, b)
P = Polyhedron(list('ABC'), pgroup=G)
P.corners
(A, B, C)
```
(continues on next page)
```python
>>> P.rotate(0)  # apply permutation 0
>>> P.corners
(A, C, B)
>>> P.reset()
>>> P.corners
(A, B, C)
```

Or one can make a permutation as a product of selected permutations and apply them to an iterable directly:

```python
>>> P10 = G.make_perm([0, 1])
>>> P10('ABC')
['C', 'A', 'B']
```

See also:

- `sympy.combinatorics.polyhedron.Polyhedron` (page 387), `sympy.combinatorics.permutations.Permutation` (page 312)

References

[R56], [R57], [R58], [R59], [R60], [R61], [R62], [R63], [R64], 10, 11, 12, 13, 14

__contains__(i)

Return True if i is contained in PermutationGroup.

Examples

```python
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> p = Permutation(1, 2, 3)
>>> Permutation(3) in PermutationGroup(p)
True
```

__mul__(other)

Return the direct product of two permutation groups as a permutation group.

10 https://en.wikipedia.org/wiki/Centralizer_and_normalizer
11 https://groupprops.subwiki.org/wiki/Derived_subgroup
12 https://en.wikipedia.org/wiki/Nilpotent_group
13 https://www.math.colostate.edu/~hulpke/CCT/cgtnotes.pdf
Explanation

This implementation realizes the direct product by shifting the index set for the
generators of the second group: so if we have G acting on n_1 points and H acting on
n_2 points, $G \times H$ acts on $n_1 + n_2$ points.

Examples

```python
>>> from sympy.combinatorics.named_groups import CyclicGroup
>>> G = CyclicGroup(5)
>>> H = G*G
>>> H
PermutationGroup([[(9)(0 1 2 3 4),
                  (5 6 7 8 9)]])
>>> H.order()
25
```

```
static __new__(cls, *args, dups=True, **kwargs)
    The default constructor. Accepts Cycle and Permutation forms. Removes duplicates
    unless dups keyword is False.

__weakref__
    list of weak references to the object (if defined)

_coset_representative(g, H)
    Return the representative of $Hg$ from the transversal that would be computed by
    self.coset_transversal(H).

classmethod _distinct_primes_lemma(primes)
    Subroutine to test if there is only one cyclic group for the order.

property _elements
    Returns all the elements of the permutation group as a list

Examples

```python
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> p = PermutationGroup(Permutation(1, 3), Permutation(1, 2))
>>> p._elements
[(3), (3)(1 2), (1 3), (2 3), (1 2 3), (1 3 2)]
```

```
_eval_is_alt_sym_monte_carlo(eps=0.05, perms=None)
 A test using monte-carlo algorithm.

 Parameters
 eps : float, optional
 The criterion for the incorrect False return.
 perms : list[Permutation], optional
```
If explicitly given, it tests over the given candidates for testing.
If None, it randomly computes \( N_{\text{eps}} \) and chooses \( N_{\text{eps}} \) sample of the permutation from the group.

See also:

_\text{check\_cycles\_alt\_sym} (page 417)

_\text{eval\_is\_alt\_sym\_naive}(\text{only\_sym}=\text{False}, \text{only\_alt}=\text{False})
A naive test using the group order.

_\text{p\_elements\_group}(p)
For an abelian p-group, return the subgroup consisting of all elements of order p
(and the identity)

_\text{random\_pr\_init}(r, n, _\text{random\_prec\_n}=\text{None})
Initialize random generators for the product replacement algorithm.

**Explanation**

The implementation uses a modification of the original product replacement algo-
rithm due to Leedham-Green, as described in [1], pp. 69-71; also, see [2], pp. 27-29
for a detailed theoretical analysis of the original product replacement algorithm,
and [4].

The product replacement algorithm is used for producing random, uniformly dis-
tributed elements of a group \( G \) with a set of generators \( S \). For the initialization
_\text{random\_pr\_init}, a list \( R \) of \( \max\{r, |S|\} \) group generators is created as the attribute
\text{G._\text{random\_gens}}, repeating elements of \( S \) if necessary, and the identity element of
\( G \) is appended to \( R \) - we shall refer to this last element as the accumulator. Then
the function \text{random\_pr()} is called \( n \) times, randomizing the list \( R \) while preserv-
ing the generation of \( G \) by \( R \). The function \text{random\_pr()} itself takes two random
elements \( g, h \) among all elements of \( R \) but the accumulator and replaces \( g \)
with a randomly chosen element from \( \{gh, g(h), hg, (h)g\} \). Then the accumulator is mul-
tiplied by whatever \( g \) was replaced by. The new value of the accumulator is then
returned by \text{random\_pr()}.

The elements returned will eventually (for \( n \) large enough) become uniformly dis-
tributed across \( G \) ([5]). For practical purposes however, the values \( n = 50, \ r = 11 \)
are suggested in [1].

**Notes**

THIS FUNCTION HAS SIDE EFFECTS: it changes the attribute \text{self._random\_gens}

See also:

\text{random\_pr} (page 379)

_\text{sylow\_alt\_sym}(p)
Return a p-Sylow subgroup of a symmetric or an alternating group.
Explanation

The algorithm for this is hinted at in [1], Chapter 4, Exercise 4.

For Sym(n) with n = p^i, the idea is as follows. Partition the interval [0..n-1] into p equal parts, each of length p^(i-1): [0..p^(i-1)-1], [p^(i-1)..2*p^(i-1)-1]...(p-1)*p^(i-1)..p^i-1. Find a p-Sylow subgroup of Sym(p^(i-1)) (treated as a subgroup of self) acting on each of the parts. Call the subgroups P_1, P_2...P_p. The generators for the subgroups P_2...P_p can be obtained from those of P_1 by applying a “shifting” permutation to them, that is, a permutation mapping [0..p^(i-1)-1] to the second part (the other parts are obtained by using the shift multiple times). The union of this permutation and the generators of P_1 is a p-Sylow subgroup of self.

For n not equal to a power of p, partition [0..n-1] in accordance with how n would be written in base p. E.g. for p=2 and n=11, 11 = 2^3 + 2^2 + 1 so the partition is [[0..7], [8..9], {10}]. To generate a p-Sylow subgroup, take the union of the generators for each of the parts. For the above example, {{0 1}, (0 2)(1 3), (0 4), (1 5)(2 7)} from the first part, {{8 9}} from the second part and nothing from the third. This gives 4 generators in total, and the subgroup they generate is p-Sylow.

Alternating groups are treated the same except when p=2. In this case, (0 1)(s s+1) should be added for an appropriate s (the start of a part) for each part in the partitions.

See also:

sylow_subgroup (page 386), is_alt_sym (page 365)

_union_find_merge(first, second, ranks, parents, not_rep)
Merges two classes in a union-find data structure.

Explanation

Used in the implementation of Atkinson’s algorithm as suggested in [1], pp. 83-87. The class merging process uses union by rank as an optimization. ([7])

Notes

THIS FUNCTION HAS SIDE EFFECTS: the list of class representatives, parents, the list of class sizes, ranks, and the list of elements that are not representatives, not_rep, are changed due to class merging.

See also:

minimal_block (page 374), _union_find_rep (page 348)
SymPy Documentation, Release 1.12.1

References

[R65], [R71]

_union_find_rep(num, parents)
Find representative of a class in a union-find data structure.

Explanation

Used in the implementation of Atkinson’s algorithm as suggested in [1], pp. 83-87. After the representative of the class to which num belongs is found, path compression is performed as an optimization ([7]).

Notes

THIS FUNCTION HAS SIDE EFFECTS: the list of class representatives, parents, is altered due to path compression.

See also:
minimal_block (page 374), _union_find_merge (page 347)

References

[R67], [R73]

_verify(K, phi, z, alpha)
Return a list of relators rels in generators gens`_h` that are mapped to `\`H. generators by phi so that given a finite presentation <gens_k | rels_k> of K on a subset of gens_h <gens_h | rels_k + rels> is a finite presentation of H.

Explanation

H should be generated by the union of K.generators and z (a single generator), and H.stabilizer(alpha) == K; phi is a canonical injection from a free group into a permutation group containing H.

The algorithm is described in [1], Chapter 6.

Examples

```python
>>> from sympy.combinatorics import free_group, Permutation,
 PermutationGroup
>>> from sympy.combinatorics.homomorphisms import homomorphism
>>> from sympy.combinatorics.fp_groups import FpGroup
```
>>> H = PermutationGroup(Permutation(0, 2), Permutation (1, 5))
>>> K = PermutationGroup(Permutation(5)(0, 2))
>>> F = free_group("x_0 x_1")[0]
>>> gens = F.generators
>>> phi = homomorphism(F, H, F.generators, H.generators)
>>> rels_k = [gens[0]**2] # relators for presentation of K
>>> z = Permutation(1, 5)
>>> check, rels_h = H._verify(K, phi, z, 1)
>>> check
True
>>> rels = rels_k + rels_h
>>> G = FpGroup(F, rels) # presentation of H
>>> G.order() == H.order()
True

See also:

strong_presentation (page 384), presentation (page 379), stabilizer (page 383)

abelian_invariants()

Returns the abelian invariants for the given group. Let G be a nontrivial finite abelian group. Then G is isomorphic to the direct product of finitely many nontrivial cyclic groups of prime-power order.

Explanation

The prime-powers that occur as the orders of the factors are uniquely determined by G. More precisely, the primes that occur in the orders of the factors in any such decomposition of G are exactly the primes that divide |G| and for any such prime p, if the orders of the factors that are p-groups in one such decomposition of G are \( p^{t_1} \geq p^{t_2} \geq \ldots p^{t_r} \), then the orders of the factors that are p-groups in any such decomposition of G are \( p^{t_1} \geq p^{t_2} \geq \ldots p^{t_r} \).

The uniquely determined integers \( p^{t_1} \geq p^{t_2} \geq \ldots p^{t_r} \), taken for all primes that divide |G| are called the invariants of the nontrivial group G as suggested in ([14], p. 542).
Notes

We adopt the convention that the invariants of a trivial group are `[]`.

Examples

```python
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.abelian_invariants()
[2]
>>> from sympy.combinatorics import CyclicGroup
>>> G = CyclicGroup(7)
>>> G.abelian_invariants()
[7]
```

**property base**

Return a base from the Schreier-Sims algorithm.

Explanation

For a permutation group \( G \), a base is a sequence of points \( B = (b_1, b_2, \ldots, b_k) \) such that no element of \( G \) apart from the identity fixes all the points in \( B \). The concepts of a base and strong generating set and their applications are discussed in depth in [1], pp. 87-89 and [2], pp. 55-57.

An alternative way to think of \( B \) is that it gives the indices of the stabilizer cosets that contain more than the identity permutation.

Examples

```python
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> G = PermutationGroup([Permutation([0, 1, 3])(2, 4)])
>>> G.base
[0, 2]
```

See also:

- `strong_gens` (page 383), `basic_transversals` (page 353), `basic_orbits` (page 352), `basic_stabilizers` (page 352)
- `baseswap(base, strong_gens, pos, randomized=False, transversals=None, basic_orbits=None, strong_gens_distr=None)`

Swap two consecutive base points in base and strong generating set.

**Parameters**

- `base, strong_gens`
  - The base and strong generating set.
- `pos`

```python```
The position at which swapping is performed.

randomized
A switch between randomized and deterministic version.

transversals
The transversals for the basic orbits, if known.

basic_orbits
The basic orbits, if known.

strong_gens_distr
The strong generators distributed by basic stabilizers, if known.

Returns
(base, strong_gens)

`base` is the new base, and `strong_gens` is a generating set relative to it.

Explanation
If a base for a group G is given by $(b_1, b_2, ..., b_k)$, this function returns a base $(b_1, b_2, ..., b_{i+1}, b_i, ..., b_k)$, where i is given by `pos`, and a strong generating set relative to that base. The original base and strong generating set are not modified. The randomized version (default) is of Las Vegas type.

Examples

```python
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> from sympy.combinatorics.testutil import _verify_bsgs
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> S = SymmetricGroup(4)
>>> S.schreier_sims()
>>> S.base
[0, 1, 2]
>>> base, gens = S.baseswap(S.base, S.strong_gens, 1, randomized=False)
>>> base, gens
([0, 2, 1],
[(0 1 2 3), (3)(0 1), (1 3 2),
(2 3), (1 3)])
```

check that base, gens is a BSGS

```python
>>> S1 = PermutationGroup(gens)
>>> _verify_bsgs(S1, base, gens)
True
```
Notes

The deterministic version of the algorithm is discussed in [1], pp. 102-103; the randomized version is discussed in [1], p.103, and [2], p.98. It is of Las Vegas type. Notice that [1] contains a mistake in the pseudocode and discussion of BASESWAP: on line 3 of the pseudocode, $|\beta_{i+1}^{(T)}|$ should be replaced by $|\beta_{i}^{(T)}|$, and the same for the discussion of the algorithm.

See also:

schreier_sims(page 380)

property basic_orbits

Return the basic orbits relative to a base and strong generating set.

Explanation

If (b_1, b_2, \ldots, b_k) is a base for a group G, and $G^{(i)} = G_{b_1, b_2, \ldots, b_{i-1}}$ is the i-th basic stabilizer (so that $G^{(1)} = G$), the i-th basic orbit relative to this base is the orbit of b_i under $G^{(i)}$. See [1], pp. 87-89 for more information.

Examples

```python
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> S = SymmetricGroup(4)
>>> S.basic_orbits
[[0, 1, 2, 3], [1, 2, 3], [2, 3]]
```

See also:

base(page 350), *strong_gens*(page 383), *basic_transversals*(page 353), *basic_stabilizers*(page 352)

property basic_stabilizers

Return a chain of stabilizers relative to a base and strong generating set.

Explanation

The i-th basic stabilizer $G^{(i)}$ relative to a base (b_1, b_2, \ldots, b_k) is $G_{b_1, b_2, \ldots, b_{i-1}}$. For more information, see [1], pp. 87-89.

Examples

```python
>>> from sympy.combinatorics.named_groups import AlternatingGroup
>>> A = AlternatingGroup(4)
>>> A.schreier_sims()
>>> A.base
[0, 1]
>>> for g in A.basic_stabilizers:
...    print(g)
```

(continues on next page)
See also:

- base (page 350), strong gens (page 383), basic orbits (page 352),
 basic_transversals (page 353)

property basic_transversals
Return basic transversals relative to a base and strong generating set.

Explanation

The basic transversals are transversals of the basic orbits. They are provided as a list of dictionaries, each dictionary having keys - the elements of one of the basic orbits, and values - the corresponding transversal elements. See [1], pp. 87-89 for more information.

Examples

```python
>>> from sympy.combinatorics.named_groups import AlternatingGroup
>>> A = AlternatingGroup(4)
>>> A.basic_transversals
[{0: (3), 1: (3)(0 1 2), 2: (3)(0 2 1), 3: (0 3 1)}, {1: (3), 2: (1 2 → 3), 3: (1 3 2)}]
```

See also:

- strong gens (page 383), base (page 350), basic orbits (page 352),
 basic_stabilizers (page 352)

center()

Return the center of a permutation group.

Explanation

The center for a group G is defined as $Z(G) = \{z \in G | \forall g \in G, zg = gz\}$, the set of elements of G that commute with all elements of G. It is equal to the centralizer of G inside G, and is naturally a subgroup of G ([9]).
Examples

```python
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> D = DihedralGroup(4)
>>> G = D.center()
>>> G.order()
2
```

Notes

This is a naive implementation that is a straightforward application of `.centralizer()`

See also:

`centralizer` (page 354)

`centralizer`(*other*)

Return the centralizer of a group/set/element.

Parameters

other

a permutation group/list of permutations/single permutation

Explanation

The centralizer of a set of permutations \(S \) inside a group \(G \) is the set of elements of \(G \) that commute with all elements of \(S \):

\[
C_G(S) = \{ g \in G \mid gs = sg \ \forall s \in S \} \quad ([10])
\]

Usually, \(S \) is a subset of \(G \), but if \(G \) is a proper subgroup of the full symmetric group, we allow for \(S \) to have elements outside \(G \).

It is naturally a subgroup of \(G \); the centralizer of a permutation group is equal to the centralizer of any set of generators for that group, since any element commuting with the generators commutes with any product of the generators.

Examples

```python
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
... CyclicGroup)
>>> S = SymmetricGroup(6)
>>> C = CyclicGroup(6)
>>> H = S.centralizer(C)
>>> H.is_subgroup(C)
True
```
Notes

The implementation is an application of .subgroup_search() with tests using a spe-
cific base for the group G.

See also:

subgroup_search (page 384)

commutator\((G, H)\)

Return the commutator of two subgroups.

Explanation

For a permutation group \(K\) and subgroups \(G, H\), the commutator of \(G\) and \(H\) is defined
as the group generated by all the commutators \([g, h] = hgh^{-1}g^{-1}\) for \(g\) in \(G\) and \(h\) in \(H\).
It is naturally a subgroup of \(K\) ([1], p.27).

Examples

```python
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
... AlternatingGroup)
>>> S = SymmetricGroup(5)
>>> A = AlternatingGroup(5)
>>> G = S.commutator(S, A)
>>> G.is_subgroup(A)
True
```

Notes

The commutator of two subgroups \(H, G\) is equal to the normal closure of the com-
mutators of all the generators, i.e. \(hgh^{-1}g^{-1}\) for \(h\) a generator of \(H\) and \(g\) a generator
of \(G\) ([1], p.28)

See also:

derived_subgroup (page 361)

composition_series()

Return the composition series for a group as a list of permutation groups.

Explanation

The composition series for a group \(G\) is defined as a subnormal series \(G = H_0 >
H_1 > H_2 \ldots\) A composition series is a subnormal series such that each factor group
\(H(i+1)/H(i)\) is simple. A subnormal series is a composition series only if it is of
maximum length.

The algorithm works as follows: Starting with the derived series the idea is to fill the
gap between \(G = \text{der}[i]\) and \(H = \text{der}[i+1]\) for each \(i\) independently. Since, all subgroups
of the abelian group \(G/H\) are normal so, first step is to take the generators \(g\) of \(G\)
and add them to generators of \(H\) one by one.
The factor groups formed are not simple in general. Each group is obtained from the previous one by adding one generator g, if the previous group is denoted by H then the next group K is generated by g and H. The factor group K/H is cyclic and it’s order is $K.order()//G.order()$. The series is then extended between K and H by groups generated by powers of g and H. The series formed is then prepended to the already existing series.

Examples

```python
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> from sympy.combinatorics.named_groups import CyclicGroup
>>> S = SymmetricGroup(12)
>>> G = S.sylow_subgroup(2)
>>> C = G.composition_series()
>>> [H.order() for H in C]
[1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1]
>>> G = S.sylow_subgroup(3)
>>> C = G.composition_series()
>>> [H.order() for H in C]
[243, 81, 27, 9, 3, 1]
>>> G = CyclicGroup(12)
>>> C = G.composition_series()
>>> [H.order() for H in C]
[12, 6, 3, 1]
```

conjugacy_class(x)

Return the conjugacy class of an element in the group.

Explanation

The conjugacy class of an element g in a group G is the set of elements x in G that are conjugate with g, i.e. for which

$$g = x a x^{-1}$$

for some a in G.

Note that conjugacy is an equivalence relation, and therefore that conjugacy classes are partitions of G. For a list of all the conjugacy classes of the group, use the `conjugacy_classes()` method.

In a permutation group, each conjugacy class corresponds to a particular `cyclestructure`. For example, in `S_3`, the conjugacy classes are:

- the identity class, `{()}
- all transpositions, `{(1 2), (1 3), (2 3)}`
- all 3-cycles, `{(1 2 3), (1 3 2)}`
Examples

```python
>>> from sympy.combinatorics import Permutation, SymmetricGroup
>>> S3 = SymmetricGroup(3)
>>> S3.conjugacy_class(Permutation(0, 1, 2))
{(0 1 2), (0 2 1)}
```

Notes

This procedure computes the conjugacy class directly by finding the orbit of the element under conjugation in \(G \). This algorithm is only feasible for permutation groups of relatively small order, but is like the orbit() function itself in that respect.

conjugacy_classes()

Return the conjugacy classes of the group.

Explanation

As described in the documentation for the .conjugacy_class() function, conjugacy is an equivalence relation on a group \(G \) which partitions the set of elements. This method returns a list of all these conjugacy classes of \(G \).

Examples

```python
>>> from sympy.combinatorics import SymmetricGroup
>>> SymmetricGroup(3).conjugacy_classes()
[{{(2)}}, {{(0 1 2), (0 2 1)}}, {{(0 2), (1 2), (2)(0 1)}}]
```

contains\((g, \text{strict}=True) \)

Test if permutation \(g \) belong to self, \(G \).

Explanation

If \(g \) is an element of \(G \) it can be written as a product of factors drawn from the cosets of \(G \)’s stabilizers. To see if \(g \) is one of the actual generators defining the group use \(G\text{.has}(g) \).

If \(\text{strict} \) is not \(True \), \(g \) will be resized, if necessary, to match the size of permutations in self.
Examples

```python
>>> from sympy.combinatorics import Permutation, PermutationGroup

>>> a = Permutation(1, 2)
>>> b = Permutation(2, 3, 1)
>>> G = PermutationGroup(a, b, degree=5)
>>> G.contains(G[0])  # trivial check
True
>>> elem = Permutation([[2, 3]], size=5)
>>> G.contains(elem)
True
>>> G.contains(Permutation(4)(0, 1, 2, 3))
False
```

If `strict` is False, a permutation will be resized, if necessary:

```python
>>> H = PermutationGroup(Permutation(5))
>>> H.contains(Permutation(3))
False
>>> H.contains(Permutation(3), strict=False)
True
```

To test if a given permutation is present in the group:

```python
>>> elem in G.generators
False
>>> G.has(elem)
False
```

See also:

- `coset_factor` (page 358), `sympy.core.basic.Basic.has` (page 985), `__contains__` (page 344)

```
coset_factor(g, factor_index=False)
```

Return `G`'s (self's) coset factorization of `g`

Explanation

If `g` is an element of `G` then it can be written as the product of permutations drawn from the Schreier-Sims coset decomposition,

The permutations returned in `f` are those for which the product gives `g`: $g = f[n]*..f[1]*f[0]$ where $n = \text{len}(B)$ and $B = G\.base$. `f[i]` is one of the permutations in `self._basic_orbits[i]`.

If `factor_index`==True, returns a tuple `[b[0],..,b[n]]`, where `b[i]` belongs to `self._basic_orbits[i]`
Examples

```python
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation(0, 1, 3, 7, 6, 4)(2, 5)
>>> b = Permutation(0, 1, 3, 2)(4, 5, 7, 6)
>>> G = PermutationGroup([a, b])
```

Define g:

```python
>>> g = Permutation(7)(1, 2, 4)(3, 6, 5)
```

Confirm that it is an element of G:

```python
>>> G.contains(g)
True
```

Thus, it can be written as a product of factors (up to 3) drawn from u. See below that a factor from u1 and u2 and the Identity permutation have been used:

```python
>>> f = G.coset_factor(g)
>>> f[2]*f[1]*f[0] == g
True
>>> f1 = G.coset_factor(g, True); f1
[0, 4, 4]
>>> tr = G.basic_transversals
>>> f[0] == tr[0][f1[0]]
True
```

If g is not an element of G then [] is returned:

```python
>>> c = Permutation(5, 6, 7)
>>> G.coset_factor(c)
[]
```

See also:

- `sympy.combinatorics.util._strip` (page 421)
- `coset_rank(g)`
 rank using Schreier-Sims representation.

Explanation

The coset rank of g is the ordering number in which it appears in the lexicographic listing according to the coset decomposition.

The ordering is the same as in G.generate(method='coset'). If g does not belong to the group it returns None.
Examples

```python
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation(0, 1, 3, 7, 6, 4)(2, 5)
>>> b = Permutation(0, 1, 3, 2)(4, 5, 7, 6)
>>> G = PermutationGroup([a, b])
>>> c = Permutation(7)(2, 4)(3, 5)
>>> G.coset_rank(c)
16
>>> G.coset_unrank(16)
(7)(2 4)(3 5)
```

See also:

- `coset_factor` (page 358)
- `coset_table` (H)
 - Return the standardised (right) coset table of self in H as a list of lists.
- `coset_transversal` (H)
 - Return a transversal of the right cosets of self by its subgroup H using the second method described in [1], Subsection 4.6.7
- `coset_unrank` ($rank$, $af=False$)
 - Unrank using Schreier-Sims representation
 - `coset_unrank` is the inverse operation of `coset_rank` if $0 \leq rank < order$; otherwise it returns `None`.

property `degree`

Returns the size of the permutations in the group.

Explanation

The number of permutations comprising the group is given by `len(group)`; the number of permutations that can be generated by the group is given by `group.order()`.

Examples

```python
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([1, 0, 2])
>>> G = PermutationGroup([a])
>>> G.degree
3
>>> len(G)
1
>>> G.order()
2
>>> list(G.generate())
[(2), (2)(0 1)]
```

See also:

- `order` (page 378)
derived_series()
Return the derived series for the group.

Returns
A list of permutation groups containing the members of the derived series in the order $G = G_0, G_1, G_2, ...$.

Explanation
The derived series for a group G is defined as $G = G_0 > G_1 > G_2 > ...$ where $G_i = [G_{i-1}, G_{i-1}]$, i.e. G_i is the derived subgroup of G_{i-1}, for $i \in \mathbb{N}$. When we have $G_k = G_{k-1}$ for some $k \in \mathbb{N}$, the series terminates.

Examples

```python
>>> from sympy.combinatorics.named_groups import (SymmetricGroup, ...
   AlternatingGroup, DihedralGroup)
>>> A = AlternatingGroup(5)
>>> len(A.derived_series())
1
>>> S = SymmetricGroup(4)
>>> len(S.derived_series())
4
>>> S.derived_series()[1].is_subgroup(AlternatingGroup(4))
True
>>> S.derived_series()[2].is_subgroup(DihedralGroup(2))
True
```

See also:
derived_subgroup (page 361)

derived_subgroup()
Compute the derived subgroup.

Explanation
The derived subgroup, or commutator subgroup is the subgroup generated by all commutators $[g, h] = hgh^{-1}g^{-1}$ for $g, h \in G$; it is equal to the normal closure of the set of commutators of the generators ([1], p.28, [11]).
Examples

```python
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([1, 0, 2, 4, 3])
>>> b = Permutation([0, 1, 3, 2, 4])
>>> G = PermutationGroup([a, b])
>>> C = G.derived_subgroup()
>>> list(C.generate(af=True))
[[0, 1, 2, 3, 4], [0, 1, 3, 4, 2], [0, 1, 4, 2, 3]]
```

See also:

`derived_series` (page 361)

property `elements`

Returns all the elements of the permutation group as a set

Examples

```python
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> p = PermutationGroup(Permutation(1, 3), Permutation(1, 2))
>>> p.elements
{(1 2 3), (1 3 2), (1 3), (2 3), (3), (3)(1 2)}
```

equals(other)

Return True if PermutationGroup generated by elements in the group are same i.e they represent the same PermutationGroup.

Examples

```python
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> p = Permutation(0, 1, 2, 3, 4, 5)
>>> G = PermutationGroup([p, p**2])
>>> H = PermutationGroup([p**2, p])
>>> G.generators == H.generators
False
>>> G.equals(H)
True
```

generate(method='coset', af=False)

Return iterator to generate the elements of the group.
Explanation

Iteration is done with one of these methods:

- `method='coset'` using the Schreier-Sims coset representation
- `method='dimino'` using the Dimino method

If `af = True` it yields the array form of the permutations

Examples

```python
>>> from sympy.combinatorics import PermutationGroup
>>> from sympy.combinatorics.polyhedron import tetrahedron

The permutation group given in the tetrahedron object is also true groups:

```python
>>> G = tetrahedron.pgroup
>>> G.is_group
True
```

Also the group generated by the permutations in the tetrahedron pgroup – even the first two – is a proper group:

```python
>>> H = PermutationGroup(G[0], G[1])
>>> J = PermutationGroup(list(H.generate())); J
PermutationGroup([[(0 1)(2 3),
(1 2 3),
(1 3 2),
(0 3 1),
(0 2 3),
(0 3)(1 2),
(0 1 3),
(3)(0 2 1),
(0 3 2),
(3)(0 1 2),
(0 2)(1 3)]])
>>> J.is_group
True
```

**generate_dimino**(af=False)

Yield group elements using Dimino’s algorithm.

If `af == True` it yields the array form of the permutations.
Examples

```python
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1, 3])
>>> b = Permutation([0, 2, 3, 1])
>>> g = PermutationGroup([a, b])
>>> list(g.generate_dimino(af=True))
[[0, 1, 2, 3], [0, 2, 1, 3], [0, 2, 3, 1],
 [0, 1, 3, 2], [0, 3, 2, 1], [0, 3, 1, 2]]
```

References

[R69]

generate_schreier_sims(af=False)

Yield group elements using the Schreier-Sims representation in coset_rank order
If af=True it yields the array form of the permutations

Examples

```python
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1, 3])
>>> b = Permutation([0, 2, 3, 1])
>>> g = PermutationGroup([a, b])
>>> list(g.generate_schreier_sims(af=True))
[[0, 1, 2, 3], [0, 2, 1, 3], [0, 2, 3, 1],
 [0, 1, 3, 2], [0, 3, 2, 1], [0, 3, 1, 2]]
```

generator_product(g, original=False)

Return a list of strong generators \([s_1, \ldots, s_n]\) s.t \(g = s_n \times \cdots \times s_1\). If original=True, make the list contain only the original group generators

property generators

Returns the generators of the group.

Examples

```python
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1, 3])
>>> b = Permutation([0, 2, 3, 1])
>>> G = PermutationGroup([a, b])
>>> G.generators
[(1 2), (2)(0 1)]
```

property identity

Return the identity element of the permutation group.

index(H)

Returns the index of a permutation group.
**Examples**

```python
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation(1,2,3)
>>> b = Permutation(3)
>>> G = PermutationGroup([a])
>>> H = PermutationGroup([b])
>>> G.index(H)
3
```

**property is_abelian**

Test if the group is Abelian.

**Examples**

```python
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.is_abelian
False
>>> a = Permutation([0, 2, 1])
>>> G = PermutationGroup([a])
>>> G.is_abelian
True
```

**is_alt_sym** (*eps=0.05, _random_prec=None*)

Monte Carlo test for the symmetric/alternating group for degrees >= 8.

**Explanation**

More specifically, it is one-sided Monte Carlo with the answer True (i.e., G is symmetric/alternating) guaranteed to be correct, and the answer False being incorrect with probability eps.

For degree < 8, the order of the group is checked so the test is deterministic.

**Notes**

The algorithm itself uses some nontrivial results from group theory and number theory: 1) If a transitive group $G$ of degree $n$ contains an element with a cycle of length $n/2 < p < n-2$ for $p$ a prime, $G$ is the symmetric or alternating group ([1], pp. 81-82) 2) The proportion of elements in the symmetric/alternating group having the property described in 1) is approximately $\log(2)/\log(n)$ ([1], p.82; [2], pp. 226-227). The helper function `_check_cycles_alt_sym` is used to go over the cycles in a permutation and look for ones satisfying 1).
Examples

```python
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> D = DihedralGroup(10)
>>> D.is_alt_sym()
False
```

See also:

`_check_cycles_alt_sym` (page 417)

**property is_alternating**

Return True if the group is alternating.

Examples

```python
>>> from sympy.combinatorics import AlternatingGroup
>>> g = AlternatingGroup(5)
>>> g.is_alternating
True
```

```python
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> g = PermutationGroup(...
... Permutation(0, 1, 2, 3, 4),
... Permutation(2, 3, 4))
>>> g.is_alternating
True
```

Notes

This uses a naive test involving the computation of the full group order. If you need more quicker taxonomy for large groups, you can use `PermutationGroup.is_alt_sym` (page 365). However, `PermutationGroup.is_alt_sym` (page 365) may not be accurate and is not able to distinguish between an alternating group and a symmetric group.

See also:

`is_alt_sym` (page 365)

**property is_cyclic**

Return True if the group is Cyclic.
Examples

```python
>>> from sympy.combinatorics.named_groups import AbelianGroup
>>> G = AbelianGroup(3, 4)
>>> G.is_cyclic
True
>>> G = AbelianGroup(4, 4)
>>> G.is_cyclic
False
```

Notes

If the order of a group $n$ can be factored into the distinct primes $p_1, p_2, \ldots, p_s$ and if

$$
\forall i, j \in \{1, 2, \ldots, s\} : p_i \not\equiv 1 \pmod{p_j}
$$

holds true, there is only one group of the order $n$ which is a cyclic group [R70]. This is a generalization of the lemma that the group of order 15, 35, \ldots are cyclic.

And also, these additional lemmas can be used to test if a group is cyclic if the order of the group is already found.

- If the group is abelian and the order of the group is square-free, the group is cyclic.
- If the order of the group is less than 6 and is not 4, the group is cyclic.
- If the order of the group is prime, the group is cyclic.

References

[R70]

**property is_dihedral**

Return True if the group is dihedral.

Examples

```python
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.combinatorics.named_groups import SymmetricGroup,
CyclicGroup
>>> G = PermutationGroup(Permutation(1, 6)(2, 5)(3, 4), Permutation(0,
1, 2, 3, 4, 5, 6))
>>> G.is_dihedral
True
>>> G = SymmetricGroup(3)
>>> G.is_dihedral
True
>>> G = CyclicGroup(6)
>>> G.is_dihedral
False
```
is_elementary($p$)

Return True if the group is elementary abelian. An elementary abelian group is a finite abelian group, where every nontrivial element has order $p$, where $p$ is a prime.

Examples

```python
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1])
>>> G = PermutationGroup([a])
>>> G.is_elementary(2)
True
>>> a = Permutation([0, 2, 1, 3])
>>> b = Permutation([3, 1, 2, 0])
>>> G = PermutationGroup([a, b])
>>> G.is_elementary(2)
True
>>> G.is_elementary(3)
False
```

property is_nilpotent

Test if the group is nilpotent.

Explanation

A group $G$ is nilpotent if it has a central series of finite length. Alternatively, $G$ is nilpotent if its lower central series terminates with the trivial group. Every nilpotent group is also solvable ([1], p.29, [12]).

Examples

```python
>>> from sympy.combinatorics.named_groups import SymmetricGroup, CyclicGroup
>>> C = CyclicGroup(6)
>>> C.is_nilpotent
True
>>> S = SymmetricGroup(5)
>>> S.is_nilpotent
False
```

See also:

- `lower_central_series` (page 373), `is_solvable` (page 370)

is_normal($gr$, strict=True)

Test if $G=self$ is a normal subgroup of $gr$. 
Explanation

G is normal in G if for each g2 in G, g1 in G, g = g1*g2*g1**-1 belongs to G. It is sufficient to check this for each g1 in G.generators and g2 in G.generators.

Examples

```python
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([1, 2, 0])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G1 = PermutationGroup([a, Permutation([2, 0, 1])])
>>> G1.is_normal(G)
True
```

**property is_perfect**

Return True if the group is perfect. A group is perfect if it equals to its derived subgroup.

Examples

```python
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation((1,2,3)(4,5))
>>> b = Permutation((1,2,3,4,5))
>>> G = PermutationGroup([a, b])
>>> G.is_perfect
False
```

**property is_polycyclic**

Return True if a group is polycyclic. A group is polycyclic if it has a subnormal series with cyclic factors. For finite groups, this is the same as if the group is solvable.

Examples

```python
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation((0, 2, 1, 3])
>>> b = Permutation((2, 0, 1, 3])
>>> G = PermutationGroup([a, b])
>>> G.is_polycyclic
True
```

**isPrimitive(randomized=True)**

Test if a group is primitive.
Explanation

A permutation group \(G\) acting on a set \(S\) is called primitive if \(S\) contains no nontrivial block under the action of \(G\) (a block is nontrivial if its cardinality is more than 1).

Notes

The algorithm is described in [1], p.83, and uses the function minimal_block to search for blocks of the form \(\{0,k\}\) for \(k\) ranging over representatives for the orbits of \(G_0\), the stabilizer of 0. This algorithm has complexity \(O(n^2)\) where \(n\) is the degree of the group, and will perform badly if \(G_0\) is small.

There are two implementations offered: one finds \(G_0\) deterministically using the function stabilizer, and the other (default) produces random elements of \(G_0\) using random_stab, hoping that they generate a subgroup of \(G_0\) with not too many more orbits than \(G_0\) (this is suggested in [1], p.83). Behavior is changed by the randomized flag.

Examples

```python
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> D = DihedralGroup(10)
>>> D.is Primitive()
False
```

See also:

minimal_block (page 374), random_stab (page 380)

property is_solvable

Test if the group is solvable.

\(G\) is solvable if its derived series terminates with the trivial group ([1], p.29).

Examples

```python
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> S = SymmetricGroup(3)
>>> S.is_solvable
True
```

See also:

is_nilpotent (page 368), derived_series (page 361)

is_subgroup \((G, \text{strict}=\text{True})\)

Return True if all elements of self belong to \(G\).

If \text{strict} is False then if self’s degree is smaller than \(G\)’s, the elements will be resized to have the same degree.
Examples

```python
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> from sympy.combinatorics import SymmetricGroup, CyclicGroup
```

Testing is strict by default: the degree of each group must be the same:

```python
>>> p = Permutation(0, 1, 2, 3, 4, 5)
>>> G1 = PermutationGroup([Permutation(0, 1, 2), Permutation(0, 1)])
>>> G2 = PermutationGroup([Permutation(0, 2), Permutation(0, 1, 2)])
>>> G3 = PermutationGroup([p, p**2])
>>> assert G1.order() == G2.order() == G3.order() == 6
>>> G1.is_subgroup(G2)
True
>>> G1.is_subgroup(G3)
False
>>> G3.is_subgroup(PermutationGroup(G3[1]))
False
>>> G3.is_subgroup(PermutationGroup(G3[0]))
True
```

To ignore the size, set strict to False:

```python
>>> S3 = SymmetricGroup(3)
>>> S5 = SymmetricGroup(5)
>>> S3.is_subgroup(S5, strict=False)
True
>>> C7 = CyclicGroup(7)
>>> G = S5*C7
>>> S5.is_subgroup(G, False)
True
>>> C7.is_subgroup(G, 0)
False
```

**property is_symmetric**

Return True if the group is symmetric.

Examples

```python
>>> from sympy.combinatorics import SymmetricGroup
>>> g = SymmetricGroup(5)
>>> g.is_symmetric
True
```

```python
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> g = PermutationGroup(
... Permutation(0, 1, 2, 3, 4),
... Permutation(2, 3))
>>> g.is_symmetric
True
```
Notes

This uses a naive test involving the computation of the full group order. If you need more quicker taxonomy for large groups, you can use `PermutationGroup.is_alt_sym()` (page 365). However, `PermutationGroup.is_alt_sym()` (page 365) may not be accurate and is not able to distinguish between an alternating group and a symmetric group.

See also:

`is_alt_sym` (page 365)

`is_transitive(strict=True)`

Test if the group is transitive.

Explanation

A group is transitive if it has a single orbit.

If `strict` is `False` the group is transitive if it has a single orbit of length different from 1.

Examples

```python
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1, 3])
>>> b = Permutation([2, 0, 1, 3])
>>> G1 = PermutationGroup([a, b])
>>> G1.is_transitive()
False
>>> G1.is_transitive(strict=False)
True
>>> c = Permutation([2, 3, 0, 1])
>>> G2 = PermutationGroup([a, c])
>>> G2.is_transitive()
True
>>> d = Permutation([1, 0, 2, 3])
>>> e = Permutation([0, 1, 3, 2])
>>> G3 = PermutationGroup([d, e])
>>> G3.is_transitive() or G3.is_transitive(strict=False)
False
```

property `is_trivial`

Test if the group is the trivial group.

This is true if the group contains only the identity permutation.
Examples

>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> G = PermutationGroup([Permutation([0, 1, 2])])
>>> G.is_trivial
True

lower_central_series()
Return the lower central series for the group.

The lower central series for a group \( G \) is the series \( G = G_0 > G_1 > G_2 > \ldots \) where
\( G_k = [G, G_{k-1}] \), i.e. every term after the first is equal to the commutator of \( G \) and the
previous term in \( G_1 \) ([1], p.29).

Returns
A list of permutation groups in the order \( G = G_0, G_1, G_2, \ldots \)

Examples

>>> from sympy.combinatorics.named_groups import (AlternatingGroup,
... DihedralGroup)
>>> A = AlternatingGroup(4)
>>> len(A.lower_central_series())
2
>>> A.lower_central_series()[1].is_subgroup(DihedralGroup(2))
True

See also:
commutator (page 355), derived_series (page 361)

make_perm(\( n, seed=None \))
Multiply \( n \) randomly selected permutations from pgroup together, starting with the
identity permutation. If \( n \) is a list of integers, those integers will be used to select
the permutations and they will be applied in L to R order: make_perm((A, B, C)) will
give CBA(I) where I is the identity permutation.

seed is used to set the seed for the random selection of permutations from pgroup. If
this is a list of integers, the corresponding permutations from pgroup will be selected
in the order give. This is mainly used for testing purposes.

Examples

>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a, b = [Permutation([1, 0, 3, 2]), Permutation([1, 3, 0, 2])]
>>> G = PermutationGroup([a, b])
>>> G.make_perm(1, [0])
(0 1)(2 3)
>>> G.make_perm(3, [0, 1, 0])
(0 2 3 1)
>>> G.make_perm([0, 1, 0])
(0 2 3 1)
See also:

`random` (page 379)

**property max_div**

Maximum proper divisor of the degree of a permutation group.

**Explanation**

Obviously, this is the degree divided by its minimal proper divisor (larger than 1, if one exists). As it is guaranteed to be prime, the sieve from `sympy.ntheory` is used. This function is also used as an optimization tool for the functions `minimal_block` and `_union_find_merge`.

**Examples**

```python
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> G = PermutationGroup([Permutation([0, 2, 1, 3])])
>>> G.max_div
2
```

See also:

`minimal_block` (page 374), `_union_find_merge` (page 347)

**minimal_block**(points)

For a transitive group, finds the block system generated by points.

**Explanation**

If a group $G$ acts on a set $S$, a nonempty subset $B$ of $S$ is called a block under the action of $G$ if for all $g$ in $G$ we have $gB = B$ (g fixes B) or $gB$ and $B$ have no common points (g moves B entirely). ([1], p.23; [6]).

The distinct translates $gB$ of a block $B$ for $g$ in $G$ partition the set $S$ and this set of translates is known as a block system. Moreover, we obviously have that all blocks in the partition have the same size, hence the block size divides $|S|$ ([1], p.23). A $G$-congruence is an equivalence relation $\sim$ on the set $S$ such that $a \sim b$ implies $g(a) \sim g(b)$ for all $g$ in $G$. For a transitive group, the equivalence classes of a $G$-congruence and the blocks of a block system are the same thing ([1], p.23).

The algorithm below checks the group for transitivity, and then finds the $G$-congruence generated by the pairs $(p_0, p_1)$, $(p_0, p_2)$, ..., $(p_0, p_{\{k-1\}})$ which is the same as finding the maximal block system (i.e., the one with minimum block size) such that $p_0$, ..., $p_{\{k-1\}}$ are in the same block ([1], p.83).

It is an implementation of Atkinson's algorithm, as suggested in [1], and manipulates an equivalence relation on the set $S$ using a union-find data structure. The running time is just above $O(|points||S|)$. ([1], pp. 83-87; [7]).
Examples

```python
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> D = DihedralGroup(10)
>>> D.minimal_block([0, 5])
[0, 1, 2, 3, 4, 0, 1, 2, 3, 4]
>>> D.minimal_block([0, 1])
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
```

See also:

- `_union_find_rep` (page 348), `_union_find_merge` (page 347), `is_transitive` (page 372), `is_primitive` (page 369)

**minimal_blocks**(randomized=True)

For a transitive group, return the list of all minimal block systems. If a group is intransitive, return `False`.

Examples

```python
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> from sympy.combinatorics.named_groups import DihedralGroup

>>> DihedralGroup(6).minimal_blocks()
[[0, 1, 0, 1, 0, 1], [0, 1, 2, 0, 1, 2]]

>>> G = PermutationGroup(Permutation([1, 2, 5]))

>>> G.minimal_blocks()
False
```

See also:

- `minimal_block` (page 374), `is_transitive` (page 372), `is_primitive` (page 369)

**normal_closure**(other, k=10)

Return the normal closure of a subgroup/set of permutations.

**Parameters**

- **other**
  
a subgroup/list of permutations/single permutation

- **k**
  
an implementation-specific parameter that determines the number of conjugates that are adjoined to other at once

**Explanation**

If $S$ is a subset of a group $G$, the normal closure of $A$ in $G$ is defined as the intersection of all normal subgroups of $G$ that contain $A$ ([1], p.14). Alternatively, it is the group generated by the conjugates $x^{-1}yx$ for $x$ a generator of $G$ and $y$ a generator of the subgroup $\langle S \rangle$ generated by $S$ (for some chosen generating set for $\langle S \rangle$) ([1], p.73).
Examples

```python
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
... CyclicGroup, AlternatingGroup)

>>> S = SymmetricGroup(5)
>>> C = CyclicGroup(5)
>>> G = S.normal_closure(C)

>>> G.order()
60
>>> G.is_subgroup(AlternatingGroup(5))
True
```

Notes

The algorithm is described in [1], pp. 73-74; it makes use of the generation of random elements for permutation groups by the product replacement algorithm.

See also:

- commutator (page 355), derived_subgroup (page 361), random_pr (page 379)

orbit(alpha, action='tuples')

Compute the orbit of alpha \( \{g(\alpha) | g \in G\} \) as a set.

Explanation

The time complexity of the algorithm used here is \( O(|\text{Orb}| \times r) \) where \( |\text{Orb}| \) is the size of the orbit and \( r \) is the number of generators of the group. For a more detailed analysis, see [1], p.78, [2], pp. 19-21. Here alpha can be a single point, or a list of points.

If alpha is a single point, the ordinary orbit is computed. if alpha is a list of points, there are three available options:

- 'union' - computes the union of the orbits of the points in the list 'tuples' - computes the orbit of the list interpreted as an ordered tuple under the group action ( i.e., \( g((1,2,3)) = (g(1), g(2), g(3)) \) ) 'sets' - computes the orbit of the list interpreted as a sets

Examples

```python
>>> from sympy.combinatorics import Permutation, PermutationGroup

>>> a = Permutation([1, 2, 0, 4, 5, 6, 3])
>>> G = PermutationGroup([a])
>>> G.orbit(0)
{0, 1, 2}
>>> G.orbit([0, 4], 'union')
{0, 1, 2, 3, 4, 5, 6}
```

See also:

- orbit_transversal (page 377)
orbit_rep(alpha, beta, schreier_vector=None)

Return a group element which sends alpha to beta.

Explanation

If beta is not in the orbit of alpha, the function returns False. This implementation makes use of the schreier vector. For a proof of correctness, see [1], p.80

Examples

```python
>>> from sympy.combinatorics.named_groups import AlternatingGroup
>>> G = AlternatingGroup(5)
>>> G.orbit_rep(0, 4)
(0 4 1 2 3)
```

See also:
schreier_vector (page 382)

orbit_transversal(alpha, pairs=False)

Computes a transversal for the orbit of alpha as a set.

Explanation

For a permutation group \( G \), a transversal for the orbit \( \text{Orb} = \{ g(\alpha) | g \in G \} \) is a set \( \{ g_\beta | g_\beta(\alpha) = \beta \} \) for \( \beta \in \text{Orb} \). Note that there may be more than one possible transversal. If pairs is set to True, it returns the list of pairs \((\beta, g_\beta)\). For a proof of correctness, see [1], p.79

Examples

```python
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> G = DihedralGroup(6)
>>> G.orbit_transversal(0)
[(5), (0 1 2 3 4 5), (0 5)(1 4)(2 3), (0 2 4)(1 3 5), (5)(0 4)(1 3),
 (0 3)(1 4)(2 5)]
```

See also:
orbit (page 376)

orbits(rep=False)

Return the orbits of self, ordered according to lowest element in each orbit.
Examples

```python
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation(1, 5)(2, 3)(4, 0, 6)
>>> b = Permutation(1, 5)(3, 4)(2, 6, 0)
>>> G = PermutationGroup([a, b])
>>> G.orbits()
[\{0, 2, 3, 4, 6\}, \{1, 5\}]
```

order()

Return the order of the group: the number of permutations that can be generated from elements of the group.

The number of permutations comprising the group is given by `len(group)`; the length of each permutation in the group is given by `group.size`.

Examples

```python
>>> from sympy.combinatorics import Permutation, PermutationGroup

>>> a = Permutation([1, 0, 2])
>>> G = PermutationGroup([a])
>>> G.degree
3
>>> len(G)
1
>>> G.order()
2
>>> list(G.generate())
[(2), (2)(0 1)]
```

See also:

degree (page 360)

pointwise_stabilizer(points, incremental=True)

Return the pointwise stabilizer for a set of points.
Explanation

For a permutation group $G$ and a set of points $\{p_1, p_2, \ldots, p_k\}$, the pointwise stabilizer of $p_1, p_2, \ldots, p_k$ is defined as $G_{p_1, \ldots, p_k} = \{ g \in G | g(p_i) = p_i \forall i \in \{1, 2, \ldots, k\} \}$ ([1],p20). It is a subgroup of $G$.

Examples

```python
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> S = SymmetricGroup(7)
>>> Stab = S.pointwise_stabilizer([2, 3, 5])
>>> Stab.is_subgroup(S.stabilizer(2).stabilizer(3).stabilizer(5))
True
```

Notes

When incremental == True, rather than the obvious implementation using successive calls to .stabilizer(), this uses the incremental Schreier-Sims algorithm to obtain a base with starting segment - the given points.

See also:

stabilizer (page 383), schreier_sims_incremental (page 380)

polycyclic_group()

Return the PolycyclicGroup instance with below parameters:

**Explanation**

- pc_sequence: Polycyclic sequence is formed by collecting all the missing generators between the adjacent groups in the derived series of given permutation group.
- pc_series: Polycyclic series is formed by adding all the missing generators of $\text{der}[i+1]$ in $\text{der}[i]$, where $\text{der}$ represents the derived series.
- relative_order: A list, computed by the ratio of adjacent groups in pc_series.

presentation(\text{eliminate gens= True})

Return an $FpGroup$ presentation of the group.

The algorithm is described in [1], Chapter 6.1.

random(af=False)

Return a random group element

random_pr(gen_count=11, iterations=50, _random_prec=None)

Return a random group element using product replacement.
**Explanation**

For the details of the product replacement algorithm, see `_random_pr_init` in `random_pr` the actual ‘product replacement’ is performed. Notice that if the attribute `_random_gens` is empty, it needs to be initialized by `_random_pr_init`.

**See also:**

- `_random_pr_init` (page 346)
- `random_stab(alpha, schreier_vector=None, _random_prec=None)`
  - Random element from the stabilizer of `alpha`.
  - The schreier vector for `alpha` is an optional argument used for speeding up repeated calls. The algorithm is described in [1], p.81
  - **See also:**
    - `random_pr` (page 379), `orbit_rep` (page 376)

**schreier_sims()**

Schreier-Sims algorithm.

**Explanation**

It computes the generators of the chain of stabilizers $G > G_{b_1} > .. > G_{b_1...b_s} > 1$ in which $G_{b_1...b_i}$ stabilizes $b_1,...,b_i$, and the corresponding $s$ cosets. An element of the group can be written as the product $h_1 * .. * h_s$.

We use the incremental Schreier-Sims algorithm.

**Examples**

```python
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.schreier_sims()
>>> G.basic_transversals
[{{0: (2)(0 1), 1: (2), 2: (1 2)},
 {0: (2), 2: (0 2)}}]
```

**schreier_sims_incremental(base=base, gens=None, slp_dict=False)**

Extend a sequence of points and generating set to a base and strong generating set.

**Parameters**

- **base**
  - The sequence of points to be extended to a base. Optional parameter with default value `[]`.

- **gens**
  - The generating set to be extended to a strong generating set relative to the base obtained. Optional parameter with default value `self`. generators.
slp_dict

If \( \text{True} \), return a dictionary \( g : \text{gens} \) for each strong generator \( g \) where \( \text{gens} \) is a list of strong generators coming before \( g \) in \( \text{strong_gens} \), such that the product of the elements of \( \text{gens} \) is equal to \( g \).

**Returns**

(\( \text{base} \), \( \text{strong_gens} \))

\( \text{base} \) is the base obtained, and \( \text{strong_gens} \) is the strong generating set relative to it. The original parameters \( \text{base} \), \( \text{gens} \) remain unchanged.

**Examples**

```python
>>> from sympy.combinatorics.named_groups import AlternatingGroup
>>> from sympy.combinatorics.testutil import _verify_bsgs
>>> A = AlternatingGroup(7)
>>> base = [2, 3]
>>> seq = [2, 3]
>>> base, strong_gens = A.schreier_sims_incremental(base=seq)
>>> _verify_bsgs(A, base, strong_gens)
True
>>> base[:2]
[2, 3]
```

**Notes**

This version of the Schreier-Sims algorithm runs in polynomial time. There are certain assumptions in the implementation - if the trivial group is provided, \( \text{base} \) and \( \text{gens} \) are returned immediately, as any sequence of points is a base for the trivial group. If the identity is present in the generators \( \text{gens} \), it is removed as it is a redundant generator. The implementation is described in [1], pp. 90-93.

**See also:**

- \textit{schreier_sims} (page 380), \textit{schreier_sims_random} (page 381)
- \textit{schreier_sims_random}(base=None, gens=None, consec_succ=10, _random_prec=None)

Randomized Schreier-Sims algorithm.

**Parameters**

- \textit{base}
  
The sequence to be extended to a base.

- \textit{gens}
  
The generating set to be extended to a strong generating set.

- \textit{consec_succ}
  
The parameter defining the probability of a wrong answer.

- \textit{_random_prec}
  
An internal parameter used for testing purposes.
Returns
(base, strong gens)

base is the base and strong gens is the strong generating set relative to it.

Explanation

The randomized Schreier-Sims algorithm takes the sequence base and the generating set gens, and extends base to a base and gens to a strong generating set relative to that base with probability of a wrong answer at most \(2^{-\text{consec succ}}\), provided the random generators are sufficiently random.

Examples

```python
>>> from sympy.combinatorics.testutil import _verify_bsgs
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> S = SymmetricGroup(5)
>>> base, strong gens = S.schreier_sims_random(consec_succ=5)
>>> _verify_bsgs(S, base, strong gens)
True
```

Notes

The algorithm is described in detail in [1], pp. 97-98. It extends the orbits orbs and the permutation groups stabs to basic orbits and basic stabilizers for the base and strong generating set produced in the end. The idea of the extension process is to “sift” random group elements through the stabilizer chain and amend the stabilizers/orbits along the way when a sift is not successful. The helper function _strip is used to attempt to decompose a random group element according to the current state of the stabilizer chain and report whether the element was fully decomposed (successful sift) or not (unsuccessful sift). In the latter case, the level at which the sift failed is reported and used to amend stabs, base, gens and orbs accordingly. The halting condition is for consec succ consecutive successful sifts to pass. This makes sure that the current base and gens form a BSGS with probability at least \(1 - 1/\text{consec succ}\).

See also:

schreier_sims (page 380)

schreier_vector(alpha)

Computes the schreier vector for alpha.
Explanation

The Schreier vector efficiently stores information about the orbit of alpha. It can later be used to quickly obtain elements of the group that send alpha to a particular element in the orbit. Notice that the Schreier vector depends on the order in which the group generators are listed. For a definition, see [3]. Since list indices start from zero, we adopt the convention to use “None” instead of 0 to signify that an element does not belong to the orbit. For the algorithm and its correctness, see [2], pp. 78-80.

Examples

```python
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([2, 4, 6, 3, 1, 5, 0])
>>> b = Permutation([0, 1, 3, 5, 4, 6, 2])
>>> G = PermutationGroup([a, b])
>>> G.schreier_vector(0)
[-1, None, 0, 1, None, 1, 0]
```

See also:

- `orbit (page 376)`
- `stabilizer(alpha)`

Return the stabilizer subgroup of alpha.

Explanation

The stabilizer of alpha is the group $G_\alpha = \{g \in G | g(\alpha) = \alpha\}$. For a proof of correctness, see [1], p. 79.

Examples

```python
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> G = DihedralGroup(6)
>>> G.stabilizer(5)
PermutationGroup([PermutationGroupElement((5)(0 4)(1 3))])
```

See also:

- `orbit (page 376)`

- `property strong_gens`

Return a strong generating set from the Schreier-Sims algorithm.
**Explanation**

A generating set $S = \{g_1, g_2, \ldots, g_t\}$ for a permutation group $G$ is a strong generating set relative to the sequence of points (referred to as a “base”) $(b_1, b_2, \ldots, b_k)$ if, for $1 \leq i \leq k$ we have that the intersection of the pointwise stabilizer $G^{(i+1)} := G_{b_1, b_2, \ldots, b_i}$ with $S$ generates the pointwise stabilizer $G^{(i+1)}$. The concepts of a base and strong generating set and their applications are discussed in depth in [1], pp. 87-89 and [2], pp. 55-57.

**Examples**

```
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> D = DihedralGroup(4)
>>> D.strong_gens
[(0 1 2 3), (0 3)(1 2), (1 3)]
>>> D.base
[0, 1]
```

See also:

base (page 350), basic_transversals (page 353), basic_orbits (page 352), basic_stabilizers (page 352)

**strong_presentation()**

Return a strong finite presentation of group. The generators of the returned group are in the same order as the strong generators of group.

The algorithm is based on Sims’ Verify algorithm described in [1], Chapter 6.

**Examples**

```
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> P = DihedralGroup(4)
>>> G = P.strong_presentation()
>>> P.order() == G.order()
True
```

See also:

presentation (page 379), _verify (page 348)

**subgroup(gens)**

Return the subgroup generated by $gens$ which is a list of elements of the group

```
>>> subgroup_search(prop, base=None, strong_gens=None, tests=None,
init_subgroup=None)
```

Find the subgroup of all elements satisfying the property $prop$.

**Parameters**

- **prop**
  
The property to be used. Has to be callable on group elements and always return True or False. It is assumed that all group elements satisfying $prop$ indeed form a subgroup.
base
A base for the supergroup.

strong_gens
A strong generating set for the supergroup.

tests
A list of callables of length equal to the length of base. These are used to rule out group elements by partial base images, so that tests[l](g) returns False if the element g is known not to satisfy prop on where g sends the first l + 1 base points.

init_subgroup
if a subgroup of the sought group is known in advance, it can be passed to the function as this parameter.

Returns
res
The subgroup of all elements satisfying prop. The generating set for this group is guaranteed to be a strong generating set relative to the base base.

Explanation
This is done by a depth-first search with respect to base images that uses several tests to prune the search tree.

Examples

```
>>> from sympy.combinatorics.named_groups import (SymmetricGroup, ...
... AlternatingGroup)
>>> from sympy.combinatorics.testutil import _verify_bsgs
>>> S = SymmetricGroup(7)
>>> prop_even = lambda x: x.is_even
>>> base, strong gens = S.schreier_sims_incremental()
>>> G = S.subgroup_search(prop_even, base=base, strong_gens=strong_ ...
... gens)
>>> G.is_subgroup(AlternatingGroup(7))
True
>>> _verify_bsgs(G, base, G.generators)
True
```
Notes

This function is extremely lengthy and complicated and will require some careful attention. The implementation is described in [1], pp. 114-117, and the comments for the code here follow the lines of the pseudocode in the book for clarity.

The complexity is exponential in general, since the search process by itself visits all members of the supergroup. However, there are a lot of tests which are used to prune the search tree, and users can define their own tests via the tests parameter, so in practice, and for some computations, it’s not terrible.

A crucial part in the procedure is the frequent base change performed (this is line 11 in the pseudocode) in order to obtain a new basic stabilizer. The book mentions that this can be done by using .baseswap(...), however the current implementation uses a more straightforward way to find the next basic stabilizer - calling the function .stabilizer(...) on the previous basic stabilizer.

**sylow_subgroup(p)**

Return a p-Sylow subgroup of the group.

The algorithm is described in [1], Chapter 4, Section 7

**Examples**

```python
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> from sympy.combinatorics.named_groups import AlternatingGroup

>>> D = DihedralGroup(6)
>>> S = D.sylow_subgroup(2)
>>> S.order()
4
>>> G = SymmetricGroup(6)
>>> S = G.sylow_subgroup(5)
>>> S.order()
5

>>> G1 = AlternatingGroup(3)
>>> G2 = AlternatingGroup(5)
>>> G3 = AlternatingGroup(9)

>>> S1 = G1.sylow_subgroup(3)
>>> S2 = G2.sylow_subgroup(3)
>>> S3 = G3.sylow_subgroup(3)

>>> len1 = len(S1.lower_central_series())
>>> len2 = len(S2.lower_central_series())
>>> len3 = len(S3.lower_central_series())

>>> len1 == len2
True
>>> len1 < len3
True
```
property transitivity_degree
  Compute the degree of transitivity of the group.

Explanation

A permutation group \( G \) acting on \( \Omega = \{0, 1, \ldots, n - 1\} \) is \( k \)-fold transitive, if, for any \( k \) points \((a_1, a_2, \ldots, a_k) \in \Omega \) and any \( k \) points \((b_1, b_2, \ldots, b_k) \in \Omega \) there exists \( g \in G \) such that \( g(a_1) = b_1, g(a_2) = b_2, \ldots, g(a_k) = b_k \). The degree of transitivity of \( G \) is the maximum \( k \) such that \( G \) is \( k \)-fold transitive. ([8])

Examples

```python
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([1, 2, 0])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.transitivity_degree
3
```

See also:

`is_transitive` (page 372), `orbit` (page 376)

Polyhedron

class sympy.combinatorics.polyhedron.Polyhedron(corners, faces=(), pgroup=())

Represents the polyhedral symmetry group (PSG).

Explanation

The PSG is one of the symmetry groups of the Platonic solids. There are three polyhedral groups: the tetrahedral group of order 12, the octahedral group of order 24, and the icosahedral group of order 60.

All doctests have been given in the docstring of the constructor of the object.

References

[R86]

property array_form
  Return the indices of the corners.

  The indices are given relative to the original position of corners.
Examples

```python
>>> from sympy.combinatorics.polyhedron import tetrahedron
>>> tetrahedron = tetrahedron.copy()
>>> tetrahedron.array_form
[0, 1, 2, 3]
```

```python
>>> tetrahedron.rotate(0)
>>> tetrahedron.array_form
[0, 2, 3, 1]
>>> tetrahedron.pgroup[0].array_form
[0, 2, 3, 1]
```

See also:

- `corners` (page 388), `cyclic_form` (page 388)

property corners

Get the corners of the Polyhedron. The method `vertices` is an alias for `corners`.

Examples

```python
>>> from sympy.combinatorics import Polyhedron
>>> from sympy.abc import a, b, c, d
>>> p = Polyhedron(list('abcd'))
>>> p.corners == p.vertices == (a, b, c, d)
True
```

See also:

- `array_form` (page 387), `cyclic_form` (page 388)

property cyclic_form

Return the indices of the corners in cyclic notation. The indices are given relative to the original position of corners.

See also:

- `corners` (page 388), `array_form` (page 387)

property edges

Given the faces of the polyhedra we can get the edges.
Examples

```python
>>> from sympy.combinatorics import Polyhedron
>>> from sympy.abc import a, b, c
>>> corners = (a, b, c)
>>> faces = [[0, 1, 2]]
>>> Polyhedron(corners, faces).edges
{(0, 1), (0, 2), (1, 2)}
```

**property faces**
Get the faces of the Polyhedron.

**property pgroup**
Get the permutations of the Polyhedron.

**reset()**
Return corners to their original positions.

Examples

```python
>>> from sympy.combinatorics.polyhedron import tetrahedron as T
>>> T = T.copy()
>>> T.corners
(0, 1, 2, 3)
>>> T.rotate(0)
>>> T.corners
(0, 2, 3, 1)
>>> T.reset()
>>> T.corners
(0, 1, 2, 3)
```

**rotate(perm)**
Apply a permutation to the polyhedron in place. The permutation may be given as a Permutation instance or an integer indicating which permutation from pgroup of the Polyhedron should be applied.

This is an operation that is analogous to rotation about an axis by a fixed increment.

**Notes**

When a Permutation is applied, no check is done to see if that is a valid permutation for the Polyhedron. For example, a cube could be given a permutation which effectively swaps only 2 vertices. A valid permutation (that rotates the object in a physical way) will be obtained if one only uses permutations from the pgroup of the Polyhedron. On the other hand, allowing arbitrary rotations (applications of permutations) gives a way to follow named elements rather than indices since Polyhedron allows vertices to be named while Permutation works only with indices.
Examples

```python
>>> from sympy.combinatorics import Polyhedron, Permutation
>>> from sympy.combinatorics.polyhedron import cube
>>> cube = cube.copy()
>>> cube.corners
(0, 1, 2, 3, 4, 5, 6, 7)
>>> cube.rotate(0)
>>> cube.corners
(1, 2, 3, 0, 5, 6, 7, 4)
```

A non-physical “rotation” that is not prohibited by this method:

```python
>>> cube.reset()
>>> cube.rotate(Permutation([[1, 2], size=8]))
>>> cube.corners
(0, 2, 1, 3, 4, 5, 6, 7)
```

Polyhedron can be used to follow elements of set that are identified by letters instead of integers:

```python
>>> shadow = h5 = Polyhedron(list('abcde'))
>>> p = Permutation([3, 0, 1, 2, 4])
>>> h5.rotate(p)
>>> h5.corners
(d, a, b, c, e)
>>> _ == shadow.corners
True
>>> copy = h5.copy()
>>> h5.rotate(p)
>>> h5.corners == copy.corners
False
```

**property size**
Get the number of corners of the Polyhedron.

**property vertices**
Get the corners of the Polyhedron.

The method vertices is an alias for corners.

Examples

```python
>>> from sympy.combinatorics import Polyhedron
>>> from sympy.abc import a, b, c, d
>>> p = Polyhedron(list('abcd'))
>>> p.corners == p.vertices == (a, b, c, d)
True
```

See also:

*array_form* (page 387), *cyclic_form* (page 388)
Prufer Sequences

class sympy.combinatorics.prufer.Prufer(*args, **kw_args)

The Prufer correspondence is an algorithm that describes the bijection between labeled
trees and the Prufer code. A Prufer code of a labeled tree is unique up to isomorphism
and has a length of \( n - 2 \).

Prufer sequences were first used by Heinz Prufer to give a proof of Cayley’s formula.

References

[R87]

static edges(*runs)

Return a list of edges and the number of nodes from the given runs that connect
nodes in an integer-labelled tree.

All node numbers will be shifted so that the minimum node is 0. It is not a problem
if edges are repeated in the runs; only unique edges are returned. There is no
assumption made about what the range of the node labels should be, but all nodes
from the smallest through the largest must be present.

Examples

```python
>>> from sympy.combinatorics.prufer import Prufer
>>> Prufer.edges(([1, 2, 3], [2, 4, 5])) # a T
([[0, 1], [1, 2], [1, 3], [3, 4]], 5)
```

Duplicate edges are removed:

```python
>>> Prufer.edges(([0, 1, 2, 3], [1, 4, 5], [1, 4, 6])) # a K
([[0, 1], [1, 2], [1, 4], [2, 3], [4, 5], [4, 6]], 7)
```

next(delta=1)

Generates the Prufer sequence that is delta beyond the current one.

Examples

```python
>>> from sympy.combinatorics.prufer import Prufer
>>> a = Prufer([[0, 1], [0, 2], [0, 3]])
>>> b = a.next(1) # == a.next()
>>> b.tree_repr
[[0, 2], [0, 1], [1, 3]]
>>> b.rank
1
```

See also:

* prufer_rank (page 392), rank (page 393), prev (page 392), size (page 393)

property nodes

Returns the number of nodes in the tree.
Examples

```python
>>> from sympy.combinatorics.prufer import Pruf
>>> Pruf([[0, 3], [1, 3], [2, 3], [3, 4], [4, 5]]).nodes
6
>>> Pruf([1, 0, 0]).nodes
5
```

**prev**(delta=1)
Generates the Pruf sequence that is -delta before the current one.

Examples

```python
>>> from sympy.combinatorics.prufer import Pruf
>>> a = Pruf([[0, 1], [1, 2], [2, 3], [1, 4]])
>>> a.rank
36
>>> b = a.prev()
>>> b
Pruf([1, 2, 0])
>>> b.rank
35
```

See also:

- prufer_rank (page 392), rank (page 393), next (page 391), size (page 393)
- pruf_rank()
Computes the rank of a Pruf sequence.

Examples

```python
>>> from sympy.combinatorics.prufer import Pruf
>>> a = Pruf([[0, 1], [0, 2], [0, 3]])
>>> a.prufer_rank()
0
```

See also:

- rank (page 393), next (page 391), prev (page 392), size (page 393)
- property prufer_repr
Returns Pruf sequence for the Pruf object.

This sequence is found by removing the highest numbered vertex, recording the node it was attached to, and continuing until only two vertices remain. The Pruf sequence is the list of recorded nodes.
Examples

```python
>>> from sympy.combinatorics.prufer import Prufer
>>> Prufer([[0, 3], [1, 3], [2, 3], [3, 4], [4, 5]]).prufer_repr
[3, 3, 3, 4]
>>> Prufer([1, 0, 0]).prufer_repr
[1, 0, 0]
```

See also:
- `to_prufer` (page 393)

property rank

Returns the rank of the Prüfer sequence.

Examples

```python
>>> from sympy.combinatorics.prufer import Prufer
>>> p = Prufer([[0, 3], [1, 3], [2, 3], [3, 4], [4, 5]])
>>> p.rank
778
>>> p.next(1).rank
779
>>> p.prev().rank
777
```

See also:
- `prufer_rank` (page 392), `next` (page 391), `prev` (page 392), `size` (page 393)

property size

Return the number of possible trees of this Prüfer object.

Examples

```python
>>> from sympy.combinatorics.prufer import Prufer
>>> Prufer([0]*4).size == Prufer([6]*4).size == 1296
True
```

See also:
- `prufer_rank` (page 392), `rank` (page 393), `next` (page 391), `prev` (page 392)

static to_prufer(tree, n)

Return the Prüfer sequence for a tree given as a list of edges where n is the number of nodes in the tree.
Examples

>>> from sympy.combinatorics.prufer import Prufer
>>> a = Prufer([[0, 1], [0, 2], [0, 3]])
>>> a.prufer_repr
[0, 0]
>>> Prufer.to_prufer([[0, 1], [0, 2], [0, 3]], 4)
[0, 0]

See also:

`prufer_repr` (page 392)
returns Prufer sequence of a Prufer object.

static `to_tree(prufer)`
Return the tree (as a list of edges) of the given Prufer sequence.

Examples

>>> from sympy.combinatorics.prufer import Prufer
>>> a = Prufer([0, 2], 4)
>>> a.tree_repr
[[0, 1], [0, 2], [2, 3]]
>>> Prufer.to_tree([0, 2])
[[0, 1], [0, 2], [2, 3]]

See also:

`tree_repr` (page 394)
returns tree representation of a Prufer object.

References

[R88]

property `tree_repr`
Returns the tree representation of the Prufer object.

Examples

>>> from sympy.combinatorics.prufer import Prufer
>>> Prufer([[0, 3], [1, 3], [2, 3], [3, 4], [4, 5]]).tree_repr
[[0, 3], [1, 3], [2, 3], [3, 4], [4, 5]]
>>> Prufer([1, 0, 0]).tree_repr
[[1, 2], [0, 1], [0, 3], [0, 4]]

See also:

`to_tree` (page 394)
**classmethod unrank**(*rank*, *n*)

Finds the unranked Prufer sequence.

**Examples**

```python
>>> from sympy.combinatorics.prufer import Prufer
>>> Prufer.unrank(0, 4)
Prufer([0, 0])
```

**Subsets**

**class** sympy.combinatorics.subsets.Subset(*subset, superset*)

Represents a basic subset object.

**Explanation**

We generate subsets using essentially two techniques, binary enumeration and lexicographic enumeration. The Subset class takes two arguments, the first one describes the initial subset to consider and the second describes the superset.

**Examples**

```python
>>> from sympy.combinatorics import Subset
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.next_binary().subset
['b']
>>> a.prev_binary().subset
['c']
```

**classmethod bitlist_from_subset**(*subset, superset*)

Gets the bitlist corresponding to a subset.

**Examples**

```python
>>> from sympy.combinatorics import Subset
>>> Subset.bitlist_from_subset(['c', 'd'], ['a', 'b', 'c', 'd'])
'0011'
```

**See also:**

*subset_from_bitlist* (page 400)

**property cardinality**

Returns the number of all possible subsets.
Examples

```python
from sympy.combinatorics import Subset

a = Subset(["c", "d"], ["a", "b", "c", "d"])
a.cardinality

16
```

See also:
- `subset` (page 400), `superset` (page 401), `size` (page 399), `superset_size` (page 401)

`iterate_binary(k)`
This is a helper function. It iterates over the binary subsets by k steps. This variable can be both positive or negative.

Examples

```python
from sympy.combinatorics import Subset

a = Subset(["c", "d"], ["a", "b", "c", "d"])
a.iterate_binary(-2).subset
['d']
a = Subset(["a", "b", "c"], ["a", "b", "c", "d"])
a.iterate_binary(2).subset
[]
```

See also:
- `next_binary` (page 396), `prev_binary` (page 397)

`iterate_graycode(k)`
Helper function used for `prev_gray` and `next_gray`. It performs k step overs to get the respective Gray codes.

Examples

```python
from sympy.combinatorics import Subset

a = Subset([1, 2, 3], [1, 2, 3, 4])
a.iterate_graycode(3).subset
[1, 4]
a.iterate_graycode(-2).subset
[1, 2, 4]
```

See also:
- `next_gray` (page 397), `prev_gray` (page 398)

`next_binary()`
Generates the next binary ordered subset.
Examples

```python
>>> from sympy.combinatorics import Subset
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.next_binary().subset
['b']
>>> a = Subset(['a', 'b', 'c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.next_binary().subset
[]
```

See also:

prev_binary (page 397), iterate_binary (page 396)

next_gray()
Generates the next Gray code ordered subset.

Examples

```python
>>> from sympy.combinatorics import Subset
>>> a = Subset([1, 2, 3], [1, 2, 3, 4])
>>> a.next_gray().subset
[1, 3]
```

See also:

iterate_graycode (page 396), prev_gray (page 398)

next_lexicographic()
Generates the next lexicographically ordered subset.

Examples

```python
>>> from sympy.combinatorics import Subset
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.next_lexicographic().subset
['d']
>>> a = Subset(['d'], ['a', 'b', 'c', 'd'])
>>> a.next_lexicographic().subset
[]
```

See also:

prev_lexicographic (page 398)

prev_binary()
Generates the previous binary ordered subset.
Examples

```python
>>> from sympy.combinatorics import Subset
>>> a = Subset([], ['a', 'b', 'c', 'd'])
>>> a.prev_binary().subset
['a', 'b', 'c', 'd']
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.prev_binary().subset
['c']
```

See also:

`next_binary` (page 396), `iterate_binary` (page 396)

prev_gray()
Generates the previous Gray code ordered subset.

Examples

```python
>>> from sympy.combinatorics import Subset
>>> a = Subset([2, 3, 4], [1, 2, 3, 4, 5])
>>> a.prev_gray().subset
[2, 3, 4, 5]
```

See also:

`iterate_graycode` (page 396), `next_gray` (page 397)

prev_lexicographic()
Generates the previous lexicographically ordered subset.

Examples

```python
>>> from sympy.combinatorics import Subset
>>> a = Subset([], ['a', 'b', 'c', 'd'])
>>> a.prev_lexicographic().subset
['d']
>>> a = Subset(['c','d'], ['a', 'b', 'c', 'd'])
>>> a.prev_lexicographic().subset
['c']
```

See also:

`next_lexicographic` (page 397)

property rank_binary
Computes the binary ordered rank.
Examples

```python
>>> from sympy.combinatorics import Subset
>>> a = Subset([], ['a', 'b', 'c', 'd'])
>>> a.rank_binary
0
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.rank_binary
3
```

See also:
* `iterate_binary` (page 396), `unrank_binary` (page 401)

**property rank_gray**
Computes the Gray code ranking of the subset.

Examples

```python
>>> from sympy.combinatorics import Subset
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.rank_gray
2
>>> a = Subset([2, 4, 5], [1, 2, 3, 4, 5, 6])
>>> a.rank_gray
27
```

See also:
* `iterate_graycode` (page 396), `unrank_gray` (page 402)

**property rank_lexicographic**
Computes the lexicographic ranking of the subset.

Examples

```python
>>> from sympy.combinatorics import Subset
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.rank_lexicographic
14
>>> a = Subset([2, 4, 5], [1, 2, 3, 4, 5, 6])
>>> a.rank_lexicographic
43
```

**property size**
Gets the size of the subset.
Examples

```python
>>> from sympy.combinatorics import Subset
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.size
2
```

See also:

- `subset` (page 400), `superset` (page 401), `superset_size` (page 401), `cardinality` (page 395)

**property subset**

Gets the subset represented by the current instance.

Examples

```python
>>> from sympy.combinatorics import Subset
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.subset
['c', 'd']
```

See also:

- `superset` (page 401), `size` (page 399), `superset_size` (page 401), `cardinality` (page 395)

**classmethod subset_from_bitlist**(*super_set*, *bitlist*)

Gets the subset defined by the bitlist.

Examples

```python
>>> from sympy.combinatorics import Subset
>>> Subset.subset_from_bitlist(['a', 'b', 'c', 'd'], '0011').subset
['c', 'd']
```

See also:

- `bitlist_from_subset` (page 395)

**classmethod subset_indices**(*subset*, *superset*)

Return indices of subset in superset in a list; the list is empty if all elements of subset are not in superset.
Examples

```python
>>> from sympy.combinatorics import Subset
>>> superset = [1, 3, 2, 5, 4]
>>> Subset.subset_indices([3, 2, 1], superset)
[1, 2, 0]
>>> Subset.subset_indices([1, 6], superset)
[]
>>> Subset.subset_indices([], superset)
[]
```

**property superset**

 Gets the superset of the subset.

**Examples**

```python
>>> from sympy.combinatorics import Subset
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.superset
['a', 'b', 'c', 'd']
```

See also:

subset (page 400), size (page 399), superset_size (page 401), cardinality (page 395)

**property superset_size**

 Returns the size of the superset.

**Examples**

```python
>>> from sympy.combinatorics import Subset
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.superset_size
4
```

See also:

subset (page 400), superset (page 401), size (page 399), cardinality (page 395)

**classmethod unrank_binary(rank, superset)**

 Gets the binary ordered subset of the specified rank.
Examples

```python
>>> from sympy.combinatorics import Subset
>>> Subset.unrank_binary(4, ['a', 'b', 'c', 'd']).subset
['b']
```

See also:

iterate_binary (page 396), rank_binary (page 398)

classmethod unrank_gray(rank, superset)

Gets the Gray code ordered subset of the specified rank.

Examples

```python
>>> from sympy.combinatorics import Subset
>>> Subset.unrank_gray(4, ['a', 'b', 'c']).subset
['a', 'b']
>>> Subset.unrank_gray(0, ['a', 'b', 'c']).subset
[]
```

See also:

iterate_graycode (page 396), rank_gray (page 399)

subsets.ksubsets(k)

Finds the subsets of size k in lexicographic order.

This uses the itertools generator.

Examples

```python
>>> from sympy.combinatorics.subsets import ksubsets
>>> list(ksubsets([1, 2, 3], 2))
[(1, 2), (1, 3), (2, 3)]
>>> list(ksubsets([1, 2, 3, 4, 5], 2))
[(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)]
```

See also:

Subset (page 395)
Gray Code

class sympy.combinatorics.graycode.GrayCode(n, *args, **kw_args)

A Gray code is essentially a Hamiltonian walk on a n-dimensional cube with edge length of one. The vertices of the cube are represented by vectors whose values are binary. The Hamilton walk visits each vertex exactly once. The Gray code for a 3d cube is ['000', '100', '110', '010', '011', '111', '101', '001'].

A Gray code solves the problem of sequentially generating all possible subsets of n objects in such a way that each subset is obtained from the previous one by either deleting or adding a single object. In the above example, 1 indicates that the object is present, and 0 indicates that its absent.

Gray codes have applications in statistics as well when we want to compute various statistics related to subsets in an efficient manner.

Examples

```python
>>> from sympy.combinatorics import GrayCode
>>> a = GrayCode(3)
>>> list(a.generate_gray())
['000', '001', '011', '010', '110', '111', '101', '100']
>>> a = GrayCode(4)
>>> list(a.generate_gray())
['0000', '0001', '0011', '0010', '0110', '0111', '0101', '0100',
 '1100', '1101', '1111', '1110', '1010', '1011', '1001', '1000']
```

References

[R44], [R45]

property current

Returns the currently referenced Gray code as a bit string.

Examples

```python
>>> from sympy.combinatorics import GrayCode
>>> GrayCode(3, start='100').current
'100'
```

generate_gray(**hints)

Generates the sequence of bit vectors of a Gray Code.
Examples

```python
>>> from sympy.combinatorics import GrayCode
>>> a = GrayCode(3)
>>> list(a.generate_gray())
['000', '001', '011', '010', '110', '111', '101', '100']
>>> list(a.generate_gray(start='011'))
['011', '010', '110', '111', '101', '100']
>>> list(a.generate_gray(rank=4))
['110', '111', '101', '100']
```

See also:

`skip` (page 405)

References

[R46]

property n

Returns the dimension of the Gray code.

Examples

```python
>>> from sympy.combinatorics import GrayCode
>>> a = GrayCode(5)
>>> a.n
5
```

next(delta=1)

Returns the Gray code a distance delta (default = 1) from the current value in canonical order.

Examples

```python
>>> from sympy.combinatorics import GrayCode
>>> a = GrayCode(3, start='110')
>>> a.next().current
'111'
>>> a.next(-1).current
'010'
```

property rank

Ranks the Gray code.

A ranking algorithm determines the position (or rank) of a combinatorial object among all the objects w.r.t. a given order. For example, the 4 bit binary reflected Gray code (BRGC) '0101' has a rank of 6 as it appears in the 6th position in the canonical ordering of the family of 4 bit Gray codes.
Examples

```python
>>> from sympy.combinatorics import GrayCode
>>> a = GrayCode(3)
>>> list(a.generate_gray())
['000', '001', '011', '010', '110', '111', '101', '100']
>>> GrayCode(3, start='100').rank
7
>>> GrayCode(3, rank=7).current
'100'
```

See also:

`unrank` (page 406)

References

[R47]

property selections

Returns the number of bit vectors in the Gray code.

Examples

```python
>>> from sympy.combinatorics import GrayCode
>>> a = GrayCode(3)
>>> a.selections
8
```

skip()

Skips the bit generation.

Examples

```python
>>> from sympy.combinatorics import GrayCode
>>> a = GrayCode(3)
>>> for i in a.generate_gray():
... if i == '010':
... a.skip()
... print(i)
... 000
 001
 011
 111
 101
 100
```
See also:

`generate_gray` (page 403)

**classmethod unrank**(\(n, rank\))

Unranks an \(n\)-bit sized Gray code of rank \(k\). This method exists so that a derivative GrayCode class can define its own code of a given rank.

The string here is generated in reverse order to allow for tail-call optimization.

**Examples**

```python
>>> from sympy.combinatorics import GrayCode
>>> GrayCode(5, rank=3).current
'00010'
>>> GrayCode.unrank(5, 3)
'00010'
```

See also:

`rank` (page 404)

graycode.random_bitstring()

Generates a random bitlist of length \(n\).

**Examples**

```python
>>> from sympy.combinatorics.graycode import random_bitstring
>>> random_bitstring(3)
100
```

graycode.gray_to_bin()

Convert from Gray coding to binary coding.

We assume big endian encoding.

**Examples**

```python
>>> from sympy.combinatorics.graycode import gray_to_bin
>>> gray_to_bin('100')
'111'
```

See also:

`bin_to_gray` (page 406)

graycode.bin_to_gray()

Convert from binary coding to gray coding.

We assume big endian encoding.
Examples

```python
>>> from sympy.combinatorics.graycode import bin_to_gray
>>> bin_to_gray('111')
'100'
```

See also:

- `gray_to_bin` (page 406)
- `graycode.get_subset_from_bitstring(bitstring)`
  Gets the subset defined by the bitstring.

Examples

```python
>>> from sympy.combinatorics.graycode import get_subset_from_bitstring
>>> get_subset_from_bitstring(['a', 'b', 'c', 'd'], '0011')
['c', 'd']
>>> get_subset_from_bitstring(['c', 'a', 'c', 'c'], '1100')
['c', 'a']
```

See also:

- `graycode_subsets` (page 407)
- `graycode.graycode_subsets()`
  Generates the subsets as enumerated by a Gray code.

Examples

```python
>>> from sympy.combinatorics.graycode import graycode_subsets
>>> list(graycode_subsets(['a', 'b', 'c']))
[]
['c'],
['b', 'c'],
['b'],
['a', 'b'],
['a', 'b', 'c'],
['a', 'c'],
['a', 'b', 'c'],
['a'],
```

See also:

- `get_subset_from_bitstring` (page 407)
Named Groups

sympy.combinatorics.named_groups.SymmetricGroup(n)

Generates the symmetric group on n elements as a permutation group.

Explanation

The generators taken are the n-cycle (0 1 2 ... n-1) and the transposition (0 1) (in cycle notation). (See [1]). After the group is generated, some of its basic properties are set.

Examples

```python
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> G = SymmetricGroup(4)
>>> G.is_group
True
>>> G.order()
24
>>> list(G.generate_schreier_sims(af=True))
[[0, 1, 2, 3], [1, 2, 3, 0], [2, 3, 0, 1], [3, 1, 2, 0], [0, 2, 3, 1],
 [1, 3, 0, 2], [2, 0, 1, 3], [3, 2, 0, 1], [0, 3, 1, 2], [1, 0, 2, 3],
 [2, 1, 3, 0], [3, 0, 1, 2], [0, 1, 3, 2], [1, 2, 0, 3], [2, 3, 1, 0],
 [3, 1, 0, 2], [0, 2, 1, 3], [1, 3, 2, 0], [2, 0, 3, 1], [3, 2, 1, 0],
 [0, 3, 2, 1], [1, 0, 3, 2], [2, 1, 0, 3], [3, 0, 2, 1]]
```

See also:
CyclicGroup (page 408), DihedralGroup (page 409), AlternatingGroup (page 410)

References

[R51]

sympy.combinatorics.named_groups.CyclicGroup(n)

Generates the cyclic group of order n as a permutation group.

Explanation

The generator taken is the n-cycle (0 1 2 ... n-1) (in cycle notation). After the group is generated, some of its basic properties are set.
Examples

```python
>>> from sympy.combinatorics.named_groups import CyclicGroup
>>> G = CyclicGroup(6)
>>> G.is_group
True
>>> G.order()
6
>>> list(G.generate_schreier_sims(af=True))
[[0, 1, 2, 3, 4, 5], [1, 2, 3, 4, 5, 0], [2, 3, 4, 5, 0, 1],
 [3, 4, 5, 0, 1, 2], [4, 5, 0, 1, 2, 3], [5, 0, 1, 2, 3, 4]]
```

See also:

SymmetricGroup (page 408), DihedralGroup (page 409), AlternatingGroup (page 410)

sympy.combinatorics.named_groups.DihedralGroup(n)
Generates the dihedral group $D_n$ as a permutation group.

Explanation

The dihedral group $D_n$ is the group of symmetries of the regular n-gon. The generators taken are the n-cycle $a = (0 \ 1 \ 2 \ldots \ n-1)$ (a rotation of the n-gon) and $b = (0 \ n-1)(1 \ n-2)\ldots$ (a reflection of the n-gon) in cycle rotation. It is easy to see that these satisfy $a^n = b^2 = 1$ and $bab = a^{-1}$ so they indeed generate $D_n$ (See [1]). After the group is generated, some of its basic properties are set.

Examples

```python
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> G = DihedralGroup(5)
>>> G.is_group
True
>>> a = list(G.generate_dimino())
>>> [perm.cyclic_form for perm in a]
[[], [[0, 1, 2, 3, 4]], [[0, 2, 4, 1, 3]],
 [[0, 3, 1, 4, 2]], [[0, 4, 3, 2, 1]], [[0, 4], [1, 3]],
 [[1, 4], [2, 3]], [[0, 1], [2, 4]], [[0, 2], [3, 4]],
 [[0, 3], [1, 2]]]
```

See also:

SymmetricGroup (page 408), CyclicGroup (page 408), AlternatingGroup (page 410)

5.8. Topics 409
**References**

[R52]

sympy.combinatorics.named_groups.AlternatingGroup($n$)

Generates the alternating group on $n$ elements as a permutation group.

**Explanation**

For $n > 2$, the generators taken are $(0 \ 1 \ 2)$, $(0 \ 1 \ 2 \ldots \ n-1)$ for $n$ odd and $(0 \ 1 \ 2)$, $(1 \ 2 \ldots \ n-1)$ for $n$ even (See [1], p.31, ex.6.9.). After the group is generated, some of its basic properties are set. The cases $n = 1$, $2$ are handled separately.

**Examples**

```python
>>> from sympy.combinatorics.named_groups import AlternatingGroup
>>> G = AlternatingGroup(4)
>>> G.is_group
True
>>> a = list(G.generate_dimino())
>>> len(a)
12
>>> all(perm.is_even for perm in a)
True
```

See also:

SymmetricGroup (page 408), CyclicGroup (page 408), DihedralGroup (page 409)

**References**

[R53]

sympy.combinatorics.named_groups.AbelianGroup(*cyclic_orders)

Returns the direct product of cyclic groups with the given orders.

**Explanation**

According to the structure theorem for finite abelian groups ([1]), every finite abelian group can be written as the direct product of finitely many cyclic groups.
Examples

```python
>>> from sympy.combinatorics.named_groups import AbelianGroup
>>> AbelianGroup(3, 4)
PermutationGroup([[(6)(0 1 2),
 (3 4 5 6)]])
>>> _.is_group
True
```

See also:

DirectProduct (page 423)

References

[R54]

Galois Groups

Construct transitive subgroups of symmetric groups, useful in Galois theory. Besides constructing instances of the `PermutationGroup` (page 343) class to represent the transitive subgroups of $S_n$ for small $n$, this module provides names for these groups.

In some applications, it may be preferable to know the name of a group, rather than receive an instance of the `PermutationGroup` (page 343) class, and then have to do extra work to determine which group it is, by checking various properties.

Names are instances of `Enum` classes defined in this module. With a name in hand, the name’s `get_perm_group` method can then be used to retrieve a `PermutationGroup` (page 343).

The names used for groups in this module are taken from [1].

References

```python
class sympy.combinatorics.galois.S6TransitiveSubgroups(value)
 Names for the transitive subgroups of S6.
class sympy.combinatorics.galois.S5TransitiveSubgroups(value)
 Names for the transitive subgroups of S5.
class sympy.combinatorics.galois.S4TransitiveSubgroups(value)
 Names for the transitive subgroups of S4.
class sympy.combinatorics.galois.S3TransitiveSubgroups(value)
 Names for the transitive subgroups of S3.
class sympy.combinatorics.galois.S2TransitiveSubgroups(value)
 Names for the transitive subgroups of S2.
class sympy.combinatorics.galois.S1TransitiveSubgroups(value)
 Names for the transitive subgroups of S1.
```
SymPy Documentation, Release 1.12.1

sympy.combinatorics.galois.four_group()
Return a representation of the Klein four-group as a transitive subgroup of S4.

sympy.combinatorics.galois.M20()
Return a representation of the metacyclic group M20, a transitive subgroup of S5 that is one of the possible Galois groups for polys of degree 5.

Notes
See [1], Page 323.

sympy.combinatorics.galois.S3_in_S6()
Return a representation of S3 as a transitive subgroup of S6.

Notes
The representation is found by viewing the group as the symmetries of a triangular prism.

sympy.combinatorics.galois.A4_in_S6()
Return a representation of A4 as a transitive subgroup of S6.

Notes
This was computed using find_transitive_subgroups_of_S6() (page 414).

sympy.combinatorics.galois.S4m()
Return a representation of the S4- transitive subgroup of S6.

Notes
This was computed using find_transitive_subgroups_of_S6() (page 414).

sympy.combinatorics.galois.S4p()
Return a representation of the S4+ transitive subgroup of S6.

Notes
This was computed using find_transitive_subgroups_of_S6() (page 414).

sympy.combinatorics.galois.A4xC2()
Return a representation of the (A4 x C2) transitive subgroup of S6.
Notes

This was computed using \texttt{find_transitive_subgroups_of_S6()} (page 414).

\texttt{sympy.combinatorics.galois.S4xC2()}

Return a representation of the (S4 x C2) transitive subgroup of S6.

Notes

This was computed using \texttt{find_transitive_subgroups_of_S6()} (page 414).

\texttt{sympy.combinatorics.galois.G18()}

Return a representation of the group G18, a transitive subgroup of S6 isomorphic to the semidirect product of C3^2 with C2.

Notes

This was computed using \texttt{find_transitive_subgroups_of_S6()} (page 414).

\texttt{sympy.combinatorics.galois.G36m()}

Return a representation of the group G36-, a transitive subgroup of S6 isomorphic to the semidirect product of C3^2 with C2^2.

Notes

This was computed using \texttt{find_transitive_subgroups_of_S6()} (page 414).

\texttt{sympy.combinatorics.galois.G36p()}

Return a representation of the group G36+, a transitive subgroup of S6 isomorphic to the semidirect product of C3^2 with C4.

Notes

This was computed using \texttt{find_transitive_subgroups_of_S6()} (page 414).

\texttt{sympy.combinatorics.galois.G72()}

Return a representation of the group G72, a transitive subgroup of S6 isomorphic to the semidirect product of C3^2 with D4.

Notes

See [1], Page 325.

\texttt{sympy.combinatorics.galois.PSL2F5()}

Return a representation of the group \( \text{PSL}_2(\mathbb{F}_5) \), as a transitive subgroup of S6, isomorphic to \( A_5 \).
Notes

This was computed using `find_transitive_subgroups_of_S6()` (page 414).

```
sympy.combinatorics.galois.PGL2F5()
```

Return a representation of the group $PGL_2(F_5)$, as a transitive subgroup of $S_6$, isomorphic to $S_5$.

Notes

See [1], Page 325.

```
sympy.combinatorics.galois.find_transitive_subgroups_of_S6(*targets,
 print_report=False)
```

Search for certain transitive subgroups of $S_6$.

The symmetric group $S_6$ has 16 different transitive subgroups, up to conjugacy. Some are more easily constructed than others. For example, the dihedral group $D_6$ is immediately found, but it is not at all obvious how to realize $S_4$ or $S_5$ transitively within $S_6$.

In some cases there are well-known constructions that can be used. For example, $S_5$ is isomorphic to $PGL_2(F_5)$, which acts in a natural way on the projective line $P^1(F_5)$, a set of order 6.

In absence of such special constructions however, we can simply search for generators. For example, transitive instances of $A_4$ and $S_4$ can be found within $S_6$ in this way.

Once we are engaged in such searches, it may then be easier (if less elegant) to find even those groups like $S_5$ that do have special constructions, by mere search.

This function locates generators for transitive instances in $S_6$ of the following subgroups:

- $A_4$
- $S_4^-$ ($S_4$ not contained within $A_6$)
- $S_4^+$ ($S_4$ contained within $A_6$)
- $A_4 \times C_2$
- $S_4 \times C_2$
- $G_{18} = C_3^2 \ltimes C_2$
- $G_{36} = C_3^2 \ltimes C_2^2$
- $G_{72} = C_3^2 \times C_4$
- $G_{72} = C_2^2 \ltimes D_4$
- $A_5$
- $S_5$

Note: Each of these groups also has a dedicated function in this module that returns the group immediately, using generators that were found by this search procedure.

The search procedure serves as a record of how these generators were found. Also, due to randomness in the generation of the elements of permutation groups, it can be called again, in order to (probably) get different generators for the same groups.

**Parameters**

- **targets** : list of $S6TransitiveSubgroups$ (page 411) values
The groups you want to find.

**print_report** : bool (default False)

If True, print to stdout the generators found for each group.

**Returns**

dict

mapping each name in targets to the *PermutationGroup* (page 343)
that was found

**References**

[R43], [R44]

**Nilpotent, Abelian and Cyclic Numbers**

*sympy.combinatorics.group_numbers.is_nilpotent_number(n)*

Check whether \( n \) is a nilpotent number. A number \( n \) is said to be nilpotent if and only if every finite group of order \( n \) is nilpotent. For more information see [R48].

**Examples**

```python
>>> from sympy.combinatorics.group_numbers import is_nilpotent_number
>>> from sympy import randprime
>>> is_nilpotent_number(21)
False
>>> is_nilpotent_number(randprime(1, 30)**12)
True
```

**References**

[R48]

*sympy.combinatorics.group_numbers.is_abelian_number(n)*

Check whether \( n \) is an abelian number. A number \( n \) is said to be abelian if and only if every finite group of order \( n \) is abelian. For more information see [R49].

**Examples**

```python
>>> from sympy.combinatorics.group_numbers import is_abelian_number
>>> from sympy import randprime
>>> is_abelian_number(4)
True
>>> is_abelian_number(randprime(1, 2000)**2)
True
>>> is_abelian_number(60)
False
```
References

[R49]

sympy.combinatorics.group_numbers.is_cyclic_number(n)
Check whether n is a cyclic number. A number n is said to be cyclic if and only if every finite group of order n is cyclic. For more information see [R50].

Examples

```python
>>> from sympy.combinatorics.group_numbers import is_cyclic_number
>>> from sympy import randprime
>>> is_cyclic_number(15)
True
>>> is_cyclic_number(randprime(1, 2000)**2)
False
>>> is_cyclic_number(4)
False
```

References

[R50]

Utilities

sympy.combinatorics.util._base_ordering(base, degree)
Order \{0, 1, \ldots, n - 1\} so that base points come first and in order.

Parameters

- base: the base
- degree: the degree of the associated permutation group

Returns

A list base_ordering such that base_ordering[point] is the number of point in the ordering.

Examples

```python
>>> from sympy.combinatorics import SymmetricGroup
>>> from sympy.combinatorics.util import _base_ordering
>>> S = SymmetricGroup(4)
>>> S.schreier_sims()
>>> _base_ordering(S.base, S.degree)
[0, 1, 2, 3]
```
Notes

This is used in backtrack searches, when we define a relation $\ll$ on the underlying set for a permutation group of degree $n$, $\{0, 1, \ldots, n-1\}$, so that if $(b_1, b_2, \ldots, b_k)$ is a base we have $b_i \ll b_j$ whenever $i < j$ and $b_i \ll a$ for all $i \in \{1, 2, \ldots, k\}$ and $a$ is not in the base. The idea is developed and applied to backtracking algorithms in [1], pp.108-132. The points that are not in the base are taken in increasing order.

References

[R89] sympy.combinatorics.util._check_cycles_alt_sym(perm)
 Checks for cycles of prime length $p$ with $n/2 < p < n-2$.

Explanation

Here $n$ is the degree of the permutation. This is a helper function for the function is_alt_sym from sympy.combinatorics.perm_groups.

Examples

```python
>>> from sympy.combinatorics.util import _check_cycles_alt_sym
>>> from sympy.combinatorics import Permutation
>>> a = Permutation([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [11, 12]])
>>> _check_cycles_alt_sym(a)
False
>>> b = Permutation([[0, 1, 2, 3, 4, 5, 6], [7, 8, 9, 10]])
>>> _check_cycles_alt_sym(b)
True
```

See also:
sympy.combinatorics.perm_groups.PermutationGroup.is_alt_sym (page 365)
sympy.combinatorics.util._distribute_gens_by_base(base, gens)
Distribute the group elements gens by membership in basic stabilizers.

Parameters

- base : a sequence of points in $\{0, 1, \ldots, n-1\}$
- gens : a list of elements of a permutation group of degree $n$.

Returns

List of length $k$, where $k$ is the length of base. The $i$-th entry contains those elements in gens which fix the first $i$ elements of base (so that the $0$-th entry is equal to gens itself). If no element fixes the first $i$ elements of base, the $i$-th element is set to a list containing the identity element.
Explanation

Notice that for a base \((b_1, b_2, \ldots, b_k)\), the basic stabilizers are defined as \(G^{(i)} = G_{b_1, \ldots, b_{i-1}}\) for \(i \in \{1, 2, \ldots, k\}\).

Examples

```python
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> from sympy.combinatorics.util import _distribute_gens_by_base
>>> D = DihedralGroup(3)
>>> D.schreier_sims()
>>> D.strong_gens
[[0 1 2), (0 2), (1 2)]
>>> D.base
[0, 1]
>>> _distribute_gens_by_base(D.base, D.strong_gens)
[[[0 1 2), (0 2), (1 2)],
 [(1 2)]]
```

See also:

- _strong_gens_from_distr (page 422), _orbits_transversals_from_bsgs (page 419), _handle_precomputed_bsgs (page 418)

```python
sympy.combinatorics.util._handle_precomputed_bsgs(base, strong_gens,
transversals=None, basic_orbits=None, strong_gens_distr=None)
```

Calculate BSGS-related structures from those present.

Parameters
``
`base` - the base
`strong_gens` - the strong generators
`transversals` - basic transversals
`basic_orbits` - basic orbits
`strong_gens_distr` - strong generators distributed by membership in basic stabilizers
``

Returns
``
(transversals, basic_orbits, strong_gens_distr) where transversals
are the basic transversals, basic_orbits are the basic orbits, and
strong_gens_distr are the strong generators distributed by membership in basic stabilizers.
``
Explanation

The base and strong generating set must be provided; if any of the transversals, basic orbits or distributed strong generators are not provided, they will be calculated from the base and strong generating set.

Examples

```python
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> from sympy.combinatorics.util import _handle_precomputed_bsgs
>>> D = DihedralGroup(3)
>>> D.schreier_sims()
>>> _handle_precomputed_bsgs(D.base, D.strong_gens,
... basic_orbits=D.basic_orbits)

([{0: (2), 1: (0 1 2), 2: (0 2)}, {1: (2), 2: (1 2)}], [[0, 1, 2], [1, 2]], [[(0 1 2), (0 2), (1 2)], [(1 2)]])
```

See also:

_orbits_transversals_from_bsgs (page 419), _distribute_gens_by_base (page 417)

Compute basic orbits and transversals from a base and strong generating set.

**Parameters**

\`\`base\`\` - The base.

\`\`strong_gens_distr\`\` - Strong generators distributed by membership in basic stabilizers.

\`\`transversals_only\`\` - bool

A flag switching between returning only the transversals and both orbits and transversals.

\`\`slp\`\` -

If True, return a list of dictionaries containing the generator presentations of the elements of the transversals, i.e. the list of indices of generators from strong_gens_distr[i] such that their product is the relevant transversal element.

Explanation

The generators are provided as distributed across the basic stabilizers. If the optional argument transversals_only is set to True, only the transversals are returned.
Examples

```python
def with_from(sympy.combinatorics)
 >>> from sympy.combinatorics import SymmetricGroup
 >>> from sympy.combinatorics.util import _distribute_gens_by_base
 >>> S = SymmetricGroup(3)
 >>> S.schreier_sims()
 >>> strong_gens_distr = _distribute_gens_by_base(S.base, S.strong_gens)
 >>> (S.base, strong_gens_distr)
 ([0, 1], [[(0 1 2), (2)(0 1), (1 2)], [(1 2)]])
```

See also:

- `_distribute_gens_by_base` (page 417), `_handle_precomputed_bsgs` (page 418)

```
sympy.combinatorics.util._remove_gens(base, strong_gens, basic_orbits=None, strong_gens_distr=None)
```

Remove redundant generators from a strong generating set.

**Parameters**
- `base` - a base
- `strong_gens` - a strong generating set relative to `base`
- `basic_orbits` - basic orbits
- `strong_gens_distr` - strong generators distributed by membership in basic stabilizers

**Returns**
A strong generating set with respect to base which is a subset of `strong_gens`.

Examples

```python
def with_from(sympy.combinatorics)
 >>> from sympy.combinatorics import SymmetricGroup
 >>> from sympy.combinatorics.util import _remove_gens
 >>> from sympy.combinatorics.testutil import _verify_bsgs
 >>> S = SymmetricGroup(15)
 >>> base, strong_gens = S.schreier_sims_incremental()
 >>> new_gens = _remove_gens(base, strong_gens)
 >>> len(new_gens)
 14
 >>> _verify_bsgs(S, base, new_gens)
 True
```
Notes

This procedure is outlined in [1], p.95.

References

[R90]

sympy.combinatorics.util._strip(g, base, orbits, transversals)

Attempt to decompose a permutation using a (possibly partial) BSGS structure.

Parameters
``g`` - permutation to be decomposed
``base`` - sequence of points
``orbits`` - a list in which the ``i``-th entry is an orbit of ``base[i]``
under some subgroup of the pointwise stabilizer of `
`base[0], base[1], ..., base[i - 1]``. The groups themselves are im-
plicit
in this function since the only information we need is encoded in the
orbits
and transversals
``transversals`` - a list of orbit transversals associated with the orbits
``orbits``.

Explanation

This is done by treating the sequence base as an actual base, and the orbits orbits and
transversals transversals as basic orbits and transversals relative to it.

This process is called “sifting”. A sift is unsuccessful when a certain orbit element is not
found or when after the sift the decomposition does not end with the identity element.

The argument transversals is a list of dictionaries that provides transversal elements
for the orbits orbits.

Examples

```python
>>> from sympy.combinatorics import Permutation, SymmetricGroup
>>> from sympy.combinatorics.util import _strip
>>> S = SymmetricGroup(5)
>>> S.schreier_sims()
>>> g = Permutation([0, 2, 3, 1, 4])
>>> _strip(g, S.base, S.basic_orbits, S.basic_transversals)
((4), 5)
```
Notes

The algorithm is described in [1], pp. 89-90. The reason for returning both the current state of the element being decomposed and the level at which the sifting ends is that they provide important information for the randomized version of the Schreier-Sims algorithm.

See also:

sympy.combinatorics.perm_groups.PermutationGroup.schreier_sims (page 380),
sympy.combinatorics.perm_groups.PermutationGroup.schreier_sims_random (page 381)

References

[R91]
sympy.combinatorics.util._strong_gens_from_distr(strong_gens_distr)
Retrieve strong generating set from generators of basic stabilizers.
This is just the union of the generators of the first and second basic stabilizers.

Parameters

\`
``strong_gens_distr`` - strong generators distributed by membership in basic stabilizers
``

Examples

```python
def _strong_gens_from_distr(strong_gens_distr):
 return [tuple(g) for g in strong_gens_distr]

S = SymmetricGroup(3)
S.schreier_sims()
S.strong_gens
[(0 1 2), (2)(0 1), (1 2)]
strong_gens_distr = _distribute_gens_by_base(S.base, S.strong_gens)
strong_gens_distr
[(0 1 2), (2)(0 1), (1 2)]

See also:

_distribute_gens_by_base (page 417)
```
Group constructors

\texttt{sympy.combinatorics.group_constructs.DirectProduct(*groups)}

Returns the direct product of several groups as a permutation group.

**Explanation**

This is implemented much like the \texttt{\_mul\_} procedure for taking the direct product of two permutation groups, but the idea of shifting the generators is realized in the case of an arbitrary number of groups. A call to \texttt{DirectProduct(G1, G2, ..., Gn)} is generally expected to be faster than a call to \texttt{G1*G2*...*Gn} (and thus the need for this algorithm).

**Examples**

```python
>>> from sympy.combinatorics.group_constructs import DirectProduct
>>> from sympy.combinatorics.named_groups import CyclicGroup
>>> C = CyclicGroup(4)
>>> G = DirectProduct(C, C, C)
>>> G.order()
64
```

**See also:**

\texttt{sympy.combinatorics.perm_groups.PermutationGroup.__mul__} (page 344)

**Test Utilities**

\texttt{sympy.combinatorics.testutil._cmp_perm_lists(first, second)}

Compare two lists of permutations as sets.

**Explanation**

This is used for testing purposes. Since the array form of a permutation is currently a list, Permutation is not hashable and cannot be put into a set.

**Examples**

```python
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.combinatorics.testutil import _cmp_perm_lists
>>> a = Permutation([0, 2, 3, 4, 1])
>>> b = Permutation([1, 2, 0, 4, 3])
>>> c = Permutation([3, 4, 0, 1, 2])
>>> ls1 = [a, b, c]
>>> ls2 = [b, c, a]
>>> _cmp_perm_lists(ls1, ls2)
True
```
Explanation

This is a naive implementation using the definition of a base and a strong generating set relative to it. There are other procedures for verifying a base and strong generating set, but this one will serve for more robust testing.

Examples

```python
>>> from sympy.combinatorics.named_groups import AlternatingGroup
>>> from sympy.combinatorics.testutil import _verify_bsgs
>>> A = AlternatingGroup(4)
>>> A.schreier_sims()
>>> _verify_bsgs(A, A.base, A.strong_gens)
True
```

See also:

- `sympy.combinatorics.perm_groups.PermutationGroup.schreier_sims` (page 380)

```
sympy.combinatorics.testutil._verify_centralizer(group, arg, centr=None)
```

Verify the centralizer of a group/set/element inside another group. This is used for testing .centralizer() from sympy.combinatorics.perm_groups

Examples

```python
>>> from sympy.combinatorics.named_groups import (SymmetricGroup, ...
... AlternatingGroup)
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.combinatorics.testutil import _verify_centralizer
>>> S = SymmetricGroup(5)
>>> A = AlternatingGroup(5)
>>> centr = PermutationGroup([Permutation([0, 1, 2, 3, 4])])
>>> _verify_centralizer(S, A, centr)
True
```

See also:

- `_naive_list_centralizer` (page 423), `sympy.combinatorics.perm_groups.PermutationGroup.centralizer` (page 354), `_cmp_perm_lists` (page 423)

```
sympy.combinatorics.testutil._verify_normal_closure(group, arg, closure=None)
```
Tensor Canonicalization

`sympy.combinatorics.tensor_can.canonicalize(g, dummies, msym, *v)`

canonicalize tensor formed by tensors

**Parameters**

- **g**: permutation representing the tensor
- **dummies**: list representing the dummy indices
  - it can be a list of dummy indices of the same type or a list of lists of dummy indices, one list for each type of index; the dummy indices must come after the free indices, and put in order contravariant, covariant [d0, -d0, d1,-d1,...]
- **msym**: symmetry of the metric(s)
  - it can be an integer or a list; in the first case it is the symmetry of the dummy index metric; in the second case it is the list of the symmetries of the index metric for each type
- **v**: list, (base_i, gens_i, n_i, sym_i) for tensors of type i
- **base_i, gens_i**: BSGS for tensors of this type.
  - The BSGS should have minimal base under lexicographic ordering; if not, an attempt is made do get the minimal BSGS; in case of failure, canonicalize naive is used, which is much slower.
- **n_i**: number of tensors of type i.
- **sym_i**: symmetry under exchange of component tensors of type i.

**Both for msym and sym_i the cases are**

- None no symmetry
- 0 commuting
- 1 anticommuting

**Returns**

- 0 if the tensor is zero, else return the array form of the permutation representing the canonical form of the tensor.

**Algorithm**

First one uses canonical_free to get the minimum tensor under lexicographic order, using only the slot symmetries. If the component tensors have not minimal BSGS, it is attempted to find it; if the attempt fails canonicalize_naive is used instead.

Compute the residual slot symmetry keeping fixed the free indices using tensor_gens(base, gens, list_free_indices, sym).

Reduce the problem eliminating the free indices.

Then use double_coset_can_rep and lift back the result reintroducing the free indices.
Examples

one type of index with commuting metric;
$A_{ab}$ and $B_{ab}$ antisymmetric and commuting

$T = A_{d0d1} * B_{d0d2} * B_{d2d1}$

$ord = [d0, -d0, d1, -d1, d2, -d2]$ order of the indices

g = [1, 3, 0, 5, 4, 2, 6, 7]

$T_c = 0$

```python
>>> from sympy.combinatorics.tensor_can import get_symmetric_group_sgs,
... canonicalize, bsgs_direct_product
>>> from sympy.combinatorics import Permutation
>>> base2a, gens2a = get_symmetric_group_sgs(2, 1)
>>> t0 = (base2a, gens2a, 1, 0)
>>> t1 = (base2a, gens2a, 2, 0)
>>> g = Permutation([1, 3, 0, 5, 4, 2, 6, 7])
>>> canonicalize(g, range(6), 0, t0, t1)
0
```
same as above, but with $B_{ab}$ anticommuting

$T_c = -A_{d0d1} * B_{d0d2} * B_{d1d2}$

can = [0, 2, 1, 4, 3, 5, 7, 6]

```python
>>> t1 = (base2a, gens2a, 2, 1)
>>> canonicalize(g, range(6), 0, t0, t1)
[0, 2, 1, 4, 3, 5, 7, 6]
```
two types of indices $[a, b, c, d, e, f]$ and $[m, n]$, in this order, both with commuting metric $f^{abc}$ antisymmetric, commuting

$A_{ma}$ no symmetry, commuting

$T = f_{e}^{d} * A_{m}^{d} * A_{mb} * A_{na} * A_{ne}$

$ord = [c, f, a, -a, b, -b, d, -d, e, -e, m, -m, n, -n]$

g = [0, 7, 3, 1, 9, 5, 11, 6, 10, 4, 13, 2, 12, 8, 14, 15]
The canonical tensor is $T_c = -f^{cab} * f^{fde} * A_{m}^{a} * A_{md} * A_{n}^{b} * A_{ne}$
can = [0, 2, 4, 1, 6, 8, 10, 3, 11, 7, 12, 5, 13, 9, 15, 14]

```python
>>> base_f, gens_f = get_symmetric_group_sgs(3, 1)
>>> base_A, gens_A = bsgs_direct_product(base1, gens1, base1, gens1)
>>> t0 = (base_f, gens_f, 2, 0)
>>> t1 = (base_A, gens_A, 4, 0)
>>> dummies = [range(2, 10), range(10, 14)]
>>> g = Permutation([0, 7, 3, 1, 9, 5, 11, 6, 10, 4, 13, 2, 12, 8, 14, 15])
>>> canonicalize(g, dummies, [0, 0], t0, t1)
[0, 2, 4, 1, 6, 8, 10, 3, 11, 7, 12, 5, 13, 9, 15, 14]
```
Butler-Portugal algorithm for tensor canonicalization with dummy indices.

**Parameters**

- **dummies**: list of lists of dummy indices, one list for each type of index; the dummy indices are put in order contravariant, covariant [d0, -d0, d1, -d1, ...].
- **sym**: list of the symmetries of the index metric for each type.

**possible symmetries of the metrics**

- 0 symmetric
- 1 antisymmetric
- None no symmetry

- **b_S**: base of a minimal slot symmetry BSGS.
- **sgens**: generators of the slot symmetry BSGS.
- **S_transversals**: transversals for the slot BSGS.
- **g**: permutation representing the tensor.

**Returns**

Return 0 if the tensor is zero, else return the array form of the permutation representing the canonical form of the tensor.

**Notes**

A tensor with dummy indices can be represented in a number of equivalent ways which typically grows exponentially with the number of indices. To be able to establish if two tensors with many indices are equal becomes computationally very slow in absence of an efficient algorithm.

The Butler-Portugal algorithm [3] is an efficient algorithm to put tensors in canonical form, solving the above problem.

Portugal observed that a tensor can be represented by a permutation, and that the class of tensors equivalent to it under slot and dummy symmetries is equivalent to the double coset $D * g * S$ (Note: in this documentation we use the conventions for multiplication of permutations p, q with (p*q)(i) = p[q[i]] which is opposite to the one used in the Permutation class)

Using the algorithm by Butler to find a representative of the double coset one can find a canonical form for the tensor.
To see this correspondence, let $g$ be a permutation in array form; a tensor with indices $\text{ind}$ (the indices including both the contravariant and the covariant ones) can be written as

\[ t = T(\text{ind}[g[0]], \ldots, \text{ind}[g[n-1]]), \]

where $n = \text{len}(\text{ind})$; $g$ has size $n + 2$, the last two indices for the sign of the tensor (trick introduced in [4]).

A slot symmetry transformation $s$ is a permutation acting on the slots $t \rightarrow T(\text{ind}([g * s][0]), \ldots, \text{ind}([d * g][n-1]))$

A dummy symmetry transformation acts on $\text{ind} t \rightarrow T(\text{ind}([d * g][0]), \ldots, \text{ind}([d * g][n-1]))$

Being interested only in the transformations of the tensor under these symmetries, one can represent the tensor by $g$, which transforms as

\[ g - \rightarrow d * g * s, \text{ so it belongs to the coset } D * g * S, \text{ or in other words to the set of all permutations allowed by the slot and dummy symmetries.} \]

Let us explain the conventions by an example.

**Given a tensor $T^d_3 d_2 d_1 d_3$ with the slot symmetries**

\[ T^0 a_1 a_2 a_3 a_4 a_5 = -T^2 a_1 a_2 a_3 a_4 a_5 \]

\[ T^0 a_1 a_2 a_3 a_4 a_5 = -T^4 a_1 a_2 a_3 a_4 a_5 \]

and symmetric metric, find the tensor equivalent to it which is the lowest under the ordering of indices: lexicographic ordering $d_1, d_2, d_3$ and then contravariant before covariant index; that is the canonical form of the tensor.

The canonical form is $-T^d_1 d_2 d_3$ obtained using $T^0 a_1 a_2 a_3 a_4 a_5 = -T^2 a_1 a_2 a_3 a_4 a_5$.

To convert this problem into the input for this function, use the following ordering of the index names (- for covariant for short) $d_1, -d_1, d_2, -d_2, d_3, -d_3$

$T^d a_1 a_2 a_3 a_4 a_5$ corresponds to $g = [4, 2, 0, 1, 3, 5, 6, 7]$ where the last two indices are for the sign

\[ \text{sgens} = [\text{Permutation}(0, 2)(6, 7), \text{Permutation}(0, 4)(6, 7)] \]

\[ \text{sgens}[0] \text{ is the slot symmetry } -(0, 2) T^0 a_1 a_2 a_3 a_4 a_5 = -T^2 a_1 a_2 a_3 a_4 a_5 \]

\[ \text{sgens}[1] \text{ is the slot symmetry } -(0, 4) T^0 a_1 a_2 a_3 a_4 a_5 = -T^4 a_1 a_2 a_3 a_4 a_5 \]

The dummy symmetry group $D$ is generated by the strong base generators $[(0, 1), (2, 3), (4, 5), (0, 2)(1, 3), (0, 4)(1, 5)]$ where the first three interchange covariant and contravariant positions of the same index ($d_1 <-> -d_1$) and the last two interchange the dummy indices themselves ($d_1 <-> d_2$).

The dummy symmetry acts from the left $d = [1, 0, 2, 3, 4, 5, 6, 7]$ exchange $d_1 \leftrightarrow -d_1$

\[ T^d a_1 a_2 a_3 a_4 a_5 = T^d a_1 a_2 a_3 a_4 a_5 \]

\[ g = [4, 2, 0, 1, 3, 5, 6, 7] \rightarrow [4, 2, 1, 0, 3, 5, 6, 7] = a, \text{mul}(d, g) \text{ which differs from } a, \text{mul}(g, d). \]

The slot symmetry acts from the right $s = [2, 1, 0, 3, 4, 5, 7, 6]$ exchanges slots 0 and 2 and changes sign $T^d a_1 a_2 a_3 a_4 a_5 = T^d a_1 a_2 a_3 a_4 a_5$

\[ g = [4, 2, 0, 1, 3, 5, 6, 7] \rightarrow [0, 2, 4, 1, 3, 5, 7, 6] = a, \text{mul}(g, s) \]

**Example in which the tensor is zero, same slot symmetries as above: $T^d d_1 d_3 d_1 d_3 d_2$**

\[ = -T^d d_1 d_3 d_1 d_3 d_2 \text{ under slot symmetry } -(0, 4); \]

\[ = T^d d_1 d_3 d_1 d_2 d_2 \text{ under slot symmetry } -(0, 2); \]

\[ = T^d d_1 d_3 d_1 d_2 d_2 \text{ symmetric metric}; \]
= 0 since two of these lines have tensors differ only for the sign.

The double coset $D^g S$ consists of permutations $h = d * g * s$ corresponding to equivalent tensors; if there are two $h$ which are the same apart from the sign, return zero; otherwise choose as representative the tensor with indices ordered lexicographically according to $[d_1, -d_1, d_2, -d_2, d_3, -d_3]$ that is $\text{rep} = \min(D^g S) = \min([d^g s \text{ for } d \in D \text{ for } s \in S])$

The indices are fixed one by one; first choose the lowest index for slot 0, then the lowest remaining index for slot 1, etc. Doing this one obtains a chain of stabilizers $S \to S_{b_0} \to S_{b_0, b_1} \to \ldots$ and $D \to D_{p_0} \to D_{p_0, p_1} \to \ldots$

where $[b_0, b_1, \ldots] = \text{range}(b)$ is a base of the symmetric group; the strong base $b_S$ of $S$ is an ordered sublist of it; therefore it is sufficient to compute once the strong base generators of $S$ using the Schreier-Sims algorithm; the stabilizers of the strong base generators are the strong base generators of the stabilizer subgroup.

d_base = [p_0, p_1, \ldots] is not in general in lexicographic order, so that one must recompute the strong base generators each time; however this is trivial, there is no need to use the Schreier-Sims algorithm for $D$.

The algorithm keeps a TAB of elements $(s_i, d_i, h_i)$ where $h_i = d_i \times g \times s_i$ satisfying $h_i[j] = p_j$ for $0 \leq j < i$ starting from $s_0 = id, d_0 = id, h_0 = g$.

The equations $h_0[0] = p_0, h_0[1] = p_1, \ldots$ are solved in this order, choosing each time the lowest possible value of $p_i$.

For $j < i$ $d_i * g * s_i * S_{b_0, \ldots, b_i-1} * b_j = D_{p_0, \ldots, p_i-1} * p_j$ so that for $dx$ in $D_{p_0, \ldots, p_i-1}$ and $sx$ in $S_{base[0], \ldots, base[i-1]}$ one has $dx * d_i * g * s_i * sx * b_j = p_j$

Search for $dx, sx$ such that this equation holds for $j = i$; it can be written as $s_i * sx * b_j = J, dx * d_i * g * J = p_j, sx * b_j = s_i * s_j * s_k * b_j = 1 * J$; $sx = \text{trace}(s_i * s_j * s_k - 1, S_{b_0, \ldots, b_i-1}) dx * s_j * p_j = d_i * g * J; dx = \text{trace}(d_i * g * J, D_{p_0, \ldots, p_i-1})$

$s_{i+1} = s_i * \text{trace}(s_i * s_j * s_k - 1, S_{b_0, \ldots, b_i-1}) d_{i+1} = \text{trace}(d_i * g * J, D_{p_0, \ldots, p_i-1}) * s_j - 1 * d_i; h_{i+1} * b_i = d_{i+1} * g * s_i * b_i = p_i$

$h_n * b_j = p_j$ for all $j$, so that $h_n$ is the solution.

Add the found $(s, d, h)$ to TAB1.

At the end of the iteration sort TAB1 with respect to the $h$; if there are two consecutive $h$ in TAB1 which differ only for the sign, the tensor is zero, so return 0; if there are two consecutive $h$ which are equal, keep only one.

Then stabilize the slot generators under $i$ and the dummy generators under $p_i$.

Assign $TAB = TAB1$ at the end of the iteration step.

At the end $TAB$ contains a unique $(s, d, h)$, since all the slots of the tensor $h$ have been fixed to have the minimum value according to the symmetries. The algorithm returns $h$.

It is important that the slot BSGS has lexicographic minimal base, otherwise there is an $i$ which does not belong to the slot base for which $p_i$ is fixed by the dummy symmetry only, while $i$ is not invariant from the slot stabilizer, so $p_i$ is not in general the minimal value.

This algorithm differs slightly from the original algorithm [3]:

the canonical form is minimal lexicographically, and the BSGS has minimal base under lexicographic order. Equal tensors $h$ are eliminated from TAB.
Examples

```python
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.combinatorics.tensor_can import double_coset_can_rep, get_transversals
>>> gens = [Permutation(x) for x in [[2, 1, 0, 3, 4, 5, 7, 6], [4, 1, 2, 3, 0, 5, 7, 6]]]
>>> base = [0, 2]
>>> g = Permutation([4, 2, 0, 1, 3, 5, 6, 7])
>>> transversals = get_transversals(base, gens)
>>> double_coset_can_rep([list(range(6))], [0], base, gens, transversals, g)
[0, 1, 2, 3, 4, 5, 7, 6]

```
Examples

```python
>>> from sympy.combinatorics.tensor_can import (get_symmetric_group_sgs,
bsgs_direct_product)
>>> base1, gens1 = get_symmetric_group_sgs(1)
>>> base2, gens2 = get_symmetric_group_sgs(2)
>>> bsgs_direct_product(base1, gens1, base2, gens2)
([1], [(4)(1 2)])
```

Finitely Presented Groups

Introduction

This module presents the functionality designed for computing with finitely-presented groups (fp-groups for short). The name of the corresponding SymPy object is FpGroup. The functions or classes described here are studied under computational group theory. All code examples assume:

```python
>>> from sympy.combinatorics.free_groups import free_group, vfree_group,
xfree_group
>>> from sympy.combinatorics.fp_groups import FpGroup, CosetTable, coset_enumeration_r
```

Overview of Facilities

The facilities provided for fp-groups fall into a number of natural groupings

- The construction of fp-groups using a free group and a list of words in generators of that free group.
- Index determination using the famous Todd-Coxeter procedure.
- The construction of all subgroups having index less than some (small) specified positive integer, using the Low-Index Subgroups algorithm.
- Algorithms for computing presentations of a subgroup of finite index in a group defined by finite presentation.

For a description of fundamental algorithms of finitely presented groups we often make use of Handbook of Computational Group Theory.

The Construction of Finitely Presented Groups

Finitely presented groups are constructed by factoring a free group by a set of relators. The set of relators is taken in as a list of words in generators of free group in SymPy, using a list provides ordering to the relators. If the list of relators is empty, the associated free group is returned.

Example of construction of a finitely-presented group. The symmetric group of degree 4 may be represented as a two generator group with presentation \( \langle a, b \mid a^2, b^3, (ab)^4 \rangle \). Giving the relations as a list of relators, group in SymPy would be specified as:
```python
>>> F, a, b = free_group("a, b")
>>> G = FpGroup(F, [a**2, b**3, (a*b)**4])
>>> G
<fp group on the generators (a, b)>
```

Currently groups with relators having presentation like \( \langle r, s, t \mid r^2, s^2, t^2, rst = str = trs \rangle \) will have to be specified as:

```python
>>> F, r, s, t = free_group("r, s, t")
>>> G = FpGroup(F, [r**2, s**2, t**2, r*s*t**-1*t**-1*s**-1, s*t*r*s**-1*r**-1*t**-1])
```

Obviously this is not a unique way to make that particular group, but the point is that in case of equality with non-identity the user has to manually do that.

## Free Groups and Words

### Construction of a Free Group

`free_group("gen0, gen1, ..., gen_(n-1)")` constructs a free group \( F \) on \( n \) generators, where \( n \) is a positive integer. The \( i \)-th generator of \( F \) may be obtained using the method `.generators[i]`, \( i = 0, ..., n - 1 \).

```python
>>> F, x, y = free_group("x, y")
```

creates a free group \( F \) of rank 2 and assigns the variables \( x \) and \( y \) to the two generators.

```python
>>> F = vfree_group("x, y")
>>> F
<free group on the generators (x, y)>
```

creates a free group \( F \) of rank 2, with tuple of generators \( F\)\generators, and inserts \( x \) and \( y \) as generators into the global namespace.

```python
>>> F = xfree_group("x, y")
>>> F
(<free group on the generators (x, y)>, (x, y))
>>> x**2
x**2
```

creates a free groups \( F[0] \) of rank 2, with tuple of generators \( F[1] \).

### Construction of words

This section is applicable to words of `FreeGroup` as well as `FpGroup`. When we say `word` in SymPy, it actually means a reduced word, since the words are automatically reduced. Given a group \( G \) defined on \( n \) generators \( x_1, x_2, x_3, ..., x_n \), a word is constructed as \( s_1^{r_1} s_2^{r_2} ... s_k^{r_k} \) where \( s_i \in \{x_1, x_2, ..., x_n\}, r_i \in \mathbb{Z} \) for all \( k \).

Each word can be constructed in a variety of ways, since after reduction they may be equivalent.
Coset Enumeration: The Todd-Coxeter Algorithm

This section describes the use of coset enumeration techniques in SymPy. The algorithm used for coset enumeration procedure is Todd-Coxeter algorithm and is developed in SymPy using [Ho05] and [CDHW73]. The reader should consult [CDHW73] and [Hav91] for a general description of the algorithm.

We have two strategies of coset enumeration relator-based and coset-table based and the two have been implemented as coset_enumeration_r, coset_enumeration_c respectively. The two strategies differ in the way they make new definitions for the cosets.

Though from the user point of view it is suggested to rather use the .coset_enumeration method of FpGroup and specify the strategy argument.

strategy:
(default="relator_based") specifies the strategy of coset enumeration to be used, possible values are "relator_based" or "coset_table_based".

CosetTable

Class used to manipulate the information regarding the coset enumeration of the finitely presented group $G$ on the cosets of the subgroup $H$.

Basically a coset table CosetTable($G, H$), is the permutation representation of the finitely presented group on the cosets of a subgroup. Most of the set theoretic and group functions use the regular representation of $G$, i.e., the coset table of $G$ over the trivial subgroup.

The actual mathematical coset table is obtained using .table attribute and is a list of lists. For each generator $g$ of $G$ it contains a column and the next column corresponds to $g**-1$ and so on for other generators, so in total it has $2*G.rank()$ columns. Each column is simply a list of integers. If $l$ is the generator list for the generator $g$ and if $l[i] = j$ then generator $g$ takes the coset $i$ to the coset $j$ by multiplication from the right.

For finitely presented groups, a coset table is computed by a Todd-Coxeter coset enumeration. Note that you may influence the performance of that enumeration by changing the values of the variable CosetTable.coset_table_max_limit.

Attributes of CosetTable

For CosetTable($G, H$) where $G$ is the group and $H$ is the subgroup.

- $n$: A non-negative integer, non-mutable attribute, dependently calculated as the maximum among the live-cosets (i.e. $\Omega$).
- table: A list of lists, mutable attribute, mathematically represents the coset table.
- omega: A list, dependent on the internal attribute $p$. $\Omega$ represents the list of live-cosets. A standard coset-table has its $\Omega = \{0, 1, \ldots, index - 1\}$ where $index$ is the index of subgroup $H$ in $G$.

For experienced users we have a number of parameters that can be used to manipulate the algorithm, like

- coset_table_max_limit (default value = 4096000): manipulate the maximum number of cosets allowed in coset enumeration, i.e. the number of rows allowed in coset table. A coset enumeration will not finish if the subgroup does not have finite index, and even if it has it may take many more intermediate cosets than the actual index of the subgroup.
is. To avoid a coset enumeration “running away” therefore SymPy has a “safety stop” built-in. This is controlled by this variable. To change it, use \textit{max\_cosets} keyword. For example:

```python
>>> F, a, b = free_group("a, b")
>>> Cox = FpGroup(F, [a**6, b**6, (a*b)**2, (a**2*b**2)**2, (a**3*b**3)**5])
>>> C_r = coset_enumeration_r(Cox, [a], max_cosets=50)
Traceback (most recent call last):
 ...
ValueError: the coset enumeration has defined more than 50 cosets
```

- \textit{max\_stack\_size} (default value = 500): manipulate the maximum size of deduction\_stack above or equal to which the stack is emptied.

### Compression and Standardization

For any two entries \(i, j\) with \(i < j\) in coset table, the first occurrence of \(i\) in a coset table precedes the first occurrence of \(j\) with respect to the usual row-wise ordering of the table entries. We call such a table a standard coset table. To standardize a \texttt{CosetTable} we use the \texttt{.standardize} method.

**Note** the method alters the given table, it does not create a copy.

### Subgroups of Finite Index

The functionality in this section are concerned with the construction of subgroups of finite index. We describe a method for computing all subgroups whose index does not exceed some (modest) integer bound.

#### Low Index Subgroups

\texttt{low\_index\_subgroups}(G, N): Given a finitely presented group \(G = \langle X | R \rangle\) (can be a free group), and \(N\) a positive integer; determine the conjugacy classes of subgroups of \(G\) whose indices is less than or equal to \(N\).

For example to find all subgroups of \(G = \langle a, b \mid a^2 = b^3 = (ab)^4 = 1 \rangle\) having index \(\leq 4\), can be found as follows:

```python
>>> from sympy.combinatorics.fp_groups import low_index_subgroups
>>> F, a, b = free_group("a, b")
>>> G = FpGroup(F, [a**2, b**3, (a*b)**4])
>>> l = low_index_subgroups(G, 4)
>>> for coset_table in l:
... print(coset_table.table)
...
[[0, 0, 0, 0], [0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 3, 3]]
[[0, 0, 1, 2], [2, 2, 2, 0], [1, 1, 0, 1]]
[[1, 1, 0, 0], [0, 0, 1, 1]]
```
This returns the coset tables of subgroups of satisfying the property that index, \( \text{index} \), of subgroup in group is \( \leq n \).

**Constructing a presentation for a subgroup**

In this section we discuss finding the presentation of a subgroup in a finitely presentation group. While the subgroup is currently allowed as input only in the form of a list of generators for the subgroup, you can expect the functionality of a coset table as input for subgroup in the group in near future.

There are two ways to construct a set of defining relations for subgroup from those of \( G \). First is on a set of Schreier generators, known generally as Reidemeister-Schreier algorithm or on the given list of generators of \( H \).

**Reidemeister Schreier algorithm**

called using `reidemeister_presentation(G, Y)` where \( G \) is the group and \( Y \) is a list of generators for subgroup \( H \) whose presentation we want to find.

```python
>>> from sympy.combinatorics.fp_groups import reidemeister_presentation
>>> F, x, y = free_group("x, y")
>>> f = FpGroup(F, [x**3, y**5, (x*y)**2])
>>> H = [x*y, x**-1*y**-1*x*y*x]
>>> p1 = reidemeister_presentation(f, H)
>>> p1
((y_1, y_2), (y_1**2, y_2**3, y_2*y_1*y_2*y_1*y_2**2*y_1))
```

**Bibliography**

**Polycyclic Groups**

**Introduction**

This module presents the functionality designed for computing with polycyclic groups(\texttt{PcGroup} for short). The name of the corresponding SymPy object is \texttt{PolycyclicGroup}. The functions or classes described here are studied under \textit{Computational Group Theory}.

**Overview of functionalities**

- The construction of \texttt{PolycyclicGroup} from a given \texttt{PermutationGroup}.
- Computation of polycyclic generating sequence(\texttt{pcgs} for short) and polycyclic series(\texttt{pc_series}).
- Computation of relative order for polycyclic series.
- Implementation of class \texttt{Collector} which can be treated as a base for polycyclic groups.
- Implementation of polycyclic group presentation(\texttt{pc_presentation} for short).
• Computation of exponent vector, depth and leading exponent for a given element of a polycyclic group.

For a description of fundamental algorithms of polycyclic groups, we often make use of *Handbook of Computational Group Theory*.

**The Construction of Polycyclic Groups**

Given a Permutation Group, A Polycyclic Group is constructed by computing the corresponding polycyclic generating sequence, polycyclic series and it's relative order.

**Attributes of PolycyclicGroup**

- `pc_sequence`: Polycyclic sequence is formed by collecting all the missing generators between the adjacent groups in the derived series of given permutation group.
- `pc_series`: Polycyclic series is formed by adding all the missing generators of `der[i+1]` in `der[i]`, where `der` represents derived series.
- `relative_order`: A list, computed by the ratio of adjacent groups in `pc_series`.
- `collector`: By default, it is None. Collector class provides the polycyclic presentation.

```python
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> G = SymmetricGroup(4)
>>> PcGroup = G.polycyclic_group()
>>> len(PcGroup.pcg)
4
>>> pc_series = PcGroup.pc_series
>>> pc_series[0].equals(G) # use equals, not literal `==`
True
>>> gen = pc_series[len(pc_series) - 1].generators[0]
>>> gen.is_identity
True
>>> PcGroup.relative_order
[2, 3, 2, 2]
```

**The Construction of Collector**

Collector is one of the attributes of class PolycyclicGroup.

**Attributes of Collector**

Collector posses all the attributes of PolycyclicGroup, In addition there are few more attributes which are defined below:

- `free_group`: free_group provides the mapping of polycyclic generating sequence with the free group elements.
- `pc_presentation`: Provides the presentation of polycyclic groups with the help of power and conjugate relators.
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> G = SymmetricGroup(3)
>>> PcGroup = G.polycyclic_group()
>>> Collector = PcGroup.collector
>>> Collector.free_group
<free group on the generators (x0, x1)>
>>> Collector.pc_presentation
{x0**2: (), x1**3: (), x0**-1*x1*x0: x1**2}

Computation of Minimal Uncollected Subword

A word $V$ defined on generators in the free_group of pc_group is a minimal uncollected subword of the word $W$ if $V$ is a subword of $W$ and it has one of the following form:

- $v = x_{i+1}a_i x_i$
- $v = x_{i+1}a_i x_i^{-1}$
- $v = x_i a_j$

$a_j \notin \{0, \ldots, \text{relative_order}[j] - 1\}$.

Computation of Subword Index

For a given word and it’s subword, subword_index computes the starting and ending index of the subword in the word.
Computation of Collected Word

A word $W$ is called collected, if $W = x_{i_1}^{a_1} \cdots x_{i_r}^{a_r}$ with $i_1 < i_2 < \ldots < i_r$ and $a_j$ is in $\{1, \ldots, s_j-1\}$, where $s_j$ represents the respective relative order.

```python
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> from sympy.combinatorics.free_groups import free_group

>>> G = SymmetricGroup(4)
>>> PcGroup = G.polycyclic_group()
>>> collector = PcGroup.collector

>>> F, x0, x1, x2, x3 = free_group("x0, x1, x2, x3")

>>> word = x3*x2*x1*x0

>>> collected_word = collector.collected_word(word)

>>> G1 = PermutationGroup()

>>> for w in word:
... sym = w[0]
... perm = free_to_perm[sym]
... G1 = PermutationGroup([perm] + G1.generators)

>>> G2 = PermutationGroup()

>>> for w in collected_word:
... sym = w[0]
... perm = free_to_perm[sym]
... G2 = PermutationGroup([perm] + G2.generators)

The two are not identical but they are equivalent:

```python
>>> G1 == G2
False

>>> G1.equals(G2)
True
```

Computation of Polycyclic Presentation

The computation of presentation starts from the bottom of the pcgs and polycyclic series. Storing all the previous generators from pcgs and then taking the last generator as the generator which acts as a conjugator and conjugates all the previous generators in the list.

To get a clear picture, start with an example of SymmetricGroup(4). For S(4) there are 4 generators in pcgs say $[x_0, x_1, x_2, x_3]$ and the relative order vector is $[2, 3, 2, 2]$. Starting from bottom of this sequence the presentation is computed in order as below.

using only $[x_3]$ from pcgs and pc_series[4] compute:

- x_3^2

using only $[x_3]$ from pcgs and pc_series[3] compute:

- x_3^2
- $x_2^{-1} x_3 x_2$
SymPy Documentation, Release 1.12.1

using \([x_3, x_2]\) from pcgs and pc_series[2] compute:

- \(x_1^3\)
- \(x_1^{-1}x_3x_1\)
- \(x_1^{-1}x_2x_1\)

using \([x_3, x_2, x_1]\) from pcgs and pc_series[1] compute:

- \(x_0^2\)
- \(x_0^{-1}x_3x_0\)
- \(x_0^{-1}x_2x_0\)
- \(x_0^{-1}x_1x_0\)

One thing to note is same group can have different pcgs due to varying derived_series which, results in different polycyclic presentations.

```python
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> from sympy.combinatorics.permutations import Permutation
>>> G = SymmetricGroup(4)
>>> PcGroup = G.polycyclic_group()
>>> collector = PcGroup.collector
>>> pcgs = PcGroup.pcgs
>>> len(pcgs)
4
>>> free_group = collector.free_group
>>> pc_presentation = collector.pc_presentation
>>> free_to_perm = {}
>>> for s, g in zip(free_group.symbols, pcgs):
...     free_to_perm[s] = g
>>> for k, v in pc_presentation.items():
...     k_array = k.array_form
...     if v != ():
...         v_array = v.array_form
...         lhs = Permutation()
...         for gen in k_array:
...             s = gen[0]
...             e = gen[1]
...             lhs = lhs*free_to_perm[s]**e
...         if v == ():
...             assert lhs.is_identity
...             continue
...         rhs = Permutation()
...         for gen in v_array:
...             s = gen[0]
...             e = gen[1]
...             rhs = rhs*free_to_perm[s]**e
...         assert lhs == rhs
```
Computation of Exponent Vector

Any generator of the polycyclic group can be represented with the help of its polycyclic generating sequence. Hence, the length of exponent vector is equal to the length of the pcgs.

A given generator \(g \) of the polycyclic group, can be represented as \(g = x_1^{e_1} \cdots x_n^{e_n} \), where \(x_i \) represents polycyclic generators and \(n \) is the number of generators in the free group equal to the length of pcgs.

```python
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> from sympy.combinatorics.permutations import Permutation
>>> G = SymmetricGroup(4)
>>> PcGroup = G.polycyclic_group()
>>> collector = PcGroup.collector
>>> pcgs = PcGroup.pcgs
>>> collector.exponent_vector(G[0])
[1, 0, 0, 0]
>>> exp = collector.exponent_vector(G[1])
>>> g = Permutation()
>>> for i in range(len(exp)):
...     g = g*pcgs[i]**exp[i] if exp[i] else g
>>> assert g == G[1]
```

Depth of Polycyclic generator

Depth of a given polycyclic generator is defined as the index of the first non-zero entry in the exponent vector.

```python
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> G = SymmetricGroup(3)
>>> PcGroup = G.polycyclic_group()
>>> collector = PcGroup.collector
>>> collector.depth(G[0])
2
>>> collector.depth(G[1])
1
```

Computation of Leading Exponent

Leading exponent represents the exponent of polycyclic generator at the above depth.

```python
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> G = SymmetricGroup(3)
>>> PcGroup = G.polycyclic_group()
>>> collector = PcGroup.collector
>>> collector.leading_exponent(G[1])
1
```
Bibliography

Functions

All functions support the methods documented below, inherited from `sympy.core.function.Function` (page 1096).

```python
class sympy.core.function.Function(*args)
    Base class for applied mathematical functions.
    
    It also serves as a constructor for undefined function classes.
    
    See the Writing Custom Functions (page 102) guide for details on how to subclass Function and what methods can be defined.
```

Examples

Undefined Functions

To create an undefined function, pass a string of the function name to `Function`.

```python
>>> from sympy import Function, Symbol
>>> x = Symbol('x')
>>> f = Function('f')
>>> g = Function('g')(x)
>>> f
f
>>> f(x)
f(x)
>>> g
g(x)
>>> f(x).diff(x)
Derivative(f(x), x)
>>> g.diff(x)
Derivative(g(x), x)
```

Assumptions can be passed to `Function` the same as with a `Symbol` (page 1028). Alternatively, you can use a `Symbol` with assumptions for the function name and the function will inherit the name and assumptions associated with the `Symbol`:

```python
>>> f_real = Function('f', real=True)
>>> f_real(x).is_real
True
>>> f_real_inherit = Function(Symbol('f', real=True))
>>> f_real_inherit(x).is_real
True
```

Note that assumptions on a function are unrelated to the assumptions on the variables it is called on. If you want to add a relationship, subclass `Function` and define custom assumptions handler methods. See the Assumptions (page 111) section of the Writing Custom Functions (page 102) guide for more details.

Custom Function Subclasses

The Writing Custom Functions (page 102) guide has several Complete Examples (page 122) of how to subclass `Function` to create a custom function.
as_base_exp()
 Returns the method as the 2-tuple (base, exponent).

fdiff(argindex=1)
 Returns the first derivative of the function.

classmethod is_singular(a)
 Tests whether the argument is an essential singularity or a branch point, or the functions is non-holomorphic.

Contents

Elementary

This module implements elementary functions such as trigonometric, hyperbolic, and sqrt, as well as functions like Abs, Max, Min etc.

Complex Functions

class sympy.functions.elementary.complexes.re(arg)
 Returns real part of expression. This function performs only elementary analysis and so it will fail to decompose properly more complicated expressions. If completely simplified result is needed then use Basic.as_real_imag() or perform complex expansion on instance of this function.

 Parameters
 arg : Expr
 Real or complex expression.

 Returns
 expr : Expr
 Real part of expression.

Examples

>>> from sympy import re, im, I, E, symbols
>>> x, y = symbols('x y', real=True)
>>> re(2*E)
2*E
>>> re(2*I + 17)
17
>>> re(2*I)
0
>>> re(im(x) + x*I + 2)
2
>>> re(5 + I + 2)
7

See also:

im (page 443)
as_real_imag(*deep=True, **hints*)

Returns the real number with a zero imaginary part.

class sympy.functions.elementary.complexes.im(arg)

Returns imaginary part of expression. This function performs only elementary analysis and so it will fail to decompose properly more complicated expressions. If completely simplified result is needed then use Basic.as_real_imag() or perform complex expansion on instance of this function.

Parameters

- **arg**: Expr

 Real or complex expression.

Returns

- **expr**: Expr

 Imaginary part of expression.

Examples

```python
>>> from sympy import re, im, E, I
>>> from sympy import re, im, E, I
>>> from sympy import re, im, E, I
>>> im(2*E)
0
>>> im(2*I + 17)
2
>>> im(x*I)
re(x)
>>> im(re(x) + y)
im(y)
>>> im(2 + 3*I)
3
```

See also:

* re (page 442)

as_real_imag(*deep=True, **hints*)

Return the imaginary part with a zero real part.

class sympy.functions.elementary.complexes.sign(arg)

Returns the complex sign of an expression:

Parameters

- **arg**: Expr

 Real or imaginary expression.

Returns

- **expr**: Expr

 Complex sign of expression.
Explanation

If the expression is real the sign will be:
- 1 if expression is positive
- 0 if expression is equal to zero
- -1 if expression is negative

If the expression is imaginary the sign will be:
- I if $\text{im}(\text{expression})$ is positive
- $-I$ if $\text{im}(\text{expression})$ is negative

Otherwise an unevaluated expression will be returned. When evaluated, the result (in general) will be $\cos(\text{arg}(\text{expr})) + I\sin(\text{arg}(\text{expr}))$.

Examples

```python
>>> from sympy import sign, I

>>> sign(-1)
-1
```
```
>>> sign(0)
0
```
```
>>> sign(-3*I)
-I
```
```
>>> sign(1 + I)
sign(1 + I)
```
```
>>> _.evalf()
0.707106781186548 + 0.707106781186548*I
```

See also:

`Abs` (page 444), `conjugate` (page 446)

class sympy.functions.elementary.complexes.Abs(arg)

Return the absolute value of the argument.

Parameters

- `arg` : Expr

 Real or complex expression.

Returns

- `expr` : Expr

 Absolute value returned can be an expression or integer depending on input `arg`.

Explanation

This is an extension of the built-in function abs() to accept symbolic values. If you pass a SymPy expression to the built-in abs(), it will pass it automatically to Abs().

Examples

```python
>>> from sympy import Abs, Symbol, S, I

>>> Abs(-1)
1

>>> x = Symbol('x', real=True)

>>> Abs(-x)
Abs(x)

>>> Abs(x**2)
x**2

>>> abs(-x) # The Python built-in
Abs(x)

>>> Abs(3*x + 2*I)
sqrt(9*x**2 + 4)

>>> Abs(8*I)
8
```

Note that the Python built-in will return either an Expr or int depending on the argument:

```python
>>> type(abs(-1))
<... 'int'>

>>> type(abs(S.NegativeOne))
<class 'sympy.core.numbers.One'>
```

Abs will always return a SymPy object.

See also:

* sign (page 443), conjugate (page 446)

fdiff(argindex=1)

Get the first derivative of the argument to Abs().

class sympy.functions.elementary.complexes.arg(arg)

Returns the argument (in radians) of a complex number. The argument is evaluated in consistent convention with atan2 where the branch-cut is taken along the negative real axis and arg(z) is in the interval $(-\pi, \pi]$. For a positive number; the argument is always 0; the argument of a negative number is π; and the argument of 0 is undefined and returns nan. So the arg function will never nest greater than 3 levels since at the 4th application, the result must be nan; for a real number, nan is returned on the 3rd application.

Parameters

arg : Expr

Real or complex expression.

Returns

value : Expr

Returns arc tangent of arg measured in radians.
Examples

```python
>>> from sympy import arg, I, sqrt, Dummy
>>> from sympy.abc import x
>>> arg(2.0)
0
>>> arg(I)
pi/2
>>> arg(sqrt(2) + I*sqrt(2))
pi/4
>>> arg(sqrt(3)/2 + I/2)
pi/6
>>> arg(4 + 3*I)
atan(3/4)
>>> arg(0.8 + 0.6*I)
0.643501108793284
>>> arg(arg(arg(arg(x))))
nan
>>> real = Dummy(real=True)
>>> arg(arg(arg(real)))
nan
```

class `sympy.functions.elementary.complexes.conjugate(arg)`

Returns the complex conjugate of an argument. In mathematics, the complex conjugate of a complex number is given by changing the sign of the imaginary part. Thus, the conjugate of the complex number \(a + ib \) (where \(a \) and \(b \) are real numbers) is \(a - ib \).

Parameters

- **arg**: Expr

 Real or complex expression.

Returns

- **arg**: Expr

 Complex conjugate of arg as real, imaginary or mixed expression.

Examples

```python
>>> from sympy import conjugate, I
>>> conjugate(2)
2
>>> conjugate(I)
-I
>>> conjugate(3 + 2*I)
3 - 2*I
>>> conjugate(5 - I)
5 + I
```

See also:

- `sign` (page 443), `Abs` (page 444)
References

[R248]

class sympy.functions.elementary.complexes.polar_lift(arg)
Lift argument to the Riemann surface of the logarithm, using the standard branch.

Parameters
arg : Expr
 Real or complex expression.

Examples

>>> from sympy import Symbol, polar_lift, I
>>> p = Symbol('p', polar=True)
>>> x = Symbol('x')
>>> polar_lift(4)
4*exp_polar(0)
>>> polar_lift(-4)
4*exp_polar(I*pi)
>>> polar_lift(-I)
exp_polar(-I*pi/2)
>>> polar_lift(I + 2)
polar_lift(2 + I)

See also:
sympy.functions.elementary.exponential.exp_polar (page 471),
periodic_argument (page 447)

class sympy.functions.elementary.complexes.periodic_argument(ar, period)
Represent the argument on a quotient of the Riemann surface of the logarithm. That is, given a period P, always return a value in $(-P/2, P/2]$, by using exp($P*I$) = 1.

Parameters
ar : Expr
 A polar number.

period : Expr
 The period P.
Examples

```python
>>> from sympy import exp_polar, periodic_argument
>>> from sympy import I, pi
>>> periodic_argument(exp_polar(10*I*pi), 2*pi)
0
>>> periodic_argument(exp_polar(5*I*pi), 4*pi)
pi
>>> from sympy import exp_polar, periodic_argument
>>> from sympy import I, pi
>>> periodic_argument(exp_polar(5*I*pi), 2*pi)
pi
>>> periodic_argument(exp_polar(5*I*pi), 3*pi)
-pi
>>> periodic_argument(exp_polar(5*I*pi), pi)
0
```

See also:

- `sympy.functions.elementary.exponential.exp_polar` (page 471)
- `polar_lift` (page 447)
 Lift argument to the Riemann surface of the logarithm
- `principal_branch` (page 448)

class sympy.functions.elementary.complexes.principal_branch(x, period)
Represent a polar number reduced to its principal branch on a quotient of the Riemann surface of the logarithm.

Parameters

- `x` : Expr
 A polar number.
- `period` : Expr
 Positive real number or infinity.

Explanation

This is a function of two arguments. The first argument is a polar number z, and the second one a positive real number or infinity, p. The result is $z \mod \exp_polar(I*p)$.

Examples

```python
>>> from sympy import exp_polar, principal_branch, oo, I, pi
>>> from sympy.abc import z
>>> principal_branch(z, oo)
z
>>> principal_branch(exp_polar(2*pi*I)*3, 2*pi)
3*exp_polar(0)
>>> principal_branch(exp_polar(2*pi*I)*3*z, 2*pi)
3*principal_branch(z, 2*pi)
```
See also:

- `sympy.functions.elementary.exponential.exp_polar` (page 471)
- **polar_lift** (page 447)
 - Lift argument to the Riemann surface of the logarithm
- `periodic_argument` (page 447)

Trigonometric

Trigonometric Functions

```python
class sympy.functions.elementary.trigonometric.sin(arg)
```

The sine function.

- Returns the sine of x (measured in radians).

Explanation

This function will evaluate automatically in the case \(x/\pi \) is some rational number [R252]. For example, if \(x \) is a multiple of \(\pi, \pi/2, \pi/3, \pi/4, \) and \(\pi/6 \).

Examples

```python
>>> from sympy import sin, pi
>>> from sympy.abc import x
>>> sin(x**2).diff(x)
2*x*cos(x**2)
>>> sin(1).diff(x)
0
>>> sin(pi)
0
>>> sin(pi/2)
1
>>> sin(pi/6)
1/2
>>> sin(pi/12)
-sqrt(2)/4 + sqrt(6)/4
```

See also:

- `csc` (page 452), `cos` (page 450), `sec` (page 452), `tan` (page 450), `cot` (page 451), `asin` (page 454), `acsc` (page 458), `acos` (page 455), `asec` (page 457), `atan` (page 455), `acot` (page 456), `atan2` (page 459)

5.8. Topics
References

[R249], [R250], [R251], [R252]

class sympy.functions.elementary.trigonometric.cos(arg)
The cosine function.
Returns the cosine of x (measured in radians).

Explanation

See \texttt{sin()} (page 449) for notes about automatic evaluation.

Examples

\begin{verbatim}
>>> from sympy import cos, pi
>>> from sympy.abc import x
>>> cos(x**2).diff(x)
-2*x*sin(x**2)
>>> cos(1).diff(x)
0
>>> cos(pi)
-1
>>> cos(pi/2)
0
>>> cos(2*pi/3)
-1/2
>>> cos(pi/12)
\sqrt{2}/4 + \sqrt{6}/4
\end{verbatim}

See also:
\texttt{sin} (page 449), \texttt{csc} (page 452), \texttt{sec} (page 452), \texttt{tan} (page 450), \texttt{cot} (page 451), \texttt{asin} (page 454), \texttt{acsc} (page 458), \texttt{acos} (page 455), \texttt{asec} (page 457), \texttt{atan} (page 455), \texttt{acot} (page 456), \texttt{atan2} (page 459)

References

[R253], [R254], [R255]

class sympy.functions.elementary.trigonometric.tan(arg)
The tangent function.
Returns the tangent of x (measured in radians).
Explanation

See \texttt{sin} (page 449) for notes about automatic evaluation.

Examples

```python
>>> from sympy import tan, pi
>>> from sympy.abc import x
>>> tan(x**2).diff(x)
2*x*(tan(x**2)**2 + 1)
>>> tan(1).diff(x)
0
>>> tan(pi/8).expand()
-1 + sqrt(2)
```

See also:
\texttt{sin} (page 449), \texttt{csc} (page 452), \texttt{cos} (page 450), \texttt{sec} (page 452), \texttt{cot} (page 451), \texttt{asin} (page 454), \texttt{acsc} (page 458), \texttt{acos} (page 455), \texttt{asec} (page 457), \texttt{atan} (page 455), \texttt{acot} (page 456), \texttt{atan2} (page 459)

References

[R256], [R257], [R258]

\texttt{inverse(argindex=1)}

 Returns the inverse of this function.

class sympy.functions.elementary.trigonometric.\texttt{cot}(arg)

 The cotangent function.

 Returns the cotangent of \texttt{x} (measured in radians).

Explanation

See \texttt{sin} (page 449) for notes about automatic evaluation.

Examples

```python
>>> from sympy import cot, pi
>>> from sympy.abc import x
>>> cot(x**2).diff(x)
2*x*(-cot(x**2)**2 - 1)
>>> cot(1).diff(x)
0
>>> cot(pi/12)
sqrt(3) + 2
```
See also:

\(\sin \) (page 449), \(\csc \) (page 452), \(\cos \) (page 450), \(\sec \) (page 452), \(\tan \) (page 450), \(\arcsin \) (page 454), \(\arccsc \) (page 458), \(\arccos \) (page 455), \(\arcsec \) (page 457), \(\arctan \) (page 455), \(\arccot \) (page 456), \(\arctan2 \) (page 459)

References

[R259], [R260], [R261]

inverse\((\text{argindex}=1)\)

Returns the inverse of this function.

class sympy.functions.elementary.trigonometric.sec\((arg)\)

The secant function.

Returns the secant of \(x \) (measured in radians).

Explanation

See \(\sin \) (page 449) for notes about automatic evaluation.

Examples

```python
>>> from sympy import sec
>>> from sympy.abc import x
>>> sec(x**2).diff(x)
2*x*tan(x**2)*sec(x**2)
>>> sec(1).diff(x)
0
```

See also:

\(\sin \) (page 449), \(\csc \) (page 452), \(\cos \) (page 450), \(\tan \) (page 450), \(\cot \) (page 451), \(\arcsin \) (page 454), \(\arccsc \) (page 458), \(\arccos \) (page 455), \(\arcsec \) (page 457), \(\arctan \) (page 455), \(\arccot \) (page 456), \(\arctan2 \) (page 459)

References

[R262], [R263], [R264]

class sympy.functions.elementary.trigonometric.csc\((arg)\)

The cosecant function.

Returns the cosecant of \(x \) (measured in radians).
Explanation

See :math:`\sin()` (page 449) for notes about automatic evaluation.

Examples

```python
>>> from sympy import csc
>>> from sympy import x
>>> csc(x**2).diff(x)
-2*x*cot(x**2)*csc(x**2)
>>> csc(1).diff(x)
0
```

See also:

References

[R265], [R266], [R267]

.. class:: sympy.functions.elementary.trigonometric.sinc(arg)

 Represents an unnormalized sinc function:

 .. math::
 \text{sinc}(x) = \begin{cases}
 \frac{\sin x}{x} & x \neq 0 \\
 1 & x = 0
 \end{cases}

Examples

```python
>>> from sympy import sinc, oo, jn
>>> from sympy import x
>>> sinc(x)
sinc(x)
```

- Automated Evaluation

```python
>>> sinc(0)
1
>>> sinc(oo)
0
```

- Differentiation

```python
>>> sinc(x).diff()
\cos(x)/x - \sin(x)/x**2
```

- Series Expansion

5.8. Topics
sinc(x).series()
1 - x**2/6 + x**4/120 + O(x**6)

• As zero’th order spherical Bessel Function

sinc(x).rewrite(jn)
jn(0, x)

See also:
sin (page 449)

References
[R268]

Trigonometric Inverses

class sympy.functions.elementary.trigonometric.asin(arg)
The inverse sine function.
Returns the arcsine of x in radians.

Explanation

asin(x) will evaluate automatically in the cases \(x \in \{\infty, -\infty, 0, 1, -1\} \) and for some instances when the result is a rational multiple of \(\pi \) (see the eval class method).
A purely imaginary argument will lead to an asinh expression.

Examples

from sympy import asin, oo
asin(1)
pi/2
asin(-1)
-pi/2
asin(-oo)
oo*I
asin(oo)
-oo*I

See also:

sin (page 449), csc (page 452), cos (page 450), sec (page 452), tan (page 450), cot (page 451), acsc (page 458), acos (page 455), asec (page 457), atan (page 455), acot (page 456), atan2 (page 459)
References

[R269], [R270], [R271]

inverse(argindex=1)

Returns the inverse of this function.

```python
class sympy.functions.elementary.trigonometric.acos(arg)
```

The inverse cosine function.

Explanation

Returns the arc cosine of x (measured in radians).

\(\text{acos}(x) \) will evaluate automatically in the cases \(x \in \{ \infty, -\infty, 0, 1, -1 \} \) and for some instances when the result is a rational multiple of \(\pi \) (see the eval class method).

\(\text{acos}(\text{zoo}) \) evaluates to \(\text{zoo} \) (see note in \textit{sympy.functions.elementary.trigonometric.asec} (page 457))

A purely imaginary argument will be rewritten to asinh.

Examples

```python
>>> from sympy import acos, oo

>>> acos(1)
0

>>> acos(0)
\pi/2

>>> acos(oo)
\infty*I
```

See also:

\textit{sin} (page 449), \textit{csc} (page 452), \textit{cos} (page 450), \textit{sec} (page 452), \textit{tan} (page 450), \textit{cot} (page 451), \textit{asin} (page 454), \textit{acsc} (page 458), \textit{asec} (page 457), \textit{atan} (page 455), \textit{acot} (page 456), \textit{atan2} (page 459)

References

[R272], [R273], [R274]

inverse(argindex=1)

Returns the inverse of this function.

```python
class sympy.functions.elementary.trigonometric.atan(arg)
```

The inverse tangent function.

Returns the arc tangent of x (measured in radians).
Explanation

atan(x) will evaluate automatically in the cases \(x \in \{\infty, -\infty, 0, 1, -1\} \) and for some instances when the result is a rational multiple of \(\pi \) (see the eval class method).

Examples

```python
code
>>> from sympy import atan, oo

>>> atan(0)
0

>>> atan(1)
pi/4

>>> atan(oo)
pi/2
```

See also:

sin (page 449), csc (page 452), cos (page 450), sec (page 452), tan (page 450), cot (page 451), asin (page 454), acsc (page 458), acos (page 455), asec (page 457), acot (page 456), atan2 (page 459)

References

[R275], [R276], [R277]

inverse(argindex=1)

Returns the inverse of this function.

class sympy.functions.elementary.trigonometric.acot(arg)

The inverse cotangent function.

Returns the arc cotangent of x (measured in radians).

Explanation

acot(x) will evaluate automatically in the cases \(x \in \{\infty, -\infty, 0, 1, -1\} \) and for some instances when the result is a rational multiple of \(\pi \) (see the eval class method).

A purely imaginary argument will lead to an acot expression.

acot(x) has a branch cut along \((-i, i)\), hence it is discontinuous at 0. Its range for real x is \((-\pi/2, \pi/2]\).
Examples

```python
>>> from sympy import acot, sqrt
>>> acot(0)
pi/2
>>> acot(1)
pi/4
>>> acot(sqrt(3) - 2)
-5*pi/12
```

See also:

\(\sin \) (page 449), \(\csc \) (page 452), \(\cos \) (page 450), \(\sec \) (page 452), \(\tan \) (page 450), \(\cot \) (page 451), \(\arcsin \) (page 454), \(\arccsc \) (page 458), \(\arccos \) (page 455), \(\arccsc \) (page 457), \(\arctan \) (page 455), \(\arctan2 \) (page 459)

References

[R278], [R279]

`inverse`(argindex=1)

Returns the inverse of this function.

```python
class sympy.functions.elementary.trigonometric.asec(arg)
```

The inverse secant function.

Returns the arc secant of x (measured in radians).

Explanation

asec(x) will evaluate automatically in the cases \(x \in \{\infty, -\infty, 0, 1, -1\} \) and for some instances when the result is a rational multiple of \(\pi \) (see the eval class method).

asec(x) has branch cut in the interval \([-1, 1]\). For complex arguments, it can be defined [R283] as

\[
\sec^{-1}(z) = -i \log \left(\frac{\sqrt{1 - z^2} + 1}{z} \right)
\]

At \(x = 0 \), for positive branch cut, the limit evaluates to zoo. For negative branch cut, the limit

\[
\lim_{z \to 0} -i \log \left(\frac{-\sqrt{1 - z^2} + 1}{z} \right)
\]

simplifies to \(-i \log (z/2 + O(z^3))\) which ultimately evaluates to zoo.

As \(\arccos(x) = \arccsc(1/x) \), a similar argument can be given for \(\arccos(x) \).
Examples

```python
>>> from sympy import asec, oo
>>> asec(1)
0
>>> asec(-1)
pi
>>> asec(0)
zoo
>>> asec(-oo)
pi/2
```

See also:

\(\sin\) (page 449), \(\csc\) (page 452), \(\cos\) (page 450), \(\sec\) (page 452), \(\tan\) (page 450), \(\cot\) (page 451), \(\text{asin}\) (page 454), \(\text{acsc}\) (page 458), \(\text{acos}\) (page 455), \(\text{atan}\) (page 455), \(\text{acot}\) (page 456), \(\text{atan2}\) (page 459)

References

[R280], [R281], [R282], [R283]

`inverse(argindex=1)`

Returns the inverse of this function.

class sympy.functions.elementary.trigonometric.acsc(arg)

The inverse cosecant function.

Returns the arc cosecant of \(x\) (measured in radians).

Explanation

\(\text{acsc}(x)\) will evaluate automatically in the cases \(x \in \{\infty, -\infty, 0, 1, -1\}\) and for some instances when the result is a rational multiple of \(\pi\) (see the `eval` class method).

Examples

```python
>>> from sympy import acsc, oo
>>> acsc(1)
pi/2
>>> acsc(-1)
-pi/2
>>> acsc(oo)
0
>>> acsc(-oo) == acsc(oo)
True
>>> acsc(0)
zoo
```
See also:

\(\sin\) (page 449), \(\csc\) (page 452), \(\cos\) (page 450), \(\sec\) (page 452), \(\tan\) (page 450), \(\cot\) (page 451), \(\arcsin\) (page 454), \(\arccos\) (page 455), \(\arccsc\) (page 457), \(\arctan\) (page 455), \(\arccot\) (page 456), \(\arctan^2\) (page 459)

References

[R284], [R285], [R286]

inverse\((argindex=1)\)

Returns the inverse of this function.

class sympy.functions.elementary.trigonometric.atan2\((y, x)\)

The function \(\text{atan2}(y, x)\) computes \(\arctan\left(\frac{y}{x}\right)\) taking two arguments \(y\) and \(x\). Signs of both \(y\) and \(x\) are considered to determine the appropriate quadrant of \(\arctan\left(\frac{y}{x}\right)\). The range is \((-\pi, \pi]\). The complete definition reads as follows:

\[
\text{atan2}(y, x) = \begin{cases}
\arctan\left(\frac{y}{x}\right) & x > 0 \\
\arctan\left(\frac{y}{x}\right) + \pi & y \geq 0, x < 0 \\
\arctan\left(\frac{y}{x}\right) - \pi & y < 0, x < 0 \\
\frac{\pi}{2} & y > 0, x = 0 \\
\frac{-\pi}{2} & y < 0, x = 0 \\
\text{undefined} & y = 0, x = 0
\end{cases}
\]

Attention: Note the role reversal of both arguments. The \(y\)-coordinate is the first argument and the \(x\)-coordinate the second.

If either \(x\) or \(y\) is complex:

\[
\text{atan2}(y, x) = -i \log\left(\frac{x + iy}{\sqrt{x^2 + y^2}}\right)
\]

Examples

Going counter-clock wise around the origin we find the following angles:

```python
>>> from sympy import atan2
>>> atan2(0, 1) 0
>>> atan2(1, 1) pi/4
>>> atan2(1, 0) pi/2
>>> atan2(1, -1) 3*pi/4
>>> atan2(0, -1) pi
>>> atan2(-1, -1) -3*pi/4
>>> atan2(-1, 0) -pi/2
```
which are all correct. Compare this to the results of the ordinary `atan` function for the
point \((x, y) = (-1, 1)\)

```
>>> from sympy import atan, S
>>> atan(S(1)/-1)
-pi/4
>>> atan2(1, -1)
3*pi/4
```

where only the `atan2` function returns what we expect. We can differentiate the function
with respect to both arguments:

```
>>> from sympy import diff
code
```

We can express the `atan2` function in terms of complex logarithms:

```
>>> from sympy import log
code
```

and in terms of \((atan)\):

```
>>> from sympy import atan
code
```

but note that this form is undefined on the negative real axis.

See also:

\(\sin\) (page 449), \(\csc\) (page 452), \(\cos\) (page 450), \(\sec\) (page 452), \(\tan\) (page 450), \(\cot\)
(page 451), \(\arcsin\) (page 454), \(\arccsc\) (page 458), \(\arccos\) (page 455), \(\arccot\)
(page 455), \(\arctan\) (page 456)
Hyperbolic Functions

```python
class sympy.functions.elementary.hyperbolic.HyperbolicFunction(*args)
    Base class for hyperbolic functions.

See also:
    sinh (page 461), cosh (page 461), tanh (page 462), coth (page 462)
```

```python
class sympy.functions.elementary.hyperbolic.sinh(arg)
sinh(x) is the hyperbolic sine of x.
    The hyperbolic sine function is \( \frac{e^x - e^{-x}}{2} \).
```

Examples

```python
>>> from sympy import sinh
>>> from sympy.abc import x
>>> sinh(x)
```

See also:
 cosh (page 461), tanh (page 462), asinh (page 463)

```python
as_real_imag(deep=True, **hints)
    Returns this function as a complex coordinate.
```

```python
fdiff(argindex=1)
    Returns the first derivative of this function.
```

```python
inverse(argindex=1)
    Returns the inverse of this function.
```

```python
static taylor_term(n, x, *previous_terms)
    Returns the next term in the Taylor series expansion.
```

```python
class sympy.functions.elementary.hyperbolic.cosh(arg)
cosh(x) is the hyperbolic cosine of x.
    The hyperbolic cosine function is \( \frac{e^x + e^{-x}}{2} \).
```
Examples

```python
>>> from sympy import cosh
>>> from sympy import x
>>> cosh(x)
cosh(x)
```

See also:

sinh (page 461), tanh (page 462), acosh (page 464)

class sympy.functions.elementary.hyperbolic.tanh(arg)
tanh(x) is the hyperbolic tangent of x.
The hyperbolic tangent function is \(\frac{\sinh(x)}{\cosh(x)}\).

Examples

```python
>>> from sympy import tanh
>>> from sympy import x
>>> tanh(x)
tanh(x)
```

See also:

sinh (page 461), cosh (page 461), atanh (page 464)

inverse(argindex=1)
 Returns the inverse of this function.

class sympy.functions.elementary.hyperbolic.coth(arg)
coth(x) is the hyperbolic cotangent of x.
The hyperbolic cotangent function is \(\frac{\cosh(x)}{\sinh(x)}\).

Examples

```python
>>> from sympy import coth
>>> from sympy import x
>>> coth(x)
coth(x)
```

See also:

sinh (page 461), cosh (page 461), acoth (page 464)

inverse(argindex=1)
 Returns the inverse of this function.

class sympy.functions.elementary.hyperbolic.sech(arg)
sech(x) is the hyperbolic secant of x.
The hyperbolic secant function is \(\frac{2}{e^x+e^{-x}}\)
Examples

```python
>>> from sympy import sech
>>> from sympy.abc import x
>>> sech(x)
sech(x)
```

See also:

- `sinh` (page 461), `cosh` (page 461), `tanh` (page 462), `coth` (page 462), `csch` (page 463), `asinh` (page 463), `acosh` (page 464)

```python
>>> from sympy import csch
>>> from sympy.abc import x
>>> csch(x)
csch(x)
```

See also:

- `sinh` (page 461), `cosh` (page 461), `tanh` (page 462), `sech` (page 462), `asinh` (page 463), `acosh` (page 464)

```python
>>> from sympy import asinh
>>> from sympy.abc import x
>>> asinh(x)
```

Hyperbolic Inverses

```python
>>> from sympy import asinh
>>> from sympy.abc import x
>>> asinh(x).diff(x)
1/sqrt(x**2 + 1)
>>> asinh(1)
log(1 + sqrt(2))
```
See also:

\(\text{acosh}\) (page 464), \(\text{atanh}\) (page 464), \(\text{sinh}\) (page 461)

\(\text{inverse}(\text{argindex}=1)\)

Returns the inverse of this function.

\textbf{class sympy.functions.elementary.hyperbolic.\texttt{acosh}(\texttt{arg})}

\(\text{acosh}(x)\) is the inverse hyperbolic cosine of \(x\).

The inverse hyperbolic cosine function.

\textbf{Examples}

```python
>>> from sympy import acosh
>>> from sympy.abc import x
>>> acosh(x).diff(x)
1/(sqrt(x - 1)*sqrt(x + 1))

0
```

See also:

\(\text{asinh}\) (page 463), \(\text{atanh}\) (page 464), \(\text{cosh}\) (page 461)

\(\text{inverse}(\text{argindex}=1)\)

Returns the inverse of this function.

\textbf{class sympy.functions.elementary.hyperbolic.\texttt{atanh}(\texttt{arg})}

\(\text{atanh}(x)\) is the inverse hyperbolic tangent of \(x\).

The inverse hyperbolic tangent function.

\textbf{Examples}

```python
>>> from sympy import atanh
>>> from sympy.abc import x
>>> atanh(x).diff(x)
1/(1 - x**2)
```

See also:

\(\text{asinh}\) (page 463), \(\text{acosh}\) (page 464), \(\text{tanh}\) (page 462)

\(\text{inverse}(\text{argindex}=1)\)

Returns the inverse of this function.

\textbf{class sympy.functions.elementary.hyperbolic.\texttt{acoth}(\texttt{arg})}

\(\text{acoth}(x)\) is the inverse hyperbolic cotangent of \(x\).

The inverse hyperbolic cotangent function.
Examples

```python
>>> from sympy import acoth
>>> from sympy import x
>>> acoth(x).diff(x)
1/(1 - x**2)
```

See also:

\(\text{asinh} \) (page 463), \(\text{acosh} \) (page 464), \(\text{coth} \) (page 462)

inverse\((\text{argindex}=1)\)

Returns the inverse of this function.

class sympy.functions.elementary.hyperbolic.asech\((\text{arg})\)

\(\text{asech}(x)\) is the inverse hyperbolic secant of \(x\).

The inverse hyperbolic secant function.

Examples

```python
>>> from sympy import asech, sqrt, S
>>> from sympy import x
>>> asech(x).diff(x)
-1/(x*sqrt(1 - x**2))
>>> asech(1).diff(x)
0
>>> asech(1)
0
>>> asech(S(2))
I*pi/3
>>> asech(-sqrt(2))
3*I*pi/4
>>> asech((sqrt(6) - sqrt(2)))
I*pi/12
```

See also:

\(\text{asinh} \) (page 463), \(\text{atanh} \) (page 464), \(\text{cosh} \) (page 461), \(\text{acoth} \) (page 464)

References

[R290], [R291], [R292]

inverse\((\text{argindex}=1)\)

Returns the inverse of this function.

class sympy.functions.elementary.hyperbolic.acsch\((\text{arg})\)

\(\text{acsch}(x)\) is the inverse hyperbolic cosecant of \(x\).

The inverse hyperbolic cosecant function.
Examples

```python
>>> from sympy import acsch, sqrt, I
>>> from sympy.abc import x
>>> acsch(x).diff(x)
-1/(x**2*sqrt(1 + x**(-2)))
>>> acsch(1).diff(x)
0
>>> acsch(1)
log(1 + sqrt(2))
>>> acsch(I)
-I*pi/2
>>> acsch(-2*I)
I*pi/6
>>> acsch(I*(sqrt(6) - sqrt(2)))
-5*I*pi/12
```

See also:

`asinh` (page 463)

References

[R293], [R294], [R295]

inverse(argindex=1)

Returns the inverse of this function.

Integer Functions

class sympy.functions.elementary.integers.ceiling(arg)

Ceiling is a univariate function which returns the smallest integer value not less than its argument. This implementation generalizes ceiling to complex numbers by taking the ceiling of the real and imaginary parts separately.

Examples

```python
>>> from sympy import ceiling, E, I, S, Float, Rational
>>> ceiling(17)
17
>>> ceiling(Rational(23, 10))
3
>>> ceiling(2*E)
6
>>> ceiling(-Float(0.567))
0
>>> ceiling(I/2)
I
>>> ceiling(S(5)/2 + 5*I/2)
3 + 3*I
```
class sympy.functions.elementary.integers.floor(arg)

Floor is a univariate function which returns the largest integer value not greater than its argument. This implementation generalizes floor to complex numbers by taking the floor of the real and imaginary parts separately.

Examples

```python
>>> from sympy import floor, E, I, S, Float, Rational
>>> floor(17)
17
>>> floor(Rational(23, 10))
2
>>> floor(2*E)
5
>>> floor(-Float(0.567))
-1
>>> floor(-I/2)
-I
>>> floor(S(5)/2 + 5*I/2)
2 + 2*I
```

See also:

sympy.functions.elementary.integers.ceiling (page 466)

References

[R298], [R299]
Examples

```python
from sympy import Symbol, frac, Rational, floor, I

frac(Rational(4, 3))
1/3
frac(-Rational(4, 3))
2/3
```

returns zero for integer arguments

```python
n = Symbol('n', integer=True)
frac(n)
0
```

rewrite as floor

```python
x = Symbol('x')
frac(x).rewrite(floor)
x - floor(x)
```

for complex arguments

```python
r = Symbol('r', real=True)
t = Symbol('t', real=True)
frac(t + I*r)
I*frac(r) + frac(t)
```

See also:

- `sympy.functions.elementary.integers.floor` (page 467), `sympy.functions.elementary.integers.ceiling` (page 466)

References

[R300], [R301]

Exponential

class sympy.functions.elementary.exponential.exp(arg)

The exponential function, \(e^x \).

Parameters

- arg : Expr
Examples

```python
>>> from sympy import exp, I, pi
>>> from sympy.abc import x
>>> exp(x)
exp(x)
>>> exp(x).diff()
exp(x)
>>> exp(I*pi)
-1
```

See also:

- `log` (page 470)
- `as_real_imag`(deep=True, **hints)

Returns this function as a 2-tuple representing a complex number.

Examples

```python
>>> from sympy import exp, I
>>> from sympy.abc import x
>>> exp(x).as_real_imag()
(exp(re(x))*cos(im(x)), exp(re(x))*sin(im(x)))
>>> exp(1).as_real_imag()
(E, 0)
>>> exp(I).as_real_imag()
(cos(1), sin(1))
>>> exp(1+I).as_real_imag()
(E*cos(1), E*sin(1))
```

See also:

- `sympy.functions.elementary.complexes.re` (page 442), `sympy.functions.elementary.complexes.im` (page 443)

property base

Returns the base of the exponential function.

```
defdiff(argindex=1)
```

Returns the first derivative of this function.

```
def static taylor_term(n, x, *previous_terms)
```

Calculates the next term in the Taylor series expansion.

```
class sympy.functions.elementary.exponential.LambertW(x, k=) None
```

The Lambert W function $W(z)$ is defined as the inverse function of $w \exp(w)$ [R302].
Explanation

In other words, the value of \(W(z) \) is such that \(z = W(z) \exp(W(z)) \) for any complex number \(z \). The Lambert W function is a multivalued function with infinitely many branches \(W_k(z) \), indexed by \(k \in \mathbb{Z} \). Each branch gives a different solution \(w \) of the equation \(z = w \exp(w) \).

The Lambert W function has two partially real branches: the principal branch \((k = 0)\) is real for real \(z > -1/e \), and the \(k = -1 \) branch is real for \(-1/e < z < 0\). All branches except \(k = 0 \) have a logarithmic singularity at \(z = 0 \).

Examples

```python
>>> from sympy import LambertW
>>> LambertW(1.2)
0.635564016364870
>>> LambertW(1.2, -1).n()
-1.34747534407696 - 4.41624341514535*I
>>> LambertW(-1).is_real
False
```

References

[R302]

\[\text{fdiff(argindex=1)} \]

Return the first derivative of this function.

class sympy.functions.elementary.exponential.log(arg, base=None)
The natural logarithm function \(\ln(x) \) or \(\log(x) \).

Explanation

Logarithms are taken with the natural base, \(e \). To get a logarithm of a different base \(b \), use \(\log(x, b) \), which is essentially short-hand for \(\log(x)/\log(b) \).

\(\log \) represents the principal branch of the natural logarithm. As such it has a branch cut along the negative real axis and returns values having a complex argument in \((-\pi, \pi]\).

Examples

```python
>>> from sympy import log, sqrt, S, I
>>> log(8, 2)
3
>>> log(S(8)/3, 2)
-log(3)/log(2) + 3
>>> log(-1 + I*sqrt(3))
log(2) + 2*I*pi/3
```

See also:

exp (page 468)
as_base_exp()

Returns this function in the form (base, exponent).

as_real_imag(deep=True, **hints)

Returns this function as a complex coordinate.

Examples

```python
>>> from sympy import I, log
>>> from sympy.abc import x
>>> log(x).as_real_imag()
(log(Abs(x)), arg(x))
>>> log(I).as_real_imag()
(0, pi/2)
>>> log(1 + I).as_real_imag()
(log(sqrt(2)), pi/4)
>>> log(I*x).as_real_imag()
(log(Abs(x)), arg(I*x))
```

fdiff(argindex=1)

Returns the first derivative of the function.

inverse(argindex=1)

Returns e^x, the inverse function of $\log(x)$.

static taylor_term(n, x, *previous_terms)

Returns the next term in the Taylor series expansion of $\log(1 + x)$.

class sympy.functions.elementary.exponential.exp_polar(*args)

Represent a polar number (see g-function Sphinx documentation).

Explanation

exp_polar represents the function $Exp : \mathbb{C} \rightarrow S$, sending the complex number $z = a + bi$ to the polar number $r = e^{x(a)}, \theta = b$. It is one of the main functions to construct polar numbers.

Examples

```python
>>> from sympy import exp_polar, pi, I, exp
```

The main difference is that polar numbers do not “wrap around” at 2π:

```python
>>> exp(2*pi*I)
1
>>> exp_polar(2*pi*I)
exp_polar(2*pi*I)
```

apart from that they behave mostly like classical complex numbers.
>>> exp_polar(2)*exp_polar(3)
exp_polar(5)

See also:
sympy.simplify.powsimp.powsimp (page 736), polar_lift (page 447), periodic_argument (page 447), principal_branch (page 448)

Piecewise
class sympy.functions.elementary.piecewise.ExprCondPair(expr, cond)
 Represents an expression, condition pair.

 property cond
 Returns the condition of this pair.

 property expr
 Returns the expression of this pair.

class sympy.functions.elementary.piecewise.Piecewise(*_args)
 Represents a piecewise function.

Usage:
 Piecewise((expr,cond), (expr,cond), ...)

 • Each argument is a 2-tuple defining an expression and condition
 • The conds are evaluated in turn returning the first that is True. If any of
 the evaluated conds are not explicitly False, e.g. $x < 1$, the function is
 returned in symbolic form.
 • If the function is evaluated at a place where all conditions are False, nan
 will be returned.
 • Pairs where the cond is explicitly False, will be removed and no pair
 appearing after a True condition will ever be retained. If a single pair
 with a True condition remains, it will be returned, even when evaluation
 is False.

Examples

>>> from sympy import Piecewise, log, piecewise_fold
>>> from sympy.abc import x, y
>>> f = x**2
>>> g = log(x)
>>> p = Piecewise((0, x < -1), (f, x <= 1), (g, True))
>>> p.subs(x,1)
1
>>> p.subs(x,5)
log(5)

Booleans can contain Piecewise elements:
>>> cond = (x < y).subs(x, Piecewise((2, x < 0), (3, True))); cond
Piecewise((2 * x - 1, x < 0), (x, x < 1), (2*x, True)) < y

The folded version of this results in a Piecewise whose expressions are Booleans:

>>> folded_cond = piecewise_fold(cond); folded_cond
Piecewise((2 < y, x < 0), (3 < y, True))

When a Boolean containing Piecewise (like cond) or a Piecewise with Boolean expressions (like folded_cond) is used as a condition, it is converted to an equivalent ITE (page 1216) object:

>>> Piecewise((1, folded_cond))
Piecewise((1, ITE(x < 0, y > 2, y > 3)))

When a condition is an ITE, it will be converted to a simplified Boolean expression:

>>> piecewise_fold(_)
Piecewise((1, ((x >= 0) | (y > 2)) & ((y > 3) | (x < 0))))

See also:
piecewise_fold (page 476), piecewise_exclusive (page 475), ITE (page 1216)

_eval_integral(x, _first=True, **kwargs)
 Return the indefinite integral of the Piecewise such that subsequent substitution of x with a value will give the value of the integral (not including the constant of integration) up to that point. To only integrate the individual parts of Piecewise, use the piecewise_integrate method.

Examples

>>> from sympy import Piecewise
>>> from sympy.abc import x
>>> p = Piecewise((0, x < 0), (1, x < 1), (2, True))
>>> p.integrate(x)
Piecewise((0, x < 0), (x, x < 1), (2*x - 1, True))
>>> p.piecewise_integrate(x)
Piecewise((0, x < 0), (x, x < 1), (2*x, True))

See also:
Piecewise.piecewise_integrate (page 474)

as_expr_set_pairs(domain=None)
 Return tuples for each argument of self that give the expression and the interval in which it is valid which is contained within the given domain. If a condition cannot be converted to a set, an error will be raised. The variable of the conditions is assumed to be real; sets of real values are returned.
Examples

```python
>>> from sympy import Piecewise, Interval
>>> from sympy.abc import x
>>> p = Piecewise(
... (1, x < 2),
... (2, (x > 0) & (x < 4)),
... (3, True))
>>> p.as_expr_set_pairs()
[(1, Interval.open(-oo, 2)),
 (2, Interval.Ropen(2, 4)),
 (3, Interval(4, oo))]
>>> p.as_expr_set_pairs(Interval(0, 3))
[(1, Interval.Ropen(0, 2)),
 (2, Interval(2, 3))]
```

doit(**hints)
Evaluate this piecewise function.

classmethod eval(*_args)
Either return a modified version of the args or, if no modifications were made, return None.

Modifications that are made here:
1. relationals are made canonical
2. any False conditions are dropped
3. any repeat of a previous condition is ignored
4. any args past one with a true condition are dropped

If there are no args left, nan will be returned. If there is a single arg with a True condition, its corresponding expression will be returned.

Examples

```python
>>> from sympy import Piecewise
>>> from sympy.abc import x
>>> cond = -x < -1
>>> args = [(1, cond), (4, cond), (3, False), (2, True), (5, x < 1)]
>>> Piecewise(*args, evaluate=False)
Piecewise((1, -x < -1), (4, -x < -1), (2, True))
>>> Piecewise(*args)
Piecewise((1, x > 1), (2, True))
```

piecewise_integrate(x, **kwargs)
Return the Piecewise with each expression being replaced with its antiderivative. To obtain a continuous antiderivative, use the `integrate()` (page 657) function or method.
Examples

```python
>>> from sympy import Piecewise
>>> from sympy.abc import x
>>> p = Piecewise((0, x < 0), (1, x < 1), (2, True))
>>> p.piecewise_integrate(x)
Piecewise((0, x < 0), (x, x < 1), (2*x, True))
```

Note that this does not give a continuous function, e.g. at \(x = 1\) the 3rd condition applies and the antiderivative there is \(2x\) so the value of the antiderivative is 2:

```python
>>> anti = __
>>> anti.subs(x, 1)
2
```

The continuous derivative accounts for the integral up to the point of interest, however:

```python
>>> p.integrate(x)
Piecewise((0, x < 0), (x, x < 1), (2*x - 1, True))
```

```python
>>> _.subs(x, 1)
1
```

See also:

Piecewise._eval_integral (page 473)

sympy.functions.elementary.piecewise.piecewise_exclusive(expr, *, skip_nan=False, deep=True)

Rewrite Piecewise (page 472) with mutually exclusive conditions.

Parameters

expr: a SymPy expression.

Any Piecewise (page 472) in the expression will be rewritten.

skip_nan: `bool` (default `False`)

If skip_nan is set to True then a final NaN (page 1047) case will not be included.

deep: `bool` (default `True`)

If deep is True then piecewise_exclusive() (page 475) will rewrite any Piecewise (page 472) subexpressions in expr rather than just rewriting expr itself.

Returns

An expression equivalent to expr but where all Piecewise (page 472) have been rewritten with mutually exclusive conditions.
Explanation

SymPy represents the conditions of a `Piecewise` (page 472) in an “if-elif”-fashion, allowing more than one condition to be simultaneously True. The interpretation is that the first condition that is True is the case that holds. While this is a useful representation computationally it is not how a piecewise formula is typically shown in a mathematical text. The `piecewise_exclusive()` (page 475) function can be used to rewrite any `Piecewise` (page 472) with more typical mutually exclusive conditions.

Note that further manipulation of the resulting `Piecewise` (page 472), e.g. simplifying it, will most likely make it non-exclusive. Hence, this is primarily a function to be used in conjunction with printing the Piecewise or if one would like to reorder the expression-condition pairs.

If it is not possible to determine that all possibilities are covered by the different cases of the `Piecewise` (page 472) then a final `Nan` (page 1047) case will be included explicitly. This can be prevented by passing `skip_nan=True`.

Examples

```python
>>> from sympy import piecewise_exclusive, Symbol, Piecewise, S
>>> x = Symbol('x', real=True)
>>> p = Piecewise((0, x < 0), (S.Half, x <= 0), (1, True))
>>> piecewise_exclusive(p)
Piecewise((0, x < 0), (1/2, Eq(x, 0)), (1, x > 0))
>>> piecewise_exclusive(Piecewise((2, x > 1)))
Piecewise((2, x > 1), (nan, x <= 1))
>>> piecewise_exclusive(Piecewise((2, x > 1)), skip_nan=True)
Piecewise((2, x > 1))
```

See also:

`Piecewise` (page 472), `piecewise_fold` (page 476)

`sympy.functions.elementary.piecewise.piecewise_fold(expr, evaluate=True)`

Takes an expression containing a piecewise function and returns the expression in piecewise form. In addition, any ITE conditions are rewritten in negation normal form and simplified.

The final Piecewise is evaluated (default) but if the raw form is desired, send `evaluate=False`; if trivial evaluation is desired, send `evaluate=None` and duplicate conditions and processing of True and False will be handled.

Examples

```python
>>> from sympy import Piecewise, piecewise_fold, S
>>> from sympy.abc import x
>>> p = Piecewise((x, x < 1), (1, S(1) <= x))
>>> piecewise_fold(x**p)
Piecewise((x**2, x < 1), (x, True))
```

See also:

`Piecewise` (page 472), `piecewise_exclusive` (page 475)
Miscellaneous

class sympy.functions.elementary.miscellaneous.IdentityFunction

The identity function

Examples

```python
>>> from sympy import Id, Symbol
>>> x = Symbol('x')
>>> Id(x)
```

class sympy.functions.elementary.miscellaneous.Min(*args)

Return, if possible, the minimum value of the list. It is named Min and not min to avoid conflicts with the built-in function min.

Examples

```python
>>> from sympy import Min, Symbol, oo
>>> from sympy.abc import x, y
>>> p = Symbol('p', positive=True)
>>> n = Symbol('n', negative=True)

>>> Min(x, -2)
Min(-2, x)
>>> Min(x, -2).subs(x, 3)
-2
>>> Min(p, -3)
-3
>>> Min(x, y)
Min(x, y)
>>> Min(n, 8, p, -7, p, oo)
Min(-7, n)
```

See also:

Max (page 477)

find maximum values

class sympy.functions.elementary.miscellaneous.Max(*args)

Return, if possible, the maximum value of the list.

When number of arguments is equal one, then return this argument.

When number of arguments is equal two, then return, if possible, the value from \(a, b\) that is \(\geq\) the other.

In common case, when the length of list greater than 2, the task is more complicated. Return only the arguments, which are greater than others, if it is possible to determine directional relation.

If is not possible to determine such a relation, return a partially evaluated result.
Assumptions are used to make the decision too.
Also, only comparable arguments are permitted.
It is named Max and not max to avoid conflicts with the built-in function max.

Examples

```python
>>> from sympy import Max, Symbol, oo
>>> from sympy.abc import x, y, z
>>> p = Symbol('p', positive=True)
>>> n = Symbol('n', negative=True)

>>> Max(x, -2)
Max(-2, x)
>>> Max(x, -2).subs(x, 3)
3
>>> Max(p, -2)
p
>>> Max(x, y)
Max(x, y)
>>> Max(x, y) == Max(y, x)
True
>>> Max(x, Max(y, z))
Max(x, y, z)
>>> Max(n, 8, p, 7, -oo)
Max(8, p)
>>> Max(1, x, oo)
oo
```

- Algorithm

The task can be considered as searching of supremums in the directed complete partial orders [R303].
The source values are sequentially allocated by the isolated subsets in which supremums are searched and result as Max arguments.
If the resulted supremum is single, then it is returned.
The isolated subsets are the sets of values which are only the comparable with each other in the current set. E.g. natural numbers are comparable with each other, but not comparable with the x symbol. Another example: the symbol x with negative assumption is comparable with a natural number.
Also there are “least” elements, which are comparable with all others, and have a zero property (maximum or minimum for all elements). For example, in case of ∞, the allocation operation is terminated and only this value is returned.

Assumption:
- if $A > B > C$ then $A > C$
- if $A = B$ then B can be removed

See also:
Min (page 477)
find minimum values

References

[R303], [R304]
sympy.functions.elementary.miscellaneous.\texttt{root}(arg, n, k=0, evaluate=None)

Returns the k-th n-th root of arg.

Parameters

- k : int, optional
 Should be an integer in \{0, 1, ..., $n-1$\}. Defaults to the principal root if 0.

- evaluate : bool, optional
 The parameter determines if the expression should be evaluated. If None, its value is taken from \texttt{global_parameters.evaluate}.

Examples

```python
>>> from sympy import root, Rational
>>> from sympy.abc import x, n

>>> root(x, 2)
sqrt(x)

>>> root(x, 3)
x**(1/3)

>>> root(x, n)
x**(1/n)

>>> root(x, -Rational(2, 3))
x**(-3/2)
```

To get the k-th n-th root, specify k:

```python
>>> root(-2, 3, 2)
-(-1)**(2/3)*2**(1/3)
```

To get all n n-th roots you can use the \texttt{rootof} function. The following examples show the roots of unity for n equal 2, 3 and 4:

```python
>>> from sympy import rootof

>>> [rootof(x**2 - 1, i) for i in range(2)]
[-1, 1]
```
SymPy, like other symbolic algebra systems, returns the complex root of negative numbers. This is the principal root and differs from the text-book result that one might be expecting. For example, the cube root of -8 does not come back as -2:

```
>>> root(-8, 3)
2*(-1)**(1/3)
```

The `real_root` function can be used to either make the principal result real (or simply to return the real root directly):

```
>>> from sympy import real_root
>>> real_root(_)
-2
>>> real_root(-32, 5)
-2
```

Alternatively, the \(n/2\)-th n-th root of a negative number can be computed with `root`:

```
>>> root(-32, 5, 5/2)
-2
```

See also:

- `sympy.polys.rootoftools.rootof` (page 2507), `sympy.core.power.integer_nthroot` (page 1057), `sqrt` (page 480), `real_root` (page 483)

References

[R305], [R306], [R307], [R308], [R309]
Examples

```python
>>> from sympy import sqrt, Symbol, S
>>> x = Symbol('x')
```

```python
>>> sqrt(x)
sqrt(x)
```

```python
>>> sqrt(x)**2
x
```

Note that sqrt(x**2) does not simplify to x.

```python
>>> sqrt(x**2)
sqrt(x**2)
```

This is because the two are not equal to each other in general. For example, consider x == -1:

```python
>>> from sympy import Eq
>>> Eq(sqrt(x**2), x).subs(x, -1)
False
```

This is because sqrt computes the principal square root, so the square may put the argument in a different branch. This identity does hold if x is positive:

```python
>>> y = Symbol('y', positive=True)
>>> sqrt(y**2)
y
```

You can force this simplification by using the powdenest() function with the force option set to True:

```python
>>> from sympy import powdenest
>>> sqrt(x**2)
sqrt(x**2)
>>> powdenest(sqrt(x**2), force=True)
x
```

To get both branches of the square root you can use the rootof function:

```python
>>> from sympy import rootof
>>> [rootof(x**2-3, i) for i in (0,1)]
[-sqrt(3), sqrt(3)]
```

Although sqrt is printed, there is no sqrt function so looking for sqrt in an expression will fail:

```python
>>> from sympy.utilities.misc import func_name
>>> func_name(sqrt(x))
'Pow'
>>> sqrt(x).has(sqrt)
False
```
To find $\sqrt{\cdot}$ look for Pow with an exponent of 1/2:

```python
>>> (x + 1/sqrt(x)).find(lambda i: i.is_Pow and abs(i.exp) is S.Half)
{1/sqrt(x)}
```

See also:

`sympy.polys.rootoftools.rootof` (page 2507), `root` (page 479), `real_root` (page 483)

References

[R310], [R311]

`sympy.functions.elementary.miscellaneous.cbrt(arg, evaluate=None)`

Returns the principal cube root.

Parameters

- `arg`
- `evaluate` : bool, optional

The parameter determines if the expression should be evaluated. If None, its value is taken from `global_parameters.evaluate`.

Examples

```python
>>> from sympy import cbrt, Symbol

>>> x = Symbol('x')

>>> cbrt(x)
x**(1/3)

>>> cbrt(x)**3
x
```

Note that $cbrt(x**3)$ does not simplify to x.

```python
>>> cbrt(x**3)
(x**3)**(1/3)
```

This is because the two are not equal to each other in general. For example, consider $x = -1$:

```python
>>> from sympy import Eq

>>> Eq(cbrt(x**3), x).subs(x, -1)
False
```

This is because `cbrt` computes the principal cube root, this identity does hold if x is positive:

```python
>>> y = Symbol('y', positive=True)

>>> cbrt(y**3)
y
```

See also:

`sympy.polys.rootoftools.rootof` (page 2507), `root` (page 479), `real_root` (page 483)

References

[R312], [R313]

```
sympy.functions.elementary.miscellaneous.real_root(arg, n=None, evaluate=None)
```

Return the real n’th-root of arg if possible.

Parameters

- `n` : int or None, optional

 If n is None, then all instances of \((-n)^{1/\text{odd}}\) will be changed to \(-n^{1/\text{odd}}\). This will only create a real root of a principal root. The presence of other factors may cause the result to not be real.

- `evaluate` : bool, optional

 The parameter determines if the expression should be evaluated. If None, its value is taken from global_parameters.evaluate.

Examples

```
>>> from sympy import root, real_root

>>> real_root(-8, 3)
-2
```

If one creates a non-principal root and applies real_root, the result will not be real (so use with caution):

```
>>> root(-8, 3, 2)
-2*(-1)**(2/3)
```

See also:

- `sympy.polys.rootoftools.rootof` (page 2507), `sympy.core.power.integer_nthroot` (page 1057), `root` (page 479), `sqrt` (page 480)

Combinatorial

This module implements various combinatorial functions.

```
class sympy.functions.combinatorial.numbers.bell(n, k_sym=None, symbols=None)
```

Bell numbers / Bell polynomials

The Bell numbers satisfy \(B_0 = 1\) and

\[
B_n = \sum_{k=0}^{n-1} \binom{n-1}{k} B_k.
\]
They are also given by:

\[B_n = \frac{1}{e} \sum_{k=0}^{\infty} \frac{k^n}{k!}. \]

The Bell polynomials are given by \(B_0(x) = 1 \) and

\[B_n(x) = x \sum_{k=1}^{n-1} \binom{n-1}{k-1} B_{k-1}(x). \]

The second kind of Bell polynomials (are sometimes called “partial” Bell polynomials or incomplete Bell polynomials) are defined as

\[
B_{n,k}(x_1, x_2, \ldots, x_{n-k+1}) = \sum_{\substack{j_1+j_2+\cdots+j_{n-k+1}=n \\ j_1!j_2!\cdots j_{n-k+1}!}} \frac{n!}{j_1!j_2!\cdots j_{n-k+1}!} \frac{x_1^{j_1} x_2^{j_2} \cdots x_{n-k+1}^{j_{n-k+1}}}{(n-k+1)!}. \]

- \(\text{bell}(n) \) gives the \(n \text{th} \) Bell number, \(B_n \).
- \(\text{bell}(n, x) \) gives the \(n \text{th} \) Bell polynomial, \(B_n(x) \).
- \(\text{bell}(n, k, (x_1, x_2, \ldots)) \) gives Bell polynomials of the second kind, \(B_{n,k}(x_1, x_2, \ldots, x_{n-k+1}) \).

Notes

Not to be confused with Bernoulli numbers and Bernoulli polynomials, which use the same notation.

Examples

```python
>>> from sympy import bell, Symbol, symbols

>>> [bell(n) for n in range(11)]
[1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975]

>>> bell(30)
84674901451180332450147

>>> bell(4, Symbol('t'))
t**4 + 6*t**3 + 7*t**2 + t

>>> bell(6, 2, symbols('x:6')[1:])
6*x1*x5 + 15*x2*x4 + 10*x3**2
```

See also:

class sympy.functions.combinatorial.numbers.bernoulli(n, x=None)

Bernoulli numbers / Bernoulli polynomials / Bernoulli function

The Bernoulli numbers are a sequence of rational numbers defined by $B_0 = 1$ and the recursive relation ($n > 0$):

$$n + 1 = \sum_{k=0}^{n} \binom{n+1}{k} B_k$$

They are also commonly defined by their exponential generating function, which is $\frac{x}{\exp(x) - 1}$. For odd indices > 1, the Bernoulli numbers are zero.

The Bernoulli polynomials satisfy the analogous formula:

$$B_n(x) = \sum_{k=0}^{n} (-1)^k \binom{n}{k} B_k x^{n-k}$$

Bernoulli numbers and Bernoulli polynomials are related as $B_n(1) = B_n$.

The generalized Bernoulli function $B(s, a)$ is defined for any complex s and a, except where a is a nonpositive integer and s is not a nonnegative integer. It is an entire function of s for fixed a, related to the Hurwitz zeta function by

$$B(s, a) = \begin{cases} -s\zeta(1-s, a) & s \neq 0 \\ 1 & s = 0 \end{cases}$$

When s is a nonnegative integer this function reduces to the Bernoulli polynomials: $B(n, x) = B_n(x)$. When a is omitted it is assumed to be 1, yielding the (ordinary) Bernoulli function which interpolates the Bernoulli numbers and is related to the Riemann zeta function.

We compute Bernoulli numbers using Ramanujan’s formula:

$$B_n = \frac{A(n) - S(n)}{\binom{n+3}{n}}$$

where:

$$A(n) = \begin{cases} \frac{n+3}{6} & n \equiv 0 \text{ or } 2 \pmod{6} \\ -\frac{n+3}{6} & n \equiv 4 \pmod{6} \end{cases}$$

and:

$$S(n) = \sum_{k=1}^{\lfloor n/6 \rfloor} \binom{n+3}{n-6k} B_{n-6k}$$

This formula is similar to the sum given in the definition, but cuts $\frac{2}{3}$ of the terms. For Bernoulli polynomials, we use Appell sequences.

For n a nonnegative integer and s, a, x arbitrary complex numbers,

- bernoulli(n) gives the nth Bernoulli number, B_n
- bernoulli(s) gives the Bernoulli function $B(s)$

5.8. Topics
• bernoulli(n, x) gives the nth Bernoulli polynomial in x, B_n(x)
• bernoulli(s, a) gives the generalized Bernoulli function B(s,a)

Changed in version 1.12: bernoulli(1) gives +\frac{1}{2} instead of −\frac{1}{2}. This choice of value confers several theoretical advantages [R205], including the extension to complex parameters described above which this function now implements. The previous behavior, defined only for nonnegative integers n, can be obtained with (-1)**n*bernoulli(n).

Examples

```python
>>> from sympy import bernoulli
>>> from sympy.abc import x
>>> [bernoulli(n) for n in range(11)]
[1, 1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66]
>>> bernoulli(1000001)
0
>>> bernoulli(3, x)
x**3 - 3*x**2/2 + x/2
```

See also:
andrew (page 499), bell (page 483), catalan (page 488), euler (page 489), fibonacci (page 494), harmonic (page 495), lucas (page 497), genocchi (page 498), partition (page 500), tribonacci (page 494), sympy.polys.appellseqs.bernoulli_poly (page 2518)

References

[R201], [R202], [R203], [R204], [R205], [R206]

class sympy.functions.combinatorial.factorials.binomial(n, k)

Implementation of the binomial coefficient. It can be defined in two ways depending on its desired interpretation:

\[
\binom{n}{k} = \frac{n!}{k!(n-k)!} \quad \text{or} \quad \binom{n}{k} = \frac{(n)_k}{k!}
\]

First, in a strict combinatorial sense it defines the number of ways we can choose k elements from a set of n elements. In this case both arguments are nonnegative integers and binomial is computed using an efficient algorithm based on prime factorization.

The other definition is generalization for arbitrary n, however k must also be nonnegative. This case is very useful when evaluating summations.

For the sake of convenience, for negative integer k this function will return zero no matter the other argument.

To expand the binomial when n is a symbol, use either expand_func() or expand(func=True). The former will keep the polynomial in factored form while the latter will expand the polynomial itself. See examples for details.
Examples

```python
>>> from sympy import Symbol, Rational, binomial, expand_func
>>> n = Symbol('n', integer=True, positive=True)

>>> binomial(15, 8)
6435

>>> binomial(n, -1)
0

Rows of Pascal’s triangle can be generated with the binomial function:

```python
>>> for N in range(8):
... print([binomial(N, i) for i in range(N + 1)])
...
[1]
[1, 1]
[1, 2, 1]
[1, 3, 3, 1]
[1, 4, 6, 4, 1]
[1, 5, 10, 10, 5, 1]
[1, 6, 15, 20, 15, 6, 1]
[1, 7, 21, 35, 35, 21, 7, 1]
```

As can a given diagonal, e.g. the 4th diagonal:

```python
>>> N = -4
>>> [binomial(N, i) for i in range(1 - N)]
[1, -4, 10, -20, 35]

>>> binomial(Rational(5, 4), 3)
-5/128
>>> binomial(Rational(-5, 4), 3)
-195/128

>>> binomial(n, 3)
binomial(n, 3)

>>> binomial(n, 3).expand(func=True)
n**3/6 - n**2/2 + n/3

>>> expand_func(binomial(n, 3))
n*(n - 2)*(n - 1)/6
```
References

[R207]
class sympy.functions.combinatorial.numbers.catalan(n)

Catalan numbers
The \( n^{th} \) catalan number is given by:

\[
C_n = \frac{1}{n+1} \binom{2n}{n}
\]

- catalan(n) gives the \( n^{th} \) Catalan number, \( C_n \)

Examples

```python
>>> from sympy import (Symbol, binomial, gamma, hyper, ...
... catalan, diff, combsimp, Rational, I)
```

```python
>>> [catalan(i) for i in range(1,10)]
[1, 2, 5, 14, 42, 132, 429, 1430, 4862]
```

```python
>>> n = Symbol("n", integer=True)
```

```python
>>> catalan(n)
catalan(n)
```

Catalan numbers can be transformed into several other, identical expressions involving other mathematical functions

```python
>>> catalan(n).rewrite(binomial)
binomial(2*n, n)/(n + 1)
```

```python
>>> catalan(n).rewrite(gamma)
4**n*gamma(n + 1/2)/(sqrt(pi)*gamma(n + 2))
```

```python
>>> catalan(n).rewrite(hyper)
hyper((1 - n, -n), (2,), 1)
```

For some non-integer values of \( n \) we can get closed form expressions by rewriting in terms of gamma functions:

```python
>>> catalan(Rational(1, 2)).rewrite(gamma)
8/(3*pi)
```

We can differentiate the Catalan numbers \( C(n) \) interpreted as a continuous real function in \( n \):

```python
>>> diff(catalan(n), n)
(polygamma(0, n + 1/2) - polygamma(0, n + 2) + log(4))*catalan(n)
```

As a more advanced example consider the following ratio between consecutive numbers:
The Catalan numbers can be generalized to complex numbers:

```python
>>> catalan(I).rewrite(gamma)
4**I*gamma(1/2 + I)/(sqrt(pi)*gamma(2 + I))
```

and evaluated with arbitrary precision:

```python
>>> catalan(I).evalf(20)
0.39764993382373624267 - 0.020884341620842555705*I
```

See also:
- andre (page 499), bell (page 483), bernoulli (page 485), euler (page 489), fibonacci (page 494), harmonic (page 495), lucas (page 497), genocchi (page 498), partition (page 500), tribonacci (page 494), sympy.functions.combinatorial.factorials.binomial (page 486)

References

[R208], [R209], [R210], [R211]

class sympy.functions.combinatorial.numbers.euler(n, x=None)
Euler numbers / Euler polynomials / Euler function

The Euler numbers are given by:

\[
E_{2n} = \sum_{k=1}^{2n+1} \left( \sum_{j=0}^{k} \frac{(-1)^{j}(k-2j)^{2n+1}}{2k!k!} \right)
\]

\[
E_{2n+1} = 0
\]

Euler numbers and Euler polynomials are related by

\[
E_n = 2^n E_n \left( \frac{1}{2} \right).
\]

We compute symbolic Euler polynomials using Appell sequences, but numerical evaluation of the Euler polynomial is computed more efficiently (and more accurately) using the mpmath library.

The Euler polynomials are special cases of the generalized Euler function, related to the Genocchi function as

\[
E(s, a) = -\frac{\zeta(s+1, a)}{s+1}
\]

with the limit of \( \psi \left( \frac{s+1}{2} \right) - \psi \left( \frac{s}{2} \right) \) being taken when \( s = -1 \). The (ordinary) Euler function interpolating the Euler numbers is then obtained as \( E(s) = 2^s E \left( s, \frac{1}{2} \right) \).

- euler(n) gives the nth Euler number \( E_n \).
- euler(s) gives the Euler function \( E(s) \).
- euler(n, x) gives the nth Euler polynomial \( E_n(x) \).
- euler(s, a) gives the generalized Euler function \( E(s, a) \).
Examples

```python
>>> from sympy import euler, Symbol, S
>>> [euler(n) for n in range(10)]
[1, 0, -1, 0, 5, 0, -61, 0, 1385, 0]
>>> [2**n*euler(n,1) for n in range(10)]
[1, 1, 0, -2, 0, 16, 0, -272, 0, 7936]
>>> n = Symbol("n")
>>> euler(n + 2*n)
euler(3*n)

>>> x = Symbol("x")
>>> euler(n, x)
euler(n, x)

>>> euler(0, x)
1
>>> euler(1, x)
x - 1/2
>>> euler(2, x)
x**2 - x
>>> euler(3, x)
x**3 - 3*x**2/2 + 1/4
>>> euler(4, x)
x**4 - 2*x**3 + x

>>> euler(12, S.Half)
2702765/4096
>>> euler(12)
2702765
```

See also:

andre (page 499), bell (page 483), bernoulli (page 485), catalan (page 488), fibonacci (page 494), harmonic (page 495), lucas (page 497), genocchi (page 498), partition (page 500), tribonacci (page 494), sympy.polys.appellseqs.euler_poly (page 2520)

References

[R212], [R213], [R214], [R215]

class sympy.functions.combinatorial.factorials.factorial(n)
Implementation of factorial function over nonnegative integers. By convention (consistent with the gamma function and the binomial coefficients), factorial of a negative integer is complex infinity.

The factorial is very important in combinatorics where it gives the number of ways in which \( n \) objects can be permuted. It also arises in calculus, probability, number theory, etc.

There is strict relation of factorial with gamma function. In fact \( n! = \text{gamma}(n + 1) \) for nonnegative integers. Rewrite of this kind is very useful in case of combinatorial simplification.
Computation of the factorial is done using two algorithms. For small arguments a pre-computed look up table is used. However for bigger input algorithm Prime-Swing is used. It is the fastest algorithm known and computes $n!$ via prime factorization of special class of numbers, called here the ‘Swing Numbers’.

### Examples

```python
>>> from sympy import Symbol, factorial, S
>>> n = Symbol('n', integer=True)

>>> factorial(0)
1
>>> factorial(7)
5040
>>> factorial(-2)
zoo
>>> factorial(n)
factorial(n)
>>> factorial(2*n)
factorial(2*n)
>>> factorial(S(1)/2)
factorial(1/2)
```

See also:

*factorial2* (page 492), *RisingFactorial* (page 500), *FallingFactorial* (page 493)

class sympy.functions.combinatorial.factorials.subfactorial(arg)
The subfactorial counts the derangements of $n$ items and is defined for non-negative integers as:

\[
!n = \begin{cases} 
1 & n = 0 \\
0 & n = 1 \\
(n - 1)!(n - 1)! + !(n - 2) & n > 1 
\end{cases}
\]

It can also be written as \(\text{int}(\text{round}(n!/\exp(1)))\) but the recursive definition with caching is implemented for this function.

An interesting analytic expression is the following [R217]

\[
!x = \Gamma(x + 1, -1)/e
\]

which is valid for non-negative integers $x$. The above formula is not very useful in case of non-integers. $\Gamma(x + 1, -1)$ is single-valued only for integral arguments $x$, elsewhere on the positive real axis it has an infinite number of branches none of which are real.
Examples

```python
>>> from sympy import subfactorial
>>> from sympy import subfactorial
>>> subfactorial(n + 1)
subfactorial(n + 1)
>>> subfactorial(5)
44
```

See also:

`factorial` (page 490), `uppergamma` (page 523), `sympy.utilities.iterables.generate_derangements` (page 2146)

References

[R216], [R217]

class sympy.functions.combinatorial.factorials.factorial2(arg)
The double factorial n!!, not to be confused with (n!)!
The double factorial is defined for nonnegative integers and for odd negative integers as:

\[
n!! = \begin{cases} 
1 & n = 0 \\
(n-2)(n-4)\ldots1 & n \text{ positive odd} \\
n(n-2)(n-4)\ldots2 & n \text{ positive even} \\
(n+2)!!/(n+2) & n \text{ negative odd}
\end{cases}
\]

Examples

```python
>>> from sympy import factorial2, var
>>> n = var('n')
>>> n
n
>>> factorial2(n + 1)
factorial2(n + 1)
>>> factorial2(5)
15
>>> factorial2(-1)
1
>>> factorial2(-5)
1/3
```

See also:

`factorial` (page 490), `RisingFactorial` (page 500), `FallingFactorial` (page 493)
References

[R218]

class sympy.functions.combinatorial.factorials.FallingFactorial(x, k)

Falling factorial (related to rising factorial) is a double valued function arising in concrete mathematics, hypergeometric functions and series expansions. It is defined by

\[
ff(x, \, k) = (x)_k = x \cdot (x-1) \cdots (x-k+1)
\]

where \( x \) can be arbitrary expression and \( k \) is an integer. For more information check “Concrete mathematics” by Graham, pp. 66 or [R219].

When \( x \) is a \( Poly \) instance of degree \( \geq 1 \) with single variable, \( (x)_k = x(y) \cdot x(y-1) \cdots x(y-k+1) \), where \( y \) is the variable of \( x \). This is as described in

```python
>>> from sympy import ff, Poly, Symbol
>>> from sympy.abc import x
>>> n = Symbol('n', integer=True)
```

```python
>>> ff(x, 0)
1
>>> ff(5, 5)
120
>>> ff(x, 5) == x*(x - 1)*(x - 2)*(x - 3)*(x - 4)
True
>>> ff(Poly(x**2, x), 2)
Poly(x**4 - 2*x**3 + x**2, x, domain='ZZ')
>>> ff(n, n)
factorial(n)
```

Rewriting is complicated unless the relationship between the arguments is known, but falling factorial can be rewritten in terms of gamma, factorial and binomial and rising factorial.

```python
>>> from sympy import factorial, rf, gamma, binomial, Symbol
>>> n = Symbol('n', integer=True, positive=True)
>>> F = ff(n, n - 2)
>>> for i in (rf, ff, factorial, binomial, gamma):
... F.rewrite(i)
... RisingFactorial(3, n - 2)
 FallingFactorial(n, n - 2)
 factorial(n)/2
 binomial(n, n - 2)*factorial(n - 2)
 gamma(n + 1)/2
```

See also:

factorial (page 490), factorial2 (page 492), RisingFactorial (page 500)
class sympy.functions.combinatorial.numbers.fibonacci(n, sym=None)

Fibonacci numbers / Fibonacci polynomials

The Fibonacci numbers are the integer sequence defined by the initial terms \( F_0 = 0 \), \( F_1 = 1 \) and the two-term recurrence relation \( F_n = F_{n-1} + F_{n-2} \). This definition extended to arbitrary real and complex arguments using the formula

\[
F_z = \frac{\phi^z - \cos(\pi z)\phi^{-z}}{\sqrt{5}}
\]

The Fibonacci polynomials are defined by \( F_1(x) = 1 \), \( F_2(x) = x \), and \( F_n(x) = x \cdot F_{n-1}(x) + F_{n-2}(x) \) for \( n > 2 \). For all positive integers \( n \), \( F_n(1) = F_n \).

- fibonacci(n) gives the \( n^{th} \) Fibonacci number, \( F_n \)
- fibonacci(n, x) gives the \( n^{th} \) Fibonacci polynomial in \( x \), \( F_n(x) \)

Examples

```python
>>> from sympy import fibonacci, Symbol

>>> [fibonacci(x) for x in range(11)]
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

>>> fibonacci(5, Symbol('t'))
t**4 + 3*t**2 + 1
```

See also:
- bell (page 483), bernoulli (page 485), catalan (page 488), euler (page 489), harmonic (page 495), lucas (page 497), genocchi (page 498), partition (page 500), tribonacci (page 494)

References

[R222], [R223]

class sympy.functions.combinatorial.numbers.tribonacci(n, sym=None)

Tribonacci numbers / Tribonacci polynomials

The Tribonacci numbers are the integer sequence defined by the initial terms \( T_0 = 0 \), \( T_1 = 1 \), \( T_2 = 1 \) and the three-term recurrence relation \( T_n = T_{n-1} + T_{n-2} + T_{n-3} \).

The Tribonacci polynomials are defined by \( T_0(x) = 0 \), \( T_1(x) = 1 \), \( T_2(x) = x^2 \), and \( T_n(x) = x^2 T_{n-1}(x) + x T_{n-2}(x) + T_{n-3}(x) \) for \( n > 2 \). For all positive integers \( n \), \( T_n(1) = T_n \).

- tribonacci(n) gives the \( n^{th} \) Tribonacci number, \( T_n \)
- tribonacci(n, x) gives the \( n^{th} \) Tribonacci polynomial in \( x \), \( T_n(x) \)
Examples

```python
>>> from sympy import tribonacci, Symbol

>>> [tribonacci(x) for x in range(11)]
[0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149]

>>> tribonacci(5, Symbol('t'))
t**8 + 3*t**5 + 3*t**2
```

See also:


References

[R224], [R225], [R226]

class sympy.functions.combinatorial.numbers.harmonic(n, m=None)
Harmonic numbers

The nth harmonic number is given by $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}$.

More generally:

$$H_{n,m} = \sum_{k=1}^{n} \frac{1}{k^m}$$

As $n \to \infty$, $H_{n,m} \to \zeta(m)$, the Riemann zeta function.

- harmonic(n) gives the nth harmonic number, $H_n$
- harmonic(n, m) gives the nth generalized harmonic number of order $m$, $H_{n,m}$, where harmonic(n) == harmonic(n, 1)

This function can be extended to complex $n$ and $m$ where $n$ is not a negative integer or $m$ is a nonpositive integer as

$$H_{n,m} = \begin{cases} 
\zeta(m) - \zeta(m, n + 1) & m \neq 1 \\
\psi(n + 1) + \gamma & m = 1
\end{cases}$$

Examples

```python
>>> from sympy import harmonic, oo

>>> [harmonic(n) for n in range(6)]
[0, 1, 3/2, 11/6, 25/12, 137/60]

>>> [harmonic(n, 2) for n in range(6)]
[0, 1, 5/4, 49/36, 205/144, 5269/3600]

>>> harmonic(oo, 2)
pi**2/6
```
```python
>>> from sympy import Symbol, Sum
>>> n = Symbol("n")

>>> harmonic(n).rewrite(Sum)
Sum(1/_k, (_k, 1, n))

We can evaluate harmonic numbers for all integral and positive rational arguments:

```python
>>> from sympy import S, expand_func, simplify

>>> harmonic(8)
761/280

>>> harmonic(11)
83711/27720

>>> H = harmonic(1/S(3))

>>> H
harmonic(1/3)

>>> He = expand_func(H)

>>> He
-log(6) - sqrt(3)*pi/6 + 2*Sum(log(sin(_k*pi/3))*cos(2*_k*pi/3), (_k, 1, _-1))
  + 3*Sum(1/(3*_k + 1), (_k, 0, 0))

>>> He.doit()
-log(6) - sqrt(3)*pi/6 - log(sqrt(3)/2) + 3

>>> H = harmonic(25/S(7))

>>> He = simplify(expand_func(H).doit())

>>> He
log(sin(2*pi/7)**(2*cos(16*pi/7))/(14*sin(pi/7)**(2*cos(pi/7)))*cos(pi/14)**(2*sin(pi/14))) + pi*tan(pi/14)/2 + 30247/9900

>>> He.n(40)
1.98369745523298067469851942390639915940

>>> harmonic(25/S(7)).n(40)
1.98369745523298067469851942390639915940

We can rewrite harmonic numbers in terms of polygamma functions:

```python
>>> from sympy import digamma, polygamma
>>> m = Symbol("m", integer=True, positive=True)

>>> harmonic(n).rewrite(digamma)
polygamma(0, n + 1) + EulerGamma

>>> harmonic(n).rewrite(polygamma)
polygamma(0, n + 1) + EulerGamma

>>> harmonic(n, 3).rewrite(polygamma)
polygamma(2, n + 1)/2 + zeta(3)

>>> simplify(harmonic(n, m).rewrite(polygamma))
Piecewise((polygamma(0, n + 1) + EulerGamma, Eq(m, 1)),
(-(-1)**m*polygamma(m - 1, n + 1)/factorial(m - 1) + zeta(m), True))
```
Integer offsets in the argument can be pulled out:

```python
>>> from sympy import expand_func

>>> expand_func(harmonic(n+4))
harmonic(n) + 1/(n + 4) + 1/(n + 3) + 1/(n + 2) + 1/(n + 1)

>>> expand_func(harmonic(n-4))
harmonic(n) - 1/(n - 1) - 1/(n - 2) - 1/(n - 3) - 1/n
```

Some limits can be computed as well:

```python
>>> from sympy import limit, oo

>>> limit(harmonic(n), n, oo)
oo

>>> limit(harmonic(n, 2), n, oo)
pi**2/6

>>> limit(harmonic(n, 3), n, oo)
zeta(3)
```

For $m > 1$, $H_{n,m}$ tends to $\zeta(m)$ in the limit of infinite $n$:

```python
>>> m = Symbol("m", positive=True)
>>> limit(harmonic(n, m+1), n, oo)
zeta(m + 1)
```

See also:

- *bell* (page 483), *bernoulli* (page 485), *catalan* (page 488), *euler* (page 489),
  *fibonacci* (page 494), *lucas* (page 497), *genocchi* (page 498), *partition* (page 500),
  *tribonacci* (page 494)

References

[R227], [R228], [R229]

**class** `sympy.functions.combinatorial.numbers.lucas(n)`

Lucas numbers

Lucas numbers satisfy a recurrence relation similar to that of the Fibonacci sequence, in which each term is the sum of the preceding two. They are generated by choosing the initial values $L_0 = 2$ and $L_1 = 1$.

- *lucas(n)* gives the $n^{th}$ Lucas number
Examples

```python
>>> from sympy import lucas

>>> [lucas(x) for x in range(11)]
[2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123]
```

See also:

- bell (page 483)
- bernoulli (page 485)
- catalan (page 488)
- euler (page 489)
- fibonacci (page 494)
- harmonic (page 495)
- genocchi (page 498)
- partition (page 500)
- tribonacci (page 494)

References

[R230], [R231]

class sympy.functions.combinatorial.numbers.genocchi(n, x=None)

Genocchi numbers / Genocchi polynomials / Genocchi function

The Genocchi numbers are a sequence of integers $G_n$ that satisfy the relation:

$$
\frac{-2t}{1+e^{-t}} = \sum_{n=0}^{\infty} \frac{G_n t^n}{n!}
$$

They are related to the Bernoulli numbers by

$$
G_n = 2(1 - 2^n)B_n
$$

and generalize like the Bernoulli numbers to the Genocchi polynomials and function as

$$
G(s, a) = 2 \left( B(s, a) - 2^s B \left( s, \frac{a+1}{2} \right) \right)
$$

Changed in version 1.12: genocchi(1) gives $-1$ instead of 1.

Examples

```python
>>> from sympy import genocchi, Symbol

>>> [genocchi(n) for n in range(9)]
[0, -1, -1, 0, 1, 0, -3, 0, 17]

>>> n = Symbol('n', integer=True, positive=True)
>>> genocchi(2*n + 1)
0

>>> x = Symbol('x')
>>> genocchi(4, x)
-4*x**3 + 6*x**2 - 1
```

See also:

- bell (page 483)
- bernoulli (page 485)
- catalan (page 488)
- euler (page 489)
- fibonacci (page 494)
- harmonic (page 495)
- lucas (page 497)
- partition (page 500)
- tribonacci (page 494)
- sympy.polys.appellseqs.genocchi_poly (page 2519)
class sympy.functions.combinatorial.numbers.andre(n)

Andre numbers / Andre function

The Andre number $A_n$ is Luschny’s name for half the number of alternating permutations on $n$ elements, where a permutation is alternating if adjacent elements alternately compare “greater” and “smaller” going from left to right. For example, $2 < 3 > 1 < 4$ is an alternating permutation.

This sequence is A000111 in the OEIS, which assigns the names up/down numbers and Euler zigzag numbers. It satisfies a recurrence relation similar to that for the Catalan numbers, with $A_0 = 1$ and

$$2A_{n+1} = \sum_{k=0}^{n} \binom{n}{k} A_k A_{n-k}$$

The Bernoulli and Euler numbers are signed transformations of the odd- and even-indexed elements of this sequence respectively:

$$B_{2k} = \frac{2kA_{2k-1}}{(-4)^k - (-16)^k}$$

$$E_{2k} = (-1)^k A_{2k}$$

Like the Bernoulli and Euler numbers, the Andre numbers are interpolated by the entire Andre function:

$$A(s) = (-i)^{s+1} \text{Li}_{-s}(i) + i^{s+1} \text{Li}_{-s}(-i) = \frac{2\Gamma(s+1)}{(2\pi)^{s+1}} (\zeta(s+1,1/4) - \zeta(s+1,3/4) \cos \pi s)$$

Examples

```python
>>> from sympy import andre, euler, bernoulli
>>> [andre(n) for n in range(11)]
[1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521]
>>> [(1)**k * andre(2**k) for k in range(7)]
[1, -1, 5, -61, 1385, -50521, 2702765]
>>> [euler(2**k) for k in range(7)]
[1, -1, 5, -61, 1385, -50521, 2702765]
>>> [andre(2**k-1) * (2**k) / ((-4)**k - (-16)**k) for k in range(1, 8)]
[1/6, -1/30, 1/42, -1/30, 5/66, -691/2730, 7/6]
>>> [bernoulli(2**k) for k in range(1, 8)]
[1/6, -1/30, 1/42, -1/30, 5/66, -691/2730, 7/6]
```

See also:

bernoulli (page 485), catalan (page 488), euler (page 489), sympy.polys. appellseqs.andre_poly (page 2520)
class sympy.functions.combinatorial.numbers.partition(n)

Partition numbers

The Partition numbers are a sequence of integers $p_n$ that represent the number of distinct ways of representing $n$ as a sum of natural numbers (with order irrelevant). The generating function for $p_n$ is given by:

$$
\sum_{n=0}^{\infty} p_n x^n = \prod_{k=1}^{\infty} (1 - x^k)^{-1}
$$

Examples

```python
>>> from sympy import partition, Symbol
>>> [partition(n) for n in range(9)]
[1, 1, 2, 3, 5, 7, 11, 15, 22]
>>> n = Symbol('n', integer=True, negative=True)
>>> partition(n)
```

See also:

- bell (page 483), bernoulli (page 485), catalan (page 488), euler (page 489), fibonacci (page 494), harmonic (page 495), lucas (page 497), genocchi (page 498), tribonacci (page 494)

References

[R238], [R239]

class sympy.functions.combinatorial.factorials.MultiFactorial(*args)

class sympy.functions.combinatorial.factorials.RisingFactorial(x, k)

Rising factorial (also called Pochhammer symbol [R240]) is a double valued function arising in concrete mathematics, hypergeometric functions and series expansions. It is defined by:

$$
rf(y, k) = (x)^k = x \cdot (x+1) \cdots (x+k-1)
$$

where $x$ can be arbitrary expression and $k$ is an integer. For more information check “Concrete mathematics” by Graham, pp. 66 or visit https://mathworld.wolfram.com/RisingFactorial.html page.

When $x$ is a .Poly instance of degree $\geq 1$ with a single variable, $(x)^k = x(y) \cdot x(y+1) \cdots x(y+k-1)$, where $y$ is the variable of $x$. This is as described in [R241].
Examples

```python
>>> from sympy import rf, Poly
>>> from sympy.abc import x

>>> rf(x, 0)
1
>>> rf(1, 5)
120
>>> rf(x, 5) == x*(1 + x)*(2 + x)*(3 + x)*(4 + x)
True
>>> rf(Poly(x**3, x), 2)
Poly(x**6 + 3*x**5 + 3*x**4 + x**3, x, domain='ZZ')
```

Rewriting is complicated unless the relationship between the arguments is known, but rising factorial can be rewritten in terms of gamma, factorial, binomial, and falling factorial.

```python
>>> from sympy import Symbol, factorial, ff, binomial, gamma

>>> n = Symbol('n', integer=True, positive=True)
>>> R = rf(n, n + 2)

>>> for i in (rf, ff, factorial, binomial, gamma):
... R.rewrite(i)

RisingFactorial(n, n + 2)
FallingFactorial(2*n + 1, n + 2)
factorial(2*n + 1)/factorial(n - 1)
binomial(2*n + 1, n + 2)*factorial(n + 2)
gamma(2*n + 2)/gamma(n)
```

See also:

`factorial` (page 490), `factorial2` (page 492), `FallingFactorial` (page 493)

References

[R240], [R241]

SymPy Documentation, Release 1.12.1

5.8. Topics 501

sympy.functions.combinatorial.numbers.stirling(n, k, d=None, kind=2, signed=False)

Return Stirling number $S(n,k)$ of the first or second (default) kind.

The sum of all Stirling numbers of the second kind for $k = 1$ through $n$ is bell(n). The recurrence relationship for these numbers is:

\[
\begin{align*}
\{0\} &= 1; \\
\{n\} &= 0; \\
\{n + 1\} &= j\{n\} + \binom{n}{k - 1}
\end{align*}
\]

where $j$ is:

$n$ for Stirling numbers of the first kind, $-n$ for signed Stirling numbers of the first kind, $k$ for Stirling numbers of the second kind.
The first kind of Stirling number counts the number of permutations of \( n \) distinct items that have \( k \) cycles; the second kind counts the ways in which \( n \) distinct items can be partitioned into \( k \) parts. If \( d \) is given, the “reduced Stirling number of the second kind” is returned: 

\[
S_{d}(n, k) = S(n - d + 1, k - d + 1)
\]

with \( n \geq k \geq d \). (This counts the ways to partition \( n \) consecutive integers into \( k \) groups with no pairwise difference less than \( d \). See example below.)

To obtain the signed Stirling numbers of the first kind, use keyword signed=True. Using this keyword automatically sets kind to 1.

**Examples**

```python
>>> from sympy.functions.combinatorial.numbers import stirling, bell
>>> from sympy.combinatorics import Permutation
>>> from sympy.utilities.iterables import multiset_partitions,

First kind (unsigned by default):

```python
>>> [stirling(6, i, kind=1) for i in range(7)]
[0, 120, 274, 225, 85, 15, 1]
```  
```python
>>> perms = list(permutations(range(4)))
>>> [sum(Permutation(p).cycles == i for p in perms) for i in range(5)]
[0, 6, 11, 6, 1]
```  
```python
>>> [stirling(4, i, kind=1) for i in range(5)]
[0, 6, 11, 6, 1]
```  
First kind (signed):

```python
>>> [stirling(4, i, signed=True) for i in range(5)]
[0, -6, 11, -6, 1]
```  
Second kind:

```python
>>> [stirling(10, i) for i in range(12)]
[0, 1, 511, 9330, 34105, 42525, 22827, 5880, 750, 45, 1, 0]
```  
```python
>>> sum(_) == bell(10)
True
>>> len(list(multiset_partitions(range(4), 2))) == stirling(4, 2)
True
```  
Reduced second kind:

```python
>>> from sympy import subsets, oo
>>> def delta(p):
...    if len(p) == 1:
...        return oo
...    return min(abs(i[0] - i[1]) for i in subsets(p, 2))
>>> parts = multiset_partitions(range(5), 3)
>>> d = 2
>>> sum(1 for p in parts if all(delta(i) >= d for i in p))
7
>>> stirling(5, 3, 2)
7
```
See also:

sympy.utilities.iterables.multiset_partitions (page 2154)

References

[R242], [R243]

Enumeration

Three functions are available. Each of them attempts to efficiently compute a given combinatorial quantity for a given set or multiset which can be entered as an integer, sequence or multiset (dictionary with elements as keys and multiplicities as values). The k parameter indicates the number of elements to pick (or the number of partitions to make). When k is None, the sum of the enumeration for all k (from 0 through the number of items represented by n) is returned. A replacement parameter is recognized for combinations and permutations; this indicates that any item may appear with multiplicity as high as the number of items in the original set.

```python
>>> from sympy.functions.combinatorial.numbers import nC
>>> nC(3, 2)
3
>>> nC('abc', 2)
3
>>> nC('aab', 2)
2
```

When replacement is True, each item can have multiplicity equal to the length represented by n:
>>> nC('aabc', replacement=True)
35
>>> [len(list(multiset_combinations('aaaabbbcccc', i))) for i in
range(5)]
[1, 3, 6, 10, 15]
>>> sum(_)
35

If there are \(k \) items with multiplicities \(m_1, m_2, \ldots, m_k \) then the total of all combinations of length 0 through \(k \) is the product, \((m_1 + 1)*(m_2 + 1)*\ldots*(m_k + 1)\). When the multiplicity of each item is 1 (i.e., \(k \) unique items) then there are \(2**k \) combinations. For example, if there are 4 unique items, the total number of combinations is 16:

>>> sum(nC(4, i) for i in range(5))
16

See also:

sympy.utilities.iterables.multiset_combinations (page 2153)

References

[R244], [R245]
sympy.functions.combinatorial.numbers.nP(n, k=None, replacement=False)
Return the number of permutations of \(n \) items taken \(k \) at a time.
Possible values for \(n \):
- integer - set of length \(n \)
- sequence - converted to a multiset internally
- multiset - \{element: multiplicity\}
If \(k \) is None then the total of all permutations of length 0 through the number of items represented by \(n \) will be returned.
If replacement is True then a given item can appear more than once in the \(k \) items. (For example, for ‘ab’ permutations of 2 would include ‘aa’, ‘ab’, ‘ba’ and ‘bb’.) The multiplicity of elements in \(n \) is ignored when replacement is True but the total number of elements is considered since no element can appear more times than the number of elements in \(n \).

Examples

>>> from sympy.functions.combinatorial.numbers import nP
>>> from sympy.utilities.iterables import multiset_permutations, multiset
>>> nP(3, 2)
6
>>> nP('abc', 2) == nP(multiset('abc'), 2) == 6
True
>>> nP('aab', 2)
3
(continues on next page)
When replacement is True, each item can have multiplicity equal to the length represented by n:

```
>>> nP('aabc', replacement=True)
121
>>> [len(list(multiset_permutations('aaaabbbcccc', i))) for i in range(5)]
[1, 3, 9, 27, 81]
>>> sum(_)
121
```

See also:

`sympy.utilities.iterables.multiset_permutations` (page 2156)

References

[R246]

`sympy.functions.combinatorial.numbers.nT(n, k=None)`

Return the number of k-sized partitions of n items.

Possible values for n:
- integer - n identical items
- sequence - converted to a multiset internally
- multiset - {element: multiplicity}

Note: the convention for nT is different than that of nC and nP in that here an integer indicates n identical items instead of a set of length n; this is in keeping with the partitions function which treats its integer-n input like a list of n 1s. One can use `range(n)` for n to indicate n distinct items.

If k is None then the total number of ways to partition the elements represented in n will be returned.

Examples

```
>>> from sympy.functions.combinatorial.numbers import nT
```

Partitions of the given multiset:

```
>>> [nT('aabbc', i) for i in range(1, 7)]
[1, 8, 11, 5, 1, 0]
```
>>> \texttt{nT('aabbc') == sum(_)}
True

>>> \texttt{[nT("mississippi", i) for i in range(1, 12)]}
[1, 74, 609, 1521, 1768, 1224, 579, 197, 50, 9, 1]

Partitions when all items are identical:

>>> \texttt{[nT(5, i) for i in range(1, 6)]}
[1, 2, 2, 1, 1]

When all items are different:

>>> \texttt{[nT(range(5), i) for i in range(1, 6)]}
[1, 15, 25, 10, 1]

Partitions of an integer expressed as a sum of positive integers:

>>> \texttt{from sympy import partition}

>>> \texttt{partition(4)}
5

>>> \texttt{nT(4, 1) + nT(4, 2) + nT(4, 3) + nT(4, 4)}
5

>>> \texttt{nT('1**4')}
5

See also:

\texttt{sympy.utilities.iterables.partitions} (page 2159), \texttt{sympy.utilities.iterables.multiset_partitions} (page 2154), \texttt{sympy.functions.combinatorial.numbers.partition} (page 500)

References

[R247]

Special

Dirac Delta and Related Discontinuous Functions

\texttt{class sympy.functions.special.delta_functions.DiracDelta}(\texttt{arg}, \texttt{k=0})

The DiracDelta function and its derivatives.
Explanation

DiracDelta is not an ordinary function. It can be rigorously defined either as a distribution or as a measure.

DiracDelta only makes sense in definite integrals, and in particular, integrals of the form \(\int f(x) \text{DiracDelta}(x - x_0) \, dx \), where it equals \(f(x_0) \) if \(a \leq x_0 \leq b \) and 0 otherwise. Formally, DiracDelta acts in some ways like a function that is 0 everywhere except at 0, but in many ways it also does not. It can often be useful to treat DiracDelta in formal ways, building up and manipulating expressions with delta functions (which may eventually be integrated), but care must be taken to not treat it as a real function. SymPy's oo is similar. It only truly makes sense formally in certain contexts (such as integration limits), but SymPy allows its use everywhere, and it tries to be consistent with operations on it (like 1/oo), but it is easy to get into trouble and get wrong results if oo is treated too much like a number. Similarly, if DiracDelta is treated too much like a function, it is easy to get wrong or nonsensical results.

DiracDelta function has the following properties:

1) \(\frac{d}{dx} \delta(x) = \delta(x) \)
2) \(\int_{-\infty}^{\infty} \delta(x-a) f(x) \, dx = f(a) \) and \(\int_{a-\varepsilon}^{a+\varepsilon} \delta(x-a) f(x) \, dx = f(a) \)
3) \(\delta(x) = 0 \) for all \(x \neq 0 \)
4) \(\delta(g(x)) = \sum \frac{\delta(x-x_i)}{||g'(x)||} \) where \(x_i \) are the roots of \(g \)
5) \(\delta(-x) = \delta(x) \)

Derivatives of k-th order of DiracDelta have the following properties:
6) \(\delta(x,k) = 0 \) for all \(x \neq 0 \)
7) \(\delta(-x,k) = -\delta(x,k) \) for odd \(k \)
8) \(\delta(-x,k) = \delta(x,k) \) for even \(k \)

Examples

```python
>>> from sympy import DiracDelta, diff, pi
>>> from sympy.abc import x, y

>>> DiracDelta(x)
DiracDelta(x)
>>> DiracDelta(1)
0
>>> DiracDelta(-1)
0
>>> DiracDelta(pi)
0
>>> DiracDelta(x - 4).subs(x, 4)
DiracDelta(0)
>>> diff(DiracDelta(x))
DiracDelta(x, 1)
>>> diff(DiracDelta(x - 1), x, 2)
DiracDelta(x - 1, 2)
```

(continues on next page)
See also:
Heaviside (page 510), sympy.simplify.simplify.simplify (page 719), is_simple (page 510), sympy.functions.special.tensor_functions.KroneckerDelta (page 607)

References
[R314]

classmethod eval(arg, k=0)
Returns a simplified form or a value of DiracDelta depending on the argument passed by the DiracDelta object.

Parameters
k : integer
order of derivative
arg : argument passed to DiracDelta

Explanation
The eval() method is automatically called when the DiracDelta class is about to be instantiated and it returns either some simplified instance or the unevaluated instance depending on the argument passed. In other words, eval() method is not needed to be called explicitly, it is being called and evaluated once the object is called.

Examples

```python
>>> from sympy import DiracDelta, S
>>> from sympy.abc import x

>>> DiracDelta(x)
DiracDelta(x)

>>> DiracDelta(-x, 1)
-DiracDelta(x, 1)
```
```python
>>> DiracDelta(1)
0

>>> DiracDelta(5, 1)
0

>>> DiracDelta(0)
DiracDelta(0)

>>> DiracDelta(-1)
0

>>> DiracDelta(S.NaN)
nan

>>> DiracDelta(x - 100).subs(x, 5)
0

>>> DiracDelta(x - 100).subs(x, 100)
DiracDelta(0)
```

fdiff(argindex=1)

Returns the first derivative of a DiracDelta Function.

Parameters

- **argindex**: integer
 - degree of derivative

Explanation

The difference between diff() and fdiff() is: diff() is the user-level function and fdiff() is an object method. fdiff() is a convenience method available in the Function class. It returns the derivative of the function without considering the chain rule. diff(function, x) calls Function._eval_derivative which in turn calls fdiff() internally to compute the derivative of the function.

Examples

```python
>>> from sympy import DiracDelta, diff

>>> from sympy.abc import x

>>> DiracDelta(x).fdiff()
DiracDelta(x, 1)

>>> DiracDelta(x, 1).fdiff()
DiracDelta(x, 2)
```
is_simple(x)
Tells whether the argument(args[0]) of DiracDelta is a linear expression in x.

Parameters
x : can be a symbol

Examples

```python
>>> from sympy import DiracDelta, cos
>>> from sympy.abc import x, y

>>> DiracDelta(x*y).is_simple(x)
True
>>> DiracDelta(x*y).is_simple(y)
True

>>> DiracDelta(x**2 + x - 2).is_simple(x)
False

>>> DiracDelta(cos(x)).is_simple(x)
False
```

See also:
sympy.simplify.simplify.simplify (page 719), DiracDelta (page 506)

class sympy.functions.special.delta_functions.Heaviside(arg, H0=1/2)
Heaviside step function.

Explanation

The Heaviside step function has the following properties:

1) \(\frac{d}{dx} \theta(x) = \delta(x) \)

2) \(\theta(x) = \begin{cases} 0 & \text{for } x < 0 \\ \frac{1}{2} & \text{for } x = 0 \\ 1 & \text{for } x > 0 \end{cases} \)

3) \(\frac{d}{dx} \max(x, 0) = \theta(x) \)

Heaviside(x) is printed as \(\theta(x) \) with the SymPy LaTeX printer.

The value at 0 is set differently in different fields. SymPy uses 1/2, which is a convention from electronics and signal processing, and is consistent with solving improper integrals by Fourier transform and convolution.
To specify a different value of Heaviside at x=0, a second argument can be given. Using `Heaviside(x, nan)` gives an expression that will evaluate to nan for x=0.

Changed in version 1.9: Heaviside(0) now returns 1/2 (before: undefined)

Examples

```python
>>> from sympy import Heaviside, nan
>>> from sympy.abc import x
>>> Heaviside(9)
1
>>> Heaviside(-9)
0
>>> Heaviside(0)
1/2
>>> Heaviside(0, nan)
nan
>>> (Heaviside(x) + 1).replace(Heaviside(x), Heaviside(x, 1))
Heaviside(x, 1) + 1
```

See also:

`DiracDelta` (page 506)

References

[R315], [R316]

```python
classmethod eval(arg, H0=1/2)
```

Returns a simplified form or a value of Heaviside depending on the argument passed by the Heaviside object.

Parameters

- `arg`: argument passed by Heaviside object
- `H0`: value of Heaviside(0)

Explanation

The `eval()` method is automatically called when the `Heaviside` class is about to be instantiated and it returns either some simplified instance or the unevaluated instance depending on the argument passed. In other words, `eval()` method is not needed to be called explicitly, it is being called and evaluated once the object is called.
Examples

```python
from sympy import Heaviside, S
from sympy.abc import x

Heaviside(x)
Heaviside(x)

Heaviside(19)
1

Heaviside(0)
1/2

Heaviside(0, 1)
1

Heaviside(-5)
0

Heaviside(S.NaN)
nan

Heaviside(x - 100).subs(x, 5)
0

Heaviside(x - 100).subs(x, 105)
1
```

fdiff(argindex=1)

Returns the first derivative of a Heaviside Function.

Parameters

- **argindex**: integer
 - order of derivative

Examples

```python
from sympy import Heaviside, diff
from sympy.abc import x

Heaviside(x).fdiff()
DiracDelta(x)

Heaviside(x**2 - 1).fdiff()
DiracDelta(x**2 - 1)
```
property pargs
 Args without default S.Half

class sympy.functions.special.singularity_functions.SingularityFunction(`variable`, `offset`, `exponent`)

Singularity functions are a class of discontinuous functions.

Explanation

Singularity functions take a variable, an offset, and an exponent as arguments. These functions are represented using Macaulay brackets as:

\[\text{SingularityFunction}(x, a, n) := <x - a>^n \]

The singularity function will automatically evaluate to \(\text{Derivative}(\text{DiracDelta}(x - a), x, -n - 1) \) if \(n < 0 \) and \((x - a)^n \text{Heaviside}(x - a) \) if \(n \geq 0 \).

Examples

```python
>>> from sympy import SingularityFunction, diff, Piecewise, DiracDelta, Heaviside, Symbol
>>> from sympy.abc import x, a, n
>>> y = Symbol('y', positive=True)
>>> n = Symbol('n', nonnegative=True)
>>> SingularityFunction(y, -10, n)
(y + 10)**n
>>> SingularityFunction(y, 10, n)
0
>>> SingularityFunction(x, 4, -1).subs(x, 4)
oo
>>> SingularityFunction(x, 10, -2).subs(x, 10)
0
>>> SingularityFunction(4, 1, 5)
243
>>> diff(SingularityFunction(x, 1, 5) + SingularityFunction(x, 1, 4), x)
4*SingularityFunction(x, 1, 3) + 5*SingularityFunction(x, 1, 4)
>>> diff(SingularityFunction(x, 4, 0), x, 2)
SingularityFunction(x, 4, -2)
>>> SingularityFunction(x, 4, 5).rewrite(Piecewise)
Piecewise(((x - 4)**5, x > 4), (0, True))
>>> expr = SingularityFunction(x, a, n)
>>> y = Symbol('y', positive=True)
>>> n = Symbol('n', nonnegative=True)
```

(continues on next page)
>>> expr.subs({x: y, a: -10, n: n})
(y + 10)**n

The methods rewrite(DiracDelta), rewrite(Heaviside), and rewrite('HeavisideDiracDelta') returns the same output. One can use any of these methods according to their choice.

>>> expr = SingularityFunction(x, 4, 5) + SingularityFunction(x, -3, -1)
 - SingularityFunction(x, 0, -2)
>>> expr.rewrite(Heaviside)
(x - 4)**5*Heaviside(x - 4) + DiracDelta(x + 3) - DiracDelta(x, 1)
>>> expr.rewrite(DiracDelta)
(x - 4)**5*Heaviside(x - 4) + DiracDelta(x + 3) - DiracDelta(x, 1)
>>> expr.rewrite('HeavisideDiracDelta')
(x - 4)**5*Heaviside(x - 4) + DiracDelta(x + 3) - DiracDelta(x, 1)

See also:

DiracDelta (page 506), *Heaviside* (page 510)

References

[R317]

classmethod eval(variable, offset, exponent)

Returns a simplified form or a value of Singularity Function depending on the argument passed by the object.

Explanation

The eval() method is automatically called when the SingularityFunction class is about to be instantiated and it returns either some simplified instance or the unevaluated instance depending on the argument passed. In other words, eval() method is not needed to be called explicitly, it is being called and evaluated once the object is called.

Examples

```python
>>> from sympy import SingularityFunction, Symbol, nan
>>> from sympy.abc import x, a, n
>>> SingularityFunction(x, a, n)
SingularityFunction(x, a, n)
>>> SingularityFunction(5, 3, 2)
4
>>> SingularityFunction(x, a, nan)
nan
>>> SingularityFunction(x, 3, 0).subs(x, 3)
1
>>> SingularityFunction(4, 1, 5)
```
>>> x = Symbol('x', positive = True)
>>> a = Symbol('a', negative = True)
>>> n = Symbol('n', nonnegative = True)
>>> SingularityFunction(x, a, n)
(-a + x)**n

>>> x = Symbol('x', negative = True)
>>> a = Symbol('a', positive = True)
>>> n = Symbol('n', nonnegative = True)
>>> SingularityFunction(x, a, n)
0

\textbf{fdiff}(\texttt{argindex}=1)

Returns the first derivative of a DiracDelta Function.

\textbf{Explanation}

The difference between \texttt{diff()} and \texttt{fdiff()} is: \texttt{diff()} is the user-level function and \texttt{fdiff()} is an object method. \texttt{fdiff()} is a convenience method available in the Function class. It returns the derivative of the function without considering the chain rule. \texttt{diff(function, x)} calls Function_eval_derivative which in turn calls \texttt{fdiff()} internally to compute the derivative of the function.

\textbf{Gamma, Beta and Related Functions}

\texttt{class sympy.functions.special.gamma_functions.gamma}(\texttt{arg})

The gamma function

\[
\Gamma(x) := \int_0^{\infty} t^{x-1} e^{-t} dt.
\]

\textbf{Explanation}

The gamma function implements the function which passes through the values of the factorial function (i.e., \(\Gamma(n) = (n-1)!\) when \(n\) is an integer). More generally, \(\Gamma(z)\) is defined in the whole complex plane except at the negative integers where there are simple poles.

\textbf{Examples}

```python
>>> from sympy import S, I, pi, gamma
>>> from sympy.abc import x
```

Several special values are known:

```python
>>> gamma(1)
1
>>> gamma(4)
6
```
The gamma function obeys the mirror symmetry:

```python
from sympy import conjugate
conjugate(gamma(x)) == gamma(conjugate(x))
```

Differentiation with respect to \(x\) is supported:

```python
from sympy import diff
diff(gamma(x), x) == gamma(x)*polygamma(0, x)
```

Series expansion is also supported:

```python
from sympy import series
series(gamma(x), x, 0, 3)
```

We can numerically evaluate the gamma function to arbitrary precision on the whole complex plane:

```python
gamma(pi).evalf(40)
gamma(1+I).evalf(20)
```

See also:

- `lowergamma` [page 524]
 Lower incomplete gamma function.
- `uppergamma` [page 523]
 Upper incomplete gamma function.
- `polygamma` [page 519]
 Polygamma function.
- `loggamma` [page 517]
 Log Gamma function.
- `digamma` [page 521]
 Digamma function.
- `trigamma` [page 522]
 Trigamma function.
- `beta` [page 526]
 Euler Beta function.
class sympy.functions.special.gamma_functions.loggamma(z)
The loggamma function implements the logarithm of the gamma function (i.e., \(\log(\Gamma(x))\)).

Examples

Several special values are known. For numerical integral arguments we have:

```python
>>> from sympy import loggamma
>>> loggamma(-2)
oo
>>> loggamma(0)
oo
>>> loggamma(1)
0
>>> loggamma(2)
0
>>> loggamma(3)
log(2)
```

And for symbolic values:

```python
>>> from sympy import Symbol
>>> n = Symbol("n", integer=True, positive=True)
>>> loggamma(n)
log(gamma(n))
>>> loggamma(-n)
oo
```

For half-integral values:

```python
>>> from sympy import S
>>> loggamma(S(5)/2)
log(3*sqrt(pi)/4)
>>> loggamma(n/2)
log(2**(1 - n)*sqrt(pi)*gamma(n)/gamma(n/2 + 1/2))
```

And general rational arguments:

```python
>>> from sympy import expand_func
>>> L = loggamma(S(16)/3)
>>> expand_func(L).doit()
-5*log(3) + loggamma(1/3) + log(4) + log(7) + log(10) + log(13)
>>> L = loggamma(S(19)/4)
>>> expand_func(L).doit()
-4*log(4) + loggamma(3/4) + log(3) + log(7) + log(11) + log(15)
>>> L = loggamma(S(23)/7)
>>> expand_func(L).doit()
-3*log(7) + log(2) + loggamma(2/7) + log(9) + log(16)
```

The loggamma function has the following limits towards infinity:
The `loggamma` function obeys the mirror symmetry if $x \in \mathbb{C} \setminus \{-\infty, 0\}$:

```
from sympy.abc import x
from sympy import conjugate
conjugate(loggamma(x))
```

Differentiation with respect to x is supported:

```
from sympy import diff
diff(loggamma(x), x)
```

Series expansion is also supported:

```
from sympy import series
series(loggamma(x), x, 0, 4).cancel()
```

We can numerically evaluate the `loggamma` function to arbitrary precision on the whole complex plane:

```
from sympy import I
loggamma(5).evalf(30)
3.17805383034794561964694160130
loggamma(I).evalf(20)
-0.65092319930185633889 - 1.8724366472624298171*I
```

See also:

- `gamma` (page 515)
 Gamma function.
- `lowergamma` (page 524)
 Lower incomplete gamma function.
- `uppergamma` (page 523)
 Upper incomplete gamma function.
- `polygamma` (page 519)
 Polygamma function.
- `digamma` (page 521)
 Digamma function.
- `trigamma` (page 522)
 Trigamma function.
- `beta` (page 526)
 Euler Beta function.
class sympy.functions.special.gamma_functions.polygamma(n, z)

The function polygamma(n, z) returns log(gamma(z)).diff(n + 1).

Explanation

It is a meromorphic function on \(\mathbb{C} \) and defined as the \((n+1)\)-th derivative of the logarithm of the gamma function:

\[
\psi^{(n)}(z) := \frac{d^{n+1}}{dz^{n+1}} \log \Gamma(z).
\]

For \(n \) not a nonnegative integer the generalization by Espinosa and Moll [R330] is used:

\[
\psi(s, z) = \zeta'(s + 1, z) + (\gamma + \psi(-s))\zeta(s + 1, z)
\]

Examples

Several special values are known:

```python
>>> from sympy import S, polygamma
>>> polygamma(0, 1)
-EulerGamma
>>> polygamma(0, 1/S(2))
-2*log(2) - EulerGamma
>>> polygamma(0, 1/S(3))
-log(3) - sqrt(3)*pi/6 - EulerGamma - log(sqrt(3))
>>> polygamma(0, 1/S(4))
-pi/2 - log(4) - log(2) - EulerGamma
>>> polygamma(0, 2)
1 - EulerGamma
>>> polygamma(0, 23)
19093197/5173168 - EulerGamma
```

```python
>>> from sympy import oo, I
>>> polygamma(0, oo)
oo
>>> polygamma(0, -oo)
oo
>>> polygamma(0, I*oo)
oo
>>> polygamma(0, -I*oo)
```

Differentiation with respect to \(x \) is supported:
```python
from sympy import *

x = Symbol("x")

diff(polygamma(0, x), x)
diff(polygamma(0, x), x, 2)
diff(polygamma(0, x), x, 3)
diff(polygamma(1, x), x)
diff(polygamma(1, x), x, 2)
diff(polygamma(2, x), x)
diff(polygamma(2, x), x, 2)
diff(polygamma(2, x), x, 3)
diff(polygamma(2, x), x, 4)

n = Symbol("n")

diff(polygamma(n, x), x)
diff(polygamma(n, x), x, 2)

We can rewrite polygamma functions in terms of harmonic numbers:

```python
from sympy import harmonic

polygamma(0, x).rewrite(harmonic)

2*harmonic(x - 1, 3) - 2*zeta(3)

ni = Symbol("n", integer=True)
polygamma(ni, x).rewrite(harmonic)

(-1)**(n + 1)*(-harmonic(x - 1, n + 1) + zeta(n + 1))*factorial(n)

See also:

gamma (page 515)
Gamma function.

lowergamma (page 524)
Lower incomplete gamma function.

uppergamma (page 523)
Upper incomplete gamma function.

loggamma (page 517)
Log Gamma function.

digamma (page 521)
Digamma function.

trigamma (page 522)
Trigamma function.

beta (page 526)
Euler Beta function.
References

[R326], [R327], [R328], [R329], [R330]

class sympy.functions.special.gamma_functions.digamma(z)
The digamma function is the first derivative of the loggamma function
\[\psi(x) := \frac{d}{dz} \log \Gamma(z) = \frac{\Gamma'(z)}{\Gamma(z)}. \]

In this case, \(\text{digamma}(z) = \text{polygamma}(0, z) \).

Examples

```python
>>> from sympy import digamma
>>> digamma(0)
zoo
>>> from sympy import Symbol
>>> z = Symbol('z')
>>> digamma(z)
polygamma(0, z)
```

To retain digamma as it is:

```python
>>> digamma(0, evaluate=False)
digamma(0)
>>> digamma(z, evaluate=False)
digamma(z)
```

See also:

- `gamma` (page 515)
 - Gamma function.
- `lowergamma` (page 524)
 - Lower incomplete gamma function.
- `uppergamma` (page 523)
 - Upper incomplete gamma function.
- `polygamma` (page 519)
 - Polygamma function.
- `loggamma` (page 517)
 - Log Gamma function.
- `trigamma` (page 522)
 - Trigamma function.
- `beta` (page 526)
 - Euler Beta function.
class sympy.functions.special.gamma_functions.trigamma(z)
 The trigamma function is the second derivative of the loggamma function
 \[\psi^{(1)}(z) := \frac{d^2}{dz^2} \log\Gamma(z). \]
 In this case, \(\text{trigamma}(z) = \text{polygamma}(1, z) \).

Examples

```python
>>> from sympy import trigamma
>>> trigamma(0)
zoo
>>> from sympy import Symbol
>>> z = Symbol('z')
>>> trigamma(z)
polygamma(1, z)
```

To retain trigamma as it is:

```python
>>> trigamma(0, evaluate=False)
trigamma(0)
>>> trigamma(z, evaluate=False)
trigamma(z)
```

See also:

- gamma (page 515)
 Gamma function.
- lowergamma (page 524)
 Lower incomplete gamma function.
- uppergamma (page 523)
 Upper incomplete gamma function.
- polygamma (page 519)
 Polygamma function.
- loggamma (page 517)
 Log Gamma function.
- digamma (page 521)
 Digamma function.
- beta (page 526)
 Euler Beta function.
class sympy.functions.special.gamma_functions.uppergamma(a, z)

The upper incomplete gamma function.

Explanation

It can be defined as the meromorphic continuation of

\[
\Gamma(s, x) := \int_x^\infty t^{s-1} e^{-t} dt = \Gamma(s) - \gamma(s, x).
\]

where \(\gamma(s, x)\) is the lower incomplete gamma function, \texttt{lowergamma} (page 524). This can be shown to be the same as

\[
\Gamma(s, x) = \Gamma(s) - \frac{x^s}{s} \, _1F_1\left(s, s+1, -x\right),
\]

where \(_1F_1\) is the (confluent) hypergeometric function.

The upper incomplete gamma function is also essentially equivalent to the generalized exponential integral:

\[
E_n(x) = \int_1^\infty \frac{e^{-xt}}{t^n} \, dt = x^{n-1} \Gamma(1-n, x).
\]

Examples

```python
>>> from sympy import uppergamma, S
>>> from sympy.abc import s, x
>>> uppergamma(s, x)
uppergamma(s, x)
>>> uppergamma(3, x)
2*(x**2/2 + x + 1)*exp(-x)
>>> uppergamma(-S(1)/2, x)
-2*sqrt(pi)*erfc(sqrt(x)) + 2*exp(-x)/sqrt(x)
>>> uppergamma(-2, x)
expint(3, x)/x**2
```

See also:

- \texttt{gamma} (page 515)
 Gamma function.
- \texttt{lowergamma} (page 524)
 Lower incomplete gamma function.
- \texttt{polygamma} (page 519)
 Polygamma function.
- \texttt{loggamma} (page 517)
 Log Gamma function.

5.8. Topics 523
digamma (page 521)
Digamma function.

trigamma (page 522)
Trigamma function.

beta (page 526)
Euler Beta function.

References

[R337], [R338], [R339], [R340], [R341], [R342]

class sympy.functions.special.gamma_functions.lowergamma(a, x)
The lower incomplete gamma function.

Explanation

It can be defined as the meromorphic continuation of
\[
\gamma(s, x) := \int_0^x t^{s-1}e^{-t}dt = \Gamma(s) - \Gamma(s, x).
\]

This can be shown to be the same as
\[
\gamma(s, x) = \frac{x^s}{s} \, _1F_1\left(s \left| \frac{s}{s+1} \right| -x \right),
\]

where \(_1F_1 \) is the (confluent) hypergeometric function.

Examples

```python
>>> from sympy import lowergamma, S
>>> from sympy.abc import s, x
>>> lowergamma(s, x)
lowergamma(s, x)
>>> lowergamma(3, x)
-2*(x**2/2 + x + 1)*exp(-x) + 2
>>> lowergamma(-S(1)/2, x)
-2*sqrt(pi)*erf(sqrt(x)) - 2*exp(-x)/sqrt(x)
```

See also:

gamma (page 515)
Gamma function.

uppergamma (page 523)
Upper incomplete gamma function.

polygamma (page 519)
Polygamma function.

loggamma (page 517)
Log Gamma function.
sympy.functions.special.gamma_functions.multigamma(x, p)

The multivariate gamma function is a generalization of the gamma function

\[\Gamma_p(z) = \pi^{p(p-1)/4} \prod_{k=1}^{p} \Gamma[z + (1 - k)/2]. \]

In a special case, \(\text{multigamma}(x, 1) = \text{gamma}(x) \).

Parameters

- \(p \): order or dimension of the multivariate gamma function

Examples

```python
>>> from sympy import S, multigamma
>>> from sympy import Symbol
>>> x = Symbol('x')
>>> p = Symbol('p', positive=True, integer=True)

>>> multigamma(x, p)
pi**(p*(p - 1)/4)*Product(gamma(-_k/2 + x + 1/2), (_k, 1, p))

Several special values are known:

>>> multigamma(1, 1)
1
>>> multigamma(4, 1)
6
>>> multigamma(S(3)/2, 1)
sqrt(pi)/2

Writing multigamma in terms of the gamma function:

>>> multigamma(x, 1)
gamma(x)

>>> multigamma(x, 2)
sqrt(pi)*gamma(x)*gamma(x - 1/2)

>>> multigamma(x, 3)
pi**(3/2)*gamma(x)*gamma(x - 1)*gamma(x - 1/2)
```
See also:

gamma (page 515), lowergamma (page 524), uppergamma (page 523), polygamma (page 519), loggamma (page 517), digamma (page 521), trigamma (page 522), beta (page 526)

References

[R348]
class sympy.functions.special.beta_functions.beta(x, y=None)
The beta integral is called the Eulerian integral of the first kind by Legendre:

\[B(x, y) = \int_0^1 t^{x-1}(1 - t)^{y-1} dt. \]

Explanation

The Beta function or Euler’s first integral is closely associated with the gamma function. The Beta function is often used in probability theory and mathematical statistics. It satisfies properties like:

\[
B(a, 1) = \frac{1}{a} \\
B(a, b) = B(b, a) \\
B(a, b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a + b)}
\]

Therefore for integral values of \(a \) and \(b \):

\[
B = \frac{(a - 1)!(b - 1)!}{(a + b - 1)!}
\]

A special case of the Beta function when \(x = y \) is the Central Beta function. It satisfies properties like:

\[
B(x) = 2^{1-2x}B(x, \frac{1}{2})B(x) = 2^{1-2x}\cos(x)B(\frac{1}{2} - x, x)B(x) = \int_0^1 \frac{t^x}{(1 + t)^{2x}} dtB(x) = \frac{2}{x} \prod_{n=1}^{\infty} \frac{n(n + 2x)}{(n + x)^2}
\]

Examples

```python
>>> from sympy import I, pi
>>> from sympy.abc import x, y
```

The Beta function obeys the mirror symmetry:

```python
>>> from sympy import beta, conjugate
>>> conjugate(beta(x, y))
beta(conjugate(x), conjugate(y))
```

Differentiation with respect to both \(x \) and \(y \) is supported:
>>> from sympy import beta, diff
>>> diff(beta(x, y), x)
(polygamma(0, x) - polygamma(0, x + y))*beta(x, y)

>>> diff(beta(x, y), y)
(polygamma(0, y) - polygamma(0, x + y))*beta(x, y)

>>> diff(beta(x), x)
2*(polygamma(0, x) - polygamma(0, 2*x))*beta(x, x)

We can numerically evaluate the Beta function to arbitrary precision for any complex numbers \(x\) and \(y\):

```python
>>> from sympy import beta
>>> beta(pi).evalf(40)
0.02671848900111377452242355235388489324562
```

```python
>>> beta(1 + I).evalf(20)
-0.2112723729365330143 - 0.7655283165378005676*I
```

See also:

- `gamma` (page 515)
 - Gamma function.
- `uppergamma` (page 523)
 - Upper incomplete gamma function.
- `lowergamma` (page 524)
 - Lower incomplete gamma function.
- `polygamma` (page 519)
 - Polygamma function.
- `loggamma` (page 517)
 - Log Gamma function.
- `digamma` (page 521)
 - Digamma function.
- `trigamma` (page 522)
 - Trigamma function.

References

[R349], [R350], [R351]
Error Functions and Fresnel Integrals

class sympy.functions.special.error_functions.erf(arg)
The Gauss error function.

Explanation

This function is defined as:

\[\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt. \]

Examples

```python
>>> from sympy import I, oo, erf
>>> from sympy.abc import z

Several special values are known:

>>> erf(0)
0
>>> erf(oo)
1
>>> erf(-oo)
-1
>>> erf(I*oo)
oo*I
>>> erf(-I*oo)
-oo*I

In general one can pull out factors of -1 and I from the argument:

>>> erf(-z)
-erf(z)

The error function obeys the mirror symmetry:

```from sympy import conjugate
>>> conjugate(erf(z))
erf(conjugate(z))
```  

Differentiation with respect to \( z \) is supported:

```from sympy import diff
>>> diff(erf(z), z)
2*exp(-z**2)/sqrt(pi)
```  

We can numerically evaluate the error function to arbitrary precision on the whole complex plane:

```python
>>> erf(4).evalf(30)
0.999999984582742099719981147840
```
```python
>>> erf(-4*I).evalf(30)
-1296959.73071763923152794095062*I
```

See also:

- `erf` (page 529)
  Complementary error function.
- `erfi` (page 531)
  Imaginary error function.
- `erf2` (page 532)
  Two-argument error function.
- `erfinv` (page 534)
  Inverse error function.
- `erfcinv` (page 535)
  Inverse Complementary error function.
- `erf2inv` (page 536)
  Inverse two-argument error function.

References

[R352], [R353], [R354], [R355]

```python
class sympy.functions.special.error_functions.erfc(arg)
```
Complementary Error Function.

**Explanation**

The function is defined as:

\[
erfc(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-t^2} \, dt
\]

**Examples**

```python
>>> from sympy import I, oo, erfc
>>> from sympy.abc import z
```

Several special values are known:

```python
>>> erfc(0)
1
>>> erfc(oo)
0
>>> erfc(-oo)
2
```

(continues on next page)
The error function obeys the mirror symmetry:

```python
from sympy import conjugate
conjugate(erfc(z))
```

Differentiation with respect to \( z \) is supported:

```python
from sympy import diff
diff(erfc(z), z)
```

It also follows

```python
erfc(-z)
2 - erfc(z)
```

We can numerically evaluate the complementary error function to arbitrary precision on the whole complex plane:

```python
erfc(4).evalf(30)
0.0000000154172579002800188521596734869
```

```python
erfc(4*I).evalf(30)
1.0 - 1296959.73071763923152794095062*I
```

See also:

- `erf` *(page 528)*
  Gaussian error function.

- `erfi` *(page 531)*
  Imaginary error function.

- `erf2` *(page 532)*
  Two-argument error function.

- `erfinv` *(page 534)*
  Inverse error function.

- `erfcinv` *(page 535)*
  Inverse Complementary error function.

- `erf2inv` *(page 536)*
  Inverse two-argument error function.
References

[R356], [R357], [R358], [R359]

inverse(argindex=1)

Returns the inverse of this function.

class sympy.functions.special.error_functions.erfi(z)

Imaginary error function.

Explanation

The function erfi is defined as:

\[ \text{erfi}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{t^2} dt \]

Examples

```python
>>> from sympy import I, oo, erfi
>>> from sympy.abc import z

Several special values are known:

>>> erfi(0)
0
>>> erfi(oo)
oo
>>> erfi(-oo)
-oo
>>> erfi(I*oo)
I
>>> erfi(-I*oo)
-I

In general one can pull out factors of -1 and I from the argument:

>>> erfi(-z)
-erfi(z)

>>> from sympy import conjugate
>>> conjugate(erfi(z))
erfi(conjugate(z))

Differentiation with respect to z is supported:

>>> from sympy import diff
>>> diff(erfi(z), z)
2*exp(z**2)/sqrt(pi)

We can numerically evaluate the imaginary error function to arbitrary precision on the whole complex plane:
>>> erfi(2).evalf(30)
18.5648024145755525987042919132

>>> erfi(-2*I).evalf(30)
-0.995322265018952734162069256367*I

See also:

erf (page 528)
Gaussian error function.

erfc (page 529)
Complementary error function.

erf2 (page 532)
Two-argument error function.

erfinv (page 534)
Inverse error function.

erfcinv (page 535)
Inverse Complementary error function.

erf2inv (page 536)
Inverse two-argument error function.

References

[R360], [R361], [R362]

class sympy.functions.special.error_functions.erf2(x, y)
Two-argument error function.

Explanation

This function is defined as:

\[
\text{erf}(x, y) = \frac{2}{\sqrt{\pi}} \int_x^y e^{-t^2} dt
\]

Examples

>>> from sympy import oo, erf2
>>> from sympy.abc import x, y

Several special values are known:

>>> erf2(0, 0)
\(0\)

>>> erf2(x, x)
\(0\)

>>> erf2(x, oo)
(continues on next page)
In general one can pull out factors of -1:

```python
>>> erf2(-x, -y)
-erf2(x, y)
```

The error function obeys the mirror symmetry:

```python
>>> from sympy import conjugate
>>> conjugate(erf2(x, y))
erf2(conjugate(x), conjugate(y))
```

Differentiation with respect to x, y is supported:

```python
>>> from sympy import diff
>>> diff(erf2(x, y), x)
-2*exp(-x**2)/sqrt(pi)
>>> diff(erf2(x, y), y)
2*exp(-y**2)/sqrt(pi)
```

See also:

- `erf` (page 528)
 Gaussian error function.

- `erfc` (page 529)
 Complementary error function.

- `erfi` (page 531)
 Imaginary error function.

- `erfinv` (page 534)
 Inverse error function.

- `erfcinv` (page 535)
 Inverse Complementary error function.

- `erf2inv` (page 536)
 Inverse two-argument error function.
References

[R363]

class sympy.functions.special.error_functions.erfinv(z)
 Inverse Error Function. The erfinv function is defined as:
 \[
 \text{erf}(x) = y \quad \Rightarrow \quad \text{erfinv}(y) = x
 \]

Examples

```python
>>> from sympy import erfinv
>>> from sympy.abc import x

Several special values are known:

>>> erfinv(0)
0
>>> erfinv(1)
oo

Differentiation with respect to \(x\) is supported:

```python
>>> from sympy import diff
>>> diff(erfinv(x), x)
sqrt(pi)*exp(erfinv(x)**2)/2
```

We can numerically evaluate the inverse error function to arbitrary precision on \([-1, 1]\):

```python
>>> erfinv(0.2).evalf(30)
0.179143454621291692285344
```

See also:

erf (page 528)
    Gaussian error function.

erfc (page 529)
    Complementary error function.

erfi (page 531)
    Imaginary error function.

erf2 (page 532)
    Two-argument error function.

erfcinv (page 535)
    Inverse Complementary error function.

erf2inv (page 536)
    Inverse two-argument error function.
References

[R364], [R365]

inverse(argindex=1)

Returns the inverse of this function.

class sympy.functions.special.error_functions.erfcinv(z)

Inverse Complementary Error Function. The erfcinv function is defined as:

\[
erfc(x) = y \quad \Rightarrow \quad \text{erfcinv}(y) = x
\]

Examples

```python
>>> from sympy import erfcinv
>>> from sympy.abc import x

Several special values are known:

```python
>>> erfcinv(1)
0

```python
>>> erfcinv(0)
\infty
```

Differentiation with respect to \( x \) is supported:

```python
>>> from sympy import diff
>>> diff(erfcinv(x), x)
-sqrt(pi)*exp(erfcinv(x)**2)/2
```

See also:

* `erf` (page 528)
  Gaussian error function.
* `erfc` (page 529)
  Complementary error function.
* `erfi` (page 531)
  Imaginary error function.
* `erf2` (page 532)
  Two-argument error function.
* `erfinv` (page 534)
  Inverse error function.
* `erf2inv` (page 536)
  Inverse two-argument error function.
References

[R366], [R367]

inverse(argindex=1)

Returns the inverse of this function.

class sympy.functions.special.error_functions.erf2inv(x, y)

Two-argument Inverse error function. The erf2inv function is defined as:

\[ \text{erf}(x, w) = y \quad \Rightarrow \quad \text{erf2inv}(x, y) = w \]

Examples

```python
>>> from sympy import erf2inv, oo
>>> from sympy.abc import x, y
```

Several special values are known:

```python
>>> erf2inv(0, 0)
0
>>> erf2inv(1, 0)
1
>>> erf2inv(0, 1)
oo
>>> erf2inv(0, y)
erfinv(y)
>>> erf2inv(oo, y)
erfcinv(-y)
```

Differentiation with respect to \( x \) and \( y \) is supported:

```python
>>> from sympy import diff
>>> diff(erf2inv(x, y), x)
exp(-x**2 + erf2inv(x, y)**2)
>>> diff(erf2inv(x, y), y)
sqrt(pi)*exp(erf2inv(x, y)**2)/2
```

See also:

- **erf** (page 528)
  - Gaussian error function.

- **erfc** (page 529)
  - Complementary error function.

- **erfi** (page 531)
  - Imaginary error function.

- **erf2** (page 532)
  - Two-argument error function.

- **erfinv** (page 534)
  - Inverse error function.

- **erfcinv** (page 535)
  - Inverse complementary error function.
**References**

[R368]

class sympy.functions.special.error_functions.FresnelIntegral(z)
Base class for the Fresnel integrals.

class sympy.functions.special.error_functions.fresnels(z)
Fresnel integral S.

**Explanation**

This function is defined by

\[ S(z) = \int_0^z \sin \frac{\pi t^2}{2} dt. \]

It is an entire function.

**Examples**

```python
>>> from sympy import I, oo, fresnels
>>> from sympy.abc import z
```

Several special values are known:

```python
>>> fresnels(0)
0
>>> fresnels(oo)
1/2
>>> fresnels(-oo)
-1/2
>>> fresnels(I*oo)
-I/2
>>> fresnels(-I*oo)
I/2
```

In general one can pull out factors of -1 and \( i \) from the argument:

```python
>>> fresnels(-z)
-fresnels(z)
>>> fresnels(I*z)
-I*fresnels(z)
```

The Fresnel S integral obeys the mirror symmetry \( S(z) = S(\bar{z}) \):

```python
>>> from sympy import conjugate
>>> conjugate(fresnels(z))
fresnels(conjugate(z))
```

Differentiation with respect to \( z \) is supported:
```python
>>> from sympy import diff
diff(fresnels(z), z)
sin(pi*z**2/2)
```

Defining the Fresnel functions via an integral:

```python
>>> from sympy import integrate, pi, sin, expand_func

>>> integrate(sin(pi*z*z/2), z)
3*fresnels(z)*gamma(3/4)/(4*gamma(7/4))

>>> expand_func(integrate(sin(pi*z*z/2), z))
fresnels(z)
```

We can numerically evaluate the Fresnel integral to arbitrary precision on the whole complex plane:

```python
>>> fresnels(2).evalf(30)
0.343415678363698242195300815958

>>> fresnels(-2*I).evalf(30)
0.343415678363698242195300815958*I
```

See also:

- `fresnelc` (page 538)
  Fresnel cosine integral.

References

[R369], [R370], [R371], [R372], [R373]

```python
class sympy.functions.special.error_functions.fresnelc(z)
Fresnel integral C.
```

**Explanation**

This function is defined by

\[
C(z) = \int_0^z \cos \frac{\pi t^2}{2} dt.
\]

It is an entire function.

**Examples**

```python
>>> from sympy import I, oo, fresnelc

>>> from sympy.abc import z
```

Several special values are known:
In general one can pull out factors of \(-1\) and \(i\) from the argument:

```python
>>> fresnelc(-z)
-fresnelc(z)
>>> fresnelc(I*z)
I*fresnelc(z)
```

The Fresnel C integral obeys the mirror symmetry \(C(z) = C(\overline{z})\):

```python
>>> from sympy import conjugate
>>> conjugate(fresnelc(z))
fresnelc(conjugate(z))
```

Differentiation with respect to \(z\) is supported:

```python
>>> from sympy import diff
>>> diff(fresnelc(z), z)
cos(pi*z**2/2)
```

Defining the Fresnel functions via an integral:

```python
>>> from sympy import integrate, pi, cos, expand_func
>>> integrate(cos(pi*z**2/2), z)
fresnelc(z)*gamma(1/4)/(4*gamma(5/4))
>>> expand_func(integrate(cos(pi*z**2/2), z))
fresnelc(z)
```

We can numerically evaluate the Fresnel integral to arbitrary precision on the whole complex plane:

```python
>>> fresnelc(2).evalf(30)
0.488253406075340754500223503357
>>> fresnelc(-2*I).evalf(30)
-0.488253406075340754500223503357*I
```

See also:

`fresnels` (page 537)

Fresnel sine integral.
**References**

[R374], [R375], [R376], [R377], [R378]

**Exponential, Logarithmic and Trigonometric Integrals**

```python
class sympy.functions.special.error_functions.Ei(z)
The classical exponential integral.
```

**Explanation**

For use in SymPy, this function is defined as

\[
Ei(x) = \sum_{n=1}^{\infty} \frac{x^n}{n n!} + \log(x) + \gamma,
\]

where \( \gamma \) is the Euler-Mascheroni constant.

If \( x \) is a polar number, this defines an analytic function on the Riemann surface of the logarithm. Otherwise this defines an analytic function in the cut plane \( \mathbb{C} \setminus (-\infty, 0] \).

**Background**

The name exponential integral comes from the following statement:

\[
Ei(x) = \int_{-\infty}^{x} \frac{e^t}{t} \, dt
\]

If the integral is interpreted as a Cauchy principal value, this statement holds for \( x > 0 \) and \( Ei(x) \) as defined above.

**Examples**

```python
>>> from sympy import Ei, polar_lift, exp_polar, I, pi
>>> from sympy.abc import x

>>> Ei(-1)
Ei(-1)

This yields a real value:

```python
>>> Ei(-1).n(chop=True)
-0.219383934395520
```

On the other hand the analytic continuation is not real:

```python
>>> Ei(polar_lift(-1)).n(chop=True)
-0.21938393439552 + 3.14159265358979*I
```

The exponential integral has a logarithmic branch point at the origin:
`>>> Ei(x*exp_polar(2*I*pi))
Ei(x) + 2*I*pi`

Differentiation is supported:

`>>> Ei(x).diff(x)
exp(x)/x`

The exponential integral is related to many other special functions. For example:

```python
>>> from sympy import expint, Shi

>>> Ei(x).rewrite(expint)
-expint(1, x*exp_polar(I*pi)) - I*pi

>>> Ei(x).rewrite(Shi)
Chi(x) + Shi(x)
```

See also:

- `expint` (page 541)
 Generalised exponential integral.

- `E1` (page 543)
 Special case of the generalised exponential integral.

- `li` (page 544)
 Logarithmic integral.

- `Li` (page 546)
 Offset logarithmic integral.

- `Si` (page 548)
 Sine integral.

- `Ci` (page 549)
 Cosine integral.

- `Shi` (page 551)
 Hyperbolic sine integral.

- `Chi` (page 552)
 Hyperbolic cosine integral.

- `uppergamma` (page 523)
 Upper incomplete gamma function.

References

[R379], [R380], [R381]

class sympy.functions.special.error_functions.expint(nu, z)
Generalized exponential integral.
Explanation

This function is defined as

\[E_\nu(z) = z^{\nu-1} \Gamma(1 - \nu, z), \]

where \(\Gamma(1 - \nu, z) \) is the upper incomplete gamma function (uppergamma).

Hence for \(z \) with positive real part we have

\[E_\nu(z) = \int_1^{\infty} e^{-zt} t^{\nu} \, dt, \]

which explains the name.

The representation as an incomplete gamma function provides an analytic continuation for \(E_\nu(z) \). If \(\nu \) is a non-positive integer, the exponential integral is thus an unbranched function of \(z \), otherwise there is a branch point at the origin. Refer to the incomplete gamma function documentation for details of the branching behavior.

Examples

```python
>>> from sympy import expint, S
>>> from sympy.abc import nu, z
```

Differentiation is supported. Differentiation with respect to \(z \) further explains the name: for integral orders, the exponential integral is an iterated integral of the exponential function.

```python
>>> expint(nu, z).diff(z)
-expint(nu - 1, z)
```

Differentiation with respect to \(\nu \) has no classical expression:

```python
>>> expint(nu, z).diff(nu)
-z**(nu - 1)*meijerg(((), (1, 1)), ((0, 0, 1 - nu), ()), z)
```

At non-postive integer orders, the exponential integral reduces to the exponential function:

```python
>>> expint(0, z)
exp(-z)/z
>>> expint(-1, z)
exp(-z)/z + exp(-z)/z**2
```

At half-integers it reduces to error functions:

```python
>>> expint(S(1)/2, z)
sqrt(pi)*erfc(sqrt(z))/sqrt(z)
```

At positive integer orders it can be rewritten in terms of exponentials and \(\text{expint}(1, z) \). Use \texttt{expand_func()} to do this:

```python
>>> from sympy import expand_func
>>> expand_func(expint(5, z))
z**4*expint(1, z)/24 + (-z**3 + z**2 - 2*z + 6)*exp(-z)/24
```
The generalised exponential integral is essentially equivalent to the incomplete gamma function:

```python
>>> from sympy import uppergamma
>>> expint(nu, z).rewrite(uppergamma)
z**(nu - 1)*uppergamma(1 - nu, z)
```

As such it is branched at the origin:

```python
>>> from sympy import exp_polar, pi, I
>>> expint(4, z*exp_polar(2*pi*I))
I*pi*z**3/3 + expint(4, z)
>>> expint(nu, z*exp_polar(2*pi*I))
z**(nu - 1)*(exp(2*I*pi*nu) - 1)*gamma(1 - nu) + expint(nu, z)
```

See also:

* **Ei** (page 540)
 Another related function called exponential integral.
* **E1** (page 543)
 The classical case, returns expint(1, z).
* **li** (page 544)
 Logarithmic integral.
* **Li** (page 546)
 Offset logarithmic integral.
* **Si** (page 548)
 Sine integral.
* **Ci** (page 549)
 Cosine integral.
* **Shi** (page 551)
 Hyperbolic sine integral.
* **Chi** (page 552)
 Hyperbolic cosine integral.

uppergamma (page 523)

References

[R382], [R383], [R384] sympy.functions.special.error_functions.E1(z)
Classical case of the generalized exponential integral.
Explanation

This is equivalent to expint(1, z).

Examples

```python
>>> from sympy import E1
>>> E1(0)
expint(1, 0)
```

```python
>>> E1(5)
expint(1, 5)
```

See also:

- **Ei** (page 540)
 - Exponential integral.
- **expint** (page 541)
 - Generalised exponential integral.
- **li** (page 544)
 - Logarithmic integral.
- **Li** (page 546)
 - Offset logarithmic integral.
- **Si** (page 548)
 - Sine integral.
- **Ci** (page 549)
 - Cosine integral.
- **Shi** (page 551)
 - Hyperbolic sine integral.
- **Chi** (page 552)
 - Hyperbolic cosine integral.

```python
class sympy.functions.special.error_functions.li(z)
```

The classical logarithmic integral.

Explanation

For use in SymPy, this function is defined as

\[\text{li}(x) = \int_{0}^{x} \frac{1}{\log(t)} \, dt. \]
Examples

```python
>>> from sympy import I, oo, li
>>> from sympy.abc import z
```

Several special values are known:

```python
>>> li(0)
0
>>> li(1)
-oo
>>> li(oo)
oo
```

Differentiation with respect to z is supported:

```python
>>> from sympy import diff
>>> diff(li(z), z)
1/log(z)
```

Defining the li function via an integral:

```python
>>> from sympy import integrate
>>> integrate(li(z))
z*li(z) - Ei(2*log(z))
```

The logarithmic integral can also be defined in terms of Ei:

```python
>>> from sympy import Ei
>>> li(z).rewrite(Ei)
Ei(log(z))
```

We can numerically evaluate the logarithmic integral to arbitrary precision on the whole complex plane (except the singular points):

```python
>>> li(2).evalf(30)
1.0451637801174927848445888919
```

```python
>>> li(2*I).evalf(30)
1.065279578435749824701125598 + 3.08346052231061726610939702133*I
```

We can even compute Soldner's constant by the help of mpmath:

```python
>>> from mpmath import findroot
>>> findroot(li, 2)
1.45136923488338
```

Further transformations include rewriting li in terms of the trigonometric integrals Si, Ci, Shi and Chi:

```python
>>> from sympy import Si, Ci, Shi, Chi
>>> li(z).rewrite(Si)
```

(continues on next page)
-log(I*log(z)) - log(1/log(z))/2 + log(log(z))/2 + Ci(I*log(z)) + \rightarrow Shi(log(z))

>>> li(z).rewrite(Ci)
 -log(I*log(z)) - log(1/log(z))/2 + log(log(z))/2 + Ci(I*log(z)) + \rightarrow Shi(log(z))

>>> li(z).rewrite(Shi)
 -log(1/log(z))/2 + log(log(z))/2 + Chi(log(z)) - Shi(log(z))

>>> li(z).rewrite(Chi)
 -log(1/log(z))/2 + log(log(z))/2 + Chi(log(z)) - Shi(log(z))

See also:

Li *(page 546)*
 Offset logarithmic integral.

Ei *(page 540)*
 Exponential integral.

expint *(page 541)*
 Generalised exponential integral.

E1 *(page 543)*
 Special case of the generalised exponential integral.

Si *(page 548)*
 Sine integral.

Ci *(page 549)*
 Cosine integral.

Shi *(page 551)*
 Hyperbolic sine integral.

Chi *(page 552)*
 Hyperbolic cosine integral.

References

[R385], [R386], [R387], [R388]

class sympy.functions.special.error_functions.Li(z)
 The offset logarithmic integral.

Explanation

For use in SymPy, this function is defined as

\[Li(x) = li(x) - li(2) \]
Examples

```python
>>> from sympy import Li
>>> from sympy.abc import z
```

The following special value is known:

```python
>>> Li(2)
0
```

Differentiation with respect to \(z \) is supported:

```python
>>> from sympy import diff
globally
>>> diff(Li(z), z)
1/log(z)
```

The shifted logarithmic integral can be written in terms of \(li(z) \):

```python
>>> from sympy import li
globally
>>> Li(z).rewrite(li)
li(z) - li(2)
```

We can numerically evaluate the logarithmic integral to arbitrary precision on the whole complex plane (except the singular points):

```python
>>> Li(2).evalf(30)
0
```

```python
>>> Li(4).evalf(30)
1.92242131492155809316615998938
```

See also:

- \(\text{li} \) (page 544)
 - Logarithmic integral.
- \(\text{Ei} \) (page 540)
 - Exponential integral.
- \(\text{expint} \) (page 541)
 - Generalised exponential integral.
- \(\text{E1} \) (page 543)
 - Special case of the generalised exponential integral.
- \(\text{Si} \) (page 548)
 - Sine integral.
- \(\text{Ci} \) (page 549)
 - Cosine integral.
- \(\text{Shi} \) (page 551)
 - Hyperbolic sine integral.
- \(\text{Chi} \) (page 552)
 - Hyperbolic cosine integral.
class sympy.functions.special.error_functions.Si(z)
Sine integral.

Explanation
This function is defined by
\[\text{Si}(z) = \int_0^z \frac{\sin t}{t} \, dt. \]
It is an entire function.

Examples
```python
>>> from sympy import Si
>>> from sympy.abc import z

The sine integral is an antiderivative of \( \sin(z)/z \):
```n
```python
>>> Si(z).diff(z)
sin(z)/z
```
```python
It is unbranched:
```n
```python
>>> from sympy import exp_polar, I, pi
>>> Si(z*exp_polar(2*I*pi))
Si(z)
```
```python
Sine integral behaves much like ordinary sine under multiplication by \( I \):
```n
```python
>>> Si(I*z)
I*Shi(z)
>>> Si(-z)
-Si(z)
```
```python
It can also be expressed in terms of exponential integrals, but beware that the latter is branched:
```n
```python
>>> from sympy import expint
>>> Si(z).rewrite(expint)
-I*(-expint(1, z*exp_polar(-I*pi/2))/2 + 
    expint(1, z*exp_polar(I*pi/2))/2) + pi/2
```
```python
It can be rewritten in the form of sinc function (by definition):
```n
```python
>>> from sympy import sinc
>>> Si(z).rewrite(sinc)
Integral(sinc(t), (t, 0, z))
```
SymPy Documentation, Release 1.12.1

See also:

Ci *(page 549)*
Cosine integral.

Shi *(page 551)*
Hyperbolic sine integral.

Chi *(page 552)*
Hyperbolic cosine integral.

Ei *(page 540)*
Exponential integral.

expint *(page 541)*
Generalised exponential integral.

sinc *(page 453)*
Unnormalized sinc function

E1 *(page 543)*
Special case of the generalised exponential integral.

li *(page 544)*
Logarithmic integral.

Li *(page 546)*
Offset logarithmic integral.

References

[R392]

```python
class sympy.functions.special.error_functions.Ci(z)

Cosine integral.
```

Explanation

This function is defined for positive x by

$$
\text{Ci}(x) = \gamma + \log x + \int_0^x \frac{\cos t - 1}{t} \, dt = -\int_x^\infty \frac{\cos t}{t} \, dt,
$$

where γ is the Euler-Mascheroni constant.

We have

$$
\text{Ci}(z) = -\frac{\text{E}_1(e^{i\pi/2}z) + \text{E}_1(e^{-i\pi/2}z)}{2}
$$

which holds for all polar z and thus provides an analytic continuation to the Riemann surface of the logarithm.

The formula also holds as stated for $z \in \mathbb{C}$ with $\Re(z) > 0$. By lifting to the principal branch, we obtain an analytic function on the cut complex plane.
Examples

```python
>>> from sympy import Ci
>>> from sympy.abc import z
```

The cosine integral is a primitive of \(\cos(z)/z \):

```python
>>> Ci(z).diff(z)
cos(z)/z
```

It has a logarithmic branch point at the origin:

```python
>>> from sympy import exp_polar, I, pi
>>> Ci(z*exp_polar(2*I*pi))
Ci(z) + 2*I*pi
```

The cosine integral behaves somewhat like ordinary \(\cos \) under multiplication by \(i \):

```python
>>> from sympy import polar_lift
>>> Ci(polar_lift(I)*z)
Chi(z) + I*pi/2
>>> Ci(polar_lift(-1)*z)
Ci(z) + I*pi
```

It can also be expressed in terms of exponential integrals:

```python
>>> from sympy import expint
>>> Ci(z).rewrite(expint)
-expint(1, z*exp_polar(-I*pi/2))/2 - expint(1, z*exp_polar(I*pi/2))/2
```

See also:

- :func:`Si <sympy.integrals.sincos>` (page 548)
 Sine integral.
- :func:`Shi <sympy.integrals.sincos>` (page 551)
 Hyperbolic sine integral.
- :func:`Chi <sympy.integrals.sincos>` (page 552)
 Hyperbolic cosine integral.
- :func:`Ei <sympy.integrals.sincos>` (page 540)
 Exponential integral.
- :func:`expint <sympy.integrals.sincos>` (page 541)
 Generalised exponential integral.
- :func:`E1 <sympy.integrals.sincos>` (page 543)
 Special case of the generalised exponential integral.
- :func:`li <sympy.integrals.sincos>` (page 544)
 Logarithmic integral.
- :func:`Li <sympy.integrals.sincos>` (page 546)
 Offset logarithmic integral.
class sympy.functions.special.error_functions.Shir(z)
Sinh integral.

Explanation
This function is defined by

\[\text{Shi}(z) = \int_0^z \frac{\sinh t}{t} dt. \]

It is an entire function.

Examples
>>> from sympy import Shi
>>> from sympy.abc import z

The Sinh integral is a primitive of \(\sinh(z)/z \):

>>> Shi(z).diff(z)
\sinh(z)/z

It is unbranched:

>>> from sympy import exp_polar, I, pi
>>> Shi(z*exp_polar(2*I*pi))
Shi(z)

The sinh integral behaves much like ordinary sinh under multiplication by \(i \):

>>> Shi(I*z)
I*Si(z)

>>> Shi(-z)
-Shi(z)

It can also be expressed in terms of exponential integrals, but beware that the latter is branched:

>>> from sympy import expint
>>> Shi(z).rewrite(expint)
expint(1, z)/2 - expint(1, z*exp_polar(I*pi))/2 - I*pi/2

See also:

Si (page 548)
Sine integral.

Ci (page 549)
Cosine integral.
Chi (page 552)
Hyperbolic cosine integral.

Ei (page 540)
Exponential integral.

expint (page 541)
Generalised exponential integral.

E1 (page 543)
Special case of the generalised exponential integral.

Li (page 544)
Logarithmic integral.

Li (page 546)
Offset logarithmic integral.

References

[R394]

class sympy.functions.special.error_functions.Chi(z)
Cosh integral.

Explanation

This function is defined for positive x by

$$
\text{Chi}(x) = \gamma + \log x + \int_0^x \frac{\cosh t - 1}{t} \, dt,$$

where γ is the Euler-Mascheroni constant.

We have

$$
\text{Chi}(z) = \text{Ci} \left(e^{i\pi/2} z \right) - \frac{i\pi}{2},
$$

which holds for all polar z and thus provides an analytic continuation to the Riemann surface of the logarithm. By lifting to the principal branch we obtain an analytic function on the cut complex plane.

Examples

```python
>>> from sympy import Chi
>>> from sympy.abc import z
```

The cosh integral is a primitive of $\cosh(z)/z$:

```python
>>> Chi(z).diff(z)
cosh(z)/z
```

It has a logarithmic branch point at the origin:
>>> from sympy import exp_polar, I, pi
>>> Chi(z*exp_polar(2*I*pi))
Chi(z) + 2*I*pi

The cosh integral behaves somewhat like ordinary cosh under multiplication by i:

>>> from sympy import polar_lift

>>> Chi(polar_lift(I)*z)
Ci(z) + I*pi/2
>>> Chi(polar_lift(-1)*z)
Chi(z) + I*pi

It can also be expressed in terms of exponential integrals:

>>> from sympy import expint

>>> Chi(z).rewrite(expint)
-expint(1, z)/2 - expint(1, z*exp_polar(I*pi))/2 - I*pi/2

See also:

Si (page 548)
Sine integral.

Ci (page 549)
Cosine integral.

Shi (page 551)
Hyperbolic sine integral.

Ei (page 540)
Exponential integral.

expint (page 541)
Generalised exponential integral.

E1 (page 543)
Special case of the generalised exponential integral.

Li (page 544)
Logarithmic integral.

Li (page 546)
Offset logarithmic integral.

References

[R395]
Bessel Type Functions

```python
class sympy.functions.special.bessel.BesselBase(nu, z)

Abstract base class for Bessel-type functions.

This class is meant to reduce code duplication. All Bessel-type functions can 1) be differentiated, with the derivatives expressed in terms of similar functions, and 2) be rewritten in terms of other Bessel-type functions.

Here, Bessel-type functions are assumed to have one complex parameter.

To use this base class, define class attributes _a and _b such that \(2F_n' = -aF_{n+1} + bF_{n-1}\).
```

property argument

The argument of the Bessel-type function.

property order

The order of the Bessel-type function.

```python
class sympy.functions.special.bessel.besselj(nu, z)

Bessel function of the first kind.
```

Explanation

The Bessel \(J\) function of order \(\nu\) is defined to be the function satisfying Bessel’s differential equation

\[
z^2 \frac{d^2 w}{dz^2} + z \frac{dw}{dz} + (z^2 - \nu^2)w = 0,
\]

with Laurent expansion

\[
J_\nu(z) = z^\nu \left(\frac{1}{\Gamma(\nu + 1)2^\nu} + O(z^2) \right),
\]

if \(\nu\) is not a negative integer. If \(\nu = -n \in \mathbb{Z}_{<0}\) is a negative integer, then the definition is

\[
J_{-n}(z) = (-1)^n J_n(z).
\]

Examples

Create a Bessel function object:

```python
>>> from sympy import besselj, jn
>>> from sympy.abc import z, n
>>> b = besselj(n, z)
```

Differentiate it:

```python
>>> b.diff(z)
besselj(n - 1, z)/2 - besselj(n + 1, z)/2
```

Rewrite in terms of spherical Bessel functions:
```python
>>> b.rewrite(jn)
sqrt(2)*sqrt(z)*jn(n - 1/2, z)/sqrt(pi)
```

Access the parameter and argument:

```python
>>> b.order
n
>>> b.argument
z
```

See also:

`bessely` (page 555), `besseli` (page 556), `besselk` (page 556)

References

[R396], [R397], [R398], [R399]

```python
class sympy.functions.special.bessel.bessely(nu, z)
```

Bessel function of the second kind.

Explanation

The Bessel Y function of order ν is defined as

$$Y_\nu(z) = \lim_{\mu \to \nu} \frac{J_\mu(z) \cos(\pi \mu) - J_{-\mu}(z)}{\sin(\pi \mu)},$$

where $J_\mu(z)$ is the Bessel function of the first kind.

It is a solution to Bessel’s equation, and linearly independent from J_ν.

Examples

```python
>>> from sympy import bessely, yn
>>> from sympy.abc import z, n
>>> b = bessely(n, z)
>>> b.diff(z)
bessely(n - 1, z)/2 - bessely(n + 1, z)/2
>>> b.rewrite(yn)
sqrt(2)*sqrt(z)*yn(n - 1/2, z)/sqrt(pi)
```

See also:

`besselj` (page 554), `besseli` (page 556), `besselk` (page 556)
References

[R400]
class sympy.functions.special.bessel.besseli(nu, z)
Modified Bessel function of the first kind.

Explanation

The Bessel I function is a solution to the modified Bessel equation

$$
z^2 \frac{d^2 w}{dz^2} + z \frac{dw}{dz} + (z^2 + \nu^2)w = 0.
$$

It can be defined as

$$I_\nu(z) = i^{-\nu} J_\nu(iz),$$

where $J_\nu(z)$ is the Bessel function of the first kind.

Examples

```python
>>> from sympy import besseli
>>> from sympy.abc import z, n
>>> besseli(n, z).diff(z)
besseli(n - 1, z)/2 + besseli(n + 1, z)/2
```

See also:

$besseli$ (page 554), $bessely$ (page 555), $besselk$ (page 556)

References

[R401]
class sympy.functions.special.bessel.besselk(nu, z)
Modified Bessel function of the second kind.

Explanation

The Bessel K function of order ν is defined as

$$
K_\nu(z) = \lim_{\mu \to \nu} \frac{\pi}{2} \frac{I_{-\mu}(z) - I_{\mu}(z)}{\sin(\pi \mu)},
$$

where $I_{\mu}(z)$ is the modified Bessel function of the first kind.

It is a solution of the modified Bessel equation, and linearly independent from Y_{ν}.
Examples

```python
>>> from sympy import besselk
>>> from sympy.abc import z, n
>>> besselk(n, z).diff(z)
-besselk(n - 1, z)/2 - besselk(n + 1, z)/2
```

See also:

besselj (page 554), *besseli* (page 556), *bessely* (page 555)

References

[R402]

class sympy.functions.special.bessel.hankel1(nu, z)
Hankel function of the first kind.

Explanation

This function is defined as

\[H^{(1)}_\nu(z) = J_\nu(z) + iY_\nu(z), \]

where \(J_\nu(z) \) is the Bessel function of the first kind, and \(Y_\nu(z) \) is the Bessel function of the second kind.

It is a solution to Bessel’s equation.

Examples

```python
>>> from sympy import hankel1
>>> from sympy.abc import z, n
>>> hankel1(n, z).diff(z)
hankel1(n - 1, z)/2 - hankel1(n + 1, z)/2
```

See also:

hankel2 (page 557), *besselj* (page 554), *bessely* (page 555)

References

[R403]

class sympy.functions.special.bessel.hankel2(nu, z)
Hankel function of the second kind.

5.8. Topics 557
Explanation

This function is defined as

\[H^{(2)}_{\nu} = J_{\nu}(z) - iY_{\nu}(z), \]

where \(J_{\nu}(z) \) is the Bessel function of the first kind, and \(Y_{\nu}(z) \) is the Bessel function of the second kind.

It is a solution to Bessel’s equation, and linearly independent from \(H^{(1)}_{\nu} \).

Examples

```python
>>> from sympy import hankel2
>>> from sympy.abc import z, n
>>> hankel2(n, z).diff(z)
hankel2(n - 1, z)/2 - hankel2(n + 1, z)/2
```

See also:

`hankel1` (page 557), `besselj` (page 554), `bessely` (page 555)

References

[R404]

class sympy.functions.special.bessel.jn(nu, z)

Spherical Bessel function of the first kind.

Explanation

This function is a solution to the spherical Bessel equation

\[z^2 \frac{d^2 w}{dz^2} + 2z \frac{dw}{dz} + (z^2 - \nu(\nu + 1))w = 0. \]

It can be defined as

\[j_{\nu}(z) = \sqrt{\frac{\pi}{2z}} J_{\nu + \frac{1}{2}}(z), \]

where \(J_{\nu}(z) \) is the Bessel function of the first kind.

The spherical Bessel functions of integral order are calculated using the formula:

\[j_n(z) = f_n(z) \sin z + (-1)^{n+1} f_{-n-1}(z) \cos z, \]

where the coefficients \(f_n(z) \) are available as `sympy.polys.orthopolys.spherical_bessel_fn()` (page 2517).
Examples

```python
>>> from sympy import Symbol, jn, sin, cos, expand_func, besselj, bessely
>>> z = Symbol("z")
>>> nu = Symbol("nu", integer=True)
>>> print(expand_func(jn(0, z)))
\sin(z)/z
>>> expand_func(jn(1, z)) == sin(z)/z**2 - cos(z)/z
True
>>> expand_func(jn(3, z))
(-6/z**2 + 15/z**4)*sin(z) + (1/z - 15/z**3)*cos(z)
>>> jn(nu, z).rewrite(besselj)
sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(nu + 1/2, z)/2
>>> jn(nu, z).rewrite(bessely)
(-1)**nu*sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(-nu - 1/2, z)/2
>>> jn(2, 5.2+0.3j).evalf(20)
0.099419756723640344491 - 0.054525080242173562897*I
```

See also:

besselj (page 554), *bessely* (page 555), *besselk* (page 556), *yn* (page 559)

References

[R405]

class sympy.functions.special.bessel.yn(nu, z)
Spherical Bessel function of the second kind.

Explanation

This function is another solution to the spherical Bessel equation, and linearly independent from j_n. It can be defined as

$$y_\nu(z) = \sqrt{\frac{\pi}{2z}} Y_{\nu+\frac{1}{2}}(z),$$

where $Y_\nu(z)$ is the Bessel function of the second kind.

For integral orders n, y_n is calculated using the formula:

$$y_n(z) = (-1)^{n+1} j_{-n-1}(z)$$

Examples

```python
>>> from sympy import Symbol, yn, sin, cos, expand_func, besselj, bessely
>>> z = Symbol("z")
>>> nu = Symbol("nu", integer=True)
>>> print(expand_func(yn(0, z)))
-cos(z)/z
>>> expand_func(yn(1, z)) == -cos(z)/z**2 - sin(z)/z
(continues on next page)
```
True

```python
>>> yn(nu, z).rewrite(besselj)
(-1)**(nu + 1)*sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(-nu - 1/2, z)/2
```

```python
>>> yn(nu, z).rewrite(bessely)
sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(nu + 1/2, z)/2
```

```python
>>> yn(2, 5.2+0.3j).evalf(20)
0.18525034196069722536 + 0.014895573969924817587*I
```

See also:

- `besselj` (page 554), `bessely` (page 555), `besselk` (page 556), `jn` (page 558)

References

[R406]

sympy.functions.special.bessel.jn_zeros(n, k, method='sympy', dps=15)

Zeros of the spherical Bessel function of the first kind.

Parameters

- `n`: integer

 order of Bessel function

- `k`: integer

 number of zeros to return

Explanation

This returns an array of zeros of \(j_n \) up to the \(k \)-th zero.

- **method = "sympy"**: uses mpmath.besseljzero

- **method = "scipy"**: uses the SciPy's sph_jn and newton to find all roots, which is faster than computing the zeros using a general numerical solver, but it requires SciPy and only works with low precision floating point numbers. (The function used with method="sympy" is a recent addition to mpmath; before that a general solver was used.)

Examples

```python
>>> from sympy import jn_zeros

>>> jn_zeros(2, 4, dps=5)
[5.7635, 9.095, 12.323, 15.515]
```

See also:

- `jn` (page 558), `yn` (page 559), `besselj` (page 554), `besselk` (page 556), `bessely` (page 555)

class sympy.functions.special.bessel.marcumq(m, a, b)

The Marcum Q-function.
Explanation

The Marcum Q-function is defined by the meromorphic continuation of

\[Q_m(a, b) = a^{-m+1} \int_b^\infty x^m e^{-\frac{x^2}{2} - \frac{a^2}{2}} I_{m-1}(ax) \, dx \]

Examples

```python
from sympy import marcumq
from sympy.abc import m, a, b
marcumq(m, a, b)
```

Special values:

```python
marcumq(m, 0, b)
uppergamma(m, b**2/2)/gamma(m)
marcumq(0, 0, 0)
0
marcumq(0, a, 0)
1 - exp(-a**2/2)
marcumq(1, a, a)
1/2 + exp(-a**2)*besseli(0, a**2)/2
marcumq(2, a, a)
1/2 + exp(-a**2)*besseli(0, a**2)/2 + exp(-a**2)*besseli(1, a**2)
```

Differentiation with respect to \(a\) and \(b\) is supported:

```python
from sympy import diff
diff(marcumq(m, a, b), a)
a*(-marcumq(m, a, b) + marcumq(m + 1, a, b))
diff(marcumq(m, a, b), b)
-a**2*(1 - m)*b**m*exp(-a**2/2 - b**2/2)*besseli(m - 1, a*b)
```

References

[R407], [R408]

Airy Functions

```python
class sympy.functions.special.bessel.AiryBase(*args)
    Abstract base class for Airy functions.
    This class is meant to reduce code duplication.
class sympy.functions.special.bessel.airyai(arg)
    The Airy function Ai of the first kind.
```
Explanation

The Airy function $\text{Ai}(z)$ is defined to be the function satisfying Airy’s differential equation

$$\frac{d^2w(z)}{dz^2} - zw(z) = 0.$$

Equivalently, for real z

$$\text{Ai}(z) := \frac{1}{\pi} \int_0^\infty \cos \left(\frac{t^3}{3} + zt \right) dt.$$

Examples

Create an Airy function object:

```python
>>> from sympy import airyai
>>> from sympy.abc import z

>>> airyai(z)
airyai(z)
```

Several special values are known:

```python
>>> airyai(0)
3**(1/3)/(3*gamma(2/3))
>>> from sympy import oo
>>> airyai(oo)
0
>>> airyai(-oo)
0
```

The Airy function obeys the mirror symmetry:

```python
>>> from sympy import conjugate
>>> conjugate(airyai(z))
airyai(conjugate(z))
```

Differentiation with respect to z is supported:

```python
>>> from sympy import diff
>>> diff(airyai(z), z)
airyaiprime(z)
>>> diff(airyai(z), z, 2)
z*airyai(z)
```

Series expansion is also supported:

```python
>>> from sympy import series
>>> series(airyai(z), z, 0, 3)
3**(5/6)*gamma(1/3)/(6*pi) - 3**(1/6)*z*gamma(2/3)/(2*pi) + O(z**3)
```

We can numerically evaluate the Airy function to arbitrary precision on the whole complex plane:
Rewrite \(\text{Ai}(z) \) in terms of hypergeometric functions:

```python
>>> from sympy import hyper
>>> airyai(z).rewrite(hyper)
-3**(2/3)*z*hyper((,), (4/3,), z**3/9)/(3*gamma(1/3)) + 3**(1/3)*hyper((,), (2/3,), z**3/9)/(3*gamma(2/3))
```

See also:

- `airybi` (page 563)
 Airy function of the second kind.
- `airyaiprime` (page 565)
 Derivative of the Airy function of the first kind.
- `airybiprime` (page 566)
 Derivative of the Airy function of the second kind.

References

[R409], [R410], [R411], [R412]

class sympy.functions.special.bessel.airybi(arg)
The Airy function Bi of the second kind.

Explanation

The Airy function \(\text{Bi}(z) \) is defined to be the function satisfying Airy’s differential equation

\[
\frac{d^2w(z)}{dz^2} - zw(z) = 0.
\]

Equivalently, for real \(z \)

\[
\text{Bi}(z) := \frac{1}{\pi} \int_0^{\infty} \exp \left(-\frac{t^3}{3} + zt \right) + \sin \left(\frac{t^3}{3} + zt \right) dt.
\]

Examples

Create an Airy function object:

```python
>>> from sympy import airybi
>>> from sympy.abc import z

>>> airybi(z)
airybi(z)
```

Several special values are known:
The Airy function obeys the mirror symmetry:

```python
>>> from sympy import conjugate
>>> conjugate(airybi(z))
airybi(conjugate(z))
```

Differentiation with respect to \(z \) is supported:

```python
>>> from sympy import diff
>>> diff(airybi(z), z)
airybiprime(z)
>>> diff(airybi(z), z, 2)
z*airybi(z)
```

Series expansion is also supported:

```python
>>> from sympy import series
>>> series(airybi(z), z, 0, 3)
3**(1/3)*gamma(1/3)/(2*pi) + 3**(2/3)*z*gamma(2/3)/(2*pi) + O(z**3)
```

We can numerically evaluate the Airy function to arbitrary precision on the whole complex plane:

```python
>>> airybi(-2).evalf(50)
-0.41230258795639848808323405461146104203453483447240
```

Rewrite Bi(\(z \)) in terms of hypergeometric functions:

```python
>>> from sympy import hyper
>>> airybi(z).rewrite(hyper)
3**(1/6)*z*hyper((,), (4/3,), z**3/9)/gamma(1/3) + 3**(5/6)*hyper((,), (2/3,), z**3/9)/(3*gamma(2/3))
```

See also:

- `airyai` (page 561)
 Airy function of the first kind.
- `airyaiprime` (page 565)
 Derivative of the Airy function of the first kind.
- `airybiprime` (page 566)
 Derivative of the Airy function of the second kind.
References

[R413], [R414], [R415], [R416]

class sympy.functions.special.bessel.airyaiprime(arg)
The derivative \(\text{Ai}' \) of the Airy function of the first kind.

Explanation

The Airy function \(\text{Ai}'(z) \) is defined to be the function

\[
\text{Ai}'(z) := \frac{d\text{Ai}(z)}{dz}.
\]

Examples

Create an Airy function object:

```python
>>> from sympy import airyaiprime
>>> from sympy.abc import z

>>> airyaiprime(z)
airyaiprime(z)
```

Several special values are known:

```python
>>> airyaiprime(0)
-3**(2/3)/(3*gamma(1/3))
>>> from sympy import oo
>>> airyaiprime(oo)
0
```

The Airy function obeys the mirror symmetry:

```python
>>> from sympy import conjugate
>>> conjugate(airyaiprime(z))
airyaiprime(conjugate(z))
```

Differentiation with respect to \(z \) is supported:

```python
>>> from sympy import diff
>>> diff(airyaiprime(z), z)
z*airyai(z)
>>> diff(airyaiprime(z), z, 2)
z*airyaiprime(z) + airyai(z)
```

Series expansion is also supported:

```python
>>> from sympy import series
>>> series(airyaiprime(z), z, 0, 3)
-3**(2/3)/(3*gamma(1/3)) + 3**(1/3)*z**2/(6*gamma(2/3)) + 0(z**3)
```

5.8. Topics
We can numerically evaluate the Airy function to arbitrary precision on the whole complex plane:

```python
>>> airyaprimel(-2).evalf(50)
0.61825902074169104140626429133247528291577794512415
```

Rewrite Ai′(z) in terms of hypergeometric functions:

```python
>>> from sympy import hyper
>>> airyaprimel(z).rewrite(hyper)
3**(1/3)*z**2*hyper((,), (5/3,), z**3/9)/(6*gamma(2/3)) - 3**(2/3)*z**2*hyper((,), (1/3,), z**3/9)/(3*gamma(1/3))
```

See also:

- **airyai** (page 561)
 Airy function of the first kind.
- **airybi** (page 563)
 Airy function of the second kind.
- **airybiprime** (page 566)
 Derivative of the Airy function of the second kind.

References

[R417], [R418], [R419], [R420]

class sympy.functions.special.bessel.airybiprime(arg)

The derivative Bi′ of the Airy function of the first kind.

Explanation

The Airy function Bi′(z) is defined to be the function

\[
\text{Bi}'(z) := \frac{d\text{Bi}(z)}{dz}.
\]

Examples

Create an Airy function object:

```python
>>> from sympy import airybiprime
>>> from sympy.abc import z

>>> airybiprime(z)
```

Several special values are known:
The Airy function obeys the mirror symmetry:

```python
>>> from sympy import conjugate
>>> conjugate(airybiprime(z))
airybiprime(conjugate(z))
```

Differentiation with respect to z is supported:

```python
>>> from sympy import diff
>>> diff(airybiprime(z), z)
z*airybi(z)
>>> diff(airybiprime(z), z, 2)
z*airybiprime(z) + airybi(z)
```

Series expansion is also supported:

```python
>>> from sympy import series
>>> series(airybiprime(z), z, 0, 3)
3**(1/6)/gamma(1/3) + 3**(5/6)*z**2/(6*gamma(2/3)) + O(z**3)
```

We can numerically evaluate the Airy function to arbitrary precision on the whole complex plane:

```python
>>> airybiprime(-2).evalf(50)
0.27879516692116952268509756941098324140300059345163
```

Rewrite $\text{Bi}'(z)$ in terms of hypergeometric functions:

```python
>>> from sympy import hyper
>>> airybiprime(z).rewrite(hyper)
3**(5/6)*z**2*hyper((), (5/3,), z**3/9)/(6*gamma(2/3)) + 3**(1/6)*hyper((), (1/3,), z**3/9)/gamma(1/3)
```

See also:

- **airyai (page 561)**
 Airy function of the first kind.

- **airybi (page 563)**
 Airy function of the second kind.

- **airyaiprime (page 565)**
 Derivative of the Airy function of the first kind.
References

[R421], [R422], [R423], [R424]

B-Splines

`sympy.functions.special.bsplines.bspline_basis(d, knots, n, x)`

The \(n \)-th B-spline at \(x \) of degree \(d \) with knots.

Parameters

- **\(d \)**: integer
 degree of bspline

- **knots**: list of integer values
 list of knots points of bspline

- **\(n \)**: integer
 \(n \)-th B-spline

- **\(x \)**: symbol

Explanation

B-Splines are piecewise polynomials of degree \(d \). They are defined on a set of knots, which is a sequence of integers or floats.

Examples

The 0th degree splines have a value of 1 on a single interval:

```
>>> from sympy import bspline_basis
>>> from sympy.abc import x
>>> d = 0
>>> knots = tuple(range(5))
>>> bspline_basis(d, knots, 0, x)
Piecewise((1, (x >= 0) & (x <= 1)), (0, True))
```

For a given \((d, \text{knots})\) there are \(\text{len(knots)} - d - 1 \) B-splines defined, that are indexed by \(n \) (starting at 0).

Here is an example of a cubic B-spline:

```
>>> bspline_basis(3, tuple(range(5)), 0, x)
Piecewise((-x**3/6 + 2*x**2 - 2*x + 2/3, (x >= 3) & (x <= 4)),
(-x**3/2 + 2*x**2 - 2*x + 2/3, (x >= 2) & (x <= 3)),
(x**3/2 - 4*x**2 + 10*x - 22/3, (x >= 1) & (x <= 2)),
(-x**3/2 + 2*x**2 - 2*x + 2/3, (x >= 0) & (x <= 1)),
(0, True))
```
By repeating knot points, you can introduce discontinuities in the B-splines and their derivatives:

```python
>>> d = 1
>>> knots = (0, 0, 2, 3, 4)
>>> bspline_basis(d, knots, 0, x)
Piecewise((1 - x/2, (x >= 0) & (x <= 2)), (0, True))
```

It is quite time consuming to construct and evaluate B-splines. If you need to evaluate a B-spline many times, it is best to lambdify them first:

```python
>>> from sympy import lambdify
>>> d = 3
>>> knots = tuple(range(10))
>>> b0 = bspline_basis(d, knots, 0, x)
>>> f = lambdify(x, b0)
>>> y = f(0.5)
```

See also:

bspline_basis_set (page 569)

References

[R425]

`sympy.functions.special.bsplines.bspline_basis_set(d, knots, x)`

Return the \(\text{len}(\text{knots}) - d - 1 \) B-splines at \(x \) of degree \(d \) with \(\text{knots} \).

Parameters

- **d**: integer

degree of bspline

- **knots**: list of integers

list of knot points of bspline

- **x**: symbol

Explanation

This function returns a list of piecewise polynomials that are the \(\text{len}(\text{knots}) - d - 1 \) B-splines of degree \(d \) for the given knots. This function calls `bspline_basis(d, knots, n, x)` for different values of \(n \).
Examples

```python
>>> from sympy import bspline_basis_set
>>> from sympy.abc import x
>>> d = 2
>>> knots = range(5)
>>> splines = bspline_basis_set(d, knots, x)
>>> splines
[Piecewise((x**2/2, (x >= 0) & (x <= 1)),
           (-x**2 + 3*x - 3/2, (x >= 1) & (x <= 2)),
           (x**2/2 - 3*x + 9/2, (x >= 2) & (x <= 3)),
           (0, True)),
Piecewise((x**2/2 - x + 1/2, (x >= 1) & (x <= 2)),
           (-x**2 + 5*x - 11/2, (x >= 2) & (x <= 3)),
           (x**2/2 - 4*x + 8, (x >= 3) & (x <= 4)),
           (0, True))]
```

See also:

- `bspline_basis` (page 568)
- `interpolating_spline` in `sympy.functions.special.bsplines`

Return spline of degree \(d \), passing through the given \(X \) and \(Y \) values.

Parameters

- \(d \) : integer
 - Degree of Bspline strictly greater than equal to one
- \(x \) : symbol
- \(X \) : list of strictly increasing real values
 - list of \(X \) coordinates through which the spline passes
- \(Y \) : list of real values
 - list of corresponding \(Y \) coordinates through which the spline passes

Explanation

This function returns a piecewise function such that each part is a polynomial of degree not greater than \(d \). The value of \(d \) must be 1 or greater and the values of \(X \) must be strictly increasing.

Examples

```python
>>> from sympy import interpolating_spline
>>> from sympy.abc import x
>>> interpolating_spline(1, x, [1, 2, 4, 7], [3, 6, 5, 7])
Piecewise((3*x, (x >= 1) & (x <= 2)),
           (7 - x/2, (x >= 2) & (x <= 4)),
           (2*x/3 + 7/3, (x >= 4) & (x <= 7)))
>>> interpolating_spline(3, x, [-2, 0, 1, 3, 4], [4, 2, 1, 1, 3])
Piecewise((7*x**3/117 + 7*x**2/117 - 131*x/117 + 2, (x >= -2) & (x <= 0)),
           (7*x**3/117 + x**2/117 - 7*x/117 + 1, (x > 0) & (x <= 1)),
           (x**3/117 - x/117 + 2, (x > 1) & (x <= 3)),
           (7*x**3/117 + 7*x**2/117 - 131*x/117 + 2, (x > 3) & (x <= 4)))
(continues on next page)
See also:
bspline_basis_set (page 569), interpolating_poly (page 2514)

Riemann Zeta and Related Functions

class sympy.functions.special.zeta_functions.zeta(s, a=None)
Hurwitz zeta function (or Riemann zeta function).

Explanation

For Re(a) > 0 and Re(s) > 1, this function is defined as
\[
\zeta(s, a) = \sum_{n=0}^{\infty} \frac{1}{(n + a)^s},
\]
where the standard choice of argument for \( n + a \) is used. For fixed \( a \) not a nonpositive integer the Hurwitz zeta function admits a meromorphic continuation to all of \( \mathbb{C} \); it is an unbranched function with a simple pole at \( s = 1 \).

The Hurwitz zeta function is a special case of the Lerch transcendent:
\[
\zeta(s, a) = \Phi(1, s, a).
\]
This formula defines an analytic continuation for all possible values of \( s \) and \( a \) (also Re(\( a \)) < 0), see the documentation of lerchphi (page 575) for a description of the branching behavior.

If no value is passed for \( a \) a default value of \( a = 1 \) is assumed, yielding the Riemann zeta function.

Examples

For \( a = 1 \) the Hurwitz zeta function reduces to the famous Riemann zeta function:
\[
\zeta(s, 1) = \zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.
\]

```python
>>> from sympy import zeta
>>> from sympy.abc import s
>>> zeta(s, 1)
zeta(s)
```

The Riemann zeta function can also be expressed using the Dirichlet eta function:
The Riemann zeta function at nonnegative even and negative integer values is related to the Bernoulli numbers and polynomials:

\[
\zeta(2) = \frac{\pi^2}{6}
\]
\[
\zeta(4) = \frac{\pi^4}{90}
\]
\[
\zeta(0) = -\frac{1}{2}
\]
\[
\zeta(-1) = -\frac{1}{12}
\]
\[
\zeta(-4) = 0
\]

The specific formulae are:

\[
\zeta(2n) = -\frac{(2\pi i)^{2n} B_{2n}}{2(2n)!}
\]
\[
\zeta(-n, a) = -\frac{B_{n+1}(a)}{n+1}
\]

No closed-form expressions are known at positive odd integers, but numerical evaluation is possible:

\[
\zeta(3).n()
\]
1.20205690315959

The derivative of \(\zeta(s, a)\) with respect to \(a\) can be computed:

\[
\text{from sympy import a}
\]
\[
\zeta(s, a).diff(a) = -s \zeta(s + 1, a)
\]

However the derivative with respect to \(s\) has no useful closed form expression:

\[
\text{from sympy import s}
\]
\[
\zeta(s, a).diff(s) = \text{Derivative}(\zeta(s, a), s)
\]

The Hurwitz zeta function can be expressed in terms of the Lerch transcendent, \(\text{lerchphi}\) (page 575):

\[
\text{from sympy import lerchphi}
\]
\[
\zeta(s, a).rewrite(lerchphi) = \text{lerchphi}(1, s, a)
\]

See also:

\(\text{dirichlet_eta}\) (page 573), \(\text{lerchphi}\) (page 575), \(\text{polylog}\) (page 573)
**class** sympy.functions.special.zeta_functions.dirichlet_eta(s, a=None)

Dirichlet eta function.

**Explanation**

For \( \text{Re}(s) > 0 \) and \( 0 < x \leq 1 \), this function is defined as

\[
\eta(s, a) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(n + a)^s}.
\]

It admits a unique analytic continuation to all of \( \mathbb{C} \) for any fixed \( a \) not a nonpositive integer. It is an entire, unbranched function.

It can be expressed using the Hurwitz zeta function as

\[
\eta(s, a) = \zeta(s, a) - 2^{1-s} \zeta\left(s, \frac{a+1}{2}\right)
\]

and using the generalized Genocchi function as

\[
\eta(s, a) = \frac{G(1-s, a)}{2(s-1)}.
\]

In both cases the limiting value of \( \log 2 - \psi(a) + \psi\left(\frac{a+1}{2}\right) \) is used when \( s = 1 \).

**Examples**

```python
>>> from sympy import dirichlet_eta, zeta
>>> from sympy.abc import s
>>> dirichlet_eta(s).rewrite(zeta)
Piecewise((log(2), Eq(s, 1)), ((1 - 2**(1 - s))*zeta(s), True))
```

**See also:**

*zeta* (page 571)

**References**

[R428], [R429]
Explanation

For \( |z| < 1 \) and \( s \in \mathbb{C} \), the polylogarithm is defined by

\[
\text{Li}_s(z) = \sum_{n=1}^{\infty} \frac{z^n}{n^s},
\]

where the standard branch of the argument is used for \( n \). It admits an analytic continuation which is branched at \( z = 1 \) (notably not on the sheet of initial definition), \( z = 0 \) and \( z = \infty \).

The name polylogarithm comes from the fact that for \( s = 1 \), the polylogarithm is related to the ordinary logarithm (see examples), and that

\[
\text{Li}_{s+1}(z) = \int_0^z \frac{\text{Li}_s(t)}{t} \, dt.
\]

The polylogarithm is a special case of the Lerch transcendent:

\[
\text{Li}_s(z) = z \Phi(z, s, 1).
\]

Examples

For \( z \in \{0,1,-1\} \), the polylogarithm is automatically expressed using other functions:

```python
>>> from sympy import polylog
>>> from sympy.abc import s
>>> polylog(s, 0)
0
>>> polylog(s, 1)
zeta(s)
>>> polylog(s, -1)
dirichlet_eta(s)
```

If \( s \) is a negative integer, 0 or 1, the polylogarithm can be expressed using elementary functions. This can be done using `expand_func()`:

```python
>>> from sympy import expand_func
>>> from sympy.abc import z
>>> expand_func(polylog(1, z))
-log(1 - z)
>>> expand_func(polylog(0, z))
z/(1 - z)
```

The derivative with respect to \( z \) can be computed in closed form:

```python
>>> polylog(s, z).diff(z)
polylog(s - 1, z)/z
```

The polylogarithm can be expressed in terms of the lerch transcendent:

```python
>>> from sympy import lerchphi
>>> polylog(s, z).rewrite(lerchphi)
z*lerchphi(z, s, 1)
```
See also:

- `zeta` (page 571), `lerchphi` (page 575)

```python
class sympy.functions.special.zeta_functions.lerchphi(*args)
Lerch transcendent (Lerch phi function).
```

**Explanation**

For $\text{Re}(a) > 0$, $|z| < 1$ and $s \in \mathbb{C}$, the Lerch transcendent is defined as

$$
\Phi(z, s, a) = \sum_{n=0}^{\infty} \frac{z^n}{(n+a)^s},
$$

where the standard branch of the argument is used for $n+a$, and by analytic continuation for other values of the parameters.

A commonly used related function is the Lerch zeta function, defined by

$$
L(q, s, a) = \Phi(e^{2\pi i q}, s, a).
$$

**Analytic Continuation and Branching Behavior**

It can be shown that

$$
\Phi(z, s, a) = z\Phi(z, s, a + 1) + a^{-s}.
$$

This provides the analytic continuation to $\text{Re}(a) \leq 0$.

Assume now $\text{Re}(a) > 0$. The integral representation

$$
\Phi_0(z, s, a) = \int_{0}^{\infty} \frac{t^{s-1}e^{-a t}}{1 - z e^{-t}} \frac{dt}{\Gamma(s)}
$$

provides an analytic continuation to $\mathbb{C} - [1, \infty)$. Finally, for $x \in (1, \infty)$ we find

$$
\lim_{\epsilon \to 0^+} \Phi_0(x + i\epsilon, s, a) - \lim_{\epsilon \to 0^+} \Phi_0(x - i\epsilon, s, a) = \frac{2\pi i \log^{s-1} x}{x^s \Gamma(s)},
$$

using the standard branch for both $\log x$ and $\log \log x$ (a branch of $\log \log x$ is needed to evaluate $\log x^{s-1}$). This concludes the analytic continuation. The Lerch transcendent is thus branched at $z \in \{0, 1, \infty\}$ and $a \in \mathbb{Z}_{\leq 0}$. For fixed $z, a$ outside these branch points, it is an entire function of $s$.

**Examples**

The Lerch transcendent is a fairly general function, for this reason it does not automatically evaluate to simpler functions. Use `expand_func()` to achieve this.

If $z = 1$, the Lerch transcendent reduces to the Hurwitz zeta function:

```python
>>> from sympy import lerchphi, expand_func
>>> from sympy.abc import z, s, a
>>> expand_func(lerchphi(1, s, a))
zeta(s, a)
```
More generally, if \( z \) is a root of unity, the Lerch transcendent reduces to a sum of Hurwitz zeta functions:

```python
>>> expand_func(lerchphi(-1, s, a))
zeta(s, a/2)/2**s - zeta(s, a/2 + 1/2)/2**s
```

If \( a = 1 \), the Lerch transcendent reduces to the polylogarithm:

```python
>>> expand_func(lerchphi(z, s, 1))
polylog(s, z)/z
```

More generally, if \( a \) is rational, the Lerch transcendent reduces to a sum of polylogarithms:

```python
>>> from sympy import S
>>> expand_func(lerchphi(z, s, S(1)/2))
2**(s - 1)*(polylog(s, sqrt(z))/sqrt(z) - polylog(s, sqrt(z)*exp_polar(I*pi))/sqrt(z))
>>> expand_func(lerchphi(z, s, S(3)/2))
-2**s/z + 2**(s - 1)*(polylog(s, sqrt(z))/sqrt(z) - polylog(s, sqrt(z)*exp_polar(I*pi))/sqrt(z))/z
```

The derivatives with respect to \( z \) and \( a \) can be computed in closed form:

```python
>>> lerchphi(z, s, a).diff(z)
(-a*lerchphi(z, s, a) + lerchphi(z, s - 1, a))/z
>>> lerchphi(z, s, a).diff(a)
-s*lerchphi(z, s + 1, a)
```

See also:

polylog (page 573), zeta (page 571)

References

[R430], [R431], [R432]

class sympy.functions.special.zeta_functions.stieltjes(n, a=None)

Represents Stieltjes constants, \( \gamma_n \) that occur in Laurent Series expansion of the Riemann zeta function.

Examples

```python
>>> from sympy import stieltjes
>>> from sympy.abc import n, m
>>> stieltjes(n, m)
stieltjes(n)
```

The zero'th stieltjes constant:

```python
>>> stieltjes(0)
EulerGamma
```
For generalized stieltjes constants:

```python
>>> stieltjes(n, m)
Calculated value
```

Constants are only defined for integers \(\geq 0\):

```python
>>> stieltjes(-1)
zoo
```

**References**

[R433]

### Hypergeometric Functions

**class** `sympy.functions.special.hyper.hyper(ap, bq, z)`

The generalized hypergeometric function is defined by a series where the ratios of successive terms are a rational function of the summation index. When convergent, it is continued analytically to the largest possible domain.

**Explanation**

The hypergeometric function depends on two vectors of parameters, called the numerator parameters \(a_p\), and the denominator parameters \(b_q\). It also has an argument \(z\). The series definition is

\[
\begin{align*}
pFq\left( \begin{array}{c} a_1, \cdots, a_p \\ b_1, \cdots, b_q \end{array} \right| z \right) &= \sum_{n=0}^{\infty} \frac{(a_1)_n \cdots (a_p)_n}{(b_1)_n \cdots (b_q)_n} \frac{z^n}{n!},
\end{align*}
\]

where \((a)_n = (a)(a + 1)\cdots(a + n - 1)\) denotes the rising factorial.

If one of the \(b_q\) is a non-positive integer then the series is undefined unless one of the \(a_p\) is a larger (i.e., smaller in magnitude) non-positive integer. If none of the \(b_q\) is a non-positive integer and one of the \(a_p\) is a non-negative integer, then the series reduces to a polynomial. To simplify the following discussion, we assume that none of the \(a_p\) or \(b_q\) is a non-positive integer. For more details, see the references.

The series converges for all \(z\) if \(p \leq q\), and thus defines an entire single-valued function in this case. If \(p = q + 1\) the series converges for \(|z| < 1\), and can be continued analytically into a half-plane. If \(p > q + 1\) the series is divergent for all \(z\).

Please note the hypergeometric function constructor currently does *not* check if the parameters actually yield a well-defined function.
Examples

The parameters $a_p$ and $b_q$ can be passed as arbitrary iterables, for example:

```python
>>> from sympy import hyper
>>> from sympy import x, n, a
>>> hyper((1, 2, 3), [3, 4], x)
hyper((1, 2), (3, 4), x)
```

There is also pretty printing (it looks better using Unicode):

```python
>>> from sympy import pprint
>>> pprint(hyper((1, 2, 3), [3, 4], x), use_unicode=False)
 /
| /1, 2, 3 |
| 1 | x |
| 2 \ 3, 4 |
```

The parameters must always be iterables, even if they are vectors of length one or zero:

```python
>>> hyper((1,), [], x)
hyper((1,), (), x)
```

But of course they may be variables (but if they depend on $x$ then you should not expect much implemented functionality):

```python
>>> hyper((n, a), (n**2,), x)
hyper((n, a), (n**2,), x)
```

The hypergeometric function generalizes many named special functions. The function `hyperexpand()` tries to express a hypergeometric function using named special functions. For example:

```python
>>> from sympy import hyperexpand
>>> hyperexpand(hyper([], [], x))
exp(x)
```

You can also use `expand_func()`:

```python
>>> from sympy import expand_func
>>> expand_func(x*hyper([1], [1], -x))
log(x + 1)
```

More examples:

```python
>>> from sympy import S
>>> hyperexpand(hyper([1], [S(1)/2], -x**2/4))
cos(x)
>>> hyperexpand(x*hyper([S(1)/2, S(1)/2], [S(3)/2], x**2))
asin(x)
```

We can also sometimes `hyperexpand()` parametric functions:
```python
>>> from sympy import a
>>> hyperexpand(hyper([-a], [], x))
(1 - x)**a
```

See also:

`sympy.simplify.hyperexpand` (page 743), `gamma` (page 515), `meijerg` (page 579)

References

[R434], [R435]

**property ap**

Numerator parameters of the hypergeometric function.

**property argument**

Argument of the hypergeometric function.

**property bq**

Denominator parameters of the hypergeometric function.

**property convergence_statement**

Return a condition on z under which the series converges.

**property eta**

A quantity related to the convergence of the series.

**property radius_of_convergence**

Compute the radius of convergence of the defining series.

**Explanation**

Note that even if this is not oo, the function may still be evaluated outside of the radius of convergence by analytic continuation. But if this is zero, then the function is not actually defined anywhere else.

**Examples**

```python
>>> from sympy import hyper
>>> from sympy.abc import z
>>> hyper((1, 2), [3], z).radius_of_convergence
1
>>> hyper((1, 2, 3), [4], z).radius_of_convergence
0
>>> hyper((1, 2), (3, 4), z).radius_of_convergence
oo
```

class sympy.functions.special.hyper.meijerg(*args)

The Meijer G-function is defined by a Mellin-Barnes type integral that resembles an inverse Mellin transform. It generalizes the hypergeometric functions.
**Explanation**

The Meijer G-function depends on four sets of parameters. There are “numerator parameters” $a_1, \ldots, a_n$ and $a_{n+1}, \ldots, a_p$, and there are “denominator parameters” $b_1, \ldots, b_m$ and $b_{m+1}, \ldots, b_q$. Confusingly, it is traditionally denoted as follows (note the position of $m$, $n$, $p$, $q$, and how they relate to the lengths of the four parameter vectors):

$$G_{m,n}^{p,q}(a_1, \ldots, a_n; a_{n+1}, \ldots, a_p; b_1, \ldots, b_m; b_{m+1}, \ldots, b_q; z).$$

However, in SymPy the four parameter vectors are always available separately (see examples), so that there is no need to keep track of the decorating sub- and super-scripts on the G symbol.

The G function is defined as the following integral:

$$\frac{1}{2\pi i} \int \frac{\prod_{j=1}^{m} \Gamma(b_j - s)}{\prod_{j=m+1}^{p} \Gamma(b_j + s)} \frac{\prod_{j=1}^{n} \Gamma(1 - a_j - s)}{\prod_{j=n+1}^{p} \Gamma(1 - a_j + s)} z^s ds,$$

where $\Gamma(z)$ is the gamma function. There are three possible contours which we will not describe in detail here (see the references). If the integral converges along more than one of them, the definitions agree. The contours all separate the poles of $\Gamma(1 - a_j + s)$ from the poles of $\Gamma(b_k - s)$, so in particular the G function is undefined if $a_j - b_k \in \mathbb{Z}_{>0}$ for some $j \leq n$ and $k \leq m$.

The conditions under which one of the contours yields a convergent integral are complicated and we do not state them here, see the references.

Please note currently the Meijer G-function constructor does not check any convergence conditions.

**Examples**

You can pass the parameters either as four separate vectors:

```python
>>> from sympy import meijerg, Tuple, pprint
>>> from sympy.abc import x, a
>>> pprint(meijerg((1, 2), (a, 4), (5,), [], x), use_unicode=False)
_1, 2 _1, 2 a, 4 | \
_| _4, 1 _5 | /
```

Or as two nested vectors:

```python
>>> pprint(meijerg([(1, 2), (3, 4)], ([5], Tuple()), x), use_unicode=False)
_1, 2 _1, 2 3, 4 | \
_| _4, 1 _5 | /
```

As with the hypergeometric function, the parameters may be passed as arbitrary iterables. Vectors of length zero and one also have to be passed as iterables. The parameters need not be constants, but if they depend on the argument then not much implemented functionality should be expected.

All the subvectors of parameters are available:
The Meijer G-function generalizes the hypergeometric functions. In some cases it can be expressed in terms of hypergeometric functions, using Slater’s theorem. For example:

```python
>>> from sympy import hyperexpand
>>> from sympy.abc import a, b, c
>>> hyperexpand(meijerg([a], [], [c], [b], x), allow_hyper=True)
x**c*gamma(-a + c + 1)*hyper((-a + c + 1,)
 (-b + c + 1,), -x)/gamma(-b + c + 1)
```

Thus the Meijer G-function also subsumes many named functions as special cases. You can use expand_func() or hyperexpand() to (try to) rewrite a Meijer G-function in terms of named special functions. For example:

```python
>>> from sympy import expand_func, S
>>> expand_func(meijerg([[]], [[0]], [[S(1)/2], [0]], x/2**2))
exp(x)
>>> hyperexpand(meijerg([[]], [[0]], [[S(1)/2], [0]], (x/2)**2))
sin(x)/sqrt(pi)
```

**See also:**

hyper (page 577), sympy.simplify.hyperexpand (page 743)

**References**

[R436], [R437]

**property an**

First set of numerator parameters.

**property aother**

Second set of numerator parameters.

**property ap**

Combined numerator parameters.

5.8. Topics
**property argument**
Argument of the Meijer G-function.

**property bm**
First set of denominator parameters.

**property bother**
Second set of denominator parameters.

**property bq**
Combined denominator parameters.

**property delta**
A quantity related to the convergence region of the integral, c.f. references.

**get_period()**
Return a number $P$ such that $G(x * \exp(I * P)) = G(x)$.

**Examples**

```python
>>> from sympy import meijerg, pi, S
>>> from sympy.abc import z
```

```python
>>> meijerg([1], [], [], [], z).get_period()
2*pi
>>> meijerg([pi], [], [], [], z).get_period()
oo
>>> meijerg([1, 2], [], [], [], z).get_period()
oo
>>> meijerg([1, 1], [2], [1, S(1)/2, S(1)/3], [1], z).get_period()
12*pi
```

**integrand(s)**
Get the defining integrand $D(s)$.

**property is_number**
Returns true if expression has numeric data only.

**property nu**
A quantity related to the convergence region of the integral, c.f. references.

**class** sympy.functions.special.hyper.appellf1($a, b1, b2, c, x, y$)
This is the Appell hypergeometric function of two variables as:

$$F_1(a, b_1, b_2, c, x, y) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(a)_{m+n}(b_1)_m(b_2)_n x^m y^n}{(c)_{m+n} m! n!}.$$
Examples

```python
>>> from sympy import appellf1, symbols
>>> x, y, a, b1, b2, c = symbols('x y a b1 b2 c')
>>> appellf1(2., 1., 6., 4., 5., 6.)
0.006339426292673
>>> appellf1(12., 12., 6., 4., 0.5, 0.12)
172870711.659936
>>> appellf1(40, 2, 6, 4, 15, 60)
appellf1(40, 2, 6, 4, 15, 60)
>>> appellf1(20., 12., 10., 3., 0.5, 0.12)
15605338197184.4
>>> appellf1(40, 2, 6, 4, x, y)
appellf1(40, 2, 6, 4, x, y)
>>> appellf1(a, b1, b2, c, x, y)
appellf1(a, b1, b2, c, x, y)
```

References

[R438], [R439]

Elliptic integrals

```python
class sympy.functions.special.elliptic_integrals.elliptic_k(m)
The complete elliptic integral of the first kind, defined by

\[K(m) = F \left(\frac{\pi}{2} | m \right) \]

where \(F(z|m) \) is the Legendre incomplete elliptic integral of the first kind.
```

Explanation

The function \( K(m) \) is a single-valued function on the complex plane with branch cut along the interval \((1, \infty)\).

Note that our notation defines the incomplete elliptic integral in terms of the parameter \( m \) instead of the elliptic modulus (eccentricity) \( k \). In this case, the parameter \( m \) is defined as \( m = k^2 \).

Examples

```python
>>> from sympy import elliptic_k, I
>>> from sympy import elliptic_k
>>> elliptic_k(0)
pi/2
>>> elliptic_k(1.0 + I)
1.50923695405127 + 0.625146415202697*I
>>> elliptic_k(m).series(n=3)
pi/2 + pi*m/8 + 9*pi*m**2/128 + 0(m**3)
```
**See also:**

`elliptic_f` (page 584)

**References**

[R440], [R441]

```python
class sympy.functions.special.elliptic_integrals.elliptic_f(z, m)
```

The Legendre incomplete elliptic integral of the first kind, defined by

\[
F(z|m) = \int_0^z \frac{dt}{\sqrt{1 - m \sin^2 t}}
\]

**Explanation**

This function reduces to a complete elliptic integral of the first kind, \(K(m)\), when \(z = \pi/2\). Note that our notation defines the incomplete elliptic integral in terms of the parameter \(m\) instead of the elliptic modulus (eccentricity) \(k\). In this case, the parameter \(m\) is defined as \(m = k^2\).

**Examples**

```python
>>> from sympy import elliptic_f, I
>>> from sympy.abc import z, m
>>> elliptic_f(z, m).series(z)
z + z**5*(3*m**2/40 - m/30) + m*z**3/6 + O(z**6)
>>> elliptic_f(3.0 + I/2, 1.0 + I)
2.909449841483 + 1.74720545502474*I
```

**See also:**

`elliptic_k` (page 583)

**References**

[R442], [R443]

```python
class sympy.functions.special.elliptic_integrals.elliptic_e(m, z=None)
```

Called with two arguments \(z\) and \(m\), evaluates the incomplete elliptic integral of the second kind, defined by

\[
E(z|m) = \int_0^z \sqrt{1 - m \sin^2 t}\, dt
\]

Called with a single argument \(m\), evaluates the Legendre complete elliptic integral of the second kind

\[
E(m) = E\left(\frac{\pi}{2} \middle| m\right)
\]
Explanation

The function \( E(m) \) is a single-valued function on the complex plane with branch cut along the interval \((1, \infty)\).

Note that our notation defines the incomplete elliptic integral in terms of the parameter \( m \) instead of the elliptic modulus (eccentricity) \( k \). In this case, the parameter \( m \) is defined as \( m = k^2 \).

Examples

```python
>>> from sympy import elliptic_e, I
>>> from sympy.abc import z, m
>>> elliptic_e(z, m).series(z)
z + z**5*(-m**2/40 + m/30) - m*z**3/6 + O(z**6)
>>> elliptic_e(m).series(n=4)
pi/2 - pi*m/8 - 3*pi*m**2/128 - 5*pi*m**3/512 + O(m**4)
>>> elliptic_e(1 + I, 2 - I/2).n()
1.55203744279187 + 0.290764986058437*I
>>> elliptic_e(0)
pi/2
>>> elliptic_e(2.0 - I)
0.991052601328069 + 0.81879421395609*I
```

References

[R444], [R445], [R446]

class `sympy.functions.special.elliptic_integrals.elliptic_pi(n, m, z=None)`

Called with three arguments \( n, z \) and \( m \), evaluates the Legendre incomplete elliptic integral of the third kind, defined by

\[
\Pi(n; z|m) = \int_0^z \frac{dt}{\left(1 - n \sin^2 t\right) \sqrt{1 - m \sin^2 t}}
\]

Called with two arguments \( n \) and \( m \), evaluates the complete elliptic integral of the third kind:

\[
\Pi(n|m) = \Pi(n; \frac{\pi}{2}|m)
\]

Explanation

Note that our notation defines the incomplete elliptic integral in terms of the parameter \( m \) instead of the elliptic modulus (eccentricity) \( k \). In this case, the parameter \( m \) is defined as \( m = k^2 \).
Examples

```python
>>> from sympy import elliptic_pi, I
>>> from sympy.abc import z, n, m
>>> elliptic_pi(n, z, m).series(z, n=4)
z + z**3*(m/6 + n/3) + O(z**4)
>>> elliptic_pi(0.5 + I, 1.0 - I, 1.2)
2.50232379629182 - 0.760939574180767*I
>>> elliptic_pi(0, 0)
pi/2
>>> elliptic_pi(1.0 - I/3, 2.0 + I)
3.29136443417283 + 0.3255634906645*I
```

References

[R447], [R448], [R449]

Mathieu Functions

class sympy.functions.special.mathieu_functions.MathieuBase(*args)
Abstract base class for Mathieu functions.
This class is meant to reduce code duplication.
class sympy.functions.special.mathieu_functions.mathieus(a, q, z)
The Mathieu Sine function \( S(a,q,z) \).

Explanation

This function is one solution of the Mathieu differential equation:
\[
y(x)'' + (a - 2q \cos(2x))y(x) = 0
\]
The other solution is the Mathieu Cosine function.

Examples

```python
>>> from sympy import diff, mathieus
>>> from sympy.abc import a, q, z
```

```python
>>> mathieus(a, q, z)
mathieus(a, q, z)
```

```python
>>> diff(mathieus(a, q, z), z)
diff(mathieus(a, q, z), z)
```
See also:

**mathieuc** *(page 587)*
Mathieu cosine function.

**mathieusprime** *(page 588)*
Derivative of Mathieu sine function.

**mathieucprime** *(page 588)*
Derivative of Mathieu cosine function.

References

[R450], [R451], [R452], [R453]

class sympy.functions.special.mathieu_functions.mathieuc(a, q, z)
The Mathieu Cosine function $C(a, q, z)$.

Explanation

This function is one solution of the Mathieu differential equation:

$$y(x)^{''} + (a - 2q \cos(2x))y(x) = 0$$

The other solution is the Mathieu Sine function.

Examples

```python
>>> from sympy import diff, mathieuc
>>> from sympy.abc import a, q, z

>>> mathieuc(a, q, z)
mathieuc(a, q, z)

>>> mathieuc(a, 0, z)
\cos(\sqrt{a}z)

>>> diff(mathieuc(a, q, z), z)
mathieucprime(a, q, z)
```

See also:

**mathieus** *(page 586)*
Mathieu sine function

**mathieusprime** *(page 588)*
Derivative of Mathieu sine function

**mathieucprime** *(page 588)*
Derivative of Mathieu cosine function
References

[R454], [R455], [R456], [R457]

class sympy.functions.special.mathieu_functions.mathieusprime(a, q, z)
The derivative $S'(a,q,z)$ of the Mathieu Sine function.

Explanation

This function is one solution of the Mathieu differential equation:

$$y''(x) + (a - 2q \cos(2x))y(x) = 0$$

The other solution is the Mathieu Cosine function.

Examples

```python
>>> from sympy import diff, mathieusprime
>>> from sympy.abc import a, q, z

>>> mathieusprime(a, q, z)
mathieusprime(a, q, z)

>>> mathieusprime(a, 0, z)
sqrt(a)*cos(sqrt(a)*z)

>>> diff(mathieusprime(a, q, z), z)
(-a + 2*q*cos(2*z))*mathieus(a, q, z)
```

See also:

mathieus (page 586)
Mathieu sine function

mathieuc (page 587)
Mathieu cosine function

mathieucprime (page 588)
Derivative of Mathieu cosine function

References

[R458], [R459], [R460], [R461]

class sympy.functions.special.mathieu_functions.mathieucprime(a, q, z)
The derivative $C'(a,q,z)$ of the Mathieu Cosine function.
**Explanation**

This function is one solution of the Mathieu differential equation:

\[ y''(x) + (a - 2q \cos(2x))y(x) = 0 \]

The other solution is the Mathieu Sine function.

**Examples**

```python
>>> from sympy import diff, mathieucprime
>>> from sympy.abc import a, q, z

>>> mathieucprime(a, q, z)
mathieucprime(a, q, z)

>>> mathieucprime(a, 0, z)
-sqrt(a)*sin(sqrt(a)*z)

>>> diff(mathieucprime(a, q, z), z)
(-a + 2*q*cos(2*z))*mathieuc(a, q, z)
```

See also:

- `mathieus` *(page 586)*
  - Mathieu sine function
- `mathieuc` *(page 587)*
  - Mathieu cosine function
- `mathieusprime` *(page 588)*
  - Derivative of Mathieu sine function

**References**

[R462], [R463], [R464], [R465]

**Orthogonal Polynomials**

This module mainly implements special orthogonal polynomials.

See also `functions.combinatorial.numbers` which contains some combinatorial polynomials.
Jacobi Polynomials

```python
class sympy.functions.special.polynomials.jacobi(n, a, b, x)
 Jacobi polynomial \(P_n^{(\alpha,\beta)}(x) \).
```

**Explanation**

`jacobi(n, alpha, beta, x)` gives the \( n \)th Jacobi polynomial in \( x \), \( P_n^{(\alpha,\beta)}(x) \).

The Jacobi polynomials are orthogonal on \([-1, 1]\) with respect to the weight \((1-x)\alpha(1+x)^\beta\).

**Examples**

```python
>>> from sympy import jacobi, S, conjugate, diff
>>> from sympy.abc import a, b, n, x
>>> jacobi(0, a, b, x)
1
>>> jacobi(1, a, b, x)
a/2 - b/2 + x*(a/2 + b/2 + 1)
>>> jacobi(2, a, b, x)
a**2/8 - a*b/4 - a/8 + b**2/8 - b/8 + x**2*(a**2/8 + a*b/4 + 7*a/8 + b**2/8 + 7*b/8 + 3/2) + x*(a**2/4 + 3*a/4 - b**2/4 - 3*b/4) - 1/2
>>> jacobi(n, a, b, x)
jacobi(n, a, b, x)
>>> jacobi(n, a, a, x)
RisingFactorial(a + 1, n)*gegenbauer(n, a + 1/2, x)/RisingFactorial(2*a + 1, n)
>>> jacobi(n, S(1)/2, S(1)/2, x)
RisingFactorial(3/2, n)*chebyshevu(n, x)/factorial(n + 1)
>>> jacobi(n, -S(1)/2, -S(1)/2, x)
RisingFactorial(1/2, n)*chebyshevt(n, x)/factorial(n)
>>> jacobi(n, a, b, -x)
(-1)**n*jacobi(n, b, a, x)
>>> jacobi(n, a, b, 0)
gamma(a + n + 1)*hyper((-b - n, -n), (a + 1,), -1)/
 hyper((-b - n, -n), (a + 1,), 1)/
 gamma(a + n + 1)/factorial(n)
>>> jacobi(n, a, b, 1)
RisingFactorial(a + 1, n)/factorial(n)
```
conjugate(jacobi(n, a, b, x))
jacobi(n, conjugate(a), conjugate(b), conjugate(x))

diff(jacobi(n,a,b,x), x)
(a/2 + b/2 + n/2 + 1/2)*jacobi(n - 1, a + 1, b + 1, x)

See also:

gegenbauer (page 592), chebyshevt_root (page 596), chebyshev (page 595), chebyshevu_root (page 596), legendre (page 597), assoc_legendre (page 597), hermite (page 598), hermite_prob (page 599), laguerre (page 600), assoc_laguerre (page 601), sympy.polys.orthopoly.orthopoly_jacobi_poly (page 2516), sympy.polys.orthopoly.orthopoly_gegenbauer_poly (page 2516), sympy.polys.orthopoly.orthopoly_chebyshevt_poly (page 2515), sympy.polys.orthopoly.orthopoly_hermite_poly (page 2516), sympy.polys.orthopoly.orthopoly_legendre_poly (page 2517), sympy.polys.orthopoly.orthopoly_laguerre_poly (page 2517)

References

[R466], [R467], [R468]

jacobi_normalized(n, a, b, x)
Jacobi polynomial $P_{n}^{(\alpha,\beta)}(x)$.

Parameters

- n : integer degree of polynomial
- a : alpha value
- b : beta value
- x : symbol

Explanation

jacobi_normalized(n, alpha, beta, x) gives the $n$th Jacobi polynomial in $x$, $P_{n}^{(\alpha,\beta)}(x)$.

The Jacobi polynomials are orthogonal on $[-1,1]$ with respect to the weight $(1-x)^{\alpha}(1+x)^{\beta}$.

This function returns the polynomials normalized:

$$\int_{-1}^{1} P_{m}^{(\alpha,\beta)}(x)P_{n}^{(\alpha,\beta)}(x)(1-x)^{\alpha}(1+x)^{\beta}dx = \delta_{m,n}$$
Examples

```python
>>> from sympy import jacobi_normalized
>>> from sympy.abc import n, a, b, x

>>> jacobi_normalized(n, a, b, x)
jacobi(n, a, b, x)/sqrt(2**(a + b + 1)*gamma(a + n + 1)*gamma(b + n + 1)/
→((a + b + 2*n + 1)*factorial(n)*gamma(a + b + n + 1)))
```

See also:
gegenbauer (page 592), chebyshevt_root (page 596), chebyshev (page 595),
chebyshev_root (page 596), legendre (page 597), assoc_legendre (page 597),
hermite (page 598), hermite_prob (page 599), laguerre (page 600), assoc_laguerre
(page 601), sympy.polys.orthopolys.jacobi_poly (page 2516), sympy.polys.orthopolys.
chebyshevt_poly (page 2515), sympy.polys.orthopolys.chebyshevu_poly (page 2515),
sympy.polys.orthopolys.hermite_poly (page 2516), sympy.polys.orthopolys.
legendre_poly (page 2517), sympy.polys.orthopolys.laguerre_poly
(page 2517)

References

[R469], [R470], [R471]

Gegenbauer Polynomials

class sympy.functions.special.polynomials.gegenbauer(n, a, x)

Gegenbauer polynomial \( C_n^{(\alpha)}(x) \).

Explanation

gegenbauer(n, alpha, x) gives the \( n \)th Gegenbauer polynomial in \( x \), \( C_n^{(\alpha)}(x) \).
The Gegenbauer polynomials are orthogonal on \([-1,1]\) with respect to the weight
\((1-x^2)^{\alpha-\frac{1}{2}}\).

Examples

```python
>>> from sympy import gegenbauer, conjugate, diff
>>> from sympy.abc import n, a, x

>>> gegenbauer(0, a, x)
1
>>> gegenbauer(1, a, x)
2*a*x
>>> gegenbauer(2, a, x)
-a + x**2*(2*a**2 + 2*a)
```
\[
\text{gegenbauer}(3, a, x) = x^3 \left( \frac{4a^3}{3} + 4a^2 + \frac{8a}{3} \right) + x(-2a^2 - 2a)
\]

\[
\text{gegenbauer}(n, a, x) = \text{gegenbauer}(n, a, x)
\]

\[
\text{gegenbauer}(n, a, -x) = (-1)^n \text{gegenbauer}(n, a, x)
\]

\[
\text{gegenbauer}(n, a, 0) = 2^n \sqrt{\pi} \frac{\Gamma(a + n/2)}{\Gamma(a) \Gamma(1/2 - n/2) \Gamma(n + 1)}
\]

\[
\text{gegenbauer}(n, a, 1) = \frac{\Gamma(2a + n)}{\Gamma(2a) \Gamma(n + 1)}
\]

\[
\text{conjugate(gegenbauer}(n, a, x)) = \text{gegenbauer}(n, \text{conjugate}(a), \text{conjugate}(x))
\]

\[
\text{diff(gegenbauer}(n, a, x), x) = 2a \text{gegenbauer}(n - 1, a + 1, x)
\]

See also:

- \text{jacobi}  (page 590), \text{chebyshevt_root}  (page 596), \text{chebyshevu}  (page 595), \text{chebyshevu_root}  (page 596), \text{legendre}  (page 597), \text{assoc_legendre}  (page 597), \text{hermite}  (page 598), \text{hermite_prob}  (page 599), \text{laguerre}  (page 600), \text{assoc_laguerre}  (page 601), \text{sympy.polys.orthopolys.jacobi_poly}  (page 2516), \text{sympy.polys.orthopolys.gegenbauer_poly}  (page 2516), \text{sympy.polys.orthopolys.chebyshevt_poly}  (page 2515), \text{sympy.polys.orthopolys.chebyshevu_poly}  (page 2515), \text{sympy.polys.orthopolys.hermite_poly}  (page 2516), \text{sympy.polys.orthopolys.hermite_prob_poly}  (page 2516), \text{sympy.polys.orthopolys.legendre_poly}  (page 2517), \text{sympy.polys.orthopolys.laguerre_poly}  (page 2517)

References

[R472], [R473], [R474]
Chebyshev Polynomials

**class** sympy.functions.special.polynomials.chebyshevt(n, x)

Chebyshev polynomial of the first kind, $T_n(x)$.

**Explanation**

`chebyshevt(n, x)` gives the $n$th Chebyshev polynomial (of the first kind) in $x$, $T_n(x)$. The Chebyshev polynomials of the first kind are orthogonal on $[-1, 1]$ with respect to the weight $\frac{1}{\sqrt{1-x^2}}$.

**Examples**

```python
>>> from sympy import chebyshevt, diff
>>> from sympy.abc import n, x
>>> chebyshevt(0, x)
1
>>> chebyshevt(1, x)
x
>>> chebyshevt(2, x)
2*x**2 - 1
```

```python
>>> chebyshevt(n, x)
chebyshevt(n, x)
>>> chebyshevt(n, -x)
(-1)**n*chebyshevt(n, x)
>>> chebyshevt(-n, x)
chebyshevt(n, x)
```

```python
>>> chebyshevt(n, 0)
\cos(\pi*n/2)
>>> chebyshevt(n, -1)
(-1)**n
```

```python
>>> diff(chebyshevt(n, x), x)
n*chebyshevu(n - 1, x)
```

**See also:**

`jacobi` (page 590), `gegenbauer` (page 592), `chebyshev_root` (page 596), `chebyshev` (page 595), `chebyshevu_root` (page 596), `legendre` (page 597), `assoc_legendre` (page 597), `hermite` (page 598), `hermite_prob` (page 599), `laguerre` (page 600), `assoc_laguerre` (page 601), `sympy.polys.orthopolys.jacobi_poly` (page 2516), `sympy.polys.orthopolys.gegenbauer_poly` (page 2516), `sympy.polys.orthopolys.chebyshevt_poly` (page 2515), `sympy.polys.orthopolys.chebyshevu_poly` (page 2515), `sympy.polys.orthopolys.hermite_poly` (page 2516), `sympy.polys.orthopolys.hermite_prob_poly` (page 2516), `sympy.polys.orthopolys.legendre_poly` (page 2517), `sympy.polys.orthopolys.laguerre_poly` (page 2517)
References

[R475], [R476], [R477], [R478], [R479]

class sympy.functions.special.polynomials.chebyshevu(n, x)

Chebyshev polynomial of the second kind, \( U_n(x) \).

Explanation

chebyshevu(n, x) gives the \( n \)th Chebyshev polynomial of the second kind in \( x \), \( U_n(x) \).
The Chebyshev polynomials of the second kind are orthogonal on \([-1,1]\) with respect to the weight \( \sqrt{1-x^2} \).

Examples

```python
>>> from sympy import chebyshevu, diff
>>> from sympy.abc import n, x
>>> chebyshevu(0, x)
1
>>> chebyshevu(1, x)
2*x
>>> chebyshevu(2, x)
4*x**2 - 1
```

```python
>>> chebyshevu(n, x)
chebyshevu(n, x)
>>> chebyshevu(n, -x)
(-1)**n*chebyshevu(n, x)
>>> chebyshevu(-n, x)
-chebyshevu(n - 2, x)
```

```python
>>> chebyshevu(n, 0)
cos(pi*n/2)
>>> chebyshevu(n, 1)
n + 1
```

```python
>>> diff(chebyshevu(n, x), x)
(-x*chebyshevu(n, x) + (n + 1)*chebyshevt(n + 1, x))/(x**2 - 1)
```

See also:

jacobi (page 590), gegenbauer (page 592), chebyshevt (page 594), chebyshevt_root (page 596), chebyshevu_root (page 596), legendre (page 597), assoc_legendre (page 597), hermite (page 598), hermite_prob (page 599), laguerre (page 600), assoc_laguerre (page 601), sympy.polys.orthopolys.jacobi_poly (page 2516), sympy.polys.orthopolys.gegenbauer_poly (page 2516), sympy.polys.orthopolys.chebyshevt_poly (page 2515), sympy.polys.orthopolys.chebyshevu_poly (page 2515), sympy.polys.orthopolys.hermite_poly (page 2516), sympy.polys.orthopolys.hermite_prob_poly (page 2516), sympy.polys.orthopolys.legendre_poly (page 2517), sympy.polys.orthopolys.laguerre_poly (page 2517)
References

[R480], [R481], [R482], [R483], [R484]

class sympy.functions.special.polynomials.chebyshev_root(n, k)
chebyshev_root(n, k) returns the $k$th root (indexed from zero) of the $n$th Chebyshev polynomial of the first kind; that is, if $0 \leq k < n$, chebyshev(n, chebyshev_root(n, k)) == 0.

Examples

```python
>>> from sympy import chebyshev, chebyshev_root
>>> chebyshev_root(3, 2)
-sqrt(3)/2
>>> chebyshev(3, chebyshev_root(3, 2))
0
```

See also:
jacobi (page 590), gegenbauer (page 592), chebyshev (page 594), chebyshevu (page 595), chebyshevu_root (page 596), legendre (page 597), assoc_legendre (page 597), hermite (page 598), hermite_prob (page 599), laguerre (page 600), assoc_laguerre (page 601), sympy.polys.orthopolys.jacobi_poly (page 2516), sympy.polys.orthopolys.gegenbauer_poly (page 2516), sympy.polys.orthopolys.chebyshevt_poly (page 2515), sympy.polys.orthopolys.chebyshevu_poly (page 2515), sympy.polys.orthopolys.hermite_poly (page 2516), sympy.polys.orthopolys.hermite_prob_poly (page 2516), sympy.polys.orthopolys.legendre_poly (page 2517), sympy.polys.orthopolys.laguerre_poly (page 2517)

class sympy.functions.special.polynomials.chebyshevu_root(n, k)
chebyshevu_root(n, k) returns the $k$th root (indexed from zero) of the $n$th Chebyshev polynomial of the second kind; that is, if $0 \leq k < n$, chebyshevu(n, chebyshevu_root(n, k)) == 0.

Examples

```python
>>> from sympy import chebyshevu, chebyshevu_root
>>> chebyshevu_root(3, 2)
-sqrt(2)/2
>>> chebyshevu(3, chebyshevu_root(3, 2))
0
```

See also:

chebyshevt (page 594), chebyshevt_root (page 596), chebyshev (page 595), legendre (page 597), assoc_legendre (page 597), hermite (page 598), hermite_prob (page 599), laguerre (page 600), assoc_laguerre (page 601), sympy.polys.orthopolys.jacobi_poly (page 2516), sympy.polys.orthopolys.gegenbauer_poly (page 2516), sympy.polys.orthopolys.chebyshevt_poly (page 2515), sympy.polys.orthopolys.chebyshevu_poly (page 2515), sympy.polys.orthopolys.hermite_poly (page 2516), sympy.polys.orthopolys.hermite_prob_poly (page 2516), sympy.polys.orthopolys.legendre_poly (page 2517), sympy.polys.orthopolys.laguerre_poly (page 2517)
**Legendre Polynomials**

```python
class sympy.functions.special.polynomials.legendre(n, x)
legendre(n, x) gives the nth Legendre polynomial of x, \(P_n(x) \)
```

**Explanation**

The Legendre polynomials are orthogonal on \([-1, 1]\) with respect to the constant weight 1. They satisfy \( P_n(1) = 1 \) for all \( n \); further, \( P_n \) is odd for odd \( n \) and even for even \( n \).

**Examples**

```python
>>> from sympy import legendre, diff
>>> from sympy.abc import x, n
>>> legendre(0, x)
1
>>> legendre(1, x)
x
>>> legendre(2, x)
3*x**2/2 - 1/2
>>> legendre(n, x)
legendre(n, x)
>>> diff(legendre(n,x), x)
n*(x*legendre(n, x) - legendre(n - 1, x))/(x**2 - 1)
```

**See also:**

jacobi (page 590), gegenbauer (page 592), chebyshevt (page 594), chebyshevt_root (page 596), chebyshevu (page 595), chebyshevu_root (page 596), assoc_legendre (page 597), hermite (page 598), hermite_prob (page 599), laguerre (page 600), assoc_laguerre (page 601), sympy.polys.orthopolys.jacobi_poly (page 2516), sympy.polys.orthopolys.gegenbauer_poly (page 2516), sympy.polys.orthopolys.chebyshevt_poly (page 2515), sympy.polys.orthopolys.chebyshevu_poly (page 2515), sympy.polys.orthopolys.hermite_poly (page 2515), sympy.polys.orthopolys.hermite_prob (page 2516), sympy.polys.orthopolys.assoc_legendre_poly (page 2517), sympy.polys.orthopolys.hermite_prob_poly (page 2517)

**References**

[R485], [R486], [R487], [R488]

```python
class sympy.functions.special.polynomials.assoc_legendre(n, m, x)
assoc_legendre(n, m, x) gives \(P_n^m(x) \), where \(n \) and \(m \) are the degree and order or an expression which is related to the nth order Legendre polynomial, \(P_n(x) \) in the following manner:

\[
P_n^m(x) = (-1)^m(1 - x^2)^{\frac{m}{2}} \frac{d^m P_n(x)}{dx^m}
\]
```
Explanation

Associated Legendre polynomials are orthogonal on $[-1,1]$ with:

- weight $= 1$ for the same $m$ and different $n$.
- weight $= \frac{1}{1-x^2}$ for the same $n$ and different $m$.

Examples

```python
>>> from sympy import assoc_legendre
>>> from sympy.abc import x, m, n
>>> assoc_legendre(0, 0, x)
1
>>> assoc_legendre(1, 0, x)
x
>>> assoc_legendre(1, 1, x)
-sqrt(1 - x**2)
>>> assoc_legendre(n, m, x)
assoc_legendre(n, m, x)
```

See also:

`jacobi` (page 590), `gegenbauer` (page 592), `chebyshev` (page 594), `chebyshev_root` (page 596), `chebyshevu` (page 595), `chebyshev_root` (page 596), `legendre` (page 597), `hermite` (page 598), `hermite_prob` (page 599), `laguerre` (page 600), `assoc_laguerre` (page 601), `sympy.polys.orthopolys.jacobi_poly` (page 2516), `sympy.polys.orthopolys.gegenbauer_poly` (page 2516), `sympy.polys.orthopolys.chebyshev_poly` (page 2515), `sympy.polys.orthopolys.chebyshev_root` (page 2515), `sympy.polys.orthopolys.hermite_poly` (page 2516), `sympy.polys.orthopolys.hermite_prob_poly` (page 2516), `sympy.polys.orthopolys.legendre_poly` (page 2517), `sympy.polys.orthopolys.laguerre_poly` (page 2517)

References

[R489], [R490], [R491], [R492]

Hermite Polynomials

class sympy.functions.special.polynomials.hermite(n, x)

hermite(n, x) gives the $n$th Hermite polynomial in $x$, $H_n(x)$. 
**Explanation**

The Hermite polynomials are orthogonal on \((-\infty, \infty)\) with respect to the weight \(\exp(-x^2)\).

**Examples**

```python
>>> from sympy import hermite, diff
>>> from sympy.abc import x, n
>>> hermite(0, x)
1
>>> hermite(1, x)
2*x
>>> hermite(2, x)
4*x**2 - 2
>>> hermite(n, x)
hermite(n, x)
>>> diff(hermite(n, x), x)
2*n*hermite(n - 1, x)
>>> hermite(n, -x)
(-1)**n*hermite(n, x)
```

See also:

- `jacobi`
- `gegenbauer`
- `chebyshev`
- `chebyshev_root`
- `chebyshev_root`
- `legendre`
- `assoc_legendre`
- `hermite_prob`
- `laguerre`
- `assoc_laguerre`
- `sympy.polys.orthopols.jacobi_poly`
- `sympy.polys.orthopols.gegenbauer_poly`
- `sympy.polys.orthopols.chebyshevt_poly`
- `sympy.polys.orthopols.chebyshevu_poly`
- `sympy.polys.orthopols.hermite_poly`
- `sympy.polys.orthopols.legendre_poly`
- `sympy.polys.orthopols.laguerre_poly`

**References**

[R493], [R494], [R495]

class sympy.functions.special.polynomials.hermite_prob(n, x)

hermite_prob(n, x) gives the \(n\)th probabilist’s Hermite polynomial in \(x\), \(He_n(x)\).

**Explanation**

The probabilist’s Hermite polynomials are orthogonal on \((-\infty, \infty)\) with respect to the weight \(\exp(-x^2/2)\). They are monic polynomials, related to the plain Hermite polynomials (`hermite`
(page 598)) by

\[
He_n(x) = 2^{-n/2} H_n(x/\sqrt{2})
\]
Examples

```python
>>> from sympy import hermite_prob, diff, I
>>> from sympy.abc import x, n
>>> hermite_prob(1, x)
0
>>> hermite_prob(5, x)
x**5 - 10*x**3 + 15*x
>>> diff(hermite_prob(n, x), x)
n*hermite_prob(n - 1, x)
>>> hermite_prob(n, -x)
(-1)**n*hermite_prob(n, x)
```

The sum of absolute values of coefficients of $He_n(x)$ is the number of matchings in the complete graph $K_n$ or telephone number, A000085 in the OEIS:

```python
>>> [hermite_prob(n, I) / I**n for n in range(11)]
[1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496]
```

See also:  
jacobi (page 590), gegenbauer (page 592), chebyshevt (page 594), chebyshevt_root (page 596), chebyshevu (page 595), chebyshevu_root (page 596), legendre (page 597), assoc_legendre (page 597), hermite (page 598), laguerre (page 600), assoc_laguerre (page 601), sympy.polys.orthopolys.jacobi_poly (page 2516), sympy.polys.orthopolys.gegenbauer_poly (page 2516), sympy.polys.orthopolys.chebyshevt_poly (page 2515), sympy.polys.orthopolys.chebyshevu_poly (page 2515), sympy.polys.orthopolys.hermite_poly (page 2516), sympy.polys.orthopolys.hermite_prob_poly (page 2516), sympy.polys.orthopolys.legendre_poly (page 2517), sympy.polys.orthopolys.laguerre_poly (page 2517)

References

[R496], [R497]

Laguerre Polynomials

class sympy.functions.special.polynomials.laguerre(n, x)

Returns the $n$th Laguerre polynomial in $x$, $L_n(x)$.

Parameters

n : int

Degree of Laguerre polynomial. Must be $n \geq 0$. 
Examples

```python
>>> from sympy import laguerre, diff
>>> from sympy.abc import x, n
>>> laguerre(0, x)
1
>>> laguerre(1, x)
1 - x
>>> laguerre(2, x)
x**2/2 - 2*x + 1
>>> laguerre(3, x)
-x**3/6 + 3*x**2/2 - 3*x + 1

>>> laguerre(n, x)
laguerre(n, x)
```

```python
>>> diff(laguerre(n, x), x)
-assoc_laguerre(n - 1, 1, x)
```

See also:

- `jacobi` (page 590), `gegenbauer` (page 592), `chebyshevt` (page 594), `chebyshevt_root` (page 596), `chebyshevu` (page 595), `chebyshevu_root` (page 596), `legendre` (page 597), `assoc_legendre` (page 597), `hermite` (page 598), `hermite_prob` (page 599), `assoc_laguerre` (page 601), `sympy.polys.orthopolys.jacobi_poly` (page 2516), `sympy.polys.orthopolys.gegenbauer_poly` (page 2516), `sympy.polys.orthopolys.chebyshevt_poly` (page 2515), `sympy.polys.orthopolys.chebyshevu_poly` (page 2515), `sympy.polys.orthopolys.hermite_poly` (page 2516), `sympy.polys.orthopolys.assoc_laguerre` (page 2516), `sympy.polys.orthopolys.legendre_poly` (page 2517), `sympy.polys.orthopolys.laguerre_poly` (page 2517)

References

[R498], [R499], [R500], [R501]

class sympy.functions.special.polynomials.assoc_laguerre(n, alpha, x)
Returns the n-th generalized Laguerre polynomial in x, \( L_n(x) \).

Parameters

- **n**: int
  Degree of Laguerre polynomial. Must be \( n \geq 0 \).

- **alpha**: Expr
  Arbitrary expression. For \( \alpha=0 \) regular Laguerre polynomials will be generated.

5.8. Topics
Examples

```python
>>> from sympy import assoc_laguerre, diff
>>> from sympy.abc import x, n, a
>>> assoc_laguerre(0, a, x)
1
>>> assoc_laguerre(1, a, x)
a - x + 1
>>> assoc_laguerre(2, a, x)
a**2/2 + 3*a/2 + x**2/2 + x*(-a - 2) + 1
>>> assoc_laguerre(3, a, x)
a**3/6 + a**2 + 11*a/6 - x**3/6 + x**2*(a/2 + 3/2) +
x*(-a**2/2 - 5*a/2 - 3) + 1
>>> assoc_laguerre(n, a, 0)
binomial(a + n, a)
>>> assoc_laguerre(n, a, x)
assoc_laguerre(n, a, x)
>>> assoc_laguerre(n, 0, x)
laguerre(n, x)
>>> diff(assoc_laguerre(n, a, x), x)
-assoc_laguerre(n - 1, a + 1, x)
>>> diff(assoc_laguerre(n, a, x), a)
Sum(assoc_laguerre(_k, a, x)/(-a + n), (_k, 0, n - 1))
```

See also:

- jacobi (page 590), gegenbauer (page 592), chebyshevt (page 594), chebyshevt_root (page 596), chebyshevu (page 595), chebyshevu_root (page 596), legendre (page 597), assoc_legendre (page 597), hermite (page 598), hermite_prob (page 599), laguerre (page 600), sympy.polys.orthopolys.jacobi_poly (page 2516), sympy.polys.orthopolys.gegenbauer_poly (page 2516), sympy.polys.orthopolys.chebyshevt_poly (page 2515), sympy.polys.orthopolys.hermite_poly (page 2516), sympy.polys.orthopolys.hermite_prob_poly (page 2516), sympy.polys.orthopolys.legendre_poly (page 2517), sympy.polys.orthopolys.laguerre_poly (page 2517)

References

[R502], [R503], [R504], [R505]
SymPy Documentation, Release 1.12.1

**Spherical Harmonics**

```python
class sympy.functions.special.spherical_harmonics.Ynm(n, m, theta, phi)
```

Spherical harmonics defined as

\[
Y_n^m(\theta, \phi) := \sqrt{\frac{(2n+1)(n-m)!}{4\pi(n+m)!}} \exp(im\phi)P_n^m(\cos(\theta))
\]

**Explanation**

`Ynm()` gives the spherical harmonic function of order \(n\) and \(m\) in \(\theta\) and \(\varphi\), \(Y_n^m(\theta, \varphi)\). The four parameters are as follows: \(n \geq 0\) an integer and \(m\) an integer such that \(-n \leq m \leq n\) holds. The two angles are real-valued with \(\theta \in [0, \pi]\) and \(\varphi \in [0, 2\pi]\).

**Examples**

```python
>>> from sympy import Ynm, Symbol, simplify
>>> from sympy.abc import n, m
>>> theta = Symbol("theta")
>>> phi = Symbol("phi")

>>> Ynm(n, m, theta, phi)
Ynm(n, m, theta, phi)

Several symmetries are known, for the order:

```python
>>> Ynm(n, -m, theta, phi)
(-1)**m*exp(-2*I*m*phi)*Ynm(n, m, theta, phi)
```

As well as for the angles:

```python
>>> Ynm(n, m, -theta, phi)
Ynm(n, m, theta, phi)
```

```python
>>> Ynm(n, m, theta, -phi)
exp(-2*I*m*phi)*Ynm(n, m, theta, phi)
```

For specific integers \(n\) and \(m\) we can evaluate the harmonics to more useful expressions:

```python
>>> simplify(Ynm(0, 0, theta, phi).expand(func=True))
1/(2*sqrt(pi))
```

```python
>>> simplify(Ynm(1, -1, theta, phi).expand(func=True))
sqrt(6)*exp(-I*phi)*sin(theta)/(4*sqrt(pi))
```

```python
>>> simplify(Ynm(1, 0, theta, phi).expand(func=True))
sqrt(3)*cos(theta)/(2*sqrt(pi))
```
>>> simplify(Ynm(1, 1, theta, phi).expand(func=True))
-sqrt(6)*exp(I*phi)*sin(theta)/(4*sqrt(pi))

>>> simplify(Ynm(2, -2, theta, phi).expand(func=True))
sqrt(30)*exp(-2*I*phi)*sin(theta)**2/(8*sqrt(pi))

>>> simplify(Ynm(2, -1, theta, phi).expand(func=True))
sqrt(30)*exp(-I*phi)*sin(2*theta)/(8*sqrt(pi))

>>> simplify(Ynm(2, 0, theta, phi).expand(func=True))
sqrt(5)*(3*cos(theta)**2 - 1)/(4*sqrt(pi))

>>> simplify(Ynm(2, 1, theta, phi).expand(func=True))
-sqrt(30)*exp(I*phi)*sin(2*theta)/(8*sqrt(pi))

We can differentiate the functions with respect to both angles:

>>> from sympy import Ynm, Symbol, diff
>>> from sympy.abc import n, m
>>> theta = Symbol("theta")
>>> phi = Symbol("phi")

>>> diff(Ynm(n, m, theta, phi), theta)
m*cot(theta)*Ynm(n, m, theta, phi) + sqrt((-m + n)*(m + n + 1))*exp(-I*phi)*Ynm(n, m + 1, theta, phi)

>>> diff(Ynm(n, m, theta, phi), phi)
I*m*Ynm(n, m, theta, phi)

Further we can compute the complex conjugation:

>>> from sympy import Ynm, Symbol, conjugate
>>> from sympy.abc import n, m
>>> theta = Symbol("theta")
>>> phi = Symbol("phi")

>>> conjugate(Ynm(n, m, theta, phi))
(-1)**(2*m)*exp(-2*I*m*phi)*Ynm(n, m, theta, phi)

To get back the well known expressions in spherical coordinates, we use full expansion:

>>> from sympy import Ynm, Symbol, expand_func
>>> from sympy.abc import n, m
>>> theta = Symbol("theta")
>>> phi = Symbol("phi")
```python
>>> expand_func(Ynm(n, m, theta, phi))
sqrt((2*n + 1)*factorial(-m + n)/factorial(m + n))*exp(I*m*phi)*assoc_legendre(n, m, cos(theta))/(2*sqrt(pi))
```

See also:

Ynm_c (page 605), Znm (page 605)

References

[R506], [R507], [R508], [R509]

```python
sympy.functions.special.spherical_harmonics.Ynm_c(n, m, theta, phi)
Conjugate spherical harmonics defined as

\[ Y_{n}^{m}(\theta, \varphi) := (-1)^{m}Y_{n}^{-m}(\theta, \varphi). \]
```

Examples

```python
>>> from sympy import Ynm_c, Symbol, simplify
>>> from sympy.abc import n,m
>>> theta = Symbol("theta")
>>> phi = Symbol("phi")
>>> Ynm_c(n, m, theta, phi)
(-1)**(2*m)*exp(-2*I*m*phi)*Ynm(n, m, theta, phi)
>>> Ynm_c(n, m, -theta, phi)
(-1)**(2*m)*exp(-2*I*m*phi)*Ynm(n, m, theta, phi)
```

For specific integers \(n \) and \(m \) we can evaluate the harmonics to more useful expressions:

```python
>>> simplify(Ynm_c(0, 0, theta, phi).expand(func=True))
1/(2*sqrt(pi))
>>> simplify(Ynm_c(1, -1, theta, phi).expand(func=True))
sqrt(6)*exp(I*(-phi + 2*conjugate(phi)))*sin(theta)/(4*sqrt(pi))
```

See also:

Ynm (page 603), Znm (page 605)

References

[R510], [R511], [R512]

```python
class sympy.functions.special.spherical_harmonics.Znm(n, m, theta, phi)
Real spherical harmonics defined as

\[
Z_{n}^{m}(\theta, \varphi) := \begin{cases} 
\frac{Y_{n}^{m}(\theta, \varphi)+Y_{n}^{-m}(\theta, \varphi)}{\sqrt{2}} & m > 0 \\
Y_{n}^{m}(\theta, \varphi) & m = 0 \\
\frac{Y_{n}^{m}(\theta, \varphi)-Y_{n}^{-m}(\theta, \varphi)}{i\sqrt{2}} & m < 0 
\end{cases}
\]
```

5.8. Topics 605
which gives in simplified form

\[Z^m_n(\theta, \varphi) = \begin{cases}
Y^m_n(\theta, \varphi) + (-1)^m Y^{-m}_n(\theta, \varphi) & m > 0 \\
Y^m_n(\theta, \varphi) & m = 0 \\
\frac{Y^m_n(\theta, \varphi) - (-1)^m Y^{-m}_n(\theta, \varphi)}{\sqrt{2}} & m < 0
\end{cases} \]

Examples

```python
>>> from sympy import Znm, Symbol, simplify
>>> from sympy.abc import n, m
>>> theta = Symbol("theta")
>>> phi = Symbol("phi")
>>> Znm(n, m, theta, phi)
Znm(n, m, theta, phi)
```

For specific integers \(n \) and \(m \) we can evaluate the harmonics to more useful expressions:

```python
>>> simplify(Znm(0, 0, theta, phi).expand(func=True))
1/(2*sqrt(pi))
>>> simplify(Znm(1, 1, theta, phi).expand(func=True))
-sqrt(3)*sin(theta)*cos(phi)/(2*sqrt(pi))
>>> simplify(Znm(2, 1, theta, phi).expand(func=True))
-sqrt(15)*sin(2*theta)*cos(phi)/(4*sqrt(pi))
```

See also:

\(Ynm \) (page 603), \(Ynm_c \) (page 605)

References

[R513], [R514], [R515]

Tensor Functions

```python
sympy.functions.special.tensor_functions.Eijk(*args, **kwargs)
```

Represent the Levi-Civita symbol.

This is a compatibility wrapper to LeviCivita().

See also:

LeviCivita (page 606)

```python
sympy.functions.special.tensor_functions.eval_levicivita(*args)
```

Evaluate Levi-Civita symbol.

```python
class sympy.functions.special.tensor_functions.LeviCivita(*args)
```

Represent the Levi-Civita symbol.
Explanation

For even permutations of indices it returns 1, for odd permutations -1, and for everything else (a repeated index) it returns 0.

Thus it represents an alternating pseudotensor.

Examples

```python
>>> from sympy import LeviCivita
>>> from sympy.abc import i, j, k
>>> LeviCivita(1, 2, 3)
1
>>> LeviCivita(1, 3, 2)
-1
>>> LeviCivita(1, 2, 2)
0
>>> LeviCivita(i, j, k)
LeviCivita(i, j, k)
>>> LeviCivita(i, j, i)
0
```

See also:

\(E_{i j k} \) (page 606)

class sympy.functions.special.tensor_functions.KroneckerDelta(i, j, delta_range=None)

The discrete, or Kronecker, delta function.

Parameters

i : Number, Symbol

The first index of the delta function.

j : Number, Symbol

The second index of the delta function.

Explanation

A function that takes in two integers \(i \) and \(j \). It returns 0 if \(i \) and \(j \) are not equal, or it returns 1 if \(i \) and \(j \) are equal.
Examples

An example with integer indices:

```python
>>> from sympy import KroneckerDelta
>>> KroneckerDelta(1, 2)
0
>>> KroneckerDelta(3, 3)
1
```

Symbolic indices:

```python
>>> from sympy import KroneckerDelta
>>> KroneckerDelta(i, j)
KroneckerDelta(i, j)
>>> KroneckerDelta(i, i)
1
>>> KroneckerDelta(i, i + 1)
0
>>> KroneckerDelta(i, i + 1 + k)
KroneckerDelta(i, i + k + 1)

See also:

`eval` (page 608), `DiracDelta` (page 506)

References

[R516]

classmethod eval(i, j, delta_range=None)

  Evaluates the discrete delta function.

Examples

```python
>>> from sympy import KroneckerDelta
>>> from sympy import KroneckerDelta
>>> KroneckerDelta(i, j)
KroneckerDelta(i, j)
>>> KroneckerDelta(i, i)
1
>>> KroneckerDelta(i, i + 1)
0
>>> KroneckerDelta(i, i + 1 + k)
KroneckerDelta(i, i + k + 1)

indirect doctest

property indices_contain_equal_information

 Returns True if indices are either both above or below fermi.
Examples

```python
from sympy import KroneckerDelta, Symbol

a = Symbol('a', above_fermi=True)
i = Symbol('i', below_fermi=True)
p = Symbol('p')
q = Symbol('q')

KroneckerDelta(p, q).indices_contain_equal_information
True
KroneckerDelta(p, q+1).indices_contain_equal_information
True
KroneckerDelta(i, p).indices_contain_equal_information
False
```

property is_above_fermi

True if Delta can be non-zero above fermi.

Examples

```python
from sympy import KroneckerDelta, Symbol

a = Symbol('a', above_fermi=True)
i = Symbol('i', below_fermi=True)
p = Symbol('p')
q = Symbol('q')

KroneckerDelta(p, a).is_above_fermi
True
KroneckerDelta(p, i).is_above_fermi
False
KroneckerDelta(p, q).is_above_fermi
True
```

See also:

* is_below_fermi (page 609),
* is_only_below_fermi (page 610),
* is_only_above_fermi (page 610)

property is_below_fermi

True if Delta can be non-zero below fermi.

Examples

```python
from sympy import KroneckerDelta, Symbol

a = Symbol('a', above_fermi=True)
i = Symbol('i', below_fermi=True)
p = Symbol('p')
q = Symbol('q')

KroneckerDelta(p, a).is_below_fermi
False
KroneckerDelta(p, i).is_below_fermi
True
```

(continues on next page)
KroneckerDelta(p, q).is_below_fermi
True

See also:
is_above_fermi (page 609), is_only_above_fermi (page 610),
is_only_below_fermi (page 610)

property is_only_above_fermi
True if Delta is restricted to above fermi.

Examples

>>> from sympy import KroneckerDelta, Symbol
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> q = Symbol('q')
>>> KroneckerDelta(p, a).is_only_above_fermi
True
>>> KroneckerDelta(p, q).is_only_above_fermi
False
>>> KroneckerDelta(p, i).is_only_above_fermi
False

See also:
is_above_fermi (page 609), is_below_fermi (page 609), is_only_below_fermi
(property 610)

property is_only_below_fermi
True if Delta is restricted to below fermi.

Examples

>>> from sympy import KroneckerDelta, Symbol
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> q = Symbol('q')
>>> KroneckerDelta(p, i).is_only_below_fermi
True
>>> KroneckerDelta(p, q).is_only_below_fermi
False
>>> KroneckerDelta(p, a).is_only_below_fermi
False

See also:
is_above_fermi (page 609), is_below_fermi (page 609), is_only_above_fermi
(property 610)
property killable_index
Returns the index which is preferred to substitute in the final expression.

Explanation
The index to substitute is the index with less information regarding fermi level. If indices contain the same information, 'a' is preferred before 'b'.

Examples

```python
>>> from sympy import KroneckerDelta, Symbol
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> j = Symbol('j', below_fermi=True)
>>> p = Symbol('p')
>>> KroneckerDelta(p, i).killable_index
p
>>> KroneckerDelta(p, a).killable_index
p
>>> KroneckerDelta(i, j).killable_index
j
```

See also:
preferred_index (page 611)

property preferred_index
Returns the index which is preferred to keep in the final expression.

Explanation
The preferred index is the index with more information regarding fermi level. If indices contain the same information, ‘a’ is preferred before ‘b’.

Examples

```python
>>> from sympy import KroneckerDelta, Symbol
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> j = Symbol('j', below_fermi=True)
>>> p = Symbol('p')
>>> KroneckerDelta(p, i).preferred_index
i
>>> KroneckerDelta(p, a).preferred_index
a
>>> KroneckerDelta(i, j).preferred_index
i
```

See also:
killable_index (page 610)
Integrals

This module documentation contains details about Meijer G-functions and SymPy integrals.

Contents

Computing Integrals using Meijer G-Functions

This text aims to describe in some detail the steps (and subtleties) involved in using Meijer G-functions for computing definite and indefinite integrals. We shall ignore proofs completely.

Overview

The algorithm to compute \(\int f(x) \, dx \) or \(\int_0^\infty f(x) \, dx \) generally consists of three steps:

1. Rewrite the integrand using Meijer G-functions (one or sometimes two).
2. Apply an integration theorem, to get the answer (usually expressed as another G-function).
3. Expand the result in named special functions.

Step (3) is implemented in the function hyperexpand (q.v.). Steps (1) and (2) are described below. Moreover, G-functions are usually branched. Thus our treatment of branched functions is described first.

Some other integrals (e.g. \(\int_{-\infty}^{\infty} \)) can also be computed by first recasting them into one of the above forms. There is a lot of choice involved here, and the algorithm is heuristic at best.

Polar Numbers and Branched Functions

Both Meijer G-Functions and Hypergeometric functions are typically branched (possible branchpoints being 0, \(\pm 1 \), \(\infty \)). This is not very important when e.g. expanding a single hypergeometric function into named special functions, since sorting out the branches can be left to the human user. However this algorithm manipulates and transforms G-functions, and to do this correctly it needs at least some crude understanding of the branchings involved.

To begin, we consider the set \(S = \{(r, \theta) : r > 0, \theta \in \mathbb{R}\} \). We have a map \(p : S \to \mathbb{C} - \{0\}, (r, \theta) \mapsto re^{i\theta} \). Decreeing this to be a local biholomorphism gives \(S \) both a topology and a complex structure. This Riemann Surface is usually referred to as the Riemann Surface of the logarithm, for the following reason: We can define maps \(\text{Exp} : \mathbb{C} \to S, (x + iy) \mapsto (\exp(x), y) \) and \(\text{Log} : S \to \mathbb{C}, (e^x, y) \mapsto x + iy \). These can both be shown to be holomorphic, and are indeed mutual inverses.

We also sometimes formally attach a point “zero” (0) to \(S \) and denote the resulting object \(S_0 \). Notably there is no complex structure defined near 0. A fundamental system of neighbourhoods is given by \{\text{Exp}(z) : \Re(z) < k\}, which at least defines a topology. Elements of \(S_0 \) shall be called polar numbers. We further define functions \(\text{Arg} : S \to \mathbb{R}, (r, \theta) \mapsto \theta \) and \(|\,| : S_0 \to \mathbb{R}_{>0}, (r, \theta) \mapsto r \). These have evident meaning and are both continuous everywhere.

Using these maps many operations can be extended from \(\mathbb{C} \) to \(S \). We define \(\text{Exp}(a) \text{Exp}(b) = \text{Exp}(a + b) \) for \(a, b \in \mathbb{C} \), also for \(a \in \mathbb{S} \) and \(b \in \mathbb{C} \) we define \(a^b = \text{Exp}(b \text{Log}(a)) \). It can be checked easily that using these definitions, many algebraic properties holding for positive reals (e.g.
\((ab)^c = a^c b^c\) which hold in \(\mathbb{C}\) only for some numbers (because of branch cuts) hold indeed for all polar numbers.

As one peculiarity it should be mentioned that addition of polar numbers is not usually defined. However, formal sums of polar numbers can be used to express branching behaviour. For example, consider the functions \(F(z) = \sqrt{1 + z}\) and \(G(a, b) = \sqrt{a + b}\), where \(a, b, z\) are polar numbers. The general rule is that functions of a single polar variable are defined in such a way that they are continuous on circles, and agree with the usual definition for positive reals. Thus if \(S(z)\) denotes the standard branch of the square root function on \(\mathbb{C}\), we are forced to define

\[
F(z) = \begin{cases}
S(p(z)) & : |z| < 1 \\
S(p(z)) & : -\pi < \text{Arg}(z) + 4\pi n \leq \pi \text{ for some } n \in \mathbb{Z} \\
-S(p(z)) & : \text{else}
\end{cases}
\]

(We are omitting \(|z| = 1\) here, this does not matter for integration.) Finally we define \(G(a, b) = \sqrt{a} F(b/a)\).

Representing Branched Functions on the Argand Plane

Suppose \(f : S \to \mathbb{C}\) is a holomorphic function. We wish to define a function \(F\) on (part of) the complex numbers \(\mathbb{C}\) that represents \(f\) as closely as possible. This process is known as "introducing branch cuts". In our situation, there is actually a canonical way of doing this (which is adhered to in all of SymPy), as follows: Introduce the "cut complex plane" \(\mathbb{C} = \mathbb{C} \setminus \mathbb{R}_{\leq 0}\). Define a function \(l : \mathbb{C} \to S\) via \(re^{\theta} \mapsto r \exp(i\theta)\). Here \(r > 0\) and \(-\pi < \theta \leq \pi\). Then \(l\) is holomorphic, and we define \(G = f \circ l\). This called “lifting to the principal branch” throughout the SymPy documentation.

Table Lookups and Inverse Mellin Transforms

Suppose we are given an integrand \(f(x)\) and are trying to rewrite it as a single G-function. To do this, we first split \(f(x)\) into the form \(x^s g(x)\) (where \(g(x)\) is supposed to be simpler than \(f(x)\)). This is because multiplicative powers can be absorbed into the G-function later. This splitting is done by \(_\text{split}_\text{mul}(f, x)\). Then we assemble a tuple of functions that occur in \(f\) (e.g. \(f(x) = e^{x} \cos x\), we would assemble the tuple \((\cos, \exp)\)). This is done by the function \(_\text{mytype}(f, x)\). Next we index a lookup table (created using \(_\text{create}_\text{lookup}_\text{table()}) with this tuple. This (hopefully) yields a list of Meijer G-function formulae involving these functions, we then pattern-match all of them. If one fits, we were successful, otherwise not and we have to try something else.

Suppose now we want to rewrite as a product of two G-functions. To do this, we (try to) find all inequivalent ways of splitting \(f(x)\) into a product \(f_1(x)f_2(x)\). We could try these splittings in any order, but it is often a good idea to minimize (a) the number of powers occurring in \(f_1(x)\) and (b) the number of different functions occurring in \(f_1(x)\). Thus given e.g. \(f(x) = \sin x e^{x} \sin 2x\) we should try \(f_1(x) = \sin x \sin 2x\) first. All of this is done by the function \(_\text{mul}_\text{as}_\text{two}_\text{parts}(f)\).

Finally, we can try a recursive Mellin transform technique. Since the Meijer G-function is defined essentially as a certain inverse mellin transform, if we want to write a function \(f(x)\) as a G-function, we can compute its mellin transform \(F(s)\). If \(F(s)\) is in the right form, the G-function expression can be read off. This technique generalises many standard rewrites, e.g. \(e^{ax} e^{bx} = e^{(a+b)x}\).
One twist is that some functions don’t have mellin transforms, even though they can be written as G-functions. This is true for example for \(f(x) = e^x \sin x \) (the function grows too rapidly to have a mellin transform). However if the function is recognised to be analytic, then we can try to compute the mellin-transform of \(f(ax) \) for a parameter \(a \), and deduce the G-function expression by analytic continuation. (Checking for analyticity is easy. Since we can only deal with a certain subset of functions anyway, we only have to filter out those which are not analytic.)

The function \(_\text{rewrite}_\text{single}\) does the table lookup and recursive mellin transform. The functions \(_\text{rewrite}_\text{1}\) and \(_\text{rewrite}_\text{2}\) respectively use above-mentioned helpers and \(_\text{rewrite}_\text{single}\) to rewrite their argument as respectively one or two G-functions.

Applying the Integral Theorems

If the integrand has been recast into G-functions, evaluating the integral is relatively easy. We first do some substitutions to reduce e.g. the exponent of the argument of the G-function to unity (see \(_\text{rewrite}_\text{saxena}_\text{1}\) and \(_\text{rewrite}_\text{saxena}\), respectively, for one or two G-functions). Next we go through a list of conditions under which the integral theorem applies. It can fail for basically two reasons: either the integral does not exist, or the manipulations in deriving the theorem may not be allowed (for more details, see this \([\text{BlogPost}]\)).

Sometimes this can be remedied by reducing the argument of the G-functions involved. For example it is clear that the G-function representing \(e^z \) is satisfies \(G(\text{Exp}(2\pi i)z) = G(z) \) for all \(z \in S \). The function \(\text{meijerg.get_period()} \) can be used to discover this, and the function \(\text{principal_branch}(z, \text{period}) \) in \texttt{functions/elementary/complexes.py} can be used to exploit the information. This is done transparently by the integration code.

The G-Function Integration Theorems

This section intends to display in detail the definite integration theorems used in the code. The following two formulae go back to Meijer (In fact he proved more general formulae; indeed in the literature formulae are usually staded in more general form. However it is very easy to deduce the general formulae from the ones we give here. It seemed best to keep the theorems as simple as possible, since they are very complicated anyway.):

1.
 \[
 \int_0^\infty G_{p,q}^{m,n} (a_1, \ldots, a_p; b_1, \ldots, b_q | x) \eta dx = \frac{\prod_{j=1}^p \Gamma(b_j + 1) \prod_{j=1}^n \Gamma(-a_j)}{\eta \prod_{j=m+1}^q \Gamma(-b_j) \prod_{j=n+1}^p \Gamma(a_j + 1)}
 \]

2.
 \[
 \int_0^\infty G_{u,v}^{s,t} (c_1, \ldots, c_u; d_1, \ldots, d_v | x) G_{p,q}^{m,n} (a_1, \ldots, a_p; b_1, \ldots, b_q | x) dx = G_{v+p,u+q}^{m+t,n+s} (a_1, \ldots, a_n, -d_1, \ldots, -d_v, a_{n+1}, \ldots, a_p; b_1, \ldots, b_m, -c_1, \ldots, -c_u, b_{m+1}, \ldots, b_q | x)
 \]

The more interesting question is under what conditions these formulae are valid. Below we detail the conditions implemented in SymPy. They are an amalgamation of conditions found in \([\text{Prudnikov1990}]\) and \([\text{Luke1969}]\); please let us know if you find any errors.
Conditions of Convergence for Integral (1)

We can without loss of generality assume \(p \leq q \), since the G-functions of indices \(m, n, p, q \) and of indices \(n, m, q, p \) can be related easily (see e.g. [Luke1969], section 5.3). We introduce the following notation:

\[
\begin{align*}
\xi &= m + n - p \\
\delta &= m + n - \frac{p + q}{2}
\end{align*}
\]

\[
C_3 : -\Re(b_j) < 1 \text{ for } j = 1, \ldots, m \\
0 < -\Re(a_j) \text{ for } j = 1, \ldots, n
\]

\[
C_3^* : -\Re(b_j) < 1 \text{ for } j = 1, \ldots, q \\
0 < -\Re(a_j) \text{ for } j = 1, \ldots, p
\]

\[
C_4 : -\Re(\delta) + \frac{q + 1 - p}{2} > q - p
\]

The convergence conditions will be detailed in several “cases”, numbered one to five. For later use it will be helpful to separate conditions “at infinity” from conditions “at zero”. By conditions “at infinity” we mean conditions that only depend on the behaviour of the integrand for large, positive values of \(x \), whereas by conditions “at zero” we mean conditions that only depend on the behaviour of the integrand on \((0, \epsilon)\) for any \(\epsilon > 0 \). Since all our conditions are specified in terms of parameters of the G-functions, this distinction is not immediately visible. They are, however, of very distinct character mathematically; the conditions at infinity being in particular much harder to control.

In order for the integral theorem to be valid, conditions \(n \) “at zero” and “at infinity” both have to be fulfilled, for some \(n \).

These are the conditions “at infinity”:

1. \[
\delta > 0 \land |\arg(\eta)| < \delta \pi \land (A \lor B \lor C),
\]

where

\[
A = 1 \leq n \land p < q \land 1 \leq m
\]

\[
B = 1 \leq p \land 1 \leq m \land q = p + 1 \land \neg(n = 0 \land m = p + 1)
\]

\[
C = 1 \leq n \land q = p \land |\arg(\eta)| \neq (\delta - 2k)\pi \text{ for } k = 0, 1, \ldots \left\lfloor \frac{\delta}{2} \right\rfloor.
\]

2. \[
n = 0 \land p + 1 \leq m \land |\arg(\eta)| < \delta \pi
\]

3. \[
(p < q \land 1 \leq m \land \delta > 0 \land |\arg(\eta)| = \delta \pi) \lor (p \leq q - 2 \land \delta = 0 \land \arg(\eta) = 0)
\]

4. \[
p = q \land \delta = 0 \land \arg(\eta) = 0 \land \eta \neq 0 \land \Re\left(\sum_{j=1}^{p} b_j - a_j\right) < 0
\]
And these are the conditions “at zero”:

1. \(\eta \neq 0 \land C_3 \)

2. \(C_3 \)

3. \(C_3 \land C_4 \)

4. \(C_3 \)

5. \(C_3 \)

Conditions of Convergence for Integral (2)

We introduce the following notation:

\[
\begin{align*}
b^* &= s + t - \frac{u + v}{2} \\
c^* &= m + n - \frac{p + q}{2} \\
\rho &= \sum_{j=1}^{v} d_j - \sum_{j=1}^{u} c_j + \frac{u - v}{2} + 1 \\
\mu &= \sum_{j=1}^{q} b_j - \sum_{j=1}^{p} a_j + \frac{p - q}{2} + 1 \\
\phi &= q - p - \frac{u - v}{2} + 1 \\
\eta &= 1 - (v - u) - \mu - \rho \\
\psi &= \frac{\pi (q - m - n) + |\arg(\omega)|}{q - p} \\
\theta &= \frac{\pi (v - s - t) + |\arg(\sigma)|}{v - u} \\
\lambda_c &= (q - p)|\omega|^{1/(q - p)} \cos \psi + (v - u)|\sigma|^{1/(v - u)} \cos \theta \\
\lambda_{0}(c_1, c_2) &= c_1 (q - p)|\omega|^{1/(q - p)} \sin \psi + c_2 (v - u)|\sigma|^{1/(v - u)} \sin \theta
\end{align*}
\]
\[
\lambda_s = \begin{cases}
\lambda_{s0} (-1, -1) \lambda_{s0} (1, 1) & \text{for } \arg(\omega) = 0 \land \arg(\sigma) = 0 \\
\lambda_{s0} (\text{sign} (\arg(\omega)), -1) \lambda_{s0} (\text{sign} (\arg(\omega)), 1) & \text{for } \arg(\omega) \neq 0 \land \arg(\sigma) = 0 \\
\lambda_{s0} (-1, \text{sign} (\arg(\omega))) \lambda_{s0} (1, \text{sign} (\arg(\omega))) & \text{for } \arg(\omega) = 0 \land \arg(\sigma) \neq 0 \\
\lambda_{s0} (\text{sign} (\arg(\omega)), \text{sign} (\arg(\sigma))) & \text{otherwise}
\end{cases}
\]

The following conditions will be helpful:

\[C_1 : (a_i - b_j \notin \mathbb{Z}_{\geq 0} \text{ for } i = 1, \ldots, n, j = 1, \ldots, m) \land (c_i - d_j \notin \mathbb{Z}_{\geq 0} \text{ for } i = 1, \ldots, t, j = 1, \ldots, s)\]

\[C_2 : \Re(1 + b_i + d_j) > 0 \text{ for } i = 1, \ldots, m, j = 1, \ldots, s\]

\[C_3 : \Re(a_i + c_j) < 1 \text{ for } i = 1, \ldots, n, j = 1, \ldots, t\]

\[C_4 : (p - q) \Re(c_i) - \Re(\mu) > -\frac{3}{2} \text{ for } i = 1, \ldots, t\]

\[C_5 : (p - q) \Re(1 + d_i) - \Re(\mu) > -\frac{3}{2} \text{ for } i = 1, \ldots, s\]

\[C_6 : (u - v) \Re(a_i) - \Re(\rho) > -\frac{3}{2} \text{ for } i = 1, \ldots, n\]

\[C_7 : (u - v) \Re(1 + b_i) - \Re(\rho) > -\frac{3}{2} \text{ for } i = 1, \ldots, m\]

\[C_8 : 0 < |\phi| + 2 \Re((\mu - 1)(-u + v) + (-p + q)(\rho - 1) + (-p + q)(-u + v))\]

\[C_9 : 0 < |\phi| - 2 \Re((\mu - 1)(-u + v) + (-p + q)(\rho - 1) + (-p + q)(-u + v))\]

\[C_{10} : |\arg(\sigma)| < \pi b^*\]

\[C_{11} : |\arg(\sigma)| = \pi b^*\]

\[C_{12} : |\arg(\omega)| < c^* \pi\]

\[C_{13} : |\arg(\omega)| = c^* \pi\]

\[C_{14}^1 : (z_0 \neq 1 \land |\arg(1 - z_0)| < \pi) \lor (z_0 = 1 \land \Re(\mu + \rho - u + v) < 1)\]

\[C_{14}^2 : (z_1 \neq 1 \land |\arg(1 - z_1)| < \pi) \lor (z_1 = 1 \land \Re(\mu + \rho - p + q) < 1)\]

\[C_{14} : \phi = 0 \land b^* + c^* \leq 1 \lor (C_{14}^1 \lor C_{14}^2)\]

\[C_{15} : \lambda_c > 0 \lor (\lambda_c = 0 \land \lambda_s \neq 0 \land \Re(\eta) > -1) \lor (\lambda_c = 0 \land \lambda_s = 0 \land \Re(\eta) > 0)\]

\[C_{16} : \int_0^\infty G_{u,v}^{m,n}(\sigma x) \, dx \text{ converges at infinity}\]

\[C_{17} : \int_0^\infty G_{p,q}^{m,n}(\omega x) \, dx \text{ converges at infinity}\]

Note that \(C_{16}\) and \(C_{17}\) are the reason we split the convergence conditions for integral (1).

With this notation established, the implemented convergence conditions can be enumerated as follows:

1. \(mnst \neq 0 \land 0 < b^* \land 0 < c^* \land C_1 \land C_2 \land C_3 \land C_{10} \land C_{12}\)

5.8. Topics
2. \[u = v \land b^* = 0 \land 0 < c^* \land 0 < \sigma \land \Re \rho < 1 \land C_1 \land C_2 \land C_3 \land C_{12} \]

3. \[p = q \land u = v \land b^* = 0 \land c^* = 0 \land 0 < \sigma \land 0 < \omega \land \Re \mu < 1 \land \Re \rho < 1 \land \sigma \neq \omega \land C_1 \land C_2 \land C_3 \]

4. \[p = q \land u = v \land b^* = 0 \land c^* = 0 \land 0 < \sigma \land 0 < \omega \land \Re (\mu + \rho) < 1 \land \omega \neq \sigma \land C_1 \land C_2 \land C_3 \]

5. \[p = q \land u = v \land b^* = 0 \land c^* = 0 \land 0 < \omega \land \Re (\mu + \rho) < 1 \land \omega \neq \sigma \land C_1 \land C_2 \land C_3 \]

6. \[q < p \land 0 < s \land 0 < b^* \land 0 \leq c^* \land C_1 \land C_2 \land C_3 \land C_5 \land C_{10} \land C_{13} \]

7. \[p < q \land 0 < t \land 0 < b^* \land 0 \leq c^* \land C_1 \land C_2 \land C_3 \land C_4 \land C_{10} \land C_{13} \]

8. \[v < u \land 0 < m \land 0 < c^* \land 0 \leq b^* \land C_1 \land C_2 \land C_3 \land C_7 \land C_{11} \land C_{12} \]

9. \[u < v \land 0 < n \land 0 < c^* \land 0 \leq b^* \land C_1 \land C_2 \land C_3 \land C_6 \land C_{11} \land C_{12} \]

10. \[q < p \land u = v \land b^* = 0 \land 0 \leq c^* \land 0 < \sigma \land \Re \rho < 1 \land C_1 \land C_2 \land C_3 \land C_5 \land C_{13} \]

11. \[p < q \land u = v \land b^* = 0 \land 0 \leq c^* \land 0 < \sigma \land \Re \rho < 1 \land C_1 \land C_2 \land C_3 \land C_4 \land C_{13} \]

12. \[p = q \land u < v \land 0 \leq b^* \land c^* = 0 \land 0 < \omega \land \Re \mu < 1 \land C_1 \land C_2 \land C_3 \land C_7 \land C_{11} \]

13. \[p = q \land u < v \land 0 \leq b^* \land c^* = 0 \land 0 < \omega \land \Re \mu < 1 \land C_1 \land C_2 \land C_3 \land C_6 \land C_{11} \]

14. \[p < q \land v < u \land 0 \leq b^* \land 0 \leq c^* \land C_1 \land C_2 \land C_3 \land C_4 \land C_7 \land C_{11} \land C_{13} \]
15. \[q < p \land u < v \land 0 \leq b^* \land 0 \leq e^* \land C_1 \land C_2 \land C_3 \land C_5 \land C_6 \land C_{11} \land C_{13} \]

16. \[q < p \land v < u \land 0 \leq b^* \land 0 \leq e^* \land C_1 \land C_2 \land C_3 \land C_5 \land C_7 \land C_8 \land C_{11} \land C_{13} \land C_{14} \]

17. \[p < q \land u < v \land 0 \leq b^* \land 0 \leq e^* \land C_1 \land C_2 \land C_3 \land C_4 \land C_6 \land C_9 \land C_{11} \land C_{13} \land C_{14} \]

18. \[t = 0 \land 0 < s \land 0 < b^* \land 0 < \phi \land C_1 \land C_2 \land C_{10} \]

19. \[s = 0 \land 0 < t \land 0 < b^* \land \phi < 0 \land C_1 \land C_3 \land C_{10} \]

20. \[n = 0 \land 0 < m \land 0 < e^* \land \phi < 0 \land C_1 \land C_2 \land C_{12} \]

21. \[m = 0 \land 0 < n \land 0 < e^* \land 0 < \phi \land C_1 \land C_3 \land C_{12} \]

22. \[st = 0 \land 0 < b^* \land 0 < e^* \land C_1 \land C_2 \land C_3 \land C_{10} \land C_{12} \]

23. \[mn = 0 \land 0 < b^* \land 0 < e^* \land C_1 \land C_2 \land C_3 \land C_{10} \land C_{12} \]

24. \[p < m + n \land t = 0 \land \phi = 0 \land 0 < s \land 0 < b^* \land e^* < 0 \land |\text{arg}(\omega)| < \pi (m + n - p + 1) \land C_1 \land C_2 \land C_{10} \land C_{14} \land C_{15} \]

25. \[q < m + n \land s = 0 \land \phi = 0 \land 0 < t \land 0 < b^* \land e^* < 0 \land |\text{arg}(\omega)| < \pi (m + n - q + 1) \land C_1 \land C_3 \land C_{10} \land C_{14} \land C_{15} \]

26. \[p = q - 1 \land t = 0 \land \phi = 0 \land 0 < s \land 0 < b^* \land 0 \leq e^* \land \pi e^* < |\text{arg}(\omega)| \land C_1 \land C_2 \land C_{10} \land C_{14} \land C_{15} \]

27. \[p = q + 1 \land s = 0 \land \phi = 0 \land 0 < t \land 0 < b^* \land 0 \leq e^* \land \pi e^* < |\text{arg}(\omega)| \land C_1 \land C_3 \land C_{10} \land C_{14} \land C_{15} \]

5.8. Topics
28.
\[p < q - 1 \land t = 0 \land \phi = 0 \land 0 < s \land 0 < b^* \land 0 \leq e^* \land \pi c^* < |\text{arg}(\omega)| \land |\text{arg}(\omega)| < \pi (m + n - p + 1) \land C_1 \land C_2 \land C_{10} \land\]

29.
\[q + 1 < p \land s = 0 \land \phi = 0 \land 0 < t \land 0 < b^* \land 0 \leq e^* \land \pi c^* < |\text{arg}(\omega)| \land |\text{arg}(\omega)| < \pi (m + n - q + 1) \land C_1 \land C_3 \land C_{10} \land\]

30.
\[n = 0 \land \phi = 0 \land 0 < s + t \land 0 < m \land 0 < e^* \land b^* < 0 \land |\text{arg}(\sigma)| < \pi (s + t - u + 1) \land C_1 \land C_2 \land C_{12} \land C_{14} \land C_{15}\]

31.
\[m = 0 \land \phi = 0 \land v < s + t \land 0 < n \land 0 < e^* \land b^* < 0 \land |\text{arg}(\sigma)| < \pi (s + t - v + 1) \land C_1 \land C_3 \land C_{12} \land C_{14} \land C_{15}\]

32.
\[n = 0 \land \phi = 0 \land u = v - 1 \land 0 < m \land 0 < e^* \land 0 \leq b^* \land \pi b^* < |\text{arg}(\sigma)| \land |\text{arg}(\sigma)| < \pi (b^* + 1) \land C_1 \land C_2 \land C_{12} \land C_{14} \land C_{15}\]

33.
\[m = 0 \land \phi = 0 \land u = v + 1 \land 0 < n \land 0 < e^* \land 0 \leq b^* \land \pi b^* < |\text{arg}(\sigma)| \land |\text{arg}(\sigma)| < \pi (b^* + 1) \land C_1 \land C_3 \land C_{12} \land C_{14} \land C_{15}\]

34.
\[n = 0 \land \phi = 0 \land u < v - 1 \land 0 < m \land 0 < e^* \land 0 \leq b^* \land \pi b^* < |\text{arg}(\sigma)| \land |\text{arg}(\sigma)| < \pi (s + t - u + 1) \land C_1 \land C_2 \land C_{12} \land C_{14} \land C_{15}\]

35.
\[m = 0 \land \phi = 0 \land v + 1 < u \land 0 < n \land 0 < e^* \land 0 \leq b^* \land \pi b^* < |\text{arg}(\sigma)| \land |\text{arg}(\sigma)| < \pi (s + t - v + 1) \land C_1 \land C_3 \land C_{12} \land C_{14} \land C_{15}\]

36.
\[C_{17} \land t = 0 \land u < s \land 0 < b^* \land C_{10} \land C_1 \land C_2 \land C_3\]

37.
\[C_{17} \land s = 0 \land v < t \land 0 < b^* \land C_{10} \land C_1 \land C_2 \land C_3\]

38.
\[C_{16} \land n = 0 \land p < m \land 0 < e^* \land C_{12} \land C_1 \land C_2 \land C_3\]

39.
\[C_{16} \land m = 0 \land q < n \land 0 < e^* \land C_{12} \land C_1 \land C_2 \land C_3\]
The Inverse Laplace Transform of a G-function

The inverse laplace transform of a Meijer G-function can be expressed as another G-function. This is a fairly versatile method for computing this transform. However, I could not find the details in the literature, so I work them out here. In [Luke1969], section 5.6.3, there is a formula for the inverse Laplace transform of a G-function of argument $b z^a$, and convergence conditions are also given. However, we need a formula for argument $b z^a$ for rational a.

We are asked to compute

$$f(t) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{zt} G(bz^a) dz,$$

for positive real t. Three questions arise:

1. When does this integral converge?
2. How can we compute the integral?
3. When is our computation valid?

How to compute the integral

We shall work formally for now. Denote by $\Delta(s)$ the product of gamma functions appearing in the definition of G, so that

$$G(z) = \frac{1}{2\pi i} \int_L \Delta(s) z^s ds.$$

Thus

$$f(t) = \frac{1}{(2\pi i)^2} \int_{c-i\infty}^{c+i\infty} \int_L e^{zt} \Delta(s) b^s z^{as} ds dz.$$

We interchange the order of integration to get

$$f(t) = \frac{1}{2\pi i} \int_L b^s \Delta(s) \int_{c-i\infty}^{c+i\infty} e^{zt} z^{as} \frac{dz}{2\pi i} ds.$$

The inner integral is easily seen to be $\frac{1}{\Gamma(-as) \Gamma(1+as)}$. (Using Cauchy’s theorem and Jordan’s lemma deform the contour to run from $-\infty$ to $-\infty$, encircling 0 once in the negative sense. For as real and greater than one, this contour can be pushed onto the negative real axis and the integral is recognised as a product of a sine and a gamma function. The formula is then proved using the functional equation of the gamma function, and extended to the entire domain of convergence of the original integral by appealing to analytic continuation.) Hence we find

$$f(t) = \frac{1}{(2\pi i)^2} \int_L \Delta(s) \frac{1}{\Gamma(-as)} \left(\frac{b}{t} \right)^s ds,$$

which is a so-called Fox H function (of argument $\frac{b}{t^a}$). For rational a, this can be expressed as a Meijer G-function using the gamma function multiplication theorem.
When this computation is valid

There are a number of obstacles in this computation. Interchange of integrals is only valid if all integrals involved are absolutely convergent. In particular the inner integral has to converge. Also, for our identification of the final integral as a Fox H / Meijer G-function to be correct, the poles of the newly obtained gamma function must be separated properly.

It is easy to check that the inner integral converges absolutely for \(\Re(as) < -1 \). Thus the contour \(L \) has to run left of the line \(\Re(as) = -1 \). Under this condition, the poles of the newly-introduced gamma function are separated properly.

It remains to observe that the Meijer G-function is an analytic, unbranched function of its parameters, and of the coefficient \(b \). Hence so is \(f(t) \). Thus the final computation remains valid as long as the initial integral converges, and if there exists a changed set of parameters where the computation is valid. If we assume w.l.o.g. that \(a > 0 \), then the latter condition is fulfilled if \(G \) converges along contours (2) or (3) of [Luke1969], section 5.2, i.e. either \(\delta \geq \frac{1}{2} \) or \(p \geq 1, p \geq q \).

When the integral exists

Using [Luke1969], section 5.10, for any given meijer G-function we can find a dominant term of the form \(z^a e^{b \tau} \) (although this expression might not be the best possible, because of cancellation).

We must thus investigate

\[
\lim_{T \to \infty} \int_{c-iT}^{c+iT} e^{zt} z^a e^{b \tau} \mathrm{d}z.
\]

(This principal value integral is the exact statement used in the Laplace inversion theorem.) We write \(z = c + i \tau \). Then \(\arg(z) \to \pm \frac{\pi}{2} \), and so \(e^{zt} \sim e^{it \tau} \) (where \(\sim \) shall always mean “asymptotically equivalent up to a positive real multiplicative constant”). Also \(z^{x+iy} \sim |r| \tau e^{iy \log |r|} e^{\pm xi \pi} \).

Set \(\omega_{\pm} = be^{\pm i \arg(c) \frac{\pi}{2}} \). We have three cases:

1. \(b = 0 \) or \(\Re(c) \leq 0 \). In this case the integral converges if \(\Re(a) \leq -1 \).
2. \(b \neq 0, \Re(c) = 0, \Re(c) > 0 \). In this case the integral converges if \(\Re(\omega_{\pm}) < 0 \).
3. \(b \neq 0, \Re(c) = 0, \Re(c) > 0, \Re(\omega_{\pm}) \leq 0 \), and at least one of \(\Re(\omega_{\pm}) = 0 \). Here the same condition as in (1) applies.

Implemented G-Function Formulae

An important part of the algorithm is a table expressing various functions as Meijer G-functions. This is essentially a table of Mellin Transforms in disguise. The following automatically generated table shows the formulae currently implemented in SymPy. An entry “generated” means that the corresponding G-function has a variable number of parameters. This table is intended to shrink in future, when the algorithm’s capabilities of deriving new formulae improve. Of course it has to grow whenever a new class of special functions is to be dealt with. Elementary functions:

\[
a = a G^{1,0}_{1,1} \left(\begin{array}{c} 0 \\ 1 \end{array} \right) z + a G^{0,1}_{1,1} \left(\begin{array}{c} 1 \\ 0 \end{array} \right) z
\]
\[(z^q p + b)^{-a} = \frac{b^{-a} G^{1,1}_{1,1} \left(\begin{array}{c} 1 - a \\ 0 \\ \frac{z^q p}{b} \end{array} \right)}{\Gamma (a)}\]

\[-b^a + (z^q p)^a = \frac{b^{a-1} G_{2,2}^{2,2} \left(\begin{array}{c} 0, a \\ 0, a \end{array} \right) \left(\frac{z^q p}{b} \right) \sin (\pi a)}{\pi}\]

\[(a + \sqrt{z^q p + a^2})^b = \frac{a^b G_{2,2}^{1,2} \left(\frac{b}{2} + \frac{1}{2}, \frac{b}{2} + 1 \right) \left(\frac{z^q p}{a^2} \right)}{2\sqrt{\pi}}\]

\[(-a + \sqrt{z^q p + a^2})^b = \frac{a^b G_{2,2}^{1,2} \left(\frac{b}{2} + \frac{1}{2}, \frac{b}{2}
ight) \left(\frac{z^q p}{a^2} \right)}{2\sqrt{\pi}}\]

\[(a + \sqrt{z^q p + a^2})^b = \frac{a^b G_{2,2}^{1,2} \left(\frac{b}{2} + \frac{1}{2}, \frac{b}{2} \right) \left(\frac{z^q p}{a^2} \right)}{\sqrt{\pi}}\]

\[(-a + \sqrt{z^q p + a^2})^b = \frac{a^b G_{2,2}^{1,2} \left(\frac{b}{2} + \frac{1}{2}, \frac{b}{2} \right) \left(\frac{z^q p}{a^2} \right)}{\sqrt{\pi}}\]

\[\left(z^\frac{b}{2} \sqrt{p} + \sqrt{z^q p + a} \right)^b = \frac{a^b G_{2,2}^{1,2} \left(\frac{b}{2} + 1, \frac{1}{2} \right) \left(\frac{z^q p}{a} \right)}{2\sqrt{\pi}}\]

\[\left(-z^\frac{b}{2} \sqrt{p} + \sqrt{z^q p + a} \right)^b = \frac{a^b G_{2,2}^{1,2} \left(\frac{b}{2} + 1, \frac{1}{2} \right) \left(\frac{z^q p}{a} \right)}{2\sqrt{\pi}}\]

\[\left(z^\frac{b}{2} \sqrt{p} + \sqrt{z^q p + a} \right)^b = \frac{a^b G_{2,2}^{1,2} \left(\frac{b}{2} + 1, \frac{1}{2} \right) \left(\frac{z^q p}{a} \right)}{\sqrt{\pi}}\]

\[\left(-z^\frac{b}{2} \sqrt{p} + \sqrt{z^q p + a} \right)^b = \frac{a^b G_{2,2}^{1,2} \left(\frac{b}{2} + 1, \frac{1}{2} \right) \left(\frac{z^q p}{a} \right)}{\sqrt{\pi}}\]

Functions involving \(\theta (z^q p - b)\):

\[(z^q p - b)^{a-1} \theta (z^q p - b) = b^{a-1} G_{1,1}^{0,1} \left(\begin{array}{c} a \\ 0 \\ \frac{z^q p}{b} \end{array} \right) \Gamma (a), \text{ if } b > 0\]

\[(-z^q p + b)^{a-1} \theta (-z^q p + b) = b^{a-1} G_{1,1}^{1,0} \left(\begin{array}{c} a \\ 0 \\ \frac{z^q p}{b} \end{array} \right) \Gamma (a), \text{ if } b > 0\]

\[(z^q p - b)^{a-1} \theta \left(z - \left(\frac{b}{p} \right)^\frac{1}{2} \right) = b^{a-1} G_{1,1}^{0,1} \left(\begin{array}{c} a \\ 0 \\ \frac{z^q p}{b} \end{array} \right) \Gamma (a), \text{ if } b > 0\]

\[(-z^q p + b)^{a-1} \theta \left(-z + \left(\frac{b}{p} \right)^\frac{1}{2} \right) = b^{a-1} G_{1,1}^{1,0} \left(\begin{array}{c} a \\ 0 \\ \frac{z^q p}{b} \end{array} \right) \Gamma (a), \text{ if } b > 0\]

Functions involving \(|z^q p - b|^a\):

\[|z^q p - b|^{-a} = 2 G_{2,2}^{1,2} \left(\begin{array}{c} 1 - a \\ 0 \\ \frac{1}{2} - \frac{a}{2} \frac{z^q p}{b} \end{array} \right) \sin \left(\frac{\pi a}{2} \right) \left| \frac{b}{2} \right|^{-a} \Gamma (1 - a), \text{ if } \text{Re} (a) < 1\]
Functions involving \(e^{z^q p e^{i\pi}} \):

\[
e^{z^q p e^{i\pi}} = G^{1,0}_{0,1} \left(0 \left| \frac{z^q p}{4} \right. \right)
\]

Functions involving \(\sinh(z^q p) \):

\[
\sinh(z^q p) = \frac{3}{2} G^{1,0}_{1,3} \left(0 \left| \frac{z^{2q} p^2}{4} \right. \right)
\]

Functions involving \(\cosh(z^q p) \):

\[
\cosh(z^q p) = \frac{3}{2} G^{1,0}_{1,3} \left(0 \left| \frac{z^{2q} p^2}{4} \right. \right) \]

Functions involving \(\sin(z^q p) \):

\[
\sin(z^q p) = \sqrt{\pi} G^{1,0}_{0,2} \left(0 \left| \frac{z^{2q} p^2}{4} \right. \right) \]

Functions involving \(\cos(z^q p) \):

\[
\cos(z^q p) = \sqrt{\pi} G^{1,0}_{0,2} \left(0 \left| \frac{z^{2q} p^2}{4} \right. \right) \]

Functions involving \(\sinc(z^q p) \):

\[
sinc(z^q p) = \frac{\sqrt{\pi} G^{1,0}_{0,2} \left(0 \left| \frac{z^{2q} p^2}{4} \right. \right)}{2} \]

Functions involving \(\log(z^q p), \theta (-z^q p + 1) \):

\[
\log(z^q p)^n \theta (-z^q p + 1) = \text{generated}
\]

\[
\log(z^q p)^n \theta (z^q p - 1) = \text{generated}
\]

Functions involving \(\log(z^q p) \):

\[
\log(z^q p)^n = \text{generated}
\]

\[
\log(z^q p + a) = G^{1,0}_{1,1} \left(0 \left| \frac{1}{z} \right. \right) \log(a) + G^{0,1}_{1,1} \left(1 \left| \frac{1}{z} \right. \right) \log(a) + G^{1,2}_{2,2} \left(1,1 \left| 0 \left| \frac{z^q p}{a} \right. \right. \right) \]

\[
\log(|z^q p - a|) = G^{1,0}_{1,1} \left(0 \left| \frac{1}{z} \right. \right) \log(|a|) + G^{0,1}_{1,1} \left(1 \left| \frac{1}{z} \right. \right) \log(|a|) + \pi G^{1,2}_{3,3} \left(1,1 \left| 0 \left| \frac{z^q p}{a} \right. \right. \right) \]

Functions involving \(\text{Ei}(z^q p) \):

\[
\text{Ei}(z^q p) = -i\pi G^{1,0}_{1,1} \left(0 \left| \frac{1}{z} \right. \right) - G^{2,0}_{1,2} \left(0,0 \left| \frac{1}{z} \right. \right) - i\pi G^{0,1}_{1,1} \left(1 \left| \frac{1}{z} \right. \right) \]

Functions involving \(\text{Si}(z^q p) \):

\[
\text{Si}(z^q p) = \frac{\sqrt{\pi} G^{1,1}_{1,3} \left(1 \left| 0 \left| \frac{z^q p^2}{4} \right. \right. \right)}{2}
\]
Functions involving \(\text{Ci}(z^q p)\):

\[
\text{Ci}(z^q p) = -\frac{\sqrt{\pi} G_{1.3}^{2.0}(0, 0 \left| \frac{1}{2} \frac{z^{2q} p^2}{4} \right.)}{2}
\]

Functions involving \(\text{Shi}(z^q p)\):

\[
\text{Shi}(z^q p) = \frac{z^q \sqrt{\pi} p G_{1.3}^{1.1}(\frac{1}{2} \left| -\frac{1}{2} \frac{z^{2q} p^2 e^{i\pi}}{4} \right.)}{4}
\]

Functions involving \(\text{Chi}(z^q p)\):

\[
\text{Chi}(z^q p) = -\frac{\pi^{\frac{3}{2}} G_{2.4}^{2.0}(0, 0 \left| \frac{1}{2} \frac{z^{2q} p^2}{4} \right.)}{2}
\]

Functions involving \(\text{E}_a(z^q p)\):

\[
\text{E}_a(z^q p) = G_{1.2}^{2.0}(a-1, 0 \left| z^q p \right.)
\]

Functions involving \(\text{erf}(z^q p)\):

\[
\text{erf}(z^q p) = G_{1.2}^{1.1}(\frac{1}{2} \left| 0 \frac{z^{2q} p^2}{2} \right.)
\]

Functions involving \(\text{erfc}(z^q p)\):

\[
\text{erfc}(z^q p) = G_{1.2}^{2.0}(0, \frac{1}{2} \left| 1 \frac{z^{2q} p^2}{2} \right.)
\]

Functions involving \(\text{erfi}(z^q p)\):

\[
\text{erfi}(z^q p) = G_{1.2}^{1.1}(\frac{1}{2} \left| 0 \frac{-z^{2q} p^2}{2} \right.)
\]

Functions involving \(S(z^q p)\):

\[
S(z^q p) = G_{1.3}^{1.1}(\frac{1}{4} \left| 0 \frac{\frac{4\pi z^{4q} p^4}{16}}{2} \right.)
\]

Functions involving \(C(z^q p)\):

\[
C(z^q p) = G_{1.3}^{1.1}(\frac{1}{4} \left| 0 \frac{3}{4} \frac{\frac{4\pi z^{4q} p^4}{16}}{2} \right.)
\]

Functions involving \(\text{J}_a(z^q p)\):

\[
\text{J}_a(z^q p) = G_{0.2}^{1.0}(\frac{a}{2} \left| -\frac{1}{2} \frac{z^{2q} p^2}{4} \right.)
\]
Functions involving $Y_a(z^q)$p):

$$Y_a(z^q) = G^{2,0}_{1,3} \left(\frac{a}{2}, -\frac{a}{2} - \frac{1}{2}, -\frac{1}{2}; \frac{3}{4} z^{2q}p^2 \right)$$

Functions involving $I_a(z^q)\):$

$$I_a(z^q) = \pi G^{1,0}_{1,3} \left(\frac{a}{2}, -\frac{a}{2} + \frac{1}{2}; -\frac{1}{2}; \frac{3}{4} z^{2q}p^2 \right)$$

Functions involving $K_a(z^q)$:\)

$$K_a(z^q) = G^{2,0}_{0,2} \left(\frac{a}{2}, -\frac{a}{2}; \frac{3}{4} z^{2q}p^2 \right)$$

Functions involving $K(z^q)$:

$$K(z^q) = G^{1,2}_{2,2} \left(\frac{1}{2}; 0, 0; \frac{3}{2}; 0; \frac{3}{4} z^q p \right)$$

Functions involving $E(z^q)$:

$$E(z^q) = -\frac{G^{1,2}_{2,2} \left(\frac{1}{2}; 0, 0; \frac{3}{2}; 0; \frac{3}{4} z^q p \right)}{4}$$

Internal API Reference

Integrate functions by rewriting them as Meijer G-functions.

There are three user-visible functions that can be used by other parts of the sympy library to solve various integration problems:

- `meijerint_indefinite`
- `meijerint_definite`
- `meijerint_inversion`

They can be used to compute, respectively, indefinite integrals, definite integrals over intervals of the real line, and inverse laplace-type integrals (from $c-\text{i}\cdot\infty$ to $c+\text{i}\cdot\infty$). See the respective docstrings for details.

The main references for this are:

Integrals and Series: More Special Functions, Vol. 3., Gordon and Breach Science Publisher

exception sympy.integrals.meijerint._CoeffExpValueError

Exception raised by _get_coeff_exp, for internal use only.
sympy.integrals.meijerint._check_antecedents(g1, g2, x)
Return a condition under which the integral theorem applies.
sympy.integrals.meijerint._check_antecedents_1(g, x, helper=False)
Return a condition under which the mellin transform of g exists. Any power of x has
already been absorbed into the G function, so this is just \(\int_0^\infty \! g \, dx. \)
See [L, section 5.6.1]. (Note that s=1.)
If helper is True, only check if the MT exists at infinity, i.e. if \(\int_1^\infty \! g \, dx \) exists.
sympy.integrals.meijerint._check_antecedents_inversion(g, x)
Check antecedents for the laplace inversion integral.
sympy.integrals.meijerint._condsimp(cond, first=True)
Do naive simplifications on cond.

Explanation

Note that this routine is completely ad-hoc, simplification rules being added as need
arises rather than following any logical pattern.

Examples

```python
>>> from sympy.integrals.meijerint import _condsimp as simp
>>> from sympy import Or, Eq
>>> from sympy.abc import x, y
>>> simp(Or(x < y, Eq(x, y)))
x <= y
```

sympy.integrals.meijerint._create_lookup_table(table)
Add formulae for the function -> meijerg lookup table.
sympy.integrals.meijerint._dummy(name, token, expr, **kwargs)
Return a dummy. This will return the same dummy if the same token+name is requested
more than once, and it is not already in expr. This is for being cache-friendly.
sympy.integrals.meijerint._dummy_(name, token, **kwargs)
Return a dummy associated to name and token. Same effect as declaring it globally.
sympy.integrals.meijerint._eval_cond(cond)
Re-evaluate the conditions.
sympy.integrals.meijerint._exponents(expr, x)
Find the exponents of x (not including zero) in expr.
Examples

```python
>>> from sympy.integrals.meijerint import _exponents
>>> from sympy import sin
>>> _exponents(x, x)
{1}
>>> _exponents(x**2, x)
{2}
>>> _exponents(x**2 + x, x)
{1, 2}
>>> _exponents(x**3*sin(x + x**y) + 1/x, x)
{-1, 1, 3, y}
```

sympy.integrals.meijerint._find_splitting_points(expr, x)
Find numbers a such that a linear substitution x -> x + a would (hopefully) simplify expr.

Examples

```python
>>> from sympy.integrals.meijerint import _find_splitting_points as fsp
>>> from sympy import sin
>>> fsp(x, x)
{0}
>>> fsp((x-1)**3, x)
{1}
>>> fsp(sin(x+3)*x, x)
{-3, 0}
```

sympy.integrals.meijerint._flip_g(g)
Turn the G function into one of inverse argument (i.e. G(1/x) -> G'(x))

sympy.integrals.meijerint._functions(expr, x)
Find the types of functions in expr, to estimate the complexity.

sympy.integrals.meijerint._get_coeff_exp(expr, x)
When expr is known to be of the form c*x**b, with c and/or b possibly 1, return c, b.

Examples

```python
>>> from sympy import x, a, b
>>> from sympy.integrals.meijerint import _get_coeff_exp
>>> _get_coeff_exp(a*x**b, x)
(a, b)
>>> _get_coeff_exp(x, x)
(1, 1)
>>> _get_coeff_exp(2*x, x)
(2, 1)
>>> _get_coeff_exp(x**3, x)
(1, 3)
```
Try to guess sensible re writings for integrand \(f(x) \).

Let \(a \) denote the integrand in the definition of the G function \(g \). Consider the function \(H \) which is defined in the same way, but with integrand \(d/\Gamma(a*s) \) (contour conventions as usual).

If \(a \) is rational, the function \(H \) can be written as \(C*G \), for a constant \(C \) and a G-function \(G \).

This function returns \(C, G \).

Return \(C, h \) such that \(h \) is a G function of argument \(z^n \) and \(g = C*h \).

Express integral from zero to infinity \(g1*g2 \) using a G function, assuming the necessary conditions are fulfilled.

Examples

```python
>>> from sympy.integrals.meijerint import _int0oo
>>> from sympy.abc import s, t, m
>>> g1 = meijerg([], [], [-s**2*t/4], t/4)
>>> int0oo(g1, g2, t)
4*meijerg(((1/2, 0), ()), ((m/2, ), (-m/2,)), s**(-2))/s**2
```

Evaluate \(\int_0^\infty g dx \) using G functions, assuming the necessary conditions are fulfilled.

Examples

```python
>>> from sympy.abc import a, b, c, d, x, y
>>> from sympy import meijerg
>>> from sympy.integrals.meijerint import _int0oo_1
>>> _int0oo_1(meijerg([a], [b], [c], [d], x*y), x)
gamma(-a)*gamma(c + 1)/(y*gamma(-d)*gamma(b + 1))
```

Compute the laplace inversion integral, assuming the formula applies.

Check if \(f(x) \), when expressed using G functions on the positive reals, will in fact agree with the G functions almost everywhere.

Try to integrate \(f dx \) from zero to infinity.

The body of this function computes various ‘simplifications’ \(f1, f2, \ldots \) of \(f \) (e.g. by calling expand_mul(), trigexpand() - see _guess_expansion) and calls _meijerint_definite_3 with
each of these in succession. If \texttt{meijerint_definite_3} succeeds with any of the simplified
functions, returns this result.

\texttt{sympy_integrals_meijerint_meijerint_definite_3}(f, x)

Try to integrate $f \, dx$ from zero to infinity.

This function calls \texttt{meijerint_definite_4} to try to compute the integral. If this fails, it
tries using linearity.

\texttt{sympy_integrals_meijerint_meijerint_definite_4}(f, x, only_double=False)

Try to integrate $f \, dx$ from zero to infinity.

\textbf{Explanation}

This function tries to apply the integration theorems found in literature, i.e. it tries to
rewrite f as either one or a product of two G-functions.

The parameter \texttt{only_double} is used internally in the recursive algorithm to disable trying
to rewrite f as a single G-function.

\texttt{sympy_integrals_meijerint_meijerint_indefinite_1}(f, x)

Helper that does not attempt any substitution.

\texttt{sympy_integrals_meijerint_mul_args}(f)

Return a list L such that $\text{Mul}(*L) == f$.

If f is not a Mul or Pow, $L=[f]$. If $f=g**n$ for an integer n, $L=[g]*n$. If f is a Mul, L comes
from applying \texttt{mul_args} to all factors of f.

\texttt{sympy_integrals_meijerint_mul_as_two_parts}(f)

Find all the ways to split f into a product of two terms. Return None on failure.

\textbf{Explanation}

Although the order is canonical from multiset partitions, this is not necessarily the best order to process the terms. For example, if the case of \texttt{len(gs) == 2} is removed and multiset is allowed to sort the terms, some tests fail.

\textbf{Examples}

```python
>>> from sympy\_integrals\_meijerint import _mul\_as\_two\_parts
>>> from sympy import sin, exp, ordered
>>> from sympy\_abc import x
>>> list(ordered(_mul\_as\_two\_parts(x*\sin(x)*\exp(x))))
[(x, exp(x)*\sin(x)), (x*\exp(x), \sin(x)), (x*\sin(x), exp(x))]
```

\texttt{sympy_integrals_meijerint_my_principal_branch}(\texttt{expr, period, full_pb=False})

Bring expr nearer to its principal branch by removing superfluous factors. This function does \textit{not} guarantee to yield the principal branch, to avoid introducing opaque principal_branch() objects, unless \texttt{full_pb=True}.
sympy.integrals.meijerint._mytype(f: Basic (page 979), x: Symbol (page 1028)) \rightarrow
tuple[type[Basic (page 979)], ...]

Create a hashable entity describing the type of f.

sympy.integrals.meijerint._rewrite1(f, x, recursive=True)

Try to rewrite f using a (sum of) single G function with argument a*x**b. Return fac, po, g such that f = fac*po*g, fac is independent of x and po = x**s. Here g is a result from _rewrite_single. Return None on failure.

sympy.integrals.meijerint._rewrite2(f, x)

Try to rewrite f as a product of two G functions of arguments a*x**b. Return fac, po, g1, g2 such that f = fac*po*g1*g2, where fac is independent of x and po is x**s. Here g1 and g2 are results of _rewrite_single. Returns None on failure.

sympy.integrals.meijerint._rewrite_inversion(fac, po, g, x)

Absorb po == x**s into g.

sympy.integrals.meijerint._rewrite_saxena(fac, po, g1, g2, x, full_pb=False)

Rewrite the integral fac*po*g1*g2 from 0 to oo in terms of G functions with argument c*x.

Explanation

Return C, f1, f2 such that integral C f1 f2 from 0 to infinity equals integral fac po, g1, g2 from 0 to infinity.

Examples

```python
>>> from sympy.integrals.meijerint import _rewrite_saxena
>>> from sympy.abc import s, t, m
>>> from sympy import meijerg
>>> g1 = meijerg([], [], [0], [], s*t)
>>> g2 = meijerg([], [], [m/2], [], -m/2, t**2/4)
>>> r = _rewrite_saxena(1, t**0, g1, g2, t)
>>> r[0]
s/(4*sqrt(pi))
>>> r[1]
meijerg(((,), ()), ((-1/2, 0), ()), s**2*t/4)
>>> r[2]
meijerg(((,), ()), ((m/2,), (-m/2,)), t/4)
```

sympy.integrals.meijerint._rewrite_saxena_1(fac, po, g, x)

Rewrite the integral fac*po*g dx, from zero to infinity, as integral fac*G, where G has argument a*x. Note po=x**s. Return fac, G.

sympy.integrals.meijerint._rewrite_single(f, x, recursive=True)

Try to rewrite f as a sum of single G functions of the form C*x**s*G(a*x**b), where b is a rational number and C is independent of x. We guarantee that result.argument.as_coeff_mul(x) returns (a, (x**b,)) or (a, ()). Returns a list of tuples (C, s, G) and a condition cond. Returns None on failure.
sympy.integrals.meijerint._split_mul(f, x)
Split expression f into fac, po, g, where fac is a constant factor, po = x**s for some s independent of s, and g is “the rest”.

Examples

```python
>>> from sympy.integrals.meijerint import _split_mul
>>> from sympy import sin
>>> from sympy.abc import s, x
>>> _split_mul((3*x)*s*sin(x**2)*x, x)
(3**s, x*x**s, sin(x**2))
```

sympy.integrals.meijerint.meijerint_definite(f, x, a, b)
Integrate f over the interval [a, b], by rewriting it as a product of two G functions, or as a single G function.

Return res, cond, where cond are convergence conditions.

Examples

```python
>>> from sympy.integrals.meijerint import meijerint_definite
>>> from sympy import exp, oo
>>> from sympy.abc import x
>>> meijerint_definite(exp(-x**2), x, -oo, oo)
(sqrt(pi), True)
```

This function is implemented as a succession of functions meijerint_definite, _meijerint_definite_2, _meijerint_definite_3, _meijerint_definite_4. Each function in the list calls the next one (presumably) several times. This means that calling meijerint_definite can be very costly.

sympy.integrals.meijerint.meijerint_indefinite(f, x)
Compute an indefinite integral of f by rewriting it as a G function.

Examples

```python
>>> from sympy.integrals.meijerint import meijerint_indefinite
>>> from sympy import sin
>>> from sympy.abc import x
>>> meijerint_indefinite(sin(x), x)
-cos(x)
```

sympy.integrals.meijerint.meijerint_inversion(f, x, t)
Compute the inverse laplace transform \(\int_{c-i\infty}^{c+i\infty} f(x)e^{tx} dx\), for real c larger than the real part of all singularities of f.

Note that t is always assumed real and positive.

Return None if the integral does not exist or could not be evaluated.
Examples

```python
>>> from sympy.abc import x, t
>>> from sympy.integrals.meijerint import meijerint_inversion
>>> meijerint_inversion(1/x, x, t)
Heaviside(t)
```

Integrals

The integrals module in SymPy implements methods to calculate definite and indefinite integrals of expressions.

Principal method in this module is `integrate()` (page 657)

- `integrate(f, x)` returns the indefinite integral \(\int f \, dx \)
- `integrate(f, (x, a, b))` returns the definite integral \(\int_a^b f \, dx \)

Examples

SymPy can integrate a vast array of functions. It can integrate polynomial functions:

```python
>>> from sympy import *
>>> init_printing(use_unicode=False, wrap_line=False)
>>> x = Symbol('x')
>>> integrate(x**2 + x + 1, x)
3 2 3 2
x x + x
3 2
```

Rational functions:

```python
>>> integrate(x/(x**2+2*x+1), x)
1
log(x + 1) + -----
x + 1
```

Exponential-polynomial functions. These multiplicative combinations of polynomials and the functions \(\exp, \cos \) and \(\sin \) can be integrated by hand using repeated integration by parts, which is an extremely tedious process. Happily, SymPy will deal with these integrals.

```python
>>> integrate(x**2 * exp(x) * cos(x), x)
2 x 2 x 2 x 2 x 2 x 2 x
x *e *sin(x) x *e *cos(x) x e *sin(x) e *cos(x)
-------------------- + -------------------- - x*e *sin(x) + -------------------- - --------------------
2 2 2 2
```

even a few nonelementary integrals (in particular, some integrals involving the error function) can be evaluated:
Integral Transforms

SymPy has special support for definite integrals, and integral transforms.

sympy.integrals.transforms.mellin_transform(f, x, s, **hints)

Compute the Mellin transform $F(s)$ of $f(x)$,

$$F(s) = \int_{0}^{\infty} x^{s-1} f(x) \, dx.$$

For all “sensible” functions, this converges absolutely in a strip

$$a < \text{Re}(s) < b.$$

Explanation

The Mellin transform is related via change of variables to the Fourier transform, and also to the (bilateral) Laplace transform.

This function returns $(F, (a, b), \text{cond})$ where F is the Mellin transform of f, (a, b) is the fundamental strip (as above), and cond are auxiliary convergence conditions.

If the integral cannot be computed in closed form, this function returns an unevaluated MellinTransform (page 634) object.

For a description of possible hints, refer to the docstring of sympy.integrals.transforms.IntegralTransform.doit() (page 645). If noconds=False, then only F will be returned (i.e. not cond, and also not the strip (a, b)).

Examples

```python
>>> from sympy import mellin_transform, exp
>>> from sympy.abc import x, s
>>> mellin_transform(exp(-x), x, s)
(gamma(s), (0, oo), True)
```

See also:

inverse_mellin_transform (page 635), laplace_transform (page 635), fourier_transform (page 638), hankel_transform (page 643), inverse_hankel_transform (page 644)

class sympy.integrals.transforms.MellinTransform(*args)

Class representing unevaluated Mellin transforms.

For usage of this class, see the IntegralTransform (page 645) docstring.

For how to compute Mellin transforms, see the mellin_transform() (page 634) docstring.
sympy.integrals.transforms.inverse_mellin_transform(F, s, x, strip, **hints)

Compute the inverse Mellin transform of $F(s)$ over the fundamental strip given by $strip=(a, b)$.

Explanation

This can be defined as

$$f(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} x^{-s} F(s) \, ds,$$

for any c in the fundamental strip. Under certain regularity conditions on F and/or f, this recovers f from its Mellin transform F (and vice versa), for positive real x.

One of a or b may be passed as `None`; a suitable c will be inferred.

If the integral cannot be computed in closed form, this function returns an unevaluated `InverseMellinTransform` object.

Note that this function will assume x to be positive and real, regardless of the SymPy assumptions!

For a description of possible hints, refer to the docstring of `sympy.integrals.transforms.IntegralTransform.doit()` (page 645).

Examples

```python
>>> from sympy import inverse_mellin_transform, oo, gamma
>>> from sympy.abc import x, s
>>> inverse_mellin_transform(gamma(s), s, x, (0, oo))
exp(-x)
```

The fundamental strip matters:

```python
>>> f = 1/(s**2 - 1)
>>> inverse_mellin_transform(f, s, x, (-oo, -1))
x*(1 - 1/x**2)*Heaviside(x - 1)/2
>>> inverse_mellin_transform(f, s, x, (-1, 1))
-x*Heaviside(1 - x)/2 - Heaviside(x - 1)/(2*x)
>>> inverse_mellin_transform(f, s, x, (1, oo))
(1/2 - x**2/2)*Heaviside(1 - x)/x
```

See also:

- `mellin_transform` (page 634), `hankel_transform` (page 643), `inverse_hankel_transform` (page 644)

class sympy.integrals.transforms.InverseMellinTransform(*args)

Class representing unevaluated inverse Mellin transforms.

For usage of this class, see the `IntegralTransform` (page 645) docstring.

For how to compute inverse Mellin transforms, see the `inverse_mellin_transform()` (page 635) docstring.
sympy.integrals.transforms.laplace_transform(f, t, s, legacy_matrix=True, **hints)

Compute the Laplace Transform $F(s)$ of $f(t)$,

$$F(s) = \int_{0^-}^{\infty} e^{-st} f(t) dt.$$

Explanation

For all sensible functions, this converges absolutely in a half-plane

$$a < \text{Re}(s)$$

This function returns (F, a, cond) where F is the Laplace transform of f, a is the half-plane of convergence, and cond are auxiliary convergence conditions.

The implementation is rule-based, and if you are interested in which rules are applied, and whether integration is attempted, you can switch debug information on by setting `sympy.SYMPY_DEBUG=True`. The numbers of the rules in the debug information (and the code) refer to Bateman’s Tables of Integral Transforms [1].

The lower bound is 0^-, meaning that this bound should be approached from the lower side. This is only necessary if distributions are involved. At present, it is only done if $f(t)$ contains `DiracDelta`, in which case the Laplace transform is computed implicitly as

$$F(s) = \lim_{\tau \to 0^-} \int_{\tau}^{\infty} e^{-st} f(t) dt$$

by applying rules.

If the Laplace transform cannot be fully computed in closed form, this function returns expressions containing unevaluated `LaplaceTransform` objects.

For a description of possible hints, refer to the docstring of `sympy.integrals.transforms.IntegralTransform.doit()` (page 645). If `noconds=True`, only F will be returned (i.e. not cond, and also not the plane a).

Deprecated since version 1.9: Legacy behavior for matrices where `laplace_transform` with `noconds=False` (the default) returns a Matrix whose elements are tuples. The behavior of `laplace_transform` for matrices will change in a future release of SymPy to return a tuple of the transformed Matrix and the convergence conditions for the matrix as a whole. Use `legacy_matrix=False` to enable the new behavior.

Examples

```python
>>> from sympy import DiracDelta, exp, laplace_transform
>>> from sympy.abc import t, s, a
>>> laplace_transform(t**4, t, s)
(24/s**5, 0, True)
>>> laplace_transform(t**a, t, s)
(gamma(a + 1)/(s**a), 0, re(a) > -1)
>>> laplace_transform(DiracDelta(t) - a*exp(-a*t), t, s, simplify=True)
(s/(a + s), -re(a), True)
```
See also:

- `inverse_laplace_transform` (page 637), `mellin_transform` (page 634),
- `fourier_transform` (page 638), `hankel_transform` (page 643),
- `inverse_hankel_transform` (page 644)

References

[R539]

class sympy.integrals.transforms.LaplaceTransform(*args)

Class representing unevaluated Laplace transforms.

For usage of this class, see the `IntegralTransform` (page 645) docstring.

For how to compute Laplace transforms, see the `laplace_transform()` (page 635) docstring.

If this is called with `.doit()`, it returns the Laplace transform as an expression. If it is called with `.doit(noconds=False)`, it returns a tuple containing the same expression, a convergence plane, and conditions.

```python
doit(**hints)
```

Try to evaluate the transform in closed form.

Explanation

Standard hints are the following: - `noconds`: if True, do not return convergence conditions. The default setting is `True`. - `simplify`: if True, it simplifies the final result. The default setting is `False`.

```python
sympy.integrals.transforms.inverse_laplace_transform(F, s, t, plane=None, **hints)
```

Compute the inverse Laplace transform of $F(s)$, defined as

$$f(t) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{st}F(s)\,ds,$$

for c so large that $F(s)$ has no singularities in the half-plane $\text{Re}(s) > c - \epsilon$.

Explanation

The plane can be specified by argument `plane`, but will be inferred if passed as `None`.

Under certain regularity conditions, this recovers $f(t)$ from its Laplace Transform $F(s)$, for non-negative t, and vice versa.

If the integral cannot be computed in closed form, this function returns an unevaluated `InverseLaplaceTransform` (page 638) object.

Note that this function will always assume t to be real, regardless of the SymPy assumption on t.

For a description of possible hints, refer to the docstring of `sympy.integrals.transforms.IntegralTransform.doit()` (page 645).
Examples

```python
>>> from sympy import inverse_laplace_transform, exp, Symbol
>>> from sympy.abc import s, t
>>> a = Symbol('a', positive=True)
>>> inverse_laplace_transform(exp(-a*s)/s, s, t)
Heaviside(-a + t)
```

See also:

- `laplace_transform` (page 635)
- `hankel_transform` (page 643)
- `inverse_hankel_transform` (page 644)

class sympy.integrals.transforms.InverseLaplaceTransform(*args)

Class representing unevaluated inverse Laplace transforms.

For usage of this class, see the `IntegralTransform` (page 645) docstring.

For how to compute inverse Laplace transforms, see the `inverse_laplace_transform()` (page 637) docstring.

doit(**hints)

Try to evaluate the transform in closed form.

Explanation

Standard hints are the following:
- noconds: if True, do not return convergence conditions. The default setting is `True`.
- simplify: if True, it simplifies the final result. The default setting is `False`.

```python
sympy.integrals.transforms.fourier_transform(f, x, k, **hints)
```

Compute the unitary, ordinary-frequency Fourier transform of \(f \), defined as

\[
F(k) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x k} \, dx.
\]

Explanation

If the transform cannot be computed in closed form, this function returns an unevaluated `FourierTransform` (page 639) object.

For other Fourier transform conventions, see the function `sympy.integrals.transforms._fourier_transform()` (page 639).

For a description of possible hints, refer to the docstring of `sympy.integrals.transforms.IntegralTransform.doit()` (page 645). Note that for this transform, by default noconds=True.
Examples

```python
>>> from sympy import fourier_transform, exp
>>> from sympy.abc import x, k
>>> fourier_transform(exp(-x**2), x, k)
sqrt(pi)*exp(-pi**2*k**2)
>>> fourier_transform(exp(-x**2), x, k, noconds=False)
(sqrt(pi)*exp(-pi**2*k**2), True)
```

See also:
- `inverse_fourier_transform`
- `sine_transform`
- `inverse_sine_transform`
- `cosine_transform`
- `inverse_cosine_transform`
- `hankel_transform`
- `inverse_hankel_transform`
- `mellin_transform`
- `laplace_transform`

`sympy.integrals.transforms._fourier_transform(f, x, k, a, b, name, simplify=True)`

Compute a general Fourier-type transform

\[F(k) = a \int_{-\infty}^{\infty} e^{bixk} f(x) \, dx. \]

For suitable choice of \(a\) and \(b\), this reduces to the standard Fourier and inverse Fourier transforms.

```python
class sympy.integrals.transforms.FourierTransform(*args)
```

Class representing unevaluated Fourier transforms.

For usage of this class, see the `IntegralTransform` docstring.

For how to compute Fourier transforms, see the `fourier_transform()` docstring.

`sympy.integrals.transforms.inverse_fourier_transform(F, k, x, **hints)`

Compute the unitary, ordinary-frequency inverse Fourier transform of \(F\), defined as

\[f(x) = \int_{-\infty}^{\infty} F(k)e^{2\pi ikx} \, dk. \]

Explanation

If the transform cannot be computed in closed form, this function returns an unevaluated `InverseFourierTransform` object.

For other Fourier transform conventions, see the function `sympy.integrals.transforms._fourier_transform()`.

For a description of possible hints, refer to the docstring of `sympy.integrals.transforms.IntegralTransform.doit()`.

5.8. Topics
Examples

```python
>>> from sympy import inverse_fourier_transform, exp, sqrt, pi
>>> from sympy.abc import x, k
>>> inverse_fourier_transform(sqrt(pi)*exp(-pi*k**2), k, x)
exp(-x**2)
>>> inverse_fourier_transform(sqrt(pi)*exp(-pi*k**2), k, x, noconds=False)
(exp(-x**2), True)
```

See also:

- `fourier_transform` (page 638)
- `sine_transform` (page 640)
- `inverse_sine_transform` (page 641)
- `cosine_transform` (page 641)
- `inverse_cosine_transform` (page 642)
- `hankel_transform` (page 643)
- `inverse_hankel_transform` (page 644)
- `mellin_transform` (page 634)
- `laplace_transform` (page 635)

class sympy.integrals.transforms.InverseFourierTransform(*args)

Class representing unevaluated inverse Fourier transforms.

For usage of this class, see the `IntegralTransform` (page 645) docstring.

For how to compute inverse Fourier transforms, see the `inverse_fourier_transform()` (page 639) docstring.

sympy.integrals.transforms.sine_transform(f, x, k, **hints)

Compute the unitary, ordinary-frequency sine transform of \(f \), defined as

\[
F(k) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin(2\pi x k) dx.
\]

Explanation

If the transform cannot be computed in closed form, this function returns an unevaluated `SineTransform` (page 641) object.

For a description of possible hints, refer to the docstring of `sympy.integrals.transforms.IntegralTransform.doit()` (page 645). Note that for this transform, by default noconds=True.

Examples

```python
>>> from sympy import sine_transform, exp
>>> from sympy.abc import x, k, a
>>> sine_transform(x*exp(-a*x**2), x, k)
sqrt(2)*k*exp(-k**2/(4*a))/(4*a**(3/2))
>>> sine_transform(x*(-a), x, k)
2**(1/2 - a)*k**(a - 1)*gamma(1 - a/2)/gamma(a/2 + 1/2)
```

See also:

- `fourier_transform` (page 638)
- `inverse_fourier_transform` (page 639)
- `inverse_sine_transform` (page 641)
- `cosine_transform` (page 641)
- `inverse_cosine_transform` (page 642)
- `hankel_transform` (page 643)
class sympy.integrals.transforms.SineTransform(*args)

Class representing unevaluated sine transforms.

For usage of this class, see the IntegralTransform (page 645) docstring.

For how to compute sine transforms, see the sine_transform() (page 640) docstring.

sympy.integrals.transforms.inverse_sine_transform(F, k, x, **hints)

Compute the unitary, ordinary-frequency inverse sine transform of F, defined as

\[f(x) = \sqrt{\frac{2}{\pi}} \int_0^{\infty} F(k) \sin(2\pi k x) \, dk. \]

Explanation

If the transform cannot be computed in closed form, this function returns an unevaluated InverseSineTransform (page 641) object.

For a description of possible hints, refer to the docstring of sympy.integrals.transforms.IntegralTransform.doit() (page 645). Note that for this transform, by default noconds=True.

Examples

```python
>>> from sympy import inverse_sine_transform, exp, sqrt, gamma
>>> from sympy.abc import x, k, a
>>> inverse_sine_transform(2**((1-2*a)/2)**(a - 1)*
                         x**(a) + 1)/gamma((a+1)/2), k, x)
>>> inverse_sine_transform(sqrt(2)*k*exp(-k**2/(4*a))/(4*sqrt(a)**3), k, u)
```

See also:

- fourier_transform (page 638), inverse_fourier_transform (page 639), sine_transform (page 640), cosine_transform (page 641), inverse_cosine_transform (page 642), hankel_transform (page 643), inverse_hankel_transform (page 644), mellin_transform (page 645), laplace_transform (page 635)

class sympy.integrals.transforms.InverseSineTransform(*args)

Class representing unevaluated inverse sine transforms.

For usage of this class, see the IntegralTransform (page 645) docstring.

For how to compute inverse sine transforms, see the inverse_sine_transform() (page 641) docstring.

sympy.integrals.transforms.cosine_transform(f, x, k, **hints)

Compute the unitary, ordinary-frequency cosine transform of f, defined as

\[F(k) = \sqrt{\frac{2}{\pi}} \int_0^{\infty} f(x) \cos(2\pi k x) \, dx. \]
Explanation

If the transform cannot be computed in closed form, this function returns an unevaluated `CosineTransform` object.

For a description of possible hints, refer to the docstring of `sympy.integrals.transforms.IntegralTransform.doit()` (page 645). Note that for this transform, by default noconds=True.

Examples

```python
>>> from sympy import cosine_transform, exp, sqrt, cos
>>> from sympy.abc import x, k, a
>>> cosine_transform(exp(-a*x), x, k)
sqrt(2)*a/(sqrt(pi)*(a**2 + k**2))
```

```
>>> cosine_transform(exp(-a*sqrt(x))*cos(a*sqrt(x)), x, k)
a*exp(-a**2/(2*k))/(2*k**(3/2))
```

See also:

- `fourier_transform` (page 638)
- `inverse_fourier_transform` (page 639)
- `sine_transform` (page 640)
- `inverse_sine_transform` (page 641)
- `inverse_cosine_transform` (page 642)
- `hankel_transform` (page 643)
- `inverse_hankel_transform` (page 644)
- `mellin_transform` (page 634)
- `laplace_transform` (page 635)

```python
class sympy.integrals.transforms.CosineTransform(*args)
```

Class representing unevaluated cosine transforms.

For usage of this class, see the `IntegralTransform` (page 645) docstring.

For how to compute cosine transforms, see the `cosine_transform()` (page 641) docstring.

```python
sympy.integrals.transforms.inverse_cosine_transform(F, k, x, **hints)
```

Compute the unitary, ordinary-frequency inverse cosine transform of F, defined as

\[f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} F(k) \cos(2\pi x k) dk. \]

Explanation

If the transform cannot be computed in closed form, this function returns an unevaluated `InverseCosineTransform` object.

For a description of possible hints, refer to the docstring of `sympy.integrals.transforms.IntegralTransform.doit()` (page 645). Note that for this transform, by default noconds=True.
Examples

```python
>>> from sympy import inverse_cosine_transform, sqrt, pi
>>> from sympy.abc import x, k, a
>>> inverse_cosine_transform(sqrt(2)*a/(sqrt(pi)*(a**2 + k**2)), k, x)
exp(-a*x)
>>> inverse_cosine_transform(1/sqrt(k), k, x)
1/sqrt(x)
```

See also:
- `fourier_transform` (page 638), `inverse_fourier_transform` (page 639),
- `sine_transform` (page 640), `inverse_sine_transform` (page 641),
- `cosine_transform` (page 641), `hankel_transform` (page 643),
- `inverse_hankel_transform` (page 644),
- `mellin_transform` (page 634), `laplace_transform` (page 635)

class sympy.integrals.transforms.InverseCosineTransform(*args)
Class representing unevaluated inverse cosine transforms.
For usage of this class, see the `IntegralTransform` (page 645) docstring.
For how to compute inverse cosine transforms, see the `inverse_cosine_transform()` (page 642) docstring.

sympy.integrals.transforms.hankel_transform(f, r, k, nu, **hints)
Compute the Hankel transform of f, defined as

\[F_\nu(k) = \int_0^\infty f(r) J_\nu(kr) r \, dr. \]

Explanation

If the transform cannot be computed in closed form, this function returns an unevaluated HankelTransform (page 644) object.
For a description of possible hints, refer to the docstring of sympy.integrals.transforms.IntegralTransform.doit() (page 645). Note that for this transform, by default noconds=True.

Examples

```python
>>> from sympy import hankel_transform, inverse_hankel_transform
>>> from sympy import exp
>>> from sympy.abc import r, k, m, nu, a

>>> ht = hankel_transform(1/r**m, r, k, nu)
>>> ht
2*k**(m - 2)*gamma(-m/2 + nu/2 + 1)/(2**m*gamma(m/2 + nu/2))

>>> inverse_hankel_transform(ht, k, r, nu)
r**(-m)
```
```python
>>> ht = hankel_transform(exp(-a*r), r, k, 0)
>>> ht
a/(k**3*(a**2/k**2 + 1)**(3/2))

>>> inverse_hankel_transform(ht, k, r, 0)
exp(-a*r)
```

See also:
- `fourier_transform` (page 638)
- `inverse_fourier_transform` (page 639)
- `sine_transform` (page 640)
- `inverse_sine_transform` (page 641)
- `cosine_transform` (page 641)
- `inverse_cosine_transform` (page 642)
- `inverse_hankel_transform` (page 644)
- `mellin_transform` (page 634)
- `laplace_transform` (page 635)

class sympy.integrals.transforms.HankelTransform(*args)

Class representing unevaluated Hankel transforms.

For usage of this class, see the `IntegralTransform` (page 645) docstring.

For how to compute Hankel transforms, see the `hankel_transform()` (page 643) docstring.

sympy.integrals.transforms.inverse_hankel_transform(F, k, r, nu, **hints)

Compute the inverse Hankel transform of \(F \) defined as

\[
f(r) = \int_0^{\infty} F_\nu(k) J_\nu(kr) k dk.
\]

Explanation

If the transform cannot be computed in closed form, this function returns an unevaluated `InverseHankelTransform` (page 645) object.

For a description of possible hints, refer to the docstring of `sympy.integrals.transforms.IntegralTransform.doit()` (page 645). Note that for this transform, by default `noconds=True`.

Examples

```python
>>> from sympy import hankel_transform, inverse_hankel_transform
>>> from sympy import exp
>>> from sympy.abc import r, k, m, nu, a

>>> ht = hankel_transform(1/r**m, r, k, nu)
>>> ht
2*k**(m - 2)*gamma(-m/2 + nu/2 + 1)/(2**m*gamma(m/2 + nu/2))

>>> inverse_hankel_transform(ht, k, r, nu)
r**(-m)

>>> ht = hankel_transform(exp(-a*r), r, k, 0)
>>> ht
a/(k**3*(a**2/k**2 + 1)**(3/2))
```
```python
>>> inverse_hankel_transform(ht, k, r, 0)
exp(-a*r)
```

See also:

- `fourier_transform` (page 638), `inverse_fourier_transform` (page 639),
- `sine_transform` (page 640), `inverse_sine_transform` (page 641),
- `cosine_transform` (page 641), `inverse_cosine_transform` (page 642),
- `hankel_transform` (page 643), `mellin_transform` (page 634),
- `laplace_transform` (page 635)

class `sympy.integrals.transforms.InverseHankelTransform(*args)`

Class representing unevaluated inverse Hankel transforms.

For usage of this class, see the `IntegralTransform` (page 645) docstring.

For how to compute inverse Hankel transforms, see the `inverse_hankel_transform()` (page 644) docstring.

class `sympy.integrals.transforms.IntegralTransform(*args)`

Base class for integral transforms.

Explanation

This class represents unevaluated transforms.

To implement a concrete transform, derive from this class and implement the
`_compute_transform(f, x, s, **hints)` and `as_integral(f, x, s)` functions. If
the transform cannot be computed, raise `IntegralTransformError` (page 646).

Also set cls._name. For instance,

```python
>>> from sympy import LaplaceTransform
>>> LaplaceTransform._name
'Laplace'
```

Implement self._collapse_extra if your function returns more than just a number and
possibly a convergence condition.

doit(**hints)

Try to evaluate the transform in closed form.

Explanation

This general function handles linearity, but apart from that leaves pretty much every-
ting to _compute_transform.

Standard hints are the following:

- **simplify**: whether or not to simplify the result
- **noconds**: if True, do not return convergence conditions
- **needeval**: if True, raise `IntegralTransformError` instead of returning `IntegralTransform` objects

The default values of these hints depend on the concrete transform, usually the
default is `(simplify, noconds, needeval) = (True, False, False)`.
property function
The function to be transformed.

property function_variable
The dependent variable of the function to be transformed.

property transform_variable
The independent transform variable.

exception sympy.integrals.transforms.IntegralTransformError(transform, function, msg)

Exception raised in relation to problems computing transforms.

Explanation
This class is mostly used internally; if integrals cannot be computed objects representing unevaluated transforms are usually returned.

The hint needeval=True can be used to disable returning transform objects, and instead raise this exception if an integral cannot be computed.

Internals
SymPy uses a number of algorithms to compute integrals. Algorithms are tried in order until one produces an answer. Most of these algorithms can be enabled or disabled manually using various flags to integrate() (page 657) or doit() (page 662).

SymPy first applies several heuristic algorithms, as these are the fastest:

1. If the function is a rational function, there is a complete algorithm for integrating rational functions called the Lazard-Rioboo-Trager and the Horowitz-Ostrogradsky algorithms. They are implemented in ratint() (page 646).

 sympy.integrals.rationaltools.ratint(f, x, **flags)
 Performs indefinite integration of rational functions.

Explanation
Given a field \(K \) and a rational function \(f = \frac{p}{q} \), where \(p \) and \(q \) are polynomials in \(K[x] \), returns a function \(g \) such that \(f = g' \).

Examples

```python
>>> from sympy.integrals.rationaltools import ratint
>>> from sympy.abc import x

>>> ratint((36/(x**5 - 2*x**4 - 2*x**3 + 4*x**2 + x - 2)), x)
(12*x + 6)/(x**2 - 1) + 4*log(x - 2) - 4*log(x + 1)
```
See also:

- `sympy.integrals.integrals.Integral.doit` (page 662)
- `sympy.integrals.rationaltools.ratint_logpart` (page 647)
- `sympy.integrals.rationaltools.ratint_ratpart` (page 647)

References

[R540]

Explanation

Given a field K and polynomials f and g in $K[x]$, such that f and g are coprime and $\deg(f) < \deg(g)$, returns fractions A and B in $K(x)$, such that $f/g = A' + B$ and B has square-free denominator.

Examples

```python
>>> from sympy.integrals.rationaltools import ratint_ratpart
>>> from sympy.abc import x, y
>>> ratint_ratpart(Poly(1, x, domain='ZZ'), ...
... Poly(x + 1, x, domain='ZZ'), x)
(0, 1/(x + 1))
>>> ratint_ratpart(Poly(1, x, domain='EX'), ...
... Poly(x**2 + y**2, x, domain='EX'), x)
(0, 1/(x**2 + y**2))
>>> ratint_ratpart(Poly(36, x, domain='ZZ'), ...
... Poly(x**5 - 2*x**4 - 2*x**3 + 4*x**2 + x - 2, x, domain='ZZ'), x)
(((12*x + 6)/(x**2 - 1), 12/(x**2 - x - 2))
```

See also:

- `ratint` (page 646), `ratint_logpart` (page 647)

Explanation

Given a field K and polynomials f and g in $K[x]$, such that f and g are coprime, $\deg(f) < \deg(g)$ and g is square-free, returns a list of tuples (s_i, q_i) of polynomials, for $i = 1..n$, such that s_i in $K[t, x]$ and q_i in $K[t]$, and:

\[
d \frac{d}{d} \left(\log(s_i(a, x)) \right)
```

(continues on next page)
dx g dx /__, /__,
i=1..n a | q_i(a) = 0

Examples

```python
>>> from sympy.integrals.rationaltools import ratint_logpart
>>> from sympy import x
>>> from sympy import Poly
>>> ratint_logpart(Poly(1, x, domain='ZZ'),
... Poly(x**2 + x + 1, x, domain='ZZ'), x)
[(Poly(x + 3*_t/2 + 1/2, x, domain='QQ[_t]'),
 ...Poly(3*_t**2 + 1, _t, domain='ZZ'))]
>>> ratint_logpart(Poly(12, x, domain='ZZ'),
... Poly(x**2 - x - 2, x, domain='ZZ'), x)
[(Poly(x - 3*_t/8 - 1/2, x, domain='QQ[_t]'),
 ...Poly(-_t**2 + 16, _t, domain='ZZ'))]
```

See also:
- `ratint` (page 646), `ratint_ratpart` (page 647)

2. `trigintegrate()` (page 648) solves integrals of trigonometric functions using pattern matching

```python
>>> from sympy import sin, cos, tan, sec
>>> from sympy.integrals.trigonometry import trigintegrate
>>> from sympy.abc import x

>>> trigintegrate(sin(x)*cos(x), x)
sin(x)**2/2

>>> trigintegrate(sin(x)*sin(x)**2, x)
x/2 - sin(x)*cos(x)/2

>>> trigintegrate(tan(x)*sec(x), x)
1/cos(x)

>>> trigintegrate(sin(x)*tan(x), x)
-log(sin(x) - 1)/2 + log(sin(x) + 1)/2 - sin(x)
```

See also:
- `sympy.integrals.integrals.Integral.doit` (page 662), `sympy.integrals.integrals.Integral` (page 660)


**References**

[R541]

3. `deltaintegrate()` (page 649) solves integrals with `DiracDelta` (page 506) objects.

```
sympy.integrals.deltafunctions.deltaintegrate(f, x)
```

**Explanation**

The idea for integration is the following:

- If we are dealing with a `DiracDelta` expression, i.e. `DiracDelta(g(x))`, we try to simplify it.

  If we could simplify it, then we integrate the resulting expression. We already know we can integrate a simplified expression, because only simple `DiracDelta` expressions are involved.

  If we couldn't simplify it, there are two cases:

  1) The expression is a simple expression: we return the integral, taking care if we are dealing with a `Derivative` or with a proper `DiracDelta`.

  2) The expression is not simple (i.e. `DiracDelta(cos(x))`): we can do nothing at all.

- If the node is a multiplication node having a `DiracDelta` term:

  First we expand it.

  If the expansion did work, then we try to integrate the expansion.

  If not, we try to extract a simple `DiracDelta` term, then we have two cases:

  1) We have a simple `DiracDelta` term, so we return the integral.

  2) We didn't have a simple term, but we do have an expression with simplified `DiracDelta` terms, so we integrate this expression.

**Examples**

```
>>> from sympy.abc import x, y, z
>>> from sympy.integrals.deltafunctions import deltainegrate
>>> from sympy import sin, cos, DiracDelta

>>> deltainegrate(x*sin(x)*cos(x)*DiracDelta(x - 1), x)
sin(1)*cos(1)*Heaviside(x - 1)

>>> deltainegrate(y**2*DiracDelta(x - z)*DiracDelta(y - z), y)
z**2*DiracDelta(x - z)*Heaviside(y - z)
```

**See also:**

- `sympy.functions.special.delta_functions.DiracDelta` (page 506), `sympy.integrals.integrals.Integral` (page 660)

4. `singularityintegrate()` (page 649) is applied if the function contains a `SingularityFunction` (page 513)
This function handles the indefinite integrations of Singularity functions. The `integrate` function calls this function internally whenever an instance of SingularityFunction is passed as argument.

**Explanation**

The idea for integration is the following:

- If we are dealing with a SingularityFunction expression, i.e. `SingularityFunction(x, a, n)`, we just return `SingularityFunction(x, a, n + 1)/(n + 1)` if `n >= 0` and `SingularityFunction(x, a, n + 1)` if `n < 0`.

- If the node is a multiplication or power node having a SingularityFunction term we rewrite the whole expression in terms of Heaviside and DiracDelta and then integrate the output. Lastly, we rewrite the output of integration back in terms of SingularityFunction.

- If none of the above case arises, we return None.

**Examples**

```python
>>> from sympy.integrals.singularityfunctions import singularityintegrate
>>> from sympy import SingularityFunction, symbols, Function
>>> x, a, n, y = symbols('x a n y')
>>> f = Function('f')
>>> singularityintegrate(SingularityFunction(x, a, 3), x)
SingularityFunction(x, a, 4)/4
>>> singularityintegrate(5*SingularityFunction(x, 5, -2), x)
5*SingularityFunction(x, 5, -1)
>>> singularityintegrate(6*SingularityFunction(x, 5, -1), x)
6*SingularityFunction(x, 5, 0)
>>> singularityintegrate(x*SingularityFunction(x, 0, -1), x)
0
>>> singularityintegrate(SingularityFunction(x, 1, -1) * f(x), x)
f(1)*SingularityFunction(x, 1, 0)
```

5. If the heuristic algorithms cannot be applied, `risch_integrate()` (page 650) is tried next. The Risch algorithm is a general method for calculating antiderivatives of elementary functions. The Risch algorithm is a decision procedure that can determine whether an elementary solution exists, and in that case calculate it. It can be extended to handle many nonelementary functions in addition to the elementary ones. However, the version implemented in SymPy only supports a small subset of the full algorithm, particularly, on part of the transcendental algorithm for exponentials and logarithms is implemented. An advantage of `risch_integrate()` (page 650) over other methods is that if it returns an instance of NonElementaryIntegral (page 652), the integral is proven to be nonelementary by the algorithm, meaning the integral cannot be represented using a combination of exponentials, logarithms, trig functions, powers, rational functions, algebraic functions, and function composition.
The Risch Integration Algorithm.

**Explanation**

Only transcendental functions are supported. Currently, only exponentials and logarithms are supported, but support for trigonometric functions is forthcoming.

If this function returns an unevaluated Integral in the result, it means that it has proven that integral to be nonelementary. Any errors will result in raising NotImplementedError. The unevaluated Integral will be an instance of NonElementaryIntegral, a subclass of Integral.

`handle_first` may be either `'exp'` or `'log'`. This changes the order in which the extension is built, and may result in a different (but equivalent) solution (for an example of this, see issue 5109). It is also possible that the integral may be computed with one but not the other, because not all cases have been implemented yet. It defaults to `'log'` so that the outer extension is exponential when possible, because more of the exponential case has been implemented.

If `separate_integral` is `True`, the result is returned as a tuple `(ans, i)`, where the integral is `ans + i`, `ans` is elementary, and `i` is either a `NonElementaryIntegral` or `0`. This useful if you want to try further integrating the `NonElementaryIntegral` part using other algorithms to possibly get a solution in terms of special functions. It is `False` by default.

**Examples**

```python
>>> from sympy.integrals.risch import risch_integrate
>>> from sympy import exp, log, pprint
>>> from sympy.abc import x
```

First, we try integrating `exp(-x**2)`. Except for a constant factor of `2/sqrt(pi)`, this is the famous error function.

```python
>>> pprint(risch_integrate(exp(-x**2), x))
/ 2
| -x
| e dx
/
```

The unevaluated Integral in the result means that `risch_integrate()` has proven that `exp(-x**2)` does not have an elementary anti-derivative.

In many cases, `risch_integrate()` can split out the elementary anti-derivative part from the nonelementary anti-derivative part. For example,
>>> pprint(risch_integrate((2*log(x)**2 - log(x) - x**2)/(log(x)**3 - x**2*log(x)), x))

\[
\frac{\log(-x + \log(x))}{2} + \frac{\log(x + \log(x))}{2} + \frac{1}{\log(x)} \, \mathrm{dx}
\]

This means that it has proven that the integral of $1/\log(x)$ is nonelementary. This function is also known as the logarithmic integral, and is often denoted as $\text{Li}(x)$.

\text{risch\_integrate()} currently only accepts purely transcendental functions with exponentials and logarithms, though note that this can include nested exponentials and logarithms, as well as exponentials with bases other than $E$.

>>> pprint(risch_integrate(exp(x)*exp(exp(x)), x))

\[
\frac{1}{x} \, \mathrm{e} \, \mathrm{dx}
\]

>>> pprint(risch_integrate(exp(exp(x)), x))

\[
\frac{1}{x} \, \mathrm{e} \, \mathrm{dx}
\]

>>> pprint(risch_integrate(x**x**x*log(x) + x**x + x*x**x, x))

\[
x \, x^x \, \mathrm{dx}
\]

>>> pprint(risch_integrate(x**x, x))

\[
x \, x \, \mathrm{dx}
\]

>>> pprint(risch_integrate(-1/(x*log(x)*log(log(x))**2), x))

\[
\frac{1}{\log(\log(x))}
\]

class sympy.integrals.risch.NonElementaryIntegral(function, *symbols, **assumptions)

Represents a nonelementary Integral.
**Explanation**

If the result of `integrate()` is an instance of this class, it is guaranteed to be nonelementary. Note that `integrate()` by default will try to find any closed-form solution, even in terms of special functions which may themselves not be elementary. To make `integrate()` only give elementary solutions, or, in the cases where it can prove the integral to be nonelementary, instances of this class, use `integrate(risch=True)`. In this case, `integrate()` may raise `NotImplementedError` if it cannot make such a determination.

`integrate()` uses the deterministic Risch algorithm to integrate elementary functions or prove that they have no elementary integral. In some cases, this algorithm can split an integral into an elementary and nonelementary part, so that the result of `integrate` will be the sum of an elementary expression and a `NonElementaryIntegral`.

**Examples**

```python
>>> from sympy import integrate, exp, log, Integral

>>> a = integrate(exp(-x**2), x, risch=True)
>>> print(a)
Integral(exp(-x**2), x)

>>> type(a)
<class 'sympy.integrals.risch.NonElementaryIntegral'>

>>> expr = (2*log(x)**2 - log(x) - x**2)/(log(x)**3 - x**2*log(x))
>>> b = integrate(expr, x, risch=True)
```

6. For non-elementary definite integrals, SymPy uses so-called Meijer G-functions. Details are described in *Computing Integrals using Meijer G-Functions* (page 612).

7. All the algorithms mentioned thus far are either pattern-matching based heuristic, or solve integrals using algorithms that are much different from the way most people are taught in their calculus courses. SymPy also implements a method that can solve integrals in much the same way you would in calculus. The advantage of this method is that it is possible to extract the integration steps from, so that one can see how to compute the integral “by hand”. This is used by SymPy Gamma. This is implemented in the `manualintegrate()` (page 653) function. The steps for an integral can be seen with the `integral_steps()` (page 654) function.

```python
sympy.integrals.manualintegrate.manualintegrate(f, var)
```
**Explanation**

Compute indefinite integral of a single variable using an algorithm that resembles what a student would do by hand.

Unlike \texttt{integrate()} (page 657), \texttt{var} can only be a single symbol.

**Examples**

```python
>>> from sympy import sin, cos, tan, exp, log, integrate
>>> from sympy.integrals.manualintegrate import manualintegrate
>>> from sympy.abc import x

>>> manualintegrate(1 / x, x)
log(x)

>>> integrate(1/x)
log(x)

>>> manualintegrate(log(x), x)
x*log(x) - x

>>> integrate(log(x))
x*log(x) - x

>>> manualintegrate(exp(x) / (1 + exp(2 * x)), x)
atan(exp(x))

>>> integrate(exp(x) / (1 + exp(2 * x)))
RootSum(4*_z**2 + 1, Lambda(_i, _i*log(2*_i + exp(x))))

>>> manualintegrate(cos(x)**4 * sin(x), x)
-cos(x)**5/5

>>> integrate(cos(x)**4 * sin(x), x)
-cos(x)**5/5

>>> manualintegrate(cos(x)**4 * sin(x)**3, x)
cos(x)**7/7 - cos(x)**5/5

>>> integrate(cos(x)**4 * sin(x)**3, x)
cos(x)**7/7 - cos(x)**5/5

>>> manualintegrate(tan(x), x)
-log(cos(x))

>>> integrate(tan(x), x)
-log(cos(x))
```

**See also:**

\texttt{sympy.integrals.integrals.integrate} (page 657), \texttt{sympy.integrals.integrals.Integral.doit} (page 662), \texttt{sympy.integrals.integrals.Integral} (page 660)

\texttt{sympy.integrals.manualintegrate.\texttt{integral}_\texttt{steps} (integrand, symbol. **options)}

Returns the steps needed to compute an integral.

**Returns**

- **rule**: Rule

  The first step; most rules have substeps that must also be considered. These substeps can be evaluated using \texttt{manualintegrate} to obtain a result.
**Explanation**

This function attempts to mirror what a student would do by hand as closely as possible.

SymPy Gamma uses this to provide a step-by-step explanation of an integral. The code it uses to format the results of this function can be found at https://github.com/sympy/sympy_gamma/blob/master/app/logic/intsteps.py.

**Examples**

```python
>>> from sympy import exp, sin
>>> from sympy.integrals.manualintegrate import integral_steps
>>> from sympy.abc import x

>>> print(repr(integral_steps(exp(x) / (1 + exp(2 * x)), x)))
URule(integrand=exp(x)/(exp(2*x) + 1), variable=x, u_var=_u, u_func=exp(x),
substep=ArctanRule(integrand=1/(_u**2 + 1), variable=_u, a=1, b=1, c=1))

>>> print(repr(integral_steps(sin(x), x)))
SinRule(integrand=sin(x), variable=x)

>>> print(repr(integral_steps((x**2 + 3)**2, x)))
RewriteRule(integrand=(x**2 + 3)**2, variable=x, rewritten=x**4 + 6*x**2 + 9,
substep=AddRule(integrand=x**4 + 6*x**2 + 9, variable=x, substeps=[PowerRule(integrand=x**4, variable=x, base=x, exp=4),
ConstantTimesRule(integrand=6*x**2, variable=x, constant=6, other=x**2),
ConstantRule(integrand=9, variable=x)])
```

8. Finally, if all the above fail, SymPy also uses a simplified version of the Risch algorithm, called the Risch-Norman algorithm. This algorithm is tried last because it is often the slowest to compute. This is implemented in `heurisch()` (page 655):

```python
sympy.integrals.heurisch.heurisch(f, x, rewrite=False, hints=None, mappings=None, retries=3, degree_offset=0, unnecessary_permutations=None, _try_heurisch=None)
```

Compute indefinite integral using heuristic Risch algorithm.

**Explanation**

This is a heuristic approach to indefinite integration in finite terms using the extended heuristic (parallel) Risch algorithm, based on Manuel Bronstein’s “Poor Man’s Integrator”.

The algorithm supports various classes of functions including transcendental elementary or special functions like Airy, Bessel, Whittaker and Lambert.

Note that this algorithm is not a decision procedure. If it isn’t able to compute the antiderivative for a given function, then this is not a proof that such a functions
does not exist. One should use recursive Risch algorithm in such case. It’s an open question if this algorithm can be made a full decision procedure.

This is an internal integrator procedure. You should use top level ‘integrate’ function in most cases, as this procedure needs some preprocessing steps and otherwise may fail.

**Specification**

heurisch(f, x, rewrite=False, hints=None)

**where**

- `f`: expression
- `x`: symbol
- `rewrite` -> force rewrite ‘f’ in terms of ‘tan’ and ‘tanh’
- `hints` -> a list of functions that may appear in anti-derivate
  - `hints = None` -> no suggestions at all
  - `hints = []` -> try to figure out
  - `hints = [f1, ..., fn]` -> we know better

**Examples**

```python
>>> from sympy import tan
>>> from sympy.integrals.heurisch import heurisch
>>> from sympy.abc import x, y

>>> heurisch(y*tan(x), x)
y*log(tan(x)**2 + 1)/2
```

See Manuel Bronstein’s “Poor Man’s Integrator”:

**See also:**

- `sympy.integrals.integrals.Integral.doit` (page 662),
- `sympy.integrals.integrals.Integral` (page 660),
- `sympy.integrals.heurisch.components` (page 656)

**References**

For more information on the implemented algorithm refer to:

[R542], [R543], [R544], [R545], [R546]

`sympy.integrals.heurisch.components(f, x)`

Returns a set of all functional components of the given expression which includes symbols, function applications and compositions and non-integer powers. Fractional powers are collected with minimal, positive exponents.
Examples

```python
>>> from sympy import cos, sin
>>> from sympy.abc import x
>>> from sympy.integrals.heurisch import components

>>> components(sin(x)*cos(x)**2, x)
{x, sin(x), cos(x)}
```

See also:

heurisch (page 655)

API reference

```python
sympy.integrals.integrals.integrate(f, var, ...)
```

Deprecated since version 1.6: Using integrate() with Poly (page 2453) is deprecated. Use Poly.integrate() (page 2473) instead. See Using integrate with Poly (page 228).

Explanation

Compute definite or indefinite integral of one or more variables using Risch-Norman algorithm and table lookup. This procedure is able to handle elementary algebraic and transcendental functions and also a huge class of special functions, including Airy, Bessel, Whittaker and Lambert.

var can be:

- a symbol – indefinite integration
- a tuple (symbol, a) - indefinite integration with result given with a replacing symbol
- a tuple (symbol, a, b) - definite integration

Several variables can be specified, in which case the result is multiple integration. (If var is omitted and the integrand is univariate, the indefinite integral in that variable will be performed.)

Indefinite integrals are returned without terms that are independent of the integration variables. (see examples)

Definite improper integrals often entail delicate convergence conditions. Pass conds='piecewise', 'separate' or 'none' to have these returned, respectively, as a Piecewise function, as a separate result (i.e. result will be a tuple), or not at all (default is 'piecewise').

Strategy

SymPy uses various approaches to definite integration. One method is to find an antiderivative for the integrand, and then use the fundamental theorem of calculus. Various functions are implemented to integrate polynomial, rational and trigonometric functions, and integrands containing DiracDelta terms.

SymPy also implements the part of the Risch algorithm, which is a decision procedure for integrating elementary functions, i.e., the algorithm can either find an elementary
antiderivative, or prove that one does not exist. There is also a (very successful, albeit somewhat slow) general implementation of the heuristic Risch algorithm. This algorithm will eventually be phased out as more of the full Risch algorithm is implemented. See the docstring of \texttt{Integral.\_eval\_integral()} for more details on computing the antiderivative using algebraic methods.

The option \texttt{risch=True} can be used to use only the (full) Risch algorithm. This is useful if you want to know if an elementary function has an elementary antiderivative. If the indefinite Integral returned by this function is an instance of \texttt{NonElementaryIntegral}, that means that the Risch algorithm has proven that integral to be non-elementary. Note that by default, additional methods (such as the Meijer G method outlined below) are tried on these integrals, as they may be expressible in terms of special functions, so if you only care about elementary answers, use \texttt{risch=True}. Also note that an unevaluated Integral returned by this function is not necessarily a \texttt{NonElementaryIntegral}, even with \texttt{risch=True}, as it may just be an indication that the particular part of the Risch algorithm needed to integrate that function is not yet implemented.

Another family of strategies comes from re-writing the integrand in terms of so-called Meijer G-functions. Indefinite integrals of a single G-function can always be computed, and the definite integral of a product of two G-functions can be computed from zero to infinity. Various strategies are implemented to rewrite integrands as G-functions, and use this information to compute integrals (see the \texttt{meijerint} module).

The option \texttt{manual=True} can be used to use only an algorithm that tries to mimic integration by hand. This algorithm does not handle as many integrands as the other algorithms implemented but may return results in a more familiar form. The \texttt{manualintegrate} module has functions that return the steps used (see the module docstring for more information).

In general, the algebraic methods work best for computing antiderivatives of (possibly complicated) combinations of elementary functions. The G-function methods work best for computing definite integrals from zero to infinity of moderately complicated combinations of special functions, or indefinite integrals of very simple combinations of special functions.

The strategy employed by the integration code is as follows:

- If computing a definite integral, and both limits are real, and at least one limit is +/-oo, try the G-function method of definite integration first.
- Try to find an antiderivative, using all available methods, ordered by performance (that is try fastest method first, slowest last; in particular polynomial integration is tried first, Meijer G-functions second to last, and heuristic Risch last).
- If still not successful, try G-functions irrespective of the limits.

The option \texttt{meijerg=True, False, None} can be used to, respectively: always use G-function methods and no others, never use G-function methods, or use all available methods (in order as described above). It defaults to None.
Examples

```python
>>> from sympy import integrate, log, exp, oo
>>> from sympy.abc import a, x, y

>>> integrate(x*y, x)
x**2*y/2

>>> integrate(log(x), x)
x*log(x) - x

>>> integrate(log(x), (x, 1, a))
a*log(a) - a + 1

>>> integrate(x)
x**2/2

Terms that are independent of x are dropped by indefinite integration:

```python
>>> from sympy import sqrt

```python
>>> integrate(sqrt(1 + x), (x, 0, x))
2*(x + 1)**(3/2)/3 - 2/3

>>> integrate(sqrt(1 + x), x)
2*(x + 1)**(3/2)/3

>>> integrate(x*y)
Traceback (most recent call last):
... ValueError: specify integration variables to integrate x*y
```

Note that `integrate(x)` syntax is meant only for convenience in interactive sessions and should be avoided in library code.

```python
>>> integrate(x**a*exp(-x), (x, 0, oo)) # same as conds='piecewise'
Piecewise((gamma(a + 1), re(a) > -1),
(Integral(x**a*exp(-x), (x, 0, oo)), True))
```

```python
>>> integrate(x**a*exp(-x), (x, 0, oo), conds='none')
gamma(a + 1)
```

```python
>>> integrate(x**a*exp(-x), (x, 0, oo), conds='separate')
(gamma(a + 1), re(a) > -1)
```

See also:
```
Integral (page 660), Integral.doit (page 662)
sympy.integrals.integrals.line_integrate(field, Curve, variables)
```

Compute the line integral.
Examples

```python
>>> from sympy import Curve, line_integrate, E, ln
>>> from sympy.abc import x, y, t
>>> C = Curve([E**t + 1, E**t - 1], (t, 0, ln(2)))
>>> line_integrate(x + y, C, [x, y])
3*sqrt(2)
```

See also:

- `sympy.integrals.integrals.integrate` (page 657), `Integral` (page 660)

The class `Integral` (page 660) represents an unevaluated integral and has some methods that help in the integration of an expression.

```python
class sympy.integrals.integrals.Integral(function, *symbols, **assumptions)

Represents unevaluated integral.
```

- `is_commutative`
  Returns whether all the free symbols in the integral are commutative.

- `as_sum(n=None, method='midpoint', evaluate=True)`
  Approximates a definite integral by a sum.

  **Parameters**
  - `n`: The number of subintervals to use, optional.
  - `evaluate`: bool
    If False, returns an unevaluated Sum expression. The default is True, evaluate the sum.

**Notes**

These methods of approximate integration are described in [1].

Examples

```python
>>> from sympy import Integral, sin, sqrt
>>> from sympy.abc import x, n
>>> e = Integral(sin(x), (x, 3, 7))
>>> e
Integral(sin(x), (x, 3, 7))
```

For demonstration purposes, this interval will only be split into 2 regions, bounded by [3, 5] and [5, 7].

The left-hand rule uses function evaluations at the left of each interval:
The midpoint rule uses evaluations at the center of each interval:

```python
>>> e.as_sum(2, 'midpoint')
2*sin(4) + 2*sin(6)
```

The right-hand rule uses function evaluations at the right of each interval:

```python
>>> e.as_sum(2, 'right')
2*sin(5) + 2*sin(7)
```

The trapezoid rule uses function evaluations on both sides of the intervals. This is equivalent to taking the average of the left and right hand rule results:

```python
>>> e.as_sum(2, 'trapezoid')
2*sin(5) + sin(3) + sin(7)
```

```python
>>> (e.as_sum(2, 'left') + e.as_sum(2, 'right'))/2 == _
True
```

Here, the discontinuity at $x = 0$ can be avoided by using the midpoint or right-hand method:

```python
>>> e = Integral(1/sqrt(x), (x, 0, 1))
>>> e.as_sum(5, 'right').expand()
8/3 + 4/n + 4/(3*n**2)
```

This shows that the midpoint rule is more accurate, as its error term decays as the square of $n$:

```python
>>> e.as_sum(method='midpoint').expand()
8/3 - 2/(3*_n**2)
```

A symbolic sum is returned with `evaluate=False`:

```python
>>> e.as_sum(n, 'midpoint', evaluate=False)
2*Sum((2*_k/n - 1/n)**2, (_k, 1, n))/n
```
See also:

*Integral.doit* (page 662)

Perform the integration using any hints

**References**

[R547]

*doit(**hints**)*

Perform the integration using any hints given.

**Examples**

```python
>>> from sympy import Piecewise, S
>>> from sympy.abc import x, t
>>> p = x**2 + Piecewise((0, x/t < 0), (1, True))
>>> p.integrate((t, S(4)/5, 1), (x, -1, 1))
1/3
```

See also:

*sympy.integrals.trigonometry.trigintegrate* (page 648), *sympy.integrals.heurisch.heurisch* (page 655), *sympy.integrals.rationaltools.ratint* (page 646)

*as_sum* (page 660)

Approximate the integral using a sum

**Property free_symbols**

This method returns the symbols that will exist when the integral is evaluated. This is useful if one is trying to determine whether an integral depends on a certain symbol or not.

**Examples**

```python
>>> from sympy import Integral
>>> from sympy.abc import x, y
>>> Integral(x, (x, y, 1)).free_symbols
{y}
```

See also:


*principal_value(**kwargs**)*

Compute the Cauchy Principal Value of the definite integral of a real function in the given interval on the real axis.
**Explanation**

In mathematics, the Cauchy principal value, is a method for assigning values to certain improper integrals which would otherwise be undefined.

**Examples**

```python
>>> from sympy import Integral, oo
>>> from sympy.abc import x
>>> Integral(x+1, (x, -oo, oo)).principal_value()
oo
>>> f = 1 / (x**3)
>>> Integral(f, (x, -oo, oo)).principal_value()
0
>>> Integral(f, (x, -10, 10)).principal_value()
0
>>> Integral(f, (x, -10, oo)).principal_value() + Integral(f, (x, -oo, -10)).principal_value()
0
```

**References**

[R548], [R549]

**transform**(x, u)

Performs a change of variables from x to u using the relationship given by x and u which will define the transformations f and F (which are inverses of each other) as follows:

1) If x is a Symbol (which is a variable of integration) then u will be interpreted as some function, f(u), with inverse F(u). This, in effect, just makes the substitution of x with f(x).

2) If u is a Symbol then x will be interpreted as some function, F(x), with inverse f(u). This is commonly referred to as u-substitution.

Once f and F have been identified, the transformation is made as follows:

\[
\int_{a}^{b} x \, dx \rightarrow \int_{F(a)}^{F(b)} f(x) \frac{d}{dx}
\]

where \(F(x)\) is the inverse of \(f(x)\) and the limits and integrand have been corrected so as to retain the same value after integration.
Notes

The mappings, F(x) or f(u), must lead to a unique integral. Linear or rational linear expression, 2*x, 1/x and sqrt(x), will always work; quadratic expressions like x**2 - 1 are acceptable as long as the resulting integrand does not depend on the sign of the solutions (see examples).

The integral will be returned unchanged if x is not a variable of integration. x must be (or contain) only one of the integration variables. If u has more than one free symbol then it should be sent as a tuple (u, uvar) where uvar identifies which variable is replacing the integration variable. XXX can it contain another integration variable?

Examples

>>> from sympy.abc import a, x, u
>>> from sympy import Integral, cos, sqrt

>>> i = Integral(x*cos(x**2 - 1), (x, 0, 1))
transform can change the variable of integration

>>> i.transform(x, u)
Integral(u*cos(u**2 - 1), (u, 0, 1))
transform can perform u-substitution as long as a unique integrand is obtained:

>>> i.transform(x**2 - 1, u)
Integral(cos(u)/2, (u, -1, 0))

This attempt fails because x = +/-sqrt(u+1) and the sign does not cancel out of the integrand:

>>> Integral(cos(x**2 - 1), (x, 0, 1)).transform(x**2 - 1, u)
Traceback (most recent call last):
...
ValueError:
The mapping between F(x) and f(u) did not give a unique integrand.

transform can do a substitution. Here, the previous result is transformed back into the original expression using “u-substitution”:

>>> ui = _
>>> _.transform(sqrt(u + 1), x) == i
True

We can accomplish the same with a regular substitution:

>>> ui.transform(u, x**2 - 1) == i
True

If the x does not contain a symbol of integration then the integral will be returned unchanged. Integral i does not have an integration variable a so no change is made:
When \( u \) has more than one free symbol the symbol that is replacing \( x \) must be identified by passing \( u \) as a tuple:

\[
\text{Integral}(x, (x, 0, 1)).\text{transform}(x, (u + a, u))
\]
\[
\text{Integral}(a + u, (u, -a, 1 - a))
\]

\[
\text{Integral}(x, (x, 0, 1)).\text{transform}(x, (u + a, a))
\]
\[
\text{Integral}(a + u, (a, -u, 1 - u))
\]

See also:

- \textit{sympy.concrete.expr_with_limits.ExprWithLimits.variables} (page 667)
  Lists the integration variables
- \textit{as_dummy} (page 980)
  Replace integration variables with dummy ones

\textit{Integral} (page 660) subclasses from \textit{ExprWithLimits} (page 665), which is a common superclass of \textit{Integral} (page 660) and \textit{Sum} (page 952).

class \textit{sympy.concrete.expr_with_limits.ExprWithLimits}(function, *symbols, **assumptions)

property bound_symbols
Return only variables that are dummy variables.

Examples

\[
\text{Integral}(x**i, (i, 1, 3), (j, 2), k).\text{bound_symbols} = [i, j]
\]

See also:

- \textit{function} (page 666), \textit{limits} (page 667), \textit{free_symbols} (page 665)
- \textit{as_dummy} (page 980)
  Rename dummy variables
- \textit{sympy.integrals.integrals.Integral.transform} (page 663)
  Perform mapping on the dummy variable

property free_symbols
This method returns the symbols in the object, excluding those that take on a specific value (i.e. the dummy symbols).

5.8. Topics
Examples

```python
>>> from sympy import Sum
>>> from sympy.abc import x, y
>>> Sum(x, (x, y, 1)).free_symbols {y}
```

**property function**
Return the function applied across limits.

```python
>>> from sympy import Integral
>>> from sympy.abc import x
>>> Integral(x**2, (x,)).function
x**2
```

**See also:**
limits (page 667), variables (page 667), free_symbols (page 665)

**property has_finite_limits**
Returns True if the limits are known to be finite, either by the explicit bounds, assumptions on the bounds, or assumptions on the variables. False if known to be infinite, based on the bounds. None if not enough information is available to determine.

```python
>>> from sympy import Sum, Integral, Product, oo, Symbol
>>> x = Symbol('x')
>>> Sum(x, (x, 1, 8)).has_finite_limits
True

>>> Integral(x, (x, 1, oo)).has_finite_limits
False

>>> M = Symbol('M')
>>> Sum(x, (x, 1, M)).has_finite_limits

>>> N = Symbol('N', integer=True)
>>> Product(x, (x, 1, N)).has_finite_limits
True
```

**See also:**
has_reversed_limits (page 666)

**property has_reversed_limits**
Returns True if the limits are known to be in reversed order, either by the explicit bounds, assumptions on the bounds, or assumptions on the variables. False if known
to be in normal order, based on the bounds. None if not enough information is available to determine.

**Examples**

```python
>>> from sympy import Sum, Integral, Product, oo, Symbol
>>> x = Symbol('x')
>>> Sum(x, (x, 8, 1)).has_reversed_limits
True

>>> Sum(x, (x, 1, oo)).has_reversed_limits
False

>>> M = Symbol('M')
>>> Integral(x, (x, 1, M)).has_reversed_limits

>>> N = Symbol('N', integer=True, positive=True)
>>> Sum(x, (x, 1, N)).has_reversed_limits
False

>>> Product(x, (x, 2, N)).has_reversed_limits

>>> Product(x, (x, 2, N)).subs(N, N + 2).has_reversed_limits
False
```

See also:

- `sympy.concrete.expr_with_intlimits.ExprWithIntLimits. has_empty_sequence` (page 964)

**property is_number**

Return True if the Sum has no free symbols, else False.

**property limits**

Return the limits of expression.

**Examples**

```python
>>> from sympy import Integral
>>> from sympy.abc import x, i

>>> Integral(x**i, (i, 1, 3)).limits
((i, 1, 3),)
```

See also:

- `function` (page 666), `variables` (page 667), `free_symbols` (page 665)

**property variables**

Return a list of the limit variables.
>>> from sympy import Sum
>>> from sympy.abc import x, i
>>> Sum(x**i, (i, 1, 3)).variables
[i]

See also:
function (page 666), limits (page 667), free_symbols (page 665)
as_dummy (page 980)
   Rename dummy variables
sympy.integrals.integrals.Integral.transform (page 663)
   Perform mapping on the dummy variable

TODO and Bugs

There are still lots of functions that SymPy does not know how to integrate. For bugs related to this module, see https://github.com/sympy/sympy/issues?q=is%3Aissue+is%3Aopen+labelintegrals

Numeric Integrals

SymPy has functions to calculate points and weights for Gaussian quadrature of any order and any precision:
sympy.integrals.quadrature.gauss_legendre(n, n_digits)
   Computes the Gauss-Legendre quadrature [R550] points and weights.

   Parameters
      n :
         The order of quadrature.

      n_digits :
         Number of significant digits of the points and weights to return.

   Returns
      (x, w) : the x and w are lists of points and weights as Floats.
      The points \( x_i \) and weights \( w_i \) are returned as \( (x, w) \) tuple of lists.

   Explanation

The Gauss-Legendre quadrature approximates the integral:

\[
\int_{-1}^{1} f(x) \, dx \approx \sum_{i=1}^{n} w_i f(x_i)
\]

The nodes \( x_i \) of an order \( n \) quadrature rule are the roots of \( P_n \) and the weights \( w_i \) are given by:

\[
w_i = \frac{2}{(1 - x_i^2)(P'_n(x_i))^2}
\]
Examples

```python
>>> from sympy.integrals.quadrature import gauss_legendre
>>> x, w = gauss_legendre(3, 5)
>>> x
[-0.7746, 0, 0.7746]
>>> w
[0.55556, 0.88889, 0.55556]
>>> x, w = gauss_legendre(4, 5)
>>> x
[-0.86114, -0.33998, 0.33998, 0.86114]
>>> w
[0.34785, 0.65215, 0.65215, 0.34785]
```

See also:
- `gauss_laguerre` (page 669),
- `gauss_gen_laguerre` (page 671),
- `gauss_hermite` (page 670),
- `gauss_chebyshev_t` (page 672),
- `gauss_chebyshev_u` (page 673),
- `gauss_jacobi` (page 674),
- `gauss_lobatto` (page 675)

References

[R550], [R551]

```python
from sympy.integrals.quadrature import gauss_legendre
```

Computes the Gauss-Laguerre quadrature [R552] points and weights.

Parameters

- **n**:
  - The order of quadrature.

- **n_digits**:
  - Number of significant digits of the points and weights to return.

Returns

- **(x, w)**: The x and w are lists of points and weights as Floats.
  - The points \(x_i\) and weights \(w_i\) are returned as \((x, w)\) tuple of lists.

Explanation

The Gauss-Laguerre quadrature approximates the integral:

\[
\int_0^\infty e^{-x} f(x) \, dx \approx \sum_{i=1}^{n} w_i f(x_i)
\]

The nodes \(x_i\) of an order \(n\) quadrature rule are the roots of \(L_n\) and the weights \(w_i\) are given by:

\[
w_i = \frac{x_i}{(n + 1)^2 (L_{n+1}(x_i))^2}
\]
Examples

```python
>>> from sympy.integrals.quadrature import gauss_laguerre
>>> x, w = gauss_laguerre(3, 5)
>>> x
[0.41577, 2.2943, 6.2899]
>>> w
[0.71109, 0.27852, 0.010389]
>>> x, w = gauss_laguerre(6, 5)
>>> x
[0.22285, 1.1889, 2.9927, 5.7751, 9.8375, 15.983]
>>> w
[0.45896, 0.417, 0.11337, 0.010399, 0.00026102, 8.9855e-7]
```

See also:
gauss_legendre (page 668), gauss_gen_laguerre (page 671), gauss_hermite (page 670), gauss_chebyshev_t (page 672), gauss_chebyshev_u (page 673), gauss_jacobi (page 674), gauss_lobatto (page 675)

References

[R552], [R553]

**sympy.integrals.quadrature.gauss_hermite**(n, n_digits)

Computes the Gauss-Hermite quadrature [R554] points and weights.

**Parameters**

- **n**:
  
  The order of quadrature.

- **n_digits**:
  
  Number of significant digits of the points and weights to return.

**Returns**

- **(x, w)**: The x and w are lists of points and weights as Floats.

  The points $x_i$ and weights $w_i$ are returned as $(x, w)$ tuple of lists.

**Explanation**

The Gauss-Hermite quadrature approximates the integral:

$$
\int_{-\infty}^{\infty} e^{-x^2} f(x) \, dx \approx \sum_{i=1}^{n} w_i f(x_i)
$$

The nodes $x_i$ of an order $n$ quadrature rule are the roots of $H_n$ and the weights $w_i$ are given by:

$$
w_i = \frac{2^{n-1}n!\sqrt{\pi}}{n^2 (H_{n-1}(x_i))^2}
$$
Examples

```python
>>> from sympy.integrals.quadrature import gauss_hermite
>>> x, w = gauss_hermite(3, 5)
>>> x
[-1.2247, 0, 1.2247]
>>> w
[0.29541, 1.1816, 0.29541]

>>> x, w = gauss_hermite(6, 5)
>>> x
[-2.3506, -1.3358, -0.43608, 0.43608, 1.3358, 2.3506]
>>> w
[0.00453, 0.15707, 0.72463, 0.72463, 0.15707, 0.00453]
```

See also:
- `gauss_legendre` (page 668),
- `gauss_laguerre` (page 669),
- `gauss_gen_laguerre` (page 671),
- `gauss_chebyshev_t` (page 672),
- `gauss_chebyshev_u` (page 673),
- `gauss_jacobi` (page 674),
- `gauss_lobatto` (page 675)

References

[R554], [R555], [R556]

```python
sympy.integrals.quadrature.gauss_gen_laguerre(n, alpha, n_digits)
```

Computes the generalized Gauss-Laguerre quadrature [R557] points and weights.

**Parameters**

- **n**: The order of quadrature.
- **alpha**: The exponent of the singularity, $\alpha > -1$.
- **n_digits**: Number of significant digits of the points and weights to return.

**Returns**

- **(x, w)**: the x and w are lists of points and weights as Floats.
  - The points $x_i$ and weights $w_i$ are returned as $(x, w)$ tuple of lists.

**Explanation**

The generalized Gauss-Laguerre quadrature approximates the integral:

$$\int_0^\infty x^\alpha e^{-x} f(x) \, dx \approx \sum_{i=1}^{n} w_i f(x_i)$$

The nodes $x_i$ of an order $n$ quadrature rule are the roots of $L_n^\alpha$ and the weights $w_i$ are given by:

$$w_i = \frac{\Gamma(\alpha + n)}{n! \Gamma(n) L_{n-1}^\alpha(x_i) L_{n-1}^{\alpha+1}(x_i)}$$
Examples

```python
>>> from sympy import S
>>> from sympy.integrals.quadrature import gauss_gen_laguerre
>>> x, w = gauss_gen_laguerre(3, -S.Half, 5)
>>> x
[0.19016, 1.7845, 5.5253]
>>> w
[1.4493, 0.31413, 0.00906]

>>> x, w = gauss_gen_laguerre(4, 3*S.Half, 5)
>>> x
[0.97851, 2.9904, 6.3193, 11.712]
>>> w
[0.53087, 0.67721, 0.11895, 0.0023152]
```

See also:
gauss_legendre (page 668), gauss_laguerre (page 669), gauss_hermite (page 670),
gauss_chebyshev_t (page 672), gauss_chebyshev_u (page 673),
gauss_jacobi (page 674), gauss_lobatto (page 675)

References

[R557], [R558]
sympy.integrals.quadrature.**gauss_chebyshev_t**(n, n_digits)
Computes the Gauss-Chebyshev quadrature [R559] points and weights of the first kind.

**Parameters**

- **n** :
  The order of quadrature.

- **n_digits** :
  Number of significant digits of the points and weights to return.

**Returns**

- **(x, w)** : the x and w are lists of points and weights as Floats.
  The points $x_i$ and weights $w_i$ are returned as $(x, w)$ tuple of lists.

**Explanation**

The Gauss-Chebyshev quadrature of the first kind approximates the integral:

$$
\int_{-1}^{1} \frac{1}{\sqrt{1 - x^2}} f(x) \, dx \approx \sum_{i=1}^{n} w_i f(x_i)
$$

The nodes $x_i$ of an order $n$ quadrature rule are the roots of $T_n$ and the weights $w_i$ are given by:

$$
w_i = \frac{\pi}{n}
$$
Examples

```python
>>> from sympy.integrals.quadrature import gauss_chebyshev_t
>>> x, w = gauss_chebyshev_t(3, 5)
>>> x
[0.86602, 0, -0.86602]
>>> w
[1.0472, 1.0472, 1.0472]

>>> x, w = gauss_chebyshev_t(6, 5)
>>> x
[0.96593, 0.70711, 0.25882, -0.25882, -0.70711, -0.96593]
>>> w
[0.5236, 0.5236, 0.5236, 0.5236, 0.5236, 0.5236]
```

See also:

- `gauss_legendre` (page 668), `gauss_laguerre` (page 669), `gauss_hermite` (page 670), `gauss_gen_laguerre` (page 671), `gauss_chebyshev_u` (page 673), `gauss_jacobi` (page 674), `gauss_lobatto` (page 675)

References

[R559], [R560]

`sympy.integrals.quadrature.gauss_chebyshev_u(n, n_digits)`

Computes the Gauss-Chebyshev quadrature [R561] points and weights of the second kind.

**Parameters**

- `n`: the order of quadrature
- `n_digits`: number of significant digits of the points and weights to return

**Returns**

- `(x, w)`: the `x` and `w` are lists of points and weights as Floats.

  The points `x_i` and weights `w_i` are returned as `(x, w)` tuple of lists.

**Explanation**

The Gauss-Chebyshev quadrature of the second kind approximates the integral:

\[
\int_{-1}^{1} \sqrt{1-x^2} f(x) \, dx \approx \sum_{i=1}^{n} w_i f(x_i)
\]

The nodes `x_i` of an order `n` quadrature rule are the roots of `U_n` and the weights `w_i` are given by:

\[
w_i = \frac{\pi}{n+1} \sin^2 \left( \frac{i}{n+1} \pi \right)
\]
Examples

```python
>>> from sympy.integrals.quadrature import gauss_chebyshev_u
>>> x, w = gauss_chebyshev_u(3, 5)
>>> x
[0.70711, 0, -0.70711]
>>> w
[0.3927, 0.7854, 0.3927]

>>> x, w = gauss_chebyshev_u(6, 5)
>>> x
[0.90097, 0.62349, 0.22252, -0.22252, -0.62349, -0.90097]
>>> w
[0.084489, 0.27433, 0.42658, 0.42658, 0.27433, 0.084489]
```

See also:

- `gauss_legendre` (page 668)
- `gauss_laguerre` (page 669)
- `gauss_hermite` (page 670)
- `gauss_gen_laguerre` (page 671)
- `gauss_chebyshev_t` (page 672)
- `gauss_jacobi` (page 674)
- `gauss_lobatto` (page 675)

References

[R561], [R562]

sympy.integrals.quadrature.gauss_jacobi(n, alpha, beta, n_digits)

Computes the Gauss-Jacobi quadrature [R563] points and weights.

**Parameters**

- `n`: the order of quadrature
- `alpha`: the first parameter of the Jacobi Polynomial, $\alpha > -1$
- `beta`: the second parameter of the Jacobi Polynomial, $\beta > -1$
- `n_digits`: number of significant digits of the points and weights to return

**Returns**

- `(x, w)`: the x and w are lists of points and weights as Floats.
  The points $x_i$ and weights $w_i$ are returned as $(x, w)$ tuple of lists.

**Explanation**

The Gauss-Jacobi quadrature of the first kind approximates the integral:

$$
\int_{-1}^{1} (1-x)^{\alpha}(1+x)^{\beta} f(x) \, dx \approx \sum_{i=1}^{n} w_i f(x_i)
$$

The nodes $x_i$ of an order $n$ quadrature rule are the roots of $P_n^{(\alpha,\beta)}$ and the weights $w_i$ are given by:

$$
w_i = -\frac{2n + \alpha + \beta + 2 \Gamma(n + \alpha + 1)\Gamma(n + \beta + 1)}{n + \alpha + \beta + 1 \Gamma(n + \alpha + \beta + 1)(n + 1)!} \frac{2^{\alpha+\beta}}{P_n'(x_i)P_n^{(\alpha,\beta)}(x_i)}
$$
Examples

```python
>>> from sympy import S
>>> from sympy.integrals.quadrature import gauss_jacobi
>>> x, w = gauss_jacobi(3, S.Half, -S.Half, 5)
>>> x
[-0.90097, -0.22252, 0.62349]
>>> w
[1.7063, 1.0973, 0.33795]
```

```python
>>> x, w = gauss_jacobi(6, 1, 1, 5)
>>> x
[-0.87174, -0.5917, -0.2093, 0.2093, 0.5917, 0.87174]
>>> w
[0.050584, 0.22169, 0.39439, 0.39439, 0.22169, 0.050584]
```

See also:
- `gauss_legendre` (page 668),
- `gauss_laguerre` (page 669),
- `gauss_hermite` (page 670),
- `gauss_gen_laguerre` (page 671),
- `gauss_chebyshev_t` (page 672),
- `gauss_chebyshev_u` (page 673),
- `gauss_lobatto` (page 675)

References

[R563], [R564], [R565]

```python
sympy.integrals.quadrature.gauss_lobatto(n, n_digits)
```

Computes the Gauss-Lobatto quadrature [R566] points and weights.

**Parameters**
- `n`: the order of quadrature
- `n_digits`: number of significant digits of the points and weights to return

**Returns**
- `(x, w)`: the `x` and `w` are lists of points and weights as Floats.
  The points $x_i$ and weights $w_i$ are returned as `(x, w)` tuple of lists.

**Explanation**

The Gauss-Lobatto quadrature approximates the integral:

$$
\int_{-1}^{1} f(x) \, dx \approx \sum_{i=1}^{n} w_i f(x_i)
$$

The nodes $x_i$ of an order $n$ quadrature rule are the roots of $P_{n-1}(n-1)$ and the weights $w_i$ are given by:

$$
\begin{align*}
    w_i &= \frac{2}{n(n-1)} \frac{1}{[P_{n-1}(x_i)]^2}, \quad x \neq \pm 1 \\
    w_i &= \frac{2}{n(n-1)}, \quad x = \pm 1
\end{align*}
$$
Examples

```python
>>> from sympy.integrals.quadrature import gauss_lobatto
>>> x, w = gauss_lobatto(3, 5)
>>> x
[-1, 0, 1]
>>> w
[0.33333, 1.3333, 0.33333]
>>> x, w = gauss_lobatto(4, 5)
>>> x
[-1, -0.44721, 0.44721, 1]
>>> w
[0.16667, 0.83333, 0.83333, 0.16667]
```

See also:
- `gauss_legendre` (page 668),
- `gauss_laguerre` (page 669),
- `gauss_gen_laguerre` (page 671),
- `gauss_hermite` (page 670),
- `gauss_chebyshev_t` (page 672),
- `gauss_chebyshev_u` (page 673),
- `gauss_jacobi` (page 674)

References

[R566], [R567]

Integration over Polytopes

The `intpoly` module in SymPy implements methods to calculate the integral of a polynomial over 2/3-Polytopes. Uses evaluation techniques as described in Chin et al. (2015) [1].

The input for 2-Polytope or Polygon uses the already existing `Polygon` data structure in SymPy. See `sympy.geometry.polygon` (page 2348) for how to create a polygon.

For the 3-Polytope or Polyhedron, the most economical representation is to specify a list of vertices and then to provide each constituting face(`Polygon`) as a list of vertex indices.

For example, consider the unit cube. Here is how it would be represented.

```python
unit_cube = [[(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1),
 (1, 1, 0), (1, 1, 1)],
 [3, 7, 6, 2], [1, 5, 7, 3], [5, 4, 6, 7], [0, 4, 5, 1], [2, 0, 1, 3], [2, 6, 4, 0]]
```

Here, the first sublist is the list of vertices. The other smaller lists such as [3, 7, 6, 2] represent a 2D face of the polyhedra with vertices having index 3, 7, 6 and 2 in the first sublist(in that order).

Principal method in this module is `polytope_integrate()` (page 678)

- `polytope_integrate(Polygon((0, 0), (0, 1), (1, 0)), x)` returns the integral of $x$ over the triangle with vertices (0,0), (0,1) and (1,0)
- `polytope_integrate(unit_cube, x + y + z)` returns the integral of $x + y + z$ over the unit cube.
References


PDF link: http://dilbert.engr.ucdavis.edu/~suku/quadrature/cls-integration.pdf

Examples

For 2D Polygons

Single Polynomial:

```python
from sympy.integrals.intpoly import *
init_printing(use_unicode=False, wrap_line=False)
polytope_integrate(Polygon((0, 0), (0, 1), (1, 0)), x)
1/6
polytope_integrate(Polygon((0, 0), (0, 1), (1, 0)), x + x*y + y**2)
7/24
```

List of specified polynomials:

```python
polytope_integrate(Polygon((0, 0), (0, 1), (1, 0)), [3, x*y + y**2, x**4], max_degree=4)
{3: 3/2, x : 1/30, x*y + y : 1/8}
polytope_integrate(Polygon((0, 0), (0, 1), (1, 0)), [1.125, x, x**2, 6.89*x**3, x*y + y**2, x**4], max_degree=4)
{1.125: 9/16, x: 1/6, x : 1/12, x*y + y : 1/8}
```

Computing all monomials up to a maximum degree:

```python
polytope_integrate(Polygon((0, 0), (0, 1), (1, 0)), max_degree=3)
{0: 0, 1: 1/2, x: 1/6, x: 1/12, x: 1/20, y: 1/6, y: 1/12, y: 1/20, x*y: 1/24, x*y: 1/60, x*y: 1/60}
```

For 3-Polytopes/Polyhedra

Single Polynomial:

```python
from sympy.integrals.intpoly import *
cube = [(0, 0, 0), (0, 0, 5), (0, 5, 0), (0, 5, 5), (5, 0, 0), (5, 0, 5), (5, 5, 0), (5, 5, 5), [2, 6, 7, 3], [3, 7, 5, 1], [7, 6, 4, 5], [1, 5, 4, 0], [3, 1, 0, 2], [0, 4, 6, 2]]
polytope_integrate(cube, x**2 + y**2 + z**2 + x*y + y*z + x*z)
-21875/4
```

(continues on next page)
octahedron = [[[S(-1) / sqrt(2), 0, 0], (0, S(1) / sqrt(2), 0), (0, 0, S(-1) / sqrt(2))],
               [(0, 0, S(1) / sqrt(2)), (0, 0, S(1) / sqrt(2)), (S(1) / sqrt(2), 0, 0)],
               [(3, 4, 5), [3, 5, 1], [3, 1, 0], [3, 0, 4], [4, 0, 2], [4, 0, -2], 5], [2, 0, 1], [5, 2, 1]]

>>> polytope_integrate(octahedron, x**2 + y**2 + z**2 + x*y + y*z + x*z)

\[\frac{1}{2} - \frac{1}{20}\]

List of specified polynomials:

```python
>>> polytope_integrate(Polygon((0, 0), (0, 1), (1, 0), [3, x*y + y**2, x**4], max_degree=4)
{3: 3/2, x: 1/30, x*y + y: 1/8}
>>> polytope_integrate(Polygon((0, 0), (0, 1), (1, 0), [1.125, x, x**2, 6.89*x**3, x*y + y**2, x**4], max_degree=4)
{1.125: 9/16, x: 1/6, x: 1/12, 6.89*x: ----, x: 1/30, x**y + y: 1/8} 2000
```

Computing all monomials up to a maximum degree:

```python
>>> polytope_integrate(Polygon((0, 0), (0, 1), (1, 0), max_degree=3)
{0: 0, 1: 1/2, x: 1/6, x: 1/12, x: 1/20, y: 1/6, y: 1/12, y: 1/20, x*y: 1/24, x*y: 1/60, x*y: 1/60}
```

**API reference**

```python
sympy.integrals.intpoly.polytope_integrate(poly, expr=None, *, clockwise=False, max_degree=None)
```

Integrates polynomials over 2/3-Polytopes.

**Parameters**

- `poly` : The input Polygon.
- `expr` : The input polynomial.
- `clockwise` : Binary value to sort input points of 2-Polytope clockwise.(Optional)
- `max_degree` : The maximum degree of any monomial of the input polynomial.(Optional)
Explanation

This function accepts the polytope in `poly` and the function in `expr` (uni/bi/trivariate polynomials are implemented) and returns the exact integral of `expr` over `poly`.

Examples

```python
>>> from sympy.abc import x, y
>>> from sympy import Point, Polygon
>>> from sympy.integrals.intpoly import polytope_integrate
>>> polygon = Polygon(Point(0, 0), Point(0, 1), Point(1, 1), Point(1, 0))
>>> polys = [1, x, y, x*y, x**2*y, x*y**2]
>>> expr = x*y
>>> polytope_integrate(polygon, expr)
1/4
>>> polytope_integrate(polygon, polys, max_degree=3)
{1: 1, x: 1/2, y: 1/2, x*y: 1/4, x*y**2: 1/6, x**2*y: 1/6}
```

Series

The series module implements series expansions as a function and many related functions.

Contents

Series Expansions

Limits

The main purpose of this module is the computation of limits. sympy.series.limits.limit(e, z, z0, dir='+')

Computes the limit of `e(z)` at the point `z0`.

Parameters

- `e` : expression, the limit of which is to be taken
- `z` : symbol representing the variable in the limit.
  Other symbols are treated as constants. Multivariate limits are not supported.
- `z0` : the value toward which `z` tends. Can be any expression, including oo and -oo.
- `dir` : string, optional (default: “+”)
  The limit is bi-directional if `dir=’+-’`, from the right (`z->z0+`) if `dir=’+’`, and from the left (`z->z0-`) if `dir=’-’`. For infinite `z0` (oo or -oo), the `dir` argument is determined from the direction of the infinity (i.e., `dir=’-’` for oo).
Examples

```python
>>> from sympy import limit, sin, oo
>>> from sympy.abc import x
>>> limit(sin(x)/x, x, 0)
1
>>> limit(1/x, x, 0) # default dir='+'
oo
>>> limit(1/x, x, 0, dir='-')
-oo
>>> limit(1/x, x, 0, dir='+-')
zoo
>>> limit(1/x, x, oo)
0
```

Notes

First we try some heuristics for easy and frequent cases like “x”, “1/x”, “x**2” and similar, so that it’s fast. For all other cases, we use the Gruntz algorithm (see the gruntz() function).

See also:

`limit_seq` (page 718)
returns the limit of a sequence.

class sympy.series.limits.Limit(e, z, z0, dir='+')
Represents an unevaluated limit.

Examples

```python
>>> from sympy import limit, sin
>>> from sympy.abc import x
>>> Limit(sin(x)/x, x, 0)
Limit(sin(x)/x, x, 0, dir='+')
>>> Limit(1/x, x, 0, dir='-')
Limit(1/x, x, 0, dir='-')
```

doit(**hints)
Evaluates the limit.

Parameters

- **deep**: bool, optional (default: True)
  Invoke the doit method of the expressions involved before taking the limit.

- **hints**: optional keyword arguments
  To be passed to doit methods; only used if deep is True.

As is explained above, the workhorse for limit computations is the function gruntz() which implements Gruntz’ algorithm for computing limits.
The Gruntz Algorithm

This section explains the basics of the algorithm used for computing limits. Most of the time the limit() function should just work. However it is still useful to keep in mind how it is implemented in case something does not work as expected.

First we define an ordering on functions. Suppose \( f(x) \) and \( g(x) \) are two real-valued functions such that \( \lim_{x \to \infty} f(x) = \infty \) and similarly \( \lim_{x \to \infty} g(x) = \infty \). We shall say that \( f(x) \) dominates \( g(x) \), written \( f(x) \succ g(x) \), if for all \( a, b \in \mathbb{R}_{>0} \) we have \( \lim_{x \to \infty} \frac{f(x)^a}{g(x)^b} = \infty \). We also say that \( f(x) \) and \( g(x) \) are of the same comparability class if neither \( f(x) \succ g(x) \) nor \( g(x) \succ f(x) \) and shall denote it as \( f(x) \sim g(x) \).

Note that whenever \( a, b \in \mathbb{R}_{>0} \) then \( af(x)^b = f(x) \), and we shall use this to extend the definition of \( \succ \) to all functions which tend to 0 or \( \pm \infty \) as \( x \to \infty \). Thus we declare that \( f(x) \sim 1/f(x) \) and \( f(x) \sim -f(x) \).

It is easy to show the following examples:

- \( e^x \succ x^m \)
- \( e^{x^2} \succ e^{mx} \)
- \( e^{e^x} \succ e^{x^m} \)
- \( x^m \succ x^n \)
- \( e^{x+1/2} \succ e^{x+\log x} \succ e^x \).

From the above definition, it is possible to prove the following property:

Suppose \( \omega, g_1, g_2, \ldots \) are functions of \( x \), \( \lim_{x \to \infty} \omega = 0 \) and \( \omega \succ g_i \) for all \( i \). Let \( c_1, c_2, \ldots \in \mathbb{R} \) with \( c_1 < c_2 < \cdots \).

Then \( \lim_{x \to \infty} \sum_i g_i \omega^{c_i} = \lim_{x \to \infty} g_1 \omega^{c_1} \).

For \( g_1 = g \) and \( \omega \) as above we also have the following easy result:

- \( \lim_{x \to \infty} g \omega^c = 0 \) for \( c > 0 \)
- \( \lim_{x \to \infty} g \omega^c = \pm \infty \) for \( c < 0 \), where the sign is determined by the (eventual) sign of \( g \)
- \( \lim_{x \to \infty} g \omega^0 = \lim_{x \to \infty} g \).

Using these results yields the following strategy for computing \( \lim_{x \to \infty} f(x) \):

1. Find the set of most rapidly varying subexpressions (MRV set) of \( f(x) \). That is, from the set of all subexpressions of \( f(x) \), find the elements that are maximal under the relation \( \succ \).
2. Choose a function \( \omega \) that is in the same comparability class as the elements in the MRV set, such that \( \lim_{x \to \infty} \omega = 0 \).
3. Expand \( f(x) \) as a series in \( \omega \) in such a way that the antecedents of the above theorem are satisfied.
4. Apply the theorem and conclude the computation of \( \lim_{x \to \infty} f(x) \), possibly by recursively working on \( g_1(x) \).
Notes

This exposition glossed over several details. Many are described in the file gruntz.py, and all can be found in Gruntz’ very readable thesis. The most important points that have not been explained are:

1. Given \( f(x) \) and \( g(x) \), how do we determine if \( f(x) \succ g(x) \), \( g(x) \succ f(x) \) or \( g(x) \sim f(x) \)?
2. How do we find the MRV set of an expression?
3. How do we compute series expansions?
4. Why does the algorithm terminate?

If you are interested, be sure to take a look at Gruntz Thesis.

Reference

```python
sympy.series.gruntz.gruntz(e, z, z0, dir='+')
```

Compute the limit of \( e(z) \) at the point \( z_0 \) using the Gruntz algorithm.

**Explanation**

\( z_0 \) can be any expression, including oo and -oo.

For \( \text{dir} = "+" \) (default) it calculates the limit from the right \( (z \rightarrow z_0^+) \) and for \( \text{dir} = "-" \) the limit from the left \( (z \rightarrow z_0^-) \). For infinite \( z_0 \) (oo or -oo), the dir argument does not matter.

This algorithm is fully described in the module docstring in the gruntz.py file. It relies heavily on the series expansion. Most frequently, gruntz() is only used if the faster limit() function (which uses heuristics) fails.

```python
sympy.series.gruntz.compare(a, b, x)
```

Returns "<" if \( a < b \), "=" for \( a == b \), "=" for \( a > b \)

```python
sympy.series.gruntz.rewrite(e, Omega, x, wsym)
```

\( e(x) \) ... the function Omega ... the mrv set wsym ... the symbol which is going to be used for w

Returns the rewritten \( e \) in terms of \( w \) and \( \log(w) \). See test_rewrite1() for examples and correct results.

```python
sympy.series.gruntz.build_expression_tree(Omega, rewrites)
```

Helper function for rewrite.

We need to sort Omega (mrv set) so that we replace an expression before we replace any expression in terms of which it has to be rewritten:

```
 e1 ---> e2 ---> e3
 \
 \
 -> e4
```

Here we can do \( e_1, e_2, e_3, e_4 \) or \( e_1, e_2, e_4, e_3 \). To do this we assemble the nodes into a tree, and sort them by height.

This function builds the tree, rewrites then sorts the nodes.
sympy.series.gruntz.mrv_leadterm(e, x)

Returns \( (c_0, e_0) \) for \( e \).

sympy.series.gruntz.calculate_series(e, x, logx=None)

Calculates at least one term of the series of \( e \) in \( x \).

This is a place that fails most often, so it is in its own function.

sympy.series.gruntz.limitinf(e, x)

Limit \( e(x) \) for \( x \to \infty \).

sympy.series.gruntz.sign(e, x)

Returns a sign of an expression \( e(x) \) for \( x \to \infty \).

\[
\begin{align*}
& e > 0 \text{ for } x \text{ sufficiently large } \ldots \ 1 \\
& e = 0 \text{ for } x \text{ sufficiently large } \ldots \ 0 \\
& e < 0 \text{ for } x \text{ sufficiently large } \ldots \ -1
\end{align*}
\]

The result of this function is currently undefined if \( e \) changes sign arbitrarily often for arbitrarily large \( x \) (e.g. \( \sin(x) \)).

Note that this returns zero only if \( e \) is \textit{constantly} zero for \( x \) sufficiently large. [If \( e \) is constant, of course, this is just the same thing as the sign of \( e \).]

sympy.series.gruntz.mrv(e, x)

Returns a SubsSet of most rapidly varying (mrv) subexpressions of \( 'e' \), and \( e \) rewritten in terms of these.

sympy.series.gruntz.mrv_max1(f, g, exps, x)

Computes the maximum of two sets of expressions \( f \) and \( g \), which are in the same comparability class, i.e. \( \text{mrv\_max1()} \) compares two elements of \( f \) and \( g \) and returns the set, which is in the higher comparability class of the union of both, if they have the same order of variation. Also returns \( \text{exp}s \), with the appropriate substitutions made.

sympy.series.gruntz.mrv_max3(f, expsf, g, expsg, union, expsboth, x)

Computes the maximum of two sets of expressions \( f \) and \( g \), which are in the same comparability class, i.e. \( \text{max()} \) compares two elements of \( f \) and \( g \) and returns either \( (f, \text{expsf}) \) [if \( f \) is larger], \( (g, \text{expsg}) \) [if \( g \) is larger] or \( \text{(union, expsboth)} \) [if \( f, g \) are of the same class].

\textbf{class} sympy.series.gruntz.SubsSet

Stores (expr, dummy) pairs, and how to rewrite expr-s.

\textbf{Explanation}

The gruntz algorithm needs to rewrite certain expressions in term of a new variable \( w \). We cannot use \text{subs}, because it is just too smart for us. For example:

\[
\begin{align*}
& \Omega = [\exp(\exp(-p) - \exp(-p))/(1 - 1/p), \exp(\exp(p))] \\
& 02 = [\exp(-exp(-p)) + \exp(-exp(-p)*exp(p)/(1 - 1/p))/w, 1/w] \\
& e = \exp(\exp(-p) - \exp(-p))/(1 - 1/p) - \exp(\exp(p)) \\
& e . \text{subs}(\Omega[0],02[0]).\text{subs}(\Omega[1],02[1]) \\
& \phantom{e} -1/w + \exp(exp(p)*exp(-exp(-p))/(1 - 1/p))
\end{align*}
\]

is really not what we want!

So we do it the hard way and keep track of all the things we potentially want to substitute by dummy variables. Consider the expression:
\[ \exp(x - \exp(-x)) + \exp(x) + x. \]

The mrv set is \{\exp(x), \exp(-x), \exp(x - \exp(-x))\}. We introduce corresponding dummy variables \(d_1, d_2, d_3\) and rewrite:

\[ d_3 + d_1 + x. \]

This class first of all keeps track of the mapping expr->variable, i.e. will at this stage be a dictionary:

\[
\{\exp(x): d_1, \exp(-x): d_2, \exp(x - \exp(-x)): d_3\}.
\]

[It turns out to be more convenient this way round.] But sometimes expressions in the mrv set have other expressions from the mrv set as subexpressions, and we need to keep track of that as well. In this case, \(d_3\) is really \(\exp(x - d_2)\), so rewrites at this stage is:

\[
\{d_3: \exp(x-d_2)\}.
\]

The function rewrite uses all this information to correctly rewrite our expression in terms of \(w\). In this case \(w\) can be chosen to be \(\exp(-x)\), i.e. \(d_2\). The correct rewriting then is:

\[ \exp(-w)/w + 1/w + x. \]

**copy()**

Create a shallow copy of SubsSet

**do_subs(e)**

Substitute the variables with expressions

**meets(s2)**

Tell whether or not self and s2 have non-empty intersection

**union(s2, exps=None)**

Compute the union of self and s2, adjusting exps

**More Intuitive Series Expansion**

This is achieved by creating a wrapper around Basic.series(). This allows for the use of series(x*cos(x),x), which is possibly more intuitive than (x*cos(x)).series(x).

**Examples**

```python
>>> from sympy import Symbol, cos, series
>>> x = Symbol('x')
>>> series(cos(x),x)
1 - x**2/2 + x**4/24 + O(x**6)
```
SymPy Documentation, Release 1.12.1

Reference

sympy.series.series.series(expr, x=None, x0=0, n=6, dir='+')

Series expansion of expr around point \( x = x_0 \).

**Parameters**

- **expr**: Expression
  - The expression whose series is to be expanded.
- **x**: Symbol
  - It is the variable of the expression to be calculated.
- **x0**: Value
  - The value around which \( x \) is calculated. Can be any value from \(-\infty\) to \(\infty\).
- **n**: Value
  - The number of terms upto which the series is to be expanded.
- **dir**: String, optional
  - The series-expansion can be bi-directional. If \( \text{dir}="+" \), then \((x-x0+)\). If \( \text{dir}="-" \), then \((x->x0-)\). For infinite \( \text{\`\`x0 (oo or -oo)\} \), the \( \text{dir} \) argument is determined from the direction of the infinity (i.e., \( \text{dir}="-" \) for \( \infty \)).

**Returns**

- Expr
  - Series expansion of the expression about \( x_0 \)

**Examples**

```python
>>> from sympy import series, tan, oo
>>> from sympy.abc import x
>>> f = tan(x)
>>> series(f, x, 2, 6, "+")
tan(2) + (1 + tan(2)**2)**(x - 2) + (x - 2)**2*(tan(2)**3 + tan(2)) +
(x - 2)**3*(1/3 + 4*tan(2)**2/3 + tan(2)**4) + (x - 2)**4*(tan(2)**5 +
5*tan(2)**3/3 + 2*tan(2)/3) + (x - 2)**5*(2/15 + 17*tan(2)**2/15 +
2*tan(2)**4 + tan(2)**6) + O((x - 2)**6, (x, 2))
```

```python
>>> series(f, x, 2, 3, "-")
tan(2) + (2 - x)**(-tan(2)**2 - 1) + (2 - x)**2*(tan(2)**3 + tan(2)) +
0((x - 2)**3, (x, 2))
```

```python
>>> series(f, x, 2, oo, "+")
Traceback (most recent call last):
...
TypeError: 'Infinity' object cannot be interpreted as an integer
```

**See also:**

5.8. Topics 685
**SymPy Documentation, Release 1.12.1**

**SymPy.core.expr.Expr.series** *(page 1025)*

See the docstring of Expr.series() for complete details of this wrapper.

### Order Terms

This module also implements automatic keeping track of the order of your expansion.

### Examples

```python
>>> from sympy import Symbol, Order
>>> x = Symbol('x')
>>> Order(x) + x**2
0(x)
>>> Order(x) + 1
1 + 0(x)
```

### Reference

**class sympy.series.order.Order** *(expr, *args, **kwargs)*

Represents the limiting behavior of some function.

### Explanation

The order of a function characterizes the function based on the limiting behavior of the function as it goes to some limit. Only taking the limit point to be a number is currently supported. This is expressed in big O notation [R767].

The formal definition for the order of a function \( g(x) \) about a point \( a \) is such that \( g(x) = O(f(x)) \) as \( x \to a \) if and only if there exists a \( \delta > 0 \) and an \( M > 0 \) such that \( |g(x)| \leq M|f(x)| \) for \( |x - a| < \delta \). This is equivalent to \( \limsup_{x \to a} |g(x)/f(x)| < \infty \).

Let’s illustrate it on the following example by taking the expansion of \( \sin(x) \) about 0:

\[
\sin(x) = x - x^3/3! + O(x^5)
\]

where in this case \( O(x^5) = x^5/5! - x^7/7! + \cdots \). By the definition of \( O \), there is a \( \delta > 0 \) and an \( M \) such that:

\[
|x^5/5! - x^7/7! + \cdots| \leq M|x^5| \text{ for } |x| < \delta
\]

or by the alternate definition:

\[
\lim_{x \to 0} |(x^5/5! - x^7/7! + \cdots)/x^5| < \infty
\]

which surely is true, because

\[
\lim_{x \to 0} |(x^5/5! - x^7/7! + \cdots)/x^5| = 1/5!
\]

As it is usually used, the order of a function can be intuitively thought of representing all terms of powers greater than the one specified. For example, \( O(x^3) \) corresponds to any terms proportional to \( x^3, x^4, \ldots \) and any higher power. For a polynomial, this leaves terms proportional to \( x^2, x \) and constants.
Examples

```python
>>> from sympy import O, oo, cos, pi
>>> from sympy.abc import x, y

>>> O(x + x**2)
O(x)
>>> O(x + x**2, (x, 0))
O(x)
>>> O(x + x**2, (x, oo))
O(x**2, (x, oo))

>>> O(1 + x*y)
O(1, x, y)
>>> O(1 + x*y, (x, 0), (y, 0))
O(1 + x*y, (x, oo), (y, oo))

>>> 0(1) in 0(1, x)
True
>>> 0(1, x) in 0(1)
False
>>> 0(x) in 0(1, x)
True
>>> 0(x**2) in 0(x)
True

>>> 0(x)*x
O(x**2)
>>> 0(x) - 0(x)
O(x)
>>> 0(cos(x))
O(1)
>>> 0(cos(x), (x, pi/2))
O(x - pi/2, (x, pi/2))
```

Notes

In \(O(f(x), x)\) the expression \(f(x)\) is assumed to have a leading term. \(O(f(x), x)\) is automatically transformed to \(O(f(x).as\_leading\_term(x), x)\).

- \(0(expr*f(x), x)\) is \(0(f(x), x)\)
- \(0(expr, x)\) is \(0(1)\)
- \(0(0, x)\) is \(0\).

Multivariate \(O\) is also supported:

- \(O(f(x, y), x, y)\) is transformed to \(O(f(x, y).as\_leading\_term(x,y).as\_leading\_term(y), x, y)\)
In the multivariate case, it is assumed the limits w.r.t. the various symbols commute.
If no symbols are passed then all symbols in the expression are used and the limit point
is assumed to be zero.

References

[R767]

contains(expr)

Return True if expr belongs to Order(self.expr, *self.variables). Return False if self
belongs to expr. Return None if the inclusion relation cannot be determined (e.g.
when self and expr have different symbols).

Series Acceleration

TODO

Reference

sympy.series.acceleration.richardson(A, k, n, N)

Calculate an approximation for lim k->oo A(k) using Richardson extrapolation with the
terms A(n), A(n+1), ..., A(n+N+1). Choosing N ~ 2^n often gives good results.

Examples

A simple example is to calculate exp(1) using the limit definition. This limit converges
slowly; n = 100 only produces two accurate digits:

```python
>>> from sympy.abc import n
>>> e = (1 + 1/n)**n
>>> print(round(e.subs(n, 100).evalf(), 10))
2.7048138294
```

Richardson extrapolation with 11 appropriately chosen terms gives a value that is accu-
rate to the indicated precision:

```python
>>> from sympy import E
>>> from sympy.series.acceleration import richardson
>>> print(round(richardson(e, n, 10, 20).evalf(), 10))
2.7182818285
>>> print(round(E.evalf(), 10))
2.7182818285
```

Another useful application is to speed up convergence of series. Computing 100 terms
of the zeta(2) series 1/k**2 yields only two accurate digits:
>> from sympy import k, n
>> from sympy import Sum
>> A = Sum(k**2, (k, 1, n))
>> print(round(A.subs(n, 100).evalf(), 10))
1.6349839002

Richardson extrapolation performs much better:

>> from sympy import pi
>> print(round(richardson(A, n, 10, 20).evalf(), 10))
1.6449340668
>> print(round(((pi**2)/6).evalf(), 10))  # Exact value
1.6449340668

sympy.series.acceleration.shanks(A, k, n, m=1)
Calculate an approximation for \( \lim_{k \to \infty} A(k) \) using the \( n \)-term Shanks transformation \( S(A)(n) \). With \( m > 1 \), calculate the \( m \)-fold recursive Shanks transformation \( S(S(\ldots S(A)\ldots))(n) \).

The Shanks transformation is useful for summing Taylor series that converge slowly near a pole or singularity, e.g. for \( \log(2) \):

>> from sympy import k, n
>> from sympy import Sum, Integer
>> from sympy.series.acceleration import shanks
>> A = Sum(Integer(-1)**(k+1)/k, (k, 1, n))
>> print(round(A.subs(n, 100).doit().evalf(), 10))
0.6881721793
>> print(round(shanks(A, n, 25).evalf(), 10))
0.6931396564
>> print(round(shanks(A, n, 25, 5).evalf(), 10))
0.6931471806

The correct value is 0.6931471805599453094172321215.

Residues

TODO

Reference

sympy.series.residues.residue(expr, x, x0)

Finds the residue of \( expr \) at the point \( x=x0 \).

The residue is defined as the coefficient of \( 1/(x-x0) \) in the power series expansion about \( x=x0 \).
Examples

```python
>>> from sympy import Symbol, residue, sin
>>> x = Symbol("x")
>>> residue(1/x, x, 0)
1
>>> residue(1/x**2, x, 0)
0
>>> residue(2/sin(x), x, 0)
2
```

This function is essential for the Residue Theorem [1].

References

[R768]

Sequences

A sequence is a finite or infinite lazily evaluated list.

`sympy.series.sequences.sequence(seq, limits=None)`

Returns appropriate sequence object.

Explanation

If `seq` is a SymPy sequence, returns `SeqPer` (page 693) object otherwise returns `SeqFormula` (page 692) object.

Examples

```python
>>> from sympy import sequence
>>> from sympy.abc import n
>>> sequence(n**2, (n, 0, 5))
SeqFormula(n**2, (n, 0, 5))
>>> sequence((1, 2, 3), (n, 0, 5))
SeqPer((1, 2, 3), (n, 0, 5))
```

See also:

`sympy.series.sequences.SeqPer` (page 693), `sympy.series.sequences.SeqFormula` (page 692)
Sequences Base

class sympy.series.sequences.SeqBase(*args)

Base class for sequences

coeff(pt)

Returns the coefficient at point pt

coeff_mul(other)

Should be used when other is not a sequence. Should be defined to define custom behaviour.

Examples

>>> from sympy import SeqFormula

>>> from sympy import n

>>> SeqFormula(n**2).coeff_mul(2)
SeqFormula(2*n**2, (n, 0, oo))

Notes

'*' defines multiplication of sequences with sequences only.

find_linear_recurrence(n, d=None, gfvar=None)

Finds the shortest linear recurrence that satisfies the first n terms of sequence of order \( \leq \frac{n}{2} \) if possible. If d is specified, find shortest linear recurrence of order \( \leq \min(d, \frac{n}{2}) \) if possible. Returns list of coefficients \( [b(1), b(2), \ldots] \) corresponding to the recurrence relation \( x(n) = b(1)*x(n-1) + b(2)*x(n-2) + \ldots \). Returns [ ] if no recurrence is found. If gfvar is specified, also returns ordinary generating function as a function of gfvar.

Examples

>>> from sympy import sequence, sqrt, oo, lucas

>>> from sympy import n, x, y

>>> sequence(n**2).find_linear_recurrence(10, 2)
[ ]

>>> sequence(n**2).find_linear_recurrence(10)
[3, -3, 1]

>>> sequence(2**n).find_linear_recurrence(10)
[2]

>>> sequence(23*n**4+91*n**2).find_linear_recurrence(10)
[5, -10, 10, -5, 1]

>>> sequence(sqrt(5)**((-1 + sqrt(5))/2)**n - ((1 + sqrt(5))/2)**(-n))/5).find_linear_recurrence(10)
[1, 1]

>>> sequence(x+y+(-2)**(-n), (n, 0, oo)).find_linear_recurrence(30)
[1/2, 1/2]

>>> sequence(3*5**n + 12).find_linear_recurrence(20, gfvar=x)
sequence(lucas(n)).find_linear_recurrent(15, gfvar=x)

sequence(lucas(n)).find_linear_recurrent(15, gfvar=x)

property free_symbols
This method returns the symbols in the object, excluding those that take on a specific value (i.e. the dummy symbols).

Examples

>>> from sympy import SeqFormula
>>> from sympy.abc import n, m
>>> SeqFormula(m*n**2, (n, 0, 5)).free_symbols
{m}

property gen
Returns the generator for the sequence

property interval
The interval on which the sequence is defined

property length
Length of the sequence

property start
The starting point of the sequence. This point is included

property stop
The ending point of the sequence. This point is included

property variables
Returns a tuple of variables that are bounded

Elementary Sequences

class sympy.series.sequences.SeqFormula(formula, limits=None)
Represents sequence based on a formula.
Elements are generated using a formula.

Examples

>>> from sympy import SeqFormula, oo, Symbol
>>> n = Symbol('n')
>>> s = SeqFormula(n**2, (n, 0, 5))
>>> s.formula
n**2

For value at a particular point
>>> s.coeff(3)
9

supports slicing

>>> s[:]
[0, 1, 4, 9, 16, 25]

iterable

>>> list(s)
[0, 1, 4, 9, 16, 25]

sequence starts from negative infinity

>>> SeqFormula(n**2, (-oo, 0))[0:6]
[0, 1, 4, 9, 16, 25]

See also:

sympy.series.sequences.SeqPer (page 693)

coeff_mul(coeff)

See docstring of SeqBase.coeff_mul

class sympy.series.sequences.SeqPer(periodical, limits=None)

Represents a periodic sequence.
The elements are repeated after a given period.

Examples

>>> from sympy import SeqPer, oo
>>> from sympy.abc import k

>>> s = SeqPer((1, 2, 3), (0, 5))
>>> s.periodical
(1, 2, 3)

For value at a particular point

>>> s.coeff(3)
1

supports slicing

>>> s[:]
[1, 2, 3, 1, 2, 3]

iterable
sequence starts from negative infinity

Periodic formulas

See also:

sympy.series.sequences.SeqFormula (page 692)

coeff_mul(coef)

Singleton Sequences

class sympy.series.sequences.EmptySequence

Represents an empty sequence.

The empty sequence is also available as a singleton as S.EmptySequence.

Examples

coeff_mul(coef)

See docstring of SeqBase.coeff_mul
**Compound Sequences**

```python
class sympy.series.sequences.SeqAdd(*args, **kwargs)
```

Represents term-wise addition of sequences.

**Rules:**
- The interval on which sequence is defined is the intersection of respective intervals of sequences.
- Anything + *EmptySequence* (page 694) remains unchanged.
- Other rules are defined in `_add` methods of sequence classes.

**Examples**

```python
>>> from sympy import EmptySequence, oo, SeqAdd, SeqPer, SeqFormula
>>> from sympy.abc import n
>>> SeqAdd(SeqPer((1, 2), (n, 0, oo)), EmptySequence)
SeqPer((1, 2), (n, 0, oo))
>>> SeqAdd(SeqPer((1, 2), (n, 0, 5)), SeqPer((1, 2), (n, 6, 10)))
EmptySequence
>>> SeqAdd(SeqPer((1, 2), (n, 0, oo)), SeqFormula(n**2, (n, 0, oo)))
SeqAdd(SeqFormula(n**2, (n, 0, oo)), SeqPer((1, 2), (n, 0, oo)))
>>> SeqAdd(SeqFormula(n**3), SeqFormula(n**2))
SeqFormula(n**3 + n**2, (n, 0, oo))
```

**See also:**

`sympy.series.sequences.SeqMul` (page 695)

**static reduce**(*args*)

Simplify *SeqAdd* (page 695) using known rules.

Iterates through all pairs and ask the constituent sequences if they can simplify themselves with any other constituent.

**Notes**

adapted from Union.reduce

```python
class sympy.series.sequences.SeqMul(*args, **kwargs)
```

Represents term-wise multiplication of sequences.

**Explanation**

Handles multiplication of sequences only. For multiplication with other objects see *SeqBase.coeff_mul()* (page 691).

**Rules:**
- The interval on which sequence is defined is the intersection of respective intervals of sequences.
- Anything * EmptySequence* (page 694) returns *EmptySequence* (page 694).
• Other rules are defined in `_mul` methods of sequence classes.

Examples

```python
>>> from sympy import EmptySequence, oo, SeqMul, SeqPer, SeqFormula
>>> from sympy.abc import n
>>> SeqMul(SeqPer((1, 2), (n, 0, oo)), EmptySequence)
EmptySequence
>>> SeqMul(SeqPer((1, 2), (n, 0, 5)), SeqPer((1, 2), (n, 6, 10)))
EmptySequence
>>> SeqMul(SeqPer((1, 2), (n, 0, oo)), SeqFormula(n**2))
SeqMul(SeqFormula(n**2, (n, 0, oo)), SeqPer((1, 2), (n, 0, oo)))
>>> SeqMul(SeqFormula(n**3), SeqFormula(n**2))
SeqFormula(n**5, (n, 0, oo))
```

See also:

`sympy.series.sequences.SeqAdd` (page 695)

```python
static reduce(args)
```

Simplify a `SeqMul` (page 695) using known rules.

Explanation

Iterates through all pairs and ask the constituent sequences if they can simplify themselves with any other constituent.

Notes

adapted from Union.reduce

Recursive Sequences

class sympy.series.sequences.RecursiveSeq(recurrence, yn, n, initial=None, start=0)

A finite degree recursive sequence.

Parameters

recurrence : SymPy expression defining recurrence

This is not an equality, only the expression that the nth term is equal to. For example, if \( a(n) = f(a(n - 1), \ldots, a(n - d)) \), then the expression should be \( f(a(n - 1), \ldots, a(n - d)) \).

yn : applied undefined function

Represents the nth term of the sequence as e.g. \( y(n) \) where \( y \) is an undefined function and \( n \) is the sequence index.

n : symbolic argument

The name of the variable that the recurrence is in, e.g., \( n \) if the recurrence function is \( y(n) \).
**initial**: iterable with length equal to the degree of the recurrence

The initial values of the recurrence.

**start**: start value of sequence (inclusive)

### Explanation

That is, a sequence \( a(n) \) that depends on a fixed, finite number of its previous values. The general form is

\[
a(n) = f(a(n - 1), a(n - 2), \ldots, a(n - d))
\]

for some fixed, positive integer \( d \), where \( f \) is some function defined by a SymPy expression.

### Examples

```python
>>> from sympy import Function, symbols
>>> from sympy.series.sequences import RecursiveSeq
>>> y = Function("y")
>>> n = symbols("n")
>>> fib = RecursiveSeq(y(n - 1) + y(n - 2), y(n), n, [0, 1])
```

```python
>>> fib.coeff(3) # Value at a particular point
2
```

```python
>>> fib[:6] # supports slicing
[0, 1, 1, 2, 3, 5]
```

```python
>>> fib.recurrent # inspect recurrence
Eq(y(n), y(n - 2) + y(n - 1))
```

```python
>>> fib.degree # automatically determine degree
2
```

```python
>>> for x in zip(range(10), fib): # supports iteration
... print(x)
```

```
(0, 0)
(1, 1)
(2, 1)
(3, 2)
(4, 3)
(5, 5)
(6, 8)
(7, 13)
(8, 21)
(9, 34)
```

**See also:**

*sympy.series.sequences.SeqFormula* (page 692)
property initial
    The initial values of the sequence

property interval
    Interval on which sequence is defined.

property n
    Sequence index symbol

property recurrence
    Equation defining recurrence.

property start
    The starting point of the sequence. This point is included

property stop
    The ending point of the sequence. (oo)

property y
    Undefined function for the nth term of the sequence

property yn
    Applied function representing the nth term

Fourier Series

Provides methods to compute Fourier series.

class sympy.series.fourier.FourierSeries(*args)
    Represents Fourier sine/cosine series.

Explanation

This class only represents a fourier series. No computation is performed.

For how to compute Fourier series, see the fourier_series() (page 701) docstring.

See also:

sympy.series.fourier.fourier_series (page 701)

scale(s)
    Scale the function by a term independent of x.

Explanation

f(x) -> s * f(x)

This is fast, if Fourier series of f(x) is already computed.
Examples

```python
>>> from sympy import fourier_series, pi
>>> from sympy.abc import x
>>> s = fourier_series(x**2, (x, -pi, pi))
>>> s.scale(2).truncate()
-8*cos(x) + 2*cos(2*x) + 2*pi**2/3
```

scalex(s)
Scale x by a term independent of x.

Explanation

f(x) -> f(s*x)
This is fast, if Fourier series of f(x) is already computed.

Examples

```python
>>> from sympy import fourier_series, pi
>>> from sympy.abc import x
>>> s = fourier_series(x**2, (x, -pi, pi))
>>> s.scalex(2).truncate()
-4*cos(2*x) + cos(4*x) + pi**2/3
```

shift(s)
Shift the function by a term independent of x.

Explanation

f(x) -> f(x) + s
This is fast, if Fourier series of f(x) is already computed.

Examples

```python
>>> from sympy import fourier_series, pi
>>> from sympy.abc import x
>>> s = fourier_series(x**2, (x, -pi, pi))
>>> s.shift(1).truncate()
-4*cos(x) + cos(2*x) + 1 + pi**2/3
```

shiftx(s)
Shift x by a term independent of x.
Explanation

\( f(x) \rightarrow f(x + s) \)

This is fast, if Fourier series of \( f(x) \) is already computed.

Examples

```python
>>> from sympy import fourier_series, pi
>>> from sympy.abc import x
>>> s = fourier_series(x**2, (x, -pi, pi))
>>> s.shiftx(1).truncate()
-4*cos(x + 1) + cos(2*x + 2) + pi**2/3
```

\texttt{sigma\_approximation}(n=3)

Return \( \sigma \)-approximation of Fourier series with respect to order \( n \).

**Parameters**

\( n \) : int

Highest order of the terms taken into account in approximation.

**Returns**

Expr :

Sigma approximation of function expanded into Fourier series.

Explanation

Sigma approximation adjusts a Fourier summation to eliminate the Gibbs phenomenon which would otherwise occur at discontinuities. A sigma-approximated summation for a Fourier series of a \( T \)-periodical function can be written as

\[
s(\theta) = \frac{1}{2}a_0 + \sum_{k=1}^{m-1} \text{sinc}\left(\frac{k}{m}\right) \cdot \left[ a_k \cos\left(\frac{2\pi k}{T}\theta\right) + b_k \sin\left(\frac{2\pi k}{T}\theta\right) \right],
\]

where \( a_0, a_k, b_k, k = 1, \ldots, m - 1 \) are standard Fourier series coefficients and \( \text{sinc}\left(\frac{k}{m}\right) \) is a Lanczos \( \sigma \) factor (expressed in terms of normalized sinc function).

Examples

```python
>>> from sympy import fourier_series, pi
>>> from sympy.abc import x
>>> s = fourier_series(x, (x, -pi, pi))
>>> s.sigma_approximation(4)
2*sin(x)*sinc(pi/4) - 2*sin(2*x)/pi + 2*sin(3*x)*sinc(3*pi/4)/3
```
Notes

The behaviour of `sigma_approximation()` (page 700) is different from `truncate()` (page 701) - it takes all nonzero terms of degree smaller than n, rather than first n nonzero ones.

See also:

`sympy.series.fourier.FourierSeries.truncate` (page 701)

References

[R762], [R763]

`truncate(n=3)`

Return the first n nonzero terms of the series.

If n is None return an iterator.

Parameters

- `n : int or None`
  - Amount of non-zero terms in approximation or None.

Returns

- `Expr or iterator`:
  - Approximation of function expanded into Fourier series.

Examples

```python
>>> from sympy import fourier_series, pi
>>> from sympy.abc import x
>>> s = fourier_series(x, (x, -pi, pi))
>>> s.truncate(4)
2*sin(x) - sin(2*x) + 2*sin(3*x)/3 - sin(4*x)/2
```

See also:

`sympy.series.fourier.FourierSeries.sigma_approximation` (page 700)

`sympy.series.fourier.FourierSeries`(`f, limits=None, finite=True`)

Computes the Fourier trigonometric series expansion.

Parameters

- `limits : (sym, start, end), optional`
  - `sym` denotes the symbol the series is computed with respect to.
  - `start` and `end` denotes the start and the end of the interval where the fourier series converges to the given function.

Default range is specified as $-\pi$ and $\pi$.

Returns

- `FourierSeries`:
  - A symbolic object representing the Fourier trigonometric series.
Explanation

Fourier trigonometric series of $f(x)$ over the interval $(a, b)$ is defined as:

$$
\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos\left(\frac{2n\pi x}{L}\right) + b_n \sin\left(\frac{2n\pi x}{L}\right))
$$

where the coefficients are:

$$
L = b - a
$$

$$
a_0 = \frac{2}{L} \int_{a}^{b} f(x) dx
$$

$$
a_n = \frac{2}{L} \int_{a}^{b} f(x) \cos\left(\frac{2n\pi x}{L}\right) dx
$$

$$
b_n = \frac{2}{L} \int_{a}^{b} f(x) \sin\left(\frac{2n\pi x}{L}\right) dx
$$

The condition whether the function $f(x)$ given should be periodic or not is more than necessary, because it is sufficient to consider the series to be converging to $f(x)$ only in the given interval, not throughout the whole real line.

This also brings a lot of ease for the computation because you do not have to make $f(x)$ artificially periodic by wrapping it with piecewise, modulo operations, but you can shape the function to look like the desired periodic function only in the interval $(a, b)$, and the computed series will automatically become the series of the periodic version of $f(x)$.

This property is illustrated in the examples section below.

Examples

Computing the Fourier series of $f(x) = x^2$:

```python
>>> from sympy import fourier_series, pi
>>> from sympy.abc import x
>>> f = x**2
>>> s = fourier_series(f, (x, -pi, pi))
>>> s1 = s.truncate(n=3)
>>> s1
-4*cos(x) + cos(2*x) + pi**2/3
```

Shifting of the Fourier series:

```python
>>> s.shift(1).truncate()
-4*cos(x) + cos(2*x) + 1 + pi**2/3
>>> s.shiftx(1).truncate()
-4*cos(x + 1) + cos(2*x + 2) + pi**2/3
```

Scaling of the Fourier series:

```python
>>> s.scale(2).truncate()
-8*cos(x) + 2*cos(2*x) + 2*pi**2/3
>>> s.scalex(2).truncate()
-4*cos(2*x) + cos(4*x) + pi**2/3
```
Computing the Fourier series of $f(x) = x$:

This illustrates how truncating to the higher order gives better convergence.

```python
from sympy import fourier_series, pi, plot
from sympy.abc import x

f = x
s = fourier_series(f, (x, -pi, pi))
s1 = s.truncate(n=3)
s2 = s.truncate(n=5)
s3 = s.truncate(n=7)
p = plot(f, s1, s2, s3, (x, -pi, pi), show=False, legend=True)
```

```python
>>> p[0].line_color = (0, 0, 0)
>>> p[0].label = 'x'
>>> p[1].line_color = (0.7, 0.7, 0.7)
>>> p[1].label = 'n=3'
>>> p[2].line_color = (0.5, 0.5, 0.5)
>>> p[2].label = 'n=5'
>>> p[3].line_color = (0.3, 0.3, 0.3)
>>> p[3].label = 'n=7'

>>> p.show()
```
This illustrates how the series converges to different sawtooth waves if the different ranges are specified.

```python
>>> s1 = fourier_series(x, (x, -1, 1)).truncate(10)
>>> s2 = fourier_series(x, (x, -pi, pi)).truncate(10)
>>> s3 = fourier_series(x, (x, 0, 1)).truncate(10)
>>> p = plot(x, s1, s2, s3, (x, -5, 5), show=False, legend=True)

>>> p[0].line_color = (0, 0, 0)
>>> p[0].label = 'x'
>>> p[1].line_color = (0.7, 0.7, 0.7)
>>> p[1].label = '[-1, 1]'
>>> p[2].line_color = (0.5, 0.5, 0.5)
>>> p[2].label = '[-pi, pi]'
>>> p[3].line_color = (0.3, 0.3, 0.3)
>>> p[3].label = '[0, 1]'

>>> p.show()
```
Notes

Computing Fourier series can be slow due to the integration required in computing $a_n$, $b_n$.

It is faster to compute Fourier series of a function by using shifting and scaling on an already computed Fourier series rather than computing again.

e.g. If the Fourier series of $x**2$ is known the Fourier series of $x**2 - 1$ can be found by shifting by -1.

See also:

* `sympy.series.fourier.FourierSeries` (page 698)

References

[R764]

Formal Power Series

Methods for computing and manipulating Formal Power Series.

```python
class sympy.series.formal.FormalPowerSeries(*args)

 Represents Formal Power Series of a function.
```

Explanation

No computation is performed. This class should only to be used to represent a series. No checks are performed.

For computing a series use `fps()` (page 708).

See also:

* `sympy.series.formal.fps` (page 708)

`coeff_bell(n)`

self.coeff_bell(n) returns a sequence of Bell polynomials of the second kind. Note that $n$ should be a integer.

The second kind of Bell polynomials (are sometimes called “partial” Bell polynomials or incomplete Bell polynomials) are defined as

$$B_{n,k}(x_1, x_2, \ldots x_{n-k+1}) = \sum_{j_1 + j_2 + \cdots + j_{n-k+1} = n} \frac{n!}{j_1!j_2!\cdots j_{n-k+1}!} \left( \frac{x_1}{1!} \right)^{j_1} \left( \frac{x_2}{2!} \right)^{j_2} \cdots \left( \frac{x_{n-k+1}}{(n-k+1)!} \right)^{j_{n-k+1}}.$$

• `bell(n, k, (x1, x2, ...))` gives Bell polynomials of the second kind, $B_{n,k}(x_1, x_2, \ldots, x_{n-k+1})$.

See also:

* `sympy.functions.combinatorial.numbers.bell` (page 483)
compose\((\text{other, x=None, n=6})\)

Returns the truncated terms of the formal power series of the composed function, up to specified \(n\).

**Parameters**

- \(n\) : Number, optional
  
  Specifies the order of the term up to which the polynomial should be truncated.

**Explanation**

If \(f\) and \(g\) are two formal power series of two different functions, then the coefficient sequence \(a_k\) of the composed formal power series \(f \circ g\) will be as follows.

\[
\sum_{k=0}^{n} b_k B_{n,k}(x_1, x_2, \ldots, x_{n-k+1})
\]

**Examples**

```python
>>> from sympy import fps, sin, exp
>>> from sympy.abc import x
>>> f1 = fps(exp(x))
>>> f2 = fps(sin(x))

>>> f1.compose(f2, x).truncate()
1 + x + x**2/2 - x**4/8 - x**5/15 + O(x**6)

>>> f1.compose(f2, x).truncate(8)
1 + x + x**2/2 - x**4/8 - x**5/15 - x**6/240 + x**7/90 + O(x**8)
```

See also:

- `sympy.functions.combinatorial.numbers.bell` (page 483),
- `sympy.series.formal.FormalPowerSeriesCompose` (page 711)

**References**

[R756]

**property infinite**

Returns an infinite representation of the series

**integrate\((x=None, **kwargs)\)**

Integrate Formal Power Series.
Examples

```python
from sympy import fps, sin, integrate
from sympy.abc import x
f = fps(sin(x))
f.integrate(x).truncate()
-1 + x**2/2 - x**4/24 + O(x**6)
integrate(f, (x, 0, 1))
1 - cos(1)
```

**inverse**($x$=None, $n$=6)

Returns the truncated terms of the inverse of the formal power series, up to specified $n$.

**Parameters**

- **n**: Number, optional
  
  Specifies the order of the term up to which the polynomial should be truncated.

**Explanation**

If $f$ and $g$ are two formal power series of two different functions, then the coefficient sequence $a_k$ of the composed formal power series $fp$ will be as follows.

$$
\sum_{k=0}^{n} (-1)^k x_0^{-k-1} B_{n,k}(x_1, x_2, \ldots, x_{n-k+1})
$$

**Examples**

```python
from sympy import fps, exp, cos
from sympy.abc import x
f1 = fps(exp(x))
f2 = fps(cos(x))
f1.inverse(x).truncate()
1 - x + x**2/2 - x**3/6 + x**4/24 - x**5/120 + O(x**6)
f2.inverse(x).truncate(8)
1 + x**2/2 + 5*x**4/24 + 61*x**6/720 + O(x**8)
```

See also:

- `sympy.functions.combinatorial.numbers.bell` (page 483)
- `sympy.series.formal.FormalPowerSeriesInverse` (page 711)
References

[R757]
polynomial \((n=6)\)
Truncated series as polynomial.

Explanation

Returns series expansion of \(f\) upto order \(O(x^n)\) as a polynomial(without 0 term).

product \((other, x=\text{None}, n=6)\)
Multiplies two Formal Power Series, using discrete convolution and return the truncated terms upto specified order.

Parameters

- \(n\) : Number, optional
  Specifies the order of the term up to which the polynomial should be truncated.

Examples

```python
>>> from sympy import fps, sin, exp
>>> from sympy.abc import x
>>> f1 = fps(sin(x))
>>> f2 = fps(exp(x))
>>> f1.product(f2, x).truncate(4)
x + x**2 + x**3/3 + O(x**4)
```

See also:

- `sympy.discrete.convolutions` (page 1133), `sympy.series.formal.FormalPowerSeriesProduct` (page 711)

truncate \((n=6)\)
Truncated series.

Explanation

Returns truncated series expansion of \(f\) upto order \(O(x^n)\).

If \(n\) is None, returns an infinite iterator.

```python
sympy.series.formal.fps(f, x=\text{None}, x0=0, dir=1, hyper=True, order=4, rational=True, full=False)
```

Generates Formal Power Series of \(f\).

Parameters

- \(x\) : Symbol, optional
  If \(x\) is None and \(f\) is univariate, the univariate symbols will be supplied, otherwise an error will be raised.
**SymPy Documentation, Release 1.12.1**

**x0**: number, optional
Point to perform series expansion about. Default is 0.

**dir**: {1, -1, ‘+’, ‘-’}, optional
If dir is 1 or ‘+’ the series is calculated from the right and for -1 or ‘-’ the series is calculated from the left. For smooth functions this flag will not alter the results. Default is 1.

**hyper**: {True, False}, optional
Set hyper to False to skip the hypergeometric algorithm. By default it is set to False.

**order**: int, optional
Order of the derivative of f, Default is 4.

**rational**: {True, False}, optional
Set rational to False to skip rational algorithm. By default it is set to True.

**full**: {True, False}, optional
Set full to True to increase the range of rational algorithm. See `rational_algorithm()` (page 712) for details. By default it is set to False.

**Explanation**

Returns the formal series expansion of f around \(x = x_0\) with respect to x in the form of a FormalPowerSeries object.

Formal Power Series is represented using an explicit formula computed using different algorithms.

See `compute_fps()` (page 710) for the more details regarding the computation of formula.

**Examples**

```python
>>> from sympy import fps, ln, atan, sin
>>> from sympy.abc import x, n
```

**Rational Functions**

```python
>>> fps(ln(1 + x)).truncate()
\(x - x^2/2 + x^3/3 - x^4/4 + x^5/5 + O(x^6)\)
```

```python
>>> fps(atan(x), full=True).truncate()
\(x - x^3/3 + x^5/5 + O(x^6)\)
```

**Symbolic Functions**

```python
>>> fps(x**n*sin(x**2), x).truncate(8)
\(-x^n(n + 6)/6 + x^n(n + 2) + O(x^n(n + 8))\)
```
sympy.series.formal.FormalPowerSeries (page 705), sympy.series.formal.compute_fps (page 710)

sympy.series.formal.compute_fps(f, x, x0=0, dir=1, hyper=True, order=4, rational=True, full=False)

Computes the formula for Formal Power Series of a function.

**Parameters**

- **x** : Symbol
- **x0** : number, optional
  
  Point to perform series expansion about. Default is 0.
- **dir** : {1, -1, ‘+’, ‘-’}, optional
  
  If dir is 1 or ‘+’ the series is calculated from the right and for -1 or ‘-‘ the series is calculated from the left. For smooth functions this flag will not alter the results. Default is 1.
- **hyper** : {True, False}, optional
  
  Set hyper to False to skip the hypergeometric algorithm. By default it is set to False.
- **order** : int, optional
  
  Order of the derivative of \( f \), Default is 4.
- **rational** : {True, False}, optional
  
  Set rational to False to skip rational algorithm. By default it is set to True.
- **full** : {True, False}, optional
  
  Set full to True to increase the range of rational algorithm. See rational_algorithm() (page 712) for details. By default it is set to False.

**Returns**

- **ak** : sequence
  
  Sequence of coefficients.
- **xk** : sequence
  
  Sequence of powers of \( x \).
- **ind** : Expr
  
  Independent terms.
- **mul** : Pow
  
  Common terms.
Explanation

Tries to compute the formula by applying the following techniques (in order):

- rational_algorithm
- Hypergeometric algorithm

See also:

sympy.series.formal.rational_algorithm (page 712), sympy.series.formal.hyper_algorithm (page 716)

class sympy.series.formal.FormalPowerSeriesCompose(*args)

Represents the composed formal power series of two functions.

Explanation

No computation is performed. Terms are calculated using a term by term logic, instead of a point by point logic.

There are two differences between a FormalPowerSeries (page 705) object and a FormalPowerSeriesCompose (page 711) object. The first argument contains the outer function and the inner function involved in the composition. Also, the coefficient sequence contains the generic sequence which is to be multiplied by a custom bell_seq finite sequence. The finite terms will then be added up to get the final terms.

See also:


property function

Function for the composed formal power series.

class sympy.series.formal.FormalPowerSeriesInverse(*args)

Represents the Inverse of a formal power series.

Explanation

No computation is performed. Terms are calculated using a term by term logic, instead of a point by point logic.

There is a single difference between a FormalPowerSeries (page 705) object and a FormalPowerSeriesInverse (page 711) object. The coefficient sequence contains the generic sequence which is to be multiplied by a custom bell_seq finite sequence. The finite terms will then be added up to get the final terms.

See also:


property function

Function for the inverse of a formal power series.

class sympy.series.formal.FormalPowerSeriesProduct(*args)

Represents the product of two formal power series of two functions.
Explanation

No computation is performed. Terms are calculated using a term by term logic, instead of point by point logic.

There are two differences between a `FormalPowerSeries` (page 705) object and a `FormalPowerSeriesProduct` (page 711) object. The first argument contains the two functions involved in the product. Also, the coefficient sequence contains both the coefficient sequence of the formal power series of the involved functions.

See also:

- `sympy.series.formal.FormalPowerSeries` (page 705)
- `sympy.series.formal.FiniteFormalPowerSeries` (page 712)

**property function**

Function of the product of two formal power series.

```python
class sympy.series.formal.FiniteFormalPowerSeries(*args)
```

Base Class for Product, Compose and Inverse classes

---

Rational Algorithm

```python
sympy.series.formal.rational_independent(terms, x)
```

Returns a list of all the rationally independent terms.

**Examples**

```python
>>> from sympy import sin, cos
>>> from sympy.series.formal import rational_independent
>>> from sympy.abc import x

>>> rational_independent([cos(x), sin(x)], x)
[cos(x), sin(x)]

>>> rational_independent([x**2, sin(x), x*sin(x), x**3], x)
[x**3 + x**2, x*sin(x) + sin(x)]
```

```python
sympy.series.formal.rational_algorithm(f, x, k, order=4, full=False)
```


**Parameters**

- `x`: Symbol
- `order`: int, optional
  Order of the derivative of f, Default is 4.
- `full`: bool

**Returns**

- `formula`: Expr
- `ind`: Expr
  Independent terms.
order : int
full : bool

Explanation

Applicable when \( f(x) \) or some derivative of \( f(x) \) is a rational function in \( x \).

`rational_algorithm()` (page 712) uses `apart()` (page 2522) function for partial fraction decomposition. `apart()` (page 2522) by default uses ‘undetermined coefficients method’. By setting `full=True`, ‘Bronstein’s algorithm’ can be used instead.

Looks for derivative of a function up to 4'th order (by default). This can be overridden using order option.

Examples

```python
>>> from sympy import log, atan
>>> from sympy.series.formal import rational_algorithm as ra
>>> from sympy.abc import x, k

>>> ra(1 / (1 - x), x, k)
(1, 0, 0)
>>> ra(log(1 + x), x, k)
((-1/((-1)**k*k), 0, 1)

>>> ra(atan(x), x, k, full=True)
(((-I/(2*(-I)**k) + I/(2*I**k))/k, 0, 1)

Notes

By setting `full=True`, range of admissible functions to be solved using `rational_algorithm` can be increased. This option should be used carefully as it can significantly slow down the computation as do it is performed on the `RootSum` (page 2512) object returned by the `apart()` (page 2522) function. Use `full=False` whenever possible.

See also:

`sympy.polys.partfrac.apart` (page 2522)

References

[R758], [R759]
Hypergeometric Algorithm

sympy.series.formal.simpleDE(f, x, g, order=4)
Generates simple DE.

Explanation

DE is of the form

\[f^k(x) + \sum_{j=0}^{k-1} A_j f^j(x) = 0 \]

where \(A_j \) should be rational function in \(x \).

Generates DE’s upto order 4 (default). DE’s can also have free parameters.

By increasing order, higher order DE’s can be found.

Yields a tuple of (DE, order).

sympy.series.formal.exp_re(DE, r, k)
Converts a DE with constant coefficients (explike) into a RE.

Explanation

Performs the substitution:

\[f^j(x) \to r(k + j) \]

Normalises the terms so that lowest order of a term is always \(r(k) \).

Examples

```python
>>> from sympy import Function, Derivative
>>> from sympy.series.formal import exp_re
>>> from sympy.abc import x, k
>>> f, r = Function('f'), Function('r')

>>> exp_re(-f(x) + Derivative(f(x)), r, k)
-r(k) + r(k + 1)

>>> exp_re(Derivative(f(x), x) + Derivative(f(x), (x, 2)), r, k)
r(k) + r(k + 1)
```

See also:

* sympy.series.formal.hyper_re (page 714)

sympy.series.formal.hyper_re(DE, r, k)
Converts a DE into a RE.
Explanation

Performs the substitution:

\[x^l f^j(x) \rightarrow (k + 1 - l) a_{k + j - l} \]

Normalises the terms so that lowest order of a term is always r(k).

Examples

```python
>>> from sympy import Function, Derivative
>>> from sympy.series.formal import hyper_re
>>> from sympy.abc import x, k
>>> f, r = Function('f'), Function('r')

>>> hyper_re(-f(x) + Derivative(f(x)), r, k)
(k + 1)*r(k + 1) - r(k)

>>> hyper_re(-x*f(x) + Derivative(f(x), (x, 2)), r, k)
(k + 2)*(k + 3)*r(k + 3) - r(k)
```

See also:

- `sympy.series.formal.exp_re` (page 714)
- `sympy.series.formal.rsolve_hypergeometric(f, x, P, Q, k, m)` Solves RE of hypergeometric type.

Returns

- `formula` : Expr
- `ind` : Expr
 - Independent terms.
- `order` : int

Explanation

Attempts to solve RE of the form

\[Q(k) a(k + m) - P(k) a(k) \]

Transformations that preserve Hypergeometric type:

- a. \(x^n f(x) \): \(b(k + m) = R(k - n) b(k) \)
- b. \(f(Ax) \): \(b(k + m) = A^m R(k) b(k) \)
- c. \(f(x^n) \): \(b(k + n*m) = R(k/n) b(k) \)
- d. \(f(x^{1/m}) \): \(b(k + 1) = R(k*m) b(k) \)
- e. \(f'(x) \): \(b(k + m) = ((k + m + 1)/(k + 1))*R(k + 1) b(k) \)

Some of these transformations have been used to solve the RE.
Examples

```python
>>> from sympy import exp, ln, S
>>> from sympy.series.formal import rsolve_hypergeometric as rh
>>> from sympy.abc import x, k

>>> rh(exp(x), x, -S.One, (k + 1), k, 1)
(Piecewise((1/factorial(k), Eq(Mod(k, 1), 0)), (0, True)), 1, 1)

>>> rh(ln(1 + x), x, k**2, k*(k + 1), k, 1)
(Piecewise((((-1)**(k - 1)*factorial(k - 1)/RisingFactorial(2, k - 1),
  Eq(Mod(k, 1), 0)), (0, True)), x, 2)
```

References

[R760], [R761]
sympy.series.formal.solve_de(f, x, DE, order, g, k)
Solves the DE.

Returns

- formula : Expr
- ind : Expr
 Independent terms.
- order : int

Explanation

Tries to solve DE by either converting into a RE containing two terms or converting into a DE having constant coefficients.

Examples

```python
>>> from sympy import Derivative as D, Function
>>> from sympy import exp, ln
>>> from sympy.series.formal import solve_de
>>> from sympy.abc import x, k

>>> f = Function('f')

>>> solve_de(exp(x), x, D(f(x), x) - f(x), 1, f, k)
(Piecewise((1/factorial(k), Eq(Mod(k, 1), 0)), (0, True)), 1, 1)

>>> solve_de(ln(1 + x), x, (x + 1)*D(f(x), x, 2) + D(f(x)), 2, f, k)
(Piecewise((((-1)**(k - 1)*factorial(k - 1)/RisingFactorial(2, k - 1),
  Eq(Mod(k, 1), 0)), (0, True)), x, 2)
```

sympy.series.formal.hyper_algorithm(f, x, k, order=4)
Hypergeometric algorithm for computing Formal Power Series.
Explanation

Steps:
- Generates DE
- Convert the DE into RE
- Solves the RE

Examples

```python
>>> from sympy import exp, ln
>>> from sympy.series.formal import hyper_algorithm
>>> from sympy.abc import x, k

>>> hyper_algorithm(exp(x), x, k)
(Piecewise((1/factorial(k), Eq(Mod(k, 1), 0)), (0, True)), 1, 1)

>>> hyper_algorithm(ln(1 + x), x, k)
(Piecewise((-1)**(k - 1)*factorial(k - 1)/RisingFactorial(2, k - 1),
Eq(Mod(k, 1), 0)), (0, True)), x, 2)
```

See also:
- `sympy.series.formal.simpleDE` (page 714),
- `sympy.series.formal.solve_de` (page 716)

Limits of Sequences

Provides methods to compute limit of terms having sequences at infinity.

```python
sympy.series.limitseq.difference_delta(expr, n=None, step=1)
```

Differential Operator.

Explanation

Discrete analog of differential operator. Given a sequence x[n], returns the sequence x[n + step] - x[n].

Examples

```python
>>> from sympy import difference_delta as dd
>>> from sympy.abc import n

>>> dd(n*(n + 1), n)
2*n + 2

>>> dd(n*(n + 1), n, 2)
4*n + 6
```
sympy.series.limitseq.dominant(expr, n)

Finds the dominant term in a sum, that is a term that dominates every other term.

Explanation

If \(\lim(a/b, n, \infty) = \infty \) then \(a \) dominates \(b \). If \(\lim(a/b, n, \infty) = 0 \) then \(b \) dominates \(a \). Otherwise, \(a \) and \(b \) are comparable.

If there is no unique dominant term, then returns `None`.

Examples

```python
>>> from sympy import Sum
>>> from sympy.series.limitseq import dominant
>>> from sympy.abc import n, k
>>> dominant(5*n**3 + 4*n**2 + n + 1, n)
5*n**3
>>> dominant(2**n + Sum(k, (k, 0, n)), n)
2**n
```

See also:

* `sympy.series.limitseq.dominant` (page 718)

sympy.series.limitseq.limit_seq(expr, n=None, trials=5)

Finds the limit of a sequence as index \(n \) tends to infinity.

Parameters

- `expr` : Expr

 SymPy expression for the \(n \)-th term of the sequence

- `n` : Symbol, optional

 The index of the sequence, an integer that tends to positive infinity. If None, inferred from the expression unless it has multiple symbols.

- `trials` : int, optional

 The algorithm is highly recursive. `trials` is a safeguard from infinite recursion in case the limit is not easily computed by the algorithm. Try increasing `trials` if the algorithm returns `None`.
Admissible Terms

The algorithm is designed for sequences built from rational functions, indefinite sums, and indefinite products over an indeterminate \(n \). Terms of alternating sign are also allowed, but more complex oscillatory behavior is not supported.

Examples

```python
>>> from sympy import limit_seq, Sum, binomial
>>> from sympy.abc import n, k, m

>>> limit_seq((5*n**3 + 3*n**2 + 4) / (3*n**3 + 4*n - 5), n)
5/3
>>> limit_seq(binomial(2*n, n) / Sum(binomial(2*k, k), (k, 1, n)), n)
3/4
>>> limit_seq(Sum(k**2 * Sum(2^m/m, (m, 1, k)), (k, 1, n)) / (2^n*n), n)
4
```

See also:

`syrpy.series.limitseq.dominant` (page 718)

References

[R766]

Simplify

Explanation

Simplification is not a well defined term and the exact strategies this function tries can change in the future versions of SymPy. If your algorithm relies on “simplification” (whatever it is), try to determine what you need exactly - is it powsimp()?, radsimp()?, together()?, logcombine()?, or something else? And use this particular function directly, because those are well defined and thus your algorithm will be robust.

Nonetheless, especially for interactive use, or when you do not know anything about the structure of the expression, simplify() tries to apply intelligent heuristics to make the input expression “simpler”. For example:

```python
>>> from sympy import simplify, cos, sin
>>> from sympy.abc import x, y

>>> a = (x + x**2)/(x*sin(y)**2 + x*cos(y)**2)
```

(continues on next page)
Note that we could have obtained the same result by using specific simplification functions:

```python
>>> from sympy import trigsimp, cancel
>>> trigsimp(a)
(x**2 + x)/x
>>> cancel(_)
x + 1
```

In some cases, applying `simplify()` (page 719) may actually result in some more complicated expression. The default ratio=1.7 prevents more extreme cases: if (result length)/(input length) > ratio, then input is returned unmodified. The measure parameter lets you specify the function used to determine how complex an expression is. The function should take a single argument as an expression and return a number such that if expression a is more complex than expression b, then measure(a) > measure(b). The default measure function is `count_ops()` (page 1105), which returns the total number of operations in the expression.

For example, if ratio=1, simplify output cannot be longer than input.

```python
>>> from sympy import sqrt, simplify, count_ops, oo
>>> root = 1/(sqrt(2)+3)
```

Since `simplify(root)` would result in a slightly longer expression, root is returned unchanged instead:

```python
>>> simplify(root, ratio=1) == root
True
```

If ratio=oo, simplify will be applied anyway:

```python
>>> count_ops(simplify(root, ratio=oo)) > count_ops(root)
True
```

Note that the shortest expression is not necessary the simplest, so setting ratio to 1 may not be a good idea. Heuristically, the default value ratio=1.7 seems like a reasonable choice.

You can easily define your own measure function based on what you feel should represent the “size” or “complexity” of the input expression. Note that some choices, such as `lambda expr: len(str(expr))` may appear to be good metrics, but have other problems (in this case, the measure function may slow down simplify too much for very large expressions). If you do not know what a good metric would be, the default, `count_ops`, is a good one.

For example:
So you can see that \(h \) is simpler than \(g \) using the \texttt{count_ops} metric. However, we may not like how \texttt{simplify} (in this case, using \texttt{logcombine}) has created the \(b^{**(\log(1/a) + 1)} \) term. A simple way to reduce this would be to give more weight to powers as operations in \texttt{count_ops}. We can do this by using the \texttt{visual=True} option:

```
>>> print(count_ops(g, visual=True))
2*ADD + DIV + 4*LOG + MUL
>>> print(count_ops(h, visual=True))
2*LOG + MUL + POW + SUB
```

Note that because \texttt{simplify()} internally tries many different simplification strategies and then compares them using the measure function, we get a completely different result that is still different from the input expression by doing this.

If \texttt{rational=True}, Floats will be recast as Rationals before simplification. If \texttt{rational=None}, Floats will be recast as Rationals but the result will be recast as Floats. If \texttt{rational=False} (default) then nothing will be done to the Floats.

If \texttt{inverse=True}, it will be assumed that a composition of inverse functions, such as \(\sin \) and \(\arcsin \), can be cancelled in any order. For example, \(\arcsin(\sin(x)) \) will yield \(x \) without checking whether \(x \) belongs to the set where this relation is true. The default is False.

Note that \texttt{simplify()} automatically calls \texttt{doit()} on the final expression. You can avoid this behavior by passing \texttt{doit=False} as an argument.

Also, it should be noted that simplifying a boolean expression is not well defined. If the expression prefers automatic evaluation (such as \texttt{Eq()} (page 1070) or \texttt{Or()} (page 1211)), simplification will return True or False if truth value can be determined. If the expression is not evaluated by default (such as \texttt{Predicate()} (page 253)), simplification will not
reduce it and you should use `refine()` (page 255) or `ask()` (page 249) function. This inconsistency will be resolved in future version.

See also:

- `sympy.assumptions.refine.refine` *(page 255)*
 - Simplification using assumptions.

- `sympy.assumptions.ask.ask` *(page 249)*
 - Query for boolean expressions using assumptions.

`sympy.simplify.simplify.separatevars(expr, symbols=[], dict=False, force=False)`

Separates variables in an expression, if possible. By default, it separates with respect to all symbols in an expression and collects constant coefficients that are independent of symbols.

Explanation

If `dict=True` then the separated terms will be returned in a dictionary keyed to their corresponding symbols. By default, all symbols in the expression will appear as keys; if symbols are provided, then all those symbols will be used as keys, and any terms in the expression containing other symbols or non-symbols will be returned keyed to the string 'coeff'. (Passing None for symbols will return the expression in a dictionary keyed to 'coeff'.)

If `force=True`, then bases of powers will be separated regardless of assumptions on the symbols involved.

Notes

The order of the factors is determined by Mul, so that the separated expressions may not necessarily be grouped together.

Although factoring is necessary to separate variables in some expressions, it is not necessary in all cases, so one should not count on the returned factors being factored.

Examples

```python
>>> from sympy.abc import x, y, z, alpha
>>> from sympy import separatevars, sin
>>> separatevars((x*y)**y)
(x*y)**y
>>> separatevars((x*y)**y, force=True)
x**y*y**y
```

```python
>>> e = 2*x**2*z*sin(y)+2*z*x**2
>>> separatevars(e)
2*x**2*z*(sin(y) + 1)
>>> separatevars(e, symbols=(x, y), dict=True)
{'coeff': 2*z, x: x**2, y: sin(y) + 1}
>>> separatevars(e, [x, y, alpha], dict=True)
{'coeff': 2*z, alpha: 1, x: x**2, y: sin(y) + 1}
```
If the expression is not really separable, or is only partially separable, separatevars will do the best it can to separate it by using factoring.

```python
>>> separatevars(x + x*y - 3*x**2)
-x*(3*x - y - 1)
```

If the expression is not separable then expr is returned unchanged or (if dict=True) then None is returned.

```python
>>> eq = 2*x + y*sin(x)
>>> separatevars(eq) == eq
True
>>> separatevars(2*x + y*sin(x), symbols=(x, y), dict=True) is None
True
```

```python
sympy.simplify.simplify.nthroot(expr, n, max_len=4, prec=15)
Compute a real nth-root of a sum of surds.

Parameters
expr : sum of surds
n : integer
max_len : maximum number of surds passed as constants to nsimplify

Algorithm
First nsimplify is used to get a candidate root; if it is not a root the minimal polynomial is computed; the answer is one of its roots.

Examples
```python
>>> from sympy.simplify.simplify import nthroot
>>> nthroot(90 + 34*sqrt(7), 3)
sqrt(7) + 3
```

```python
sympy.simplify.simplify.kroneckersimp(expr)
Simplify expressions with KroneckerDelta.
The only simplification currently attempted is to identify multiplicative cancellation:

Examples
```python
>>> from sympy.abc import i
>>> kroneckersimp(1 + KroneckerDelta(0, i) * KroneckerDelta(1, i))
1
```

```python
sympy.simplify.simplify.besselsimp(expr)
Simplify bessel-type functions.

5.8. Topics
Explanation

This routine tries to simplify bessel-type functions. Currently it only works on the Bessel J and I functions, however. It works by looking at all such functions in turn, and eliminating factors of "I" and "-1" (actually their polar equivalents) in front of the argument. Then, functions of half-integer order are rewritten using strigonometric functions and functions of integer order (> 1) are rewritten using functions of low order. Finally, if the expression was changed, compute factorization of the result with factor().

```python
>>> from sympy import besselj, besseli, besselsimp, polar_lift, I, S
>>> from sympy.abc import z, nu
>>> besselsimp(besselj(nu, z*polar_lift(-1)))
exp(I*pi*nu)*besselj(nu, z)
>>> besselsimp(besseli(nu, z*polar_lift(-I)))
exp(-I*pi*nu/2)*besselj(nu, z)
>>> besselsimp(besseli(S(-1)/2, z))
sqrt(2)*cosh(z)/(sqrt(pi)*sqrt(z))
>>> besselsimp(z*besseli(0, z) + z*(besseli(2, z))/2 + besseli(1, z))
3*z*besseli(0, z)/2
```

sympy.simplify.simplify.hypersimp(f, k)

Given combinatorial term f(k) simplify its consecutive term ratio i.e. f(k+1)/f(k). The input term can be composed of functions and integer sequences which have equivalent representation in terms of gamma special function.

Explanation

The algorithm performs three basic steps:

1. Rewrite all functions in terms of gamma, if possible.
2. Rewrite all occurrences of gamma in terms of products of gamma and rising factorial with integer, absolute constant exponent.
3. Perform simplification of nested fractions, powers and if the resulting expression is a quotient of polynomials, reduce their total degree.

If f(k) is hypergeometric then as result we arrive with a quotient of polynomials of minimal degree. Otherwise None is returned.

For more information on the implemented algorithm refer to:


sympy.simplify.simplify.hypersimilar(f, g, k)

Returns True if f and g are hyper-similar.
Explanation

Similarity in hypergeometric sense means that a quotient of \( f(k) \) and \( g(k) \) is a rational function in \( k \). This procedure is useful in solving recurrence relations.

For more information see hypersimp().

```
sympy.simplify.simplify nsimplify(expr, constants=(), tolerance=None, full=False, rational=None, rational_conversion='base10')
```

Find a simple representation for a number or, if there are free symbols or if rational=True, then replace Floats with their Rational equivalents. If no change is made and rational is not False then Floats will at least be converted to Rationals.

Explanation

For numerical expressions, a simple formula that numerically matches the given numerical expression is sought (and the input should be possible to evafl to a precision of at least 30 digits).

Optionally, a list of (rationally independent) constants to include in the formula may be given.

A lower tolerance may be set to find less exact matches. If no tolerance is given then the least precise value will set the tolerance (e.g. Floats default to 15 digits of precision, so would be tolerance=10**-15).

With full=True, a more extensive search is performed (this is useful to find simpler numbers when the tolerance is set low).

When converting to rational, if rational_conversion='base10' (the default), then convert floats to rationals using their base-10 (string) representation. When rational_conversion='exact' it uses the exact, base-2 representation.

Examples

```python
>>> from sympy import nsimplify, sqrt, GoldenRatio, exp, I, pi
>>> nsimplify(4/(1+sqrt(5)), [GoldenRatio])
-2 + 2*GoldenRatio
>>> nsimplify((1/(exp(3*pi*I/5)+1)))
1/2 - I*sqrt(sqrt(5)/10 + 1/4)
>>> nsimplify(I**I, [pi])
exp(-pi/2)
>>> nsimplify(pi, tolerance=0.01)
22/7
>>> nsimplify(0.333333333333333, rational=True, rational_conversion='exact')
0.333333333333333
>>> nsimplify(0.333333333333333, rational=True)
1/3
```

See also:

sympy.core.function.nfloat (page 1110)
sympy.simplify.simplify.posify(eq)

Return eq (with generic symbols made positive) and a dictionary containing the mapping between the old and new symbols.

**Explanation**

Any symbol that has positive=None will be replaced with a positive dummy symbol having the same name. This replacement will allow more symbolic processing of expressions, especially those involving powers and logarithms.

A dictionary that can be sent to subs to restore eq to its original symbols is also returned.

```python
from sympy import posify, Symbol, log, solve
from sympy.abc import x

posify(x + Symbol('p', positive=True) + Symbol('n', negative=True))
(_x + n + p, {_x: x})

>> eq = 1/x
log(eq).expand()
log(1/x)
log(posify(eq)[0]).expand()
-log(_x)

p, rep = posify(eq)
log(p).expand().subs(rep)
-log(x)
```

It is possible to apply the same transformations to an iterable of expressions:

```python
>> eq = x**2 - 4
solve(eq, x)
[-2, 2]

>> solve(posify([eq, x]); eq)
[2]
```

sympy.simplify.simplify.logcombine(expr, force=False)

Takes logarithms and combines them using the following rules:

- \( \log(x) + \log(y) = \log(xy) \) if both are positive
- \( a \log(x) = \log(x^a) \) if \( x \) is positive and \( a \) is real

If force is True then the assumptions above will be assumed to hold if there is no assumption already in place on a quantity. For example, if \( a \) is imaginary or the argument negative, force will not perform a combination but if \( a \) is a symbol with no assumptions the change will take place.
Examples

```python
>>> from sympy import Symbol, symbols, log, logcombine, I
>>> from sympy.abc import a, x, y, z
>>> logcombine(a*log(x) + log(y) - log(z))
a*log(x) + log(y) - log(z)
>>> logcombine(a*log(x) + log(y) - log(z), force=True)
log(x**a*y/z)
>>> x, y, z = symbols('x, y, z', positive=True)
>>> a = Symbol('a', real=True)
>>> logcombine(a*log(x) + log(y) - log(z))
log(x**a*y/z)
```

The transformation is limited to factors and/or terms that contain logs, so the result depends on the initial state of expansion:

```python
>>> eq = (2 + 3*I)*log(x)
>>> logcombine(eq, force=True) == eq
True
>>> logcombine(eq.expand(), force=True)
log(x**2) + I*log(x**3)
```

See also:

- **posify** *(page 725)*
  replace all symbols with symbols having positive assumptions

- **sympy.core.function.expand_log** *(page 1107)*
  expand the logarithms of products and powers; the opposite of logcombine

**sympy.simplify.radsimp** *(page 725)*

Rationalize the denominator by removing square roots.

Explanation

The expression returned from radsimp must be used with caution since if the denominator contains symbols, it will be possible to make substitutions that violate the assumptions of the simplification process: that for a denominator matching a + b*sqrt(c), a != +/-b*sqrt(c). (If there are no symbols, this assumptions is made valid by collecting terms of sqrt(c) so the match variable a does not contain sqrt(c).) If you do not want the simplification to occur for symbolic denominators, set symbolic to False.

If there are more than max_terms radical terms then the expression is returned unchanged.
Examples

```python
>>> from sympy import radsimp, sqrt, Symbol, pprint
>>> from sympy import factor_terms, fraction, signsimp
>>> from sympy.simplify.radsimp import collect_sqrt
>>> from sympy.abc import a, b, c

>>> radsimp(1/(2 + sqrt(2)))
(2 - sqrt(2))/2
>>> x, y = map(Symbol, 'xy')
>>> e = ((2 + 2*sqrt(2))*x + (2 + sqrt(8))*y)/(2 + sqrt(2))
>>> radsimp(e)
sqrt(2)*(x + y)

No simplification beyond removal of the gcd is done. One might want to polish the result a little, however, by collecting square root terms:

```python
>>> r2 = sqrt(2)
>>> r5 = sqrt(5)
>>> ans = radsimp(1/(y*r2 + x*r2 + a*r5 + b*r5)); pprint(ans)

\[
\frac{\sqrt{5}a + \sqrt{5}b - \sqrt{2}x - \sqrt{2}y}{5*a + 10*a*b + 5*b - 2*x - 4*x*y - 2*y}
\]

```python
>>> n, d = fraction(ans)
>>> pprint(factor_terms(signsimp(collect_sqrt(n))/d, radical=True))

\[
\frac{\sqrt{5}(a + b) - \sqrt{2}(x + y)}{5*a + 10*a*b + 5*b - 2*x - 4*x*y - 2*y}
\]

If radicals in the denominator cannot be removed or there is no denominator, the original expression will be returned.

```python
>>> radsimp(sqrt(2)*x + sqrt(2))
sqrt(2)*x + sqrt(2)

Results with symbols will not always be valid for all substitutions:

```python
>>> eq = 1/(a + b*sqrt(c))
>>> eq.subs(a, b*sqrt(c))
1/(2*b*sqrt(c))
>>> radsimp(eq).subs(a, b*sqrt(c))
nan
```

If symbolic=False, symbolic denominators will not be transformed (but numeric denominators will still be processed):

```python
>>> radsimp(eq, symbolic=False)
1/(a + b*sqrt(c))
```
**rad_rationalize** *(num, den)*

Rationalize num/den by removing square roots in the denominator; num and den are sum of terms whose squares are positive rationals.

**Examples**

```python
>>> from sympy import sqrt
>>> from sympy.simplify.radsimp import rad_rationalize
>>> rad_rationalize(sqrt(3), 1 + sqrt(2)/3)
(-sqrt(3) + sqrt(6)/3, -7/9)
```

**collect**(expr, syms, func=None, evaluate=None, exact=False, distribute_order_term=True)

Collect additive terms of an expression.

**Explanation**

This function collects additive terms of an expression with respect to a list of expression up to powers with rational exponents. By the term symbol here are meant arbitrary expressions, which can contain powers, products, sums etc. In other words symbol is a pattern which will be searched for in the expression’s terms.

The input expression is not expanded by *collect()* (page 729), so user is expected to provide an expression in an appropriate form. This makes *collect()* (page 729) more predictable as there is no magic happening behind the scenes. However, it is important to note, that powers of products are converted to products of powers using the *expand_power_base()* (page 1109) function.

There are two possible types of output. First, if evaluate flag is set, this function will return an expression with collected terms or else it will return a dictionary with expressions up to rational powers as keys and collected coefficients as values.

**Examples**

```python
>>> from sympy import S, collect, expand, factor, Wild
>>> from sympy.abc import a, b, c, x, y
```

This function can collect symbolic coefficients in polynomials or rational expressions. It will manage to find all integer or rational powers of collection variable:

```python
>>> collect(a*x**2 + b*x**2 + a*x - b*x + c, x)
c + x**2*(a + b) + x*(a - b)
```

The same result can be achieved in dictionary form:

```python
>>> d = collect(a*x**2 + b*x**2 + a*x - b*x + c, x, evaluate=False)
>>> d[x**2]
a + b
>>> d[x]
a - b
```

(continues on next page)
You can also work with multivariate polynomials. However, remember that this function is greedy so it will care only about a single symbol at time, in specification order:

```
>>> collect(x**2 + y*x**2 + x*y + y + a*y, [x, y])
x**2*(y + 1) + x*y + y*(a + 1)
```

Also more complicated expressions can be used as patterns:

```
>>> from sympy import sin, log
>>> collect(a*sin(2*x) + b*sin(2*x), sin(2*x))
(a + b)*sin(2*x)
>>> collect(a*x*log(x) + b*(x*log(x)), x*log(x))
x*(a + b)*log(x)
```

You can use wildcards in the pattern:

```
>>> w = Wild('w1')
>>> collect(a*x**y - b*x**y, w**y)
x**y*(a - b)
```

It is also possible to work with symbolic powers, although it has more complicated behavior, because in this case power’s base and symbolic part of the exponent are treated as a single symbol:

```
>>> collect(a*x**c + b*x**c, x)
a*x**c + b*x**c
>>> collect(a*x**c + b*x**c, x**c)
x**c*(a + b)
```

However if you incorporate rationals to the exponents, then you will get well known behavior:

```
>>> collect(a*x**(2*c) + b*x**(2*c), x**c)
x**(2*c)*(a + b)
```

Note also that all previously stated facts about `collect()` (page 729) function apply to the exponential function, so you can get:

```
>>> from sympy import exp
>>> collect(a*exp(2*x) + b*exp(2*x), exp(x))
(a + b)*exp(2*x)
```

If you are interested only in collecting specific powers of some symbols then set exact flag to True:

```
>>> collect(a*x**7 + b*x**7, x, exact=True)
a*x**7 + b*x**7
>>> collect(a*x**7 + b*x**7, x**7, exact=True)
x**7*(a + b)
```
If you want to collect on any object containing symbols, set exact to None:

```python
>>> collect(x*exp(x) + sin(x)*y + sin(x)*2 + 3*x, x, exact=None)
```

```
x*exp(x) + 3*x + (y + 2)*sin(x)
```  

```python
>>> collect(a*x*y + x*y + b*x + x, [x, y], exact=None)
```

```
x*y*(a + 1) + x*(b + 1)
```  

You can also apply this function to differential equations, where derivatives of arbitrary order can be collected. Note that if you collect with respect to a function or a derivative of a function, all derivatives of that function will also be collected. Use exact=True to prevent this from happening:

```python
>>> from sympy import Derivative as D, collect, Function
```

```python
>>> f = Function('f')(x)
```

```python
>>> collect(a*D(f,x) + b*D(f,x), D(f,x))
```

```
(a + b)*Derivative(f(x), x)
```  

```python
>>> collect(a*D(D(f,x),x) + b*D(D(f,x),x), f)
```

```
(a + b)*Derivative(f(x), (x, 2))
```  

```python
>>> collect(a*D(D(f,x),x) + b*D(D(f,x),x), D(f,x), exact=True)
```

```
a*Derivative(f(x), (x, 2)) + b*Derivative(f(x), (x, 2))
```  

```python
>>> collect(a*D(f,x) + b*D(f,x) + a*f + b*f, f)
```

```
(a + b)*f(x) + (a + b)*Derivative(f(x), x)
```  

Or you can even match both derivative order and exponent at the same time:

```python
>>> collect(a*D(D(f,x),x)**2 + b*D(D(f,x),x)**2, D(f,x))
```

```
(a + b)*Derivative(f(x), (x, 2))**2
```  

Finally, you can apply a function to each of the collected coefficients. For example you can factorize symbolic coefficients of polynomial:

```python
>>> f = expand((x + a + 1)**3)
```

```python
>>> collect(f, x, factor)
```

```
x**3 + 3*x**2*(a + 1) + 3*x*(a + 1)**2 + (a + 1)**3
```  

**Note:** Arguments are expected to be in expanded form, so you might have to call `expand()` (page 1099) prior to calling this function.

**See also:**

- `collect_const` (page 732)
- `collect_sqrt` (page 732)
- `rcollect` (page 731)
- `sympy.simplify.radsimp.rcollect(expr, *vars)`

Recursively collect sums in an expression.
Examples

```python
>>> from sympy.simplify import rcollect
>>> from sympy.abc import x, y

>>> expr = (x**2*y + x*y + x + y)/(x + y)

>>> rcollect(expr, y)
(x + y*(x**2 + x + 1))/(x + y)
```

See also:

- `collect` (page 729), `collect_const` (page 732), `collect_sqrt` (page 732)

```
sympy.simplify.radsimp.collect_sqrt(expr, evaluate=None)
```

Return `expr` with terms having common square roots collected together. If `evaluate` is `False` a count indicating the number of sqrt-containing terms will be returned and, if non-zero, the terms of the Add will be returned, else the expression itself will be returned as a single term. If `evaluate` is `True`, the expression with any collected terms will be returned.

Note: since I = sqrt(-1), it is collected, too.

Examples

```python
>>> from sympy import sqrt

>>> from sympy.simplify.radsimp import collect_sqrt
>>> from sympy.abc import a, b

>>> r2, r3, r5 = [sqrt(i) for i in [2, 3, 5]]
>>> collect_sqrt(a*r2 + b*r2)
sqrt(2)*(a + b)
>>> collect_sqrt(a*r2 + b*r2 + a*r3 + b*r3)
sqrt(2)*(a + b) + sqrt(3)*(a + b)
>>> collect_sqrt(a*r2 + b*r2 + a*r3 + b*r5)
sqrt(2)*a + sqrt(5)*b + sqrt(2)*(a + b)
```

If `evaluate` is `False` then the arguments will be sorted and returned as a list and a count of the number of sqrt-containing terms will be returned:

```python
>>> collect_sqrt(a*r2 + b*r2 + a*r3 + b*r5, evaluate=False)
((sqrt(3)*a, sqrt(5)*b, sqrt(2)*(a + b)), 3)
>>> collect_sqrt(a*sqrt(2) + b, evaluate=False)
((b, sqrt(2)*a), 1)
>>> collect_sqrt(a + b, evaluate=False)
((a + b,), 0)
```

See also:

- `collect` (page 729), `collect_const` (page 732), `rcollect` (page 731)

```
sympy.simplify.radsimp.collect_const(expr, *vars, Numbers=True)
```

A non-greedy collection of terms with similar number coefficients in an Add `expr`. If
vars is given then only those constants will be targeted. Although any Number can also be targeted, if this is not desired set Numbers=False and no Float or Rational will be collected.

**Parameters**

**expr** : SymPy expression

This parameter defines the expression the expression from which terms with similar coefficients are to be collected. A non-Add expression is returned as it is.

**vars** : variable length collection of Numbers, optional

Specifies the constants to target for collection. Can be multiple in number.

**Numbers** : bool

Specifies to target all instance of sympy.core.numbers.Number (page 1033) class. If Numbers=False, then no Float or Rational will be collected.

**Returns**

**expr** : Expr

Returns an expression with similar coefficient terms collected.

**Examples**

```python
>>> from sympy import sqrt
>>> from sympy.abc import s, x, y, z
>>> from sympy.simplify.radsimp import collect_const
>>> collect_const(sqrt(3) + sqrt(3)*(1 + sqrt(2)))
sqrt(3)*(sqrt(2) + 2)
```

The collection is sign-sensitive, giving higher precedence to the unsigned values:

```python
>>> collect_const(x - y - z)
x - (y + z)
>>> collect_const(-y - z)
-(y + z)
```

See also:

collect (page 729), collect_sqrt (page 732), rcollect (page 731)
sympy.simplify.radsimp.fraction(expr, exact=False)

Returns a pair with expression’s numerator and denominator. If the given expression is not a fraction then this function will return the tuple (expr, 1).

This function will not make any attempt to simplify nested fractions or to do any term rewriting at all.

If only one of the numerator/denominator pair is needed then use numer(expr) or denom(expr) functions respectively.

```python
>>> from sympy import fraction, Rational, Symbol
>>> from sympy.abc import x, y

>>> fraction(x/y)
(x, y)
>>> fraction(x)
(x, 1)

>>> fraction(1/y**2)
(1, y**2)
>>> fraction(x*y/2)
(x*y, 2)
>>> fraction(Rational(1, 2))
(1, 2)
```

This function will also work fine with assumptions:

```python
>>> k = Symbol('k', negative=True)
>>> fraction(x * y**k)
(x, y**(k))
```

If we know nothing about sign of some exponent and exact flag is unset, then structure this exponent’s structure will be analyzed and pretty fraction will be returned:

```python
>>> from sympy import exp, Mul

>>> fraction(2*x**(y))
(2, x**y)

>>> fraction(exp(-x))
(1, exp(x))

>>> fraction(exp(-x), exact=True)
(exp(-x), 1)
```

The exact flag will also keep any unevaluated Muls from being evaluated:

```python
>>> u = Mul(2, x + 1, evaluate=False)
>>> fraction(u)
(2*x + 2, 1)
>>> fraction(u, exact=True)
(2*(x + 1), 1)
```
sympy.simplify.ratsimp.ratsimp(expr)

Put an expression over a common denominator, cancel and reduce.

**Examples**

```python
>>> from sympy import ratsimp
>>> from sympy.abc import x, y
>>> ratsimp(1/x + 1/y)
(x + y)/(x*y)
```

sympy.simplify.ratsimp.ratsimpmodprime(expr, G, *gens, quick=True, polynomial=False, **args)

Simplifies a rational expression expr modulo the prime ideal generated by G. G should be a Groebner basis of the ideal.

**Examples**

```python
>>> from sympy.simplify.ratsimp import ratsimpmodprime
>>> from sympy.abc import x, y
>>> eq = (x + y**5 + y)/(x - y)
>>> ratsimpmodprime(eq, [x*y**5 - x - y], x, y, order='lex')
(-x**2 - x*y - x - y)/(-x**2 + x*y)
```

If polynomial is False, the algorithm computes a rational simplification which minimizes the sum of the total degrees of the numerator and the denominator.

If polynomial is True, this function just brings numerator and denominator into a canonical form. This is much faster, but has potentially worse results.

**References**

[R787]

sympy.simplify.trigsimp.trigsimp(expr, inverse=False, **opts)

Returns a reduced expression by using known trig identities.

**Parameters**

- inverse : bool, optional
  If inverse=True, it will be assumed that a composition of inverse functions, such as sin and asin, can be cancelled in any order. For example, asin(sin(x)) will yield x without checking whether x belongs to the set where this relation is true. The default is False. Default : True

- method : string, optional
  Specifies the method to use. Valid choices are:
  - 'matching', default
  - 'groebner'
  - 'combined'
• 'fu'
• 'old'

If 'matching', simplify the expression recursively by targeting common patterns. If 'groebner', apply an experimental groebner basis algorithm. In this case further options are forwarded to trigsimp_groebner, please refer to its docstring. If 'combined', it first runs the groebner basis algorithm with small default parameters, then runs the 'matching' algorithm. If 'fu', run the collection of trigonometric transformations described by Fu, et al. (see the fu() (page 768) docstring). If 'old', the original SymPy trig simplification function is run.

**opts:**

Optional keyword arguments passed to the method. See each method's function docstring for details.

**Examples**

```python
>>> from sympy import trigsimp, sin, cos, log
>>> from sympy.abc import x
>>> e = 2*sin(x)**2 + 2*cos(x)**2
>>> trigsimp(e)
2

Simplification occurs wherever trigonometric functions are located.

```python
>>> trigsimp(log(e))
log(2)
```

Using method='groebner' (or method='combined') might lead to greater simplification. The old trigsimp routine can be accessed as with method method='old'.

```python
>>> from sympy import coth, tanh
>>> t = 3*tanh(x)**7 - 2/coth(x)**7
>>> trigsimp(t, method='old') == t
True
>>> trigsimp(t)
tanh(x)**7
```

sympy.simplify.powsimp.powsimp(expr, deep=False, combine='all', force=False, measure=<function count_ops>)

Reduce expression by combining powers with similar bases and exponents.
Explanation

If deep is True then powsimp() will also simplify arguments of functions. By default deep is set to False.

If force is True then bases will be combined without checking for assumptions, e.g. sqrt(x)*sqrt(y) -> sqrt(x*y) which is not true if x and y are both negative.

You can make powsimp() only combine bases or only combine exponents by changing combine='base' or combine='exp'. By default, combine='all', which does both. combine='base' will only combine:

\[
\begin{array}{ccl}
\ a\ a\ a & & 2x \ x \\
x \ast \ y & => & (x \ast y)
\end{array}
\]
as well as things like 2 => 4

and combine='exp' will only combine

\[
\begin{array}{ccl}
\ a\ b & & (a + b) \\
x \ast \ x & => & x
\end{array}
\]

combine='exp' will strictly only combine exponents in the way that used to be automatic. Also use deep=True if you need the old behavior.

When combine='all', 'exp' is evaluated first. Consider the first example below for when there could be an ambiguity relating to this. This is done so things like the second example can be completely combined. If you want 'base' combined first, do something like powsimp(powsimp(expr, combine='base'), combine='exp').

Examples

```python
>>> from sympy import powsimp, exp, log, symbols
>>> from sympy.abc import x, y, z, n

>>> powsimp(x**y*x**z*y**z, combine='all')
\(x^{y + z} y^{y + z}\)

>>> powsimp(x**y*x**z*y**z, combine='exp')
\(x^{y + z} y^{y + z}\)

>>> powsimp(x**y*x**z*y**z, combine='base', force=True)
\(x^y (x + y)^z\)

>>> powsimp(x**z*x**y*n**z*n**y, combine='all', force=True)
\((n x)^{y + z}\)

>>> powsimp(x**z*x**y*n**z*n**y, combine='exp')
\(n^{y + z} x^{y + z}\)

>>> powsimp(x**z*x**y*n**z*n**y, combine='base', force=True)
\((n x)^y (n x)^z\)

>>> x, y = symbols('x y', positive=True)

>>> powsimp(log(exp(x)*exp(y)))
\(\log(e^x e^y)\)

>>> powsimp(log(exp(x)*exp(y)), deep=True)
\(x + y\)
```

Radicals with Mul bases will be combined if combine='exp'
Two radicals are automatically joined through Mul:

```python
>>> a = sqrt(x*sqrt(y))
>>> a**3 == a**4
True
```

But if an integer power of that radical has been autoexpanded then Mul does not join the resulting factors:

```python
>>> a**4  # auto expands to a Mul, no longer a Pow
x**2*y
>>> _a  # so Mul doesn't combine them
x**2*y*sqrt(x*sqrt(y))
```

Explanation

Given \((bb**be)**e\), this can be simplified as follows:

- if \(bb\) is positive, or
- \(e\) is an integer, or
- \(|be| < 1\) then this simplifies to \(bb**(be*e)\)

Given a product of powers raised to a power, \((bb1**be1 * bb2**be2...)**e\), simplification can be done as follows:

- if \(e\) is positive, the gcd of all \(bei\) can be joined with \(e\);
- all non-negative \(bb\) can be separated from those that are negative and their gcd can be joined with \(e\); autosimplification already handles this separation.
- integer factors from powers that have integers in the denominator of the exponent can be removed from any term and the gcd of such integers can be joined with \(e\)

Setting `force` to `True` will make symbols that are not explicitly negative behave as though they are positive, resulting in more denesting.

Setting `polar` to `True` will do simplifications on the Riemann surface of the logarithm, also resulting in more denestings.

When there are sums of logs in `exp()` then a product of powers may be obtained e.g. `exp(3*(log(a) + 2*log(b)))` -> \(a**3*b**6\).
Examples

```python
>>> from sympy.abc import a, b, x, y, z
>>> from sympy import Symbol, exp, log, sqrt, symbols, powdenest

>>> powdenest((x**2*a/3)**(3*x))
(x**(2*a/3))**(3*x)
>>> powdenest(exp(3*x*log(2)))
2**(3*x)

Assumptions may prevent expansion:

>>> powdenest(sqrt(x**2))
sqrt(x**2)

>>> p = symbols('p', positive=True)
>>> powdenest(sqrt(p**2))
p

No other expansion is done.

>>> i, j = symbols('i,j', integer=True)
>>> powdenest((x**x)**(i + j)) # -X-> (x**x)**i*(x**x)**j
x**(x*(i + j))

But exp() will be denested by moving all non-log terms outside of the function; this may result in the collapsing of the exp to a power with a different base:

>>> powdenest(exp(3*y*log(x)))
x**(3*y)
>>> powdenest(exp(y*(log(a) + log(b))))
(a*b)**y
>>> powdenest(exp(3*(log(a) + log(b))))
a**3*b**3

If assumptions allow, symbols can also be moved to the outermost exponent:

>>> i = Symbol('i', integer=True)
>>> powdenest(((x**(2*i))**(3*y))**x)
((x**(2*i))**(3*y))**x
>>> powdenest(((x**(2*i))**(3*y))**x, force=True)
x**(6*i*x*y)

>>> powdenest(((x**(2*a/3))**(3*y/i))**x)
((x**(2*a/3))**(3*y/i))**x
>>> powdenest(((x**(2*i)*y**(4*i))**z, force=True)
(x*y**(2*i)*y**(4*i))**z

>>> n = Symbol('n', negative=True)

>>> powdenest((x**i)**y, force=True)
x**(i*y)
```

(continues on next page)
sympy.simplify.combsimp.combsimp(expr)

Simplify combinatorial expressions.

Explanation

This function takes as input an expression containing factorials, binomials, Pochhammer symbol and other “combinatorial” functions, and tries to minimize the number of those functions and reduce the size of their arguments.

The algorithm works by rewriting all combinatorial functions as gamma functions and applying gammasimp() except simplification steps that may make an integer argument non-integer. See docstring of gammasimp for more information.

Then it rewrites expression in terms of factorials and binomials by rewriting gammas as factorials and converting (a+b)!/a!/b! into binomials.

If expression has gamma functions or combinatorial functions with non-integer argument, it is automatically passed to gammasimp.

Examples

```python
>>> from sympy.simplify import combsimp
>>> from sympy import factorial, binomial, symbols
>>> n, k = symbols('n k', integer=True)

>>> combsimp(factorial(n)/factorial(n - 3))
n*(n - 2)*(n - 1)

>>> combsimp(binomial(n+1, k+1)/binomial(n, k))
(n + 1)/(k + 1)
```

sympy.simplify.sqrtdenest.sqrtdenest(expr, max_iter=3)

Denests sqrts in an expression that contain other square roots if possible, otherwise returns the expr unchanged. This is based on the algorithms of [1].

Examples

```python
>>> from sympy.simplify.sqrtdenest import sqrtdenest
>>> from sympy import sqrt

>>> sqrtdenest(sqrt(5 + 2 * sqrt(6)))
sqrt(2) + sqrt(3)
```

See also:

sympy.solvers.solvers.unrad (page 898)
SymPy Documentation, Release 1.12.1

References

[R788], [R789]

`sympy.simplify.cse_main.cse(exprs, symbols=None, optimizations=None, postprocess=None, order='canonical', ignore=(), list=True)`

Perform common subexpression elimination on an expression.

Parameters

- **exprs**: list of SymPy expressions, or a single SymPy expression

The expressions to reduce.

- **symbols**: infinite iterator yielding unique Symbols

The symbols used to label the common subexpressions which are pulled out. The numbered_symbols generator is useful. The default is a stream of symbols of the form “x0”, “x1”, etc. This must be an infinite iterator.

- **optimizations**: list of (callable, callable) pairs

The (preprocessor, postprocessor) pairs of external optimization functions. Optionally ‘basic’ can be passed for a set of predefined basic optimizations. Such ‘basic’ optimizations were used by default in old implementation, however they can be really slow on larger expressions. Now, no pre or post optimizations are made by default.

- **postprocess**: a function which accepts the two return values of cse and returns the desired form of output from cse, e.g. if you want the replacements reversed the function might be the following lambda: lambda r, e: return reversed(r), e

- **order**: string, ‘none’ or ‘canonical’

The order by which Mul and Add arguments are processed. If set to ‘canonical’, arguments will be canonically ordered. If set to ‘none’, ordering will be faster but dependent on expressions hashes, thus machine dependent and variable. For large expressions where speed is a concern, use the setting order='none'.

- **ignore**: iterable of Symbols

Substitutions containing any Symbol from ignore will be ignored.

- **list**: bool, (default True)

Returns expression in list or else with same type as input (when False).

Returns

- **replacements**: list of (Symbol, expression) pairs

All of the common subexpressions that were replaced. Subexpressions earlier in this list might show up in subexpressions later in this list.

- **reduced_exprs**: list of SymPy expressions

The reduced expressions with all of the replacements above.
Examples

```python
>>> from sympy import cse, SparseMatrix
>>> from sympy.abc import x, y, z, w

>>> cse(((w + x + y + z)*(w + y + z))/(w + x)**3)

([(x0, y + z), (x1, w + x)], [(w + x0)*(x0 + x1)/x1**3])

List of expressions with recursive substitutions:

```python
>>> m = SparseMatrix([[x + y, x + y + z]])
>>> cse([[(x+y)**2, x + y + z, y + z, x + z + y, m]]

([(x0, x + y), (x1, x0 + z)], [x0**2, x1, y + z, x1, Matrix([[x0], [x1]]))]

Note: the type and mutability of input matrices is retained.

```python
>>> isinstance(_[1][-1], SparseMatrix)
True

The user may disallow substitutions containing certain symbols:

```python
>>> cse([(y**2*(x + 1), 3*y**2*(x + 1)], ignore=(y,))

([(x0, x + 1)], [x0*y**2, 3*x0*y**2])

The default return value for the reduced expression(s) is a list, even if there is only one expression. The `list` flag preserves the type of the input in the output:

```python
>>> cse(x)

([], [x])

```python
>>> cse(x, list=False)

([], x)
```

sympy.simplify.cse_main.opt_cse(exprs, order='canonical')

Find optimization opportunities in Adds, Muls, Pows and negative coefficient Muls.

**Parameters**

- **exprs**: list of SymPy expressions
  The expressions to optimize.

- **order**: string, ‘none’ or ‘canonical’
  The order by which Mul and Add arguments are processed. For large expressions where speed is a concern, use the setting order=’none’.

**Returns**

- **opt_subs**: dictionary of expression substitutions
  The expression substitutions which can be useful to optimize CSE.
Examples

```python
>>> from sympy.simplify.cse_main import opt_cse
>>> from sympy.abc import x
>>> opt_subs = opt_cse([x**2])
>>> k, v = list(opt_subs.keys())[0], list(opt_subs.values())[0]
>>> print((k, v.as_unevaluated_basic()))
(x**(-2), 1/(x**2))
```

sympy.simplify.cse_main.tree_cse(exprs, symbols, opt_subs=None, order='canonical', ignore=())

Perform raw CSE on expression tree, taking opt_subs into account.

**Parameters**
- **exprs** : list of SymPy expressions
  The expressions to reduce.
- **symbols** : infinite iterator yielding unique Symbols
  The symbols used to label the common subexpressions which are pulled out.
- **opt_subs** : dictionary of expression substitutions
  The expressions to be substituted before any CSE action is performed.
- **order** : string, ‘none’ or ‘canonical’
  The order by which Mul and Add arguments are processed. For large expressions where speed is a concern, use the setting order=‘none’.
- **ignore** : iterable of Symbols
  Substitutions containing any Symbol from ignore will be ignored.

sympy.simplify.hyperexpand.hyperexpand(f, allow_hyper=False, rewrite='default', place=None)

Expand hypergeometric functions. If allow_hyper is True, allow partial simplification (that is a result different from input, but still containing hypergeometric functions).

If a G-function has expansions both at zero and at infinity, place can be set to 0 or zoo to indicate the preferred choice.

Examples

```python
>>> from sympy.simplify.hyperexpand import hyperexpand
>>> from sympy.functions import hyper
>>> from sympy.abc import z
>>> hyperexpand(hyper([], [], z))
exp(z)
```

Non-hypergeometric parts of the expression and hypergeometric expressions that are not recognised are left unchanged:
class sympy.simplify.epathtools.EPath(path)
Manipulate expressions using paths.

EPath grammar in EBNF notation:

literal ::= /[A-Za-z_][A-Za-z_0-9]*/
number ::= /-?\d+/
type ::= literal
attribute ::= literal "?"
all ::= "*"
slice ::= "[" number? (":" number? (":" number?)?)? "]"
range ::= all | slice
query ::= (type | attribute) ("|") (type | attribute))*
selector ::= range | query range?
path ::= "/" selector ("/") selector)*

See the docstring of the epath() function.

apply(expr, func, args=None, kwargs=None)
Modify parts of an expression selected by a path.

Examples

```python
>>> from sympy.simplify.epathtools import EPath
>>> from sympy import sin, cos, E
>>> from sympy.abc import x, y, z, t

>>> path = EPath("/*/0\Symbol")
>>> expr = [[[x, 1], 2], [(3, y, z)]

>>> path.apply(expr, lambda expr: expr**2)
[[(x**2, 1), 2], [(3, y**2), z]]

>>> path = EPath("/*/\Symbol")
>>> expr = t + sin(x + 1) + cos(x + y + E)

>>> path.apply(expr, lambda expr: 2*expr)
t + sin(2*x + 1) + cos(2*x + 2*y + E)
```
Examples

```python
>>> from sympy.simplify.epathtools import EPath
>>> from sympy import sin, cos, E
>>> from sympy.abc import x, y, z, t

>>> path = EPath("/*/[0]/Symbol")
>>> expr = [((x, 1), 2), ((3, y), z)]

>>> path.select(expr)
[x, y]

>>> path = EPath("/*/*/Symbol")
>>> expr = t + sin(x + 1) + cos(x + y + E)

>>> path.select(expr)
[x, x, y]
```

```python
sympy.simplify.epathtools.epath(path, expr=None, func=None, args=None, kwargs=None)
```

Manipulate parts of an expression selected by a path.

**Parameters**

- **path**: str | EPath
  - A path as a string or a compiled EPath.
- **expr**: Basic | iterable
  - An expression or a container of expressions.
- **func**: callable (optional)
  - A callable that will be applied to matching parts.
- **args**: tuple (optional)
  - Additional positional arguments to `func`.
- **kwargs**: dict (optional)
  - Additional keyword arguments to `func`.

**Explanation**

This function allows to manipulate large nested expressions in single line of code, utilizing techniques to those applied in XML processing standards (e.g. XPath).

If `func` is None, `epath()` (page 745) retrieves elements selected by the `path`. Otherwise it applies `func` to each matching element.

Note that it is more efficient to create an EPath object and use the select and apply methods of that object, since this will compile the path string only once. This function should only be used as a convenient shortcut for interactive use.

This is the supported syntax:
• **select all:** /* Equivalent of for arg in args:.

• **select slice:** /[0] or /[1:5] or /[1:5:2]
   Supports standard Python’s slice syntax.

• **select by type:** /list or /list|tuple
   Emulates isinstance().

• **select by attribute:** /__iter__?
   Emulates hasattr().

**Examples**

```python
>>> from sympy.simplify.epathtools import epath
>>> from sympy import sin, cos, E
>>> from sympy.abc import x, y, z, t

>>> path = "/*/0/ Symbol"
>>> expr = [[[x, 1], 2], [(3, y), z]]

>>> epath(path, expr)
[x, y]
```

```python
>>> epath(path, expr, lambda expr: expr**2)
[[[x**2, 1], 2], [(3, y**2), z]]
```

```python
>>> path = "/*/0/ Symbol"
>>> expr = t + sin(x + 1) + cos(x + y + E)

>>> epath(path, expr)
[x, x, y]
```

```python
>>> epath(path, expr, lambda expr: 2*expr)
t + sin(2*x + 1) + cos(2*x + 2*y + E)
```

**Hypergeometric Expansion**

This page describes how the function `hyperexpand()` (page 743) and related code work. For usage, see the documentation of the `simplify` module.

**Hypergeometric Function Expansion Algorithm**

This section describes the algorithm used to expand hypergeometric functions. Most of it is based on the papers [Roach1996] and [Roach1997].

Recall that the hypergeometric function is (initially) defined as

\[ \sum_{n=0}^{\infty} \frac{(a_1)_n \cdots (a_p)_n}{(b_1)_n \cdots (b_q)_n} \frac{z^n}{n!} \]

It turns out that there are certain differential operators that can change the \(a_p\) and \(p_q\) parameters by integers. If a sequence of such operators is known that converts the set of indices...
$a_r^n$ and $b_r^n$ into $a_p$ and $b_q$, then we shall say the pair $a_p, b_q$ is reachable from $a_r^n, b_r^n$. Our general strategy is thus as follows: given a set $a_p, b_q$ of parameters, try to look up an origin $a_r^n, b_r^n$ for which we know an expression, and then apply the sequence of differential operators to the known expression to find an expression for the Hypergeometric function we are interested in.

**Notation**

In the following, the symbol $a$ will always denote a numerator parameter and the symbol $b$ will always denote a denominator parameter. The subscripts $p, q, r, s$ denote vectors of that length, so e.g. $a_p$ denotes a vector of $p$ numerator parameters. The subscripts $i$ and $j$ denote "running indices", so they should usually be used in conjunction with a "for all $i$". E.g. $a_i < 4$ for all $i$. Uppercase subscripts $I$ and $J$ denote a chosen, fixed index. So for example $a_I > 0$ is true if the inequality holds for the one index $I$ we are currently interested in.

**Incrementing and decrementing indices**

Suppose $a_i \neq 0$. Set $A(a_i) = \frac{e_i \cdot d}{e_i + 1}$. It is then easy to show that $A(a_i) \cdot F_q(a_p|b_q) = F_q(a_p + e_i|b_q)$, where $e_i$ is the $i$-th unit vector. Similarly for $b_j \neq 1$ we set $B(b_j) = \frac{b_j \cdot d}{b_j - 1} + 1$ and find $B(b_j) \cdot F_q(a_p|b_q) = F_q(a_p|b_q - e_i)$. Thus we can increment upper and decrement lower indices at will, as long as we don’t go through zero. The $A(a_i)$ and $B(b_j)$ are called shift operators.

It is also easy to show that $\frac{d}{dz} F_q(a_p|b_q) = F_q(a_p + 1|b_q)$, where $a_p + 1$ is the vector $a_1 + 1, a_2 + 1, \ldots$ and similarly for $b_q + 1$. Combining this with the shift operators, we arrive at one form of the Hypergeometric differential equation: $\frac{d}{dz} \prod_{j=1}^q B(b_j) - \prod_{i=1}^q A(a_i) F_q(a_p|b_q) = 0$. This holds if all shift operators are defined, i.e. if no $a_i = 0$ and no $b_j = 1$. Clearing denominators and multiplying through by $z$ we arrive at the following equation: $z \frac{d}{dz} \prod_{j=1}^q (z \frac{d}{dz} + b_j - 1) - \prod_{i=1}^q (z \frac{d}{dz} + a_i) F_q(a_p|b_q) = 0$. Even though our derivation does not show it, it can be checked that this equation holds whenever the $F_q$ is defined.

Notice that, under suitable conditions on $a_I, b_J$, each of the operators $A(a_i)$, $B(b_j)$ and $\frac{d}{dz}$ can be expressed in terms of $A(a_I)$ or $B(b_J)$. Our next aim is to write the Hypergeometric differential equation as follows: $[X \cdot A(a_I) - r] F_q(a_p|b_q) = 0$, for some operator $X$ and some constant $r$ to be determined. If $r \neq 0$, then we can write this as $z \frac{d}{dz} F_q(a_p|b_q) = r F_q(a_p|b_q)$, and so $\frac{1}{r} X$ undoes the shifting of $A(a_I)$, whence it will be called an inverse-shift operator.

Now $A(a_I)$ exists if $a_I \neq 0$, and then $z \frac{d}{dz} = a_I A(a_I) - r$. Observe also that all the operators $A(a_i)$, $B(b_j)$ and $\frac{d}{dz}$ commute. We have $\prod_{i=1}^p (z \frac{d}{dz} + a_i) = (\prod_{i=1, i \neq I}^p (z \frac{d}{dz} + a_i)) a_I A(a_I)$, so this gives us the first half of $X$. The other half does not have such a nice expression. We find $z \frac{d}{dz} \prod_{j=1}^q (z \frac{d}{dz} + b_j - 1) = (a_I A(a_I) - a_I) \prod_{j=1}^q (a_I A(a_I) - a_I + b_j - 1)$. Since the first half had no constant term, we infer $r = -a_I \prod_{j=1}^q (b_j - 1 - a_I)$.

This tells us under which conditions we can “un-shift” $A(a_I)$, namely when $a_I \neq 0$ and $r \neq 0$. Substituting $a_I - 1$ for $a_I$ then tells us under what conditions we can decrement the index $a_I$. Doing a similar analysis for $B(b_j)$, we arrive at the following rules:

- An index $a_I$ can be decremented if $a_I \neq 1$ and $a_I \neq b_j$ for all $b_j$.
- An index $b_j$ can be incremented if $b_j \neq -1$ and $b_j \neq a_I$ for all $a_I$.
Combined with the conditions (stated above) for the existence of shift operators, we have thus established the rules of the game!

**Reduction of Order**

Notice that, quite trivially, if \( a_I = b_J \), we have \( pF_q \left( \frac{a_p}{b_q} \big| z \right) = p_{-1}F_{q-1} \left( \frac{a_p}{b_q} \big| z \right) \), where \( a_p \) means \( a_p \) with \( a_I \) omitted, and similarly for \( b_q^* \). We call this reduction of order.

In fact, we can do even better. If \( a_I - b_J \in \mathbb{Z}_{>0} \), then it is easy to see that \( \frac{(a_I)_n}{(b_J)_n} \) is actually a polynomial in \( n \). It is also easy to see that \( (z \frac{d}{dz})^k z^n = n^k z^n \). Combining these two remarks we find:

If \( a_I - b_J \in \mathbb{Z}_{>0} \), then there exists a polynomial \( p(n) = p_0 + p_1 n + \cdots \) (of degree \( a_I - b_J \)) such that \( \frac{(a_I)_n}{(b_J)_n} = p(n) \) and \( pF_q \left( \frac{a_p}{b_q} \big| z \right) = \left( p_0 + p_1 z \frac{d}{dz} + p_2 \left(z \frac{d}{dz}\right)^2 + \cdots \right) p_{-1}F_{q-1} \left( \frac{a_p}{b_q} \big| z \right) \).

Thus any set of parameters \( a_p, b_q \) is reachable from a set of parameters \( c_r, d_s \) where \( c_i - d_j \in \mathbb{Z} \) implies \( c_i < d_j \). Such a set of parameters \( c_r, d_s \) is called suitable. Our database of known formulae should only contain suitable origins. The reasons are twofold: firstly, working from suitable origins is easier, and secondly, a formula for a non-suitable origin can be deduced from a lower order formula, and we should put this one into the database instead.

**Moving Around in the Parameter Space**

It remains to investigate the following question: suppose \( a_p, b_q \) and \( a_p^0, b_q^0 \) are both suitable, and also \( a_i - a_i^0 \in \mathbb{Z}, b_j - b_j^0 \in \mathbb{Z} \). When is \( a_p, b_q \) reachable from \( a_p^0, b_q^0 \)? It is clear that we can treat all parameters independently that are incongruent mod 1. So assume that \( a_i \) and \( b_j \) are congruent to \( r \mod 1 \), for all \( i \) and \( j \). The same then follows for \( a_i^0 \) and \( b_j^0 \).

If \( r \neq 0 \), then any such \( a_p, b_q \) is reachable from any \( a_p^0, b_q^0 \). To see this notice that there exist constants \( c, e^0 \), congruent mod 1, such that \( a_i < c < b_j \) for all \( i \) and \( j \), and similarly \( a_i^0 < e^0 < b_j^0 \). If \( n = c - e^0 > 0 \) then we first inverse-shift all the \( b_j^0 \) \( n \) times up, and then similarly shift up all the \( a_i^0 \) \( n \) times. If \( n < 0 \) then we first inverse-shift down the \( a_i^0 \) and then shift down the \( b_j^0 \). This reduces to the case \( c = e^0 \). But evidently we can now shift or inverse-shift around the \( e^0 \) arbitrarily so long as we keep them less than \( c \), and similarly for the \( b_j^0 \) so long as we keep them bigger than \( c \). Thus \( a_p, b_q \) is reachable from \( a_p^0, b_q^0 \).

If \( r = 0 \) then the problem is slightly more involved. WLOG no parameter is zero. We now have one additional complication: no parameter can ever move through zero. Hence \( a_p, b_q \) is reachable from \( a_p^0, b_q^0 \) if and only if the number of \( a_i < 0 \) equals the number of \( a_i^0 < 0 \), and similarly for the \( b_j \) and \( b_j^0 \). But in a suitable set of parameters, all \( b_j > 0 \)! This is because the Hypergeometric function is undefined if one of the \( b_j \) is a non-positive integer and all \( a_i \) are smaller than the \( b_j \). Hence the number of \( b_j \leq 0 \) is always zero.

We can thus associate to every suitable set of parameters \( a_p, b_q \), where no \( a_i = 0 \), the following invariants:

- For every \( r \in [0, 1) \) the number \( \alpha_r \) of parameters \( a_i \equiv r \mod 1 \), and similarly the number \( \beta_r \) of parameters \( b_i \equiv r \mod 1 \).
- The number \( \gamma \) of integers \( a_i \) with \( a_i < 0 \).
The above reasoning shows that $a_p, b_q$ is reachable from $a^0_p, b^0_q$ if and only if the invariants $\alpha_r, \beta_r, \gamma$ all agree. Thus in particular “being reachable from” is a symmetric relation on suitable parameters without zeros.

**Applying the Operators**

If all goes well then for a given set of parameters we find an origin in our database for which we have a nice formula. We now have to apply (potentially) many differential operators to it. If we do this blindly then the result will be very messy. This is because with Hypergeometric type functions, the derivative is usually expressed as a sum of two contiguous functions. Hence if we compute $N$ derivatives, then the answer will involve $2N$ contiguous functions! This is clearly undesirable. In fact we know from the Hypergeometric differential equation that we need at most $\max(p, q + 1)$ contiguous functions to express all derivatives.

Hence instead of differentiating blindly, we will work with a $\mathbb{C}(z)$-module basis: for an origin $a^0_r, b^0_s$ we either store (for particularly pretty answers) or compute a set of $N$ functions (typically $N = \max(r, s + 1)$) with the property that the derivative of any of them is a $\mathbb{C}(z)$-linear combination of them. In formulae, we store a vector $B$ of $N$ functions, a matrix $M$ and a vector $C$ (the latter two with entries in $\mathbb{C}(z)$), with the following properties:

- $z^{F_b(a^0_r | b^0_s)} = CB$
- $z^{\frac{d}{dz}} B = MB$.

Then we can compute as many derivatives as we want and we will always end up with $\mathbb{C}(z)$-linear combination of at most $N$ special functions.

As hinted above, $B$, $M$ and $C$ can either all be stored (for particularly pretty answers) or computed from a single $_pF_q$ formula.

**Loose Ends**

This describes the bulk of the hypergeometric function algorithm. There a few further tricks, described in the hyperexpand.py source file. The extension to Meijer G-functions is also described there.

**Meijer G-Functions of Finite Confluence**

Slater’s theorem essentially evaluates a $G$-function as a sum of residues. If all poles are simple, the resulting series can be recognised as hypergeometric series. Thus a $G$-function can be evaluated as a sum of Hypergeometric functions.

If the poles are not simple, the resulting series are not hypergeometric. This is known as the “confluent” or “logarithmic” case (the latter because the resulting series tend to contain logarithms). The answer depends in a complicated way on the multiplicities of various poles, and there is no accepted notation for representing it (as far as I know). However if there are only finitely many multiple poles, we can evaluate the $G$ function as a sum of hypergeometric functions, plus finitely many extra terms. I could not find any good reference for this, which is why I work it out here.

Recall the general setup. We define
\[
G(z) = \frac{1}{2\pi i} \int_L \prod_{j=1}^{m} \Gamma(b_j - s) \prod_{j=1}^{n} \Gamma(1 - a_j + s) \prod_{j=m+1}^{p} \Gamma(1 - b_j + s) \prod_{j=n+1}^{p} \Gamma(a_j - s) z^s ds,
\]

5.8. Topics 749
where $L$ is a contour starting and ending at $+\infty$, enclosing all of the poles of $\Gamma(b_j - s)$ for $j = 1, \ldots, n$ once in the negative direction, and no other poles. Also the integral is assumed absolutely convergent.

In what follows, for any complex numbers $a, b$, we write $a \equiv b \pmod{1}$ if and only if there exists an integer $k$ such that $a - b = k$. Thus there are double poles iff $a_i \equiv a_j \pmod{1}$ for some $i \neq j \leq n$.

We now assume that whenever $b_j \equiv a_i \pmod{1}$ for $i \leq m$, $j > n$ then $b_j < a_i$. This means that no quotient of the relevant gamma functions is a polynomial, and can always be achieved by "reduction of order". Fix a complex number $c$ such that $\{b_i | b_i \equiv c \pmod{1}, i \leq m\}$ is not empty. Enumerate this set as $b_i, b_i + k_1, \ldots, b_i + k_u$, with $k_i$ non-negative integers. Enumerate similarly $\{a_j | a_j \equiv c \pmod{1}, j > n\}$ as $a_l, a_l + u_1, \ldots, a_l + u_v$. Then $a_l > k_j$ for all $i, j$. For finite confluence, we need to assume $v \geq u$ for all such $c$.

Let $c_1, \ldots, c_u$ be distinct $\pmod{1}$ and exhaust the congruence classes of the $b_i$. I claim

$$G(z) = - \sum_{j=1}^u (F_j(z) + R_j(z)),$$

where $F_j(z)$ is a hypergeometric function and $R_j(z)$ is a finite sum, both to be specified later. Indeed corresponding to every $c_j$ there is a sequence of poles, at mostly finitely many of them multiple poles. This is where the $j$-th term comes from.

Hence fix again $c$, enumerate the relevant $b_i$ as $b_i + k_1, \ldots, b_i + k_u$. We will look at the $a_j$ corresponding to $a_l + l_1, \ldots, a_l + l_u$. The other $a_i$ are not treated specially. The corresponding gamma functions have poles at (potentially) $s = b + r$ for $r = 0, 1, \ldots$. For $r \geq l_u$, pole of the integrand is simple. We thus set

$$R(z) = \sum_{r=0}^{l_u-1} \text{Res}_{s=r+b}.$$

We finally need to investigate the other poles. Set $r = l_u + t$, $t \geq 0$. A computation shows

$$\frac{\Gamma(k_i - l_u - t)}{\Gamma(l_i - l_u - t)} = \frac{1}{(k_i - l_u - t)_{l_i - k_i}} = \frac{(-1)^{l_i}}{(l_u - l_i + 1)_{l_i} (l_u - k_i + 1)_{l_i}},$$

where $\delta_i = l_i - k_i$.

Also

$$\Gamma(b_j - l_u - b - t) = \frac{\Gamma(b_j - l_u - b)}{(-1)^t (l_u + b + 1 - b_j)_t},$$

$$\Gamma(1 - a_j + l_u + b + t) = \Gamma(1 - a_j + l_u + b)(1 - a_j + l_u + b)_t$$

and

$$\text{Res}_{s=b+l_u+t} \Gamma(b - s) = \frac{(-1)^{l_u+t}}{(l_u+t)!} = - \frac{(-1)^{l_u}}{l_u!} \frac{(-1)^t}{(l_u+1)_t}. $$

Hence

$$\text{Res}_{s=b+l_u+t} = - z^{b+l_u} \frac{(-1)^{l_u}}{l_u!} \prod_{i=1}^u \frac{(-1)^{l_i}}{(l_u - k_i + 1)_{l_i} (l_u - k_i + 1)_{l_i}} \prod_{j=1}^n \Gamma(1 - a_j + l_u + b) \prod_{j=m+1}^{n+u} \Gamma(b_j - l_u - b) \prod_{j=m+1}^n \Gamma(1 - b_j + l_u + b) \prod_{j=m+1}^n (l_u + b + 1 - b_j)_t \prod_{j=m+1}^n (l_u + b + 1 - b_j)_t.$$
where the * means to omit the terms we treated specially.

We thus arrive at

\[ F(z) = C \times {}_{p+1}F_q \left( \begin{array}{c} \frac{1}{1} \left( 1 + l_u - l_i \right), \left( 1 + l_u + b - a_i \right)^* \frac{1}{1 + l_u, \left( 1 + l_u - k_i \right), \left( 1 + l_u + b - b_i \right)^*} \right) (-1)^{p-m-n} z \right), \]

where \( C \) designates the factor in the residue independent of \( t \). (This result can also be written in slightly simpler form by converting all the \( l_u \) etc back to \( a_1 - b_1 \), but doing so is going to require more notation still and is not helpful for computation.)

### Extending The Hypergeometric Tables

Adding new formulae to the tables is straightforward. At the top of the file `sympy/simplify/hyperexpand.py`, there is a function called `add_formulae()`. Nested in it are defined two helpers, `add(ap, bq, res)` and `addb(ap, bq, B, C, M)`, as well as dummy's a, b, c, and z.

The first step in adding a new formula is by using `add(ap, bq, res)`. This declares `hyper(ap, bq, z) == res`. Here ap and bq may use the dummy's a, b, and c as free symbols. For example the well-known formula \( \sum_{n=0}^{\infty} \frac{(-a)^n z^n}{n!} = (1 - z)^a \) is declared by the following line: `add((-a, ), (), (1-z)**a)`.

From the information provided, the matrices \( B, C \) and \( M \) will be computed, and the formula is now available when expanding hypergeometric functions. Next the test file `sympy/simplify/tests/test_hyperexpand.py` should be run, in particular the test `test_formulae()`. This will test the newly added formula numerically. If it fails, there is (presumably) a typo in what was entered.

Since all newly-added formulae are probably relatively complicated, chances are that the automatically computed basis is rather suboptimal (there is no good way of testing this, other than observing very messy output). In this case the matrices \( B, C \) and \( M \) should be computed by hand. Then the helper `addb` can be used to declare a hypergeometric formula with hand-computed basis.

### An example

Because this explanation so far might be very theoretical and difficult to understand, we walk through an explicit example now. We take the Fresnel function \( C(z) \) which obeys the following hypergeometric representation:

\[ C(z) = z \cdot {}_{1}F_{2} \left( \begin{array}{c} \frac{1}{4} \frac{5}{4} \left| - \frac{\pi^2 z^4}{16} \right. \right). \]

First we try to add this formula to the lookup table by using the (simpler) function `add(ap, bq, res)`. The first two arguments are simply the lists containing the parameter sets of \( 1F2 \). The `res` argument is a little bit more complicated. We only know \( C(z) \) in terms of \( 1F2(\ldots|f(z)) \) with \( f \) a function of \( z \), in our case

\[ f(z) = -\frac{\pi^2 z^4}{16}. \]

What we need is a formula where the hypergeometric function has only \( z \) as argument \( 1F2(\ldots|z) \). We introduce the new complex symbol \( w \) and search for a function \( g(w) \) such that

\[ f(g(w)) = w. \]
holds. Then we can replace every $z$ in $C(z)$ by $g(w)$. In the case of our example the function $g$ could look like

$$g(w) = \frac{2}{\sqrt{\pi}} \exp \left( \frac{i\pi}{4} \right) w^\frac{1}{4}.$$

We get these functions mainly by guessing and testing the result. Hence we proceed by computing $f(g(w))$ (and simplifying naively)

$$f(g(w)) = \frac{\pi^2 g(w)^4}{16}$$

$$= \frac{\pi^2 g \left( \frac{2}{\sqrt{\pi}} \exp \left( \frac{i\pi}{4} \right) w^\frac{1}{4} \right)^4}{16}$$

$$= \frac{\pi^2 \frac{1}{\sqrt{\pi}} \exp \left( \frac{i\pi}{4} \right)^4 w^{\frac{1}{4}}}{16}$$

$$= - \exp \left( i\pi \right) w$$

$$= w$$

and indeed get back $w$. (In case of branched functions we have to be aware of branch cuts. In that case we take $w$ to be a positive real number and check the formula. If what we have found works for positive $w$, then just replace $\exp$ (page 468) inside any branched function by $\exp_polar$ (page 471) and what we get is right for all $w$.) Hence we can write the formula as

$$C(g(w)) = g(w) \cdot {}_1F_2 \left( \begin{array}{c} \frac{1}{2}, \frac{5}{4} \\ \frac{1}{2}, \frac{7}{4} \end{array} | w \right)$$

and trivially

$${}_1F_2 \left( \begin{array}{c} \frac{1}{2}, \frac{5}{4} \\ \frac{1}{2}, \frac{7}{4} \end{array} | w \right) = \frac{C(g(w))}{g(w)} = \frac{\frac{2}{\sqrt{\pi}} \exp \left( \frac{i\pi}{4} \right) w^\frac{1}{4}}{\frac{2}{\sqrt{\pi}} \exp \left( \frac{i\pi}{4} \right) w^\frac{1}{4}}$$

which is exactly what is needed for the third parameter, $res$, in add. Finally, the whole function call to add this rule to the table looks like:

```python
add([S(1)/4],
 [S(1)/2, S(5)/4],
 fresnelc(exp(pi*I/4)*root(z,4)*2/sqrt(pi)) / (exp(pi*I/4)*root(z,4)*2/sqrt(pi))
)
```

Using this rule we will find that it works but the results are not really nice in terms of simplicity and number of special function instances included. We can obtain much better results by adding the formula to the lookup table in another way. For this we use the (more complicated) function addb(ap, bq, B, C, M). The first two arguments are again the lists containing the parameter sets of $F_2$. The remaining three are the matrices mentioned earlier on this page.

We know that the $n = \max (p, q + 1)$-th derivative can be expressed as a linear combination of lower order derivatives. The matrix $B$ contains the basis $\{B_0, B_1, \ldots\}$ and is of shape $n \times 1$. The best way to get $B_i$ is to take the first $n = \max (p, q + 1)$ derivatives of the expression for $pF_q$ and take out useful pieces. In our case we find that $n = \max (1, 2 + 1) = 3$. For computing the derivatives, we have to use the operator $\frac{d}{dz}$. The first basis element $B_0$ is set to the expression for $F_2$ from above:

$$B_0 = \sqrt{\pi} \exp \left( -\frac{i\pi}{4} \right) C \left( \frac{2}{\sqrt{\pi}} \exp \left( \frac{i\pi}{4} \right) z^\frac{1}{4} \right)$$
Next we compute $z \frac{d}{dz} B_0$. For this we can directly use SymPy!

```python
>>> from sympy import Symbol, sqrt, exp, I, pi, fresnelc, root, diff, expand
>>> z = Symbol("z")
>>> B0 = sqrt(pi)*exp(-I*pi/4)*fresnelc(2*root(z, 4)*exp(I*pi/4)/sqrt(pi)) /
... (2*root(z, 4))
>>> z * diff(B0, z)
z*(cosh(2*sqrt(z))/(4*z) - sqrt(pi)*exp(-I*pi/4)*fresnelc(2*z**(1/4)*exp(I*pi/4)/sqrt(pi))/(8*z**(5/4)))
>>> expand(_)
cosh(2*sqrt(z))/4 - sqrt(pi)*exp(-I*pi/4)*fresnelc(2*z**(1/4)*exp(I*pi/4)/sqrt(pi))/(8*z**(5/4))
```

Formatting this result nicely we obtain

$$B_1' = \frac{\sqrt{\pi}}{4} \exp\left(-\frac{\pi i}{4}\right) C \left(\frac{2}{\sqrt{\pi}} \exp\left(\frac{\pi i}{4}\right) z^{\frac{1}{4}}\right) + \frac{1}{4} \cosh(2\sqrt{z})$$

Computing the second derivative we find

```python
>>> from sympy import cosh, sqrt, pi, exp, I, fresnelc, root, diff, expand
>>> z = Symbol("z")
>>> B1prime = cosh(2*sqrt(z))/4 - sqrt(pi)*exp(-I*pi/4)*fresnelc(2*z**(1/4)*exp(I*pi/4)/sqrt(pi))/(32*z**(1/4))
>>> z * diff(B1prime, z)
\sqrt{z} \sinh(2\sqrt{z})/4 - \cosh(2\sqrt{z})/16 + \sqrt{\pi} \exp(-\frac{\pi i}{4}) \frac{\cosh(2\sqrt{z})}{\sqrt{\pi}}/(8z^{1/4})
>>> expand(_)
\frac{\sqrt{\pi}}{16} \exp\left(-\frac{\pi i}{4}\right) C \left(\frac{2}{\sqrt{\pi}} \exp\left(\frac{\pi i}{4}\right) z^{\frac{1}{4}}\right) - \frac{1}{16} \cosh(2\sqrt{z}) + \frac{1}{4} \sinh(2\sqrt{z}) \sqrt{z}
```

which can be printed as

$$B_2' = \frac{\sqrt{\pi}}{16} \exp\left(-\frac{\pi i}{4}\right) C \left(\frac{2}{\sqrt{\pi}} \exp\left(\frac{\pi i}{4}\right) z^{\frac{1}{4}}\right) - \frac{1}{16} \cosh(2\sqrt{z}) + \frac{1}{4} \sinh(2\sqrt{z}) \sqrt{z}$$

We see the common pattern and can collect the pieces. Hence it makes sense to choose $B_1$ and $B_2$ as follows

$$B = \begin{bmatrix} B_0 \\ B_1 \\ B_2 \end{bmatrix} = \begin{bmatrix} \sqrt{\pi} \exp\left(-\frac{\pi i}{4}\right) C \left(\frac{2}{\sqrt{\pi}} \exp\left(\frac{\pi i}{4}\right) z^{\frac{1}{4}}\right) \\ \cosh(2\sqrt{z}) \\ \sinh(2\sqrt{z}) \sqrt{z} \end{bmatrix}$$

(This is in contrast to the basis $B = (B_0, B_1', B_2')$ that would have been computed automatically if we used just `add(ap, bq, res)`.)

Because it must hold that $\mu F_q (\cdots |z) = CB$ the entries of $C$ are obviously

$$C = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Finally we have to compute the entries of the $3 \times 3$ matrix $M$ such that $z \frac{d}{dz} B = MB$ holds. This is easy. We already computed the first part $z \frac{d}{dz} B_0$ above. This gives us the first row of $M$. For the second row we have:

### 5.8. Topics
and for the third one

```python
>>> from sympy import Symbol, sinh, sqrt, expand, diff
>>> z = Symbol("z")
>>> B2 = sinh(2*sqrt(z))*sqrt(z)
>>> expand(z * diff(B2, z))
sqrt(z)*sinh(2*sqrt(z))/2 + z*cosh(2*sqrt(z))
```

Now we have computed the entries of this matrix to be

\[
M = \begin{pmatrix}
-\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 1 \\
0 & z & \frac{1}{2}
\end{pmatrix}
\]

Note that the entries of \( C \) and \( M \) should typically be rational functions in \( z \), with rational coefficients. This is all we need to do in order to add a new formula to the lookup table for \hyperexp\.

**Implemented Hypergeometric Formulae**

A vital part of the algorithm is a relatively large table of hypergeometric function representations. The following automatically generated list contains all the representations implemented in SymPy (of course many more are derived from them). These formulae are mostly taken from [Luke1969] and [Prudnikov1990]. They are all tested numerically.

\[
\begin{align*}
_0F_0 (|z|) &= e^z \\
_1F_0 (a|z) &= (1 - z)^{-a} \\
_2F_1 \left( \frac{a, a - \frac{1}{2}}{2a} \right| z \right) &= 2^{2a-1} \left( \sqrt{1 - z} + 1 \right)^{1-2a} \\
_2F_1 \left( \frac{1, 1}{2} \right| z \right) &= -\frac{\log(1 - z)}{z} \\
_2F_1 \left( \frac{1}{2}, \frac{1}{4} \left| z \right. \right) &= \frac{\operatorname{atanh}(\sqrt{z})}{\sqrt{z}} \\
_2F_1 \left( \frac{1}{2}, \frac{3}{4} \right| z \right) &= \frac{\operatorname{asin}(\sqrt{z})}{\sqrt{z}} \\
_2F_1 \left( a, a + \frac{1}{2} \right| z \right) &= \frac{(\sqrt{z} + 1)^{-2a}}{2} + \frac{(1 - \sqrt{z})^{-2a}}{2} \\
_2F_1 \left( a, -a \left| z \right. \right) &= \cos \left( 2a \operatorname{asin} \left( \sqrt{z} \right) \right) \\
_2F_1 \left( \frac{1}{2}, \frac{1}{2} \right| z \right) &= \frac{\operatorname{asin}(\sqrt{z})}{\sqrt{z} \sqrt{1 - z}}
\end{align*}
\]
\[
\begin{align*}
2F_1\left(\frac{1}{2}, \frac{1}{2} \middle| \frac{1}{2}, 2z \right) &= \frac{2K(z)}{\pi} \\
2F_1\left(-\frac{1}{2}, \frac{1}{2} \middle| \frac{1}{2}, 2z \right) &= \frac{2E(z)}{\pi} \\
3F_2\left(-\frac{1}{2}, 1, \frac{1}{2} \middle| \frac{1}{2}, 2 \right) &= -2\sqrt{z} \text{atanh}(\sqrt{z}) + \frac{2}{3} \log(1 - z) \\
3F_2\left(-\frac{1}{2}, 1, \frac{1}{2} \middle| \frac{1}{2}, 2 \right) &= \left(\frac{4 - 16z}{9z}\right) \sqrt{1 - z} + \frac{4\log(\sqrt{1 - z} + 1)}{3z} + 169z \\
1F_1\left(\frac{1}{2} \middle| \frac{1}{2}, 2 \right) &= \Gamma\left(\frac{a + 1}{2}\right) \\
1F_1\left(\frac{a}{2a} \middle| \frac{1}{2}, 2 \right) &= 4^{a-rac{1}{2}}z^{\frac{1}{2}-a}e^{\frac{z}{2}}I_{a-rac{1}{2}}\left(\frac{z}{2}\right) \\
1F_1\left(\frac{a}{a + 1} \middle| \frac{1}{2}, 2 \right) &= a(ze^{i\pi})^{-a} \gamma(a, ze^{i\pi}) \\
1F_1\left(-\frac{1}{2} \middle| \frac{1}{2}, 2 \right) &= \sqrt{\pi} i \sqrt{\pi} \text{erf}(\sqrt{z}i) + e^z \\
1F_2\left(\frac{1}{4}, \frac{1}{2} \middle| \frac{1}{2}, 2 \right) &= \frac{\sqrt{\pi} \sinh(2\sqrt{z})S\left(\frac{2\sqrt{z}e^{i\pi}}{\sqrt{\pi}}\right) + \cosh(2\sqrt{z})C\left(\frac{2\sqrt{z}e^{i\pi}}{\sqrt{\pi}}\right)}{2\sqrt{z}} \\
2F_2\left(\frac{1}{2}, a \middle| \frac{1}{2}, 2 \right) &= -\frac{ai\sqrt{\pi}i \frac{2}{2a} \text{erf}(\sqrt{z}i)}{2a - 1} - \frac{a(ze^{i\pi})^{-a} \gamma(a, ze^{i\pi})}{2a - 1} \\
2F_2\left(\frac{1}{2}, 1 \middle| \frac{1}{2}, 2 \right) &= -\log(z) + \text{Ei}(z) - \frac{\gamma}{z} \\
oF_1\left(\frac{1}{2} \middle| \frac{1}{2}, 2 \right) &= \text{cosh}(2\sqrt{z}) \\
oF_1\left(\frac{1}{2} \middle| \frac{1}{2}, 2 \right) &= z^{\frac{1}{2}+\frac{1}{2}}I_{b-1} \left(2\sqrt{z}\right) \Gamma(b) \\
oF_3\left(\frac{1}{2}, a, \frac{1}{2} \middle| \frac{1}{2}, 2 \right) &= 2^{-2a}z^{\frac{1}{2}-\frac{1}{2}} \left(I_{2a-1} \left(4\sqrt{z}\right) + J_{2a-1} \left(4\sqrt{z}\right)\right) \Gamma(2a) \\
oF_3\left(\frac{1}{2}, a + \frac{1}{2}, \frac{1}{2} \middle| \frac{1}{2}, 2 \right) &= \left(2\sqrt{z}e^{i\pi}\right)^{1-2a} I_{a-1} \left(2\sqrt{2}\sqrt{z}e^{i\pi}\right) J_{a-1} \left(2\sqrt{2}\sqrt{z}e^{i\pi}\right) \Gamma^2(2a) \\
1F_2\left(a - \frac{a}{2} \middle| \frac{1}{2}, 2 \right) &= 2 \left(4^{-a-1} z^{1-a} I_{a-\frac{1}{2}}(\sqrt{z}) I_{a-\frac{1}{2}}(\sqrt{z}) \Gamma(a - \frac{1}{2}) \Gamma(a + \frac{1}{2}) - 4^{a-\frac{1}{2}} z^{\frac{1}{2}+a} J_{a-\frac{1}{2}}(\sqrt{z}) \Gamma^2(a + \frac{1}{2})\right) \\
1F_2\left(\frac{1}{2}, b \middle| \frac{1}{2}, 2 \right) &= \text{pi}(1 - b) \Pi_{1-b}(\sqrt{z}) I_{b-1}(\sqrt{z}) \\
1F_2\left(\frac{1}{2}, \frac{1}{2} \middle| \frac{1}{2}, 2 \right) &= \frac{\text{Shi}(2\sqrt{z})}{2\sqrt{z}} \\
1F_2\left(\frac{1}{2}, \frac{1}{2} \middle| \frac{1}{2}, 2 \right) &= \frac{3 \sqrt{\pi} e^{-\frac{3\pi}{4}} S\left(\frac{2\sqrt{z}e^{i\pi}}{\sqrt{\pi}}\right)}{4z^\frac{3}{4}} \\
1F_2\left(\frac{1}{2}, \frac{1}{2} \middle| \frac{1}{2}, 2 \right) &= \frac{\sqrt{\pi} e^{-\frac{3\pi}{4}} C\left(\frac{2\sqrt{z}e^{i\pi}}{\sqrt{\pi}}\right)}{2\sqrt{z}}
\end{align*}
\]
\[ 2F_3 \left( \frac{a, a + \frac{1}{2}, \frac{1}{2}}{2a, b, 2a - b + 1} \mid z \right) = \left( \frac{\sqrt{z}}{2} \right)^{1-2a} I_{2a-b} \left( \sqrt{z} \right) I_{b-1} \left( \sqrt{z} \right) \Gamma \left( b \right) \Gamma \left( 2a - b + 1 \right) \]

\[ 2F_3 \left( \frac{1, 1, \frac{1}{2}}{2, 2, \frac{3}{2}} \mid z \right) = -\frac{\log \left( 2\sqrt{z} \right) + \text{Chi} \left( 2\sqrt{z} \right) - \gamma}{z} \]

\[ 3F_3 \left( \frac{1, 1, a}{2, 2, a + 1} \mid z \right) = \frac{a (-z)^{-a} \left( \Gamma \left( a \right) - \Gamma \left( a, -z \right) \right)}{(a - 1)^2} + \frac{a (1 - a) \left( \log \left( -z \right) + \text{Ei} \left( -z \right) + \gamma \right)}{z (a^2 - 2a + 1)} - \frac{ae^z}{z (a^2 - 2a + 1)} + \frac{a}{z (a^2 - 2a + 1)} \]

References

Hongguang Fu’s Trigonometric Simplification

Implementation of the trigsimp algorithm by Fu et al.

The idea behind the Fu algorithm is to use a sequence of rules that students learn during their pre-calculus courses. The rules are applied heuristically and it uses a greedy algorithm to apply multiple rules simultaneously and choose the result with the least leaf counts.

There are transform rules in which a single rule is applied to the expression tree. The following are just mnemonic in nature; see the docstrings for examples.

- **TR0()** (page 759) - simplify expression
- **TR1()** (page 759) - sec-csc to cos-sin
- **TR2()** (page 759) - tan-cot to sin-cos ratio
- **TR2i()** (page 759) - sin-cos ratio to tan
- **TR3()** (page 760) - angle canonicalization
- **TR4()** (page 760) - functions at special angles
- **TR5()** (page 761) - powers of sin to powers of cos
- **TR6()** (page 761) - powers of cos to powers of sin
- **TR7()** (page 762) - reduce cos power (increase angle)
- **TR8()** (page 762) - expand products of sin-cos to sums
- **TR9()** (page 762) - contract sums of sin-cos to products
- **TR10()** (page 762) - separate sin-cos arguments
- **TR10i()** (page 763) - collect sin-cos arguments
- **TR11()** (page 763) - reduce double angles
- **TR12()** (page 764) - separate tan arguments
- **TR12i()** (page 764) - collect tan arguments
- **TR13()** (page 764) - expand product of tan-cot
- **TRmorrie()** (page 765) - prod(cos(x*2**i)), (i, 0, k - 1) -> sin(2**k*x)/(2**k*sin(x))
- **TR14()** (page 766) - factored powers of sin or cos to cos or sin power
- **TR15()** (page 766) - negative powers of sin to cot power
- **TR16()** (page 766) - negative powers of cos to tan power
- **TR22()** (page 767) - tan-cot powers to negative powers of sec-csc functions
There are 4 combination transforms (CTR1 - CTR4) in which a sequence of transformations are applied and the simplest expression is selected from a few options.

Finally, there are the 2 rule lists (RL1 and RL2), which apply a sequence of transformations and combined transformations, and the fu algorithm itself, which applies rules and rule lists and selects the best expressions. There is also a function L which counts the number of trigonometric functions that appear in the expression.

Other than TR0, re-writing of expressions is not done by the transformations. e.g. TR10i finds pairs of terms in a sum that are in the form like \( \cos(x) \cdot \cos(y) + \sin(x) \cdot \sin(y) \). Such expression are targeted in a bottom-up traversal of the expression, but no manipulation to make them appear is attempted. For example,

Set-up for examples below:

```python
>>> from sympy.simplify import fu, L, TR9, TR10i, TR11
>>> from sympy import factor, sin, cos, powsimp
>>> from sympy.abc import x, y, z, a
>>> from time import time

>>> eq = cos(x + y)/cos(x)
>>> TR10i(eq.expand(trig=True))
-sin(x)*sin(y)/cos(x) + cos(y)
```

If the expression is put in “normal” form (with a common denominator) then the transformation is successful:

```python
>>> TR10i(_.normal())
cos(x + y)/cos(x)
```

TR11’s behavior is similar. It rewrites double angles as smaller angles but doesn’t do any simplification of the result.

```python
>>> TR11(sin(2)**a*cos(1)**(-a), 1)
(2*sin(1)**a*cos(1)**(-a)
```

The temptation is to try make these TR rules “smarter” but that should really be done at a higher level; the TR rules should try maintain the “do one thing well” principle. There is one exception, however. In TR10i and TR9 terms are recognized even when they are each multiplied by a common factor:

```python
>>> fu(a*cos(x)*cos(y) + a*sin(x)*sin(y))
a*cos(x - y)
```

Factoring with factor_terms is used but it is “JIT”-like, being delayed until it is deemed necessary. Furthermore, if the factoring does not help with the simplification, it is not retained, so \( a \cdot \cos(x) \cdot \cos(y) + a \cdot \sin(x) \cdot \sin(z) \) does not become a factored (but unsimplified in the trigonometric sense) expression:

```python
>>> fu(a*cos(x)*cos(y) + a*sin(x)*sin(z))
a*sin(x)*sin(z) + a*cos(x)*cos(y)
```
In some cases factoring might be a good idea, but the user is left to make that decision. For example:

```python
>>> expr=(15*sin(2*x) + 19*sin(x + y) + 17*sin(x + z) + 19*cos(x - z) +
... 25)*(20*sin(2*x) + 15*sin(x + y) + sin(y + z) + 14*cos(x - z) +
... 14*cos(y - z))*(9*sin(2*y) + 12*sin(y + z) + 10*cos(x - y) + 2*cos(y -
... z) + 18)).expand(trig=True).expand()
```

In the expanded state, there are nearly 1000 trig functions:

```python
>>> L(expr)
932
```

If the expression where factored first, this would take time but the resulting expression would be transformed very quickly:

```python
>>> def clock(f, n=2):
... t=time(); f(); return round(time()-t, n)
...
>>> clock(lambda: factor(expr))
0.86
>>> clock(lambda: TR10i(expr), 3)
0.016
```

If the unexpanded expression is used, the transformation takes longer but not as long as it took to factor it and then transform it:

```python
>>> clock(lambda: TR10i(expr), 2)
0.28
```

So neither expansion nor factoring is used in TR10i: if the expression is already factored (or partially factored) then expansion with `trig=True` would destroy what is already known and take longer; if the expression is expanded, factoring may take longer than simply applying the transformation itself.

Although the algorithms should be canonical, always giving the same result, they may not yield the best result. This, in general, is the nature of simplification where searching all possible transformation paths is very expensive. Here is a simple example. There are 6 terms in the following sum:

```python
>>> expr = (sin(x)**2*cos(y)*cos(z) + sin(x)*sin(y)*cos(x)*cos(z) +
... sin(x)*sin(z)*cos(x)*cos(y) + sin(y)*sin(z)*cos(x)**2 + sin(y)*sin(z) +
... cos(y)*cos(z))
>>> args = expr.args
```

Serendipitously, fu gives the best result:

```python
>>> fu(expr)
3*cos(y - z)/2 - cos(2*x + y + z)/2
```

But if different terms were combined, a less-optimal result might be obtained, requiring some additional work to get better simplification, but still less than optimal. The following shows an alternative form of `expr` that resists optimal simplification once a given step is taken since it leads to a dead end:
Here is a smaller expression that exhibits the same behavior:

```python
>>> a = sin(x)*sin(z)*cos(x)*cos(y) + sin(x)*sin(y)*cos(x)*cos(z)
```

```python
>>> TR10i(a)
```

```python
sin(x)*sin(y + z)*cos(x)
```

```python
>>> newa =
```

```python
>>> TR10i(expr - a) # this combines two more of the remaining terms
```

```python
sin(x)**2*cos(y)*cos(z) + sin(y)*sin(z)*cos(x)**2 + cos(y - z)
```

```python
>>> TR10i(_ + newa) == _ + newa # but now there is no more simplification
```

```python
True
```

Without getting lucky or trying all possible pairings of arguments, the final result may be less than optimal and impossible to find without better heuristics or brute force trial of all possibilities.

**Rules**

`sympy.simplify.fu.TR0(rv)`

Simplification of rational polynomials, trying to simplify the expression, e.g. combine things like 3*x + 2*x, etc.

`sympy.simplify.fu.TR1(rv)`

Replace sec, csc with 1/cos, 1/sin

**Examples**

```python
>>> from sympy.simplify.fu import TR1, sec, csc
>>> from sympy.abc import x
>>> TR1(2*csc(x) + sec(x))
```

`1/cos(x) + 2/sin(x)`

`sympy.simplify.fu.TR2(rv)`

Replace tan and cot with sin/cos and cos/sin

**Examples**

```python
>>> from sympy.simplify.fu import TR2
>>> from sympy.abc import x
>>> from sympy import tan, cot, sin, cos
>>> TR2(tan(x))
```

`sin(x)/cos(x)`

```python
>>> TR2(cot(x))
```

`cos(x)/sin(x)`

```python
>>> TR2(tan(tan(x) - sin(x)/cos(x)))
```

`0`
sympy.simplify.fu.TR2i(rv, half=False)

Converts ratios involving \( \sin \) and \( \cos \) as follows:
\[
\sin(x)/\cos(x) \rightarrow \tan(x) \\
\sin(x)/(\cos(x) + 1) \rightarrow \tan(x/2) \text{ if half=True}
\]

**Examples**

```python
>>> from sympy.simplify.fu import TR2i
>>> from sympy import sin, cos
>>> TR2i(sin(x)/cos(x))
tan(x)
```

Powers of the numerator and denominator are also recognized

```python
>>> TR2i(sin(x)**2/(cos(x) + 1)**2, half=True)
tan(x/2)**2
```

The transformation does not take place unless assumptions allow (i.e. the base must be positive or the exponent must be an integer for both numerator and denominator)

```python
>>> TR2i(sin(x)**a/(cos(x) + 1)**a)
sin(x)**a/(cos(x) + 1)**a
```

sympy.simplify.fu.TR3(rv)

Induced formula: example \( \sin(-a) = -\sin(a) \)

**Examples**

```python
>>> from sympy.simplify.fu import TR3
>>> from sympy import sin
>>> TR3(sin(-x))
-sin(x)
```

sympy.simplify.fu.TR4(rv)

Identify values of special angles.
\( A = 0 \pi/6 \pi/4 \pi/3 \pi/2 \)

\[
\begin{array}{cccc}
sin(a) & 0 & 1/2 & \sqrt{2}/2 & \sqrt{3}/2 & 1 \\
cos(a) & 1 & \sqrt{3}/2 & \sqrt{2}/2 & 1/2 & 0 \\
tan(a) & 0 & \sqrt{3}/3 & 1 & \sqrt{3} & \infty \\
\end{array}
\]

**Examples**

```python
>>> from sympy import pi
>>> from sympy import cos, sin, tan, cot
>>> for s in (0, pi/6, pi/4, pi/3, pi/2):
... print(('%s %s %s %s' % (cos(s), sin(s), tan(s), cot(s)))).strip())
...
1 0 0 zoo
sqrt(3)/2 1/2 sqrt(3)/3 sqrt(3)
sqrt(2)/2 sqrt(2)/2 1 1
1/2 sqrt(3)/2 sqrt(3) sqrt(3)/3
0 1 zoo 0
```

_sympy.simplify.fu.TR5(rv, max=4, pow=False)_

Replacement of \( \sin^2 \) with \( 1 - \cos(x)^2 \).

See _TR6 docstring for advanced use of max and pow._

**Examples**

```python
>>> from sympy.simplify.fu import TR5
>>> from sympy import sin
>>> TR5(sin(x)**2)
1 - cos(x)**2
>>> TR5(sin(x)**-2) # unchanged
sin(x)**(-2)
>>> TR5(sin(x)**4)
(1 - cos(x)**2)**2
```

_sympy.simplify.fu.TR6(rv, max=4, pow=False)_

Replacement of \( \cos^2 \) with \( 1 - \sin(x)^2 \).

See _TR6 docstring for advanced use of max and pow._

**Examples**

```python
>>> from sympy.simplify.fu import TR6
>>> from sympy import cos
>>> TR6(cos(x)**2)
1 - sin(x)**2
>>> TR6(cos(x)**-2) # unchanged
cos(x)**(-2)
```
(continues on next page)
sympy.simplify.fu.TR7(rv)
Lowering the degree of \( \cos(x)^2 \).

**Examples**

```python
>>> from sympy.simplify.fu import TR7
>>> from sympy import x
>>> TR7(cos(x)**2)
\frac{\cos(2x)}{2} + \frac{1}{2}
```

sympy.simplify.fu.TR8(rv, first=True)
Converting products of \( \cos \) and/or \( \sin \) to a sum or difference of \( \cos \) and or \( \sin \) terms.

**Examples**

```python
>>> from sympy.simplify.fu import TR8
>>> from sympy import cos, sin
>>> TR8(cos(2)*cos(3))
\frac{\cos(5)}{2} + \frac{\cos(1)}{2}
>>> TR8(sin(2)*sin(3))
-\frac{\cos(5)}{2} + \frac{\cos(1)}{2}
```

sympy.simplify.fu.TR9(rv)
Sum of \( \cos \) or \( \sin \) terms as a product of \( \cos \) or \( \sin \).

**Examples**

```python
>>> from sympy.simplify.fu import TR9
>>> from sympy import cos, sin
>>> TR9(cos(1) + cos(2))
2*\cos(1/2)*\cos(3/2)
>>> TR9(cos(1) + 2*sin(1) + 2*sin(2))
\cos(1) + 4*\sin(3/2)*\cos(1/2)
```

If no change is made by TR9, no re-arrangement of the expression will be made. For example, though factoring of common term is attempted, if the factored expression was not changed, the original expression will be returned:

```python
>>> TR9(cos(3) + cos(3)*cos(2))
\cos(3) + \cos(2)*\cos(3)
```
SymPy Documentation, Release 1.12.1

sympy.simplify.fu.TR10(rv, first=True)
Separates sums in $\cos$ and $\sin$.

Examples

```python
>>> from sympy.simplify.fu import TR10
>>> from sympy import cos, sin
>>> TR10(cos(a + b))
-sin(a)*sin(b) + cos(a)*cos(b)
>>> TR10(sin(a + b))
sin(a)*cos(b) + sin(b)*cos(a)
>>> TR10(sin(a + b + c))
(-sin(a)*sin(b) + cos(a)*cos(b))*sin(c) + (sin(a)*cos(b) + sin(b)*cos(a))*cos(c)
```

sympy.simplify.fu.TR10i(rv)
Sum of products to function of sum.

Examples

```python
>>> from sympy.simplify.fu import TR10i
>>> from sympy import cos, sin, sqrt
>>> from sympy.abc import x
>>> TR10i(cos(1)*cos(3) + sin(1)*sin(3))
cos(2)
>>> TR10i(cos(1)*sin(3) + sin(1)*cos(3) + cos(3))
cos(3) + sin(4)
>>> TR10i(sqrt(2)*cos(x)*x + sqrt(6)*sin(x)*x)
2*sqrt(2)*x*sin(x + pi/6)
```

sympy.simplify.fu.TR11(rv, base=None)
Function of double angle to product. The `base` argument can be used to indicate what is the un-doubled argument, e.g. if 3*pi/7 is the base then cosine and sine functions with argument 6*pi/7 will be replaced.

Examples

```python
>>> from sympy.simplify.fu import TR11
>>> from sympy import cos, sin, pi
>>> from sympy.abc import x
>>> TR11(sin(2*x))
2*sin(x)*cos(x)
>>> TR11(cos(2*x))
-2*sin(x)**2 + cos(x)**2
>>> TR11(sin(4*x))
4*(-sin(x)**2 + cos(x)**2)*sin(x)*cos(x)
```
If the arguments are simply integers, no change is made unless a base is provided:

```python
>>> TR11(cos(2))
cos(2)
>>> TR11(cos(4), 2)
-sin(2)**2 + cos(2)**2
```

There is a subtle issue here in that autosimplification will convert some higher angles to lower angles

```python
>>> cos(6*pi/7) + cos(3*pi/7)
-cos(pi/7) + cos(3*pi/7)
```

The 6*pi/7 angle is now pi/7 but can be targeted with TR11 by supplying the 3*pi/7 base:

```python
>>> TR11(_, 3*pi/7)
-sin(3*pi/7)**2 + cos(3*pi/7)**2 + cos(3*pi/7)
```

`sympy.simplify.fu.TR11(rv, first=True)`

Separate sums in tan.

**Examples**

```python
>>> from sympy.abc import x, y
>>> from sympy import tan
>>> from sympy.simplify.fu import TR12
>>> TR12(tan(x + y))
(tan(x) + tan(y))/(-tan(x)*tan(y) + 1)
```

`sympy.simplify.fu.TR12i(rv)`

Combine tan arguments as \((\tan(y) + \tan(x))/(\tan(x)\tan(y) - 1) \rightarrow -\tan(x + y)\).

**Examples**

```python
>>> from sympy.simplify.fu import TR12i
>>> from sympy import tan
>>> from sympy.abc import a, b, c
>>> ta, tb, tc = [tan(i) for i in (a, b, c)]
>>> TR12i((ta + tb)/(ta*tb + 1))
tan(a + b)
>>> TR12i((ta + tb)/(ta*tb - 1))
-tan(a + b)
>>> TR12i((-ta - tb)/(ta*tb - 1))
tan(a + b)
>>> eq = (ta + tb)/(-ta*tb + 1)**2*(-3*ta - 3*tc)/(2*(ta*tc - 1))
>>> TR12i(eq.expand())
-3*tan(a + b)*tan(a + c)/(2*(tan(a) + tan(b) - 1))
```
sympy.simplify.fu.TR13(rv)
    Change products of tan or cot.

Examples

```python
>>> from sympy.simplify.fu import TR13
>>> from sympy import tan, cot
>>> TR13(tan(3)*tan(2))
-tan(2)/tan(5) - tan(3)/tan(5) + 1
>>> TR13(cot(3)*cot(2))
cot(2)*cot(5) + 1 + cot(3)*cot(5)
```

sympy.simplify.fu.TRmorrie(rv)
    Returns \(\cos(x)\cos(2x)\ldots\cos(2^k x)\rightarrow \sin(2^k x)/(2^k \sin(x))\)

Examples

```python
>>> from sympy.simplify.fu import TRmorrie, TR8, TR3
>>> from sympy importMul, cos, pi
>>> TRmorrie(cos(x)*cos(2*pi/9)*cos(3*pi/9)*cos(4*pi/9))
sin(4*x)/(4*sin(x))
>>> TRmorrie(7*Mul(*[cos(x) for x in range(10)]))
7*sin(12)*sin(16)*cos(5)*cos(7)*cos(9)/(64*sin(1)*sin(3))
```

Sometimes autosimplification will cause a power to be not recognized. e.g. in the following, \(\cos(4\pi/7)\) automatically simplifies to \(-\cos(3\pi/7)\) so only 2 of the 3 terms are recognized:

```python
>>> TRmorrie(cos(pi/7)*cos(2*pi/7)*cos(3*pi/7))
-sin(3*pi/7)*cos(3*pi/7)/(4*sin(pi/7))
```

A touch by TR8 resolves the expression to a Rational

```python
>>> TR8(_)
-1/8
```

In this case, if eq is unsimplified, the answer is obtained directly:

```python
>>> eq = cos(pi/9)*cos(2*pi/9)*cos(3*pi/9)*cos(4*pi/9)
>>> TRmorrie(eq)
1/16
```

But if angles are made canonical with TR3 then the answer is not simplified without further work:

```python
>>> TR3(eq)
sin(pi/18)*cos(pi/9)*cos(2*pi/9)/2
>>> TRmorrie(_)
sin(pi/18)*sin(4*pi/9)/(8*sin(pi/9))
>>> TR8(_)
```
(continues on next page)
The original expression would have resolve to 1/16 directly with TR8, however:

```python
>>> TR8(eq)
1/16
```

## References

[R784]

sympy.simplify.fu.TR14(rv, first=True)

Convert factored powers of sin and cos identities into simpler expressions.

### Examples

```python
>>> from sympy.simplify.fu import TR14
>>> from sympy.abc import x, y
>>> from sympy import cos, sin
>>> TR14((cos(x) - 1)*(cos(x) + 1))
-sin(x)**2
>>> TR14((sin(x) - 1)*(sin(x) + 1))
-cos(x)**2
>>> p1 = (cos(x) + 1)*(cos(x) - 1)
>>> p2 = (cos(y) - 1)**2*(cos(y) + 1)
>>> p3 = (3*cos(y) - 1)**2*(3*cos(y) + 1)
>>> TR14(p1*p2*p3*(x - 1))
-18*(x - 1)*sin(x)**2*sin(y)**4
```

sympy.simplify.fu.TR15(rv, max=4, pow=False)

Convert \(\sin(x)^{-2}\) to \(1 + \cot(x)^2\).

See _TR56 docstring for advanced use of max and pow.

### Examples

```python
>>> from sympy.simplify.fu import TR15
>>> from sympy.abc import x
>>> from sympy import sin
>>> TR15(1 - 1/sin(x)**2)
-cot(x)**2
```

sympy.simplify.fu.TR16(rv, max=4, pow=False)

Convert \(\cos(x)^{-2}\) to \(1 + \tan(x)^2\).

See _TR56 docstring for advanced use of max and pow.
Examples

```python
>>> from sympy.simplify.fu import TR16
>>> from sympy.abc import x
>>> from sympy import cos
>>> TR16(1 - 1/cos(x)**2)
-tan(x)**2
```

```
sympy.simplify.fu.TR111(rv)
Convert f(x)**i to g(x)**i where either i is an integer or the base is positive and f, g are: tan, cot; sin, csc; or cos, sec.
```

Examples

```python
>>> from sympy.simplify.fu import TR111
>>> from sympy.abc import x
>>> from sympy import tan
>>> TR111(1 - 1/tan(x)**2)
1 - cot(x)**2
```

```
sympy.simplify.fu.TR22(rv, max=4, pow=False)
Convert tan(x)**2 to sec(x)**2 - 1 and cot(x)**2 to csc(x)**2 - 1.
See _TR56 docstring for advanced use of max and pow.
```

Examples

```python
>>> from sympy.simplify.fu import TR22
>>> from sympy.abc import x
>>> from sympy import cos, sin
>>> TR22(sin(x)**6)
-15*cos(2*x)/32 + 3*cos(4*x)/16 - cos(6*x)/32 + 5/16
>>> TR22(sin(x)**3*cos(2*x)**4)
(3*sin(x)/4 - sin(3*x)/4)*(cos(4*x)/2 + cos(8*x)/8 + 3/8)
```

```
sympy.simplify.fu.TRpower(rv)
Convert sin(x)**n and cos(x)**n with positive n to sums.
```

Examples

```python
>>> from sympy.simplify.fu import TRpower
>>> from sympy.abc import x
>>> from sympy import cos, sin
>>> TRpower(sin(x)**6)
-15*cos(2*x)/32 + 3*cos(4*x)/16 - cos(6*x)/32 + 5/16
>>> TRpower(sin(x)**3*cos(2*x)**4)
(3*sin(x)/4 - sin(3*x)/4)*(cos(4*x)/2 + cos(8*x)/8 + 3/8)
```
References

[R785]
sympy.simplify.fu.fu(rv, measure=<function <lambda>>)

Attempt to simplify expression by using transformation rules given in the algorithm by Fu et al.

fu() (page 768) will try to minimize the objective function measure. By default this first minimizes the number of trig terms and then minimizes the number of total operations.

Examples

>>> from sympy.simplify.fu import fu
>>> from sympy import cos, sin, tan, pi, S, sqrt
>>> from sympy.abc import x, y, a, b

>>> fu(sin(50)**2 + cos(50)**2 + sin(pi/6))
3/2
>>> fu(sqrt(6)*cos(x) + sqrt(2)*sin(x))
2*sqrt(2)*sin(x + pi/3)

CTR1 example

>>> eq = sin(x)**4 - cos(y)**2 + sin(y)**2 + 2*cos(x)**2
>>> fu(eq)
cos(x)**4 - 2*cos(y)**2 + 2

CTR2 example

>>> fu(S.Half - cos(2*x)/2)
sin(x)**2

CTR3 example

>>> fu(sin(a)*(cos(b) - sin(b)) + cos(a)*(sin(b) + cos(b)))
sqrt(2)*sin(a + b + pi/4)

CTR4 example

>>> fu(sqrt(3)*cos(x)/2 + sin(x)/2)
sin(x + pi/3)

Example 1

>>> fu(1-sin(2*x)**2/4-sin(y)**2-cos(x)**4)
-cos(x)**2 + cos(y)**2

Example 2

>>> fu(cos(4*pi/9))
sin(pi/18)
>>> fu(cos(pi/9)*cos(2*pi/9)*cos(3*pi/9)*cos(4*pi/9))
1/16
Example 3

```python
>>> fu(tan(7*pi/18)+tan(5*pi/18)-sqrt(3)*tan(5*pi/18)*tan(7*pi/18)) -sqrt(3)
Objective function example

```n

```python
>>> fu(sin(x)/cos(x)) # default objective function
tan(x)
```

```python
>>> fu(sin(x)/cos(x), measure=lambda x: -x.count_ops()) # maximize op
sin(x)/cos(x)
```

References

[R786]

Notes

This work was started by Dimitar Vlahovski at the Technological School “Electronic systems” (30.11.2011).

Beyond TR13, other rules are not from the original paper, but extended in SymPy.

References

Solvers

This module documentation contains details about the `sympy.solvers` module. functions.

Contents

Diophantine

Note: For a beginner-friendly guide focused on solving Diophantine equations, refer to *Solve a Diophantine Equation Algebraically* (page 181).
Diophantine equations

The word “Diophantine” comes with the name Diophantus, a mathematician lived in the great city of Alexandria sometime around 250 AD. Often referred to as the “father of Algebra”, Diophantus in his famous work “Arithmetica” presented 150 problems that marked the early beginnings of number theory, the field of study about integers and their properties. Diophantine equations play a central and an important part in number theory.

We call a “Diophantine equation” to an equation of the form, \( f(x_1, x_2, \ldots x_n) = 0 \) where \( n \geq 2 \) and \( x_1, x_2, \ldots x_n \) are integer variables. If we can find \( n \) integers \( a_1, a_2, \ldots a_n \) such that \( x_1 = a_1, x_2 = a_2, \ldots x_n = a_n \) satisfies the above equation, we say that the equation is solvable. You can read more about Diophantine equations in\(^1\) and\(^2\).

Currently, following five types of Diophantine equations can be solved using `diophantine()` (page 775) and other helper functions of the Diophantine module.

- Linear Diophantine equations: \( a_1x_1 + a_2x_2 + \ldots + a_nx_n = b \).
- General binary quadratic equation: \( ax^2 + bxy + cy^2 + dx + ey + f = 0 \)
- Homogeneous ternary quadratic equation: \( ax^2 + by^2 + cz^2 + dxy + eyz + fzx = 0 \)
- Extended Pythagorean equation: \( a_1x_1^2 + a_2x_2^2 + \ldots + a_nx_n^2 = a_{n+1}x_{n+1}^2 \)
- General sum of squares: \( x_1^2 + x_2^2 + \ldots + x_n^2 = k \)

Module structure

This module contains `diophantine()` (page 775) and helper functions that are needed to solve certain Diophantine equations. It’s structured in the following manner:

- `diophantine()` (page 775)
  - `diop_solve()` (page 777)
    - `classify_diop()` (page 776)
    - `diop_linear()` (page 777)
    - `diop_quadratic()` (page 779)
    - `diop_ternary_quadratic()` (page 784)
    - `diop_ternary_quadratic_normal()` (page 794)
    - `diop_general_pythagorean()` (page 786)
    - `diop_general_sum_of_squares()` (page 786)
    - `diop_general_sum_of_even_powers()` (page 787)
  - `merge_solution()` (page 791)

When an equation is given to `diophantine()` (page 775), it factors the equation(if possible) and solves the equation given by each factor by calling `diop_solve()` (page 777) separately. Then all the results are combined using `merge_solution()` (page 791).

`diop_solve()` (page 777) internally uses `classify_diop()` (page 776) to find the type of the equation(and some other details) given to it and then calls the appropriate solver function.

---
\(^{1}\) Andreescu, Titu. Andrica, Dorin. Cucurezeanu, Ion. An Introduction to Diophantine Equations
Based on the type returned. For example, if `classify_diop()` (page 776) returned "linear" as the type of the equation, then `diop_solve()` (page 777) calls `diop_linear()` (page 777) to solve the equation.

Each of the functions, `diop_linear()` (page 777), `diop_quadratic()` (page 779), `diop_ternary_quadratic()` (page 784), `diop_general_pythagorean()` (page 786) and `diop_general_sum_of_squares()` (page 786) solves a specific type of equations and the type can be easily guessed by its name.

Apart from these functions, there are a considerable number of other functions in the “Diophantine Module” and all of them are listed under User functions and Internal functions.

**Tutorial**

First, let’s import the highest API of the Diophantine module.

```
>>> from sympy.solvers.diophantine import diophantine
```

Before we start solving the equations, we need to define the variables.

```
>>> from sympy import symbols
>>> x, y, z = symbols("x, y, z", integer=True)
```

Let’s start by solving the easiest type of Diophantine equations, i.e. linear Diophantine equations. Let’s solve $2x + 3y = 5$. Note that although we write the equation in the above form, when we input the equation to any of the functions in Diophantine module, it needs to be in the form $eq = 0$.

```
>>> diophantine(2*x + 3*y - 5)
{(3*t_0 - 5, 5 - 2*t_0)}
```

Note that stepping one more level below the highest API, we can solve the very same equation by calling `diop_solve()` (page 777).

```
>>> from sympy.solvers.diophantine.diophantine import diop_solve
>>> diop_solve(2*x + 3*y - 5)
(3*t_0 - 5, 5 - 2*t_0)
```

Note that it returns a tuple rather than a set. `diophantine()` (page 775) always return a set of tuples. But `diop_solve()` (page 777) may return a single tuple or a set of tuples depending on the type of the equation given.

We can also solve this equation by calling `diop_linear()` (page 777), which is what `diop_solve()` (page 777) calls internally.

```
>>> from sympy.solvers.diophantine.diophantine import diop_linear
>>> diop_linear(2*x + 3*y - 5)
(3*t_0 - 5, 5 - 2*t_0)
```

If the given equation has no solutions then the outputs will look like below.

```
>>> diophantine(2*x + 4*y - 3)
set()
```

```
>>> diop_solve(2*x + 4*y - 3)
(None, None)
```

(continues on next page)
Note that except for the highest level API, in case of no solutions, a tuple of `None` are returned. Size of the tuple is the same as the number of variables. Also, one can specifically set the parameter to be used in the solutions by passing a customized parameter. Consider the following example:

```python
>>> m = symbols("m", integer=True)
>>> diop_solve(2*x + 3*y - 5, m)
(3*m_0 - 5, 5 - 2*m_0)
```

For linear Diophantine equations, the customized parameter is the prefix used for each free variable in the solution. Consider the following example:

```python
>>> diop_solve(2*x + 3*y - 5*z + 7, m)
(m_0, m_0 + 5*m_1 - 14, m_0 + 3*m_1 - 7)
```

In the solution above, `m_0` and `m_1` are independent free variables.

Please note that for the moment, users can set the parameter only for linear Diophantine equations and binary quadratic equations.

Let’s try solving a binary quadratic equation which is an equation with two variables and has a degree of two. Before trying to solve these equations, an idea about various cases associated with the equation would help a lot. Please refer\(^3\) and\(^4\) for detailed analysis of different cases and the nature of the solutions. Let us define \(\Delta = b^2 - 4ac\) w.r.t. the binary quadratic \(ax^2 + bxy + cy^2 + dx + ey + f = 0\).

When \(\Delta < 0\), there are either no solutions or only a finite number of solutions.

```python
>>> diophantine(x**2 - 4*x*y + 8*y**2 - 3*x + 7*y - 5)
{(2, 1), (5, 1)}
```

In the above equation \(\Delta = (-4)^2 - 4 \times 1 \times 8 = -16\) and hence only a finite number of solutions exist.

When \(\Delta = 0\) we might have either no solutions or parameterized solutions.

```python
>>> diophantine(3*x**2 - 6*x*y + 3*y**2 - 3*x + 7*y - 5)
set()
>>> diophantine(x**2 - 4*x*y + 4*y**2 - 3*x + 7*y - 5)
{(-2*t**2 - 7*t + 10, -t**2 - 3*t + 5)}
>>> diophantine(x**2 + 2*x*y + y**2 - 3*x - 3*y)
{(t_0, -t_0), (t_0, 3 - t_0)}
```

The most interesting case is when \(\Delta > 0\) and it is not a perfect square. In this case, the equation has either no solutions or an infinite number of solutions. Consider the below cases where \(\Delta = 8\).

---

\(^3\) Methods to solve \(Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0\), [online]. Available: https://www.alpertron.com.ar/METHODS.HTM

```python
>>> diophantine(x**2 - 4*x*y + 2*y**2 - 3*x + 7*y - 5)
set()
>>> from sympy import sqrt
>>> n = symbols("n", integer=True)
>>> s = diophantine(x**2 - 2*y**2 - 2*x - 4*y, n)
>>> x_1, y_1 = s.pop()
>>> x_2, y_2 = s.pop()
```

Here \( n \) is an integer. Although \( x_n \) and \( y_n \) may not look like integers, substituting in specific values for \( n \) (and simplifying) shows that they are. For example consider the following example where we set \( n \) equal to 9.

```python
>>> from sympy import simplify
>>> simplify(x_n.subs({n: 9}))
-9369318
```

Any binary quadratic of the form \( ax^2 + bxy + cy^2 + dx + ey + f = 0 \) can be transformed to an equivalent form \( X^2 - D Y^2 = N \).

```python
>>> from sympy.solvers.diophantine import find_DN, diop_DN, transformation_to_DN
>>> find_DN(x**2 - 3*x*y + y**2 - 7*x + 5*y - 3)
(5, 920)
```

So, the above equation is equivalent to the equation \( X^2 - 5Y^2 = 920 \) after a linear transformation. If we want to find the linear transformation, we can use `transformation_to_DN()` (page 782)

```python
>>> A, B = transformation_to_DN(x**2 - 3*x*y + y**2 - 7*x + 5*y - 3)
```

Here \( A \) is a 2 X 2 matrix and \( B \) is a 2 X 1 matrix such that the transformation

\[
\begin{bmatrix}
X \\
Y \\
\end{bmatrix}
= A
\begin{bmatrix}
x \\
y \\
\end{bmatrix}
+ B
\]

gives the equation \( X^2 - 5Y^2 = 920 \). Values of \( A \) and \( B \) are as belows.

```python
>>> A
Matrix([[
1/10, 3/10],
[0, 1/5]])
```

```python
>>> B
Matrix([[
 1/5],
[-11/5]])
```

We can solve an equation of the form \( X^2 - D Y^2 = N \) by passing \( D \) and \( N \) to `diop_DN()` (page 780)
```python
>>> diop_DN(5, 920)
[]
```

Unfortunately, our equation has no solution.

Now let’s turn to homogeneous ternary quadratic equations. These equations are of the form
\[ax^2 + by^2 + cz^2 + dxy + eyz + fzx = 0.\] These type of equations either have infinitely many solutions or no solutions (except the obvious solution \((0, 0, 0)\))

```python
>>> diophantine(3*x**2 + 4*y**2 - 5*z**2 + 4*x*y - 7*y*z + 7*z*x)
{(0, 0, 0)}
>>> diophantine(3*x**2 + 4*y**2 - 5*z**2 + 4*x*y - 7*y*z + 7*z*x)
{(-16*p**2 + 28*p*q + 20*q**2, 3*p**2 + 38*p*q - 25*q**2, 4*p**2 - 24*p*q + ... 68*q**2)}
```

If you are only interested in a base solution rather than the parameterized general solution (to be more precise, one of the general solutions), you can use `diop_ternary_quadratic()` (page 784).

```python
>>> from sympy.solvers.diophantine.diophantine import diop_ternary_quadratic
>>> diop_ternary_quadratic(3*x**2 + 4*y**2 - 5*z**2 + 4*x*y - 7*y*z + 7*z*x)
(-4, 5, 1)
```

`diop_ternary_quadratic()` (page 784) first converts the given equation to an equivalent equation of the form \(w^2 = AX^2 + BY^2\) and then it uses `descent()` (page 785) to solve the latter equation. You can refer to the docs of `transformation_to_normal()` (page 785) to find more on this. The equation \(w^2 = AX^2 + BY^2\) can be solved more easily by using the Aforementioned `descent()` (page 785).

```python
>>> from sympy.solvers.diophantine.diophantine import descent
>>> descent(3, 1) # solves the equation w**2 = 3*Y**2 + Z**2
(1, 0, 1)
```

Here the solution tuple is in the order \((w, Y, Z)\)

The extended Pythagorean equation, \(a_1x_1^2 + a_2x_2^2 + \ldots + a_nx_n^2 = a_{n+1}x_{n+1}^2\) and the general sum of squares equation, \(x_1^2 + x_2^2 + \ldots + x_n^2 = k\) can also be solved using the Diophantine module.

```python
>>> from sympy.abc import a, b, c, d, e, f
>>> diophantine(9*a**2 + 16*b**2 + c**2 + 49*d**2 + 4*e**2 - 25*f**2)
{(70*t1**2 + 70*t2**2 + 70*t3**2 + 70*t4**2 - 70*t5**2, 105*t1*t5, 420*t2*t5, ... 60*t3*t5, 210*t4*t5, 42*t1**2 + 42*t2**2 + 42*t3**2 + 42*t4**2 + 42*t5**2)}
```

function `diop_general_pythagorean()` (page 786) can also be called directly to solve the same equation. Either you can call `diop_general_pythagorean()` (page 786) or use the high level API. For the general sum of squares, this is also true, but one advantage of calling `diop_general_sum_of_squares()` (page 786) is that you can control how many solutions are returned.

```python
>>> from sympy.solvers.diophantine.diophantine import diop_general_sum_of_squares
>>> eq = a**2 + b**2 + c**2 + d**2 - 18
>>> diophantine(eq)
{(0, 0, 3, 3), (0, 1, 1, 4), (1, 2, 2, 3)}
```
>>> diop_general_sum_of_squares(eq, 2)
{(0, 0, 3, 3), (1, 2, 2, 3)}

The sum_of_squares() routine will provide an iterator that returns solutions and one may control whether the solutions contain zeros or not (and the solutions not containing zeros are returned first):

```python
>>> from sympy import *
>>> sos = sum_of_squares(18, 4, zeros=True)
>>> next(sos)
(1, 2, 2, 3)
>>> next(sos)
(0, 0, 3, 3)
```

Simple Egyptian fractions can be found with the Diophantine module, too. For example, here are the ways that one might represent 1/2 as a sum of two unit fractions:

```python
>>> from sympy import Eq, S
>>> diophantine(Eq(1/x + 1/y, S(1)/2))
{(-2, 1), (1, -2), (3, 6), (4, 4), (6, 3)}
```

To get a more thorough understanding of the Diophantine module, please refer to the following blog:

https://thilinaatsympy.wordpress.com/

**References**

**User Functions**

This function is imported into the global namespace with from sympy import *:

```python
sympy.solvers.diophantine.diophantine.diophantine(eq, param=t, syms=None, permutate=False)
```

Simplify the solution procedure of diophantine equation eq by converting it into a product of terms which should equal zero.

**Explanation**

For example, when solving, \( x^2 - y^2 = 0 \) this is treated as \((x + y)(x - y) = 0\) and \( x + y = 0 \) and \( x - y = 0 \) are solved independently and combined. Each term is solved by calling diop_solve(). (Although it is possible to call diop_solve() directly, one must be careful to pass an equation in the correct form and to interpret the output correctly; diophantine() is the public-facing function to use in general.)

Output of diophantine() is a set of tuples. The elements of the tuple are the solutions for each variable in the equation and are arranged according to the alphabetic ordering of the variables. e.g. For an equation with two variables, \( a \) and \( b \), the first element of the tuple is the solution for \( a \) and the second for \( b \).
**Usage**

diophantine(eq, t, syms): Solve the diophantine equation eq. t is the optional parameter to be used by diop_solve(). syms is an optional list of symbols which determines the order of the elements in the returned tuple.

By default, only the base solution is returned. If permute is set to True then permutations of the base solution and/or permutations of the signs of the values will be returned when applicable.

**Details**

eq should be an expression which is assumed to be zero. t is the parameter to be used in the solution.

**Examples**

```python
>>> from sympy import diophantine
>>> from sympy.abc import a, b
>>> eq = a**4 + b**4 - (2**4 + 3**4)
>>> diophantine(eq)
{(2, 3)}
>>> diophantine(eq, permute=True)
{(-3, -2), (-3, 2), (-2, -3), (2, -3), (-2, 3), (2, 3), (3, -2), (3, 2)}
```

```python
>>> from sympy.abc import x, y, z
>>> diophantine(x**2 - y**2)
{(t_0, -t_0), (t_0, t_0)}
```

```python
>>> diophantine(x*(2*x + 3*y - z))
{(0, n1, n2), (t_0, t_1, 2*t_0 + 3*t_1)}
>>> diophantine(x**2 + 3*x*y + 4*x)
{(0, n1), (3*t_0 - 4, -t_0)}
```

**See also:**

diop_solve (page 777), sympy.utilities.iterables.permute_signs (page 2160),
sympy.utilities.iterables.signed_permutations (page 2166)

And this function is imported with from sympy.solvers.diophantine import *:
sympy.solvers.diophantine.diophantine.classify_diop(eq, _dict=True)
**Internal Functions**

These functions are intended for internal use in the Diophantine module.

```python
sympy.solvers.diophantine.diophantine.diop_solve(eq, param=t)
```

Solves the diophantine equation `eq`.

**Explanation**

Unlike `diophantine()`, factoring of `eq` is not attempted. Uses `classify_diop()` to determine the type of the equation and calls the appropriate solver function.

Use of `diophantine()` is recommended over other helper functions. `diop_solve()` can return either a set or a tuple depending on the nature of the equation.

**Usage**

`diop_solve(eq, t)`: Solve diophantine equation, `eq` using `t` as a parameter if needed.

**Details**

`eq` should be an expression which is assumed to be zero. `t` is a parameter to be used in the solution.

**Examples**

```python
>>> from sympy.solvers.diophantine import diop_solve
>>> from sympy.abc import x, y, z, w
>>> diop_solve(2*x + 3*y - 5)
(3*t_0 - 5, 5 - 2*t_0)
>>> diop_solve(4*x + 3*y - 4*z + 5)
(t_0, 8*t_0 + 4*t_1 + 5, 7*t_0 + 3*t_1 + 5)
>>> diop_solve(x + 3*y - 4*z + w - 6)
(t_0, t_0 + t_1, 6*t_0 + 5*t_1 + 4*t_2 - 6, 5*t_0 + 4*t_1 + 3*t_2 - 6)
>>> diop_solve(x**2 + y**2 - 5)
{(-2, -1), (-2, 1), (-1, -2), (-1, 2), (1, -2), (1, 2), (2, -1), (2, 1)}
```

**See also:**

`diophantine` (page 775)

```python
sympy.solvers.diophantine.diophantine.diop_linear(eq, param=t)
```

Solves linear diophantine equations.

A linear diophantine equation is an equation of the form $a_1x_1 + a_2x_2 + \ldots + a_nx_n = 0$ where $a_1, a_2, \ldots a_n$ are integer constants and $x_1, x_2, \ldots x_n$ are integer variables.
Usage

diop_linear(eq): Returns a tuple containing solutions to the diophantine equation eq. Values in the tuple is arranged in the same order as the sorted variables.

Details

eq is a linear diophantine equation which is assumed to be zero. param is the parameter to be used in the solution.

Examples

```python
>>> from sympy.solvers.diophantine.diophantine import diop_linear
>>> from sympy.abc import x, y, z

>>> diop_linear(2*x - 3*y - 5) # solves equation 2*x - 3*y - 5 == 0
(3*t_0 - 5, 2*t_0 - 5)
```

Here x = -3*t_0 - 5 and y = -2*t_0 - 5

```python
>>> diop_linear(2*x - 3*y - 4*z -3)
(t_0, 2*t_0 + 4*t_1 + 3, -t_0 - 3*t_1 - 3)
```

See also:
diop_quadratic (page 779), diop_ternary_quadratic (page 784),
diop_general_pythagorean (page 786), diop_general_sum_of_squares (page 786)

sympy.solvers.diophantine.diophantine.base_solution_linear(c, a, b, t=None)

Return the base solution for the linear equation, \( ax + by = c \).

Explanation

Used by diop_linear() to find the base solution of a linear Diophantine equation. If t is given then the parametrized solution is returned.

Usage

base_solution_linear(c, a, b, t): a, b, c are coefficients in \( ax + by = c \) and t is the parameter to be used in the solution.
Examples

```python
>>> from sympy.solvers.diophantine.diophantine import base_solution_linear
>>> from sympy.abc import t
>>> base_solution_linear(5, 2, 3) # equation 2*x + 3*y = 5
(-5, 5)
>>> base_solution_linear(0, 5, 7) # equation 5*x + 7*y = 0
(0, 0)
>>> base_solution_linear(5, 2, 3, t) # equation 2*x + 3*y = 5
(3*t - 5, 5 - 2*t)
>>> base_solution_linear(0, 5, 7, t) # equation 5*x + 7*y = 0
(7*t, -5*t)
```

sympy.solvers.diophantine.diophantine.

```python
diop_quadratic(eq, param=t)
```

Solves quadratic diophantine equations.

i.e. equations of the form $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$. Returns a set containing the tuples $(x, y)$ which contains the solutions. If there are no solutions then $(None, None)$ is returned.

Usage

diop_quadratic(eq, param): eq is a quadratic binary diophantine equation. param is used to indicate the parameter to be used in the solution.

Details

eq should be an expression which is assumed to be zero. param is a parameter to be used in the solution.

Examples

```python
>>> from sympy.abc import x, y, t
>>> from sympy.solvers.diophantine.diophantine import diop_quadratic
>>> diop_quadratic(x**2 + y**2 + 2*x + 2*y + 2, t)
{(-1, -1)}
```

See also:

diop_linear (page 777), diop_ternary_quadratic (page 784), diop_general_sum_of_squares (page 786), diop_general_pythagorean (page 786)
References

[R790], [R791]
sympy.solvers.diophantine.diophantine.diop_DN(D, N, t=t)
Solves the equation \( x^2 - Dy^2 = N \).

Explanation

Mainly concerned with the case \( D > 0 \), \( D \) is not a perfect square, which is the same as the generalized Pell equation. The LMM algorithm [R792] is used to solve this equation. Returns one solution tuple, \((x, y)\) for each class of the solutions. Other solutions of the class can be constructed according to the values of \( D \) and \( N \).

Usage

diop_DN(D, N, t): \( D \) and \( N \) are integers as in \( x^2 - Dy^2 = N \) and \( t \) is the parameter to be used in the solutions.

Details

\( D \) and \( N \) correspond to \( D \) and \( N \) in the equation. \( t \) is the parameter to be used in the solutions.

Examples

```python
>>> from sympy.solvers.diophantine.diophantine import diop_DN
>>> diop_DN(13, -4) # Solves equation x**2 - 13*y**2 = -4
[(3, 1), (393, 109), (36, 10)]
```

The output can be interpreted as follows: There are three fundamental solutions to the equation \( x^2 - 13y^2 = -4 \) given by \((3, 1)\), \((393, 109)\) and \((36, 10)\). Each tuple is in the form \((x, y)\), i.e. solution \((3, 1)\) means that \( x = 3 \) and \( y = 1 \).

```python
>>> diop_DN(986, 1) # Solves equation x**2 - 986*y**2 = 1
[(49299, 1570)]
```

See also:

* find_DN (page 784), diop_bf_DN (page 781)
References

[R792]  

sympy.solvers.diophantine.diophantine.cornacchia \((a, b, m)\)

Solves \(ax^2 + by^2 = m\) where \(\gcd(a, b) = 1 = \gcd(a, m)\) and \(a, b > 0\).

Explanation

Uses the algorithm due to Cornacchia. The method only finds primitive solutions, i.e. ones with \(\gcd(x, y) = 1\). So this method cannot be used to find the solutions of \(x^2 + y^2 = 20\) since the only solution to former is \((x, y) = (4, 2)\) and it is not primitive. When \(a = b\), only the solutions with \(x \leq y\) are found. For more details, see the References.

Examples

```python
>>> from sympy.solvers.diophantine.diophantine import cornacchia

>>> cornacchia(2, 3, 35) # equation 2x**2 + 3y**2 = 35
{(2, 3), (4, 1)}

>>> cornacchia(1, 1, 25) # equation x**2 + y**2 = 25
{(4, 3)}
```

See also:

sympy.utilities.iterables.signed_permutations (page 2166)

References

[R793], [R794]

sympy.solvers.diophantine.diophantine.diop_bf_DN \((D, N, t=t)\)

Uses brute force to solve the equation, \(x^2 - Dy^2 = N\).

Explanation

Mainly concerned with the generalized Pell equation which is the case when \(D > 0, D\) is not a perfect square. For more information on the case refer [R795]. Let \((t, u)\) be the minimal positive solution of the equation \(x^2 - Dy^2 = 1\). Then this method requires \(\sqrt{\frac{N}{|t \pm 1|}} 2D\) to be small.
Usage

diop_bf_DN(D, N, t): D and N are coefficients in $x^2 - Dy^2 = N$ and t is the parameter to be used in the solutions.

Details

D and N correspond to D and N in the equation. t is the parameter to be used in the solutions.

Examples

```python
>>> from sympy.solvers.diophantine.diophantine import diop_bf_DN
>>> diop_bf_DN(13, -4)
[(3, 1), (-3, 1), (36, 10)]
>>> diop_bf_DN(986, 1)
[(49299, 1570)]
```

See also:

diop_DN (page 780)

References

[R795] sympy.solvers.diophantine.diophantine.transformation_to_DN(eq)
This function transforms general quadratic, $ax^2 + bxy + cy^2 + dx + ey + f = 0$ to more easy to deal with $x^2 - Dy^2 = N$ form.

Explanation

This is used to solve the general quadratic equation by transforming it to the latter form. Refer to [R796] for more detailed information on the transformation. This function returns a tuple (A, B) where A is a 2 X 2 matrix and B is a 2 X 1 matrix such that,

$\text{Transpose([x y]) = A * Transpose([X Y]) + B}$

Usage

transformation_to_DN(eq): where eq is the quadratic to be transformed.
Examples

```python
>>> from sympy.abc import x, y
>>> from sympy.solvers.diophantine.diophantine import transformation_to_DN
>>> A, B = transformation_to_DN(x**2 - 3*x*y - y**2 - 2*y + 1)
>>> A
Matrix([[1/26, 3/26],
 [0, 1/13]])
>>> B
Matrix([[-6/13],
 [-4/13]])
```

A, B returned are such that Transpose((x y)) = A * Transpose((X Y)) + B. Substituting these values for \(x\) and \(y\) and a bit of simplifying work will give an equation of the form \(x^2 - Dy^2 = N\).

```python
>>> from sympy.abc import X, Y
>>> from sympy import Matrix, simplify
>>> u = (A*Matrix([X, Y]) + B)[0] # Transformation for x
>>> u
X/26 + 3*Y/26 - 6/13
>>> v = (A*Matrix([X, Y]) + B)[1] # Transformation for y
>>> v
Y/13 - 4/13
```

Next we will substitute these formulas for \(x\) and \(y\) and do simplify().

```python
>>> eq = simplify((x**2 - 3*x*y - y**2 - 2*y + 1).subs(zip((x, y), (u, v))))
>>> eq
X**2/676 - Y**2/52 + 17/13
```

By multiplying the denominator appropriately, we can get a Pell equation in the standard form.

```python
>>> eq * 676
X**2 - 13*Y**2 + 884
```

If only the final equation is needed, `find_DN()` can be used.

**See also:**

`find_DN` (page 784)
References

[R796]
sympy.solvers.diophantine.diophantine.transformation_to_normal(eq)

Returns the transformation Matrix that converts a general ternary quadratic equation eq
\((ax^2 + by^2 + cz^2 + dxy + eyz + fxz)\) to a form without cross terms: \(ax^2 + by^2 + cz^2 = 0\). This is not
used in solving ternary quadratics; it is only implemented for the sake of completeness.

sympy.solvers.diophantine.diophantine.find_DN(eq)

This function returns a tuple, \((D;N)\) of the simplified form, \(x^2 - Dy^2 = N\), corresponding
to the general quadratic, \(ax^2 + bxy + cy^2 + dx + ey + f = 0\).

Solving the general quadratic is then equivalent to solving the equation \(X^2 - DY^2 = N\) and transforming the solutions by using the transformation matrices returned by
transformation_to_DN().

Usage

find_DN(eq): where eq is the quadratic to be transformed.

Examples

>>> from sympy.abc import x, y
>>> from sympy.solvers.diophantine.diophantine import find_DN
>>> find_DN(x**2 - 3*x*y - y**2 - 2*y + 1)
(13, -884)

Interpretation of the output is that we get \(X^2 - 13Y^2 = -884\) after transforming \(x^2 - 3xy - y^2 - 2y + 1\) using the transformation returned by transformation_to_DN().

See also:

transformation_to_DN (page 782)

References

[R797]
sympy.solvers.diophantine.diophantine.diop_ternary_quadratic(eq, parameterize=False)

Solves the general quadratic ternary form, \(ax^2 + by^2 + cz^2 + fxy + gyz + hzx = 0\).

Returns a tuple \((x, y, z)\) which is a base solution for the above equation. If there are no
solutions, \((None, None, None)\) is returned.
Usage

diop_ternary_quadratic(eq): Return a tuple containing a basic solution to eq.

Details

eq should be an homogeneous expression of degree two in three variables and it is assumed to be zero.

Examples

```python
>>> from sympy.abc import x, y, z
>>> from sympy.solvers.diophantine import diop_ternary_quadratic
>>> diop_ternary_quadratic(x**2 + 3*y**2 - z**2)
(1, 0, 1)
>>> diop_ternary_quadratic(4*x**2 + 5*y**2 - z**2)
(1, 0, 2)
>>> diop_ternary_quadratic(45*x**2 - 7*y**2 - 8*x*y - z**2)
(28, 45, 105)
>>> diop_ternary_quadratic(x**2 - 49*y**2 - z**2 + 13*z*y - 8*x*y)
(9, 1, 5)
```

sympy.solvers.diophantine.diophantine.square_factor(a)

Returns an integer c s.t. $a = c^2k$, $c, k \in \mathbb{Z}$. Here $k$ is square free. $a$ can be given as an integer or a dictionary of factors.

Examples

```python
>>> from sympy.solvers.diophantine import square_factor
>>> square_factor(24)
2
>>> square_factor(-36*3)
6
>>> square_factor(1)
1
>>> square_factor({3: 2, 2: 1, -1: 1}) # -18
3
```

See also:
sympy.ntheory.factor_.core (page 1549)
sympy.solvers.diophantine.diophantine.descent(A, B)

Returns a non-trivial solution, $(x, y, z)$, to $x^2 = A y^2 + B z^2$ using Lagrange’s descent method with lattice-reduction. $A$ and $B$ are assumed to be valid for such a solution to exist.

This is faster than the normal Lagrange’s descent algorithm because the Gaussian reduction is used.
Examples

```python
>>> from sympy.solvers.diophantine.diophantine import descent
>>> descent(3, 1) # x**2 = 3*y**2 + z**2
(1, 0, 1)
```

$(x, y, z) = (1, 0, 1)$ is a solution to the above equation.

```python
>>> descent(41, -113)
(-16, -3, 1)
```

References

[R798] sympy.solvers.diophantine.diophantine.diop_general_pythagorean(eq, param=m)

Solves the general pythagorean equation, $a_1^2 x_1^2 + a_2^2 x_2^2 + \cdots + a_n^2 x_n^2 - a_{n+1}^2 x_{n+1}^2 = 0$.

Returns a tuple which contains a parametrized solution to the equation, sorted in the same order as the input variables.

Usage
diop_general_pythagorean(eq, param): where eq is a general pythagorean equation which is assumed to be zero and param is the base parameter used to construct other parameters by subscripting.

Examples

```python
>>> from sympy.solvers.diophantine.diophantine import diop_general_pythagorean
>>> from sympy.abc import a, b, c, d, e
>>> diop_general_pythagorean(a**2 + b**2 + c**2 - d**2)
(m1**2 + m2**2 - m3**2, 2*m1*m3, 2*m2*m3, m1**2 + m2**2 + m3**2)
>>> diop_general_pythagorean(9*a**2 - 4*b**2 + 16*c**2 + 25*d**2 + e**2)
(10*m1**2 + 10*m2**2 + 10*m3**2 - 10*m4**2, 15*m1**2 + 15*m2**2 + 15*m3**2 + 15*m4**2 + 15*m5**2 + 25*m6**2 + 50*m7**2 + 75*m8**2 + 125*m9**2 + 375*m10**2 + 1250*m11**2 + 3750*m12**2 + 11250*m13**2 + 33750*m14**2 + 100000*m15**2)
```

sympy.solvers.diophantine.diophantine.diop_general_sum_of_squares(eq, limit=1)

Solves the equation $x_1^2 + x_2^2 + \cdots + x_n^2 - k = 0$.

Returns at most limit number of solutions.
Usage

general_sum_of_squares(eq, limit): Here eq is an expression which is assumed to be zero. Also, eq should be in the form, \( x_1^2 + x_2^2 + \ldots + x_n^2 - k = 0 \).

Details

When \( n = 3 \) if \( k = 4^a(8m + 7) \) for some \( a, m \in \mathbb{Z} \) then there will be no solutions. Refer to [R799] for more details.

Examples

```python
>>> from sympy.solvers.diophantine.diophantine import diop_general_sum_of_squares
>>> from sympy.abc import a, b, c, d, e
>>> diop_general_sum_of_squares(a**2 + b**2 + c**2 + d**2 + e**2 - 2345)
{(15, 22, 22, 24, 24)}
```

Reference

sympy.solvers.diophantine.diophantine.diop_general_sum_of_even_powers(eq, limit=1)

Solves the equation \( x_1^e + x_2^e + \ldots + x_n^e - k = 0 \) where \( e \) is an even, integer power.

Returns at most limit number of solutions.

Usage

general_sum_of_even_powers(eq, limit): Here eq is an expression which is assumed to be zero. Also, eq should be in the form, \( x_1^e + x_2^e + \ldots + x_n^e - k = 0 \).

Examples

```python
>>> from sympy.solvers.diophantine.diophantine import diop_general_sum_of_even_powers
>>> from sympy.abc import a, b
>>> diop_general_sum_of_even_powers(a**4 + b**4 - (2**4 + 3**4))
{(2, 3)}
```

See also:

power_representation (page 787)

sympy.solvers.diophantine.diophantine.power_representation(n, p, k, zeros=False)

Returns a generator for finding k-tuples of integers, \( (n_1, n_2, \ldots, n_k) \), such that \( n = n_1^p + n_2^p + \ldots + n_k^p \).
Usage

power_representation(n, p, k, zeros): Represent non-negative number n as a sum of k pth powers. If zeros is true, then the solutions is allowed to contain zeros.

Examples

```python
>>> from sympy.solvers.diophantine.diophantine import power_representation

Represent 1729 as a sum of two cubes:
```
```python
>>> f = power_representation(1729, 3, 2)
>>> next(f)
(9, 10)
>>> next(f)
(1, 12)
```

If the flag zeros is True, the solution may contain tuples with zeros; any such solutions will be generated after the solutions without zeros:
```
>>> list(power_representation(125, 2, 3, zeros=True))
[(5, 6, 8), (3, 4, 10), (0, 5, 10), (0, 2, 11)]
```

For even p the permute_signs function can be used to get all signed values:
```
>>> from sympy.utilities.iterables import permute_signs
>>> list(permute_signs((1, 12)))
[(1, 12), (-1, 12), (1, -12), (-1, -12)]
```

All possible signed permutations can also be obtained:
```
>>> from sympy.utilities.iterables import signed_permutations
>>> list(signed_permutations((1, 12)))
[(1, 12), (-1, 12), (1, -12), (-1, -12), (12, 1), (-12, 1), (12, -1), (-12, -1)]
```

sympy.solvers.diophantine.diophantine.partition(n, k=None, zeros=False)
Returns a generator that can be used to generate partitions of an integer n.

Explanation

A partition of n is a set of positive integers which add up to n. For example, partitions of 3 are 3, 1 + 2, 1 + 1 + 1. A partition is returned as a tuple. If k equals None, then all possible partitions are returned irrespective of their size, otherwise only the partitions of size k are returned. If the zero parameter is set to True then a suitable number of zeros are added at the end of every partition of size less than k.

zero parameter is considered only if k is not None. When the partitions are over, the last next() call throws the StopIteration exception, so this function should always be used inside a try-except block.
Details

partition(n, k): Here n is a positive integer and k is the size of the partition which is also positive integer.

Examples

```python
>>> from sympy.solvers.diophantine.diophantine import partition
>>> f = partition(5)
>>> next(f)
(1, 1, 1, 1, 1)
>>> next(f)
(1, 1, 1, 2)
>>> g = partition(5, 3)
>>> next(g)
(1, 1, 3)
>>> next(g)
(1, 2, 2)
>>> g = partition(5, 3, zeros=True)
>>> next(g)
(0, 0, 5)
```

sympy.solvers.diophantine.diophantine.sum_of_three_squares(n)

Returns a 3-tuple \((a, b, c)\) such that \(a^2 + b^2 + c^2 = n\) and \(a, b, c \geq 0\).

Returns None if \(n = 4^a(8m + 7)\) for some \(a, m \in \mathbb{Z}\). See [R800] for more details.

Usage

sum_of_three_squares(n): Here n is a non-negative integer.

Examples

```python
>>> from sympy.solvers.diophantine.diophantine import sum_of_three_squares
>>> sum_of_three_squares(44542)
(18, 37, 207)
```

See also:

sum_of_squares (page 791)
**References**

[R800]
sympy.solvers.diophantine.diophantine.\texttt{sum\_of\_four\_squares}(n)  
Returns a 4-tuple \((a, b, c, d)\) such that \(a^2 + b^2 + c^2 + d^2 = n\).  
Here \(a, b, c, d \geq 0\).

**Usage**

\texttt{sum\_of\_four\_squares}(n): Here \(n\) is a non-negative integer.

**Examples**

```python  
>>> from sympy.solvers.diophantine.diophantine import sum_of_four_squares
>>> sum_of_four_squares(3456)
(8, 8, 32, 48)
>>> sum_of_four_squares(1294585930293)
(0, 1234, 2161, 1137796)
```

See also:  
\texttt{sum\_of\_squares} (page 791)

**References**

[R801]
sympy.solvers.diophantine.diophantine.\texttt{sum\_of\_powers}(n, p, k, zeros=False)  
Returns a generator for finding \(k\)-tuples of integers, \((n_1, n_2, \ldots n_k)\), such that \(n = n_1^p + n_2^p + \ldots n_k^p\).

**Usage**

\texttt{power\_representation}(n, p, k, zeros): Represent non-negative number \(n\) as a sum of \(k\) \(p\)th powers. If \(zeros\) is true, then the solutions is allowed to contain zeros.

**Examples**

```python  
>>> from sympy.solvers.diophantine.diophantine import power_representation
Represent 1729 as a sum of two cubes:
>>> f = power_representation(1729, 3, 2)
>>> next(f)
(9, 10)
>>> next(f)
(1, 12)
```
If the flag `zeros` is True, the solution may contain tuples with zeros; any such solutions will be generated after the solutions without zeros:

```python
>>> list(power_representation(125, 2, 3, zeros=True))
[(5, 6, 8), (3, 4, 10), (0, 5, 10), (0, 2, 11)]
```

For even $p$ the `permute_sign` function can be used to get all signed values:

```python
>>> from sympy.utilities.iterables import permute_signs
>>> list(permute_signs((1, 12)))
[(1, 12), (-1, 12), (1, -12), (-1, -12)]
```

All possible signed permutations can also be obtained:

```python
>>> from sympy.utilities.iterables import signed_permutations
>>> list(signed_permutations((1, 12)))
[(1, 12), (-1, 12), (1, -12), (-1, -12), (12, 1), (-12, 1), (12, -1), (-12, -1)]
```

`syrpy.solvers.diophantine.diophantine.sum_of_squares(n, k, zeros=False)`

Return a generator that yields the $k$-tuples of nonnegative values, the squares of which sum to $n$. If zeros is False (default) then the solution will not contain zeros. The nonnegative elements of a tuple are sorted.

- If $k == 1$ and $n$ is square, $(n,)$ is returned.
- If $k == 2$ then $n$ can only be written as a sum of squares if every prime in the factorization of $n$ that has the form $4*k + 3$ has an even multiplicity. If $n$ is prime then it can only be written as a sum of two squares if it is in the form $4*k + 1$.
- If $k == 3$ then $n$ can be written as a sum of squares if it does not have the form $4**m*(8*k + 7)$.
- All integers can be written as the sum of 4 squares.
- If $k > 4$ then $n$ can be partitioned and each partition can be written as a sum of 4 squares; if $n$ is not evenly divisible by 4 then $n$ can be written as a sum of squares only if the an additional partition can be written as sum of squares. For example, if $k = 6$ then $n$ is partitioned into two parts, the first being written as a sum of 4 squares and the second being written as a sum of 2 squares – which can only be done if the condition above for $k = 2$ can be met, so this will automatically reject certain partitions of $n$.

**Examples**

```python
>>> from sympy.solvers.diophantine.diophantine import sum_of_squares
>>> list(sum_of_squares(25, 2))
[[3, 4]]
>>> list(sum_of_squares(25, 2, True))
[[3, 4], [0, 5]]
>>> list(sum_of_squares(25, 4))
[[1, 2, 2, 4]]
```

**See also:**

`syrpy.utilities.iterables.signed_permutations` (page 2166)

5.8. Topics 791
**Explanation**

For example when solving the equation \((x - y)(x^2 + y^2 - z^2) = 0\), solutions for each of the equations \(x - y = 0\) and \(x^2 + y^2 - z^2\) are found independently. Solutions for \(x - y = 0\) are \((x, y) = (t, t)\). But we should introduce a value for \(z\) when we output the solution for the original equation. This function converts \((t, t)\) into \((t, t, n_1)\) where \(n_1\) is an integer parameter.

**Explanation**

There are six sequences of integers defined related to the continued fraction representation of \(\frac{P_0}{Q_0} + \sqrt{D}Q_0\), namely \(\{P_i\}, \{Q_i\}, \{a_i\}, \{A_i\}, \{B_i\}, \{G_i\}\). \(\text{PQa}()\) Returns these values as a 6-tuple in the same order as mentioned above. Refer [R802] for more detailed information.

**Usage**

\(\text{PQa}(P_0, Q_0, D)\): \(P_0, Q_0\) and \(D\) are integers corresponding to \(P_0, Q_0\) and \(D\) in the continued fraction \(\frac{P_0}{Q_0} + \sqrt{D}Q_0\). Also it’s assumed that \(P_0^2 = D mod(|Q_0|)\) and \(D\) is square free.

**Examples**

```python
>>> from sympy.solvers.diophantine.diophantine import PQa
>>> pqa = PQa(13, 4, 5) # (13 + sqrt(5))/4
>>> next(pqa) # (P_0, Q_0, a_0, A_0, B_0, G_0)
(13, 4, 3, 3, 1, -1)
>>> next(pqa) # (P_1, Q_1, a_1, A_1, B_1, G_1)
(-1, 1, 1, 4, 1, 3)
```
References

[R802]
sympy.solvers.diophantine.diophantine.equivalent(u, v, r, s, D, N)
Returns True if two solutions (u, v) and (r, s) of \(x^2 - Dy^2 = N\) belongs to the same equivalence class and False otherwise.

Explanation

Two solutions (u, v) and (r, s) to the above equation fall to the same equivalence class iff both \((ur - Dvs)\) and \((us - vr)\) are divisible by \(N\). See reference [R803]. No test is performed to test whether (u, v) and (r, s) are actually solutions to the equation. User should take care of this.

Usage

equivalent(u, v, r, s, D, N): (u, v) and (r, s) are two solutions of the equation \(x^2 - Dy^2 = N\) and all parameters involved are integers.

Examples

```python
>>> from sympy import equivalent
>>> equivalent(18, 5, -18, -5, 13, -1)
True
>>> equivalent(3, 1, -18, 393, 109, -4)
False
```

References

[R803]
sympy.solvers.diophantine.diophantine.parametrize_ternary_quadratic(eq)
Returns the parametrized general solution for the ternary quadratic equation eq which has the form \(ax^2 + by^2 + cz^2 + fxy + gyz + hzx = 0\).

Examples

```python
>>> from sympy import Tuple, ordered
>>> from sympy import x, y, z
>>> from sympy import parametrize_ternary_quadratic

The parametrized solution may be returned with three parameters:

```
There might also be only two parameters:

```python
>>> parametrize_ternary_quadratic(4*x**2 + 2*y**2 - 3*z**2)
(2*p**2 - 3*q**2, -4*p**2 + 12*p*q - 6*q**2, 4*p**2 - 8*p*q + 6*q**2)
```

**Notes**

Consider \( p \) and \( q \) in the previous 2-parameter solution and observe that more than one solution can be represented by a given pair of parameters. If \( p \) and \( q \) are not coprime, this is trivially true since the common factor will also be a common factor of the solution values. But it may also be true even when \( p \) and \( q \) are coprime:

```python
>>> sol = Tuple(*_)
>>> p, q = ordered(sol.free_symbols)
>>> sol.subs([(p, 3), (q, 2)]))
(6, 12, 12)
>>> sol.subs([(q, 1), (p, 1)])
(-1, 2, 2)
>>> sol.subs([(q, 0), (p, 1)])
(2, -4, 4)
>>> sol.subs([(q, 1), (p, 0)])
(-3, -6, 6)
```

Except for sign and a common factor, these are equivalent to the solution of \( (1, 2, 2) \).

**References**

[R804] sympy.solvers.diophantine.diophantine.diopternaryquadraticnormal(eq, parameterize=False)

Solves the quadratic ternary diophantine equation, \( ax^2 + by^2 + cz^2 = 0 \).

**Explanation**

Here the coefficients \( a, b, \) and \( c \) should be non zero. Otherwise the equation will be a quadratic binary or univariate equation. If solvable, returns a tuple \( (x, y, z) \) that satisfies the given equation. If the equation does not have integer solutions, \( (None, None, None) \) is returned.
Usage

diop_ternary_quadratic_normal(eq): where eq is an equation of the form $ax^2 + by^2 + cz^2 = 0$.

Examples

```python
>>> from sympy.abc import x, y, z
>>> from sympy.solvers.diophantine import diop_ternary_quadratic_normal
>>> diop_ternary_quadratic_normal(x**2 + 3*y**2 - z**2)
(1, 0, 1)
>>> diop_ternary_quadratic_normal(4*x**2 + 5*y**2 - z**2)
(1, 0, 2)
>>> diop_ternary_quadratic_normal(34*x**2 - 3*y**2 - 301*z**2)
(4, 9, 1)
```

symy.solvers.diophantine.ldescent($A, B$)

Return a non-trivial solution to $w^2 = Ax^2 + By^2$ using Lagrange’s method; return None if there is no such solution.

Here, $A \neq 0$ and $B \neq 0$ and $A$ and $B$ are square free. Output a tuple $(w_0, x_0, y_0)$ which is a solution to the above equation.

Examples

```python
>>> from sympy.solvers.diophantine import ldescent
>>> ldescent(1, 1) # $w^2 = x^2 + y^2$
(1, 1, 0)
>>> ldescent(4, -7) # $w^2 = 4x^2 - 7y^2$
(2, -1, 0)
```

This means that $x = -1, y = 0$ and $w = 2$ is a solution to the equation $w^2 = 4x^2 - 7y^2$

```python
>>> ldescent(5, -1) # $w^2 = 5x^2 - y^2$
(2, 1, -1)
```

References

[R805], [R806]

symy.solvers.diophantine.gaussian_reduce($w, a, b$)

Returns a reduced solution $(x, z)$ to the congruence $X^2 - aZ^2 \equiv 0 \pmod{b}$ so that $x^2 + |a|z^2$ is minimal.
Details

Here \( w \) is a solution of the congruence \( x^2 \equiv a \pmod{b} \)

References

[R807], [R808]

**sympy.solvers.diophantine.diophantine.holzer**\( (x, y, z, a, b, c) \)

Simplify the solution \((x, y, z)\) of the equation \( ax^2 + by^2 = cz^2 \) with \( a, b, c > 0 \) and \( z^2 \geq |ab| \) to a new reduced solution \((x', y', z')\) such that \( z'^2 \leq |ab| \).

The algorithm is an interpretation of Mordell’s reduction as described on page 8 of Cremona and Rusin’s paper [R809] and the work of Mordell in reference [R810].

References

[R809], [R810]

**sympy.solvers.diophantine.diophantine.prime_as_sum_of_two_squares**\( (p) \)

Represent a prime \( p \) as a unique sum of two squares; this can only be done if the prime is congruent to 1 mod 4.

Examples

```python
>>> from sympy.solvers.diophantine.diophantine import prime_as_sum_of_two_squares
>>> prime_as_sum_of_two_squares(7) # can't be done
>>> prime_as_sum_of_two_squares(5)
(1, 2)
```

Reference

See also:

*sum_of_squares* (page 791)

**sympy.solvers.diophantine.diophantine.sqf_normal**\( (a, b, c, steps=False) \)

Return \( a', b', c' \), the coefficients of the square-free normal form of \( ax^2 + by^2 + cz^2 = 0 \), where \( a', b', c' \) are pairwise prime. If \( steps \) is True then also return three tuples: \( sq, sqf, \) and \( (a', b', c') \) where \( sq \) contains the square factors of \( a, b \) and \( c \) after removing the \( \gcd(a, b, c) \); \( sqf \) contains the values of \( a, b \) and \( c \) after removing both the \( \gcd(a, b, c) \) and the square factors.

The solutions for \( ax^2 + by^2 + cz^2 = 0 \) can be recovered from the solutions of \( a'x'^2 + b'y'^2 + c'z'^2 = 0 \).
Examples

```python
>>> from sympy.solvers.diophantine.diophantine import sqf_normal
>>> sqf_normal(2 * 3**2 * 5, 2 * 5 * 11, 2 * 7**2 * 11)
(11, 1, 5)
>>> sqf_normal(2 * 3**2 * 5, 2 * 5 * 11, 2 * 7**2 * 11, True)
((3, 1, 7), (5, 55, 11), (11, 1, 5))
```

See also:

`reconstruct` (page 797)

References

[R812]

sympy.solvers.diophantine.diophantine.\(\text{reconstruct}(A, B, z)\)

Reconstruct the \(z\) value of an equivalent solution of \(ax^2 + by^2 + cz^2\) from the \(z\) value of a
solution of the square-free normal form of the equation, \(a'x^2 + b'y^2 + c'z^2\), where \(a'\),
\(b'\) and \(c'\) are square free and \(gcd(a', b', c') == 1\).

Internal Classes

These classes are intended for internal use in the Diophantine module.

```python
class sympy.solvers.diophantine.diophantine.\(\text{DiophantineSolutionSet}\)(symbols_seq, parameters)
```

Container for a set of solutions to a particular diophantine equation.

The base representation is a set of tuples representing each of the solutions.

Parameters

symbols : list

List of free symbols in the original equation.

parameters: list

List of parameters to be used in the solution.

Examples

Adding solutions:

```python
>>> from sympy.solvers.diophantine.diophantine import DiophantineSolutionSet
>>> from sympy.abc import x, y, t, u
>>> s1 = DiophantineSolutionSet([x, y], [t, u])
>>> s1
set()
>>> s1.add((2, 3))
>>> s1.add((-1, u))
>>> s1
```

(continues on next page)
>>> s2 = DiophantineSolutionSet([x, y], [t, u])
>>> s2.add((3, 4))
>>> s1.update(s2)
>>> s1
{(-1, u), (2, 3), (3, 4)}

Conversion of solutions into dicts:

>>> list(s1.dict_iterator())
[{x: -1, y: u}, {x: 2, y: 3}, {x: 3, y: 4}]

Substituting values:

>>> s3 = DiophantineSolutionSet([x, y], [t, u])
>>> s3.add((t**2, t + u))
>>> s3
{(t**2, t + u)}
>>> s3.subs({t: 2, u: 3})
{(4, 5)}
>>> s3.subs(t, -1)
{(1, u - 1)}
>>> s3.subs(t, 3)
{(9, u + 3)}

Evaluation at specific values. Positional arguments are given in the same order as the parameters:

>>> s3(-2, 3)
{(4, 1)}
>>> s3(5)
{(25, u + 5)}
>>> s3(None, 2)
{(t**2, t + 2)}

class sympy.solvers.diophantine.diophantine.DiophantineEquationType(equation, free_symbols=None)

Internal representation of a particular diophantine equation type.

**Parameters**

- **equation**: The diophantine equation that is being solved.
- **free_symbols**: list (optional)
  The symbols being solved for.
Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>total_degree</td>
<td>The maximum of the degrees of all terms in the equation</td>
</tr>
<tr>
<td>homogeneous</td>
<td>Does the equation contain a term of degree 0</td>
</tr>
<tr>
<td>homogeneous_order</td>
<td>Does the equation contain any coefficient that is in the symbols being solved for</td>
</tr>
<tr>
<td>dimension</td>
<td>The number of symbols being solved for</td>
</tr>
</tbody>
</table>

matches()

Determine whether the given equation can be matched to the particular equation type.

class sympy.solvers.diophantine.diophantine.Univariate(equation, free_symbols=None)

Representation of a univariate diophantine equation.

A univariate diophantine equation is an equation of the form \(a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n = 0\) where \(a_1, a_2, \ldots, a_n\) are integer constants and \(x\) is an integer variable.

Examples

```python
>>> from sympy.solvers.diophantine.diophantine import Univariate
>>> from sympy.abc import x
>>> Univariate((x - 2)*(x - 3)**2).solve() # solves equation (x - 2)*(x - 3)**2 == 0
{(2,), (3,)}
```

class sympy.solvers.diophantine.diophantine.Linear(equation, free_symbols=None)

Representation of a linear diophantine equation.

A linear diophantine equation is an equation of the form \(a_1 x_1 + a_2 x_2 + \ldots + a_n x_n = 0\) where \(a_1, a_2, \ldots, a_n\) are integer constants and \(x_1, x_2, \ldots, x_n\) are integer variables.

Examples

```python
>>> from sympy.solvers.diophantine.diophantine import Linear
>>> from sympy.abc import x, y, z
>>> l1 = Linear(2*x - 3*y - 5)
>>> l1.matches() # is this equation linear
True
>>> l1.solve() # solves equation 2*x - 3*y - 5 == 0
{(3*t_0 - 5, 2*t_0 - 5)}
```

Here \(x = -3t_0 - 5\) and \(y = -2t_0 - 5\)

```python
>>> Linear(2*x - 3*y - 4*z - 3).solve()
{(t_0, 2*t_0 + 4*t_1 + 3, -t_0 - 3*t_1 - 3)}
```
class sympy.solvers.diophantine.diophantine.BinaryQuadratic(equation, free_symbols=None)

Representation of a binary quadratic diophantine equation.

A binary quadratic diophantine equation is an equation of the form $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$, where $A, B, C, D, E, F$ are integer constants and $x$ and $y$ are integer variables.

Examples

```python
>>> from sympy.abc import x, y
>>> from sympy.solvers.diophantine.diophantine import BinaryQuadratic
>>> b1 = BinaryQuadratic(x**3 + y**2 + 1)
>>> b1.matches()
False
>>> b2 = BinaryQuadratic(x**2 + y**2 + 2*x + 2*y + 2)
>>> b2.matches()
True
>>> b2.solve()
{(-1, -1)}
```

References

[R813], [R814]

class sympy.solvers.diophantine.diophantine.InhomogeneousTernaryQuadratic(equation, free_symbols=None)

Representation of an inhomogeneous ternary quadratic.

No solver is currently implemented for this equation type.

class sympy.solvers.diophantine.diophantine.HomogeneousTernaryQuadraticNormal(equation, free_symbols=None)

Representation of a homogeneous ternary quadratic normal diophantine equation.

Examples

```python
>>> from sympy.abc import x, y, z
>>> from sympy.solvers.diophantine.diophantine import HomogeneousTernaryQuadraticNormal
>>> HomogeneousTernaryQuadraticNormal(4*x**2 - 5*y**2 + z**2).solve()
{(1, 2, 4)}
```

class sympy.solvers.diophantine.diophantine.HomogeneousTernaryQuadratic(equation, free_symbols=None)

Representation of a homogeneous ternary quadratic diophantine equation.
Examples

```python
>>> from sympy.abc import x, y, z
>>> from sympy.solvers.diophantine.diophantine import
t
HomogeneousTernaryQuadratic
>>> HomogeneousTernaryQuadratic(x**2 + y**2 - 3*z**2 + x*y).solve()
{(-1, 2, 1)}
>>> HomogeneousTernaryQuadratic(3*x**2 + y**2 - 3*z**2 + 5*x*y + y*z).
solve()
{(3, 12, 13)}
```

class sympy.solvers.diophantine.diophantine.InhomogeneousGeneralQuadratic(equation, free_symbols=None)

Representation of an inhomogeneous general quadratic.

No solver is currently implemented for this equation type.

class sympy.solvers.diophantine.diophantine.HomogeneousGeneralQuadratic(equation, free_symbols=None)

Representation of a homogeneous general quadratic.

No solver is currently implemented for this equation type.

class sympy.solvers.diophantine.diophantine.GeneralSumOfSquares(equation, free_symbols=None)

Representation of the diophantine equation

\[ x_1^2 + x_2^2 + \ldots + x_n^2 - k = 0. \]

Details

When \( n = 3 \) if \( k = 4^a(8m + 7) \) for some \( a, m \in \mathbb{Z} \) then there will be no solutions. Refer [R815] for more details.

Examples

```python
>>> from sympy.solvers.diophantine.diophantine import GeneralSumOfSquares
>>> from sympy.abc import a, b, c, d, e
>>> GeneralSumOfSquares(a**2 + b**2 + c**2 + d**2 + e**2 - 2345).solve()
{(15, 22, 22, 24, 24)}
```

By default only 1 solution is returned. Use the `limit` keyword for more:

```python
>>> sorted(GeneralSumOfSquares(a**2 + b**2 + c**2 + d**2 + e**2 - 2345).solve(limit=3))
[(15, 22, 22, 24, 24), (16, 19, 24, 24, 24), (16, 20, 22, 23, 26)]
```
References

[R815]

class sympy.solvers.diophantine.diophantine.GeneralPythagorean(equation, free_symbols=None)

Representation of the general pythagorean equation, \( a_1^2 x_1^2 + a_2^2 x_2^2 + \cdots + a_n^2 x_n^2 - a_{n+1} x_{n+1}^2 = 0 \).

Examples

```python
>>> from sympy.solvers.diophantine.diophantine import GeneralPythagorean
>>> from sympy import a, b, c, d, e, x, y, z, t

>>> GeneralPythagorean(a**2 + b**2 + c**2 - d**2).solve()
{(z_0**2 + t_1**2 - t_2**2, 2*z_0*t_2, 2*t_1*t_2, t_0**2 + t_1**2 + t_2**2)}

>>> GeneralPythagorean(9*a**2 - 4*b**2 + 16*c**2 + 25*d**2 + e**2).solve(parameters=[x, y, z, t])
{(-10**2 + 10*x**2 + 10*y**2 + 10*z**2, 15*t**2 + 15*x**2 + 15*y**2 + 15*z**2, 15*t*x, 12*t*y, 60*t*z)}
```

class sympy.solvers.diophantine.diophantine.CubicThue(equation, free_symbols=None)

Representation of a cubic Thue diophantine equation.

A cubic Thue diophantine equation is a polynomial of the form \( f(x, y) = r \) of degree 3, where \( x \) and \( y \) are integers and \( r \) is a rational number.

No solver is currently implemented for this equation type.

Examples

```python
>>> from sympy.abc import x, y

>>> from sympy.solvers.diophantine.diophantine import CubicThue

>>> c1 = CubicThue(x**3 + y**2 + 1)

>>> c1.matches()
True
```

class sympy.solvers.diophantine.diophantine.GeneralSumOfEvenPowers(equation, free_symbols=None)

Representation of the diophantine equation

\( x_1^e + x_2^e + \cdots + x_n^e - k = 0 \)

where \( e \) is an even, integer power.
Examples

```python
>>> from sympy.solvers.diophantine.diophantine import
| GeneralSumOfEvenPowers
>>> from sympy.abc import a, b
>>> GeneralSumOfEvenPowers(a**4 + b**4 - (2**4 + 3**4)).solve()
{(2, 3)}
```

Inequality Solvers

For general cases `reduce_inequalities()` (page 805) should be used. Other functions are
the subcategories useful for special dedicated operations, and will be called internally as
needed by `reduce_inequalities`.

Note: For a beginner-friendly guide focused on solving inequalities, refer to *Reduce One or
a System of Inequalities for a Single Variable Algebraically* (page 177).

Note: Some of the examples below use `poly()` (page 2435), which simply transforms an
expression into a polynomial; it does not change the mathematical meaning of the expression.

```python
sympy.solvers.inequalities.solve_rational_inequalities(eqs)
Solve a system of rational inequalities with rational coefficients.

Examples

```python
>>> from sympy.abc import x
>>> from sympy import solve_rational_inequalities, Poly

```python
>>> solve_rational_inequalities([[... (Poly(-x + 1), Poly(1, x)), '>='),
... (Poly(-x + 1), Poly(1, x)), '<=')]]
{1}

```python
>>> solve_rational_inequalities([[... (Poly(x), Poly(1, x)), '!='),
... (Poly(-x + 1), Poly(1, x)), '>'])
Union(Interval.open(-oo, 0), Interval.Lopen(0, 1))
```

See also:

`solve_poly_inequality` (page 803)

sympy.solvers.inequalities.solve_poly_inequality(poly, rel)
Solve a polynomial inequality with rational coefficients.
Examples

```python
>>> from sympy import solve_poly_inequality, Poly
>>> from sympy.abc import x
```

```python
>>> solve_poly_inequality(Poly(x, x, domain='ZZ'), '==')
[[{0}]]
```

```python
>>> solve_poly_inequality(Poly(x**2 - 1, x, domain='ZZ'), '!=')
[Interval.open(-oo, -1), Interval.open(-1, 1), Interval.open(1, oo)]
```

```python
>>> solve_poly_inequality(Poly(x**2 - 1, x, domain='ZZ'), '==')
[{-1}, {1}]
```

See also:

`solve_poly_inequalities` (page 804)

sympy.solvers.inequalities.solve_poly_inequalities(polys)

Solve polynomial inequalities with rational coefficients.

Examples

```python
>>> from sympy import Poly
>>> from sympy.solvers.inequalities import solve_poly_inequalities
>>> from sympy.abc import x
```

```python
>>> solve_poly_inequalities(((...Poly(x**2 - 3),">"), (...Poly(-x**2 + 1),"">")))
Union(Interval.open(-oo, -sqrt(3)), Interval.open(-1, 1), Interval.open(sqrt(3), oo))
```

sympy.solvers.inequalities.reduce_rational_inequalities(exprs, gen, relational=True)

Reduce a system of rational inequalities with rational coefficients.

Examples

```python
>>> from sympy import Symbol
>>> from sympy.solvers.inequalities import reduce_rational_inequalities
```

```python
>>> x = Symbol('x', real=True)
>>> reduce_rational_inequalities([[x**2 <= 0]], x)
Eq(x, 0)
```

```python
>>> reduce_rational_inequalities([[x + 2 > 0]], x)
-2 < x
```

(continues on next page)
-2 < x
>>> reduce_rational_inequalities([[x + 2]], x)
Eq(x, -2)

This function find the non-infinite solution set so if the unknown symbol is declared as extended real rather than real then the result may include finiteness conditions:

>>> y = Symbol('y', extended_real=True)
>>> reduce_rational_inequalities([[y + 2 > 0]], y)
(-2 < y) & (y < oo)

sympy.solvers.inequalities.reduce_abs_inequality(expr, rel, gen)
Reduce an inequality with nested absolute values.

Examples

>>> from sympy import reduce_abs_inequality, Abs, Symbol
>>> x = Symbol('x', real=True)

>>> reduce_abs_inequality(Abs(x - 5) - 3, '<', x)
(2 < x) & (x < 8)

>>> reduce_abs_inequality(Abs(x + 2)*3 - 13, '<', x)
(-19/3 < x) & (x < 7/3)

See also:
reduce_abs_inequality (page 805)

sympy.solvers.inequalities.reduce_abs_inequalities(exprs, gen)
Reduce a system of inequalities with nested absolute values.

Examples

>>> from sympy import reduce_abs_inequalities, Abs, Symbol

>>> reduce_abs_inequalities([[Abs(3*x - 5) - 7, '<'],
... (Abs(x + 25) - 13, '>')], x)
((-2/3 < x) & (x < 4) & (((-oo < x) & (x < -38)) | ((-12 < x) & (x < oo))))

>>> reduce_abs_inequalities([[Abs(x - 4) + Abs(3*x - 5) - 7, '<']], x)
(1/2 < x) & (x < 4)

See also:
reduce_abs_inequality (page 805)

sympy.solvers.inequalities.reduce_inequalities(inequalities, symbols=[]) Reduce a system of inequalities with rational coefficients.
Examples

```python
>>> from sympy.abc import x, y
>>> from sympy import reduce_inequalities

>>> reduce_inequalities(0 <= x + 3, [])
(-3 <= x) & (x < oo)

>>> reduce_inequalities(0 <= x + y**2 - 1, [x])
(x < oo) & (x >= 1 - 2*y)
```

`sympy.solvers.inequalities.solve_univariate_inequality(expr, gen, relational=True, domain=Reals, continuous=False)`

Solves a real univariate inequality.

Parameters
- `expr` : Relational
 The target inequality
- `gen` : Symbol
 The variable for which the inequality is solved
- `relational` : bool
 A Relational type output is expected or not
- `domain` : Set
 The domain over which the equation is solved
- `continuous` : bool
 True if expr is known to be continuous over the given domain (and so `continuous_domain()` does not need to be called on it)

Raises
- `NotImplementedError`
 The solution of the inequality cannot be determined due to limitation in `sympy.solvers.solve_set.solveify()` (page 917).

Notes
Currently, we cannot solve all the inequalities due to limitations in `sympy.solvers.solve_set.solveify()` (page 917). Also, the solution returned for trigonometric inequalities are restricted in its periodic interval.
Examples

```python
>>> from sympy import solve_univariate_inequality, Symbol, sin, Interval, S
>>> x = Symbol('x')

>>> solve_univariate_inequality(x**2 >= 4, x)
((2 <= x) & (x < oo)) | ((-oo < x) & (x <= -2))

>>> solve_univariate_inequality(x**2 >= 4, x, relational=False)
Union(Interval(-oo, -2), Interval(2, oo))

>>> domain = Interval(0, S.Infinity)
>>> solve_univariate_inequality(x**2 >= 4, x, False, domain)
Interval(2, oo)

>>> solve_univariate_inequality(sin(x) > 0, x, relational=False)
Interval.open(0, pi)
```

See also:

`sympy.solvers.solveset.solvify` (page 917)
solver returning solveset solutions with solve's output API

ODE

Note: For a beginner-friendly guide focused on solving ODEs, refer to *Solve an Ordinary Differential Equation (ODE) Algebraically* (page 150).

User Functions

These are functions that are imported into the global namespace with `from sympy import *`. These functions (unlike *Hint Functions* (page 818), below) are intended for use by ordinary users of SymPy.

```python
sympy.solvers.ode.dsolve(eq, func=None, hint='default', simplify=True, ics=None, xi=None, eta=None, x0=0, n=6, **kwargs)
```

Solves any (supported) kind of ordinary differential equation and system of ordinary differential equations.
For Single Ordinary Differential Equation

It is classified under this when number of equation in eq is one. **Usage**

\[\text{dsolve(eq, f(x), hint)} \rightarrow \text{Solve ordinary differential equation eq for function f(x), using method hint.} \]

Details

- **eq can be any supported ordinary differential equation (see the ode (page 807) docstring for supported methods).** This can either be an Equality (page 1071), or an expression, which is assumed to be equal to 0.
- **f(x) is a function of one variable whose derivatives in that variable make up the ordinary differential equation eq.** In many cases it is not necessary to provide this; it will be autodetected (and an error raised if it could not be detected).
- **hint is the solving method that you want dsolve to use. Use classify_ode(eq, f(x)) to get all of the possible hints for an ODE. The default hint, default, will use whatever hint is returned first by classify_ode() (page 812). See Hints below for more options that you can use for hint.**
- **simplify enables simplification by odesimp() (page 819).** See its docstring for more information. Turn this off, for example, to disable solving of solutions for func or simplification of arbitrary constants. It will still integrate with this hint. Note that the solution may contain more arbitrary constants than the order of the ODE with this option enabled.
- **xi and eta are the infinitesimal functions of an ordinary differential equation.** They are the infinitesimals of the Lie group of point transformations for which the differential equation is invariant. The user can specify values for the infinitesimals. If nothing is specified, xi and eta are calculated using infinitesimals() (page 816) with the help of various heuristics.
- **ics is the set of initial/boundary conditions for the differential equation.** It should be given in the form of \{f(x0): x1, f(x).diff(x).subs(x, x2): x3\} and so on. For power series solutions, if no initial conditions are specified f(0) is assumed to be C0 and the power series solution is calculated about 0.
- **x0 is the point about which the power series solution of a differential equation is to be evaluated.**
- **n gives the exponent of the dependent variable up to which the power series solution of a differential equation is to be evaluated.**

Hints

Aside from the various solving methods, there are also some meta-hints that you can pass to **dsolve()** (page 807):

- **default:** This uses whatever hint is returned first by classify_ode() (page 812). This is the default argument to dsolve() (page 807).
all:
To make *dsolve()* (page 807) apply all relevant classification hints, use *dsolve*(ODE, func, hint="all"). This will return a dictionary of hint:solution terms. If a hint causes *dsolve* to raise the *NotImplementedError*, value of that hint’s key will be the exception object raised. The dictionary will also include some special keys:

- **order**: The order of the ODE. See also *ode_order()* (page 899) in *deutils.py*.
- **best**: The simplest hint; what would be returned by best below.
- **best_hint**: The hint that would produce the solution given by best. If more than one hint produces the best solution, the first one in the tuple returned by *classify_ode()* (page 812) is chosen.
- **default**: The solution that would be returned by default. This is the one produced by the hint that appears first in the tuple returned by *classify_ode()* (page 812).

all_Integral:
This is the same as all, except if a hint also has a corresponding _Integral hint, it only returns the _Integral hint. This is useful if all causes *dsolve()* (page 807) to hang because of a difficult or impossible integral. This meta-hint will also be much faster than all, because *integrate()* (page 1016) is an expensive routine.

best:
To have *dsolve()* (page 807) try all methods and return the simplest one. This takes into account whether the solution is solvable in the function, whether it contains any Integral classes (i.e. unevaluatable integrals), and which one is the shortest in size.

See also the *classify_ode()* (page 812) docstring for more info on hints, and the *ode* (page 807) docstring for a list of all supported hints.

Tips

- You can declare the derivative of an unknown function this way:

```python
>>> from sympy import Function, Derivative
>>> from sympy.abc import x  # x is the independent variable
>>> f = Function("f") (x)  # f is a function of x
>>> # f_ will be the derivative of f with respect to x
>>> f_ = Derivative(f, x)
```

- See *test_ode.py* for many tests, which serves also as a set of examples for how to use *dsolve()* (page 807).

- *dsolve()* (page 807) always returns an *Equality* (page 1071) class (except for the case when the hint is all or all_Integral). If possible, it solves the solution explicitly for the function being solved for. Otherwise, it returns an implicit solution.

- Arbitrary constants are symbols named C1, C2, and so on.

- Because all solutions should be mathematically equivalent, some hints may return the exact same result for an ODE. Often, though, two different hints will return the same solution formatted differently. The two should be equivalent. Also note that sometimes the values of the arbitrary constants in two different solutions may not be the same, because one constant may have “absorbed” other constants into it.
• Do `help(ode.ode_<hintname>)` to get help more information on a specific hint, where `<hintname>` is the name of a hint without `_Integral`.

For System Of Ordinary Differential Equations

Usage

```plaintext
dsolve(eq, func) -> Solve a system of ordinary differential equations `eq` for `func` being list of functions including `x(t)`, `y(t)`, `z(t)` where number of functions in the list depends upon the number of equations provided in `eq`.
```

Details

- `eq` can be any supported system of ordinary differential equations. This can either be an `Equality` (page 1071), or an expression, which is assumed to be equal to 0.
- `func` holds `x(t)` and `y(t)` being functions of one variable which together with some of their derivatives make up the system of ordinary differential equation `eq`. It is not necessary to provide this; it will be autodetected (and an error raised if it could not be detected).

Hints

The hints are formed by parameters returned by `classify_sysode`, combining them give hints name used later for forming method name.

Examples

```python
>>> from sympy import Function, dsolve, Eq, Derivative, sin, cos, symbols
>>> from sympy.abc import x
>>> f = Function('f')
>>> dsolve(Derivative(f(x), x, x) + 9*f(x), f(x))
Eq(f(x), C1*sin(3*x) + C2*cos(3*x))

>>> eq = sin(x)*cos(f(x)) + cos(x)*sin(f(x))*f(x).diff(x)
>>> dsolve(eq, hint='1st_exact')
[Eq(f(x), -acos(C1/cos(x)) + 2*pi), Eq(f(x), acos(C1/cos(x)))]

>>> t = symbols('t')
>>> x, y = symbols(x, y, cls=Function)
>>> eq = (Eq(Derivative(x(t),t), 12*t*x(t) + 8*y(t)), Eq(Derivative(y(t),t), 21*x(t) + 7*t*y(t)))
>>> dsolve(eq)
{Eq(x(t), -exp(C1)/(C2*exp(C1) - cos(t))), Eq(y(t), -1/(C1 - cos(t)))}
```
Solves any(supported) system of Ordinary Differential Equations

Parameters

- **eqs**: List
 - system of ODEs to be solved
- **funcs**: List or None
 - List of dependent variables that make up the system of ODEs
- **t**: Symbol or None
 - Independent variable in the system of ODEs
- **ics**: Dict or None
 - Set of initial boundary/conditions for the system of ODEs
- **doit**: Boolean
 - Evaluate the solutions if True. Default value is True. Can be set to false if the integral evaluation takes too much time and/or is not required.
- **simplify**: Boolean
 - Simplify the solutions for the systems. Default value is True. Can be set to false if simplification takes too much time and/or is not required.

Returns

List of List of Equations

Raises

- **NotImplementedError**
 - When the system of ODEs is not solvable by this function.
- **ValueError**
 - When the parameters passed are not in the required form.

Explanation

This function takes a system of ODEs as an input, determines if the it is solvable by this function, and returns the solution if found any.

This function can handle:
1. Linear, First Order, Constant coefficient homogeneous system of ODEs
2. Linear, First Order, Constant coefficient non-homogeneous system of ODEs
3. Linear, First Order, non-constant coefficient homogeneous system of ODEs
4. Linear, First Order, non-constant coefficient non-homogeneous system of ODEs
5. Any implicit system which can be divided into system of ODEs which is of the above 4 forms
6. Any higher order linear system of ODEs that can be reduced to one of the 5 forms of systems described above.

The types of systems described above are not limited by the number of equations, i.e. this function can solve the above types irrespective of the number of equations in the system passed. But, the bigger the system, the more time it will take to solve the system.
This function returns a list of solutions. Each solution is a list of equations where LHS is the dependent variable and RHS is an expression in terms of the independent variable.

Among the non constant coefficient types, not all the systems are solvable by this function. Only those which have either a coefficient matrix with a commutative antiderivative or those systems which may be divided further so that the divided systems may have coefficient matrix with commutative antiderivative.

Examples

```python
>>> from sympy import symbols, Eq, Function
>>> from sympy.solvers.ode.systems import dsolve_system
>>> f, g = symbols("f g", cls=Function)
>>> x = symbols("x")

>>> eqs = [Eq(f(x).diff(x), g(x)), Eq(g(x).diff(x), f(x))]
>>> dsolve_system(eqs)
[[Eq(f(x), -C1*exp(-x) + C2*exp(x)), Eq(g(x), C1*exp(-x) + C2*exp(x))]]
```

You can also pass the initial conditions for the system of ODEs:

```python
>>> dsolve_system(eqs, ics={f(0): 1, g(0): 0})
[[Eq(f(x), exp(x)/2 + exp(-x)/2), Eq(g(x), exp(x)/2 - exp(-x)/2)]]
```

Optionally, you can pass the dependent variables and the independent variable for which the system is to be solved:

```python
>>> funcs = [f(x), g(x)]
>>> dsolve_system(eqs, funcs=funcs, t=x)
[[Eq(f(x), -C1*exp(-x) + C2*exp(x)), Eq(g(x), C1*exp(-x) + C2*exp(x))]]
```

Let's look at an implicit system of ODEs:

```python
>>> eqs = [Eq(f(x).diff(x)**2, g(x)**2), Eq(g(x).diff(x), g(x))]
>>> dsolve_system(eqs)
[[Eq(f(x), C1 - C2*exp(x)), Eq(g(x), C2*exp(x))], [Eq(f(x), C1 +
    -C2*exp(x)), Eq(g(x), C2*exp(x))]]
```

sympy.solvers.odeclassify_ode(eq, func=None, dict=False, ics=None, *, prep=True, xi=None, eta=None, n=None, **kwargs)

Returns a tuple of possible `dsolve()` (page 807) classifications for an ODE.

The tuple is ordered so that first item is the classification that `dsolve()` (page 807) uses to solve the ODE by default. In general, classifications at the near the beginning of the list will produce better solutions faster than those near the end, thought there are always exceptions. To make `dsolve()` (page 807) use a different classification, use `dsolve(ODE, func, hint=<classification>).` See also the `dsolve()` (page 807) docstring for different meta-hints you can use.

If `dict` is true, `classify_ode()` (page 812) will return a dictionary of hint:match expression terms. This is intended for internal use by `dsolve()` (page 807). Note that because dictionaries are ordered arbitrarily, this will most likely not be in the same order as the tuple.
You can get help on different hints by executing `help(ode.ode_hintname)`, where `hintname` is the name of the hint without `_Integral`.

See `allhints` (page 818) or the `ode` (page 807) docstring for a list of all supported hints that can be returned from `classify_ode()` (page 812).

Notes

These are remarks on hint names.

_Integral

If a classification has _Integral at the end, it will return the expression with an unevaluated `Integral` (page 660) class in it. Note that a hint may do this anyway if `integrate()` (page 1016) cannot do the integral, though just using an _Integral will do so much faster. Indeed, an _Integral hint will always be faster than its corresponding hint without _Integral because `integrate()` (page 1016) is an expensive routine. If `dsolve()` (page 807) hangs, it is probably because `integrate()` (page 1016) is hanging on a tough or impossible integral. Try using an _Integral hint or all _Integral to get it return something.

Note that some hints do not have _Integral counterparts. This is because `integrate()` (page 657) is not used in solving the ODE for those method. For example, nth order linear homogeneous ODEs with constant coefficients do not require integration to solve, so there is no nth_linear_homogeneous_constant_coeff_Integrate hint. You can easily evaluate any unevaluated `Integral` (page 660) in an expression by doing expr. doit().

Ordinals

Some hints contain an ordinal such as 1st_linear. This is to help differentiate them from other hints, as well as from other methods that may not be implemented yet. If a hint has nth in it, such as the nth_linear hints, this means that the method used to applies to ODEs of any order.

indep and dep

Some hints contain the words indep or dep. These reference the independent variable and the dependent function, respectively. For example, if an ODE is in terms of $f(x)$, then indep will refer to x and dep will refer to f.

subs

If a hints has the word subs in it, it means that the ODE is solved by substituting the expression given after the word subs for a single dummy variable. This is usually in terms of indep and dep as above. The substituted expression will be written only in characters allowed for names of Python objects, meaning operators will be spelled out. For example, indep/dep will be written as indep_div_dep.

coeff

The word coeff in a hint refers to the coefficients of something in the ODE, usually of the derivative terms. See the docstring for the individual methods for more info (help(ode)). This is contrast to coefficients, as in undetermined_coefficients, which refers to the common name of a method.
Methods that have more than one fundamental way to solve will have a hint for each sub-method and a _best meta-classification. This will evaluate all hints and return the best, using the same considerations as the normal best meta-hint.

Examples

```python
>>> from sympy import Function, classify_ode, Eq
>>> from sympy.abc import x
>>> f = Function('f')
>>> classify_ode(Eq(f(x).diff(x), 0), f(x))
```

```python
sympy.solvers.ode.checkodesol(ode, sol, func=None, order='auto', solve_for_func=True)
```

Substitutes sol into ode and checks that the result is 0.

This works when func is one function, like \(f(x) \) or a list of functions like \([f(x), g(x)]\) when ode is a system of ODEs. sol can be a single solution or a list of solutions. Each solution may be an Equality (page 1071) that the solution satisfies, e.g. Eq(f(x), C1), Eq(f(x) + C1, 0); or simply an Expr (page 999), e.g. f(x) - C1. In most cases it will not be necessary to explicitly identify the function, but if the function cannot be inferred from the original equation it can be supplied through the func argument.

If a sequence of solutions is passed, the same sort of container will be used to return the result for each solution.

It tries the following methods, in order, until it finds zero equivalence:

1. Substitute the solution for \(f \) in the original equation. This only works if ode is solved for \(f \). It will attempt to solve it first unless solve_for_func == False.

2. Take \(n \) derivatives of the solution, where \(n \) is the order of ode, and check to see if that is equal to the solution. This only works on exact ODEs.

3. Take the 1st, 2nd, ..., \(n \)th derivatives of the solution, each time solving for the derivative of \(f \) of that order (this will always be possible because \(f \) is a linear operator). Then back substitute each derivative into ode in reverse order.
This function returns a tuple. The first item in the tuple is True if the substitution results in 0, and False otherwise. The second item in the tuple is what the substitution results in. It should always be 0 if the first item is True. Sometimes this function will return False even when an expression is identically equal to 0. This happens when simplify() (page 719) does not reduce the expression to 0. If an expression returned by this function vanishes identically, then sol really is a solution to the ode.

If this function seems to hang, it is probably because of a hard simplification.

To use this function to test, test the first item of the tuple.

Examples

```python
>>> from sympy import (Eq, Function, checkodesol, symbols,
                      ...                      Derivative, exp)
>>> x, C1, C2 = symbols('x,C1,C2')
>>> f, g = symbols('f g', cls=Function)
>>> checkodesol(f(x).diff(x), Eq(f(x), C1))
(True, 0)
>>> assert checkodesol(f(x).diff(x), C1)[0]
>>> assert not checkodesol(f(x).diff(x), x)[0]
>>> checkodesol(f(x).diff(x, 2), x**2)
(False, 2)
```

```python
>>> eqs = [Eq(Derivative(f(x), x), f(x)), Eq(Derivative(g(x), x), g(x))]
>>> sol = [Eq(f(x), C1*exp(x)), Eq(g(x), C2*exp(x))]
>>> checkodesol(eqs, sol)
(True, [0, 0])
```

`sympy.solvers.ode.homogeneous_order(eq, *symbols)`

Returns the order n if g is homogeneous and None if it is not homogeneous.

Determines if a function is homogeneous and if so of what order. A function \(f(x, y, \cdots) \) is homogeneous of order \(n \) if \(f(tx, ty, \cdots) = t^n f(x, y, \cdots) \).

If the function is of two variables, \(F(x, y) \), then \(f \) being homogeneous of any order is equivalent to being able to rewrite \(F(x, y) \) as \(G(x/y) \) or \(H(y/x) \). This fact is used to solve 1st order ordinary differential equations whose coefficients are homogeneous of the same order (see the docstrings of `HomogeneousCoeffSubsDepDivIndep` (page 824) and `HomogeneousCoeffSubsIndepDivDep` (page 825)).

Symbols can be functions, but every argument of the function must be a symbol, and the arguments of the function that appear in the expression must match those given in the list of symbols. If a declared function appears with different arguments than given in the list of symbols, None is returned.
Examples

```python
>>> from sympy import Function, homogeneous_order, sqrt
>>> from sympy.abc import x, y

>>> f = Function('f')
>>> homogeneous_order(f(x), f(x)) is None
True
>>> homogeneous_order(f(x, y), f(y, x), x, y) is None
True
>>> homogeneous_order(f(x), f(x), x)
1
>>> homogeneous_order(x**2*f(x)/sqrt(x**2+f(x)**2), x, f(x))
2
>>> homogeneous_order(x**2+f(x), x, f(x)) is None
True
```

`sympy.solvers.ode.infinitesimals(eq, func=None, order=None, hint='default', match=None)`

The infinitesimal functions of an ordinary differential equation, \(\xi(x, y) \) and \(\eta(x, y) \), are the infinitesimals of the Lie group of point transformations for which the differential equation is invariant. So, the ODE \(y' = f(x, y) \) would admit a Lie group \(x^* = X(x, y; \epsilon) = x + \epsilon \xi(x, y), y^* = Y(x, y; \epsilon) = y + \epsilon \eta(x, y) \) such that \((y'^*) = f(x^*, y^*) \). A change of coordinates, to \(r(x, y) \) and \(s(x, y) \), can be performed so this Lie group becomes the translation group, \(r^* = r \) and \(s^* = s + \epsilon \). They are tangents to the coordinate curves of the new system.

Consider the transformation \((x, y) \to (X, Y)\) such that the differential equation remains invariant. \(\xi \) and \(\eta \) are the tangents to the transformed coordinates \(X \) and \(Y \), at \(\epsilon = 0 \).

\[
\left(\frac{\partial X(x, y; \epsilon)}{\partial \epsilon} \right) |_{\epsilon=0} = \xi, \left(\frac{\partial Y(x, y; \epsilon)}{\partial \epsilon} \right) |_{\epsilon=0} = \eta.
\]

The infinitesimals can be found by solving the following PDE:

```python
>>> from sympy import Function, Eq, pprint
>>> from sympy.abc import x, y

>>> xi, eta, h = map(Function, ['xi', 'eta', 'h'])
>>> h = h(x, y) # dy/dx = h
>>> eta = eta(x, y)
>>> xi = xi(x, y)

>>> genform = Eq(eta.diff(x) + (eta.diff(y) - xi.diff(x))*h
... - (xi.diff(y))*h**2 - xi*(h.diff(x)) - eta*(h.diff(y)), 0)
>>> pprint(genform)
```

Solving the above mentioned PDE is not trivial, and can be solved only by making intelligent assumptions for \(\xi \) and \(\eta \) (heuristics). Once an infinitesimal is found, the attempt
to find more heuristics stops. This is done to optimise the speed of solving the differential equation. If a list of all the infinitesimals is needed, hint should be flagged as all, which gives the complete list of infinitesimals. If the infinitesimals for a particular heuristic needs to be found, it can be passed as a flag to hint.

Examples

```python
>>> from sympy import Function
>>> from sympy.solvers.ode.lie_group import infinitesimals
>>> from sympy.abc import x

>>> f = Function('f')
>>> eq = f(x).diff(x) - x**2*f(x)
>>> infinitesimals(eq)
[{eta(x, f(x)): exp(x**3/3), xi(x, f(x)): 0}]
```

References

- Solving differential equations by Symmetry Groups, John Starrett, pp. 1 - pp. 14

```python
sympy.solvers.ode.checkinfsol(eq, infinitesimals, func=None, order=None)
```

This function is used to check if the given infinitesimals are the actual infinitesimals of the given first order differential equation. This method is specific to the Lie Group Solver of ODEs.

As of now, it simply checks, by substituting the infinitesimals in the partial differential equation.

$$\frac{\partial \eta}{\partial x} + \left(\frac{\partial \eta}{\partial y} - \frac{\partial \xi}{\partial x}\right) * h - \frac{\partial \xi}{\partial y} * h^2 - \xi \frac{\partial h}{\partial x} - \eta \frac{\partial h}{\partial y} = 0$$

where \(\eta\) and \(\xi\) are the infinitesimals and \(h(x, y) = \frac{\partial u}{\partial x}\)

The infinitesimals should be given in the form of a list of dicts [{\(\xi(x, y): \inf\), \(\eta(x, y): \inf\)], corresponding to the output of the function infinitesimals. It returns a list of values of the form [{(True/False, sol)}] where sol is the value obtained after substituting the infinitesimals in the PDE. If it is True, then sol would be 0.

```python
sympy.solvers.ode.constantsimp(expr, constants)
```

Simplifies an expression with arbitrary constants in it.

This function is written specifically to work with `dsolve()` (page 807), and is not intended for general use.

Simplification is done by “absorbing” the arbitrary constants into other arbitrary constants, numbers, and symbols that they are not independent of.

The symbols must all have the same name with numbers after it, for example, \(C1, C2, C3\). The symbol name here would be ‘C’, the start number would be 1, and the end number would be 3. If the arbitrary constants are independent of the variable \(x\), then the independent symbol would be \(x\). There is no need to specify the dependent function, such as \(f(x)\), because it already has the independent symbol, \(x\), in it.

Because terms are “absorbed” into arbitrary constants and because constants are renumbered after simplifying, the arbitrary constants in expr are not necessarily equal to the ones of the same name in the returned result.

5.8. Topics
If two or more arbitrary constants are added, multiplied, or raised to the power of each other, they are first absorbed together into a single arbitrary constant. Then the new constant is combined into other terms if necessary.

Absorption of constants is done with limited assistance:

1. terms of Add (page 1062)s are collected to try join constants so $e^x(C_1 \cos(x) + C_2 \cos(x))$ will simplify to $e^xC_1 \cos(x)$;
2. powers with exponents that are Add (page 1062)s are expanded so $e^{C_1 + x}$ will be simplified to $C_1 e^x$.

Use constant_renumber() (page 820) to renumber constants after simplification or else arbitrary numbers on constants may appear, e.g. $C_1 + C_3 x$.

In rare cases, a single constant can be “simplified” into two constants. Every differential equation solution should have as many arbitrary constants as the order of the differential equation. The result here will be technically correct, but it may, for example, have C_1 and C_2 in an expression, when C_1 is actually equal to C_2. Use your discretion in such situations, and also take advantage of the ability to use hints in dsolve() (page 807).

Examples

```python
>>> from sympy import symbols
>>> from sympy.solvers.ode.ode import constantsimp
>>> C1, C2, C3, x, y = symbols('C1, C2, C3, x, y')
>>> constantsimp(2*C1*x, {C1, C2, C3})
C1*x
>>> constantsimp(C1 + 2 + x, {C1, C2, C3})
C1 + x
>>> constantsimp(C1*C2 + 2 + C2 + C3*x, {C1, C2, C3})
C1 + C3*x
```

Hint Functions

These functions are intended for internal use by dsolve() (page 807) and others. Unlike User Functions (page 807), above, these are not intended for every-day use by ordinary SymPy users. Instead, functions such as dsolve() (page 807) should be used. Nonetheless, these functions contain useful information in their docstrings on the various ODE solving methods. For this reason, they are documented here.
sympy.solvers.ode.allhints = ('factorable', 'nth_algebraic', 'separable',
'1st_exact', '1st_linear', 'Bernoulli', '1st_rational_riccati',
'Riccati_special_minus2', '1st_homogeneous_coeff_best',
'1st_homogeneous_coeff_subs_indep_div_dep',
'1st_homogeneous_coeff_subs_dep_div_indep', 'almost_linear',
'linear_coefficients', 'separable_reduced', '1st_power_series', 'lie_group',
'nth_linear_constant_coeff_homogeneous', 'nth_linear_euler_eq_homogeneous',
'nth_linear_constant_coeff_undetermined_coefficients',
'nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients',
'nth_linear_constant_coeff_variation_of_parameters',
'nth_linear_euler_eq_nonhomogeneous_variation_of_parameters', 'Liouville',
'2nd_linear_airy', '2nd_linear_bessel', '2nd_hypergeometric',
'2nd_hypergeometric_Integral', 'nth_order_reducible',
'2nd_power_series_ordinary', '2nd_power_series_regular',
'nth_algebraic_Integral', 'separable_Integral', '1st_exact_Integral',
'1st_linear_Integral', 'Bernoulli_Integral',
'1st_homogeneous_coeff_subs_indep_div_dep_Integral',
'1st_homogeneous_coeff_subs_dep_div_indep_Integral', 'almost_linear_Integral',
'linear_coefficients_Integral', 'separable_reduced_Integral',
'nth_linear_constant_coeff_variation_of_parameters_Integral',
'nth_linear_euler_eq_nonhomogeneous_variation_of_parameters_Integral',
'Liouville_Integral', '2nd_nonlinear_autonomous_conserved',
'2nd_nonlinear_autonomous_conserved_Integral')

Built-in immutable sequence.

If no argument is given, the constructor returns an empty tuple. If iterable is specified
the tuple is initialized from iterable’s items.

If the argument is a tuple, the return value is the same object.

sympy.solvers.ode.odesimp(ode, eq, func, hint)
Simplifies solutions of ODEs, including trying to solve for func and running
constantsimp() (page 817).

It may use knowledge of the type of solution that the hint returns to apply additional
simplifications.

It also attempts to integrate any Integral (page 660)s in the expression, if the hint is not an _Integral hint.

This function should have no effect on expressions returned by dsolve() (page 807), as
dsolve() (page 807) already calls odesimp() (page 819), but the individual hint functions do not call odesimp() (page 819) (because the dsolve() (page 807) wrapper does). Therefore, this function is designed for mainly internal use.

Examples

```python
>>> from sympy import sin, symbols, dsolve, pprint, Function
>>> from sympy.solvers.ode.ode import odesimp
>>> x, u2, C1 = symbols('x,u2,C1')
>>> f = Function('f')

>>> eq = dsolve(x*f(x).diff(x) - f(x) - x*sin(f(x)/x), f(x),
... hint='1st_homogeneous_coeff_subs_indep_div_dep_integral',
```

(continues on next page)
\[\log(f(x)) = \log(C1) + \frac{d(u1)}{2u1} \]

>>>

\[
\begin{align*}
\text{sympy.solvers.ode.ode.constant_renumber}(expr, \text{variables}=\text{None}, \text{newconstants}=\text{None})
\end{align*}
\]

Renumber arbitrary constants in expr to use the symbol names as given in newconstants. In the process, this reorders expression terms in a standard way.

If newconstants is not provided then the new constant names will be C1, C2 etc. Otherwise newconstants should be an iterable giving the new symbols to use for the constants in order.

The variables argument is a list of non-constant symbols. All other free symbols found in expr are assumed to be constants and will be renumbered. If variables is not given then any numbered symbol beginning with C (e.g. C1) is assumed to be a constant.

Symbols are renumbered based on .sort_key(), so they should be numbered roughly in the order that they appear in the final, printed expression. Note that this ordering is based in part on hashes, so it can produce different results on different machines.

The structure of this function is very similar to that of constantsimp() (page 817).
Examples

```python
>>> from sympy import symbols
>>> from sympy.solvers.ode import constant_renumber
>>> x, C1, C2, C3 = symbols('x,C1:4')
>>> expr = C3 + C2*x + C1*x**2
>>> expr
C1*x**2 + C2*x + C3
>>> constant_renumber(expr)
C1 + C2*x + C3*x**2
```

The `variables` argument specifies which are constants so that the other symbols will not be renumbered:

```python
>>> constant_renumber(expr, [C1, x])
C1*x**2 + C2 + C3*x
```

The `newconstants` argument is used to specify what symbols to use when replacing the constants:

```python
>>> constant_renumber(expr, [x], newconstants=symbols('E1:4'))
E1 + E2*x + E3*x**2
```

`sympy.solvers.ode.ode.ode_sol_simplicity(sol, func, try-solving=True)`

Returns an extended integer representing how simple a solution to an ODE is.

The following things are considered, in order from most simple to least:

- `sol` is solved for `func`.
- `sol` is not solved for `func`, but can be if passed to solve (e.g., a solution returned by `dsolve(ode, func, simplify=False)`).
- If `sol` is not solved for `func`, then base the result on the length of `sol`, as computed by `len(str(sol))`.
- If `sol` has any unevaluated `Integral` (page 660)s, this will automatically be considered less simple than any of the above.

This function returns an integer such that if solution A is simpler than solution B by above metric, then `ode_sol_simplicity(sol_a, func) < ode_sol_simplicity(sol_b, func)`.

Currently, the following are the numbers returned, but if the heuristic is ever improved, this may change. Only the ordering is guaranteed.

<table>
<thead>
<tr>
<th>Simplicity</th>
<th>Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>sol solved for func</td>
<td>-2</td>
</tr>
<tr>
<td>sol not solved for func but can be</td>
<td>-1</td>
</tr>
<tr>
<td>sol is not solved nor solvable for func</td>
<td><code>len(str(sol))</code></td>
</tr>
<tr>
<td>sol contains an <code>Integral</code> (page 660)</td>
<td><code>oo</code></td>
</tr>
</tbody>
</table>

`oo` here means the SymPy infinity, which should compare greater than any integer.
If you already know `solve()` (page 882) cannot solve sol, you can use `trysolving=False` to skip that step, which is the only potentially slow step. For example, `dsolve()` (page 807) with the `simplify=False` flag should do this.

If sol is a list of solutions, if the worst solution in the list returns `oo` it returns that, otherwise it returns `len(str(sol))`, that is, the length of the string representation of the whole list.

Examples

This function is designed to be passed to `min` as the key argument, such as `min(listofsolutions, key=lambda i: ode_sol_simplicity(i, f(x)))`.

```python
>>> from sympy import symbols, Function, Eq, tan, Integral
>>> x, C1, C2 = symbols('x, C1, C2')
>>> f = Function('f')

>>> ode_sol_simplicity(Eq(f(x), C1*x**2), f(x))
-2
>>> ode_sol_simplicity(Eq(x**2 + f(x), C1), f(x))
-1
>>> ode_sol_simplicity(Eq(f(x), C1*Integral(2*x, x)), f(x))
oo
>>> eq1 = Eq(f(x)/tan(f(x)/(2*x)), C1)
>>> eq2 = Eq(f(x)/tan(f(x)/(2*x) + f(x)), C2)
>>> [ode_sol_simplicity(eq, f(x)) for eq in [eq1, eq2]]
[28, 35]
>>> min([eq1, eq2], key=lambda i: ode_sol_simplicity(i, f(x)))
Eq(f(x)/tan(f(x)/(2*x)), C1)
```

class `sympy.solvers.ode.single.Factorable(ode_problem)`

Solves equations having a solvable factor.

This function is used to solve the equation having factors. Factors may be of type algebraic or ode. It will try to solve each factor independently. Factors will be solved by calling `dsolve`. We will return the list of solutions.

Examples

```python
>>> from sympy import Function, dsolve, pprint
>>> from sympy.abc import x
>>> f = Function('f')
>>> eq = (f(x)**2-4)*(f(x).diff(x)+f(x))
>>> pprint(dsolve(eq, f(x)))
-f
[f(x) = 2, f(x) = -2, f(x) = C1*e]
```

class `sympy.solvers.ode.single.FirstExact(ode_problem)`

Solves 1st order exact ordinary differential equations.
A 1st order differential equation is called exact if it is the total differential of a function. That is, the differential equation

\[P(x, y) \frac{\partial}{\partial x} + Q(x, y) \frac{\partial}{\partial y} = 0 \]

is exact if there is some function \(F(x, y) \) such that \(P(x, y) = \frac{\partial F}{\partial x} \) and \(Q(x, y) = \frac{\partial F}{\partial y} \). It can be shown that a necessary and sufficient condition for a first order ODE to be exact is that \(\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \). Then, the solution will be as given below:

```python
>>> from sympy import Function, Eq, Integral, symbols, pprint
>>> x, y, t, x0, y0, C1 = symbols('x, y, t, x0, y0, C1')
>>> P, Q, F = map(Function, ['P', 'Q', 'F'])
>>> pprint(Eq(Eq(F(x, y), Integral(P(t, y), (t, x0, x)) + Integral(Q(x0, t), (t, y0, y))), C1))
\[
\begin{align*}
F(x, y) = &\int P(t, y) \, dt + \int Q(x0, t) \, dt = C1 \\
&x0 \quad y0
\end{align*}
\]
```

Where the first partials of \(P \) and \(Q \) exist and are continuous in a simply connected region.

A note: SymPy currently has no way to represent inert substitution on an expression, so the hint `1st_exact_Integral` will return an integral with \(dy \). This is supposed to represent the function that you are solving for.

Examples

```python
>>> from sympy import Function, dsolve, cos, sin
>>> from sympy.abc import x
>>> f = Function('f')
>>> dsolve(cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x), ... f(x), hint='1st_exact')
Eq(x*cos(f(x)) + f(x)**3/3, C1)
```

References

- https://en.wikipedia.org/wiki/Exact_differential_equation

indirect doctest
class sympy.solvers.ode.single.HomogeneousCoeffBest(ode_problem)
Returns the best solution to an ODE from the two hints `1st_homogeneous_coeff_subs_dep_div_indep` and `1st_homogeneous_coeff_subs_indep_div_dep`. This is as determined by `ode_sol_simplicity()` (page 821).

See the `HomogeneousCoeffSubsIndepDivDep` (page 825) and `HomogeneousCoeffSubsDepDivIndep` (page 824) docstrings for more information on these hints. Note that there is no `ode_1st_homogeneous_coeff_best_Integral` hint.
Examples

```python
>>> from sympy import Function, dsolve, pprint
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x),
... hint='1st_homogeneous_coeff_best', simplify=False))
```

```
/  2 \   
| 3*x |
\ \f (x) /
|----- + 1|
| 2 |
log|----- + 1|
\ \f (x) /
log(f(x)) = log(C1) - -----------
\ 3 /
```

References


```python
# indirect doctest
class sympy.solvers.ode.single.HomogeneousCoeffSubsDepDivIndep(ode_problem)
Solves a 1st order differential equation with homogeneous coefficients using the substitution $u_1 = \frac{<dependent variable>}{<independent variable>}$. 
This is a differential equation

$$P(x, y) + Q(x, y)\frac{dy}{dx} = 0$$

such that $P$ and $Q$ are homogeneous and of the same order. A function $F(x, y)$ is homogeneous of order $n$ if $F(xt, yt) = t^n F(x, y)$. Equivalently, $F(x, y)$ can be rewritten as $G(y/x)$ or $H(x/y)$. See also the docstring of homogeneous_order() (page 815).

If the coefficients $P$ and $Q$ in the differential equation above are homogeneous functions of the same order, then it can be shown that the substitution $y = u_1 x$ (i.e. $u_1 = y/x$) will turn the differential equation into an equation separable in the variables $x$ and $u$. If $h(u_1)$ is the function that results from making the substitution $u_1 = f(x)/x$ on $P(x, f(x))$ and $g(u_2)$ is the function that results from the substitution on $Q(x, f(x))$ in the differential equation $P(x, f(x)) + Q(x, f(x))f'(x) = 0$, then the general solution is:

```python
>>> from sympy import Function, dsolve, pprint
>>> from sympy.abc import x
>>> f, g, h = map(Function, ['f', 'g', 'h'])
>>> genform = g(f(x)/x) + h(f(x)/x)*f(x).diff(x)
>>> pprint(genform)
```

```
g|-----| + h|-----|*--(f(x))
\ x / \ x / dx
```

```python
>>> pprint(dsolve(genform, f(x),
... hint='1st_homogeneous_coeff_subs_dep_div_indep_Integral'))
f(x)
```

(continues on next page)
Where \( u_1 h(u_1) + g(u_1) \neq 0 \) and \( x \neq 0 \).

See also the docstrings of \texttt{HomogeneousCoeffBest} (page 823) and \texttt{HomogeneousCoeffSubsIndepDivDep} (page 825).

\section*{Examples}

\begin{Verbatim}
>>> from sympy import Function, dsolve
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x),
... hint='1st_homogeneous_coeff_subs_dep_div_indep', simplify=False))

\[
\frac{3}{3 - \frac{3f(x)}{f(x)}} \log\left|\frac{3f(x)}{f(x)}\right| + \log\left|\frac{x}{f(x)}\right| + \log(C1)
\]

\[
\log(x) = \log(C1) - \frac{3}{x}
\]
\end{Verbatim}

\section*{References}

- \url{https://en.wikipedia.org/wiki/Homogeneous_differential_equation}

\# indirect doctest
class sympy.solvers.ode.single.HomogeneousCoeffSubsIndepDivDep(ode_problem)
Solves a 1st order differential equation with homogeneous coefficients using the substitution \( u_2 = \frac{x}{y} \).

This is a differential equation

\[
P(x, y) + Q(x, y) dy/dx = 0
\]
such that \( P \) and \( Q \) are homogeneous and of the same order. A function \( F(x, y) \) is homogeneous of order \( n \) if \( F(tx, ty) = t^n F(x, y) \). Equivalently, \( F(x, y) \) can be rewritten as \( G(y/x) \) or \( H(x/y) \). See also the docstring of \texttt{homogeneous_order()} (page 815).

If the coefficients \( P \) and \( Q \) in the differential equation above are homogeneous functions of the same order, then it can be shown that the substitution \( x = u_2 y \) (i.e. \( u_2 = x/y \)) will
turn the differential equation into an equation separable in the variables $y$ and $u_2$. If $h(u_2)$ is the function that results from making the substitution $u_2 = x/f(x)$ on $P(x, f(x))$ and $g(u_2)$ is the function that results from the substitution on $Q(x, f(x))$ in the differential equation $P(x, f(x)) + Q(x, f(x))f'(x) = 0$, then the general solution is:

```python
>>> from sympy import Function, dsolve, pprint
>>> from sympy.abc import x
>>> f, g, h = map(Function, ['f', 'g', 'h'])
>>> genform = g(x/f(x)) + h(x/f(x))*f(x).diff(x)
>>> pprint(genform)
\frac{g}{f} + \frac{h}{f} \cdot f'\(x)\n
|\frac{u1 \cdot g(u1) + h(u1)}{f(x)} = C1*e
```

Where $u1g(u1) + h(u1) \neq 0$ and $f(x) \neq 0$.

See also the docstrings of `HomogeneousCoeffBest` (page 823) and `HomogeneousCoeffSubsDepDivIndep` (page 824).

**Examples**

```python
>>> from sympy import Function, pprint, dsolve
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x),
... hint='1st_homogeneous_coeff_subs_indep_div_dep',
... simplify=False))
| \log{f(x)} = \log{C1} - \frac{1}{3}
```

```python
>>> from sympy import Function, pprint, dsolve
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x),
... hint='1st_homogeneous_coeff_subs_indep_div_dep',
... simplify=False))
| \log{f(x)} = \log{C1} - \frac{1}{3}
```
References


```python
indirect doctest
class sympy.solvers.ode.single.FirstLinear(ode_problem)
Solves 1st order linear differential equations.
These are differential equations of the form

\[\frac{dy}{dx} + P(x)y = Q(x). \]

These kinds of differential equations can be solved in a general way. The integrating
factor \(e^{\int P(x) \, dx} \) will turn the equation into a separable equation. The general solution is:

```python
>>> from sympy import Function, dsolve, Eq, pprint, diff, sin
>>> from sympy.abc import x
>>> f, P, Q = map(Function, ['f', 'P', 'Q'])
>>> genform = Eq(f(x).diff(x) + P(x)*f(x), Q(x))
>>> pprint(genform)
\[
dP(x)f(x) + \frac{df(x)}{dx} = Q(x)
\]
>>> pprint(dsolve(genform, f(x), hint='1st_linear_Integral'))
\[
\begin{align*}
| & C1 + Q(x)\int e^{\int P(x) \, dx} dx | P(x) \int e^{\int P(x) \, dx} dx \\
| & \int & Q(x)\int e^{\int P(x) \, dx} dx & - P(x) \int e^{\int P(x) \, dx} dx \\
f(x) = & C1 + Q(x)\int e^{\int P(x) \, dx} dx \\
\end{align*}
\]
```

Examples

```python
>>> f = Function('f')
>>> pprint(dsolve(Eq(x*diff(f(x), x) - f(x), x**2*sin(x)), ...
... f(x), '1st_linear'))
f(x) = x*(C1 - cos(x))
```
References

- https://en.wikipedia.org/wiki/Linear_differential_equation#First-order_equation_with_variable_coefficients

```python
class sympy.solvers.ode.single.RationalRiccati(ode_problem)
```

Gives general solutions to the first order Riccati differential equations that have at least one rational particular solution.

\[
y' = b_0(x) + b_1(x)y + b_2(x)y^2
\]

where \(b_0\), \(b_1\) and \(b_2\) are rational functions of \(x\) with \(b_2 \neq 0\) (\(b_2 = 0\) would make it a Bernoulli equation).

Examples

```python
>>> from sympy import Symbol, Function, dsolve, checkodesol
>>> f = Function('f')
>>> x = Symbol('x')

>>> eq = -x**4*f(x)**2 + x**3*f(x).diff(x) + x**2*f(x) + 20
>>> sol = dsolve(eq, hint="1st_rational_riccati")
>>> sol
Eq(f(x), (4*C1 - 5*x**9 - 4)/(x**2*(C1 + x**9 - 1)))
```

```python
>>> checkodesol(eq, sol)
(True, 0)
```

References


```python
class sympy.solvers.ode.single.SecondLinearAiry(ode_problem)
```

Gives solution of the Airy differential equation

\[
\frac{d^2y}{dx^2} + (a + bx)y(x) = 0
\]

in terms of Airy special functions airyai and airybi.
Examples

```python
>>> from sympy import dsolve, Function
>>> from sympy.abc import x
>>> f = Function("f")
>>> eq = f(x).diff(x, 2) - x*f(x)
>>> dsolve(eq)
Eq(f(x), C1*airyai(x) + C2*airybi(x))
```

class sympy.solvers.ode.single.SecondLinearBessel(ode_problem)

Gives solution of the Bessel differential equation

\[x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx}(x) + (x^2 - n^2)y(x) \]

if \(n \) is integer then the solution is of the form \(Eq(f(x), C0 \text{ besselj}(n, x) + C1 \text{ bessely}(n, x)) \) as both the solutions are linearly independent else if \(n \) is a fraction then the solution is of the form \(Eq(f(x), C0 \text{ besselj}(n, x) + C1 \text{ besselj}(-n, x)) \) which can also transform into \(Eq(f(x), C0 \text{ besselj}(n, x) + C1 \text{ bessely}(n, x)) \).

Examples

```python
>>> from sympy.abc import x
>>> from sympy import Symbol
>>> v = Symbol('v', positive=True)
>>> from sympy import dsolve, Function
>>> f = Function('f')
>>> y = f(x)
>>> genform = x**2*y.diff(x, 2) + x*y.diff(x) + (x**2 - v**2)*y
>>> dsolve(genform)
Eq(f(x), C1*besselj(v, x) + C2*bessely(v, x))
```

References

https://math24.net/bessel-differential-equation.html

class sympy.solvers.ode.single.Bernoulli(ode_problem)

Solves Bernoulli differential equations.

These are equations of the form

\[\frac{dy}{dx} + P(x)y = Q(x)y^n, n \neq 1. \]

The substitution \(w = 1/y^{1-n} \) will transform an equation of this form into one that is linear (see the docstring of FirstLinear (page 827)). The general solution is:

```python
>>> from sympy import Function, dsolve, Eq, pprint
>>> from sympy.abc import x, n
>>> f, P, Q = map(Function, ['f', 'P', 'Q'])
>>> genform = Eq(f(x).diff(x) + P(x)*f(x), Q(x)*f(x)**n)
>>> pprint(genform)
```

(continues on next page)
\[
\frac{d}{dx} P(x)f(x) + (-f(x)) = Q(x)f(x)
\]

Here is a solution using SymPy:

```python
>>> pprint(dsolve(genform, f(x), hint='Bernoulli_Integral'), num_columns=110)
-1
n - 1
// \\ / \\
|| \ || \\
||| || |
||| || /
||| || |
||| || |
\| | | |
-(n - 1)* \(P(x) \ dx \) | -(n - 1)* \(P(x) \ dx\)
\| | | |
\| | | |
\| | | |
\| | | |
\| | | |
f(x) = \[C1 - n* \(Q(x)*e^{-dy} \) \] dx + \(Q(x)*e^{-dy}\)
```

Note that the equation is separable when \(n = 1\) (see the docstring of `Separable` (page 839)).

```python
>>> pprint(dsolve(Eq(f(x).diff(x) + P(x)*f(x), Q(x)*f(x)), f(x),
... hint='separable_Integral'))
f(x)
/ \\
| 1
| - dy = C1 + \(-P(x) + Q(x)\) dx
| y
| /
/```
Examples

```python
>>> from sympy import Function, dsolve, Eq, pprint, log
>>> from sympy.abc import x
>>> f = Function('f')

>>> pprint(dsolve(Eq(x*f(x).diff(x) + f(x), log(x)*f(x)**2),
... f(x), hint='Bernoulli'))
\frac{f(x)}{C1*x + \log(x) + 1}
```

References


```
indirect doctest
class sympy.solvers.ode.single.Liouville(ode_problem)
Solves 2nd order Liouville differential equations.
The general form of a Liouville ODE is
\[
\frac{d^2y}{dx^2} + g(y)\left(\frac{dy}{dx}\right)^2 + h(x)\frac{dy}{dx}.
\]
The general solution is:
```
Examples

```python
>>> from sympy import Function, dsolve, Eq, pprint
>>> from sympy.abc import x

>>> f = Function('f')
>>> pprint(dsolve(diff(f(x), x, x) + diff(f(x), x)**2/f(x) + ...
... diff(f(x), x)/x, f(x), hint='Liouville'))
[f(x) = -\sqrt{C1 + C2*\log(x)} , f(x) = \sqrt{C1 + C2*\log(x)}]
```

References


```python
indirect doctest
class sympy.solvers.ode.single.RiccatiSpecial(ode_problem)
The general Riccati equation has the form
\[dy/dx = f(x)y^2 + g(x)y + h(x). \]

While it does not have a general solution [1], the “special” form, \(dy/dx = ay^2 - bx^c \), does have solutions in many cases [2]. This routine returns a solution for \(a(dy/dx) = by^2 + cy/x^d \) that is obtained by using a suitable change of variables to reduce it to the special form and is valid when neither \(a \) nor \(b \) are zero and either \(c \) or \(d \) is zero.

```python
>>> from sympy.abc import x, a, b, c, d

>>> y = f(x)

>>> genform = a*y.diff(x) - (b*y**2 + c*y/x + d/x**2)

>>> sol = dsolve(genform, y, hint="Riccati_special_minus2")
>>> pprint(sol, wrap_line=False)
\[
\begin{align*}
\frac{-a + c \sqrt{4b^2d - (a + c)^2} \tan^{-1} \left( \sqrt{\frac{2a}{4b^2d - (a + c)^2}} \right) \log(x)}{2b^2x} & \quad \text{or} \\
\frac{-a + c \sqrt{4b^2d - (a + c)^2} \tan^{-1} \left( \sqrt{\frac{2a}{4b^2d - (a + c)^2}} \right) \log(x)}{2b^2x} & \quad \text{or} \\
\frac{-a + c \sqrt{4b^2d - (a + c)^2} \tan^{-1} \left( \sqrt{\frac{2a}{4b^2d - (a + c)^2}} \right) \log(x)}{2b^2x}
\end{align*}
\]
```

```python
>>> checkodesol(genform, sol, order=1)[0]
True
```
References

class sympy.solvers.ode.single.NthLinearConstantCoeffHomogeneous(ode_problem)
Solves an \(n \)th order linear homogeneous differential equation with constant coefficients.

This is an equation of the form

\[a_n f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x) + a_0 f(x) = 0. \]

These equations can be solved in a general manner, by taking the roots of the characteristic equation \(a_n m^n + a_{n-1} m^{n-1} + \cdots + a_1 m + a_0 = 0 \). The solution will then be the sum of \(C_n x^r e^{rx} \) terms, for each where \(C_n \) is an arbitrary constant, \(r \) is a root of the characteristic equation and \(i \) is one of each from 0 to the multiplicity of the root - 1 (for example, a root 3 of multiplicity 2 would create the terms \(C_1 e^{3x} + C_2 xe^{3x} \)). The exponential is usually expanded for complex roots using Euler’s equation \(e^{ix} = \cos(x) + i\sin(x) \). Complex roots always come in conjugate pairs in polynomials with real coefficients, so the two roots will be represented (after simplifying the constants) as \(e^{ax} (C_1 \cos(bx) + C_2 \sin(bx)) \).

If SymPy cannot find exact roots to the characteristic equation, a \(\text{ComplexRootOf} \) (page 2507) instance will be return instead.

```python
>>> from sympy import Function, dsolve
>>> from sympy.abc import x
>>> f = Function('f')
>>> dsolve(f(x).diff(x, 5) + 10*f(x).diff(x) - 2*f(x), f(x),
... hint='nth_linear_constant_coeff_homogeneous')
... Eq(f(x), C5*exp(x*CRootOf(_x**5 + 10*_x - 2, 0))
+ (C1*sin(x*im(CRootOf(_x**5 + 10*_x - 2, 1))))*exp(x*re(CRootOf(_x**5 +
-10* x - 2, 1))))
+ (C2*cos(x*im(CRootOf(_x**5 + 10*_x - 2, 1))))*exp(x*re(CRootOf(_x**5 +
-10* x - 2, 1))))
+ (C3*sin(x*im(CRootOf(_x**5 + 10*_x - 2, 3))))
+ (C4*cos(x*im(CRootOf(_x**5 + 10*_x - 2, 3))))*exp(x*re(CRootOf(_x**5 +
-10* x - 2, 3))))
```

Note that because this method does not involve integration, there is no \(\text{nth_linear_constant_coeff_homogeneous} \) \(\text{Integral} \) hint.

Examples

```python
>>> from sympy import Function, dsolve, pprint
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(f(x).diff(x, 4) + 2*f(x).diff(x, 2) - 6*f(x).diff(x) + 5*f(x), f(x),
... hint='nth_linear_constant_coeff_homogeneous'))
\[
\begin{align*}
x -2^x f(x) &= (C1 + C2*x)*e + (C3*\sin(x) + C4*\cos(x))*e
\end{align*}
```
References

- https://en.wikipedia.org/wiki/Linear_differential_equation section: Nonhomogeneous_equation_with_constant_coefficients

```python
# indirect doctest
class syppy.solvers.ode.single.NthLinearConstantCoeffUndeterminedCoefficients(ode_problem)

Solves an n\text{th} order linear differential equation with constant coefficients using the method of undetermined coefficients.

This method works on differential equations of the form

\[ a_n f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x) + a_0 f(x) = P(x), \]

where \( P(x) \) is a function that has a finite number of linearly independent derivatives.

Functions that fit this requirement are finite sums functions of the form \( a x^i e^{bx} \sin(cx + d) \) or \( a x^i e^{bx} \cos(cx + d) \), where \( i \) is a non-negative integer and \( a, b, c, \) and \( d \) are constants. For example any polynomial in \( x \), functions like \( x^2 e^{2x}, x \sin(x), \) and \( e^x \cos(x) \) can all be used. Products of \( \sin \)'s and \( \cos \)'s have a finite number of derivatives, because they can be expanded into \( \sin(ax) \) and \( \cos(bx) \) terms. However, SymPy currently cannot do that expansion, so you will need to manually rewrite the expression in terms of the above to use this method. So, for example, you will need to manually convert \( \sin^2(x) \) into \( (1 + \cos(2x))/2 \) to properly apply the method of undetermined coefficients on it.

This method works by creating a trial function from the expression and all of its linear independent derivatives and substituting them into the original ODE. The coefficients for each term will be a system of linear equations, which are be solved for and substituted, giving the solution. If any of the trial functions are linearly dependent on the solution to the homogeneous equation, they are multiplied by sufficient \( x \) to make them linearly independent.

**Examples**

```python
>>> from sympy import Function, dsolve, pprint, exp, cos
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(f(x).diff(x, 2) + 2*f(x).diff(x) + f(x) -
... 4*exp(-x)*x**2 + cos(2*x), f(x),
... hint='nth_linear_constant_coeff_undetermined_coefficients'))
\[f(x) = C1 + x \left| C2 + -\frac{x}{3} \right| + \frac{-4\sin(2\times) + 3\cos(2\times)}{25} \]
```

References


class sympy.solvers.ode.single.NthLinearConstantCoeffVariationOfParameters(ode_problem)

Solves an $n$th order linear differential equation with constant coefficients using the method of variation of parameters.

This method works on any differential equations of the form

$$f^{(n)}(x) + a_{n-1}f^{(n-1)}(x) + \cdots + a_1 f'(x) + a_0 f(x) = P(x).$$

This method works by assuming that the particular solution takes the form

$$\sum_{i=1}^{n} c_i(x)y_i(x),$$

where $y_i$ is the $i$th solution to the homogeneous equation. The solution is then solved using Wronskian’s and Cramer’s Rule. The particular solution is given by

$$\sum_{i=1}^{n} \left( \int \frac{W_i(x)}{W(x)} \, dx \right) y_i(x),$$

where $W(x)$ is the Wronskian of the fundamental system (the system of $n$ linearly independent solutions to the homogeneous equation), and $W_i(x)$ is the Wronskian of the fundamental system with the $i$th column replaced with $[0, 0, \ldots, 0, P(x)]$.

This method is general enough to solve any $n$th order inhomogeneous linear differential equation with constant coefficients, but sometimes SymPy cannot simplify the Wronskian well enough to integrate it. If this method hangs, try using the `nth_linear_constant_coeff_variation_of_parameters_Integral` hint and simplifying the integrals manually. Also, prefer using `nth_linear_constant_coeff_undetermined_coefficients` when it applies, because it does not use integration, making it faster and more reliable.

Warning, using `simplify=False` with `nth_linear_constant_coeff_variation_of_parameters` in `dsolve()` (page 807) may cause it to hang, because it will not attempt to simplify the Wronskian before integrating. It is recommended that you only use `simplify=False` with `nth_linear_constant_coeff_variation_of_parameters_Integral` for this method, especially if the solution to the homogeneous equation has trigonometric functions in it.

Examples

```python
>>> from sympy import Function, dsolve, pprint, exp, log
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(f(x).diff(x, 3) - 3*f(x).diff(x, 2) + 3*f(x).diff(x) - f(x) - exp(x)*log(x), f(x), hint='nth_linear_constant_coeff_variation_of_parameters'))
\[f(x) = \left(\frac{C1}{x} + \frac{C2}{x^2} + \frac{C3}{x^3}\right) + \frac{\ln(x)}{x^6} + \left(\frac{\ln(x) - 11x}{x^6}\right) \cdot e^{\frac{x}{x^2}}\]
```

5.8. Topics
References

- https://planetmath.org/VariationOfParameters

```python
>>> from sympy import Function, dsolve
>>> from sympy.abc import x
>>> f = Function('f')
>>> dsolve(4*x**2*f(x).diff(x, 2) + f(x), f(x),
 hint='nth_linear_euler_eq_homogeneous')
... Eq(f(x), sqrt(x)*(C1 + C2*log(x))
```

Note that because this method does not involve integration, there is no `nth_linear_euler_eq_homogeneous_Integral` hint.

The following is for internal use:

- `returns = 'sol'` returns the solution to the ODE.
- `returns = 'list'` returns a list of linearly independent solutions, corresponding to the fundamental solution set, for use with non homogeneous solution methods like variation of parameters and undetermined coefficients. Note that, though the solutions should be linearly independent, this function does not explicitly check that. You can do `assert simplify(wronskian(sollist)) != 0` to check for linear independence. Also, `assert len(sollist) == order` will need to pass.
- `returns = 'both'`, return a dictionary `{'sol': <solution to ODE>, 'list': <list of linearly independent solutions>}.`
Examples

```python
>>> from sympy import Function, dsolve, pprint
>>> from sympy.abc import x
>>> f = Function('f')
>>> eq = f(x).diff(x, 2)*x**2 - 4*f(x).diff(x)*x + 6*f(x)
>>> pprint(dsolve(eq, f(x),
... hint='nth_linear_euler_eq_homogeneous'))
2
f(x) = x *(C1 + C2*x)
```

References

- [https://en.wikipedia.org/wiki/Cauchy%E2%80%93Euler_equation](https://en.wikipedia.org/wiki/Cauchy%E2%80%93Euler_equation)

# indirect doctest
class sympy.solvers.ode.single.NthLinearEulerEqNonhomogeneousVariationOfParameters(ode_problem)

Solves an \( n \)th order linear non homogeneous Cauchy-Euler equidimensional ordinary differential equation using variation of parameters.

This is an equation with form \( g(x) = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x) \cdots \).

This method works by assuming that the particular solution takes the form

\[
\sum_{x=1}^{n} c_i(x) y_i(x) a_n x^n,
\]

where \( y_i \) is the \( i \)th solution to the homogeneous equation. The solution is then solved using Wronskian’s and Cramer’s Rule. The particular solution is given by multiplying \( \sum \) given below with \( a_n x^n \)

\[
\sum_{x=1}^{n} \left( \int W_i(x) \frac{1}{W(x)} \, dx \right) y_i(x),
\]

where \( W(x) \) is the Wronskian of the fundamental system (the system of \( n \) linearly independent solutions to the homogeneous equation), and \( W_i(x) \) is the Wronskian of the fundamental system with the \( i \)th column replaced with \([0,0,\ldots,0,\frac{x^n}{a_n}g(x)]\).

This method is general enough to solve any \( n \)th order inhomogeneous linear differential equation, but sometimes SymPy cannot simplify the Wronskian well enough to integrate it. If this method hangs, try using the `nth_linear_constant_coeff_variation_of_parameters_Integral` hint and simplifying the integrals manually. Also, prefer using `nth_linear_constant_coeff_undetermined_coefficients` when it applies, because it does not use integration, making it faster and more reliable.

Warning, using simplify=False with 'nth_linear_constant_coeff_variation_of_parameters' in `dsolve()` (page 807) may cause it to hang, because it will not attempt to simplify the Wronskian before integrating. It is recommended that you only use simplify=False with 'nth_linear_constant_coeff_variation_of_parameters_Integral' for this method, especially if the solution to the homogeneous equation has trigonometric functions in it.
Examples

```python
>>> from sympy import Function, dsolve, Derivative
>>> f = Function('f')
>>> eq = x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - x**4
>>> dsolve(eq, f(x), hint='nth_linear_euler_eq_nonhomogeneous_variation_of_parameters').expand()
Eq(f(x), C1*x + C2*x**2 + x**4/6)
```

```python
class sympy.solvers.ode.single.NthLinearEulerEqNonhomogeneousUndeterminedCoefficients(ode_problem)
Solves an nth order linear non homogeneous Cauchy-Euler equidimensional ordinary differential equation using undetermined coefficients.

This is an equation with form \(g(x) = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x) \cdots \).

These equations can be solved in a general manner, by substituting solutions of the form \(x = \exp(t) \), and deriving a characteristic equation of form \(g(\exp(t)) = b_0 f(t) + b_1 f'(t) + b_2 f''(t) \cdots \) which can be then solved by nth_linear_constant_coeff_undetermined_coefficients if \(g(\exp(t)) \) has finite number of linearly independent derivatives.

Functions that fit this requirement are finite sums functions of the form \(ax^i e^{bx} \sin(cx + d) \) or \(ax^i e^{bx} \cos(cx + d) \), where \(i \) is a non-negative integer and \(a, b, c, \) and \(d \) are constants. For example any polynomial in \(x \), functions like \(x^2 e^{2x}, x \sin(x), \) and \(e^x \cos(x) \) can all be used. Products of sin's and cos's have a finite number of derivatives, because they can be expanded into \(\sin(ax) \) and \(\cos(bx) \) terms. However, SymPy currently cannot do that expansion, so you will need to manually rewrite the expression in terms of the above to use this method. So, for example, you will need to manually convert \(\sin^2(x) \) into \((1 + \cos(2x))/2 \) to properly apply the method of undetermined coefficients on it.

After replacement of \(x \) by \(\exp(t) \), this method works by creating a trial function from the expression and all of its linear independent derivatives and substituting them into the original ODE. The coefficients for each term will be a system of linear equations, which are be solved for and substituted, giving the solution. If any of the trial functions are linearly dependent on the solution to the homogeneous equation, they are multiplied by sufficient \(x \) to make them linearly independent.

Examples

```python
>>> from sympy import dsolve, Function, Derivative, log
>>> f = Function('f')
>>> eq = x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - log(x)
>>> dsolve(eq, f(x), hint='nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients').expand()
Eq(f(x), C1*x + C2*x**2 + log(x)/2 + 3/4)
```

class sympy.solvers.ode.single.NthAlgebraic(ode_problem)
Solves an nth order ordinary differential equation using algebra and integrals.
There is no general form for the kind of equation that this can solve. The equation is solved algebraically treating differentiation as an invertible algebraic function.

Examples

```python
>>> from sympy import Function, dsolve, Eq
>>> from sympy.abc import x
>>> f = Function('f')
>>> eq = Eq(f(x) * (f(x).diff(x)**2 - 1), 0)
>>> dsolve(eq, f(x), hint='nth_algebraic')
[Eq(f(x), 0), Eq(f(x), C1 - x), Eq(f(x), C1 + x)]
```

Note that this solver can return algebraic solutions that do not have any integration constants (f(x) = 0 in the above example).

class sympy.solvers.ode.single.NthOrderReducible(ode_problem)
Solves ODEs that only involve derivatives of the dependent variable using a substitution of the form \(f^n(x) = g(x) \).

For example any second order ODE of the form \(f''(x) = h(f'(x), x) \) can be transformed into a pair of 1st order ODEs \(g'(x) = h(g(x), x) \) and \(f'(x) = g(x) \). Usually the 1st order ODE for \(g \) is easier to solve. If that gives an explicit solution for \(g \) then \(f \) is found simply by integration.

Examples

```python
>>> from sympy import Function, dsolve, Eq, pprint
>>> from sympy.abc import x
>>> a, b, c, d, f = map(Function, ['a', 'b', 'c', 'd', 'f'])
>>> genform = Eq(a(x)*b(f(x))*f(x).diff(x), c(x)*d(f(x)))
>>> pprint(genform)
```

5.8. Topics
\[a(x) \cdot b(f(x)) \cdot \frac{d}{dx}(f(x)) = c(x) \cdot d(f(x)) \]

```python
>>> pprint(dsolve(genform, f(x), hint='separable_Integral'))
\[ f(x) \]
```

```latex
\begin{align*}
\left| \begin{array}{c}
\frac{b(y)}{c(x)} - \frac{d(y)}{a(x)}
\end{array} \right| dy = \frac{C1}{dx}
\end{align*}
```

Examples

```python
>>> from sympy import Function, dsolve, Eq
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(Eq(f(x)*f(x).diff(x) + x, 3*x*f(x)**2), f(x),
... hint='separable', simplify=False))
\begin{align*}
\frac{log\left(3 f(x)\right) - 1}{x} - \frac{\frac{C1}{6}}{-2} = \frac{1}{2}
\end{align*}
```

References


```python
# indirect doctest
class sympy.solvers.ode.single.AlmostLinear(ode_problem)
Solves an almost-linear differential equation.

The general form of an almost linear differential equation is

\[ a(x)g'(f(x))f'(x) + b(x)g(f(x)) + c(x) \]

Here \( f(x) \) is the function to be solved for (the dependent variable). The substitution \( g(f(x)) = u(x) \) leads to a linear differential equation for \( u(x) \) of the form \( a(x)u' + b(x)u + c(x) = 0 \). This can be solved for \( u(x) \) by the firstlinear hint and then \( f(x) \) is found by solving \( g(f(x)) = u(x) \).
Examples

```python
>>> from sympy import dsolve, Function, pprint, sin, cos
>>> from sympy.abc import x
>>> f = Function('f')
>>> d = f(x).diff(x)
>>> eq = x*d + x*f(x) + 1
>>> dsolve(eq, f(x), hint='almost_linear')
>>> pprint(dsolve(eq, f(x), hint='almost_linear'))
Eq(f(x), (C1 - Ei(x))*exp(-x))
```

```python
>>> example = cos(f(x))*f(x).diff(x) + sin(f(x)) + 1
>>> pprint(example)
- x
d sin(f(x)) + cos(f(x))*--(f(x)) + 1
dx
>>> pprint(dsolve(example, f(x), hint='almost_linear'))
\[
[f(x) = \pi - \arcsin\left(C1*e \right) - 1/, f(x) = \arcsin\left(C1*e \right) - 1/]
```

See also:

`sympy.solvers.ode.single.FirstLinear` (page 827)

References


**class sympy.solvers.ode.single.LinearCoefficients(ode_problem)**

Solves a differential equation with linear coefficients.

The general form of a differential equation with linear coefficients is

\[ y' + F \left( \frac{a_1 x + b_1 y + c_1}{a_2 x + b_2 y + c_2} \right) = 0, \]

where \(a_1, b_1, c_1, a_2, b_2, c_2\) are constants and \(a_1 b_2 - a_2 b_1 \neq 0\).

This can be solved by substituting:

\[
x = x' + \frac{b_2 c_1 - b_1 c_2}{a_2 b_1 - a_1 b_2},
\]

\[
y = y' + \frac{a_1 c_2 - a_2 c_1}{a_2 b_1 - a_1 b_2}.
\]

This substitution reduces the equation to a homogeneous differential equation.
Examples

```python
from sympy import dsolve, Function, pprint
from sympy.abc import x
f = Function('f')
df = f(x).diff(x)
eq = (x + f(x) + 1)*df + (f(x) - 6*x + 1)
dsolve(eq, hint='linear_coefficients')
[Eq(f(x), -x - sqrt(C1 + 7*x**2) - 1), Eq(f(x), -x + sqrt(C1 + 7*x**2) - 1)]
pprint(dsolve(eq, hint='linear_coefficients'))

[f(x) = -x - \sqrt{C1 + 7*x^2} - 1, f(x) = -x + \sqrt{C1 + 7*x^2} - 1]
```

See also:

- `sympy.solvers.ode.single.HomogeneousCoeffBest` (page 823)
- `sympy.solvers.ode.single.HomogeneousCoeffSubsIndepDivDep` (page 825)
- `sympy.solvers.ode.single.HomogeneousCoeffSubsDepDivIndep` (page 824)

References


class sympy.solvers.ode.single.SeparableReduced(ode_problem)
Solves a differential equation that can be reduced to the separable form.

The general form of this equation is

\[ y' + \left(\frac{y}{x}\right)H(x^n y) = 0. \]

This can be solved by substituting \( u(y) = x^n y \). The equation then reduces to the separable form

\[ \frac{u'}{u^{\text{power} - H(u)}} - \frac{1}{x} = 0. \]

The general solution is:

```python
from sympy import Function, dsolve, pprint
from sympy.abc import x, n
f, g = map(Function, ['f', 'g'])
genform = f(x).diff(x) + (f(x)/x)*g(x)**n*f(x)
pprint(genform)

/ n \
\[d \]
\[f(x)*g\x *f(x)/ \]
\[-(f(x)) + \text{-------------} \]
\[dx \]
\[x \]
```

```python
pprint(dsolve(genform, hint='separable_reduced'))
```

(continues on next page)
| ------------ dy = C1 + log(x)  |
| y*(n - g(y)) |
| / |

Examples

```python
>>> from sympy import dsolve, Function, pprint
>>> from sympy.abc import x
>>> f = Function('f')
>>> d = f(x).diff(x)
>>> eq = (x - x**2*f(x))*d - f(x)
>>> dsolve(eq, hint='separable_reduced')
[Eq(f(x), (1 - sqrt(C1*x**2 + 1))/x), Eq(f(x), (sqrt(C1*x**2 + 1) + 1)/x)]
>>> pprint(dsolve(eq, hint='separable_reduced'))
___________ ___________
/ 2 / 2
1 - / C1*x + 1 / C1*x + 1 + 1
[f(x) = ------------------, f(x) = ------------------]
 x x
```

See also:

sympy.solvers.ode.single.Separable (page 839)

References


class sympy.solvers.ode.single.LieGroup(ode_problem)

This hint implements the Lie group method of solving first order differential equations. The aim is to convert the given differential equation from the given coordinate system into another coordinate system where it becomes invariant under the one-parameter Lie group of translations. The converted ODE can be easily solved by quadrature. It makes use of the sympy.solvers.ode.infinitesimals() (page 816) function which returns the infinitesimals of the transformation.

The coordinates $r$ and $s$ can be found by solving the following Partial Differential Equations:

$$
\frac{\xi}{\partial x} + \eta \frac{\partial}{\partial y} = 0
$$

$$
\frac{\xi}{\partial x} + \eta \frac{\partial}{\partial y} = 1
$$

The differential equation becomes separable in the new coordinate system

$$
\frac{ds}{dr} = \frac{\partial s}{\partial r} + h(x,y)\frac{\partial s}{\partial y}
$$

$$
\frac{dr}{dr} = \frac{\partial r}{\partial r} + h(x,y)\frac{\partial r}{\partial y}
$$

5.8. Topics 843
After finding the solution by integration, it is then converted back to the original coordinate system by substituting $r$ and $s$ in terms of $x$ and $y$ again.

### Examples

```python
>>> from sympy import Function, dsolve, exp, pprint
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(f(x).diff(x) + 2*x*f(x) - x*exp(-x**2), f(x),
... hint='lie_group'))
/ 2\ 2
| x | -x
f(x) = |C1 + --|*e
\ 2 /
```

### References

- Solving differential equations by Symmetry Groups, John Starrett, pp. 1 - pp. 14

#### class sympy.solvers.ode.single.SecondHypergeometric(ode_problem)

Solves 2nd order linear differential equations.

It computes special function solutions which can be expressed using the 2F1, 1F1 or 0F1 hypergeometric functions.

$$y'' + A(x)y' + B(x)y = 0,$$

where $A$ and $B$ are rational functions.

These kinds of differential equations have solution of non-Liouvillean form.

Given linear ODE can be obtained from 2F1 given by

$$(x^2 - x)y'' + ((a + b + 1)x - c)y' + bay = 0,$$

where {a, b, c} are arbitrary constants.

### Notes

The algorithm should find any solution of the form

$$y = P(x)p_Fq(..., \frac{\alpha x^k + \beta}{\gamma x^k + \delta}),$$

where $p_Fq$ is any of 2F1, 1F1 or 0F1 and $P$ is an “arbitrary function”. Currently only the 2F1 case is implemented in SymPy but the other cases are described in the paper and could be implemented in future (contributions welcome!).

844 Chapter 5. API Reference
Examples

```python
>>> from sympy import Function, dsolve, pprint
>>> from sympy.abc import x
>>> f = Function('f')
>>> eq = (x**x - x)**f(x).diff(x, 2) + (5*x - 1)**f(x).diff(x) + 4*f(x)
>>> pprint(dsolve(eq, f(x), '2nd_hypergeometric'))
\[
\frac{4}{C1 + C2*\log(x) + \frac{1}{x + 1} + x} \times \frac{1}{x - 1}
\]
```

References

- “Non-Liouvillian solutions for second order linear ODEs” by L. Chan, E.S. Cheb-Terrab

`singhpy.solvers.ode.ode.ode_1st_power_series(eq, func, order, match)`

The power series solution is a method which gives the Taylor series expansion to the solution of a differential equation.

For a first order differential equation \( \frac{dy}{dx} = h(x, y) \), a power series solution exists at a point \( x = x_0 \) if \( h(x, y) \) is analytic at \( x_0 \). The solution is given by

\[
y(x) = y(x_0) + \sum_{n=1}^{\infty} \frac{F_n(x_0, b)(x - x_0)^n}{n!},
\]

where \( y(x_0) = b \) is the value of \( y \) at the initial value of \( x_0 \). To compute the values of the \( F_n(x_0, b) \) the following algorithm is followed, until the required number of terms are generated.

1. \( F_1 = h(x_0, b) \)
2. \( F_{n+1} = \frac{\partial F_n}{\partial x} + h(x_0, b) F_1 \)

Examples

```python
>>> from sympy import Function, pprint, exp, dsolve
>>> from sympy.abc import x
>>> f = Function('f')
>>> eq = exp(x)**(f(x).diff(x)) - f(x)
>>> pprint(dsolve(eq, hint='1st_power_series'))
\[
f(x) = C1 + C1*x - \frac{\frac{1}{6}}{24} + \frac{\frac{1}{60}}{1} + 0\times/6
\]
```
References

- Travis W. Walker, Analytic power series technique for solving first-order differential equations, p. p. 17, 18

sympy.solvers.ode.ode.ode_2nd_power_series_ordinary(eq, func, order, match)

Gives a power series solution to a second order homogeneous differential equation with polynomial coefficients at an ordinary point. A homogeneous differential equation is of the form

\[ P(x) \frac{d^2 y}{dx^2} + Q(x) \frac{dy}{dx} + R(x)y(x) = 0 \]

For simplicity it is assumed that \( P(x), Q(x) \) and \( R(x) \) are polynomials, it is sufficient that \( \frac{Q(x)}{P(x)} \) and \( \frac{R(x)}{P(x)} \) exists at \( x_0 \). A recurrence relation is obtained by substituting \( y \) as \( \sum_{n=0}^{\infty} a_n x^n \), in the differential equation, and equating the \( n \)th term. Using this relation various terms can be generated.

Examples

```python
>>> from sympy import dsolve, Function, pprint
>>> from sympy.abc import x
>>> f = Function("f")
>>> eq = f(x).diff(x, 2) + f(x)
>>> pprint(dsolve(eq, hint='2nd_power_series_ordinary'))
 | 4 \ 2\ / 2\ \
/ x \ \ / \ / \ / \ /
| x \ x | x | 6 \ /
\ 24 2 \ \ 6 /
f(x) = C2*|--- - -- + 1| + C1*x*|1 - --| + 0 \x /
 \ 24 2 6 /
```

References

- George E. Simmons, “Differential Equations with Applications and Historical Notes”, p.p. 176 - 184

sympy.solvers.ode.ode.ode_2nd_power_series_regular(eq, func, order, match)

Gives a power series solution to a second order homogeneous differential equation with polynomial coefficients at a regular point. A second order homogeneous differential equation is of the form

\[ P(x) \frac{d^2 y}{dx^2} + Q(x) \frac{dy}{dx} + R(x)y(x) = 0 \]

A point is said to regular singular at \( x_0 \) if \( x - x_0 \frac{Q(x)}{P(x)} \) and \( (x - x_0)^2 \frac{R(x)}{P(x)} \) are analytic at \( x_0 \). For simplicity \( P(x), Q(x) \) and \( R(x) \) are assumed to be polynomials. The algorithm for finding the power series solutions is:

1. Try expressing \((x - x_0)P(x)\) and \((x - x_0)^2Q(x)\) as power series solutions about \( x_0 \).
   Find \( p_0 \) and \( q_0 \) which are the constants of the power series expansions.
2. Solve the indicial equation \( f(m) = m(m - 1) + m * p0 + q0 \), to obtain the roots \( m1 \) and \( m2 \) of the indicial equation.

3. If \( m1 - m2 \) is a non integer there exists two series solutions. If \( m1 = m2 \), there exists only one solution. If \( m1 - m2 \) is an integer, then the existence of one solution is confirmed. The other solution may or may not exist.

The power series solution is of the form \( x^m \sum_{n=0}^\infty a_n x^n \). The coefficients are determined by the following recurrence relation. \( a_n = \frac{\sum_{k=0}^{n-1} q_{n-k} \cdot (m+k) \cdot p_{n-k}}{f(m+n)} \). For the case in which \( m1 - m2 \) is an integer, it can be seen from the recurrence relation that for the lower root \( m \), when \( n \) equals the difference of both the roots, the denominator becomes zero. So if the numerator is not equal to zero, a second series solution exists.

**Examples**

```python
>>> from sympy import dsolve, Function, pprint
>>> from sympy.abc import x
>>> f = Function("f")
>>> eq = x*(f(x).diff(x, 2)) + 2*(f(x).diff(x)) + x*f(x)
>>> pprint(dsolve(eq, hint='2nd_power_series_regular'))
 / 6 4 2 \ / 4 2 \ \ C1*| - ---- + -- - -- + 1| \ 720 24 2 / / 6\n| x x x | | x x | \ 120 6 / + --------------- + 0\x / \x \
```

**References**

- George E. Simmons, “Differential Equations with Applications and Historical Notes”, p.p 176 - 184

**Lie heuristics**

These functions are intended for internal use of the Lie Group Solver. Nonetheless, they contain useful information in their docstrings on the algorithms implemented for the various heuristics.

```python
sympy.solvers.ode.lie_group.lie_heuristic_abaco1_simple(match, comp=False)
```

The first heuristic uses the following four sets of assumptions on \( \xi \) and \( \eta \)

\[
\begin{align*}
\xi &= 0, \eta = f(x) \\
\xi &= 0, \eta = f(y) \\
\xi &= f(x), \eta = 0 \\
\xi &= f(y), \eta = 0
\end{align*}
\]

The success of this heuristic is determined by algebraic factorisation. For the first assumption \( \xi = 0 \) and \( \eta \) to be a function of \( x \), the PDE

\[
\frac{\partial \eta}{\partial x} + (\frac{\partial \eta}{\partial y} - \frac{\partial \xi}{\partial x}) * h - \frac{\partial \xi}{\partial y} * h^2 - \xi * \frac{\partial h}{\partial x} - \eta * \frac{\partial h}{\partial y} = 0
\]
reduces to \( f'(x) - f \frac{\partial h}{\partial y} = 0 \) if \( \frac{\partial h}{\partial y} \) is a function of \( x \), then this can usually be integrated easily. A similar idea is applied to the other 3 assumptions as well.

\[
f' = \partial h \partial y = 0
\]

If \( \partial h \partial y \) is a function of \( x \), then this can usually be integrated easily.

A similar idea is applied to the other 3 assumptions as well.

References

- E.S. Cheb-Terrab, L.G.S Duarte and L.A.C.P da Mota, Computer Algebra Solving of First Order ODEs Using Symmetry Methods, pp. 8

\[\text{sympy.solvers.ode.lie_group.lie_heuristic_abaco1_product} (\text{match}, \text{comp}=\text{False})\]

The second heuristic uses the following two assumptions on \( \xi \) and \( \eta \)

\[
\eta = 0, \xi = f(x) \ast g(y)
\]

\[
\eta = f(x) \ast g(y), \xi = 0
\]

The first assumption of this heuristic holds good if \( \frac{1}{\eta^2} \frac{\partial^2}{\partial x \partial y} \log(h) \) is separable in \( x \) and \( y \), then the separated factors containing \( x \) is \( f(x) \), and \( g(y) \) is obtained by

\[
e^f \int f \frac{\partial}{\partial x} \left( \frac{1}{\eta^2} \right) dy
\]

provided \( f \frac{\partial}{\partial x} \left( \frac{1}{\eta^2} \right) \) is a function of \( y \) only.

The second assumption holds good if \( \frac{\partial}{\partial x} = h(x,y) \) is rewritten as \( \frac{\partial}{\partial x} = \frac{1}{h(y,x)} \) and the same properties of the first assumption satisfies. After obtaining \( f(x) \) and \( g(y) \), the coordinates are again interchanged, to get \( \eta \) as \( f(x) \ast g(y) \)

References

- E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 7 - pp. 8

\[\text{sympy.solvers.ode.lie_group.lie_heuristic_bivariate} (\text{match}, \text{comp}=\text{False})\]

The third heuristic assumes the infinitesimals \( \xi \) and \( \eta \) to be bi-variate polynomials in \( x \) and \( y \). The assumption made here for the logic below is that \( h \) is a rational function in \( x \) and \( y \) though that may not be necessary for the infinitesimals to be bivariate polynomials. The coefficients of the infinitesimals are found out by substituting them in the PDE and grouping similar terms that are polynomials and since they form a linear system, solve and check for non trivial solutions. The degree of the assumed bivariates are increased till a certain maximum value.

References

- Lie Groups and Differential Equations pp. 327 - pp. 329

\[\text{sympy.solvers.ode.lie_group.lie_heuristic_ch} (\text{match}, \text{comp}=\text{False})\]

The aim of the fourth heuristic is to find the function \( \chi(x,y) \) that satisfies the PDE \( \frac{\partial \chi}{\partial x} + h \frac{\partial \chi}{\partial x} - \frac{\partial h}{\partial y} \chi = 0 \).

This assumes \( \chi \) to be a bivariate polynomial in \( x \) and \( y \). By intuition, \( h \) should be a rational function in \( x \) and \( y \). The method used here is to substitute a general binomial for \( \chi \) up to a
certain maximum degree is reached. The coefficients of the polynomials, are calculated by collecting terms of the same order in \( x \) and \( y \).

After finding \( \chi \), the next step is to use \( \eta = \xi + \chi \), to determine \( \xi \) and \( \eta \). This can be done by dividing \( \chi \) by \( h \) which would give \( -\xi \) as the quotient and \( \eta \) as the remainder.

**References**

- E.S Cheb-Terrab, L.G.S Duarte and L.A.C.P da Mota, Computer Algebra Solving of First Order ODEs Using Symmetry Methods, pp. 8

```python
sympy.solvers.ode.lie_group.lie_heuristic_abaco2_similar(match, comp=False)
```

This heuristic uses the following two assumptions on \( \xi \) and \( \eta \)

\[
\eta = g(x), \xi = f(x)
\]

\[
\eta = f(y), \xi = g(y)
\]

For the first assumption,

1. First \( \frac{\partial \eta}{\partial y} \) is calculated. Let us say this value is A

2. If this is constant, then \( h \) is matched to the form \( A(x) + B(x)e^h \) then, \( e^{\int A(x) \, dx} \) gives \( f(x) \) and \( A(x) \cdot f(x) \) gives \( g(x) \)

3. Otherwise \( \frac{\partial A}{\partial x} = \gamma \) is calculated. If

   a) \( \gamma \) is a function of \( x \) alone

   b) \( \frac{\gamma \frac{\partial A}{\partial x} - \gamma(x) \frac{\partial A}{\partial x}}{h + \gamma} = G \) is a function of \( x \) alone. then, \( e^{\int G \, dx} \) gives \( f(x) \) and \( -\gamma \cdot f(x) \) gives \( g(x) \)

The second assumption holds good if \( \frac{du}{dx} = h(x,y) \) is rewritten as \( \frac{du}{dx} = \frac{1}{h(y,x)} \) and the same properties of the first assumption satisfies. After obtaining \( f(x) \) and \( g(x) \), the coordinates are again interchanged, to get \( \xi \) as \( f(x^*) \) and \( \eta \) as \( g(y^*) \)

**References**

- E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 10 - pp. 12

```python
sympy.solvers.ode.lie_group.lie_heuristic_function_sum(match, comp=False)
```

This heuristic uses the following two assumptions on \( \xi \) and \( \eta \)

\[
\eta = 0; \xi = f(x) + g(y)
\]

\[
\eta = f(x) + g(y); \xi = 0
\]

The first assumption of this heuristic holds good if

\[
\frac{\partial}{\partial y} [h \left( \frac{\partial^2}{\partial x^2} (h^{-1}) \right)^{-1}]
\]

is separable in \( x \) and \( y \),

5.8. Topics 849
1. The separated factors containing $y$ is $\frac{\partial g}{\partial y}$. From this $g(y)$ can be determined.

2. The separated factors containing $x$ is $f''(x)$.

3. $h \frac{\partial^2}{\partial x^2}(h^{-1})$ equals $\frac{f''(x)}{f(x)+g(y)}$. From this $f(x)$ can be determined.

The second assumption holds good if $\frac{dy}{dx} = h(x, y)$ is rewritten as $\frac{dy}{dx} = \frac{1}{h(y, x)}$ and the same properties of the first assumption satisfies. After obtaining $f(x)$ and $g(y)$, the coordinates are again interchanged, to get $\eta$ as $f(x) + g(y)$.

For both assumptions, the constant factors are separated among $g(y)$ and $f''(x)$, such that $f''(x)$ obtained from 3] is the same as that obtained from 2]. If not possible, then this heuristic fails.

References

- E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 7 - pp. 8

```
sympy.solvers.ode.lie_group.lie_heuristic_abaco2_unique_unknown(match, comp=False)
```

This heuristic assumes the presence of unknown functions or known functions with non-integer powers.

1. A list of all functions and non-integer powers containing $x$ and $y$

2. Loop over each element $f$ in the list, find $\frac{\partial f}{\partial x} = R$

   If it is separable in $x$ and $y$, let $X$ be the factors containing $x$. Then

   a] Check if $\xi = X$ and $\eta = -\frac{X}{R}$ satisfy the PDE. If yes, then return $\xi$ and $\eta$ 

   b] Check if $\xi = -\frac{R}{X}$ and $\eta = -\frac{1}{X}$ satisfy the PDE.

   If yes, then return $\xi$ and $\eta$.

   If not, then check if

   a] $\xi = -R, \eta = 1$

   b] $\xi = 1, \eta = -\frac{1}{R}$

   are solutions.

References

- E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 10 - pp. 12

```
sympy.solvers.ode.lie_group.lie_heuristic_abaco2_unique_general(match, comp=False)
```

This heuristic finds if infinitesimals of the form $\eta = f(x), \xi = g(y)$ without making any assumptions on $h$.

The complete sequence of steps is given in the paper mentioned below.
References

- E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 10 - pp. 12

sympy.solvers.ode.lie_group.lie_heuristic_linear(match, comp=False)

This heuristic assumes

1. $\xi = ax + by + c$ and
2. $\eta = fx + gy + h$

After substituting the following assumptions in the determining PDE, it reduces to

$$f + (g - a)h - bh^2 - (ax + by + c) \frac{\partial h}{\partial x} - (fx + gy + c) \frac{\partial h}{\partial y}$$

Solving the reduced PDE obtained, using the method of characteristics, becomes impractical. The method followed is grouping similar terms and solving the system of linear equations obtained. The difference between the bivariate heuristic is that $h$ need not be a rational function in this case.

References

- E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 10 - pp. 12

Rational Riccati Solver

These functions are intended for internal use to solve a first order Riccati differential equation with atleast one rational particular solution.

sympy.solvers.ode.riccati.riccati_normal(w, x, b1, b2)

Given a solution $w(x)$ to the equation

$$w'(x) = b_0(x) + b_1(x) * w(x) + b_2(x) * w(x)^2$$

and rational function coefficients $b_1(x)$ and $b_2(x)$, this function transforms the solution to give a solution $y(x)$ for its corresponding normal Riccati ODE

$$y'(x) + y(x)^2 = a(x)$$

using the transformation

$$y(x) = -b_2(x) * w(x) - b'_2(x)/(2 * b_2(x)) - b_1(x)/2$$

sympy.solvers.ode.riccati.riccati_inverse_normal(y, x, b1, b2, bp=None)

Inverse transforming the solution to the normal Riccati ODE to get the solution to the Riccati ODE.

sympy.solvers.ode.riccati.riccati_reduced(eq, f, x)

Convert a Riccati ODE into its corresponding normal Riccati ODE.
sympy.solvers.ode.riccati.construct_c(num, den, x, poles, muls)
Helper function to calculate the coefficients in the c-vector for each pole.

sympy.solvers.ode.riccati.construct_d(num, den, x, val_inf)
Helper function to calculate the coefficients in the d-vector based on the valuation of the function at oo.

sympy.solvers.ode.riccati.rational_laurent_series(num, den, x, r, m, n)
The function computes the Laurent series coefficients of a rational function.

Parameters
num: A Poly object that is the numerator of \( f(x) \).
den: A Poly object that is the denominator of \( f(x) \).
x: The variable of expansion of the series.
r: The point of expansion of the series.
m: Multiplicity of \( r \) if \( r \) is a pole of \( f(x) \). Should be zero otherwise.
n: Order of the term upto which the series is expanded.

Returns
series: A dictionary that has power of the term as key and coefficient of that term as value.

Below is a basic outline of how the Laurent series of a rational function \( f(x) \) about \( x_0 \) is being calculated -
1. Substitute \( x + x_0 \) in place of \( x \). If \( x_0 \) is a pole of \( f(x) \), multiply the expression by \( x^m \) where \( m \) is the multiplicity of \( x_0 \). Denote the resulting expression as \( g(x) \). We do this substitution so that we can now find the Laurent series of \( g(x) \) about \( x = 0 \).
2. We can then assume that the Laurent series of \( g(x) \) takes the following form -

\[
g(x) = \frac{\text{num}(x)}{\text{den}(x)} = \sum_{m=0}^{\infty} a_m x^m
\]

where \( a_m \) denotes the Laurent series coefficients.
3. Multiply the denominator to the RHS of the equation and form a recurrence relation for the coefficients \( a_m \).

sympy.solvers.ode.riccati.compute_m_ybar(x, poles, choice, N)
Helper function to calculate -
1. \( m \) - The degree bound for the polynomial solution that must be found for the auxiliary differential equation.
2. ybar - Part of the solution which can be computed using the poles, c and d vectors.
sympy.solvers.ode.riccati.solve_aux_eq(numa, dena, numy, deny, x, m)
Helper function to find a polynomial solution of degree m for the auxiliary differential equation.

sympy.solvers.ode.riccati.remove_redundant_sols(sol1, sol2, x)
Helper function to remove redundant solutions to the differential equation.

sympy.solvers.ode.riccati.get_gen_sol_from_part_sol(part_sols, a, x)
" Helper function which computes the general solution for a Riccati ODE from its particular solutions.

There are 3 cases to find the general solution from the particular solutions for a Riccati ODE depending on the number of particular solution(s) we have - 1, 2 or 3.

For more information, see Section 6 of "Methods of Solution of the Riccati Differential Equation" by D. R. Haaheim and F. M. Stein

sympy.solvers.ode.riccati.solve_riccati(fx, x, b0, b1, b2, gensol=False)
The main function that gives particular/general solutions to Riccati ODEs that have atleast 1 rational particular solution.

System of ODEs

These functions are intended for internal use by dsolve() (page 807) for system of differential equations.

sympy.solvers.ode.ode._linear_2eq_order1_type6(x, y, t, r, eq)
The equations of this type of ode are:

\[ x' = f(t)x + g(t)y \]
\[ y' = a[f(t) + ah(t)]x + a[g(t) - h(t)]y \]

This is solved by first multiplying the first equation by \(-a\) and adding it to the second equation to obtain

\[ y' - ax' = -ah(t)(y - ax) \]

Setting \( U = y - ax \) and integrating the equation we arrive at

\[ y - ax = C_1e^{-\int h(t) dt} \]

and on substituting the value of \( y \) in first equation give rise to first order ODEs. After solving for \( x \), we can obtain \( y \) by substituting the value of \( x \) in second equation.

sympy.solvers.ode.ode._linear_2eq_order1_type7(x, y, t, r, eq)
The equations of this type of ode are:

\[ x' = f(t)x + g(t)y \]
\[ y' = h(t)x + p(t)y \]

Differentiating the first equation and substituting the value of \( y \) from second equation will give a second-order linear equation

\[ gx'' - (fg + gp + g')x' + (fgp - g^2h + fg' - f'g)x = 0 \]

This above equation can be easily integrated if following conditions are satisfied.
1. \( fgp - g^2h + fg' - f'g = 0 \)
2. \( fgp - g^2h + fg' - f'g = ag, f + g + gp + g' = bg \)

If first condition is satisfied then it is solved by current dsolve solver and in second case it becomes a constant coefficient differential equation which is also solved by current solver.

Otherwise if the above condition fails then, a particular solution is assumed as \( x = x_0(t) \) and \( y = y_0(t) \) Then the general solution is expressed as

\[
x = C_1x_0(t) + C_2x_0(t) \int \frac{g(t)F(t)P(t)}{x_0^2(t)} \, dt
\]

\[
y = C_1y_0(t) + C_2\left[ \frac{F(t)P(t)}{x_0(t)} + y_0(t) \int \frac{g(t)F(t)P(t)}{x_0^2(t)} \, dt \right]
\]

where \( C_1 \) and \( C_2 \) are arbitrary constants and

\[
F(t) = e^{\int f(t) \, dt}, \quad P(t) = e^{\int p(t) \, dt}
\]

sympy.solvers.ode.systems.linear_ode_to_matrix(eqs, funcs, t, order)

Convert a linear system of ODEs to matrix form

**Parameters**
- **eqs**: list of SymPy expressions or equalities
  - The equations as expressions (assumed equal to zero).
- **funcs**: list of applied functions
  - The dependent variables of the system of ODEs.
- **t**: symbol
  - The independent variable.
- **order**: int
  - The order of the system of ODEs.

**Returns**
- The tuple \((A, B)\) where \(A\) is a tuple of matrices and \(B\) is the the matrix representing the rhs of the matrix equation.

**Raises**
- **ODEOrderError**
  - When the system of ODEs have an order greater than what was specified
- **ODENonlinearError**
  - When the system of ODEs is nonlinear
Explanation

Express a system of linear ordinary differential equations as a single matrix differential equation [1]. For example the system \( x' = x + y + 1 \) and \( y' = x - y \) can be represented as

\[
A_1 X' = A_0 X + b
\]

where \( A_1 \) and \( A_0 \) are \( 2 \times 2 \) matrices and \( b, X \) and \( X' \) are \( 2 \times 1 \) matrices with \( X = [x, y]^T \).

Higher-order systems are represented with additional matrices e.g. a second-order system would look like

\[
A_2 X'' = A_1 X' + A_0 X + b
\]

Examples

```python
>>> from sympy import Function, Symbol, Matrix, Eq
>>> from sympy.solvers.ode.systems import linear_ode_to_matrix
>>> t = Symbol('t')
>>> x = Function('x')
>>> y = Function('y')
```

We can create a system of linear ODEs like

```python
>>> eqs = [
... Eq(x(t).diff(t), x(t) + y(t) + 1),
... Eq(y(t).diff(t), x(t) - y(t)),
...]
>>> funcs = [x(t), y(t)]
>>> order = 1 # 1st order system
```

Now `linear_ode_to_matrix` can represent this as a matrix differential equation.

```python
>>> (A1, A0), b = linear_ode_to_matrix(eqs, funcs, t, order)
>>> A1
Matrix([[1, 0],
 [0, 1]])
>>> A0
Matrix([[1, 1],
 [1, -1]])
>>> b
Matrix([[1],
 [0]])
```

The original equations can be recovered from these matrices:

```python
>>> eqs_mat = Matrix([eq.lhs - eq.rhs for eq in eqs])
>>> X = Matrix(funcs)
>>> A1 * X.diff(t) - A0 * X - b == eqs_mat
True
```
If the system of equations has a maximum order greater than the order of the system specified, a ODEOrderError exception is raised.

```python
>>> eqs = [Eq(x(t).diff(t, 2), x(t).diff(t) + x(t)), Eq(y(t).diff(t), y(t) + x(t))]
>>> linear_ode_to_matrix(eqs, funcs, t, 1)
Traceback (most recent call last):
 ... ODEOrderError: Cannot represent system in 1-order form
```

If the system of equations is nonlinear, then ODENonlinearError is raised.

```python
>>> eqs = [Eq(x(t).diff(t), x(t) + y(t)), Eq(y(t).diff(t), y(t)**2 + x(t))]
>>> linear_ode_to_matrix(eqs, funcs, t, 1)
Traceback (most recent call last):
 ... ODENonlinearError: The system of ODEs is nonlinear.
```

See also:

linear_eq_to_matrix (page 917)
for systems of linear algebraic equations.

**References**

[R816]
sympy.solvers.ode.systems.canonical_odes(eqs, funcs, t)
Function that solves for highest order derivatives in a system

**Parameters**

- **eqs**: List
  - List of the ODEs
- **funcs**: List
  - List of dependent variables
- **t**: Symbol
  - Independent variable

**Returns**

List
**Explanation**

This function inputs a system of ODEs and based on the system, the dependent variables and their highest order, returns the system in the following form:

\[ X'(t) = A(t)X(t) + b(t) \]

Here, \( X(t) \) is the vector of dependent variables of lower order, \( A(t) \) is the coefficient matrix, \( b(t) \) is the non-homogeneous term and \( X'(t) \) is the vector of dependent variables in their respective highest order. We use the term canonical form to imply the system of ODEs which is of the above form.

If the system passed has a non-linear term with multiple solutions, then a list of systems is returned in its canonical form.

**Examples**

```python
>>> from sympy import symbols, Function, Eq, Derivative
>>> from sympy.solvers.ode.systems import canonical_odes
>>> f, g = symbols("f g", cls=Function)
>>> x, y = symbols("x y")
>>> funcs = [f(x), g(x)]
>>> eqs = [Eq(f(x).diff(x) - 7*f(x), 12*g(x)), Eq(g(x).diff(x) + g(x), -20*f(x))]

>>> canonical_eqs = canonical_odes(eqs, funcs, x)
>>> canonical_eqs
[[Eq(Derivative(f(x), x), 7*f(x) + 12*g(x)), Eq(Derivative(g(x), x), -20*f(x) - g(x))]]

>>> system = [Eq(Derivative(f(x), x)**2 - 2*Derivative(f(x), x) + 1, 4), Eq(-y*f(x) + Derivative(g(x), x), 0)]

>>> canonical_system = canonical_odes(system, funcs, x)
>>> canonical_system
[[Eq(Derivative(f(x), x), -1), Eq(Derivative(g(x), x), y*f(x))], Eq(Derivative(f(x), x), 3), Eq(Derivative(g(x), x), y*f(x))]]
```

**sympy.solvers.ode.systems.linodesolve_type(A, t, b=None)**

Helper function that determines the type of the system of ODEs for solving with `sympy.solvers.ode.systems.linodesolve()` (page 861)

**Parameters**

- **A**: Matrix
  
  Coefficient matrix of the system of ODEs

- **b**: Matrix or None
  
  Non-homogeneous term of the system. The default value is None. If this argument is None, then the system is assumed to be homogeneous.

**Returns**

- **Dict**
**Raises**

NotImplementedError

When the coefficient matrix does not have a commutative antiderivative

**Explanation**

This function takes in the coefficient matrix and/or the non-homogeneous term and returns the type of the equation that can be solved by `sympy.solvers.ode.systems.linodesolve()` (page 861).

If the system is constant coefficient homogeneous, then “type1” is returned

If the system is constant coefficient non-homogeneous, then “type2” is returned

If the system is non-constant coefficient homogeneous, then “type3” is returned

If the system is non-constant coefficient non-homogeneous, then “type4” is returned

If the system has a non-constant coefficient matrix which can be factorized into constant coefficient matrix, then “type5” or “type6” is returned for when the system is homogeneous or non-homogeneous respectively.

Note that, if the system of ODEs is of “type3” or “type4”, then along with the type, the commutative antiderivative of the coefficient matrix is also returned.

If the system cannot be solved by `sympy.solvers.ode.systems.linodesolve()` (page 861), then NotImplementedError is raised.

**Examples**

```python
>>> from sympy import symbols, Matrix
>>> from sympy.solvers.ode.systems import linodesolve_type
>>> t = symbols("t")
>>> A = Matrix([[1, 1], [2, 3]])
>>> b = Matrix([t, 1])

>>> linodesolve_type(A, t)
{'antiderivative': None, 'type_of_equation': 'type1'}

>>> linodesolve_type(A, t, b=b)
{'antiderivative': None, 'type_of_equation': 'type2'}

>>> A_t = Matrix([[1, t], [-t, 1]])

>>> linodesolve_type(A_t, t)
{'antiderivative': Matrix([[t, t**2/2], [-t**2/2, t]]), 'type_of_equation': 'type3'}
```
```python
>>> linodesolve_type(A_t, t, b=b)
{'antiderivative': Matrix([[t, t**2/2],
[-t**2/2, t]]), 'type_of_equation': 'type4'}
```

```python
>>> A_non_commutative = Matrix([[1, t], [t, -1]])
>>> linodesolve_type(A_non_commutative, t)
Traceback (most recent call last):
...
NotImplementedError:
The system does not have a commutative antiderivative, it cannot be solved by linodesolve.
```

See also:

- **linodesolve** (page 861)
  Function for which linodesolve_type gets the information

```python
sympy.solvers.ode.systems.matrix_exp_jordan_form(A, t)
```
Matrix exponential \(\exp(A \cdot t)\) for the matrix \(A\) and scalar \(t\).

**Parameters**

- **A**: Matrix
  
  The matrix \(A\) in the expression \(\exp(A \cdot t)\)

- **t**: Symbol
  
  The independent variable

**Explanation**

Returns the Jordan form of the \(\exp(A \cdot t)\) along with the matrix \(P\) such that:

\[
\exp(A \cdot t) = P \cdot \exp(J) \cdot P^{-1}
\]

**Examples**

```python
>>> from sympy import Matrix, Symbol
```  
```python
>>> from sympy.solvers.ode.systems import matrix_exp, matrix_exp_jordan_form
```  
```python
>>> t = Symbol('t')
```  
We will consider a 2x2 defective matrix. This shows that our method works even for defective matrices.

```python
>>> A = Matrix([[1, 1], [0, 1]])
```  
It can be observed that this function gives us the Jordan normal form and the required invertible matrix \(P\).

```python
>>> P, expJ = matrix_exp_jordan_form(A, t)
```
Here, it is shown that $P$ and $\exp J$ returned by this function is correct as they satisfy the formula: $P \cdot \exp J \cdot P^{-1} = \exp(A \cdot t)$.

```python
>>> P * expJ * P.inv() == matrix_exp(A, t)
True
```

**References**

[R817], [R818], [R819]

sympy.solvers.ode.systems.matrix_exp($A$, $t$)

Matrix exponential $\exp(A \cdot t)$ for the matrix $A$ and scalar $t$.

**Parameters**

- $A$ : Matrix
  - The matrix $A$ in the expression $\exp(A \cdot t)$
- $t$ : Symbol
  - The independent variable

**Explanation**

This function returns the $\exp(A \cdot t)$ by doing a simple matrix multiplication:

$$\exp(A \cdot t) = P \cdot \exp J \cdot P^{-1}$$

where $\exp J$ is $\exp(J \cdot t)$. $J$ is the Jordan normal form of $A$ and $P$ is matrix such that:

$$A = P \cdot J \cdot P^{-1}$$

The matrix exponential $\exp(A \cdot t)$ appears in the solution of linear differential equations. For example if $x$ is a vector and $A$ is a matrix then the initial value problem

$$\frac{dx(t)}{dt} = A \times x(t), x(0) = x0$$

has the unique solution

$$x(t) = \exp(At)x0$$

**Examples**

```python
>>> from sympy import Symbol, Matrix, pprint
>>> from sympy.solvers.ode.systems import matrix_exp
>>> t = Symbol('t')
```

We will consider a 2x2 matrix for computing the exponential

```python
>>> A = Matrix([[2, -5], [2, -4]])
>>> pprint(A)
[2 -5]
[2 -4]
```
Now, \( \exp(A \cdot t) \) is given as follows:

```python
>>> pprint(matrix_exp(A, t))
[-t -t]
[3*e *sin(t) + e *cos(t) -5*e *sin(t)]
[]
[-t -t -t]
[2*e *sin(t) -3*e *sin(t) + e *cos(t)]
```

See also:

* `matrix_exp_jordan_form` (page 859)
  For exponential of Jordan normal form

References

[R820], [R821]

```python
sympy.solvers.ode.systems.linodesolve(A, t, b=None, B=None, type='auto',
 doit=False, tau=None)
```

System of n equations linear first-order differential equations

**Parameters**

- **A**: Matrix
  Coefficient matrix of the system of linear first order ODEs.

- **t**: Symbol
  Independent variable in the system of ODEs.

- **b**: Matrix or None
  Non-homogeneous term in the system of ODEs. If None is passed, a homogeneous system of ODEs is assumed.

- **B**: Matrix or None
  Antiderivative of the coefficient matrix. If the antiderivative is not passed and the solution requires the term, then the solver would compute it internally.

- **type**: String
  Type of the system of ODEs passed. Depending on the type, the solution is evaluated. The type values allowed and the corresponding system it solves are: “type1” for constant coefficient homogeneous “type2” for constant coefficient non-homogeneous, “type3” for non-constant coefficient homogeneous, “type4” for non-constant coefficient non-homogeneous, “type5” and “type6” for non-constant coefficient homogeneous and non-homogeneous systems respectively where the coefficient matrix can be factorized to a constant coefficient matrix. The default value is “auto” which will let the solver decide the correct type of the system passed.

- **doit**: Boolean
  Evaluate the solution if True, default value is False

- **tau**: Expression
Used to substitute for the value of $t$ after we get the solution of the system.

**Returns**
List

**Raises**

**ValueError**
This error is raised when the coefficient matrix, non-homogeneous term or the antiderivative, if passed, are not a matrix or do not have correct dimensions

**NonSquareMatrixError**
When the coefficient matrix or its antiderivative, if passed is not a square matrix

**NotImplementedError**
If the coefficient matrix does not have a commutative antiderivative

**Explanation**

This solver solves the system of ODEs of the following form:

$$X'(t) = A(t)X(t) + b(t)$$

Here, $A(t)$ is the coefficient matrix, $X(t)$ is the vector of $n$ independent variables, $b(t)$ is the non-homogeneous term and $X'(t)$ is the derivative of $X(t)$

Depending on the properties of $A(t)$ and $b(t)$, this solver evaluates the solution differently.

When $A(t)$ is constant coefficient matrix and $b(t)$ is zero vector i.e. system is homogeneous, the system is “type1”. The solution is:

$$X(t) = \exp(At)C$$

Here, $C$ is a vector of constants and $A$ is the constant coefficient matrix.

When $A(t)$ is constant coefficient matrix and $b(t)$ is non-zero i.e. system is non-homogeneous, the system is “type2”. The solution is:

$$X(t) = e^{At}\left(\int e^{-At}b\,dt + C\right)$$

When $A(t)$ is coefficient matrix such that its commutative with its antiderivative $B(t)$ and $b(t)$ is a zero vector i.e. system is homogeneous, the system is “type3”. The solution is:

$$X(t) = \exp(B(t))C$$

When $A(t)$ is commutative with its antiderivative $B(t)$ and $b(t)$ is non-zero i.e. system is non-homogeneous, the system is “type4”. The solution is:

$$X(t) = e^{B(t)}\left(\int e^{-B(t)}b(t)\,dt + C\right)$$

When $A(t)$ is a coefficient matrix such that it can be factorized into a scalar and a constant coefficient matrix:

$$A(t) = f(t) \ast A$$
Where $f(t)$ is a scalar expression in the independent variable $t$ and $A$ is a constant matrix, then we can do the following substitutions:

$$
\tau = \int f(t) dt, \quad X(t) = Y(\tau), \quad b(t) = b(f^{-1}(\tau))
$$

Here, the substitution for the non-homogeneous term is done only when its non-zero. Using these substitutions, our original system becomes:

$$
Y'(\tau) = A \cdot Y(\tau) + b(\tau)/f(\tau)
$$

The above system can be easily solved using the solution for “type1” or “type2” depending on the homogeneity of the system. After we get the solution for $Y(\tau)$, we substitute the solution for $\tau$ as $t$ to get back $X(t)$

$$
X(t) = Y(\tau)
$$

Systems of “type5” and “type6” have a commutative antiderivative but we use this solution because its faster to compute.

The final solution is the general solution for all the four equations since a constant coefficient matrix is always commutative with its antiderivative.

An additional feature of this function is, if someone wants to substitute for value of the independent variable, they can pass the substitution $\tau$ and the solution will have the independent variable substituted with the passed expression($\tau$).

**Examples**

To solve the system of ODEs using this function directly, several things must be done in the right order. Wrong inputs to the function will lead to incorrect results.

```python
>>> from sympy import symbols, Function, Eq
>>> from sympy.solvers.ode.systems import canonical_odes, linear_ode_to_matrix, linodesolve, linodesolve_type
>>> from sympy.solvers.ode.subscheck import checkodesol
>>> f, g = symbols("f, g", cls=Function)
>>> x, a = symbols("x, a")
>>> funcs = [f(x), g(x)]
>>> eqs = [Eq(f(x).diff(x) - f(x), a*g(x) + 1), Eq(g(x).diff(x) + g(x), -a*f(x))]
```

Here, it is important to note that before we derive the coefficient matrix, it is important to get the system of ODEs into the desired form. For that we will use `sympy.solvers.ode.systems.canonical_odes()` (page 856).

```python
>>> eqs = canonical_odes(eqs, funcs, x)
>>> eqs
[[Eq(Derivative(f(x), x), a*g(x) + f(x) + 1), Eq(Derivative(g(x), x), -a*f(x) - g(x))]]
```

Now, we will use `sympy.solvers.ode.systems.linear_ode_to_matrix()` (page 854) to get the coefficient matrix and the non-homogeneous term if it is there.
We have the coefficient matrices and the non-homogeneous term ready. Now, we can use `sympy.solvers.ode.systems.linodesolve_type()` (page 857) to get the information for the system of ODEs to finally pass it to the solver.

```python
>>> system_info = linodesolve_type(A, x, b=b)
>>> sol_vector = linodesolve(A, x, b=b, B=system_info['antiderivative'], type=system_info['type_of_equation'])
```

Now, we can prove if the solution is correct or not by using `sympy.solvers.ode.checkodesol()` (page 814)

```python
>>> sol = [Eq(f, s) for f, s in zip(funcs, sol_vector)]
>>> checkodesol(eqs, sol) (True, [0, 0])
```

We can also use the `doit` method to evaluate the solutions passed by the function.

```python
>>> sol_vector_evaluated = linodesolve(A, x, b=b, type="type2", doit=True)
```

Now, we will look at a system of ODEs which is non-constant.

```python
>>> eqs = [Eq(f(x).diff(x), f(x) + x*g(x)), Eq(g(x).diff(x), -x*f(x) + g(x))]
```

The system defined above is already in the desired form, so we do not have to convert it.

```python
>>> (A1, A0), b = linear_ode_to_matrix(eqs, funcs, x, 1)
>>> A = A0
```

A user can also pass the commutative antiderivative required for type3 and type4 system of ODEs. Passing an incorrect one will lead to incorrect results. If the coefficient matrix is not commutative with its antiderivative, then `sympy.solvers.ode.systems.linodesolve_type()` (page 857) raises a `NotImplementedError`. If it does have a commutative antiderivative, then the function just returns the information about the system.

```python
>>> system_info = linodesolve_type(A, x, b=b)
```

Now, we can pass the antiderivative as an argument to get the solution. If the system information is not passed, then the solver will compute the required arguments internally.

```python
>>> sol_vector = linodesolve(A, x, b=b)
```

Once again, we can verify the solution obtained.

```python
>>> sol = [Eq(f, s) for f, s in zip(funcs, sol_vector)]
>>> checkodesol(eqs, sol) (True, [0, 0])
```

See also:
**linear_ode_to_matrix** *(page 854)*
Coefficient matrix computation function

**canonical_odes** *(page 856)*
System of ODEs representation change

**linodesolve_type** *(page 857)*
Getting information about systems of ODEs to pass in this solver

```python
sympy.solvers.ode.ode._nonlinear_2eq_order1_type1(x, y, t, eq)
```
Equations:

\[
\begin{align*}
x' &= x^n F(x, y) \\
y' &= g(y) F(x, y)
\end{align*}
\]

Solution:

\[
x = \varphi(y), \int \frac{1}{g(y) F(\varphi(y), y)} \, dy = t + C_2
\]

where

if \( n \neq 1 \)

\[
\varphi = [C_1 + (1 - n) \int \frac{1}{g(y)} \, dy]^{\frac{1}{n-1}}
\]

if \( n = 1 \)

\[
\varphi = C_1 \int \frac{1}{y} \, dy
\]

where \( C_1 \) and \( C_2 \) are arbitrary constants.

```python
sympy.solvers.ode.ode._nonlinear_2eq_order1_type2(x, y, t, eq)
```
Equations:

\[
\begin{align*}
x' &= e^{\lambda x} F(x, y) \\
y' &= g(y) F(x, y)
\end{align*}
\]

Solution:

\[
x = \varphi(y), \int \frac{1}{g(y) F(\varphi(y), y)} \, dy = t + C_2
\]

where

if \( \lambda \neq 0 \)

\[
\varphi = -\frac{1}{\lambda} \log(C_1 - \lambda \int \frac{1}{g(y)} \, dy)
\]

if \( \lambda = 0 \)

\[
\varphi = C_1 + \int \frac{1}{g(y)} \, dy
\]

where \( C_1 \) and \( C_2 \) are arbitrary constants.
SymPy Documentation, Release 1.12.1

sympy.solvers.ode.ode._nonlinear_2eq_order1_type3(x, y, t, eq)

Autonomous system of general form

\[ x' = F(x, y) \]
\[ y' = G(x, y) \]

Assuming \( y = y(x, C_1) \) where \( C_1 \) is an arbitrary constant is the general solution of the first-order equation

\[ F(x, y)y_x' = G(x, y) \]

Then the general solution of the original system of equations has the form

\[ \int \frac{1}{F(x, y(x, C_1))} \, dx = t + C_1 \]

sympy.solvers.ode.ode._nonlinear_2eq_order1_type4(x, y, t, eq)

Equation:

\[ x' = f_1(x)g_1(y)\phi(x, y, t) \]
\[ y' = f_2(x)g_2(y)\phi(x, y, t) \]

First integral:

\[ \int \frac{f_2(x)}{f_1(x)} \, dx - \int \frac{g_1(y)}{g_2(y)} \, dy = C \]

where \( C \) is an arbitrary constant.

On solving the first integral for \( x \) (resp., \( y \)) and on substituting the resulting expression into either equation of the original solution, one arrives at a first-order equation for determining \( y \) (resp., \( x \)).

sympy.solvers.ode.ode._nonlinear_2eq_order1_type5(func, t, eq)

Clairaut system of ODEs

\[ x = tx' + F(x', y') \]
\[ y = ty' + G(x', y') \]

The following are solutions of the system

\( (i) \) straight lines:

\[ x = C_1 t + F(C_1, C_2), \quad y = C_2 t + G(C_1, C_2) \]

where \( C_1 \) and \( C_2 \) are arbitrary constants;

\( (ii) \) envelopes of the above lines;

\( (iii) \) continuously differentiable lines made up from segments of the lines \( (i) \) and \( (ii) \).
sympy.solvers.ode.ode._nonlinear_3eq_order1_type1(x, y, z, t, eq)

Equations:
\[ ax' = (b - c)yz, \quad by' = (c - a)zx, \quad cz' = (a - b)xy \]

First Integrals:
\[ ax^2 + by^2 + cz^2 = C_1 \]
\[ a^2x^2 + b^2y^2 + c^2z^2 = C_2 \]

where \( C_1 \) and \( C_2 \) are arbitrary constants. On solving the integrals for \( y \) and \( z \) and on substituting the resulting expressions into the first equation of the system, we arrives at a separable first-order equation on \( x \). Similarly doing that for other two equations, we will arrive at first order equation on \( y \) and \( z \) too.

References

sympy.solvers.ode.ode._nonlinear_3eq_order1_type2(x, y, z, t, eq)

Equations:
\[ ax' = (b - c)yzf(x, y, z, t), \quad by' = (c - a)zx f(x, y, z, t), \quad cz' = (a - b)xy f(x, y, z, t) \]

First Integrals:
\[ ax^2 + by^2 + cz^2 = C_1 \]
\[ a^2x^2 + b^2y^2 + c^2z^2 = C_2 \]

where \( C_1 \) and \( C_2 \) are arbitrary constants. On solving the integrals for \( y \) and \( z \) and on substituting the resulting expressions into the first equation of the system, we arrives at a first-order differential equations on \( x \). Similarly doing that for other two equations we will arrive at first order equation on \( y \) and \( z \).

References

sympy.solvers.ode.ode._nonlinear_3eq_order1_type3(x, y, z, t, eq)

Equations:
\[ x' = cF_2 - bF_3, \quad y' = aF_3 - cF_1, \quad z' = bF_1 - aF_2 \]

where \( F_n = F_n(x, y, z, t) \).

1. First Integral:
\[ ax + by + cz = C_1, \]

where \( C \) is an arbitrary constant.

2. If we assume function \( F_n \) to be independent of \( t \), i.e., \( F_n = F_n(x, y, z) \) Then, on eliminating \( t \) and \( z \) from the first two equations of the system, one arrives at the first-order equation

\[
\frac{dy}{dx} = \frac{aF_3(x, y, z) - cF_1(x, y, z)}{cF_2(x, y, z) - bF_3(x, y, z)}
\]

where \( z = \frac{1}{c}(C_1 - ax - by) \)

**References**


sympy.solvers.ode.ode._nonlinear_3eq_order1_type4(x, y, z, t, eq)

Equations:

\[
x' = czF_2 - byF_3, \quad y' = axF_3 - czF_1, \quad z' = byF_1 - axF_2
\]

where \( F_n = F_n(x, y, z, t) \)

1. First integral:

\[ ax^2 + by^2 + cz^2 = C_1 \]

where \( C \) is an arbitrary constant.

2. Assuming the function \( F_n \) is independent of \( t \): \( F_n = F_n(x, y, z) \). Then on eliminating \( t \) and \( z \) from the first two equations of the system, one arrives at a first-order equation.

\[
\frac{dy}{dx} = \frac{aF_3(x, y, z) - cF_1(x, y, z)}{cF_2(x, y, z) - bF_3(x, y, z)}
\]

where \( z = \pm \sqrt{\frac{1}{c}(C_1 - ax^2 - by^2)} \)

**References**


sympy.solvers.ode.ode._nonlinear_3eq_order1_type5(x, y, z, t, eq)

\[
x' = x(cF_2 - bF_3), \quad y' = y(aF_3 - cF_1), \quad z' = z(bF_1 - aF_2)
\]

where \( F_n = F_n(x, y, z, t) \) and are arbitary functions.

First Integral:

\[ |x|^a |y|^b |z|^c = C_1 \]

where \( C \) is an arbitrary constant. If the function \( F_n \) is independent of \( t \), then, by eliminating \( t \) and \( z \) from the first two equations of the system, one arrives at a first-order equation.
Information on the ode module

This module contains \texttt{dsolve()} (page 807) and different helper functions that it uses.

\texttt{dsolve()} (page 807) solves ordinary differential equations. See the docstring on the various functions for their uses. Note that partial differential equations support is in \texttt{pde.py}. Note that hint functions have docstrings describing their various methods, but they are intended for internal use. Use \texttt{dsolve(ode, func, hint=hint)} to solve an ODE using a specific hint. See also the docstring on \texttt{dsolve()} (page 807).

Functions in this module

These are the user functions in this module:

- \texttt{dsolve()} (page 807) - Solves ODEs.
- \texttt{classify_ode()} (page 812) - Classifies ODEs into possible hints for \texttt{dsolve()} (page 807).
- \texttt{checkodesol()} (page 814) - Checks if an equation is the solution to an ODE.
- \texttt{homogeneous_order()} (page 815) - Returns the homogeneous order of an expression.
- \texttt{infinitesimals()} (page 816) - Returns the infinitesimals of the Lie group of point transformations of an ODE, such that it is invariant.
- \texttt{checkinfsol()} (page 817) - Checks if the given infinitesimals are the actual infinitesimals of a first order ODE.

These are the non-solver helper functions that are for internal use. The user should use the various options to \texttt{dsolve()} (page 807) to obtain the functionality provided by these functions:

- \texttt{odesimp()} (page 819) - Does all forms of ODE simplification.
- \texttt{ode_sol_simplicity()} (page 821) - A key function for comparing solutions by simplicity.
- \texttt{constantsimp()} (page 817) - Simplifies arbitrary constants.
- \texttt{constant_renumber()} (page 820) - Renumber arbitrary constants.
- \texttt{_handle_Integral()} (page 872) - Evaluate unevaluated Integrals.

See also the docstrings of these functions.

Currently implemented solver methods

The following methods are implemented for solving ordinary differential equations. See the docstrings of the various hint functions for more information on each (run \texttt{help(ode)}):

- 1st order separable differential equations.
- 1st order differential equations whose coefficients or $dx$ and $dy$ are functions homogeneous of the same order.
- 1st order exact differential equations.
- 1st order linear differential equations.
- 1st order Bernoulli differential equations.
- Power series solutions for first order differential equations.
- 2nd order Liouville differential equations.
- Power series solutions for second order differential equations at ordinary and regular singular points.
- $n$th order differential equation that can be solved with algebraic rearrangement and integration.
- $n$th order linear homogeneous differential equation with constant coefficients.
- $n$th order linear inhomogeneous differential equation with constant coefficients using the method of undetermined coefficients.
- $n$th order linear inhomogeneous differential equation with constant coefficients using the method of variation of parameters.

**Philosophy behind this module**

This module is designed to make it easy to add new ODE solving methods without having to mess with the solving code for other methods. The idea is that there is a `classify_ode()` function, which takes in an ODE and tells you what hints, if any, will solve the ODE. It does this without attempting to solve the ODE, so it is fast. Each solving method is a hint, and it has its own function, named `ode_<hint>`. That function takes in the ODE and any match expression gathered by `classify_ode()` (page 812) and returns a solved result. If this result has any integrals in it, the hint function will return an unevaluated `Integral` class. `dsolve()` (page 807), which is the user wrapper function around all of this, will then call `odesimp()` (page 819) on the result, which, among other things, will attempt to solve the equation for the dependent variable (the function we are solving for), simplify the arbitrary constants in the expression, and evaluate any integrals, if the hint allows it.

**How to add new solution methods**

If you have an ODE that you want `dsolve()` (page 807) to be able to solve, try to avoid adding special case code here. Instead, try finding a general method that will solve your ODE, as well as others. This way, the `ode` (page 807) module will become more robust, and unhindered by special case hacks. WolphramAlpha and Maple’s DTools[odeadvisor] function are two resources you can use to classify a specific ODE. It is also better for a method to work with an $n$th order ODE instead of only with specific orders, if possible.

To add a new method, there are a few things that you need to do. First, you need a hint name for your method. Try to name your hint so that it is unambiguous with all other methods, including ones that may not be implemented yet. If your method uses integrals, also include a hint_Integral hint. If there is more than one way to solve ODEs with your method, include a hint for each one, as well as a <hint>_best hint. Your ode_<hint>_best() function should choose the best using min with `ode_sol_simplicity` as the key argument. See `HomogeneousCoeffBest` (page 823), for example. The function that uses your method will be called `ode_<hint>()`, so the hint must only use characters that are allowed in a Python function name (alphanumeric characters and the underscore ‘_’ character). Include a function for every hint, except for _Integral hints (`dsolve()` (page 807) takes care of those automatically). Hint names should be all lowercase, unless a word is commonly capitalized (such as Integral or Bernoulli). If you have a hint that you do not want to run with all_Integral that does not have an _Integral counterpart (such as a best hint that would defeat the purpose of all_Integral), you will need to remove it manually in the `dsolve()` (page 807) code. See also the `classify_ode()` (page 812) docstring for guidelines on writing a hint name.
Determine *in general* how the solutions returned by your method compare with other methods that can potentially solve the same ODEs. Then, put your hints in the `allhints` (page 818) tuple in the order that they should be called. The ordering of this tuple determines which hints are default. Note that exceptions are ok, because it is easy for the user to choose individual hints with `dsolve()` (page 807). In general, `_Integral` variants should go at the end of the list, and `_best` variants should go before the various hints they apply to. For example, the `undetermined_coefficients` hint comes before the `variation_of_parameters` hint because, even though variation of parameters is more general than undetermined coefficients, undetermined coefficients generally returns cleaner results for the ODEs that it can solve than variation of parameters does, and it does not require integration, so it is much faster.

Next, you need to have a match expression or a function that matches the type of the ODE, which you should put in `classify_ode()` (page 812) (if the match function is more than just a few lines. It should match the ODE without solving for it as much as possible, so that `classify_ode()` (page 812) remains fast and is not hindered by bugs in solving code. Be sure to consider corner cases. For example, if your solution method involves dividing by something, make sure you exclude the case where that division will be 0.

In most cases, the matching of the ODE will also give you the various parts that you need to solve it. You should put that in a dictionary (`.match()` will do this for you), and add that as matching_hints[‘hint’] = matchdict in the relevant part of `classify_ode()` (page 812). `classify_ode()` (page 812) will then send this to `dsolve()` (page 807), which will send it to your function as the match argument. Your function should be named `ode_<hint>(eq, func, order, match)` If you need to send more information, put it in the `match` dictionary. For example, if you had to substitute in a dummy variable in `classify_ode()` (page 812) to match the ODE, you will need to pass it to your function using the `match` dict to access it. You can access the independent variable using `func.args[0]`, and the dependent variable (the function you are trying to solve for) as `func`. If, while trying to solve the ODE, you find that you cannot, raise `NotImplementedError`. `dsolve()` (page 807) will catch this error with the all meta-hint, rather than causing the whole routine to fail.

Add a docstring to your function that describes the method employed. Like with anything else in SymPy, you will need to add a doctest to the docstring, in addition to real tests in `test_ode.py`. Try to maintain consistency with the other hint functions’ docstrings. Add your method to the list at the top of this docstring. Also, add your method to `ode.rst` in the `docs/src` directory, so that the Sphinx docs will pull its docstring into the main SymPy documentation. Be sure to make the Sphinx documentation by running `make html` from within the `doc` directory to verify that the docstring formats correctly.

If your solution method involves integrating, use `Integral` (page 660) instead of `integrate()` (page 1016). This allows the user to bypass hard/slow integration by using the `_Integral` variant of your hint. In most cases, calling `sympy.core.basic.Basic.doit()` (page 983) will integrate your solution. If this is not the case, you will need to write special code in `_handle_Integral()` (page 872). Arbitrary constants should be symbols named `C1`, `C2`, and so on. All solution methods should return an equality instance. If you need an arbitrary number of arbitrary constants, you can use `constants = numbered_symbols(prefix='C', cls=Symbol, start=1)`. If it is possible to solve for the dependent function in a general way, do so. Otherwise, do as best as you can, but do not call solve in your `ode_<hint>()` function. `odesimp()` (page 819) will attempt to solve the solution for you, so you do not need to do that. Lastly, if your ODE has a common simplification that can be applied to your solutions, you can add a special case in `odesimp()` (page 819) for it. For example, solutions returned from the `1st_homogeneous_coeff` hints often have many `log` (page 470) terms, so `odesimp()` (page 819) calls `logcombine()` (page 726) on them (it also helps to write the arbitrary constant as `log(C1)` instead of `C1` in this case). Also consider common ways that you can rearrange your solution to have `constantsimp()` (page 817) take better advantage of it. It is better to
put simplification in `odesimp()` (page 819) than in your method, because it can then be turned off with the `simplify` flag in `dsolve()` (page 807). If you have any extraneous simplification in your function, be sure to only run it using if `match.get('simplify', True)`; especially if it can be slow or if it can reduce the domain of the solution.

Finally, as with every contribution to SymPy, your method will need to be tested. Add a test for each method in `test_ode.py`. Follow the conventions there, i.e., test the solver using `dsolve(eq, f(x), hint=your_hint)`, and also test the solution using `checkodesol()` (page 814) (you can put these in a separate tests and skip/XFAIL if it runs too slow/does not work). Be sure to call your hint specifically in `dsolve()` (page 807), that way the test will not be broken simply by the introduction of another matching hint. If your method works for higher order (>1) ODEs, you will need to run `sol = constant_renumber(sol, 'C', 1, order)` for each solution, where `order` is the order of the ODE. This is because `constant_renumber` renumbers the arbitrary constants by printing order, which is platform dependent. Try to test every corner case of your solver, including a range of orders if it is a `n`th order solver, but if your solver is slow, such as if it involves hard integration, try to keep the test run time down.

Feel free to refactor existing hints to avoid duplicating code or creating inconsistencies. If you can show that your method exactly duplicates an existing method, including in the simplicity and speed of obtaining the solutions, then you can remove the old, less general method. The existing code is tested extensively in `test_ode.py`, so if anything is broken, one of those tests will surely fail.

These functions are not intended for end-user use.

```
sympy.solvers.ode.ode._handle_Integral(expr, func, hint)
```

Converts a solution with Integrals in it into an actual solution.

For most hints, this simply runs `expr.doit()`.

### PDE

#### User Functions

These are functions that are imported into the global namespace with `from sympy import *`. They are intended for user use.

```
sympy.solvers.pde.pde_separate(eq, fun, sep, strategy='mul')
```

Separate variables in partial differential equation either by additive or multiplicative separation approach. It tries to rewrite an equation so that one of the specified variables occurs on a different side of the equation than the others.

**Parameters**

- `eq` - Partial differential equation
- `fun` - Original function F(x, y, z)
- `sep` - List of separated functions [X(x), u(y, z)]
- `strategy` - Separation strategy. You can choose between additive separation (`'add'`) and multiplicative separation (`'mul'`) which is default.
Examples

```python
>>> from sympy import E, Eq, Function, pde_separate, Derivative as D
>>> from sympy.abc import x, t
>>> u, X, T = map(Function, 'uXT')

>>> eq = Eq(D(u(x, t), x), E**(u(x, t))*D(u(x, t), t))
>>> pde_separate(eq, u(x, t), [X(x), T(t)], strategy='add')
[exp(-X(x))*Derivative(X(x), x), exp(T(t))*Derivative(T(t), t)]

>>> eq = Eq(D(u(x, t), x, 2), D(u(x, t), t, 2))
>>> pde_separate(eq, u(x, t), [X(x), T(t)], strategy='mul')
[Derivative(X(x), (x, 2))/X(x), Derivative(T(t), (t, 2))/T(t)]
```

See also:
pde_separate_add (page 873), pde_separate_mul (page 873)

sympy.solvers.pde.pde_separate_add(eq, fun, sep)
Helper function for searching additive separable solutions.
Consider an equation of two independent variables \(x, y\) and a dependent variable \(w\), we look for the product of two functions depending on different arguments:

\[ w(x, y, z) = X(x) + y(y, z) \]

Examples

```python
>>> from sympy import E, Eq, Function, pde_separate_add, Derivative as D
>>> from sympy.abc import x, t
>>> u, X, T = map(Function, 'uXT')

>>> eq = Eq(D(u(x, t), x), E**(u(x, t))*D(u(x, t), t))
>>> pde_separate_add(eq, u(x, t), [X(x), T(t)])
[exp(-X(x))*Derivative(X(x), x), exp(T(t))*Derivative(T(t), t)]
```

sympy.solvers.pde.pde_separate_mul(eq, fun, sep)
Helper function for searching multiplicative separable solutions.
Consider an equation of two independent variables \(x, y\) and a dependent variable \(w\), we look for the product of two functions depending on different arguments:

\[ w(x, y, z) = X(x) * u(y, z) \]
Examples

```python
>>> from sympy import Function, Eq, pde_separate_mul, Derivative as D
>>> from sympy.abc import x, y
>>> u, X, Y = map(Function, 'uXY')
>>> eq = Eq(D(u(x, y), x, 2), D(u(x, y), y, 2))
>>> pde_separate_mul(eq, u(x, y), [X(x), Y(y)])
[Derivative(X(x), (x, 2))/X(x), Derivative(Y(y), (y, 2))/Y(y)]
```

`sympy.solvers.pde.pdsolve(eq, func=None, hint='default', dict=False, solvefun=None, **kwargs)`

Solves any (supported) kind of partial differential equation.

**Usage**

pdsolve(eq, f(x,y), hint) -> Solve partial differential equation eq for function f(x,y), using method hint.

**Details**

- **eq can be any supported partial differential equation (see**
  - the pde docstring for supported methods). This can either be an Equality, or an expression, which is assumed to be equal to 0.

- **f(x,y) is a function of two variables whose derivatives in that**
  - variable make up the partial differential equation. In many cases it is not necessary to provide this; it will be autodetected (and an error raised if it could not be detected).

- **hint is the solving method that you want pdsolve to use. Use**
  - classify_pde(eq, f(x,y)) to get all of the possible hints for a PDE. The default hint, ‘default’, will use whatever hint is returned first by classify_pde(). See Hints below for more options that you can use for hint.

- **solvefun is the convention used for arbitrary functions returned**
  - by the PDE solver. If not set by the user, it is set by default to be F.

**Hints**

Aside from the various solving methods, there are also some meta-hints that you can pass to pdsolve():

- **“default”:**
  - This uses whatever hint is returned first by classify_pde(). This is the default argument to pdsolve().

- **“all”:**
  - To make pdsolve apply all relevant classification hints, use pdsolve(PDE, func, hint=“all”). This will return a dictionary of hint:solution terms. If a hint causes pdsolve to raise the NotImplementedError, value of that hint’s key will be the exception object raised. The dictionary will also include some special keys:
    - order: The order of the PDE. See also ode_order() in deutils.py
    - default: The solution that would be returned by default. This is the one produced by the hint that appears first in the tuple returned by classify_pde().
“all_Integral”: This is the same as “all”, except if a hint also has a corresponding “Integral” hint, it only returns the “Integral” hint. This is useful if “all” causes pdsolve() to hang because of a difficult or impossible integral. This meta-hint will also be much faster than “all”, because integrate() is an expensive routine.

See also the classify_pde() docstring for more info on hints, and the pde docstring for a list of all supported hints.

Tips

• You can declare the derivative of an unknown function this way:

```python
>>> from sympy import Function, Derivative
>>> from sympy.abc import x, y # x and y are the independent variables
>>> f = Function('f')(x, y) # f is a function of x and y
>>> # fx will be the partial derivative of f with respect to x
>>> fx = Derivative(f, x)
>>> # fy will be the partial derivative of f with respect to y
>>> fy = Derivative(f, y)
```

• See test_pde.py for many tests, which serves also as a set of examples for how to use pdsolve().

• pdsolve always returns an Equality class (except for the case when the hint is “all” or “all_Integral”). Note that it is not possible to get an explicit solution for f(x, y) as in the case of ODE’s

• Do help(pde.pde_hintname) to get help more information on a specific hint

Examples

```python
>>> from sympy.solvers.pde import pdsolve
>>> from sympy import Function, Eq
>>> from sympy.abc import x, y
>>> f = Function('f')
>>> u = f(x, y)
>>> ux = u.diff(x)
>>> uy = u.diff(y)
>>> eq = Eq(1 + (2*(ux/u)) + (3*(uy/u)), 0)
>>> pdsolve(eq)
Eq(f(x, y), F(3*x - 2*y)*exp(-2*x/13 - 3*y/13))
```

sympy.solvers.pde.classify_pde(eq, func=None, dict=False, *args, **kwargs)

Returns a tuple of possible pdsolve() classifications for a PDE.

The tuple is ordered so that first item is the classification that pdsolve() uses to solve the PDE by default. In general, classifications near the beginning of the list will produce better solutions faster than those near the end, though there are always exceptions. To make pdsolve use a different classification, use pdsolve(PDE, func, hint=<classification>). See also the pdsolve() docstring for different meta-hints you can use.
If `dict` is true, `classify_pde()` will return a dictionary of hint:match expression terms. This is intended for internal use by `pdsolve()`. Note that because dictionaries are ordered arbitrarily, this will most likely not be in the same order as the tuple.

You can get help on different hints by doing `help(pde.pde_hintname)`, where `hintname` is the name of the hint without “Integral”.

See `sympy.pde.allhints` or the `sympy.pde` docstring for a list of all supported hints that can be returned from `classify_pde`.

**Examples**

```python
from sympy import classify_pde
from sympy import Function, Eq, x, y
f = Function('f')
u = f(x, y)
ux = u.diff(x)
uy = u.diff(y)
eq = Eq(1 + (2*(ux/u)) + (3*(uy/u)), 0)
classify_pde(eq)
('1st_linear_constant_coeff_homogeneous',)
```

`sympy.solvers.pde.checkpdesol(pde, sol, func=None, solve_for_func=True)`
Checks if the given solution satisfies the partial differential equation.

`pde` is the partial differential equation which can be given in the form of an equation or an expression. `sol` is the solution for which the `pde` is to be checked. This can also be given in an equation or an expression form. If the function is not provided, the helper function `_preprocess` from deutils is used to identify the function.

If a sequence of solutions is passed, the same sort of container will be used to return the result for each solution.

The following methods are currently being implemented to check if the solution satisfies the PDE:

1. Directly substitute the solution in the PDE and check. If the solution has not been solved for f, then it will solve for f provided `solve_for_func` has not been set to False.

If the solution satisfies the PDE, then a tuple (True, 0) is returned. Otherwise a tuple (False, expr) where expr is the value obtained after substituting the solution in the PDE. However if a known solution returns False, it may be due to the inability of `doit()` to simplify it to zero.

**Examples**

```python
from sympy import Function, symbols
from sympy import checkpdesol, pdsolve
x, y = symbols('x y')
f = Function('f')
eq = 2*f(x,y) + 3*f(x,y).diff(x) + 4*f(x,y).diff(y)
sol = pdsolve(eq)
assert checkpdesol(eq, sol)[0]
```
>>> eq = x*f(x,y) + f(x,y).diff(x)
>>> checkpdesol(eq, sol)
(False, (x*F(4*x - 3*y) - 6*F(4*x - 3*y)/25 + 4*Subs(Derivative(F(_xi_1), _xi_1), _xi_1, 4*x - 3*y))*exp(-6*x/25 - 8*y/25))

Hint Methods

These functions are meant for internal use. However they contain useful information on the various solving methods.

`sympy.solvers.pde.pde_1st_linear_constant_coeff_homogeneous(eq, func, order, match, solvefun)`

Solves a first order linear homogeneous partial differential equation with constant coefficients.

The general form of this partial differential equation is

\[ a \frac{\partial f(x, y)}{\partial x} + b \frac{\partial f(x, y)}{\partial y} + cf(x, y) = 0 \]

where \(a\), \(b\) and \(c\) are constants.

The general solution is of the form:

\[ f(x, y) = F(-ay + bx)e^{\frac{-c(ay+bx)}{a^2+b^2}} \]

and can be found in SymPy with `pdsolve`:

```python
>>> from sympy.solvers import pdsolve
>>> from sympy.abc import x, y, a, b, c
>>> f = Function('f')
>>> u = f(x,y)
>>> ux = u.diff(x)
>>> uy = u.diff(y)
>>> genform = a*ux + b*uy + c*u
>>> pprint(genform)
\[\frac{\partial f(x, y)}{\partial x} + \frac{\partial f(x, y)}{\partial y} + cf(x, y)\]

>>> pprint(pdsolve(genform))
\[-c(ay+bx)\]
\[\frac{-c(a^2+b^2)}{a^2+b^2}\]

f(x, y) = F(-ay + bx)*e^{-\frac{c(a^2+b^2)}{a^2+b^2}}
```
Examples

```python
>>> from sympy import pdsolve
>>> from sympy import Function, pprint
>>> from sympy.abc import x, y

>>> f = Function('f')
>>> pdsolve(f(x,y) + f(x,y).diff(x) + f(x,y).diff(y))
Eq(f(x, y), F(x - y)*exp(-x/2 - y/2))
>>> pprint(pdsolve(f(x,y) + f(x,y).diff(x) + f(x,y).diff(y)))
\[f(x, y) = F(x - y)\cdot e^{-\frac{x}{2} - \frac{y}{2}} \]
```

References


sympy.solvers.pde.pde_1st_linear_constant_coeff(eq, func, order, match, solvefun)
Solves a first order linear partial differential equation with constant coefficients.

The general form of this partial differential equation is

\[
a \frac{\partial f(x, y)}{\partial x} + b \frac{\partial f(x, y)}{\partial y} + cf(x, y) = G(x, y)
\]

where \(a, b\) and \(c\) are constants and \(G(x, y)\) can be an arbitrary function in \(x\) and \(y\).

The general solution of the PDE is:

\[
f(x, y) = \left[ F(\eta) + \frac{1}{a^2 + b^2} \int \frac{a\xi + b\eta}{a^2 + b^2} - \frac{a\eta + b\xi}{a^2 + b^2} e^{-\frac{c\xi}{a^2 + b^2}} d\xi \right] e^{-\frac{c\eta}{a^2 + b^2}}.
\]

where \(F(\eta)\) is an arbitrary single-valued function. The solution can be found in SymPy with pdsolve:

```python
>>> from sympy.solvers import pdsolve
>>> from sympy.abc import x, y, a, b, c

>>> f = Function('f')
>>> G = Function('G')
>>> u = f(x,y)
>>> ux = u.diff(x)
>>> uy = u.diff(y)

>>> genform = a*ux + b*uy + c*u - G(x,y)
>>> pprint(genform)
\[\frac{\partial f(x, y)}{\partial x} + \frac{\partial f(x, y)}{\partial y} + cf(x, y) - G(x, y) \]

```
(continued from previous page)

\[ f(x, y) = \frac{F(\eta) + \frac{G}{2^2}}{\alpha + \beta} \]

\[
\begin{align*}
\frac{d}{d\xi} & \left( \frac{-c\xi}{\alpha + \beta} \right)
= \frac{1}{\alpha \beta} \left( \frac{2^2}{\alpha + \beta} \right) \eta - a \xi + b \eta
\end{align*}
\]

5.8. Topics
Examples

```python
>>> from sympy.solvers.pde import pdsolve
>>> from sympy import Function, pprint, exp
>>> from sympy.abc import x,y
>>> f = Function('f')
>>> eq = -2*f(x,y).diff(x) + 4*f(x,y).diff(y) + 5*f(x,y) - exp(x + 3*y)
>>> pdsolve(eq)
Eq(f(x, y), (F(4*x + 2*y)*exp(x/2) + exp(x + 4*y)/15)*exp(-y))
```

References


`sistema.solvers.pde.pde_1st_linear_variable_coeff(eq, func, order, match, solvefun)
Solves a first order linear partial differential equation with variable coefficients. The
general form of this partial differential equation is

\[
a(x, y) \frac{\partial f(x, y)}{\partial x} + b(x, y) \frac{\partial f(x, y)}{\partial y} + c(x, y) f(x, y) = G(x, y)
\]

where \(a(x, y), b(x, y), c(x, y)\) and \(G(x, y)\) are arbitrary functions in \(x\) and \(y\). This PDE is
converted into an ODE by making the following transformation:

1. \(\xi\) as \(x\)
2. \(\eta\) as the constant in the solution to the differential equation \(\frac{du}{d\xi} = -\frac{1}{a}\)

Making the previous substitutions reduces it to the linear ODE

\[
a(\xi, \eta) \frac{du}{d\xi} + c(\xi, \eta)u - G(\xi, \eta) = 0
\]

which can be solved using dsolve.

```python
>>> from sympy.abc import x, y
>>> from sympy import Function, pprint
>>> a, b, c, G, f= [Function(i) for i in ['a', 'b', 'c', 'G', 'f']]
>>> u = f(x,y)
>>> ux = u.diff(x)
>>> uy = u.diff(y)
>>> genform = a(x, y)*u + b(x, y)*ux + c(x, y)*uy - G(x,y)
>>> pprint(genform)
-G(x, y) + a(x, y)*f(x, y) + b(x, y)*-(f(x, y)) + c(x, y)*-(f(x, y))
```

Chapter 5. API Reference
Examples

```python
>>> from sympy.solvers.pde import pdsolve
>>> from sympy import Function, pprint
>>> from sympy.abc import x,y
>>> f = Function('f')
>>> eq = x*(u.diff(x)) - y*(u.diff(y)) + y**2*u - y**2
>>> pdsolve(eq)
Eq(f(x, y), F(x*y)*exp(y**2/2) + 1)
```

References


Information on the pde module

This module contains pdsolve() and different helper functions that it uses. It is heavily inspired by the ode module and hence the basic infrastructure remains the same.

Functions in this module

These are the user functions in this module:

- **pdsolve()** - Solves PDE’s
- **classify_pde()** - Classifies PDEs into possible hints for dsolve().
- **pde_separate()** - Separate variables in partial differential equation either by additive or multiplicative separation approach.

These are the helper functions in this module:

- **pde_separate_add()** - Helper function for searching additive separable solutions.
- **pde_separate_mul()** - Helper function for searching multiplicative separable solutions.

Currently implemented solver methods

The following methods are implemented for solving partial differential equations. See the docstrings of the various pde_hint() functions for more information on each (run help(pde)):

- 1st order linear homogeneous partial differential equations with constant coefficients.
- 1st order linear general partial differential equations with constant coefficients.
- 1st order linear partial differential equations with variable coefficients.
Solvers

The solvers module in SymPy implements methods for solving equations.

Note: For a beginner-friendly guide focused on solving common types of equations, refer to Solve Equations (page 131).

Note: solve() (page 882) is an older more mature general function for solving many types of equations. solve() (page 882) has many options and uses different methods internally to determine what type of equations you pass it, so if you know what type of equation you are dealing with you may want to use the newer solveset() (page 905) which solves univariate equations, linsolve() (page 919) which solves system of linear equations, and nonlinsolve() (page 921) which solves systems of non-linear equations.

Algebraic equations

Use solve() (page 882) to solve algebraic equations. We suppose all equations are equaled to 0, so solving x**2 == 1 translates into the following code:

```python
>>> from sympy.solvers import solve
>>> from sympy import Symbol
>>> x = Symbol('x')
>>> solve(x**2 - 1, x)
[-1, 1]
```

The first argument for solve() (page 882) is an equation (equaled to zero) and the second argument is the symbol that we want to solve the equation for.

sympy.solvers.solvers.solve(f, *symbols, **flags)

Algebraically solves equations and systems of equations.

Parameters
f:
- a single Expr or Poly that must be zero
- an Equality
- a Relational expression
- a Boolean
- iterable of one or more of the above

symbols : (object(s) to solve for) specified as
- none given (other non-numeric objects will be used)
- single symbol
- denested list of symbols (e.g., solve(f, x, y))
- ordered iterable of symbols (e.g., solve(f, [x, y]))

flags :
dict=True (default is False)
   Return list (perhaps empty) of solution mappings.

set=True (default is False)
   Return list of symbols and set of tuple(s) of solution(s).

exclude=[] (default)
   Do not try to solve for any of the free symbols in exclude; if expres-
sions are given, the free symbols in them will be extracted automatic-
ically.

check=True (default)
   If False, do not do any testing of solutions. This can be useful if you
   want to include solutions that make any denominator zero.

numerical=True (default)
   Do a fast numerical check if f has only one symbol.

minimal=True (default is False)
   A very fast, minimal testing.

warn=True (default is False)
   Show a warning if checksol() could not conclude.

simplify=True (default)
   Simplify all but polynomials of order 3 or greater before returning
   them and (if check is not False) use the general simplify function
   on the solutions and the expression obtained when they are substi-
tuted into the function which should be zero.

force=True (default is False)
   Make positive all symbols without assumptions regarding sign.

rational=True (default)
   Recast Floats as Rational; if this option is not used, the system con-
taining Floats may fail to solve because of issues with polys. If ra-
tional=None, Floats will be recast as rationals but the answer will
   be recast as Floats. If the flag is False then nothing will be done to
   the Floats.

manual=True (default is False)
   Do not use the polys/matrix method to solve a system of equations,
   solve them one at a time as you might “manually.”

implicit=True (default is False)
   Allows solve to return a solution for a pattern in terms of other
   functions that contain that pattern; this is only needed if the pattern
   is inside of some invertible function like cos, exp, ect.

particular=True (default is False)
   Instructs solve to try to find a particular solution to a linear system
   with as many zeros as possible; this is very expensive.

quick=True (default is False; particular must be True)
   Selects a fast heuristic to find a solution with many zeros whereas
   a value of False uses the very slow method guaranteed to find the
   largest number of zeros possible.

cubics=True (default)
   Return explicit solutions when cubic expressions are encountered.
   When False, quartics and quintics are disabled, too.
quartics=True (default)
Return explicit solutions when quartic expressions are encountered. When False, quintics are disabled, too.

quintics=True (default)
Return explicit solutions (if possible) when quintic expressions are encountered.

Explanation

Currently supported:
• polynomial
• transcendental
• piecewise combinations of the above
• systems of linear and polynomial equations
• systems containing relational expressions
• systems implied by undetermined coefficients

Examples

The default output varies according to the input and might be a list (possibly empty), a dictionary, a list of dictionaries or tuples, or an expression involving relationals. For specifics regarding different forms of output that may appear, see Solve Output by Type (page 204). Let it suffice here to say that to obtain a uniform output from solve use dict=True or set=True (see below).

```python
>>> from sympy import solve, Poly, Eq, Matrix, Symbol
>>> from sympy.abc import x, y, z, a, b
```

The expressions that are passed can be Expr, Equality, or Poly classes (or lists of the same); a Matrix is considered to be a list of all the elements of the matrix:

```python
>>> solve(x - 3, x)
[3]
>>> solve(Eq(x, 3), x)
[3]
>>> solve(Poly(x - 3), x)
[3]
>>> solve(Matrix([[x, x + y]]), x, y) == solve([x, x + y], x, y)
True
```

If no symbols are indicated to be of interest and the equation is univariate, a list of values is returned; otherwise, the keys in a dictionary will indicate which (of all the variables used in the expression(s)) variables and solutions were found:

```python
>>> solve(x**2 - 4)
[-2, 2]
>>> solve((x - a)*(y - b))
[{a: x}, {b: y}]
```

(continues on next page)
If you pass symbols for which solutions are sought, the output will vary depending on the number of symbols you passed, whether you are passing a list of expressions or not, and whether a linear system was solved. Uniform output is attained by using dict=True or set=True.

```python
>>> solve([x - 3, y - 1])
{x: 3, y: 1}
>>> solve([x - 3, y**2 - 1])
[{x: 3, y: -1}, {x: 3, y: 1}]
```

If any equation does not depend on the symbol(s) given, it will be eliminated from the equation set and an answer may be given implicitly in terms of variables that were not of interest:

```python
>>> solve([x - y, y - 3], x)
{x: y}
```

When you pass all but one of the free symbols, an attempt is made to find a single solution based on the method of undetermined coefficients. If it succeeds, a dictionary of values is returned. If you want an algebraic solutions for one or more of the symbols, pass the

```python
>>> solve([x - y, y - 3], x)
{x: y}
```
expression to be solved in a list:

```python
>>> e = a*x + b - 2*x - 3
>>> solve(e, [a, b])
{a: 2, b: 3}
>>> solve([e], [a, b])
{a: -b/x + (2*x + 3)/x}
```

When there is no solution for any given symbol which will make all expressions zero, the empty list is returned (or an empty set in the tuple when set=True):

```python
>>> from sympy import sqrt
>>> solve(3, x)
[]
>>> solve(x - 3, y)
[]
>>> solve(sqrt(x) + 1, x, set=True)
([x], set())
```

When an object other than a Symbol is given as a symbol, it is isolated algebraically and an implicit solution may be obtained. This is mostly provided as a convenience to save you from replacing the object with a Symbol and solving for that Symbol. It will only work if the specified object can be replaced with a Symbol using the `subs` method:

```python
>>> from sympy import exp, Function
>>> f = Function('f')
>>> solve(f(x) - x, f(x))
[x]
>>> solve(f(x).diff(x) - f(x) - x, f(x).diff(x))
[x + f(x)]
>>> solve(f(x).diff(x) - f(x) - x, f(x))
[-x + Derivative(f(x), x)]
>>> solve(x + exp(x)**2, exp(x), set=True)
[(-exp(x),), (sqrt(-x),), (-sqrt(-x),)]
```

```python
>>> from sympy import Indexed, IndexedBase, Tuple
>>> A = IndexedBase('A')
>>> solve(eqs, eqs.atoms(Indexed))
{A[1]: 1, A[2]: 2}
```

- To solve for a function within a derivative, use `dsolve()` (page 807).

To solve for a symbol implicitly, use `implicit=True`:

```python
>>> solve(x + exp(x), x)
[-LambertW(1)]
>>> solve(x + exp(x), x, implicit=True)
[-exp(x)]
```

It is possible to solve for anything in an expression that can be replaced with a symbol using `subs` (page 993):
```
>>> solve(x + 2 + sqrt(3), x + 2)
[-sqrt(3)]
>>> solve((x + 2 + sqrt(3), x + 4 + y), y, x + 2)
{y: -2 + sqrt(3), x + 2: -sqrt(3)}
• Nothing heroic is done in this implicit solving so you may end up with a
 symbol still in the solution:
 >>> eqs = (x*y + 3*y + sqrt(3), x + 4 + y)
 >>> solve(eqs, y, x + 2)
 {y: -sqrt(3)/(x + 3), x + 2: -2*x/(x + 3) - 6/(x + 3) + \n sqrt(3)/(x + 3)}
 >>> solve(eqs, y*x, x)
 {x: -y - 4, x*y: -3*y - sqrt(3)}
• If you attempt to solve for a number, remember that the number you have
 obtained does not necessarily mean that the value is equivalent to the ex-
 pression obtained:
 >>> solve(sqrt(2) - 1, 1)
 [sqrt(2)]
 >>> solve(x - y + 1, 1) # !/\ -1 is targeted, too
 [x/(y - 1)]
 >>> [_.subs(z, -1) for _ in solve((x - y + 1).subs(-1, z), 1)]
 [-x + y]
```

**Additional Examples**

`solve()` with `check=True` (default) will run through the symbol tags to eliminate un-
wanted solutions. If no assumptions are included, all possible solutions will be returned:

```
>>> x = Symbol("x")
>>> solve(x**2 - 1)
[-1, 1]
```

By setting the `positive` flag, only one solution will be returned:

```
>>> pos = Symbol("pos", positive=True)
>>> solve(pos**2 - 1)
[1]
```

When the solutions are checked, those that make any denominator zero are automatically
excluded. If you do not want to exclude such solutions, then use the `check=False` option:

```
>>> from sympy import sin, limit
>>> solve(sin(x)/x) # 0 is excluded
[pi]
```

If `check=False`, then a solution to the numerator being zero is found but the value of
\( x = 0 \) is a spurious solution since \( \sin(x)/x \) has the well known limit (without discontinuity)
of \( 1 \) at \( x = 0 \):

```
>>> solve(sin(x)/x, check=False)
[0, pi]
```
In the following case, however, the limit exists and is equal to the value of $x = 0$ that is excluded when `check=True`:

```python
>>> eq = x**2*(1/x - z**2/x)
>>> solve(eq, x)
[]
>>> solve(eq, x, check=False)
[0]
>>> limit(eq, x, 0, '-')
0
>>> limit(eq, x, 0, '+')
0
```

**Solving Relationships**

When one or more expressions passed to `solve` is a relational, a relational result is returned (and the `dict` and `set` flags are ignored):

```python
>>> solve(x < 3)
(-oo < x) & (x < 3)
>>> solve([x < 3, x**2 > 4], x)
((-oo < x) & (x < -2)) | ((2 < x) & (x < 3))
>>> solve([x + y - 3, x > 3], x)
(3 < x) & (x < oo) & Eq(x, 3 - y)
```

Although checking of assumptions on symbols in relationals is not done, setting assumptions will affect how certain relationals might automatically simplify:

```python
>>> solve(x**2 > 4)
((-oo < x) & (x < -2)) | ((2 < x) & (x < oo))
```

```python
>>> r = Symbol('r', real=True)
>>> solve(r**2 > 4) # (2 < r) | (r < -2)
```

There is currently no algorithm in SymPy that allows you to use relationships to resolve more than one variable. So the following does not determine that $q < 0$ (and trying to solve for $r$ and $q$ will raise an error):

```python
>>> from sympy import symbols
>>> r, q = symbols('r, q', real=True)
>>> solve([r + q - 3, r > 3], r) # (3 < r) & Eq(r, 3 - q)
```

You can directly call the routine that `solve` calls when it encounters a relational: `reduce_inequalities()` (page 805). It treats `Expr` like `Equality`.

```python
>>> from sympy import reduce_inequalities
>>> reduce_inequalities([x**2 - 4]) # Eq(x, -2) | Eq(x, 2)
```

If each relationship contains only one symbol of interest, the expressions can be processed for multiple symbols:
But an error is raised if any relationship has more than one symbol of interest:

```python
>>> reduce_inequalities([0 <= x*y - 1, y < 3], [x, y])
Traceback (most recent call last):
 ... errors.NotImplementedError;
 inequality has more than one symbol of interest.
```

### Disabling High-Order Explicit Solutions

When solving polynomial expressions, you might not want explicit solutions (which can be quite long). If the expression is univariate, `CRootOf` instances will be returned instead:

```python
>>> solve(x**3 - x + 1)
[-1/((-1/2 - sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)) -
(-1/2 - sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)/3,
(-1/2 + sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)/3 -
1/((-1/2 + sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)),
-(3*sqrt(69)/2 + 27/2)**(1/3)/3 -
1/(3*sqrt(69)/2 + 27/2)**(1/3)]
```

If the expression is multivariate, no solution might be returned:

```python
>>> solve(x**3 - x + a, x, cubics=False)
[]
```

Sometimes solutions will be obtained even when a flag is False because the expression could be factored. In the following example, the equation can be factored as the product of a linear and a quadratic factor so explicit solutions (which did not require solving a cubic expression) are obtained:

```python
>>> eq = x**3 + 3*x**2 + x - 1
>>> solve(eq, cubics=False)
[-1, -1 + sqrt(2), -sqrt(2) - 1]
```

### Solving Equations Involving Radicals

Because of SymPy’s use of the principle root, some solutions to radical equations will be missed unless check=False:

```python
>>> from sympy import root
>>> eq = root(x**3 - 3*x**2, 3) + 1 - x
>>> solve(eq)
[]
>>> solve(eq, check=False)
[1/3]
```

In the above example, there is only a single solution to the equation. Other expressions
will yield spurious roots which must be checked manually; roots which give a negative argument to odd-powered radicals will also need special checking:

```python
>>> from sympy import real_root, S
>>> eq = real_root(x, 3) - real_root(x, 5) + S(1)/7
>>> solve(eq) # this gives 2 solutions but misses a 3rd
[CRootOf(7*x**5 - 7*x**3 + 1, 1)**15,
 CRootOf(7*x**5 - 7*x**3 + 1, 2)**15]
>>> sol = solve(eq, check=False)
>>> [abs(eq.subs(x,i).n(2)) for i in sol]
[0.48, 0.e-110, 0.e-110, 0.052, 0.052]
```

The first solution is negative so `real_root` must be used to see that it satisfies the expression:

```python
>>> abs(real_root(eq.subs(x, sol[0])).n(2))
0.e-110
```

If the roots of the equation are not real then more care will be necessary to find the roots, especially for higher order equations. Consider the following expression:

```python
>>> expr = real_root(x, 3) - real_root(x, 5)
```

We will construct a known value for this expression at $x = 3$ by selecting the 1-th root for each radical:

```python
>>> expr1 = real_root(x, 3, 1) - real_root(x, 5, 1)
>>> v = expr1.subs(x, -3)
```

The `solve` function is unable to find any exact roots to this equation:

```python
>>> eq = Eq(expr, v); eq1 = Eq(expr1, v)
>>> solve(eq, check=False), solve(eq1, check=False)
([], [])
```

The function `unrad`, however, can be used to get a form of the equation for which numerical roots can be found:

```python
>>> from sympy.solvers import unrad
>>> from sympy import nroots

>>> e, (p, cov) = unrad(eq)
>>> pvals = nroots(e)
>>> inversion = solve(cov, x)[0]
>>> xvals = [inversion.subs(p, i) for i in pvals]
```

Although `eq` or `eq1` could have been used to find `xvals`, the solution can only be verified with `expr1`:

```python
>>> z = expr - v
>>> [xi.n(chop=1e-9) for xi in xvals if abs(z.subs(x, xi).n()) < 1e-9]
[]
>>> z1 = expr1 - v
>>> [xi.n(chop=1e-9) for xi in xvals if abs(z1.subs(x, xi).n()) < 1e-9]
[-3.0]
```

See also:
**rsolve (page 900)**
For solving recurrence relationships

**dsolve (page 807)**
For solving differential equations

```python
sympy.solvers.solvers.solve_linear(lhs, rhs=0, symbols=[], exclude=[])```

Return a tuple derived from \(f = \text{lhs} - \text{rhs} \) that is one of the following: \((0, 1), (0, 0), (\text{symbol}, \text{solution}), (n, d)\).

Explanation

\((0, 1)\) meaning that \(f \) is independent of the symbols in \(\text{symbols} \) that are not in \(\text{exclude} \).

\((0, 0)\) meaning that there is no solution to the equation amongst the symbols given. If the first element of the tuple is not zero, then the function is guaranteed to be dependent on a symbol in \(\text{symbols} \).

\((\text{symbol}, \text{solution})\) where symbol appears linearly in the numerator of \(f \), is in \(\text{symbols} \) (if given), and is not in \(\text{exclude} \) (if given). No simplification is done to \(f \) other than a \text{mul=True} expansion, so the solution will correspond strictly to a unique solution.

\((n, d)\) where \(n \) and \(d \) are the numerator and denominator of \(f \) when the numerator was not linear in any symbol of interest; \(n \) will never be a symbol unless a solution for that symbol was found (in which case the second element is the solution, not the denominator).

Examples

```python
>>> from sympy import cancel, Pow

f is independent of the symbols in \( \text{symbols} \) that are not in \( \text{exclude} \):

```
If the numerator of the expression is a symbol, then \((0, 0)\) is returned if the solution for that symbol would have set any denominator to 0:

```python
>>> eq = 1/(1/x - 2)
>>> eq.as_numer_denom()
(x, 1 - 2*x)
>>> solve_linear(eq)
(0, 0)
```

But automatic rewriting may cause a symbol in the denominator to appear in the numerator so a solution will be returned:

```python
>>> (1/x)**-1
x
>>> solve_linear((1/x)**-1)
(x, 0)
```

Use an unevaluated expression to avoid this:

```python
>>> solve_linear(Pow(1/x, -1, evaluate=False))
(0, 0)
```

If \(x\) is allowed to cancel in the following expression, then it appears to be linear in \(x\), but this sort of cancellation is not done by `solve_linear` so the solution will always satisfy the original expression without causing a division by zero error.

```python
>>> eq = x**2*(1/x - z**2/x)
>>> solve_linear(cancel(eq))
(x, 0)
>>> solve_linear(eq)
(x**2*(1 - z**2), x)
```

A list of symbols for which a solution is desired may be given:

```python
>>> solve_linear(x + y + z, symbols=[y])
(y, -x - z)
```

A list of symbols to ignore may also be given:

```python
>>> solve_linear(x + y + z, exclude=[x])
(y, -x - z)
```

(A solution for \(y\) is obtained because it is the first variable from the canonically sorted list of symbols that had a linear solution.)

```python
sympy.solvers.solvers.solve_linear_system(system, *symbols, **flags)
```

Solve system of \(N\) linear equations with \(M\) variables, which means both under- and overdetermined systems are supported.
Explanation

The possible number of solutions is zero, one, or infinite. Respectively, this procedure will return None or a dictionary with solutions. In the case of underdetermined systems, all arbitrary parameters are skipped. This may cause a situation in which an empty dictionary is returned. In that case, all symbols can be assigned arbitrary values.

Input to this function is a $N \times M + 1$ matrix, which means it has to be in augmented form. If you prefer to enter N equations and M unknowns then use solve(Neqs, *Msymbols) instead. Note: a local copy of the matrix is made by this routine so the matrix that is passed will not be modified.

The algorithm used here is fraction-free Gaussian elimination, which results, after elimination, in an upper-triangular matrix. Then solutions are found using back-substitution. This approach is more efficient and compact than the Gauss-Jordan method.

Examples

```python
>>> from sympy import Matrix, solve_linear_system
>>> from sympy.abc import x, y

Solve the following system:

\[
\begin{align*}
x + 4y &= 2 \\
-2x + y &= 14
\end{align*}
\]

```python
>>> system = Matrix((
 (1, 4, 2),
 (-2, 1, 14)
))
>>> solve_linear_system(system, x, y)
{x: -6, y: 2}
```

A degenerate system returns an empty dictionary:

```python
>>> system = Matrix((
 (0, 0, 0),
 (0, 0, 0)
))
>>> solve_linear_system(system, x, y)
{}
```

```python
sympy.solvers.solvers.solve_linear_system_LU(matrix, syms)
```

Solves the augmented matrix system using LUsolve and returns a dictionary in which solutions are keyed to the symbols of `syms` as ordered.

Explanation

The matrix must be invertible.
Examples

```python
>>> from sympy import Matrix, solve_linear_system_LU
>>> from sympy.abc import x, y, z

>>> solve_linear_system_LU(Matrix([[1, 2, 0, 1],
... [3, 2, 2, 1],
... [2, 0, 0, 1]]), [x, y, z])
{x: 1/2, y: 1/4, z: -1/2}
```

See also:

* `LUsolve` (page 1328)

`sympy.solvers.solvers.solve_undetermined_coeffs(equ, coeffs, *syms, **flags)`

Solve a system of equations in $k$ parameters that is formed by matching coefficients in variables `coeffs` that are on factors dependent on the remaining variables (or those given explicitly by `syms`).

**Explanation**

The result of this function is a dictionary with symbolic values of those parameters with respect to coefficients in $q$ - empty if there is no solution or coefficients do not appear in the equation - else None (if the system was not recognized). If there is more than one solution, the solutions are passed as a list. The output can be modified using the same semantics as for `solve` since the flags that are passed are sent directly to `solve` so, for example the flag `dict=True` will always return a list of solutions as dictionaries.

This function accepts both Equality and Expr class instances. The solving process is most efficient when symbols are specified in addition to parameters to be determined, but an attempt to determine them (if absent) will be made. If an expected solution is not obtained (and symbols were not specified) try specifying them.

**Examples**

```python
>>> from sympy import Eq, solve_undetermined_coeffs
>>> from sympy.abc import a, b, c, h, p, k, x, y

>>> solve_undetermined_coeffs(Eq(a*x + a + b, x/2), [a, b], x)
{a: 1/2, b: -1/2}
>>> solve_undetermined_coeffs(a - 2, [a])
{a: 2}
```

The equation can be nonlinear in the symbols:

```python
>>> X, Y, Z = y, x**y, y*x**y
>>> eq = a*X + b*Y + c*Z - X - 2*Y - 3*Z
>>> coeffs = a, b, c
>>> syms = x, y
>>> solve_undetermined_coeffs(eq, coeffs, syms)
{a: 1, b: 2, c: 3}
```
And the system can be nonlinear in coefficients, too, but if there is only a single solution, it will be returned as a dictionary:

```python
>>> eq = a*x**2 + b*x + c - ((x - h)**2 + 4*p*k)/4/p
>>> solve_undetermined_coeffs(eq, (h, p, k), x)
{h: -b/(2*a), k: (4*a*c - b**2)/(4*a), p: 1/(4*a)}
```

Multiple solutions are always returned in a list:

```python
>>> solve_undetermined_coeffs(a**2*x + b - x, [a, b], x)
\[\{a: -1, b: 0\}, \{a: 1, b: 0\}\]
```

Using flag `dict=True` (in keeping with semantics in `solve()` (page 882)) will force the result to always be a list with any solutions as elements in that list.

```python
>>> solve_undetermined_coeffs(a*x - 2*x, [a], dict=True)
\[\{a: 2\}\]
```

**sympy.solvers.solvers.nsolve(**`*args, dict=False, **kwargs`**)

Solve a nonlinear equation system numerically: `nsolve(f, [args], x0, modules=['mpmath'], **kwargs)`.

**Explanation**

`f` is a vector function of symbolic expressions representing the system. `args` are the variables. If there is only one variable, this argument can be omitted. `x0` is a starting vector close to a solution.

Use the modules keyword to specify which modules should be used to evaluate the function and the Jacobian matrix. Make sure to use a module that supports matrices. For more information on the syntax, please see the docstring of lambdify.

If the keyword arguments contain `dict=True` (default is False) `nsolve` will return a list (perhaps empty) of solution mappings. This might be especially useful if you want to use `nsolve` as a fallback to solve since using the dict argument for both methods produces return values of consistent type structure. Please note: to keep this consistent with `solve`, the solution will be returned in a list even though `nsolve` (currently at least) only finds one solution at a time.

Overdetermined systems are supported.

**Examples**

```python
>>> from sympy import Symbol, nsolve
>>> import mpmath
>>> mpmath.mp.dps = 15
>>> x1 = Symbol('x1')
>>> x2 = Symbol('x2')
>>> f1 = 3 * x1**2 - 2 * x2**2 - 1
>>> f2 = x1**2 - 2 * x1 + x2**2 + 2 * x2 - 8
>>> print(nsolve((f1, f2), (x1, x2), (-1, 1)))
Matrix([[\[-1.19287309935246\], \[1.27844411169911\]]])
```
For one-dimensional functions the syntax is simplified:

```python
>>> from sympy import sin, nsolve
>>> from sympy.abc import x

>>> nsolve(sin(x), x, 2)
3.14159265358979
>>> nsolve(sin(x), 2)
3.14159265358979
```

To solve with higher precision than the default, use the prec argument:

```python
>>> from sympy import cos

>>> nsolve(cos(x) - x, 1)
0.739085133215161
>>> nsolve(cos(x) - x, 1, prec=50)
0.73908513321516064165531208767387340401341175890076

>>> cos(_)
0.73908513321516064165531208767387340401341175890076
```

To solve for complex roots of real functions, a nonreal initial point must be specified:

```python
>>> from sympy import I

>>> nsolve(x**2 + 2, I)
1.4142135623731*I
```

`mpmath.findroot` is used and you can find their more extensive documentation, especially concerning keyword parameters and available solvers. Note, however, that functions which are very steep near the root, the verification of the solution may fail. In this case you should use the flag verify=False and independently verify the solution.

```python
>>> from sympy import cos, cosh

>>> f = cos(x)*cosh(x) - 1
>>> nsolve(f, 3.14*100)
Traceback (most recent call last):
...
ValueError: Could not find root within given tolerance. (1.39267e+230 > 2.1684e-19)
>>> ans = nsolve(f, 3.14*100, verify=False); ans
312.588469032184
>>> f.subs(x, ans).n(2)
2.1e+121
>>> (f/f.diff(x)).subs(x, ans).n(2)
7.4e-15
```

One might safely skip the verification if bounds of the root are known and a bisection method is used:

```python
>>> bounds = lambda i: (3.14*i, 3.14*(i + 1))
>>> nsolve(f, bounds(100), solver='bisect', verify=False)
315.730061685774
```

Alternatively, a function may be better behaved when the denominator is ignored. Since this is not always the case, however, the decision of what function to use is left to the discretion of the user.
sympy.solvers.solvers.checksol(f, symbol, sol=None, **flags)

Checks whether sol is a solution of equation \( f = 0 \).

**Explanation**

Input can be either a single symbol and corresponding value or a dictionary of symbols and values. When given as a dictionary and flag simplify=True, the values in the dictionary will be simplified. \( f \) can be a single equation or an iterable of equations. A solution must satisfy all equations in \( f \) to be considered valid; if a solution does not satisfy any equation, False is returned; if one or more checks are inconclusive (and none are False) then None is returned.

**Examples**

```python
>>> from sympy import checksol, symbols
>>> x, y = symbols('x,y')
>>> checksol(x**4 - 1, x, 1)
True
>>> checksol(x**4 - 1, x, 0)
False
>>> checksol(x**2 + y**2 - 5**2, {x: 3, y: 4})
True
```

To check if an expression is zero using checksol(), pass it as \( f \) and send an empty dictionary for symbol:

```python
>>> checksol(x**2 + x - x*(x + 1), {})
True
```

None is returned if checksol() could not conclude.

**flags:**

- **numerical=True (default)**
  - do a fast numerical check if \( f \) has only one symbol.

- **minimal=True (default is False)**
  - a very fast, minimal testing.

- **warn=True (default is False)**
  - show a warning if checksol() could not conclude.
‘simplify=True (default)’
simplify solution before substituting into function and simplify the function before trying specific simplifications

‘force=True (default is False)’
make positive all symbols without assumptions regarding sign.

```python
sympy.solvers.solvers.unrad(eq, *syms, **flags)
```
Remove radicals with symbolic arguments and return (eq, cov), None, or raise an error.

**Explanation**

None is returned if there are no radicals to remove.

NotImplementedError is raised if there are radicals and they cannot be removed or if the relationship between the original symbols and the change of variable needed to rewrite the system as a polynomial cannot be solved.

Otherwise the tuple, (eq, cov), is returned where:

**eq, cov**
- eq is an equation without radicals (in the symbol(s) of interest) whose solutions are a superset of the solutions to the original equation. eq might be rewritten in terms of a new variable; the relationship to the original variables is given by cov which is a list containing v and v**p - b where p is the power needed to clear the radical and b is the radical now expressed as a polynomial in the symbols of interest. For example, for sqrt(2 - x) the tuple would be (c, c**2 - 2 + x). The solutions of eq will contain solutions to the original equation (if there are any).

**syms**
- An iterable of symbols which, if provided, will limit the focus of radical removal: only radicals with one or more of the symbols of interest will be cleared. All free symbols are used if syms is not set.

**flags** are used internally for communication during recursive calls. Two options are also recognized:
- take, when defined, is interpreted as a single-argument function that returns True if a given Pow should be handled.

Radicals can be removed from an expression if:

- All bases of the radicals are the same; a change of variables is done in this case.
- If all radicals appear in one term of the expression.
- There are only four terms with sqrt() factors or there are less than four terms having sqrt() factors.
- There are only two terms with radicals.
Examples

```python
>>> from sympy.solvers.solvers import unrad
>>> from sympy import x
>>> from sympy import sqrt, Rational, root

>>> unrad(sqrt(x)*x**Rational(1, 3) + 2)
(x**5 - 64, [])
>>> unrad(sqrt(x) + root(x + 1, 3))
(-x**3 + x**2 + 2*x + 1, [])
>>> eq = sqrt(x) + root(x, 3) - 2
>>> unrad(eq)
(_p**3 + _p**2 - 2, [_p, _p**6 - x])
```

Ordinary Differential equations (ODEs)

See *ODE* (page 807).

Partial Differential Equations (PDEs)

See *PDE* (page 872).

Deutils (Utilities for solving ODE's and PDE's)

`sympy.solvers.deutils.ode_order(expr, func)`

Returns the order of a given differential equation with respect to func.

This function is implemented recursively.

Examples

```python
>>> from sympy import Function
>>> from sympy.solvers.deutils import ode_order
>>> from sympy import x
>>> f, g = map(Function, ['f', 'g'])
>>> ode_order(f(x).diff(x, 2) + f(x).diff()**2 +
... f(x).diff(), f(x))
2
>>> ode_order(f(x).diff(x, 2) + g(x).diff(x, 3), f(x))
2
>>> ode_order(f(x).diff(x, 2) + g(x).diff(x, 3), g(x))
3
```
SymPy Documentation, Release 1.12.1

Recurrence Equations

**sympy.solvers.recurr.rsolve**(*f, y, init=None*)

Solve univariate recurrence with rational coefficients.

Given k-th order linear recurrence \( L_y = f \), or equivalently:

\[
a_k(n)y(n + k) + a_{k-1}(n)y(n + k - 1) + \cdots + a_0(n)y(n) = f(n)
\]

where \( a_i(n) \), for \( i = 0, \ldots, k \), are polynomials or rational functions in \( n \), and \( f \) is a hypergeometric function or a sum of a fixed number of pairwise dissimilar hypergeometric terms in \( n \), finds all solutions or returns \( \text{None} \), if none were found.

Initial conditions can be given as a dictionary in two forms:

1. \( \{ n_0 : v_0, n_1 : v_1, \ldots, n_m : v_m \} \)
2. \( \{ y(n_0) : v_0, y(n_1) : v_1, \ldots, y(n_m) : v_m \} \)

or as a list \( L \) of values:

\[
L = [v_0, v_1, \ldots, v_m]
\]

where \( L[i] = v_i \), for \( i = 0, \ldots, m \), maps to \( y(n_i) \).

**Examples**

Lets consider the following recurrence:

\[
(n-1)y(n+2) - (n^2 + 3n - 2)y(n+1) + 2n(n+1)y(n) = 0
\]

```python
>>> from sympy import Function, rsolve
>>> from sympy.abc import n
>>> y = Function('y')

>>> f = (n - 1)*y(n + 2) - (n**2 + 3*n - 2)*y(n + 1) + 2*n*(n + 1)*y(n)

>>> rsolve(f, y(n))
2**n*C0 + C1*factorial(n)

>>> rsolve(f, y(n), {y(0):0, y(1):3})
3*2**n - 3*factorial(n)
```

See also:

- **rsolve_poly** (page 900), **rsolve_ratio** (page 901), **rsolve_hyper** (page 902)

**sympy.solvers.recurr.rsolve_poly**(*coeffs, f, n, shift=0, **hints*)

Given linear recurrence operator \( L \) of order \( k \) with polynomial coefficients and inhomogeneous equation \( L_y = f \), where \( f \) is a polynomial, we seek for all polynomial solutions over field \( K \) of characteristic zero.

The algorithm performs two basic steps:

1. Compute degree \( N \) of the general polynomial solution.
2. Find all polynomials of degree \( N \) or less of \( L_y = f \).
There are two methods for computing the polynomial solutions. If the degree bound is relatively small, i.e. it’s smaller than or equal to the order of the recurrence, then naive method of undetermined coefficients is being used. This gives a system of algebraic equations with $N + 1$ unknowns.

In the other case, the algorithm performs transformation of the initial equation to an equivalent one for which the system of algebraic equations has only $r$ indeterminates. This method is quite sophisticated (in comparison with the naive one) and was invented together by Abramov, Bronstein and Petkovsek.

It is possible to generalize the algorithm implemented here to the case of linear q-difference and differential equations.

Let’s say that we would like to compute $m$-th Bernoulli polynomial up to a constant. For this we can use $b(n+1) - b(n) = mn^{m-1}$ recurrence, which has solution $b(n) = B_m + C$. For example:

```python
>>> from sympy import Symbol, rsolve_poly
>>> n = Symbol('n', integer=True)

>>> rsolve_poly([-1, 1], 4*n**3, n)
C0 + n**4 - 2*n**3 + n**2
```

References

[R822], [R823], [R824]

`sympy.solvers.recurr.rsolve_ratio(coeffs, f, n, **hints)`

Given linear recurrence operator $L$ of order $k$ with polynomial coefficients and inhomogeneous equation $L\ y = f$, where $f$ is a polynomial, we seek for all rational solutions over field $K$ of characteristic zero.

This procedure accepts only polynomials, however if you are interested in solving recurrence with rational coefficients then use `rsolve` which will pre-process the given equation and run this procedure with polynomial arguments.

The algorithm performs two basic steps:

1. Compute polynomial $v(n)$ which can be used as universal denominator of any rational solution of equation $L\ y = f$.

2. Construct new linear difference equation by substitution $y(n) = u(n)/v(n)$ and solve it for $u(n)$ finding all its polynomial solutions. Return None if none were found.

The algorithm implemented here is a revised version of the original Abramov’s algorithm, developed in 1989. The new approach is much simpler to implement and has better overall efficiency. This method can be easily adapted to the q-difference equations case.

Besides finding rational solutions alone, this function is an important part of Hyper algorithm where it is used to find a particular solution for the inhomogeneous part of a recurrence.
Examples

```python
>>> from sympy import import x
>>> from sympy import import rsolve_ratio
>>> rsolve_ratio([-2*x**3 + x**2 + 2*x - 1, 2*x**3 + x**2 - 6*x,
... - 2*x**3 - 11*x**2 - 18*x - 9, 2*x**3 + 13*x**2 + 22*x + 8], 0, x)
C0*(2*x - 3)/(2*(x**2 - 1))
```

See also:
rsolve_hyper (page 902)

References

[R825]
sympy.solvers.recurr.rsolve_hyper(coefficients, f, n, **hints)

Given linear recurrence operator $L$ of order $k$ with polynomial coefficients and inhomogeneous equation $L_y = f$ we seek for all hypergeometric solutions over field $K$ of characteristic zero.

The inhomogeneous part can be either hypergeometric or a sum of a fixed number of pairwise dissimilar hypergeometric terms.

The algorithm performs three basic steps:

1. Group together similar hypergeometric terms in the inhomogeneous part of $L_y = f$, and find particular solution using Abramov’s algorithm.
2. Compute generating set of $L$ and find basis in it, so that all solutions are linearly independent.
3. Form final solution with the number of arbitrary constants equal to dimension of basis of $L$.

Term $a(n)$ is hypergeometric if it is annihilated by first order linear difference equations with polynomial coefficients or, in simpler words, if consecutive term ratio is a rational function.

The output this procedure is a linear combination of fixed number of hypergeometric terms. However the underlying method can generate larger class of solutions - D’Alembertian terms.

Note also that this method not only computes the kernel of the inhomogeneous equation, but also reduces in to a basis so that solutions generated by this procedure are linearly independent.
Examples

```python
>>> from sympy.solvers import rsolve_hyper
>>> from sympy.abc import x

>>> rsolve_hyper([-1, -1, 1], 0, x)
C0*(1/2 - sqrt(5)/2)**x + C1*(1/2 + sqrt(5)/2)**x

>>> rsolve_hyper([-1, 1], 1 + x, x)
C0 + x*(x + 1)/2
```

References

[R826], [R827]

Systems of Polynomial Equations

`sympy.solvers.polysys.solve_poly_system(seq, *gens, strict=False, **args)`

Return a list of solutions for the system of polynomial equations or else None.

Parameters

- `seq`: a list/tuple/set
  - Listing all the equations that are needed to be solved
- `gens`: generators
  - generators of the equations in seq for which we want the solutions
- `strict`: a boolean (default is False)
  - if strict is True, NotImplementedError will be raised if the solution is known to be incomplete (which can occur if not all solutions are expressible in radicals)
- `args`: Keyword arguments
  - Special options for solving the equations.

Returns

- List[Tuple]
  - a list of tuples with elements being solutions for the symbols in the order they were passed as gens
- None
  - None is returned when the computed basis contains only the ground.
Examples

```python
>>> from sympy import solve_poly_system
>>> from sympy.abc import x, y

>>> solve_poly_system([x*y - 2*y, 2*y**2 - x**2], x, y)
[(0, 0), (2, -sqrt(2)), (2, sqrt(2))]

>>> solve_poly_system([x**5 - x + y**3, y**2 - 1], x, y, strict=True)
Traceback (most recent call last):
 ... UnsolvableFactorError
```

`sympy.solvers.polysys.solve_triangulated(polys, *gens, **args)`
Solve a polynomial system using Gianni-Kalkbrenner algorithm.

The algorithm proceeds by computing one Groebner basis in the ground domain and then by iteratively computing polynomial factorizations in appropriately constructed algebraic extensions of the ground domain.

**Parameters**
- **polys**: a list/tuple/set
  - Listing all the equations that are needed to be solved
- **gens**: generators
  - generators of the equations in polys for which we want the solutions
- **args**: Keyword arguments
  - Special options for solving the equations

**Returns**
- List[Tuple]
  - A List of tuples. Solutions for symbols that satisfy the equations listed in polys

Examples

```python
>>> from sympy import solve_triangulated
>>> from sympy.abc import x, y, z

>>> F = [x**2 + y + z - 1, x + y**2 + z - 1, x + y + z**2 - 1]

>>> solve_triangulated(F, x, y, z)
[((0, 0, 1), (0, 1, 0), (1, 0, 0))]
```
References


Diophantine Equations (DEs)

See Diophantine (page 769)

Inequalities

See Inequality Solvers (page 803)

Solveset

This is the official documentation of the solveset module in solvers. It contains the frequently asked questions about our new module to solve equations.

Note: For a beginner-friendly guide focused on solving common types of equations, refer to Solve Equations (page 131).

What’s wrong with solve():

SymPy already has a pretty powerful solve function. But it has some deficiencies. For example:

1. It doesn’t have a consistent output for various types of solutions It needs to return a lot of types of solutions consistently:
   • Single solution : \( x = 1 \)
   • Multiple solutions: \( x^2 = 1 \)
   • No Solution: \( x^2 + 1 = 0; x \in \mathbb{R} \)
   • Interval of solution: \(|x| = 0\)
   • Infinitely many solutions: \( \sin(x) = 0 \)
   • Multivariate functions with point solutions: \( x^2 + y^2 = 0 \)
   • Multivariate functions with non-point solution: \( x^2 + y^2 = 1 \)
   • System of equations: \( x + y = 1 \) and \( x - y = 0 \)
   • Relational: \( x > 0 \)
   • And the most important case: “We don’t Know”

2. The input API has a lot of parameters and it can be difficult to use.
3. There are cases like finding the maxima and minima of function using critical points where it is important to know if it has returned all the solutions. `solve` does not guarantee this.

**Why `solve set`?**

- `solve set` has an alternative consistent input and output interface: `solve set` returns a set object and a set object takes care of all types of output. For cases where it does not “know” all the solutions a `ConditionSet` with a partial solution is returned. For input it only takes the equation, the variables to solve for and the optional argument `domain` over which the equation is to be solved.
- `solve set` can return infinitely many solutions. For example solving for \( \sin(x) = 0 \) returns \( \{2n\pi | n \in \mathbb{Z}\} \cup \{2n\pi + \pi | n \in \mathbb{Z}\} \), whereas `solve` only returns \( [0, \pi] \).
- There is a clear code level and interface level separation between solvers for equations in the complex domain and the real domain. For example solving \( e^x = 1 \) when \( x \) is to be solved in the complex domain, returns the set of all solutions, that is \( \{2ni\pi | n \in \mathbb{Z}\} \), whereas if \( x \) is to be solved in the real domain then only \( \{0\} \) is returned.

**Why do we use Sets as an output type?**

SymPy has a well developed sets module, which can represent most of the set containers in mathematics such as:

- **FiniteSet** (page 1241)
  
  Represents a finite set of discrete numbers.

- **Interval** (page 1239)
  
  Represents a real interval as a set.

- **ProductSet** (page 1242)
  
  Represents a Cartesian product of sets.

- **ImageSet** (page 1248)
  
  Represents the image of a set under a mathematical function

```python
>>> from sympy import ImageSet, S, Lambda
>>> from sympyabc import x
>>> squares = ImageSet(Lambda(x, x**2), S.Naturals) # \{x^2 for x in N\}
>>> 4 in squares
True
```

- **ComplexRegion** (page 1251)
  
  Represents the set of all complex numbers in a region in the Argand plane.

- **ConditionSet** (page 1257)
  
  Represents the set of elements, which satisfies a given condition.

Also, the predefined set classes such as:
• **Naturals** (page 1246), \$\mathbb{N}\$
  Represents the natural numbers (or counting numbers), which are all positive integers starting from 1.

• **Naturals0** (page 1247), \$\mathbb{N}_0\$
  Represents the whole numbers, which are all the non-negative integers, inclusive of 0.

• **Integers** (page 1247), \$\mathbb{Z}\$
  Represents all integers: positive, negative and zero.

• **Reals** (page 1248), \$\mathbb{R}\$
  Represents the set of all real numbers.

• **Complexes** (page 1248), \$\mathbb{C}\$
  Represents the set of all complex numbers.

• **EmptySet** (page 1245), \$\emptyset\$
  Represents the empty set.

The above six sets are available as Singletons, like \$\texttt{S.Integers}\$.

It is capable of most of the set operations in mathematics:

• Union
• Intersection
• Complement
• SymmetricDifference

The main reason for using sets as output to solvers is that it can consistently represent many types of solutions. For the single variable case it can represent:

• No solution (by the empty set).
• Finitely many solutions (by \texttt{FiniteSet}).
• Infinitely many solutions, both countably and uncountably infinite solutions (using the \texttt{ImageSet} module).
• Interval
• There can also be bizarre solutions to equations like the set of rational numbers.

No other Python object (list, dictionary, generator, Python sets) provides the flexibility of mathematical sets which our sets module tries to emulate. The second reason to use sets is that they are close to the entities which mathematicians deal with and it makes it easier to reason about them. Set objects conform to Pythonic conventions when possible, i.e., \texttt{x in A} and \texttt{for i in A} both work when they can be computed. Another advantage of using objects closer to mathematical entities is that the user won’t have to “learn” our representation and she can have her expectations transferred from her mathematical experience.

For the multivariate case we represent solutions as a set of points in a \$n\$-dimensional space and a point is represented by a \texttt{FiniteSet} of ordered tuples, which is a point in \$\mathbb{R}^n\$ or \$\mathbb{C}^n\$.

Please note that, the general \texttt{FiniteSet} is unordered, but a \texttt{FiniteSet} with a tuple as its only argument becomes ordered, since a tuple is ordered. So the order in the tuple is mapped to a pre-defined order of variables while returning solutions.
For example:

```python
>>> from sympy import FiniteSet
>>> FiniteSet(1, 2, 3) # Unordered
{1, 2, 3}
>>> FiniteSet((1, 2, 3)) # Ordered
{(1, 2, 3)}
```

Why not use dicts as output?

Dictionary are easy to deal with programmatically but mathematically they are not very precise and use of them can quickly lead to inconsistency and a lot of confusion. For example:

- There are a lot of cases where we don’t know the complete solution and we may like to output a partial solution, consider the equation $fg = 0$. The solution of this equation is the union of the solution of the following two equations: $f = 0$, $g = 0$. Let’s say that we are able to solve $f = 0$ but solving $g = 0$ isn’t supported yet. In this case we cannot represent partial solution of the given equation $fg = 0$ using dicts. This problem is solved with sets using a `ConditionSet` object:

  \[ sol_f \cup \{x|x \in \mathbb{R} \land g = 0\}, \text{where } sol_f \text{ is the solution of the equation } f = 0. \]

- Using a dict may lead to surprising results like:

  ```python
 - solve(Eq(x**2, 1), x) != solve(Eq(y**2, 1), y)
  ```

  Mathematically, this doesn’t make sense. Using `FiniteSet` here solves the problem.

- It also cannot represent solutions for equations like $|x| < 1$, which is a disk of radius 1 in the Argand Plane. This problem is solved using complex sets implemented as `ComplexRegion`.

**Input API of solveset**

`solveset` has simpler input API, unlike `solve`. It takes a maximum of three arguments:

```python
solveset(equation, variable=None, domain=S.Complexes)
```

**Equation**

The equation to solve.

**Variable**

The variable for which the equation is to be solved.

**Domain**

The domain in which the equation is to be solved.

`solveset` removes the `flags` argument of `solve`, which had made the input API more complicated and output API inconsistent.
What is this domain argument about?

Solveset is designed to be independent of the assumptions on the variable being solved for and instead, uses the domain argument to decide the solver to dispatch the equation to, namely solveset_real or solveset_complex. It's unlike the old solve which considers the assumption on the variable.

```python
>>> from sympy import solveset, S
>>> from sympy.abc import x
>>> solveset(x**2 + 1, x) # domain=S.Complexes is default
{-I, I}
>>> solveset(x**2 + 1, x, domain=S.Reals)
EmptySet
```

What are the general methods employed by solveset to solve an equation?

Solveset uses various methods to solve an equation, here is a brief overview of the methodology:

- The domain argument is first considered to know the domain in which the user is interested to get the solution.

- If the given function is a relational (>=, <=, >, <), and the domain is real, then solve_univariate_inequality and solutions are returned. Solving for complex solutions of inequalities, like \( x^2 < 0 \) is not yet supported.

- Based on the domain, the equation is dispatched to one of the two functions solveset_real or solveset_complex, which solves the given equation in the complex or real domain, respectively.

- If the given expression is a product of two or more functions, like say \( gh = 0 \), then the solution to the given equation is the Union of the solution of the equations \( g = 0 \) and \( h = 0 \), if and only if both \( g \) and \( h \) are finite for a finite input. So, the solution is built up recursively.

- If the function is trigonometric or hyperbolic, the function _solve_real_trig is called, which solves it by converting it to complex exponential form.

- The function is now checked if there is any instance of a Piecewise expression, if it is, then it’s converted to explicit expression and set pairs and then solved recursively.

- The respective solver now tries to invert the equation using the routines invert_real and invert_complex. These routines are based on the concept of mathematical inverse (though not exactly). It reduces the real/complex valued equation \( f(x) = y \) to a set of equations: \( \{g(x) = h_1(y), g(x) = h_2(y), \ldots, g(x) = h_n(y)\} \) where \( g(x) \) is a simpler function than \( f(x) \). There is some work needed to be done in this to find invert of more complex expressions.

- After the invert, the equations are checked for radical or Abs (Modulus), then the method _solve_radical tries to simplify the radical, by removing it using techniques like squaring, cubing etc, and _solve_abs solves nested Modulus by considering the positive and negative variants, iteratively.

- If none of the above method is successful, then methods of polynomial is used as follows:
- The method to solve the rational function, _solve_as_rational, is called. Based on the domain, the respective poly solver _solve_as_poly_real or _solve_as_poly_complex is called to solve f as a polynomial.

- The underlying method _solve_as_poly solves the equation using polynomial techniques if it’s already a polynomial equation or, with a change of variables, can be made so.

- The final solution set returned by solveset is the intersection of the set of solutions found above and the input domain.

How do we manipulate and return an infinite solution?

- In the real domain, we use our ImageSet class in the sets module to return infinite solutions. ImageSet is an image of a set under a mathematical function. For example, to represent the solution of the equation \( \sin(x) = 0 \), we can use the ImageSet as:

```python
>>> from sympy import ImageSet, Lambda, pi, S, Dummy, pprint
>>> n = Dummy('n')
>>> pprint(ImageSet(Lambda(n, 2*pi*n), S.Integers), use_unicode=True)
{2⋅n⋅π │ n ∊ ℤ}
```

Where \( n \) is a dummy variable. It is basically the image of the set of integers under the function \( 2\pi n \).

- In the complex domain, we use complex sets, which are implemented as the ComplexRegion class in the sets module, to represent infinite solution in the Argand plane. For example to represent the solution of the equation \( |z| = 1 \), which is a unit circle, we can use the ComplexRegion as:

```python
>>> from sympy import ComplexRegion, FiniteSet, Interval, pi, pprint
>>> pprint(ComplexRegion(FiniteSet(1)*Interval(0, 2*pi), polar=True), use_unicode=True)
{r⋅(i⋅sin(θ) + cos(θ)) │ r, θ ∊ {1} × [0, 2⋅π)}
```

Where the FiniteSet in the ProductSet is the range of the value of \( r \), which is the radius of the circle and the Interval is the range of \( θ \), the angle from the \( x \) axis representing a unit circle in the Argand plane.

Note: We also have non-polar form notation for representing solution in rectangular form. For example, to represent first two quadrants in the Argand plane, we can write the ComplexRegion as:

```python
>>> from sympy import ComplexRegion, Interval, pi, oo, pprint
>>> pprint(ComplexRegion(Interval(-oo, oo)*Interval(0, oo)), use_unicode=True)
{x + y⋅i │ x, y ∊ (-∞, ∞) × [0, ∞)}
```

where the Intervals are the range of \( x \) and \( y \) for the set of complex numbers \( x + iy \).
How does solveset ensure that it is not returning any wrong solution?

Solvers in a Computer Algebra System are based on heuristic algorithms, so it’s usually very hard to ensure 100% percent correctness, in every possible case. However there are still a lot of cases where we can ensure correctness. Solveset tries to verify correctness wherever it can. For example:

Consider the equation $|x| = n$. A naive method to solve this equation would return \{-n, n\} as its solution, which is not correct since \{-n, n\} can be its solution if and only if n is positive. Solveset returns this information as well to ensure correctness.

```python
>>> from sympy import symbols, S, pprint, solveset
>>> x, n = symbols('x, n')
>>> pprint(solveset(abs(x) - n, x, domain=S.Reals), use_unicode=True)
{x │ x ∈ {-n, n} ∧ (n ∈ [0, ∞))}
```

Though, there still a lot of work needs to be done in this regard.

Search based solver and step-by-step solution

Note: This is under Development.

After the introduction of ConditionSet (page 1257), the solving of equations can be seen as set transformations. Here is an abstract view of the things we can do to solve equations.

- Apply various set transformations on the given set.
- Define a metric of the usability of solutions, or a notion of some solutions being better than others.
- Different transformations would be the nodes of a tree.
- Suitable searching techniques could be applied to get the best solution.

ConditionSet gives us the ability to represent unevaluated equations and inequalities in forms like \{x|f(x) = 0; x ∈ S\} and \{x|f(x) > 0; x ∈ S\} but a more powerful thing about ConditionSet is that it allows us to write the intermediate steps as set to set transformation. Some of the transformations are:

- **Composition:** \{x|f(g(x)) = 0; x ∈ S\} ⇒ \{x|g(x) = y; x ∈ S, y ∈ \{z|f(z) = 0; z ∈ S\}\}
- **Polynomial Solver:** \{x|P(x) = 0; x ∈ S\} ⇒ \{x_1, x_2, ..., x_n\} ∩ S, where $x_i$ are roots of $P(x)$.
- **Invert solver:** \{x|f(x) = 0; x ∈ S\} ⇒ \{g(0)| all g such that f(g(x)) = x\}
- **logcombine:** \{x|\log(f(x)) + \log(g(x)); x ∈ S\} ⇒ \{x|\log(f(x),g(x)); x ∈ S\} if $f(x) > 0$ and $g(x) > 0$ ⇒ \{x|\log(f(x)) + \log(g(x)); x ∈ S\} otherwise
- **product solve:** \{x|f(x)g(x) = 0; x ∈ S\} ⇒ \{x|f(x) = 0; x ∈ S\}U\{x|g(x) = 0; x ∈ S\} given $f(x)$ and $g(x)$ are bounded. ⇒ \{x|f(x)g(x) = 0; x ∈ S\}, otherwise

Since the output type is same as the input type any composition of these transformations is also a valid transformation. And our aim is to find the right sequence of compositions (given the atoms) which transforms the given condition set to a set which is not a condition set i.e., FiniteSet, Interval, Set of Integers and their Union,
Intersection, Complement or ImageSet. We can assign a cost function to each set, such that, the more desirable that form of set is to us, the less the value of the cost function. This way our problem is now reduced to finding the path from the initial ConditionSet to the lowest valued set on a graph where the atomic transformations forms the edges.

**How do we deal with cases where only some of the solutions are known?**

Creating a universal equation solver, which can solve each and every equation we encounter in mathematics is an ideal case for solvers in a Computer Algebra System. When cases which are not solved or can only be solved incompletely, a ConditionSet is used and acts as an unevaluated solveset object.

Note that, mathematically, finding a complete set of solutions for an equation is undecidable. See Richardson’s theorem.

ConditionSet is basically a Set of elements which satisfy a given condition. For example, to represent the solutions of the equation in the real domain:

\[(x^2 - 4)(\sin(x) + x)\]

We can represent it as:

\[\{-2, 2\} \cup \{x \in \mathbb{R} \land x + \sin(x) = 0\}\]

**What is the plan for solve and solveset?**

There are still a few things solveset can’t do, which solve can, such as solving nonlinear multivariate & LambertW type equations. Hence, it’s not yet a perfect replacement for solve. As the algorithms in solveset mature, solveset may be able to be used within solve to replace some of its algorithms.

**How are symbolic parameters handled in solveset?**

Solveset is in its initial phase of development, so the symbolic parameters aren’t handled well for all the cases, but some work has been done in this regard to depict our ideology towards symbolic parameters. As an example, consider the solving of \(|x| = n\) for real \(x\), where \(n\) is a symbolic parameter. Solveset returns the value of \(x\) considering the domain of the symbolic parameter \(n\) as well:

\[([0, \infty) \cap \{n\}) \cup ((-\infty, 0] \cap \{-n\})\]

This simply means \(n\) is the solution only when it belongs to the Interval \([0, \infty)\) and \(-n\) is the solution only when \(-n\) belongs to the Interval \((-\infty, 0]\).

There are other cases to address too, like solving \(2^x + (a - 2)\) for \(x\) where \(a\) is a symbolic parameter. As of now, It returns the solution as an intersection with \(\mathbb{R}\), which is trivial, as it doesn’t reveal the domain of \(a\) in the solution.

Recently, we have also implemented a function to find the domain of the expression in a FiniteSet (Intersection with the interval) in which it is not-empty. It is a useful addition for dealing with symbolic parameters. For example:
SymPy Documentation, Release 1.12.1

>>> from sympy import Symbol, FiniteSet, Interval, not_empty_in, √, oo

>>> from sympy.abc import x

>>> not_empty_in(FiniteSet(x/2).intersect(Interval(0, 1)), x)
Interval(0, 2)

>>> not_empty_in(FiniteSet(x, x**2).intersect(Interval(1, 2)), x)
Union(Interval(1, 2), Interval(-√2, -1))

References

Solveset Module Reference

Use solveset() (page 913) to solve equations or expressions (assumed to be equal to 0) for a single variable. Solving an equation like \( x^2 = 1 \) can be done as follows:

```python
>>> from sympy import solveset

>>> from sympy import Symbol, Eq

>>> x = Symbol('x')

>>> solveset(Eq(x**2, 1), x)
{-1, 1}
```

Or one may manually rewrite the equation as an expression equal to 0:

```python
>>> solveset(x**2 - 1, x)
{-1, 1}
```

The first argument for solveset() (page 913) is an expression (equal to zero) or an equation and the second argument is the symbol that we want to solve the equation for.

sympy.solvers.solveset.solveset(f, symbol=None, domain=Complexes)

Solves a given inequality or equation with set as output

**Parameters**

- **f**: Expr or a relational.
  
  The target equation or inequality

- **symbol**: Symbol
  
  The variable for which the equation is solved

- **domain**: Set
  
  The domain over which the equation is solved

**Returns**

Set

A set of values for symbol for which \( f \) is True or is equal to zero. An EmptySet (page 1245) is returned if \( f \) is False or nonzero. A ConditionSet (page 1257) is returned as unsolved object if algorithms to evaluate complete solution are not yet implemented.

solveset claims to be complete in the solution set that it returns.

5.8. Topics 913
SymPy Documentation, Release 1.12.1

Raises

NotImplementedError
The algorithms to solve inequalities in complex domain are not yet implemented.

ValueError
The input is not valid.

RuntimeError
It is a bug, please report to the github issue tracker.

Notes

Python interprets 0 and 1 as False and True, respectively, but in this function they refer to solutions of an expression. So 0 and 1 return the domain and EmptySet, respectively, while True and False return the opposite (as they are assumed to be solutions of relational expressions).

Examples

```python
>>> from sympy import exp, sin, Symbol, pprint, S, Eq
>>> from sympy.solvers.solveset import solveset, solveset_real

• The default domain is complex. Not specifying a domain will lead to the solving of the equation in the complex domain (and this is not affected by the assumptions on the symbol):

 >>> x = Symbol('x')
 >>> pprint(solveset(exp(x) - 1, x), use_unicode=False)
 {2*n*I*pi | n in Integers}

 >>> x = Symbol('x', real=True)
 >>> pprint(solveset(exp(x) - 1, x), use_unicode=False)
 {2*n*I*pi | n in Integers}

• If you want to use solveset to solve the equation in the real domain, provide a real domain. (Using solveset_real does this automatically.)

 >>> R = S.Reals
 >>> x = Symbol('x')
 >>> solveset(exp(x) - 1, x, R)
 {0}
 >>> solveset_real(exp(x) - 1, x)
 {0}

The solution is unaffected by assumptions on the symbol:
```
When a `ConditionSet` (page 1257) is returned, symbols with assumptions that would alter the set are replaced with more generic symbols:

```python
>>> i = Symbol('i', imaginary=True)
>>> solveset(Eq(i**2 + i*sin(i), 1), i, domain=S.Reals)
ConditionSet(_R, Eq(_R**2 + _R*sin(_R) - 1, 0), Reals)
```

- Inequalities can be solved over the real domain only. Use of a complex domain leads to a `NotImplementedError`.

```python
>>> solveset(exp(x) > 1, x, R)
Interval.open(0, oo)
```

See also:

- `solveset_real` (page 915)
  - solver for real domain
- `solveset_complex` (page 915)
  - solver for complex domain

```python
sympy.solvers.solveset.solveset_real(f, symbol)
sympy.solvers.solveset.solveset_complex(f, symbol)
sympy.solvers.solveset.invert_real(f_x, y, x)
 Inverts a real-valued function. Same as `invert_complex()` (page 915), but sets the domain to `S.Reals` before inverting.
sympy.solvers.solveset.invert_complex(f_x, y, x, domain=Complexes)
 Reduce the complex valued equation \(f(x) = y \) to a set of equations

\[
\{ g(x) = h_1(y), g(x) = h_2(y), \ldots, g(x) = h_n(y) \}
\]

where \(g(x) \) is a simpler function than \(f(x) \). The return value is a tuple \((g(x), \text{set}_h) \), where \(g(x) \) is a function of \(x \) and \(\text{set}_h \) is the set of function \(\{h_1(y), h_2(y), \ldots, h_n(y)\} \). Here, \(y \) is not necessarily a symbol.

\(\text{set}_h \) contains the functions, along with the information about the domain in which they are valid, through set operations. For instance, if \(y = |x| - n \) is inverted in the real domain, then \(\text{set}_h \) is not simply \(\{-n, n\} \) as the nature of \(n \) is unknown; rather, it is:

\[
\{ \text{left}[0, \text{infty} \text{right}) \cap \text{left}[\text{right} \text{right}) \text{cup} \\
\text{left}[-\text{infty}, 0 \text{right}] \text{cap} \text{left}[0, \text{right} \text{right}) \text{cup} \\
\text{left}[-\text{infty}, -n \text{right}) \text{cup} \text{left}[n, \text{right} \text{right}) \text{cup} \}
\]

By default, the complex domain is used which means that inverting even seemingly simple functions like \(\exp(x) \) will give very different results from those obtained in the real domain. (In the case of \(\exp(x) \), the inversion via \(\log \) is multi-valued in the complex domain, having infinitely many branches.)
If you are working with real values only (or you are not sure which function to use) you should probably set the domain to \texttt{S.Reals} (or use \texttt{invert_real} which does that automatically).

Examples

```python
>>> from sympy.solvers.solveset import invert_complex, invert_real
>>> from sympy import exp
```

When does \(\exp(x) = y\)?

```python
>>> invert_complex(exp(x), y, x)
(x, ImageSet(Lambda(_n, I*(2*_n*pi + arg(y)) + log(Abs(y))), Integers))
```

```python
>>> invert_real(exp(x), y, x)
(x, Intersection({log(y)}, Reals))
```

When does \(\exp(x) = 1\)?

```python
>>> invert_complex(exp(x), 1, x)
(x, ImageSet(Lambda(_n, 2*_n*I*pi), Integers))
```

```python
>>> invert_real(exp(x), 1, x)
(x, {0})
```

See also:

\texttt{invert_real} (page 915), \texttt{invert_complex} (page 915)

\texttt{sympy.solvers.solveset.domain_check(f, symbol, p)}

Returns False if point \(p\) is infinite or any subexpression of \(f\) is infinite or becomes so after replacing symbol with \(p\). If none of these conditions is met then True will be returned.

Examples

```python
>>> from sympy import Mul, oo
>>> from sympy import exp
>>> from sympy.solvers.solveset import domain_check
```

```python
>>> g = 1/(1 + (1/(x + 1))**2)
>>> domain_check(g, x, -1)
False
>>> domain_check(x**2, x, 0)
True
>>> domain_check(1/x, x, oo)
False
```

- The function relies on the assumption that the original form of the equation has not been changed by automatic simplification.

```python
>>> domain_check(x/x, x, 0) # x/x is automatically simplified to 1
True
```
To deal with automatic evaluations use `evaluate=False`:

```python
>>> domain_check(Mul(x, 1/x, evaluate=False), x, 0)
False
```

```python
sympy.solvers.solve\text{set}.\text{solve}\text{fy}(f, \text{symbol}, \text{domain})
```

Solves an equation using `solve\text{set}` and returns the solution in accordance with the `solve` output API.

Returns
We classify the output based on the type of solution returned by `solve\text{set}`.

Raises

NotImplementedError

A ConditionSet is the input.

Solution | Output

FiniteSet	list
ImageSet,	list (if f is periodic) Union
Union	list (with FiniteSet)
EmptySet	empty list
Others	None

Examples

```python
>>> from sympy.solvers.solve\text{set} import solve\text{fy}
>>> from sympy.abc import x
>>> from sympy import S, tan, sin, exp
>>> solve\text{fy}(x**2 - 9, x, S.Reals)
[-3, 3]
>>> solve\text{fy}(\sin(x) - 1, x, S.Reals)
[\pi/2]
>>> solve\text{fy}(\tan(x), x, S.Reals)
[0]
>>> solve\text{fy}(\exp(x) - 1, x, S.Complexes)
```

```python
>>> solve\text{fy}(\exp(x) - 1, x, S.Reals)
[0]
```

```python
sympy.solvers.solve\text{set}.linear_eq\text{to}_\text{matrix}(equations, *symbols)
```

Converts a given System of Equations into Matrix form. Here `equations` must be a linear system of equations in `symbols`. Element $M[i, j]$ corresponds to the coefficient of the jth symbol in the ith equation.

The Matrix form corresponds to the augmented matrix form. For example:

\[
\begin{align*}
4x + 2y + 3z &= 1 \\
3x + y + z &= -6
\end{align*}
\]
\[2x + 4y + 9z = 2\]

This system will return \(A\) and \(b\) as:

\[$$A = \begin{bmatrix} 4 & 2 & 3 \\ 3 & 1 & 1 \\ 2 & 4 & 9 \end{bmatrix}$$, \(b = \begin{bmatrix} 1 \\ -6 \\ 2 \end{bmatrix}$$\]

The only simplification performed is to convert \(\text{Eq}(a, b) \Rightarrow a - b\).

Raises

- **NonlinearError**

The equations contain a nonlinear term.

- **ValueError**

The symbols are not given or are not unique.

Examples

```python
>>> from sympy import linear_eq_to_matrix, symbols

>>> c, x, y, z = symbols('c, x, y, z')

The coefficients (numerical or symbolic) of the symbols will be returned as matrices:

```python
>>> eqns = [c*x + z - 1 - c, y + z, x - y]
>>> A, b = linear_eq_to_matrix(eqns, [x, y, z])

```

This routine does not simplify expressions and will raise an error if nonlinearity is encountered:

```python
>>> eqns = [
 ... (x**2 - 3*x)/(x - 3) - 3,
 ... y**2 - 3*y - y*(y - 4) + x - 4]
>>> linear_eq_to_matrix(eqns, [x, y])
Traceback (most recent call last):
...
NonlinearError:
symbol-dependent term can be ignored using `strict=False`
```

Simplifying these equations will discard the removable singularity in the first and reveal the linear structure of the second:

```python
>>> [e.simplify() for e in eqns]
[x - 3, x + y - 4]
```
Any such simplification needed to eliminate nonlinear terms must be done before calling this routine.

```python
sympy.solvers.solve._set.kinsolve(system, *symbols)
```

Solves system of $N$ linear equations with $M$ variables; both underdetermined and overdetermined systems are supported. The possible number of solutions is zero, one or infinite. Zero solutions throws a ValueError, whereas infinite solutions are represented parametrically in terms of the given symbols. For unique solution a `FiniteSet` (page 1241) of ordered tuples is returned.

All standard input formats are supported: For the given set of equations, the respective input types are given below:

\[
3x + 2y - z = 1 \\
2x - 2y + 4z = -2 \\
2x - y + 2z = 0
\]

- Augmented matrix form, system given below:

\[
\begin{bmatrix}
3 & 2 & -1 & 1 \\
2 & -2 & 4 & -2 \\
2 & -1 & 2 & 0
\end{bmatrix}
\]

- List of equations form

\[
[3x + 2y - z - 1, 2x - 2y + 4z + 2, 2x - y + 2z]
\]

- Input $A$ and $b$ in matrix form (from $Ax = b$) are given as:

\[
\begin{bmatrix}
3 & 2 & -1 \\
2 & -2 & 4 \\
2 & -1 & 2
\end{bmatrix} \begin{bmatrix}
1 \\
-2 \\
0
\end{bmatrix}
\]

Symbols can always be passed but are actually only needed when 1) a system of equations is being passed and 2) the system is passed as an underdetermined matrix and one wants to control the name of the free variables in the result. An error is raised if no symbols are used for case 1, but if no symbols are provided for case 2, internally generated symbols will be provided. When providing symbols for case 2, there should be at least as many symbols are there are columns in matrix $A$.

The algorithm used here is Gauss-Jordan elimination, which results, after elimination, in a row echelon form matrix.

**Returns**

A `FiniteSet` containing an ordered tuple of values for the unknowns for which the `system` has a solution. (Wrapping the tuple in `FiniteSet` is used to maintain a consistent
output format throughout solveset.)

Returns EmptySet, if the linear system is inconsistent.

Raises

ValueError

The input is not valid. The symbols are not given.

Examples

```python
>>> from sympy import Matrix, linsolve, symbols
>>> x, y, z = symbols("x, y, z")
>>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 10]])
>>> b = Matrix([3, 6, 9])
>>> A
Matrix([[1, 2, 3],
 [4, 5, 6],
 [7, 8, 10]])
>>> b
Matrix([[3],
 [6],
 [9]])
>>> linsolve((A, b), [x, y, z])
{(-1, 2, 0)}
```

- Parametric Solution: In case the system is underdetermined, the function will return a parametric solution in terms of the given symbols. Those that are free will be returned unchanged. e.g. in the system below, \( z \) is returned as the solution for variable \( z \); it can take on any value.

```python
>>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> b = Matrix([3, 6, 9])
>>> linsolve((A, b), x, y, z)
{(z - 1, 2 - 2*z, z)}
```

If no symbols are given, internally generated symbols will be used. The \( \tau_0 \) in the third position indicates (as before) that the third variable – whatever it is named – can take on any value:

```python
>>> linsolve((A, b))
{(-tau0 - 1, 2 - 2*tau0, tau0)}
```

- List of equations as input

```python
>>> Eqns = [3*x + 2*y - z - 1, 2*x - 2*y + 4*z + 2, -x + y/2 - z]
>>> linsolve(Eqns, x, y, z)
{(1, -2, -2)}
```

- Augmented matrix as input
>>> aug = Matrix([[2, 1, 3, 1], [2, 6, 8, 3], [6, 8, 18, 5]])
>>> aug
Matrix([[2, 1, 3, 1],
        [2, 6, 8, 3],
        [6, 8, 18, 5]])
>>> linsolve(aug, x, y, z)
{(3/10, 2/5, 0)}

• Solve for symbolic coefficients

>>> a, b, c, d, e, f = symbols('a, b, c, d, e, f')
>>> eqns = [a*x + b*y - c, d*x + e*y - f]
>>> linsolve(eqns, x, y)
{(-b*f + c*e)/(a*e - b*d), (a*f - c*d)/(a*e - b*d))}

• A degenerate system returns solution as set of given symbols.

>>> system = Matrix(((0, 0, 0), [0, 0, 0], [0, 0, 0]))
>>> linsolve(system, x, y)
{(x, y)}

• For an empty system linsolve returns empty set

>>> linsolve([], x)
EmptySet

• An error is raised if any nonlinearity is detected, even if it could be removed with expansion

>>> linsolve([x*(1/x - 1)], x)
Traceback (most recent call last):
  ...
NonlinearError: nonlinear term: 1/x

>>> linsolve([x*(y + 1)], x, y)
Traceback (most recent call last):
  ...
NonlinearError: nonlinear cross-term: x*(y + 1)

>>> linsolve([x**2 - 1], x)
Traceback (most recent call last):
  ...
NonlinearError: nonlinear term: x**2

SymPy solveset.nonlinsolve(system, *symbols)
Solve system of \( N \) nonlinear equations with \( M \) variables, which means both under and overdetermined systems are supported. Positive dimensional system is also supported (A system with infinitely many solutions is said to be positive-dimensional). In a positive
dimensional system the solution will be dependent on at least one symbol. Returns both real solution and complex solution (if they exist).

**Parameters**

- `system` : list of equations
  The target system of equations
- `symbols` : list of Symbols
  symbols should be given as a sequence eg. list

**Returns**

A `FiniteSet` (page 1241) of ordered tuple of values of `symbols` for which the `system` has solution. Order of values in the tuple is same as symbols present in the parameter `symbols`.

Please note that general `FiniteSet` (page 1241) is unordered, the solution returned here is not simply a `FiniteSet` (page 1241) of solutions, rather it is a `FiniteSet` (page 1241) of ordered tuple, i.e. the first and only argument to `FiniteSet` (page 1241) is a tuple of solutions, which is ordered, and, hence ,the returned solution is ordered.

Also note that solution could also have been returned as an ordered tuple, `FiniteSet` is just a wrapper `{}` around the tuple. It has no other significance except for the fact it is just used to maintain a consistent output format throughout the solveset.

For the given set of equations, the respective input types are given below:

\[
\begin{align*}
xy - 1 & = 0 \\
4x^2 + y^2 - 5 & = 0 \\
\end{align*}
\]

```python
system = [x*y - 1, 4*x**2 + y**2 - 5]
symbols = [x, y]
```

**Raises**

- `ValueError`
  The input is not valid. The symbols are not given.
- `AttributeError`
  The input symbols are not `Symbol` type.
Examples

```python
>>> from sympy import symbols, nonlinsolve
>>> x, y, z = symbols('x, y, z', real=True)
>>> nonlinsolve([x*y - 1, 4*x**2 + y**2 - 5], [x, y])
{(-1, -1), (-1/2, -2), (1/2, 2), (1, 1)}
```

1. Positive dimensional system and complements:

```python
>>> from sympy import pprint
>>> from sympy.polys.polytools import is_zero_dimensional
>>> a, b, c, d = symbols('a, b, c, d', extended_real=True)
>>> eq1 = a + b + c + d
>>> eq2 = a*b + b*c + c*d + d*a
>>> eq3 = a*b*c + b*c*d + c*d*a + d*a*b
>>> eq4 = a*b*c*d - 1
>>> system = [eq1, eq2, eq3, eq4]
>>> is_zero_dimensional(system)
False
>>> pprint(nonlinsolve(system, [a, b, c, d]), use_unicode=False)
(-1, 1, 1, -1)
({(-1, -d, -d, {d} \ {0}), (-, -d, --, {d} \ {0})})
```

2. If some of the equations are non-polynomial then `nonlinsolve` will call the substitution function and return real and complex solutions, if present.

```python
>>> from sympy import exp, sin
>>> nonlinsolve([exp(x) - sin(y), y**2 - 4], [x, y])
{(ImageSet(Lambda(_n, I*(2*_n*pi + pi) + log(sin(2))), Integers), -2),
 (ImageSet(Lambda(_n, 2*_n*I*pi + log(sin(2))), Integers), 2)}
```

3. If system is non-linear polynomial and zero-dimensional then it returns both solution (real and complex solutions, if present) using `solve_poly_system()` (page 903):

```python
>>> from sympy import sqrt
>>> nonlinsolve([x**2 - 2*y**2 - 2, x*y - 2], [x, y])
{(-2, -1), (2, 1), (-sqrt(2)*I, sqrt(2)*I), (sqrt(2)*I, -sqrt(2)*I)}
```

4. `nonlinsolve` can solve some linear (zero or positive dimensional) system (because it uses the `sympy.polys.polytools.groebner()` (page 2451) function to get the groebner basis and then uses the substitution function basis as the new `system`). But it is not recommended to solve linear system using `nonlinsolve`, because `linsolve()` (page 919) is better for general linear systems.

```python
>>> nonlinsolve([x + 2*y - z - 3, x - y - 4*z + 9, y + z - 4], [x, y, z])
{(3*z - 5, 4 - z, z)}
```

5. System having polynomial equations and only real solution is solved using `solve_poly_system()` (page 903):
6. It is better to use symbols instead of trigonometric functions or Function (page 1096). For example, replace \( \sin(x) \) with a symbol, replace \( f(x) \) with a symbol and so on. Get a solution from nonlinsolve and then use solveset() (page 913) to get the value of \( x \).

**How Nonlinsolve Is Better Than Old Solver _solve_system:**

1. A positive dimensional system solver: nonlinsolve can return solution for positive dimensional system. It finds the Groebner Basis of the positive dimensional system(calling it as basis) then we can start solving equation(having least number of variable first in the basis) using solveset and substituting that solved solutions into other equation(of basis) to get solution in terms of minimum variables. Here the important thing is how we are substituting the known values and in which equations.

2. Real and complex solutions: nonlinsolve returns both real and complex solution. If all the equations in the system are polynomial then using solve_poly_system() (page 903) both real and complex solution is returned. If all the equations in the system are not polynomial equation then goes to substitution method with this polynomial and non polynomial equation(s), to solve for unsolved variables. Here to solve for particular variable solveset_real and solveset_complex is used. For both real and complex solution _solve_using_known_values is used inside substitution (substitution will be called when any non-polynomial equation is present). If a solution is valid its general solution is added to the final result.

3. Complement (page 1244) and Intersection (page 1242) will be added: nonlinsolve maintains dict for complements and intersections. If solveset find complements or/and intersections with any interval or set during the execution of substitution function, then complement or/and intersection for that variable is added before returning final solution.

**transolve**

sympy.solvers.solveset._transolve(f, symbol, domain)

Function to solve transcendental equations. It is a helper to solveset and should be used internally. _transolve currently supports the following class of equations:

- Exponential equations
- Logarithmic equations

**Parameters**

- \( f \) : Any transcendental equation that needs to be solved.
  
  This needs to be an expression, which is assumed to be equal to 0.

- \( symbol \) : The variable for which the equation is solved.
This needs to be of class `Symbol`.

**domain**: A set over which the equation is solved.

This needs to be of class `Set`.

**Returns**

Set

A set of values for `symbol` for which `f` is equal to zero. An `EmptySet` is returned if `f` does not have solutions in respective domain. A `ConditionSet` is returned as unsolved object if algorithms to evaluate complete solution are not yet implemented.

**How To Use _transolve**

`_transolve` should not be used as an independent function, because it assumes that the equation (`f`) and the symbol comes from `solveset` and might have undergone a few modification(s). To use `_transolve` as an independent function the equation (`f`) and the symbol should be passed as they would have been by `solveset`.

**Examples**

```python
>>> from sympy.solvers.solveset import _transolve as transolve
>>> from sympy.solvers.solvers import _tsolve as tsolve
>>> from sympy import symbols, S, pprint

>>> x = symbols('x', real=True) # assumption added
>>> transolve(5**(x - 3) - 3**(2*x + 1), x, S.Reals)
{-(log(3) + 3*log(5))/(-log(5) + 2*log(3))}
```

**How _transolve Works**

_transolve uses two types of helper functions to solve equations of a particular class:

- **Identifying helpers**: To determine whether a given equation belongs to a certain class of equation or not. Returns either `True` or `False`.
- **Solving helpers**: Once an equation is identified, a corresponding helper either solves the equation or returns a form of the equation that `solveset` might better be able to handle.

  - **Philosophy behind the module**

The purpose of _transolve is to take equations which are not already polynomial in their generator(s) and to either recast them as such through a valid transformation or to solve them outright. A pair of helper functions for each class of supported transcendental functions are employed for this purpose. One identifies the transcendental form of an equation and the other either solves it or recasts it into a tractable form that can be solved by `solveset`. For example, an equation in the form $a b^{f(x)} - c d^{g(x)} = 0$ can be transformed to $\log(a) + f(x) \log(b) - \log(c) - g(x) \log(d) = 0$ (under certain assumptions) and this can be solved with `solveset` if $f(x)$ and $g(x)$ are in polynomial form.
How _transolve Is Better Than _tsolve

1) Better output

_transolve provides expressions in a more simplified form.

Consider a simple exponential equation

```python
>>> f = 3**(2*x) - 2**(x + 3)
>>> pprint(transolve(f, x, S.Reals), use_unicode=False)
{------------------}
-3*log(2)
-2*log(3) + log(2)
>>> pprint(tsolve(f, x), use_unicode=False)
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>log(2/9)</td>
</tr>
</tbody>
</table>
[-log\2 /
```

2) Extensible

The API of _transolve is designed such that it is easily extensible, i.e. the code that solves a given class of equations is encapsulated in a helper and not mixed in with the code of _transolve itself.

3) Modular

_transolve is designed to be modular i.e, for every class of equation a separate helper for identification and solving is implemented. This makes it easy to change or modify any of the method implemented directly in the helpers without interfering with the actual structure of the API.

4) Faster Computation

Solving equation via _transolve is much faster as compared to _tsolve. In solve, attempts are made computing every possibility to get the solutions. This series of attempts makes solving a bit slow. In _transolve, computation begins only after a particular type of equation is identified.

How To Add New Class Of Equations

Adding a new class of equation solver is a three-step procedure:

- Identify the type of the equations

Determine the type of the class of equations to which they belong: it could be of Add, Pow, etc. types. Separate internal functions are used for each type. Write identification and solving helpers and use them from within the routine for the given type of equation (after adding it, if necessary). Something like:

```python
def add_type(lhs, rhs, x):

 if _is_exponential(lhs, x):
 new_eq = _solve_exponential(lhs, rhs, x)

```

(continues on next page)
• Define the identification helper.
• Define the solving helper.

Apart from this, a few other things needs to be taken care while adding an equation solver:

• Naming conventions: Name of the identification helper should be as _is_class where class will be the name or abbreviation of the class of equation. The solving helper will be named as _solve_class. For example: for exponential equations it becomes _is_exponential and _solve_exp.

• The identifying helpers should take two input parameters, the equation to be checked and the variable for which a solution is being sought, while solving helpers would require an additional domain parameter.

• Be sure to consider corner cases.
• Add tests for each helper.
• Add a docstring to your helper that describes the method implemented. The documentation of the helpers should identify:
  - the purpose of the helper,
  - the method used to identify and solve the equation,
  - a proof of correctness
  - the return values of the helpers

```python
sympy.solvers.solveset._is_exponential(f, symbol)
```
Return True if one or more terms contain symbol only in exponents, else False.

**Parameters**

- **f**: Expr
  The equation to be checked
- **symbol**: Symbol
  The variable in which the equation is checked

**Examples**

```python
>>> from sympy import symbols, cos, exp
>>> from sympy.solvers.solveset import _is_exponential as check
>>> x, y = symbols('x y')
>>> check(y, y)
False
>>> check(x**y - 1, y)
True
>>> check(x**y*2**y - 1, y)
True
```
>>> check(exp(x + 3) + 3**x, x)
True
>>> check(cos(2**x), x)
False

- Philosophy behind the helper

The function extracts each term of the equation and checks if it is of exponential form w.r.t symbol.

**sympy.solvers.solveset._solve_exponential**(lhs, rhs, symbol, domain)

Helper function for solving (supported) exponential equations.

Exponential equations are the sum of (currently) at most two terms with one or both of them having a power with a symbol-dependent exponent.

For example

\[
5^{2x+3} - 5^{3x-1}
\]

\[
4^{5-9x} - e^{2-x}
\]

**Parameters**

- *lhs, rhs*: Expr
  - The exponential equation to be solved, \(lhs = rhs\)
- *symbol*: Symbol
  - The variable in which the equation is solved
- *domain*: Set
  - A set over which the equation is solved.

**Returns**

A set of solutions satisfying the given equation.
A ConditionSet if the equation is unsolvable or if the assumptions are not properly defined, in that case a different style of ConditionSet is returned having the solution(s) of the equation with the desired assumptions.

**Examples**

```python
>>> from sympy.solvers.solveset import _solve_exponential as solve_expo
>>> from sympy import symbols, S
>>> x = symbols('x', real=True)
>>> a, b = symbols('a b')
>>> solve_expo(2**x + 3**x - 5**x, 0, x, S.Reals) # not solvable
ConditionSet(x, Eq(2**x + 3**x - 5**x, 0), Reals)
>>> solve_expo(a**x - b**x, 0, x, S.Reals) # solvable but incorrect assumptions
ConditionSet(x, (a > 0) & (b > 0), {0})
```
Proof of correctness of the method

The logarithm function is the inverse of the exponential function. The defining relation between exponentiation and logarithm is:

$$\log_b x = y \text{ if } b^y = x$$

Therefore if we are given an equation with exponent terms, we can convert every term to its corresponding logarithmic form. This is achieved by taking logarithms and expanding the equation using logarithmic identities so that it can easily be handled by solveset.

For example:

$$3^{2x} = 2^{x+3}$$

Taking log both sides will reduce the equation to

$$(2x)\log(3) = (x + 3)\log(2)$$

This form can be easily handled by solveset.

sympy.solvers.solveset._solve_logarithm(lhs, rhs, symbol, domain)
Helper to solve logarithmic equations which are reducible to a single instance of log.

Logarithmic equations are (currently) the equations that contains log terms which can be reduced to a single log term or a constant using various logarithmic identities.

For example:

$$\log(x) + \log(x - 4)$$

can be reduced to:

$$\log(x(x - 4))$$

**Parameters**

- **lhs, rhs**: Expr
  The logarithmic equation to be solved, \(lhs = rhs\)

- **symbol**: Symbol
  The variable in which the equation is solved

- **domain**: Set
  A set over which the equation is solved.

**Returns**

A set of solutions satisfying the given equation.
A ConditionSet if the equation is unsolvable.
Examples

```python
>>> from sympy import symbols, log, S
>>> from sympy.solvers.solveset import _solve_logarithm as solve_log
>>> x = symbols('x')
>>> f = log(x - 3) + log(x + 3)
>>> solve_log(f, 0, x, S.Reals)
{-sqrt(10), sqrt(10)}
```

• Proof of correctness

A logarithm is another way to write exponent and is defined by

\[
\log_b x = y \text{ if } b^y = x
\]

When one side of the equation contains a single logarithm, the equation can be solved by rewriting the equation as an equivalent exponential equation as defined above. But if one side contains more than one logarithm, we need to use the properties of logarithm to condense it into a single logarithm.

Take for example

\[
\log(2x) - 15 = 0
\]

contains single logarithm, therefore we can directly rewrite it to exponential form as

\[
x = \frac{e^{15}}{2}
\]

But if the equation has more than one logarithm as

\[
\log(x - 3) + \log(x + 3) = 0
\]

we use logarithmic identities to convert it into a reduced form

Using,

\[
\log(a) + \log(b) = \log(ab)
\]

the equation becomes,

\[
\log((x - 3)(x + 3))
\]

This equation contains one logarithm and can be solved by rewriting to exponents.

```python
sympy.solvers.solveset._is_logarithmic(f, symbol)
```

Return True if the equation is in the form \(a \log(f(x)) + b \log(g(x)) + \ldots + c\) else False.

**Parameters**

- `f`: Expr
  - The equation to be checked

- `symbol`: Symbol
  - The variable in which the equation is checked

**Returns**

True if the equation is logarithmic otherwise False.
Examples

```python
>>> from sympy import symbols, tan, log
>>> from sympy.solvers.solveset import _is_logarithmic as check
>>> x, y = symbols('x y')
>>> check(log(x + 2) - log(x + 3), x)
True
>>> check(tan(log(2*x)), x)
False
>>> check(x*log(x), x)
False
>>> check(x + log(x), x)
False
>>> check(y + log(x), x)
True
```

- Philosophy behind the helper

The function extracts each term and checks whether it is logarithmic w.r.t symbol.

Diophantine Equations (DEs)

See Diophantine (page 769)

Inequalities

See Inequality Solvers (page 803)

Ordinary Differential equations (ODEs)

See ODE (page 807).

Partial Differential Equations (PDEs)

See PDE (page 872).

abc

This module exports all latin and greek letters as Symbols, so you can conveniently do

```python
>>> from sympy.abc import x, y
```

instead of the slightly more clunky-looking

```python
>>> from sympy import symbols
>>> x, y = symbols('x y')
```
Caveats

1. As of the time of writing this, the names O, S, I, N, E, and Q are colliding with names defined in SymPy. If you import them from both sympy.abc and sympy, the second import will “win”. This is an issue only for * imports, which should only be used for short-lived code such as interactive sessions and throwaway scripts that do not survive until the next SymPy upgrade, where sympy may contain a different set of names.

2. This module does not define symbol names on demand, i.e. from sympy.abc import foo will be reported as an error because sympy.abc does not contain the name foo. To get a symbol named foo, you still need to use Symbol('foo') or symbols('foo'). You can freely mix usage of sympy.abc and Symbol/symbols, though sticking with one and only one way to get the symbols does tend to make the code more readable.

The module also defines some special names to help detect which names clash with the default SymPy namespace.

_clash1 defines all the single letter variables that clash with SymPy objects; _clash2 defines the multi-letter clashing symbols; and _clash is the union of both. These can be passed for locals during symification if one desires Symbols rather than the non-Symbol objects for those names.

Examples

```python
>>> from sympy import S
>>> from sympy.abc import _clash1, _clash2, _clash
>>> S("Q & C", locals=_clash1)
C & Q
>>> S('pi(x)', locals=_clash2)
pi(x)
>>> S('pi(C, Q)', locals=_clash)
pi(C, Q)
```

Algebras

Introduction

The Algebras module for SymPy provides support for basic algebraic operations on Quaternions.

Quaternion Reference

This section lists the classes implemented by the Algebras module.

class sympy.algebras.Quaternion(a=0, b=0, c=0, d=0, real_field=True, norm=None)

Provides basic quaternion operations. Quaternion objects can be instantiated as Quaternion(a, b, c, d) as in (a + b*i + c*j + d*k).

Parameters

- norm : None or number
Pre-defined quaternion norm. If a value is given, Quaternion.norm returns this pre-defined value instead of calculating the norm.

Examples

```python
>>> from sympy import Quaternion
>>> q = Quaternion(1, 2, 3, 4)
>>> q
1 + 2*i + 3*j + 4*k
```

Quaternions over complex fields can be defined as:

```python
>>> from sympy import Quaternion
>>> from sympy import symbols, I
>>> x = symbols('x')
>>> q1 = Quaternion(x, x**3, x, x**2, real_field = False)
>>> q2 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
>>> q1
x + x**3*i + x*j + x**2*k
>>> q2
(3 + 4*I) + (2 + 5*I)*i + 0*j + (7 + 8*I)*k
```

Defining symbolic unit quaternions:

```python
>>> from sympy import Quaternion
>>> from sympy.abc import w, x, y, z
>>> q = Quaternion(w, x, y, z, norm=1)
>>> q
w + x*i + y*j + z*k
```

References

[R1], [R2]

add(other)

Adds quaternions.

**Parameters**

other : Quaternion

The quaternion to add to current (self) quaternion.

**Returns**

Quaternion

The resultant quaternion after adding self to other.

Examples

```python
>>> from sympy import Quaternion
>>> from sympy import symbols
>>> q1 = Quaternion(1, 2, 3, 4)
>>> q2 = Quaternion(5, 6, 7, 8)
>>> q1.add(q2)
6 + 8*i + 10*j + 12*k
```

(continues on next page)
Quaternions over complex fields:

```python
>>> from sympy import Quaternion
>>> q3 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
>>> q3.add(2 + 3*I)
(5 + 7*I) + (2 + 5*I)*i + 0*j + (7 + 8*I)*k
```

angle()

Returns the angle of the quaternion measured in the real-axis plane.

**Explanation**

Given a quaternion \( q = a + bi + cj + dk \) where \( a, b, c \) and \( d \) are real numbers, returns the angle of the quaternion given by

\[
angle := \text{atan2}(\sqrt{b^2 + c^2 + d^2}, a)
\]

**Examples**

```python
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(1, 4, 4, 4)
>>> q.angle()
atan(4*sqrt(3))
```

arc_coplanar(other)

Returns True if the transformation arcs represented by the input quaternions happen in the same plane.

**Parameters**

- **other**: a Quaternion

**Returns**

- **True**: if the planes of the two quaternions are the same, apart from its orientation/sign.
- **False**: if the planes of the two quaternions are not the same, apart from its orientation/sign.
- **None**: if plane of either of the quaternion is unknown.
**Explanation**

Two quaternions are said to be coplanar (in this arc sense) when their axes are parallel. The plane of a quaternion is the one normal to its axis.

**Examples**

```python
>>> from sympy.algebras.quaternion import Quaternion
>>> q1 = Quaternion(1, 4, 4, 4)
>>> q2 = Quaternion(3, 8, 8, 8)
>>> Quaternion.arc_coplanar(q1, q2)
True
```

```python
>>> q1 = Quaternion(2, 8, 13, 12)
>>> Quaternion.arc_coplanar(q1, q2)
False
```

**See also:**

`vector_coplanar` (page 949), `is_pure` (page 939)

**axis()**

Returns the axis $A_x(q)$ of the quaternion.

**Explanation**

Given a quaternion $q = a + b i + c j + d k$, returns $A_x(q)$ i.e., the versor of the vector part of that quaternion equal to $U|V(q)|$. The axis is always an imaginary unit with square equal to $-1 + 0i + 0j + 0k$.

**Examples**

```python
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(1, 1, 1, 1)
>>> q.axis()
0 + sqrt(3)/3*im + sqrt(3)/3*jm + sqrt(3)/3*k
```

**See also:**

`vector_part` (page 950)

**exp()**

Returns the exponential of $q$ ($e^q$).

**Returns**

`Quaternion`

Exponential of $q$ ($e^q$).
Examples

```python
>>> from sympy import Quaternion
>>> q = Quaternion(1, 2, 3, 4)
>>> q.exp()
E*cos(sqrt(29))
+ 2*sqrt(29)*E*sin(sqrt(29))/29*i
+ 3*sqrt(29)*E*sin(sqrt(29))/29*j
+ 4*sqrt(29)*E*sin(sqrt(29))/29*k
```

classmethod `from_Matrix`(elements)

Returns quaternion from elements of a column vector. If vector_only is True, returns only imaginary part as a Matrix of length 3.

**Parameters**

- **elements**: Matrix, list or tuple of length 3 or 4. If length is 3, assume real part is zero. Default value: False

**Returns**

Quaternion

A quaternion created from the input elements.

Examples

```python
>>> from sympy import Quaternion
>>> from sympy.abc import a, b, c, d

>>> q = Quaternion.from_Matrix([a, b, c, d])
>>> q
a + b*i + c*j + d*k

>>> q = Quaternion.from_Matrix([b, c, d])
>>> q
0 + b*i + c*j + d*k
```

classmethod `from_axis_angle`(vector, angle)

Returns a rotation quaternion given the axis and the angle of rotation.

**Parameters**

- **vector**: tuple of three numbers
  
The vector representation of the given axis.

- **angle**: number
  
The angle by which axis is rotated (in radians).

**Returns**

Quaternion

The normalized rotation quaternion calculated from the given axis and the angle of rotation.
Examples

```python
>>> from sympy import Quaternion
>>> from sympy import pi, sqrt
>>> q = Quaternion.from_axis_angle((sqrt(3)/3, sqrt(3)/3, sqrt(3)/3),
 -2*pi/3)
>>> q
1/2 + 1/2*i + 1/2*j + 1/2*k
```

classmethod `from_euler`(angles, seq)

Returns quaternion equivalent to rotation represented by the Euler angles, in the sequence defined by seq.

**Parameters**

- **angles** : list, tuple or Matrix of 3 numbers
  - The Euler angles (in radians).
- **seq** : string of length 3
  - Represents the sequence of rotations. For intrinsic rotations, seq must be all lowercase and its elements must be from the set {'x', 'y', 'z'} For extrinsic rotations, seq must be all uppercase and its elements must be from the set {'X', 'Y', 'Z'}

**Returns**

- Quaternion
  - The normalized rotation quaternion calculated from the Euler angles in the given sequence.

Examples

```python
>>> from sympy import Quaternion
>>> from sympy import pi
>>> q = Quaternion.from_euler([pi/2, 0, 0], 'xyz')
>>> q
sqrt(2)/2 + sqrt(2)/2*i + 0*j + 0*k

>>> q = Quaternion.from_euler([0, pi/2, pi], 'zyz')
>>> q
0 + (-sqrt(2)/2)*i + 0*j + sqrt(2)/2*k

>>> q = Quaternion.from_euler([0, pi/2, pi], 'ZYZ')
>>> q
0 + sqrt(2)/2*i + 0*j + sqrt(2)/2*k
```

classmethod `from_rotation_matrix`(M)

Returns the equivalent quaternion of a matrix. The quaternion will be normalized only if the matrix is special orthogonal (orthogonal and det(M) = 1).

**Parameters**

- **M** : Matrix
Input matrix to be converted to equivalent quaternion. M must be special orthogonal (orthogonal and det(M) = 1) for the quaternion to be normalized.

**Returns**
Quaternion

The quaternion equivalent to given matrix.

**Examples**

```python
>>> from sympy import Quaternion
>>> from sympy import Matrix, symbols, cos, sin, trigsimp
>>> x = symbols('x')
>>> M = Matrix([[cos(x), -sin(x), 0], [sin(x), cos(x), 0], [0, 0, 1]])
>>> q = trigsimp(Quaternion.from_rotation_matrix(M))
```

```
sqrt(2)*sqrt(cos(x) + 1)/2 + 0*i + 0*j + sqrt(2 - 2*cos(x))*sign(sin(x))/2*k
```

**index_vector()**

Returs the index vector of the quaternion.

**Returns**
Quaternion: representing index vector of the provided quaternion.

**Explanation**

Index vector is given by \( T(q) \) multiplied by \( Ax(q) \) where \( Ax(q) \) is the axis of the quaternion \( q \), and \( \text{mod}(q) \) is the \( T(q) \) (magnitude) of the quaternion.

**Examples**

```python
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(2, 4, 2, 4)
>>> q.index_vector()
```

```
0 + 4*sqrt(10)/3*i + 2*sqrt(10)/3*j + 4*sqrt(10)/3*k
```

**See also:**
- `axis` (page 935), `norm` (page 941)

**integrate(*args)**

Computes integration of quaternion.

**Returns**
Quaternion

Integration of the quaternion(self) with the given variable.
Examples

Indefinite Integral of quaternion:

```python
from sympy import Quaternion
from sympy.abc import x
q = Quaternion(1, 2, 3, 4)
q.integrate(x)
x + 2*x*i + 3*x*j + 4*x*k
```

Definite integral of quaternion:

```python
from sympy import Quaternion
from sympy.abc import x
q = Quaternion(1, 2, 3, 4)
q.integrate((x, 1, 5))
4 + 8*i + 12*j + 16*k
```

inverse()

Returns the inverse of the quaternion.

is_pure()

Returns true if the quaternion is pure, false if the quaternion is not pure or returns none if it is unknown.

Explanation

A pure quaternion (also a vector quaternion) is a quaternion with scalar part equal to 0.

Examples

```python
from sympy.algebras.quaternion import Quaternion
q = Quaternion(0, 8, 13, 12)
q.is_pure()
```

See also:

scalar_part (page 945)

is_zero_quaternion()

Returns true if the quaternion is a zero quaternion or false if it is not a zero quaternion and None if the value is unknown.
Explanation

A zero quaternion is a quaternion with both scalar part and vector part equal to 0.

Examples

```python
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(1, 0, 0, 0)
>>> q.is_zero_quaternion()
False

>>> q = Quaternion(0, 0, 0, 0)
>>> q.is_zero_quaternion()
True
```

See also:

`scalar_part` (page 945), `vector_part` (page 950)

`mensor()`

Returns the natural logarithm of the norm(magnitude) of the quaternion.

Examples

```python
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(2, 4, 2, 4)
>>> q.mensor()
log(2*sqrt(10))
>>> q.norm()
2*sqrt(10)
```

See also:

`norm` (page 941)

`mul(other)`

Multiplies quaternions.

Parameters

other : Quaternion or symbol

The quaternion to multiply to current (self) quaternion.

Returns

Quaternion

The resultant quaternion after multiplying self with other
Examples

```python
>>> from sympy import Quaternion
>>> from sympy import symbols
>>> q1 = Quaternion(1, 2, 3, 4)
>>> q2 = Quaternion(5, 6, 7, 8)
>>> q1.mul(q2)
(-60) + 12*i + 30*j + 24*k
>>> q1.mul(2)
2 + 4*i + 6*j + 8*k
>>> x = symbols('x', real=True)
>>> q1.mul(x)
x + 2*x*i + 3*x*j + 4*x*k
```

Quaternions over complex fields:

```python
>>> from sympy import Quaternion
>>> from sympy import I
>>> q3 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field=False)
>>> q3.mul(2 + 3*I)
(2 + 3*I)*(3 + 4*I) + (2 + 3*I)*(2 + 5*I)*i + 0*j + (2 + 3*I)*(7 +
-8*I)*k
```

**norm()**

Returns the norm of the quaternion.

**normalize()**

Returns the normalized form of the quaternion.

**orthogonal**(other)

Returns the orthogonality of two quaternions.

Parameters

other : a Quaternion

Returns

**True** : if the two pure quaternions seen as 3D vectors are orthogonal.
**False** : if the two pure quaternions seen as 3D vectors are not orthogonal.
**None** : if the two pure quaternions seen as 3D vectors are orthogonal is unknown.

**Explanation**

Two pure quaternions are called orthogonal when their product is anti-commutative.
Examples

>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(0, 4, 4, 4)
>>> q1 = Quaternion(0, 8, 8, 8)
>>> q.orthogonal(q1)
False

>>> q1 = Quaternion(0, 2, 2, 0)
>>> q = Quaternion(0, 2, -2, 0)
>>> q.orthogonal(q1)
True

parallel(other)

Returns True if the two pure quaternions seen as 3D vectors are parallel.

Parameters

other : a Quaternion

Returns

True : if the two pure quaternions seen as 3D vectors are parallel.
False : if the two pure quaternions seen as 3D vectors are not parallel.
None : if the two pure quaternions seen as 3D vectors are parallel is unknown.

Explanation

Two pure quaternions are called parallel when their vector product is commutative which implies that the quaternions seen as 3D vectors have same direction.

Examples

>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(0, 4, 4, 4)
>>> q1 = Quaternion(0, 8, 8, 8)
>>> q.parallel(q1)
True

>>> q1 = Quaternion(0, 8, 13, 12)
>>> q.parallel(q1)
False

pow(p)

Finds the pth power of the quaternion.

Parameters

p : int

Power to be applied on quaternion.

Returns

Quaternion
Returns the p-th power of the current quaternion. Returns the inverse if p = -1.

Examples

```
>>> from sympy import Quaternion
>>> q = Quaternion(1, 2, 3, 4)
>>> q.pow(4)
668 + (-224)*i + (-336)*j + (-448)*k
```

\textbf{pow\_cos\_sin}(p)

Computes the pth power in the cos-sin form.

**Parameters**

\textbf{p} : int

Power to be applied on quaternion.

**Returns**

Quaternion

The p-th power in the cos-sin form.

Examples

```
>>> from sympy import Quaternion
>>> q = Quaternion(1, 2, 3, 4)
>>> q.pow_cos_sin(4)
900*cos(4*acos(sqrt(30)/30))
+ 1800*sqrt(29)*sin(4*acos(sqrt(30)/30))/29*i
+ 2700*sqrt(29)*sin(4*acos(sqrt(30)/30))/29*j
+ 3600*sqrt(29)*sin(4*acos(sqrt(30)/30))/29*k
```

\textbf{property product\_matrix\_left}

Returns 4 x 4 Matrix equivalent to a Hamilton product from the left. This can be useful when treating quaternion elements as column vectors. Given a quaternion \( q = a + bi + cj + dk \) where a, b, c and d are real numbers, the product matrix from the left is:

\[
M = \begin{bmatrix}
a & -b & -c & -d \\
- b & a & -d & c \\
-c & d & a & -b \\
-d & c & b & a \\
\end{bmatrix}
\]
Examples

```python
>>> from sympy import Quaternion
>>> from sympy import a, b, c, d
>>> q1 = Quaternion(1, 0, 0, 1)
>>> q2 = Quaternion(a, b, c, d)
>>> q1.product_matrix_left
Matrix([[1, 0, 0, -1],
 [0, 1, -1, 0],
 [0, 1, 1, 0],
 [1, 0, 0, 1]])
>>> q1.product_matrix_left * q2.to_Matrix()
Matrix([[a - d],
 [b - c],
 [b + c],
 [a + d]])
This is equivalent to:

```python
>>> (q1 * q2).to_Matrix()
Matrix([[a - d],
    [b - c],
    [b + c],
    [a + d]])
```

property `product_matrix_right`

Returns 4 x 4 Matrix equivalent to a Hamilton product from the right. This can be useful when treating quaternion elements as column vectors. Given a quaternion \(q = a + bi + cj + dk \) where \(a, b, c \) and \(d \) are real numbers, the product matrix from the left is:

\[
M = \begin{bmatrix}
a & -b & -c & -d \\
b & a & d & -c \\
c & -d & a & b \\
d & c & -b & a \\
\end{bmatrix}
\]

Examples

```python
>>> from sympy import Quaternion
>>> from sympy import a, b, c, d
>>> q1 = Quaternion(a, b, c, d)
>>> q2 = Quaternion(1, 0, 0, 1)
>>> q2.product_matrix_right
Matrix([[1, 0, 0, -1],
    [0, 1, 1, 0],
    [0, -1, 1, 0],
    [1, 0, 0, 1]])
```
Note the switched arguments: the matrix represents the quaternion on the right, but is still considered as a matrix multiplication from the left.

```
>>> q2.product_matrix_right * q1.to_Matrix()
Matrix([  
    [ a - d],  
    [ b + c],  
    [-b + c],  
    [ a + d]])
```

This is equivalent to:

```
>>> (q1 * q2).to_Matrix()
Matrix([  
    [ a - d],  
    [ b + c],  
    [-b + c],  
    [ a + d]])
```

static rotate_point(pin, r)

Returns the coordinates of the point pin (a 3 tuple) after rotation.

Parameters

- **pin**: tuple
 - A 3-element tuple of coordinates of a point which needs to be rotated.
- **r**: Quaternion or tuple
 - Axis and angle of rotation.

It’s important to note that when r is a tuple, it must be of the form (axis, angle)

Returns

- **tuple**: The coordinates of the point after rotation.

Examples

```
>>> from sympy import Quaternion
>>> from sympy import symbols, trigsimp, cos, sin
>>> x = symbols('x')
>>> q = Quaternion(cos(x/2), 0, 0, sin(x/2))
>>> trigsimp(Quaternion.rotate_point((1, 1, 1), q))
(sqrt(2)*cos(x + pi/4), sqrt(2)*sin(x + pi/4), 1)
>>> (axis, angle) = q.to_axis_angle()
>>> trigsimp(Quaternion.rotate_point((1, 1, 1), (axis, angle)))
(sqrt(2)*cos(x + pi/4), sqrt(2)*sin(x + pi/4), 1)
```

scalar_part()

Returns scalar part($S(q)$) of the quaternion q.

5.8. Topics 945
Explanation

Given a quaternion \(q = a + bi + cj + dk \), returns \(S(q) = a \).

Examples

```
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(4, 8, 13, 12)
>>> q.scalar_part()
4
```

`set_norm(norm)`

Sets norm of an already instantiated quaternion.

Parameters

- `norm`: None or number

 Pre-defined quaternion norm. If a value is given, Quaternion.norm returns this pre-defined value instead of calculating the norm.

Examples

```
>>> from sympy import Quaternion
>>> from sympy.abc import a, b, c, d
>>> q = Quaternion(a, b, c, d)
>>> q.norm()
sqrt(a**2 + b**2 + c**2 + d**2)
```

Setting the norm:

```
>>> q.set_norm(1)
>>> q.norm()
1
```

Removing set norm:

```
>>> q.set_norm(None)
>>> q.norm()
sqrt(a**2 + b**2 + c**2 + d**2)
```

to_Matrix(vector_only=False)`

Returns elements of quaternion as a column vector. By default, a Matrix of length 4 is returned, with the real part as the first element. If vector_only is True, returns only imaginary part as a Matrix of length 3.

Parameters

- `vector_only`: bool

 If True, only imaginary part is returned. Default value: False

Returns

Matrix

A column vector constructed by the elements of the quaternion.
Examples

```python
>>> from sympy import Quaternion
>>> from sympy.abc import a, b, c, d
>>> q = Quaternion(a, b, c, d)
>>> q
a + b*i + c*j + d*k

>>> q.to_Matrix()
Matrix([[a], [b], [c], [d]])

>>> q.to_Matrix(vector_only=True)
Matrix([[b], [c], [d]])
```

to_axis_angle()

Returns the axis and angle of rotation of a quaternion.

Returns
tuple
Tuple of (axis, angle)

Examples

```python
>>> from sympy import Quaternion
>>> q = Quaternion(1, 1, 1, 1)
>>> (axis, angle) = q.to_axis_angle()
>>> axis
(sqrt(3)/3, sqrt(3)/3, sqrt(3)/3)
>>> angle
2*pi/3
```

to_euler(seq, angle_addition=True, avoid_square_root=False)

Returns Euler angles representing same rotation as the quaternion, in the sequence
given by seq. This implements the method described in [R3].

For degenerate cases (gymbal lock cases), the third angle is set to zero.

Parameters

seq : string of length 3
 Represents the sequence of rotations. For intrinsic rotations, seq
 must be all lowercase and its elements must be from the set `{x',
 'y', 'z'}. For extrinsic rotations, seq must be all uppercase and its
 elements must be from the set `{X', 'Y', 'Z'}`

angle_addition : bool
When True, first and third angles are given as an addition and subtraction of two simpler \(\text{atan2} \) expressions. When False, the first and third angles are each given by a single more complicated \(\text{atan2} \) expression. This equivalent expression is given by:

\[
\text{atan}_2(b, a) \pm \text{atan}_2(d, c) = \text{atan}_2(bc \pm ad, ac \mp bd)
\]

Default value: True

\textit{avoid_square_root} : bool

When True, the second angle is calculated with an expression based on \(\text{acos} \), which is slightly more complicated but avoids a square root. When False, second angle is calculated with \(\text{atan2} \), which is simpler and can be better for numerical reasons (some numerical implementations of \(\text{acos} \) have problems near zero). Default value: False

\textbf{Returns}

Tuple

The Euler angles calculated from the quaternion

\textbf{Examples}

```python
>>> from sympy import Quaternion
>>> from sympy.abc import a, b, c, d
>>> euler = Quaternion(a, b, c, d).to_euler('zyz')
>>> euler
(-atan2(-b, c) + atan2(d, a),
 2*atan2(sqrt(b**2 + c**2), sqrt(a**2 + d**2)),
 atan2(-b, c) + atan2(d, a))
```

\textbf{References}

[R3]

\textit{to_rotation_matrix}(v=None, homogeneous=True)

Returns the equivalent rotation transformation matrix of the quaternion which represents rotation about the origin if \(v \) is not passed.

\textbf{Parameters}

\(v \) : tuple or None

Default value: None

\textit{homogeneous} : bool

When True, gives an expression that may be more efficient for symbolic calculations but less so for direct evaluation. Both formulas are mathematically equivalent. Default value: True

\textbf{Returns}

tuple

Returns the equivalent rotation transformation matrix of the quaternion which represents rotation about the origin if \(v \) is not passed.
Examples

```python
>>> from sympy import Quaternion
>>> from sympy import symbols, trigsimp, cos, sin
>>> x = symbols('x')
>>> q = Quaternion(cos(x/2), 0, 0, sin(x/2))
>>> trigsimp(q.to_rotation_matrix())
Matrix([[cos(x), -sin(x), 0],
       [sin(x), cos(x), 0],
       [ 0,     0, 1]])
```

Generates a 4x4 transformation matrix (used for rotation about a point other than the origin) if the point(v) is passed as an argument.

classmethod vector_coplanar(q1, q2, q3)

Returns True if the axis of the pure quaternions seen as 3D vectors q1, q2, and q3 are coplanar.

Parameters

- **q1**
 A pure Quaternion.

- **q2**
 A pure Quaternion.

- **q3**
 A pure Quaternion.

Returns

- **True** : if the axis of the pure quaternions seen as 3D vectors q1, q2, and q3 are coplanar.
- **False** : if the axis of the pure quaternions seen as 3D vectors q1, q2, and q3 are not coplanar.
- **None** : if the axis of the pure quaternions seen as 3D vectors q1, q2, and q3 are coplanar is unknown.

Explanation

Three pure quaternions are vector coplanar if the quaternions seen as 3D vectors are coplanar.
Examples

```python
>>> from sympy.algebras.quaternion import Quaternion
>>> q1 = Quaternion(0, 4, 4, 4)
>>> q2 = Quaternion(0, 8, 8, 8)
>>> q3 = Quaternion(0, 24, 24, 24)
>>> Quaternion.vector_coplanar(q1, q2, q3)
True
```

```python
>>> q1 = Quaternion(0, 8, 16, 8)
>>> q2 = Quaternion(0, 8, 3, 12)
>>> Quaternion.vector_coplanar(q1, q2, q3)
False
```

See also:
- `axis` (page 935), `is_pure` (page 939)

vector_part()

Returns vector part($V(q)$) of the quaternion q.

Explanation

Given a quaternion $q = a + bi + cj + dk$, returns $V(q) = bi + cj + dk$.

Examples

```python
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(1, 1, 1, 1)
>>> q.vector_part()
0 + 1*i + 1*j + 1*k
```

```python
>>> q = Quaternion(4, 8, 13, 12)
>>> q.vector_part()
0 + 8*i + 13*j + 12*k
```

Concrete

Hypergeometric terms

The center stage, in recurrence solving and summations, play hypergeometric terms. Formally these are sequences annihilated by first order linear recurrence operators. In simple words if we are given term $a(n)$ then it is hypergeometric if its consecutive term ratio is a rational function in n.

To check if a sequence is of this type you can use the `is_hypergeometric` method which is available in Basic class. Here is simple example involving a polynomial:
```python
>>> from sympy import *
>>> n, k = symbols('n,k')
>>> (n**2 + 1).is_hypergeometric(n)
True
```

Of course polynomials are hypergeometric but are there any more complicated sequences of this type? Here are some trivial examples:

```python
>>> factorial(n).is_hypergeometric(n)
True
>>> binomial(n, k).is_hypergeometric(n)
True
>>> rf(n, k).is_hypergeometric(n)
True
>>> ff(n, k).is_hypergeometric(n)
True
>>> gamma(n).is_hypergeometric(n)
True
>>> (2**n).is_hypergeometric(n)
True
```

We see that all species used in summations and other parts of concrete mathematics are hypergeometric. Note also that binomial coefficients and both rising and falling factorials are hypergeometric in both their arguments:

```python
>>> binomial(n, k).is_hypergeometric(k)
True
>>> rf(n, k).is_hypergeometric(k)
True
>>> ff(n, k).is_hypergeometric(k)
True
```

To say more, all previously shown examples are valid for integer linear arguments:

```python
>>> factorial(2*n).is_hypergeometric(n)
True
>>> binomial(3*n+1, k).is_hypergeometric(n)
True
>>> rf(n+1, k-1).is_hypergeometric(n)
True
>>> ff(n-1, k+1).is_hypergeometric(n)
True
>>> gamma(5*n).is_hypergeometric(n)
True
>>> (2**(n-7)).is_hypergeometric(n)
True
```

However nonlinear arguments make those sequences fail to be hypergeometric:

```python
>>> factorial(n**2).is_hypergeometric(n)
False
>>> (2**(n**3 + 1)).is_hypergeometric(n)
False
```
If not only the knowledge of being hypergeometric or not is needed, you can use `hypersimp()` function. It will try to simplify combinatorial expression and if the term given is hypergeometric it will return a quotient of polynomials of minimal degree. Otherwise it will return `None` to say that sequence is not hypergeometric:

```python
>>> hypersimp(factorial(2*n), n)
2*(n + 1)*(2*n + 1)
>>> hypersimp(factorial(n**2), n)
```

Concrete Class Reference

```python
class sympy.concrete.summations.Sum(function, *symbols, **assumptions)
```

Represents unevaluated summation.

Explanation

Sum represents a finite or infinite series, with the first argument being the general form of terms in the series, and the second argument being `(dummy_variable, start, end)`, with `dummy_variable` taking all integer values from `start` through `end`. In accordance with long-standing mathematical convention, the end term is included in the summation.

Finite Sums

For finite sums (and sums with symbolic limits assumed to be finite) we follow the summation convention described by Karr [1], especially definition 3 of section 1.4. The sum:

\[
\sum_{m \leq i < n} f(i)
\]

has the obvious meaning for \(m < n\), namely:

\[
\sum_{m \leq i < n} f(i) = f(m) + f(m + 1) + \ldots + f(n - 2) + f(n - 1)
\]

with the upper limit value \(f(n)\) excluded. The sum over an empty set is zero if and only if \(m = n\):

\[
\sum_{m \leq i < n} f(i) = 0 \quad \text{for} \quad m = n
\]

Finally, for all other sums over empty sets we assume the following definition:

\[
\sum_{m \leq i < n} f(i) = -\sum_{n \leq i < m} f(i) \quad \text{for} \quad m > n
\]

It is important to note that Karr defines all sums with the upper limit being exclusive. This is in contrast to the usual mathematical notation, but does not affect the summation convention. Indeed we have:

\[
\sum_{m \leq i < n} f(i) = \sum_{i=m}^{n-1} f(i)
\]

where the difference in notation is intentional to emphasize the meaning, with limits typeset on the top being inclusive.
Examples

```python
>>> from sympy import oo, Sum, factorial, IndexedBase, Function
>>> Sum(k, (k, 1, m)).doit()
m**2/2 + m/2
>>> Sum(k**2, (k, 1, m)).doit()
m**3/3 + m**2/2 + m/6
>>> Sum(x**k, (k, 0, oo)).doit()
piecewise((1/(1 - x), Abs(x) < 1), (Sum(x**k, (k, 0, oo)), True))
exp(x)
```

Here are examples to do summation with symbolic indices. You can use either Function of IndexedBase classes:

```python
>>> f = Function('f')
>>> Sum(f(n), (n, 0, 3)).doit()
f(0) + f(1) + f(2) + f(3)
>>> Sum(f(n), (n, 0, oo)).doit()
Sum(f(n), (n, 0, oo))
>>> f = IndexedBase('f')
>>> Sum(f[n]**2, (n, 0, 3)).doit()
f[0]**2 + f[1]**2 + f[2]**2 + f[3]**2
```

An example showing that the symbolic result of a summation is still valid for seemingly nonsensical values of the limits. Then the Karr convention allows us to give a perfectly valid interpretation to those sums by interchanging the limits according to the above rules:

```python
>>> S = Sum(i, (i, 1, n)).doit()
>>> S
n**2/2 + n/2
>>> S.subs(n, -4)
6
>>> Sum(i, (i, 1, -4)).doit()
6
>>> Sum(-i, (i, -3, 0)).doit()
6
```

An explicit example of the Karr summation convention:

```python
>>> S1 = Sum(i**2, (i, m, m+n-1)).doit()
>>> S1
m**2*n + m*n**2 - m*n + n**3/3 - n**2/2 + n/6
>>> S2 = Sum(i**2, (i, m+n, m-1)).doit()
>>> S2
(continues on next page)
```
(continued from previous page)

\[-m^{**2}n - m\ast n^{**2} + m\ast n - n^{**3}/3 + n^{**2}/2 - n/6\]

```python
>>> S1 + S2
0
>>> S3 = Sum(i, (i, m, m-1)).doit()
>>> S3
0
```

See also:

summation (page 967), Product (page 957), sympy.concrete.products.product (page 968)

References

[R92], [R93], [R94]

euler_maclaurin\((m=0, n=0, eps=0, eval_integral=True)\)

Return an Euler-Maclaurin approximation of self, where \(m\) is the number of leading terms to sum directly and \(n\) is the number of terms in the tail.

With \(m = n = 0\), this is simply the corresponding integral plus a first-order endpoint correction.

Returns \((s, e)\) where \(s\) is the Euler-Maclaurin approximation and \(e\) is the estimated error (taken to be the magnitude of the first omitted term in the tail):

```python
>>> from sympy.abc import k, a, b
>>> from sympy import Sum

>>> Sum(1/k, (k, 2, 5)).doit().evalf()  # Euler-Maclaurin approximation
1.28333333333333

>>> s, e = Sum(1/k, (k, 2, 5)).euler_maclaurin()

>>> s
-log(2) + 7/20 + log(5)

>>> e
Abs(1/(12*b**2) - 1/(12*a**2))

>>> s, e = Sum(1/k, (k, a, b)).euler_maclaurin()

>>> s
-log(a) + log(b) + 1/(2*b) + 1/(2*a)

>>> e
Abs(1/(12*b**2) - 1/(12*a**2))
```

The endpoints may be symbolic:

```python
>>> s, e = Sum(1/k, (k, a, b)).euler_maclaurin()

>>> s
-log(a) + log(b) + 1/(2*b) + 1/(2*a)

>>> e
Abs(1/(12*b**2) - 1/(12*a**2))
```

If the function is a polynomial of degree at most \(2n+1\), the Euler-Maclaurin formula becomes exact (and \(e = 0\) is returned):

```python
>>> Sum(k, (k, 2, b)).euler_maclaurin()
(b**2/2 + b/2 - 1, 0)

>>> Sum(k, (k, 2, b)).doit()

b**2/2 + b/2 - 1
```
With a nonzero eps specified, the summation is ended as soon as the remainder term is less than the epsilon.

eval_zeta_function(f, limits)
Check whether the function matches with the zeta function.
If it matches, then return a *Piecewise* expression because zeta function does not converge unless \(s > 1 \) and \(q > 0 \)

is_absolutely_convergent()
Checks for the absolute convergence of an infinite series.
Same as checking convergence of absolute value of sequence_term of an infinite series.

Examples

```python
>>> from sympy import Sum, Symbol, oo
>>> n = Symbol('n', integer=True)
>>> Sum((-1)**n, (n, 1, oo)).is_absolutely_convergent()
False
>>> Sum((-1)**n/n**2, (n, 1, oo)).is_absolutely_convergent()
True
```

See also:
- `Sum.is_convergent` (page 955)

References

[R95]

is_convergent()
Checks for the convergence of a Sum.

Explanation
We divide the study of convergence of infinite sums and products in two parts.
First Part: One part is the question whether all the terms are well defined, i.e., they are finite in a sum and also non-zero in a product. Zero is the analogy of (minus) infinity in products as \(e^{-\infty} = 0 \).
Second Part: The second part is the question of convergence after infinities, and zeros in products, have been omitted assuming that their number is finite. This means that we only consider the tail of the sum or product, starting from some point after which all terms are well defined.
For example, in a sum of the form:

\[
\sum_{1 \leq i < \infty} \frac{1}{n^2 + an + b}
\]
where \(a\) and \(b\) are numbers. The routine will return true, even if there are infinities in the term sequence (at most two). An analogous product would be:

\[
\prod_{1 \leq i < \infty} e^{\frac{1}{n^2 + n + 1}}
\]

This is how convergence is interpreted. It is concerned with what happens at the limit. Finding the bad terms is another independent matter.

Note: It is responsibility of user to see that the sum or product is well defined.

There are various tests employed to check the convergence like divergence test, root test, integral test, alternating series test, comparison tests, Dirichlet tests. It returnstrue if Sum is convergent and false if divergent and NotImplemented if it cannot be checked.

Examples

```python
def reverse_order(self, *indices):
    # Reverse the order of a limit in a Sum.
    # reverse_order(self, *indices) reverses some limits in the expression self which can be either a Sum or a Product.
    # The selectors in the argument indices specify some indices whose limits get reversed. These selectors are either variable names or numerical indices counted starting from the inner-most limit tuple.
```

See also:

- :func:`sum.is_absolutely_convergent`
- :func:`sympy.concrete.products.Product.is_convergent`

References

[R96]
Examples

```python
>>> from sympy import Sum
>>> from sympy.abc import x, y, a, b, c, d

>>> Sum(x, (x, 0, 3)).reverse_order(x)
Sum(-x, (x, 4, -1))
>>> Sum(x*y, (x, 1, 5), (y, 0, 6)).reverse_order(x, y)
Sum(-x*y, (x, 6, 0), (y, 7, -1))
>>> Sum(x, (x, a, b)).reverse_order(x)
Sum(-x, (x, b + 1, a - 1))
>>> Sum(x, (x, a, b)).reverse_order(y)
Sum(-x*y, (x, b + 1, a - 1))

While one should prefer variable names when specifying which limits to reverse, the
index counting notation comes in handy in case there are several symbols with the
same name.

```python
>>> S = Sum(x**2, (x, a, b), (x, c, d))
>>> S
Sum(x**2, (x, a, b), (x, c, d))
>>> S0 = S.reverse_order(0)
>>> S0
Sum(-x**2, (x, b + 1, a - 1), (x, c, d))
>>> S1 = S0.reverse_order(1)
>>> S1
Sum(x**2, (x, b + 1, a - 1), (x, d + 1, c - 1))

Of course we can mix both notations:

```python
>>> Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(x, 1)
Sum(-x*y, (x, b + 1, a - 1), (y, 6, 1))
>>> Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(y, x)
Sum(x*y, (x, b + 1, a - 1), (y, 6, 1))
```

See also:

- sympy.concrete.expr_with_intlimits.ExprWithIntLimits.index (page 965),
- reorder_limit (page 966), sympy.concrete.expr_with_intlimits.ExprWithIntLimits.reorder (page 966)

References

[R97] sympy.concrete.products.Product(function, *symbols, **assumptions)
Represents unevaluated products.
Explaination

Product represents a finite or infinite product, with the first argument being the general form of terms in the series, and the second argument being \((\text{dummy_variable}, \text{start}, \text{end})\), with \text{dummy_variable} taking all integer values from \text{start} through \text{end}. In accordance with long-standing mathematical convention, the end term is included in the product.

Finite Products

For finite products (and products with symbolic limits assumed to be finite) we follow the analogue of the summation convention described by Karr [1], especially definition 3 of section 1.4. The product:

\[
\prod_{m \leq i < n} f(i)
\]

has the obvious meaning for \(m < n\), namely:

\[
\prod_{m \leq i < n} f(i) = f(m)f(m+1) \cdots f(n-2)f(n-1)
\]

with the upper limit value \(f(n)\) excluded. The product over an empty set is one if and only if \(m = n:\)

\[
\prod_{m \leq i < n} f(i) = 1 \text{ for } m = n
\]

Finally, for all other products over empty sets we assume the following definition:

\[
\prod_{m \leq i < n} f(i) = \frac{1}{\prod_{n \leq i < m} f(i)} \text{ for } m > n
\]

It is important to note that above we define all products with the upper limit being exclusive. This is in contrast to the usual mathematical notation, but does not affect the product convention. Indeed we have:

\[
\prod_{m \leq i < n} f(i) = \prod_{i=m}^{n-1} f(i)
\]

where the difference in notation is intentional to emphasize the meaning, with limits typeset on the top being inclusive.

Examples

```python
>>> from sympy.abc import a, b, i, k, m, n, x
>>> from sympy import Product, oo
>>> Product(k, (k, 1, m))
Product(k, (k, 1, m))
>>> Product(k, (k, 1, m)).doit()
factorial(m)
>>> Product(k**2, (k, 1, m))
Product(k**2, (k, 1, m))
>>> Product(k**2, (k, 1, m)).doit()
factorial(m)**2
```
Wallis' product for pi:

```python
>>> W = Product(2*i/(2*i - 1) * 2*i/(2*i + 1), (i, 1, oo))
>>> W
Product(4*i**2/((2*i - 1)*(2*i + 1)), (i, 1, oo))
```

Direct computation currently fails:

```python
>>> W.doit()
Product(4*i**2/((2*i - 1)*(2*i + 1)), (i, 1, oo))
```

But we can approach the infinite product by a limit of finite products:

```python
>>> from sympy import limit
>>> W2 = Product(2*i/(2*i - 1)*2*i/(2*i + 1), (i, 1, n))
>>> W2
Product(4*i**2/((2*i - 1)*(2*i + 1)), (i, 1, n))
>>> W2e = W2.doit()
>>> W2e
4**n*factorial(n)**2/(2**(2*n)*RisingFactorial(1/2, n)*RisingFactorial(3/2, n))
>>> limit(W2e, n, oo)
pi/2
```

By the same formula we can compute \(\sin(\pi/2)\):

```python
>>> from sympy import combsimp, pi, gamma, simplify
>>> P = pi * x * Product(1 - x**2/k**2, (k, 1, n))
>>> P = P.subs(x, pi/2)
>>> P
pi**2*Product(1 - pi**2/(4*k**2), (k, 1, n))/2
>>> Pe = P.doit()
>>> Pe
pi**2*RisingFactorial(1 - pi/2, n)*RisingFactorial(1 + pi/2, n)/((2*factorial(n)**2)
>>> limit(Pe, n, oo).gammasimp()  
sin(pi/2)
>>> Pe rewrite(gamma)
(-1)**n*pi**2*gamma(pi/2)*gamma(n + 1 + pi/2)/(2*gamma(1 + pi/2)*gamma(-n + pi/2)*gamma(n + 1)**2)
```

Products with the lower limit being larger than the upper one:

```python
>>> Product(1/i, (i, 6, 1)).doit()
120
>>> Product(i, (i, 2, 5)).doit()
120
```

The empty product:

```python
>>> Product(i, (i, n, n-1)).doit()
1
```

An example showing that the symbolic result of a product is still valid for seemingly nonsensical values of the limits. Then the Karr convention allows us to give a perfectly
valid interpretation to those products by interchanging the limits according to the above rules:

```python
>>> P = Product(2, (i, 10, n)).doit()
>>> P
2**(n - 9)
>>> P.subs(n, 5)
1/16
>>> Product(2, (i, 10, 5)).doit()
1/16
>>> 1/Product(2, (i, 6, 9)).doit()
1/16
```

An explicit example of the Karr summation convention applied to products:

```python
>>> P1 = Product(x, (i, a, b)).doit()
>>> P1
x**(-a + b + 1)
>>> P2 = Product(x, (i, b+1, a-1)).doit()
>>> P2
x**(a - b - 1)
>>> simplify(P1 * P2)
1
```

And another one:

```python
>>> P1 = Product(i, (i, b, a)).doit()
>>> P1
RisingFactorial(b, a - b + 1)
>>> P2 = Product(i, (i, a+1, b-1)).doit()
>>> P2
RisingFactorial(a + 1, -a + b - 1)
>>> P1 * P2
RisingFactorial(b, a - b + 1)*RisingFactorial(a + 1, -a + b - 1)
>>> combsimp(P1 * P2)
1
```

See also:

Sum (page 952), summation (page 967), product (page 968)

References

[R98], [R99], [R100]

is_convergent()

See docs of `Sum.is_convergent()` (page 955) for explanation of convergence in SymPy.
Explaination

The infinite product:

\[
\prod_{1 \leq i < \infty} f(i)
\]

is defined by the sequence of partial products:

\[
\prod_{i=1}^{n} f(i) = f(1)f(2) \cdots f(n)
\]

as \(n \) increases without bound. The product converges to a non-zero value if and only if the sum:

\[
\sum_{1 \leq i < \infty} \log f(n)
\]

cconverges.

Examples

```python
>>> from sympy import Product, Symbol, cos, pi, exp, oo
>>> n = Symbol('n', integer=True)
>>> Product(n/(n + 1), (n, 1, oo)).is_convergent()
False
>>> Product(1/n**2, (n, 1, oo)).is_convergent()
False
>>> Product(cos(pi/n), (n, 1, oo)).is_convergent()
True
>>> Product(exp(-n**2), (n, 1, oo)).is_convergent()
False
```

References

[R101]

`reverse_order(*indices)`

Reverse the order of a limit in a Product.

Explanation

`reverse_order(expr, *indices)` reverses some limits in the expression `expr` which can be either a `Sum` or a `Product`. The selectors in the argument `indices` specify some indices whose limits get reversed. These selectors are either variable names or numerical indices counted starting from the inner-most limit tuple.
Examples

```python
from sympy import gamma, Product, simplify, Sum
from sympy.abc import x, y, a, b, c, d

P = Product(x, (x, a, b))
Pr = P.reverse_order(x)
Pr
Product(1/x, (x, b + 1, a - 1))
Pr = Pr.doit()
Pr
1/RisingFactorial(b + 1, a - b - 1)
simplify(Pr.rewrite(gamma))
Piecewise((gamma(b + 1)/gamma(a), b > -1), ((-1)**(-a + b + 1)*gamma(1 - a)/gamma(-b), True))

P = P.doit()
P
RisingFactorial(a, -a + b + 1)
simplify(P.rewrite(gamma))
Piecewise((gamma(b + 1)/gamma(a), a > 0), ((-1)**(-a + b + 1)*gamma(1 - a)/gamma(-b), True))
```

While one should prefer variable names when specifying which limits to reverse, the index counting notation comes in handy in case there are several symbols with the same name.

```python
S = Sum(x*y, (x, a, b), (y, c, d))
S
S0 = S.reverse_order(0)
S0
Sum(-x*y, (x, b + 1, a - 1), (y, c, d))
S1 = S0.reverse_order(1)
S1
Sum(x*y, (x, b + 1, a - 1), (y, d + 1, c - 1))
```

Of course we can mix both notations:

```python
Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(x, 1)
Sum(x*y, (x, b + 1, a - 1), (y, 6, 1))
Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(y, x)
Sum(x*y, (x, b + 1, a - 1), (y, 6, 1))
```

See also:

- `sympy.concrete.expr_with_intlimits.ExprWithIntLimits.index` (page 965), `reorder_limit` (page 966), `sympy.concrete.expr_with_intlimits.ExprWithIntLimits.reorder` (page 966)
References

[R102]

class sympy.concrete.expr_with_intlimits.ExprWithIntLimits(function, *symbols, **assumptions)

Superclass for Product and Sum.

See also:

change_index(*var, trafo, newvar=None*)

Change index of a Sum or Product.

Perform a linear transformation \(x \mapsto ax + b \) on the index variable \(x \). For \(a \) the only values allowed are \(\pm 1 \). A new variable to be used after the change of index can also be specified.

Explanation

change_index(expr, var, trafo, newvar=None) where var specifies the index variable \(x \) to transform. The transformation trafo must be linear and given in terms of var. If the optional argument newvar is provided then var gets replaced by newvar in the final expression.

Examples

```python
>>> from sympy import Sum, Product, simplify
>>> from sympy.abc import x, y, a, b, c, d, u, v, i, j, k, l

>>> S = Sum(x, (x, a, b))
>>> S.doit()
-a**2/2 + a/2 + b**2/2 + b/2

>>> Sn = S.change_index(x, x + 1, y)
>>> Sn
Sum(y - 1, (y, a + 1, b + 1))
>>> Sn.doit()
-a**2/2 + a/2 + b**2/2 + b/2

>>> Sn = S.change_index(x, -x, y)
>>> Sn
Sum(-y, (y, -b, -a))
>>> Sn.doit()
-a**2/2 + a/2 + b**2/2 + b/2

>>> Sn = S.change_index(x, x+u)
>>> Sn
Sum(-u + x, (x, a + u, b + u))
```

(continues on next page)
When dealing with symbols only, we can make a general linear transformation:

```python
>>> Sn = S.change_index(x, u*x+v, y)
>>> Sn
Sum((-v + y)/u, (y, b*u + v, a*u + v))
>>> Sn.doit()
-v*(a*u - b*u + 1)/u + (a**2*u**2/2 + a*u*v + a*u/2 - b**2*u**2/2 - u
   -b*u*v + b*u/2 + v)/u
>>> simplify(Sn.doit())
a**2*u/2 + a/2 - b**2*u/2 + b/2
```

However, the last result can be inconsistent with usual summation where the index increment is always 1. This is obvious as we get back the original value only for \(u \) equal +1 or -1.

See also:

property has_empty_sequence

Returns True if the Sum or Product is computed for an empty sequence.
Examples

```python
>>> from sympy import Sum, Product, Symbol
>>> m = Symbol('m')
>>> Sum(m, (m, 1, 0)).has_empty_sequence
True

>>> Sum(m, (m, 1, 1)).has_empty_sequence
False

>>> M = Symbol('M', integer=True, positive=True)
>>> Product(m, (m, 1, M)).has_empty_sequence
False

>>> Product(m, (m, 2, M)).has_empty_sequence
True

>>> N = Symbol('N', integer=True, positive=True)
>>> Sum(m, (m, N, M)).has_empty_sequence

>>> N = Symbol('N', integer=True, negative=True)
>>> Sum(m, (m, N, M)).has_empty_sequence
False
```

See also:

`has_reversed_limits` (page 666), `has_finite_limits` (page 666)

`index(x)`

Return the index of a dummy variable in the list of limits.

Explanation

`index(expr, x)` returns the index of the dummy variable `x` in the limits of `expr`. Note that we start counting with 0 at the inner-most limits tuple.

Examples

```python
>>> from sympy.abc import x, y, a, b, c, d
>>> from sympy import Sum, Product
>>> Sum(x*y, (x, a, b), (y, c, d)).index(x)
0

>>> Sum(x*y, (x, a, b), (y, c, d)).index(y)
1

>>> Product(x*y, (x, a, b), (y, c, d)).index(x)
0

>>> Product(x*y, (x, a, b), (y, c, d)).index(y)
1
```
See also:

`reorder_limit` (page 966), `reorder` (page 966), `sympy.concrete.summations.Sum.reverse_order` (page 956), `sympy.concrete.products.Product.reverse_order` (page 961)

reorder(*arg***)

Reorder limits in a expression containing a Sum or a Product.

Explanation

expr.reorder(**arg**) reorders the limits in the expression expr according to the list of tuples given by arg. These tuples can contain numerical indices or index variable names or involve both.

Examples

```python
>>> from sympy import Sum, Product
>>> from sympy.abc import x, y, z, a, b, c, d, e, f

>>> Sum(x*y, (x, a, b), (y, c, d)).reorder((x, y))
Sum(x*y, (y, c, d), (x, a, b))

>>> Sum(x*y*z, (x, a, b), (y, c, d), (z, e, f)).reorder((x, y), (x, z), (y, z))
Sum(x*y*z, (z, e, f), (y, c, d), (x, a, b))

>>> P = Product(x*y*z, (x, a, b), (y, c, d), (z, e, f))
>>> P.reorder((x, y), (x, z), (y, z))
Product(x*y*z, (z, e, f), (y, c, d), (x, a, b))
```

We can also select the index variables by counting them, starting with the inner-most one:

```python
>>> Sum(x**2, (x, a, b), (x, c, d)).reorder((0, 1))
Sum(x**2, (x, c, d), (x, a, b))
```

And of course we can mix both schemes:

```python
>>> Sum(x*y, (x, a, b), (y, c, d)).reorder((y, x))
Sum(x*y, (y, c, d), (x, a, b))
>>> Sum(x*y, (x, a, b), (y, c, d)).reorder((y, 0))
Sum(x*y, (y, c, d), (x, a, b))
```

See also:

`reorder_limit` (page 966), `index` (page 965), `sympy.concrete.summations.Sum.reverse_order` (page 956), `sympy.concrete.products.Product.reverse_order` (page 961)

reorder_limit(x, y)

Interchange two limit tuples of a Sum or Product expression.
SymPy Documentation, Release 1.12.1

Explanation

expr.reorder_limit(x, y) interchanges two limit tuples. The arguments x and y are integers corresponding to the index variables of the two limits which are to be interchanged. The expression expr has to be either a Sum or a Product.

Examples

```python
>>> from sympy.abc import x, y, z, a, b, c, d, e, f
>>> from sympy import Sum, Product

>>> Sum(x*y*z, (x, a, b), (y, c, d), (z, e, f)).reorder_limit(0, 2)
Sum(x*y*z, (z, e, f), (y, c, d), (x, a, b))

>>> Sum(x**2, (x, a, b), (x, c, d)).reorder_limit(1, 0)
Sum(x**2, (x, c, d), (x, a, b))

>>> Product(x*y*z, (x, a, b), (y, c, d), (z, e, f)).reorder_limit(0, 2)
Product(x*y*z, (z, e, f), (y, c, d), (x, a, b))
```

See also:

index (page 965), reorder (page 966), sympy.concrete.summations.Sum.reverse_order (page 956), sympy.concrete.products.Product.reverse_order (page 961)

Concrete Functions Reference

sympy.concrete.summations.summation(f, *symbols, **kwargs)

Compute the summation of f with respect to symbols.

Explanation

The notation for symbols is similar to the notation used in Integral. summation(f, (i, a, b)) computes the sum of f with respect to i from a to b, i.e.,

\[
\text{summation}(f, (i, a, b)) = \sum_{i=a}^{b} f
\]

If it cannot compute the sum, it returns an unevaluated Sum object. Repeated sums can be computed by introducing additional symbols tuples:

```python
>>> from sympy import summation, oo, symbols, log
>>> i, n, m = symbols('i n m', integer=True)
```
```python
>>> summation(2*i - 1, (i, 1, n))
n**2
>>> summation(1/2**i, (i, 0, oo))
2
>>> summation(1/log(n)**n, (n, 2, oo))
Sum(log(n)**(-n), (n, 2, oo))
>>> summation(i, (i, 0, n), (n, 0, m))
m**3/6 + m**2/2 + m/3
```

```python
>>> from sympy.abc import x
>>> from sympy import factorial
>>> summation(x**n/factorial(n), (n, 0, oo))
exp(x)
```

See also:


```
sympy.concrete.products.product(*args, **kwargs)
```

Compute the product.

Explanation

The notation for symbols is similar to the notation used in Sum or Integral. `product(f, (i, a, b))` computes the product of f with respect to i from a to b, i.e.,

\[
\prod_{i=a}^{b} f(n)
\]

If it cannot compute the product, it returns an unevaluated `Product` object. Repeated products can be computed by introducing additional symbols tuples:

```python
>>> from sympy import product, symbols
>>> i, n, m, k = symbols('i n m k', integer=True)
```
Explanation

Given relatively prime univariate polynomials \(f \) and \(g \), rewrite their quotient to a normal form defined as follows:

\[
\frac{f(n)}{g(n)} = Z \cdot \frac{A(n)C(n+1)}{B(n)C(n)}
\]

where \(Z \) is an arbitrary constant and \(A, B, C \) are monic polynomials in \(n \) with the following properties:

1. \(\gcd(A(n), B(n+h)) = 1 \forall h \in \mathbb{N} \)
2. \(\gcd(B(n), C(n+1)) = 1 \)
3. \(\gcd(A(n), C(n)) = 1 \)

This normal form, or rational factorization in other words, is a crucial step in Gosper’s algorithm and in solving of difference equations. It can be also used to decide if two hypergeometric terms are similar or not.

This procedure will return a tuple containing elements of this factorization in the form \((Z*A, B, C)\).

Examples

```python
>>> from sympy.concrete.gosper import gosper_normal
>>> from sympy.abc import n

>>> gosper_normal(4*n+5, 2*(4*n+1)*(2*n+3), n, polys=False)
(1/4, n + 3/2, n + 1/4)
```

```
Compu```
sympy.concrete.gosper.gosper_sum(f, k)
Gosper’s hypergeometric summation algorithm.

Explanation
Given a hypergeometric term $f$ such that:

$$s_n = \sum_{k=0}^{n-1} f_k$$

and $f(n)$ does not depend on $n$, returns $g_n - g(0)$ where $g_{n+1} - g_n = f_n$, or None if $s_n$ cannot be expressed in closed form as a sum of hypergeometric terms.

Examples

```python
>>> from sympy.concrete.gosper import gosper_sum
>>> from sympy import factorial
>>> from sympy.abc import n, k

>>> f = (4*k + 1)*factorial(k)/factorial(2*k + 1)
>>> gosper_sum(f, (k, 0, n))
(-factorial(n) + 2*factorial(2*n + 1))/factorial(2*n + 1)
>>> _.subs(n, 2) == sum(f.subs(k, i) for i in [0, 1, 2])
True
>>> gosper_sum(f, (k, 3, n))
(-60*factorial(n) + factorial(2*n + 1))/(60*factorial(2*n + 1))
>>> _.subs(n, 5) == sum(f.subs(k, i) for i in [3, 4, 5])
True
```

References

[R103]

Core

sympify

sympy.core.sympify.sympify(a, locals=None, convert_xor=True, strict=False, rational=False, evaluate=None)

Converts an arbitrary expression to a type that can be used inside SymPy.

Parameters

- a:
  - any object defined in SymPy
  - standard numeric Python types: int, long, float, Decimal
  - strings (like "0.09", "2e-19" or 'sin(x)')
• booleans, including None (will leave None unchanged)
• dicts, lists, sets or tuples containing any of the above

convert_xor : bool, optional

  If true, treats ^ as exponentiation. If False, treats ^ as XOR itself. Used only when input is a string.

locals : any object defined in SymPy, optional

  In order to have strings be recognized it can be imported into a namespace dictionary and passed as locals.

strict : bool, optional

  If the option strict is set to True, only the types for which an explicit conversion has been defined are converted. In the other cases, a SympifyError is raised.

rational : bool, optional

  If True, converts floats into Rational (page 1036). If False, it lets floats remain as it is. Used only when input is a string.

evaluate : bool, optional

  If False, then arithmetic and operators will be converted into their SymPy equivalents. If True the expression will be evaluated and the result will be returned.

Explanation

It will convert Python ints into instances of Integer (page 1038), floats into instances of Float (page 1033), etc. It is also able to coerce symbolic expressions which inherit from Basic (page 979). This can be useful in cooperation with SAGE.

Warning: Note that this function uses eval, and thus shouldn’t be used on unsanitized input.

If the argument is already a type that SymPy understands, it will do nothing but return that value. This can be used at the beginning of a function to ensure you are working with the correct type.

Examples

```python
>>> from sympy import sympify

>>> sympify(2).is_integer
True
>>> sympify(2).is_real
True
```
If the expression could not be converted, a SympifyError is raised.

```python
>>> sympify("x***2")
Traceback (most recent call last):
...
SympifyError: SympifyError: "could not parse 'x***2'"
```

### Locals

The sympification happens with access to everything that is loaded by `from sympy import *`; anything used in a string that is not defined by that import will be converted to a symbol. In the following, the `bitcount` function is treated as a symbol and the 0 is interpreted as the `Order` (page 686) object (used with series) and it raises an error when used improperly:

```python
>>> s = 'bitcount(42)'
>>> sympify(s)
bitcount(42)
>>> sympify("O(x)")
O(x)
>>> sympify("0 + 1")
Traceback (most recent call last):
...
TypeError: unbound method...
```

In order to have `bitcount` be recognized it can be imported into a namespace dictionary and passed as `locals`:

```python
>>> ns = {}
>>> exec('from sympy.core.evalf import bitcount', ns)
>>> sympify(s, locals=ns)
6
```

In order to have the 0 interpreted as a Symbol, identify it as such in the namespace dictionary. This can be done in a variety of ways; all three of the following are possibilities:

```python
>>> from sympy import Symbol
>>> ns["0"] = Symbol("0") # method 1
>>> exec('from sympy.abc import O', ns) # method 2
>>> ns.update(dict(O=Symbol("O"))) # method 3
>>> sympify("0 + 1", locals=ns)
O + 1
```

If you want all single-letter and Greek-letter variables to be symbols then you can use the clashing-symbols dictionaries that have been defined there as private variables: `_clash1`
(single-letter variables), _clash2 (the multi-letter Greek names) or _clash (both single
and multi-letter names that are defined in abc).

```python
>>> from sympy.abc import _clash1
>>> set(_clash1) # if this fails, see issue #23903
{'E', 'I', 'N', 'O', 'Q', 'S'}
>>> sympify('I & Q', _clash1)
I & Q
```

**Strict**

If the option strict is set to True, only the types for which an explicit conversion has
been defined are converted. In the other cases, a SympifyError is raised.

```python
>>> print(sympify(None))
None
>>> sympify(None, strict=True)
Traceback (most recent call last):
... SympifyError: SympifyError: None
```

Deprecated since version 1.6: sympify(obj) automatically falls back to str(obj) when
all other conversion methods fail, but this is deprecated. strict=True will disable this
deprecated behavior. See *The string fallback in sympify()* (page 229).

**Evaluation**

If the option evaluate is set to False, then arithmetic and operators will be converted
into their SymPy equivalents and the evaluate=False option will be added. Nested Add
or Mul will be denested first. This is done via an AST transformation that replaces oper-
ators with their SymPy equivalents, so if an operand redefines any of those operations,
the redefined operators will not be used. If argument a is not a string, the mathematical
expression is evaluated before being passed to sympify, so adding evaluate=False will
still return the evaluated result of expression.

```python
>>> sympify('2**2 / 3 + 5')
19/3
>>> sympify('2**2 / 3 + 5', evaluate=False)
2**2/3 + 5
>>> sympify('4/2+7', evaluate=True)
9
>>> sympify('4/2+7', evaluate=False)
4/2 + 7
>>> sympify(4/2+7, evaluate=False)
9.00000000000000
```
Extending

To extend sympify to convert custom objects (not derived from Basic), just define a _sympy_ method to your class. You can do that even to classes that you do not own by subclassing or adding the method at runtime.

```python
>>> from sympy import Matrix
>>> class MyList1(object):
... def __iter__(self):
... yield 1
... yield 2
... return
... def __getitem__(self, i):
... return list(self)[i]
... def _sympy_(self):
... return Matrix(self)

```

```text
sympify(MyList1())
Matrix([[1], [2]])
```

If you do not have control over the class definition you could also use the converter global dictionary. The key is the class and the value is a function that takes a single argument and returns the desired SymPy object, e.g. converter[MyList] = lambda x: Matrix(x).

```python
>>> class MyList2(object):
... def __iter__(self):
... yield 1
... yield 2
... return
... def __getitem__(self, i):
... return list(self)[i]

```

```text
>>> from sympy.core.sympify import converter
>>> converter[MyList2] = lambda x: Matrix(x)

```

```text
sympify(MyList2())
Matrix([[1], [2]])
```

Notes

The keywords rational and convert_xor are only used when the input is a string.
Convert_xor

```python
>>> sympify('x^y',convert_xor=True)
x**y
>>> sympify('x^y',convert_xor=False)
x ^ y
```

Rational

```python
>>> sympify('0.1',rational=False)
0.1
>>> sympify('0.1',rational=True)
1/10
```

Sometimes autosimplification during sympification results in expressions that are very different in structure than what was entered. Until such autosimplification is no longer done, the kernS function might be of some use. In the example below you can see how an expression reduces to \(-1\) by autosimplification, but does not do so when kernS is used.

```python
>>> from sympy.core.sympify import kernS
>>> from sympy.abc import x
>>> -2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1
-1
>>> s = '-2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1'
>>> sympify(s)
-1
>>> kernS(s)
-2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1
```

Assumptions

This module contains the machinery handling assumptions. Do also consider the guide Assumptions (page 71).

All symbolic objects have assumption attributes that can be accessed via `.is_<assumption name>` attribute.

Assumptions determine certain properties of symbolic objects and can have 3 possible values: True, False, None. True is returned if the object has the property and False is returned if it does not or cannot (i.e. does not make sense):

```python
>>> from sympy import I
>>> I.is_algebraic
True
>>> I.is_real
False
>>> I.is_prime
False
```

When the property cannot be determined (or when a method is not implemented) None will be returned. For example, a generic symbol, x, may or may not be positive so a value of None is returned for `x.is_positive`. 

5.8. Topics
By default, all symbolic values are in the largest set in the given context without specifying the property. For example, a symbol that has a property being integer, is also real, complex, etc.

Here follows a list of possible assumption names:

**commtuitive**
- object commutes with any other object with respect to multiplication operation. See\(^\text{12}\).

**complex**
- object can have only values from the set of complex numbers. See\(^\text{13}\).

**imaginary**
- object value is a number that can be written as a real number multiplied by the imaginary unit \(i\). See \([\text{R106}]\). Please note that 0 is not considered to be an imaginary number, see issue \#7649.

**real**
- object can have only values from the set of real numbers.

**extended_real**
- object can have only values from the set of real numbers, oo and -oo.

**integer**
- object can have only values from the set of integers.

**odd**
- object can have only values from the set of odd (even) integers \([\text{R105}]\).

**even**
- object can have only values from the set of odd (even) integers \([\text{R105}]\).

**prime**
- object is a natural number greater than 1 that has no positive divisors other than 1 and itself. See \([\text{R109}]\).

**composite**
- object is a positive integer that has at least one positive divisor other than 1 or the number itself. See \([\text{R107}]\).

**zero**
- object has the value of 0.

**nonzero**
- object is a real number that is not zero.

**rational**
- object can have only values from the set of rationals.

**algebraic**
- object can have only values from the set of algebraic numbers\(^\text{11}\).

**transcendental**
- object can have only values from the set of transcendental numbers\(^\text{10}\).

**irrational**
- object value cannot be represented exactly by \textit{Rational} (page 1036), see \([\text{R108}]\).

\(^{12}\) \url{https://en.wikipedia.org/wiki/Commutative_property}

\(^{13}\) \url{https://en.wikipedia.org/wiki/Complex_number}

\(^{11}\) \url{https://en.wikipedia.org/wiki/Algebraic_number}

\(^{10}\) \url{https://en.wikipedia.org/wiki/Transcendental_number}
finite
infinite
    object absolute value is bounded (arbitrarily large). See [R110], [R111], [R112].

negative
nonnegative
    object can have only negative (nonnegative) values [R104].

positive
nonpositive
    object can have only positive (nonpositive) values.

extended_negative
extended_nonnegative
extended_positive
extended_nonpositive
extended_nonzero
    as without the extended part, but also including infinity with corresponding sign, e.g., extended_positive includes oo

hermitian
antihermitian
    object belongs to the field of Hermitian (antihermitian) operators.

Examples

```python
>>> from sympy import Symbol
>>> x = Symbol('x', real=True); x
x
>>> x.is_real
True
>>> x.is_complex
True
```

See Also

See also:

sympy.core.numbers.ImaginaryUnit (page 1050) sympy.core.numbers.Zero (page 1045)
sympy.core.numbers.One (page 1046) sympy.core.numbers.Infinity (page 1048) sympy.
core.numbers.NegativeInfinity (page 1048) sympy.core.numbers.ComplexInfinity (page 1048)
Notes

The fully-resolved assumptions for any SymPy expression can be obtained as follows:

```python
>>> from sympy.core.assumptions import assumptions
>>> x = Symbol('x', positive=True)
>>> assumptions(x + I)
```

Developers Notes

The current (and possibly incomplete) values are stored in the obj.assumptions dictionary; queries to getter methods (with property decorators) or attributes of objects/classes will return values and update the dictionary.

```python
>>> eq = x**2 + I
>>> eq._assumptions
{}
>>> eq.is_finite
True
>>> eq._assumptions
{'finite': True, 'infinite': False}
```

For a `Symbol` (page 1028), there are two locations for assumptions that may be of interest. The assumptions0 attribute gives the full set of assumptions derived from a given set of initial assumptions. The latter assumptions are stored as Symbol._assumptions_orig

```python
>>> Symbol('x', prime=True, even=True)._assumptions_orig
{'even': True, 'prime': True}
```

The _assumptions_orig are not necessarily canonical nor are they filtered in any way: they records the assumptions used to instantiate a Symbol and (for storage purposes) represent a more compact representation of the assumptions needed to recreate the full set in Symbol. assumptions0.
References

cache

sympy.core.cache.__cacheit(maxsize)

caching decorator.

important: the result of cached function must be immutable

Examples

>>> from sympy import cacheit

>>> @cacheit
... def f(a, b):
...     return a+b

>>> @cacheit
... def f(a, b): # noqa: F811
...     return [a, b] # <-- WRONG, returns mutable object

to force cacheit to check returned results mutability and consistency, set environment variable SYMPY_USE_CACHE to 'debug'

basic

class sympy.core.basic.Basic(*args)

Base class for all SymPy objects.

Notes And Conventions

1) Always use .args, when accessing parameters of some instance:

>>> from sympy import cot
>>> from sympy.abc import x, y

>>> cot(x).args
(x,)

>>> cot(x).args[0]
x

>>> (x*y).args
(x, y)

>>> (x*y).args[1]
y

2) Never use internal methods or variables (the ones prefixed with _):
3) By “SymPy object” we mean something that can be returned by sympify. But not all objects one encounters using SymPy are subclasses of Basic. For example, mutable objects are not:

```python
>>> from sympy import Basic, Matrix, sympify
>>> A = Matrix([[1, 2], [3, 4]]).as_mutable()
>>> isinstance(A, Basic)
False

>>> B = sympify(A)
>>> isinstance(B, Basic)
True
```

**property args: tuple**

Returns a tuple of arguments of `self`.

**Examples**

```python
>>> from sympy import cot
>>> from sympy.abc import x, y

>>> cot(x).args
(x,)

>>> cot(x).args[0]
x

>>> (x*y).args
(x, y)

>>> (x*y).args[1]
y
```

**Notes**

Never use `self._args`, always use `self.args`. Only use `_args` in `_new_` when creating a new function. Do not override `.args()` from Basic (so that it is easy to change the interface in the future if needed).

**as_content_primitive** `(radical=False, clear=True)`

A stub to allow Basic args (like Tuple) to be skipped when computing the content and primitive components of an expression.

**See also:**

`sympy.core.expr.Expr.as_content_primitive` (page 1002)
as_dummy()

Return the expression with any objects having structurally bound symbols replaced with unique, canonical symbols within the object in which they appear and having only the default assumption for commutativity being True. When applied to a symbol a new symbol having only the same commutativity will be returned.

Examples

```python
>>> from sympy import Integral, Symbol
>>> from sympy.abc import x
>>> r = Symbol('r', real=True)
>>> Integral(r, (r, x)).as_dummy()
Integral(_0, (_0, x))
>>> _.variables[0].is_real is None
True
>>> r.as_dummy()
_r
```

Notes

Any object that has structurally bound variables should have a property, `bound_symbols` that returns those symbols appearing in the object.

property assumptions0

Return object type assumptions.

For example:

```
Symbol('x', real=True) Symbol('x', integer=True)
```

are different objects. In other words, besides Python type (Symbol in this case), the initial assumptions are also forming their typeinfo.

Examples

```python
>>> from sympy import Symbol
>>> from sympy.abc import x
>>> x.assumptions0
{'}
>>> x = Symbol("x", positive=True)
>>> x.assumptions0
{'}
```

5.8. Topics 981
atoms(*types)

Returns the atoms that form the current object.

By default, only objects that are truly atomic and cannot be divided into smaller pieces are returned: symbols, numbers, and number symbols like \( i \) and \( \pi \). It is possible to request atoms of any type, however, as demonstrated below.

**Examples**

```python
>>> from sympy import I, pi, sin
>>> from sympy import x, y
>>> (1 + x + 2*sin(y + I*pi)).atoms()
{1, 2, I, pi, x, y}
```

If one or more types are given, the results will contain only those types of atoms.

```python
>>> from sympy import Number, NumberSymbol, Symbol
>>> (1 + x + 2*sin(y + I*pi)).atoms(Symbol)
{x, y}
```

```python
>>> (1 + x + 2*sin(y + I*pi)).atoms(Number)
{1, 2}
```

```python
>>> (1 + x + 2*sin(y + I*pi)).atoms(Number, NumberSymbol)
{1, 2, pi}
```

Note that \( i \) (imaginary unit) and \( \text{zoo} \) (complex infinity) are special types of number symbols and are not part of the `NumberSymbol` class.

The type can be given implicitly, too:

```python
>>> (1 + x + 2*sin(y + I*pi)).atoms(x) # x is a Symbol
{x, y}
```

Be careful to check your assumptions when using the implicit option since `S(1).is_Integer = True` but `type(S(1))` is `One`, a special type of SymPy atom, while `type(S(2))` is `type(Integer)` and will find all integers in an expression:

```python
>>> from sympy import S
>>> (1 + x + 2*sin(y + I*pi)).atoms(S(1))
{1}
```

```python
>>> (1 + x + 2*sin(y + I*pi)).atoms(S(2))
{1, 2}
```

Finally, arguments to `atoms()` can select more than atomic atoms: any SymPy type (loaded in core/_init_.py) can be listed as an argument and those types of “atoms” as found in scanning the arguments of the expression recursively:
>>> from sympy import Function, Mul
>>> f = Function('f')
>>> (1 + f(x) + 2*sin(y + I*pi)).atoms(Function)
{f(x), sin(y + I*pi)}
>>> (1 + f(x) + 2*sin(y + I*pi)).atoms(AppliedUndef)
{f(x)}
>>> (1 + x + 2*sin(y + I*pi)).atoms(Mul)
{I*pi, 2*sin(y + I*pi)}

**property canonical_variables**

Return a dictionary mapping any variable defined in `self.bound_symbols` to Symbols that do not clash with any free symbols in the expression.

**Examples**

```python
>>> from sympy import Lambda
>>> from sympy.abc import x
>>> Lambda(x, 2*x).canonical_variables
{x: _0}
```

**classmethod class_key()**

Nice order of classes.

**compare(other)**

Return -1, 0, 1 if the object is smaller, equal, or greater than other.

Not in the mathematical sense. If the object is of a different type from the “other” then their classes are ordered according to the sorted_classes list.

**Examples**

```python
>>> from sympy.abc import x, y
>>> x.compare(y)
-1
>>> x.compare(x)
0
>>> y.compare(x)
1
```

count(query)

Count the number of matching subexpressions.

count_ops(visual=None)

Wrapper for count_ops that returns the operation count.

doit(**hints)**

Evaluate objects that are not evaluated by default like limits, integrals, sums and products. All objects of this kind will be evaluated recursively, unless some species were excluded via ‘hints’ or unless the ‘deep’ hint was set to ‘False’.
>>> from sympy import Integral
>>> from sympy.abc import x

>>> 2*Integral(x, x)
2*Integral(x, x)

>>> (2*Integral(x, x)).doit()
x**2

>>> (2*Integral(x, x)).doit(deep=False)
2*Integral(x, x)

dummy_eq(other, symbol=None)

Compare two expressions and handle dummy symbols.

Examples

>>> from sympy import Dummy
>>> from sympy.abc import x, y

>>> u = Dummy('u')

>>> (u**2 + 1).dummy_eq(x**2 + 1)
True
>>> (u**2 + 1) == (x**2 + 1)
False

>>> (u**2 + y).dummy_eq(x**2 + y, x)
True
>>> (u**2 + y).dummy_eq(x**2 + y, y)
False

find(query, group=False)

Find all subexpressions matching a query.

property free_symbols: set[

Return from the atoms of self those which are free symbols.

Not all free symbols are Symbol. Eg: IndexedBase('I')[0].free_symbols

For most expressions, all symbols are free symbols. For some classes this is not true. e.g. Integrals use Symbols for the dummy variables which are bound variables, so Integral has a method to return all symbols except those. Derivative keeps track of symbols with respect to which it will perform a derivative; those are bound variables, too, so it has its own free_symbols method.

Any other method that uses bound variables should implement a free_symbols method.

classmethod fromiter(args, **assumptions)

Create a new object from an iterable.
This is a convenience function that allows one to create objects from any iterable, without having to convert to a list or tuple first.

**Examples**

```python
>>> from sympy import Tuple
>>> Tuple.fromiter(i for i in range(5))
(0, 1, 2, 3, 4)
```

**property func**

The top-level function in an expression.

The following should hold for all objects:

```python
>>> x == x.func(*x.args)
```

**Examples**

```python
>>> from sympy import x
>>> a = 2*x
>>> a.func
<class 'sympy.core.mul.Mul'>
>>> a.args
(2, x)
>>> a.func(*a.args)
2*x
>>> a == a.func(*a.args)
True
```

**has(**patterns**)**

Test whether any subexpression matches any of the patterns.

**Examples**

```python
>>> from sympy import sin
>>> from sympy import x, y, z
>>> (x**2 + sin(x*y)).has(z)
False
>>> (x**2 + sin(x*y)).has(x, y, z)
True
>>> x.has(x)
True
```

Note has is a structural algorithm with no knowledge of mathematics. Consider the following half-open interval:

```python
>>> from sympy import Interval
>>> i = Interval.Lopen(0, 5); i
Interval.Lopen(0, 5)
```
>>> i.args
(0, 5, True, False)
>>> i.has(4)  # there is no "4" in the arguments
False
>>> i.has(0)  # there *is* a "0" in the arguments
True

Instead, use contains to determine whether a number is in the interval or not:

>>> i.contains(4)
True
>>> i.contains(0)
False

Note that expr.has(*patterns) is exactly equivalent to any(expr.has(p) for p in patterns). In particular, False is returned when the list of patterns is empty.

>>> x.has()
False

**has_free(*patterns)**

Return True if self has object(s) x as a free expression else False.

**Examples**

```python
>>> from sympy import Integral, Function
>>> from sympy.abc import x, y
>>> f = Function('f')
>>> g = Function('g')
>>> expr = Integral(f(x), (f(x), 1, g(y)))
>>> expr.free_symbols
{y}
>>> expr.has_free(g(y))
True
>>> expr.has_free(*{x, f(x)})
False
```

This works for subexpressions and types, too:

```python
>>> expr.has_free(g)
True
>>> (x + y + 1).has_free(y + 1)
True
```

**has_xfree(s: set[Basic (page 979)])**

Return True if self has any of the patterns in s as a free argument, else False. This is like `Basic.has_free` but this will only report exact argument matches.
Examples

```python
>>> from sympy import Function
>>> from sympy.abc import x, y
>>> f = Function('f')
>>> f(x).has_xfree({f})
False
>>> f(x).has_xfree({f(x)})
True
>>> f(x + 1).has_xfree({x})
True
>>> f(x + 1).has_xfree({x + 1})
True
>>> f(x + y + 1).has_xfree({x + 1})
False
```

property `is_comparable`

Return True if self can be computed to a real number (or already is a real number) with precision, else False.

Examples

```python
>>> from sympy import exp_polar, pi, I
>>> (I*exp_polar(I*pi/2)).is_comparable
True
>>> (I*exp_polar(I*pi*2)).is_comparable
False
```

A False result does not mean that `self` cannot be rewritten into a form that would be comparable. For example, the difference computed below is zero but without simplification it does not evaluate to a zero with precision:

```python
>>> e = 2**pi*(1 + 2**pi)
>>> dif = e - e.expand()
>>> dif.is_comparable
False
>>> dif.n(2) # prec
1
```

`match(pattern, old=False)`

Pattern matching.

Wild symbols match all.

Return None when expression (self) does not match with pattern. Otherwise return a dictionary such that:

```python
pattern.xreplace(self.match(pattern)) == self
```
Examples

```python
>>> from sympy import Wild, Sum
>>> from sympy.abc import x, y
>>> p = Wild("p")
>>> q = Wild("q")
>>> r = Wild("r")
>>> e = (x+y)**(x+y)
>>> e.match(p**p)
{p_: x + y}
>>> e.match(p**q)
{p_: x + y, q_: x + y}
>>> e = (2*x)**2
>>> e.match(p*q**r)
{p_: 4, q_: x, r_: 2}
>>> (p*q**r).xreplace(e.match(p*q**r))
4*x**2
```

Structurally bound symbols are ignored during matching:

```python
>>> Sum(x, (x, 1, 2)).match(Sum(y, (y, 1, p)))
{p_: 2}
```

But they can be identified if desired:

```python
>>> Sum(x, (x, 1, 2)).match(Sum(q, (q, 1, p)))
{p_: 2, q_: x}
```

The old flag will give the old-style pattern matching where expressions and patterns are essentially solved to give the match. Both of the following give None unless old=True:

```python
>>> (x - 2).match(p - x, old=True)
{p_: 2*x - 2}
>>> (2/x).match(p*x, old=True)
{p_: 2/x**2}
```

`matches(expr, repl_dict=None, old=False)`

Helper method for match() that looks for a match between Wild symbols in self and expressions in expr.

Examples

```python
>>> from sympy import symbols, Wild, Basic
>>> a, b, c = symbols('a b c')
>>> x = Wild('x')
>>> Basic(a + x, x).matches(Basic(a + b, c)) is None
True
>>> Basic(a + x, x).matches(Basic(a + b + c, b + c))
{x_: b + c}
```
rcall(*args)

Apply on the argument recursively through the expression tree.

This method is used to simulate a common abuse of notation for operators. For instance, in SymPy the following will not work:

\[(x + \text{Lambda}(y, 2^y))(z) == x + 2^z,\]

however, you can use:

```
>>> from sympy import Lambda
>>> from sympy.abc import x, y, z
>>> (x + Lambda(y, 2**y)).rcall(z)
x + 2*z
```

refine(assumption=True)

See the refine function in sympy.assumptions

replace(query, value, map=False, simultaneous=True, exact=None)

Replace matching subexpressions of self with value.

If map = True then also return the mapping \{old: new\} where old was a sub-
expression found with query and new is the replacement value for it. If the expression
itself does not match the query, then the returned value will be self.xreplace(map)
otherwise it should be self.subs(ordered(map.items())).

Traverses an expression tree and performs replacement of matching subexpressions
from the bottom to the top of the tree. The default approach is to do the replacement
in a simultaneous fashion so changes made are targeted only once. If this is not
desired or causes problems, simultaneous can be set to False.

In addition, if an expression containing more than one Wild symbol is being used to
match subexpressions and the exact flag is None it will be set to True so the match
will only succeed if all non-zero values are received for each Wild that appears in
the match pattern. Setting this to False accepts a match of 0; while setting it True
accepts all matches that have a 0 in them. See example below for cautions.

The list of possible combinations of queries and replacement values is listed below:

Examples

Initial setup

```
>>> from sympy import log, sin, cos, tan, Wild, Mul, Add
>>> from sympy.abc import x, y
>>> f = log(sin(x)) + tan(sin(x**2))
```

1.1. type -> type

obj.replace(type, newtype)

When object of type type is found, replace it with the result of passing its argu-
ment(s) to newtype.

```
>>> f.replace(sin, cos)
log(cos(x)) + tan(cos(x**2))
>>> sin(x).replace(sin, cos, map=True)
```

(continues on next page)
When object of type type is found, apply func to its argument(s). func must be written to handle the number of arguments of type.

```python
>>> f.replace(sin, lambda arg: sin(2*arg))
log(sin(2*x)) + tan(sin(2*x**2))
```

2.1. pattern -> expr
obj.replace(pattern(wild), expr(wild))
Replace subexpressions matching pattern with the expression written in terms of the Wild symbols in pattern.

```python
>>> a, b = map(Wild, 'ab')
>>> f.replace(sin(a), tan(a))
log(tan(x)) + tan(tan(x**2))
```

Matching is exact by default when more than one Wild symbol is used: matching fails unless the match gives non-zero values for all Wild symbols:

```python
>>> (2*x + y).replace(a*x + b, b - a)
y - 2
```

When set to False, the results may be non-intuitive:

```python
>>> (2*x).replace(a*x + b, b - a, exact=False)
2/x
```

2.2. pattern -> func
obj.replace(pattern(wild), lambda wild: expr(wild))
All behavior is the same as in 2.1 but now a function in terms of pattern variables is used rather than an expression:

```python
>>> f.replace(sin(a), lambda a: sin(2*a))
log(sin(2*x)) + tan(sin(2*x**2))
```
Replace subexpression \( e \) with \( \text{func}(e) \) if \( \text{filter}(e) \) is True.

```python
>>> g = 2*sin(x**3)
>>> g.replace(lambda expr: expr.is_Number, lambda expr: expr**2)
4*sin(x**9)
```

The expression itself is also targeted by the query but is done in such a fashion that changes are not made twice.

```python
>>> e = x*(x*y + 1)
>>> e.replace(lambda x: x.is_Mul, lambda x: 2*x)
2*x*(2*x*y + 1)
```

When matching a single symbol, \( \text{exact} \) will default to True, but this may or may not be the behavior that is desired:

Here, we want \( \text{exact} = \text{False} \):

```python
>>> from sympy import Function
>>> f = Function('f')
>>> e = f(1) + f(0)
>>> q = f(a), lambda a: f(a + 1)
>>> e.replace(*q, exact=False)
f(1) + f(0)
>>> e.replace(*q, exact=True)
f(0) + f(2)
```

But here, the nature of matching makes selecting the right setting tricky:

```python
>>> e = x**(1 + y)
>>> (x**(1 + y)).replace(x**(1 + a), lambda a: x**-a, exact=False)
x
>>> (x**(1 + y)).replace(x**(1 + a), lambda a: x**-a, exact=True)
x**(-x - y + 1)
>>> (x**y).replace(x**(1 + a), lambda a: x**-a, exact=False)
x
>>> (x**y).replace(x**(1 + a), lambda a: x**-a, exact=True)
x**(1 - y)
```

It is probably better to use a different form of the query that describes the target expression more precisely:

```python
>>> (1 + x**(1 + y)).replace(
... lambda x: x.is_Pow and x.exp.is_Add and x.exp.args[0] == 1,
... lambda x: x.base**(1 - (x.exp - 1)))
x**(1 - y) + 1
```

See also:

- `subs (page 993)`
  substitution of subexpressions as defined by the objects themselves.
- `xreplace (page 995)`
  exact node replacement in expr tree; also capable of using matching rules
rewrite(*args, deep=True, **hints)

Rewrite self using a defined rule.

Rewriting transforms an expression to another, which is mathematically equivalent but structurally different. For example, you can rewrite trigonometric functions as complex exponentials or combinatorial functions as gamma function.

This method takes a pattern and a rule as positional arguments. pattern is optional parameter which defines the types of expressions that will be transformed. If it is not passed, all possible expressions will be rewritten. rule defines how the expression will be rewritten.

Parameters

- **args**: Expr
  - A rule, or pattern and rule. - pattern is a type or an iterable of types.
  - rule can be any object.

- **deep**: bool, optional
  - If True, subexpressions are recursively transformed. Default is True.

Examples

If pattern is unspecified, all possible expressions are transformed.

```python
>>> from sympy import cos, sin, exp, I
>>> from sympy.abc import x
>>> expr = cos(x) + I*sin(x)
>>> expr.rewrite(exp)
exp(I*x)
```

Pattern can be a type or an iterable of types.

```python
>>> expr.rewrite(sin, exp)
exp(I*x)/2 + cos(x) - exp(-I*x)/2
>>> expr.rewrite([cos,], exp)
exp(I*x)/2 + I*sin(x) + exp(-I*x)/2
>>> expr.rewrite([cos, sin], exp)
exp(I*x)
```

Rewriting behavior can be implemented by defining _eval_rewrite() method.

```python
>>> from sympy import Expr, sqrt, pi
>>> class MySin(Expr):
... def _eval_rewrite(self, rule, args, **hints):
... x, = args
... if rule == cos:
... return cos(pi/2 - x, evaluate=False)
... if rule == sqrt:
... return sqrt(1 - cos(x)**2)
>>> MySin(MySin(x)).rewrite(cos)
cos(-cos(-x + pi/2) + pi/2)
>>> MySin(x).rewrite(sqrt)
sqrt(1 - cos(x)**2)
```
Defining \texttt{\_eval_rewrite_as\[][...\][]()} method is supported for backwards compatibility reason. This may be removed in the future and using it is discouraged.

```python
>>> class MySin(Expr):
... def _eval_rewrite_as_cos(self, *args, **hints):
... x, = args
... return cos(pi/2 - x, evaluate=False)
>>> MySin(x).rewrite(cos)
cos(-x + pi/2)
```

**simplify(**\*kwargs**)**

See the simplify function in sympy.simplify

**sort_key**(order=\texttt{None})

Return a sort key.

**Examples**

```python
>>> from sympy import S, I

>>> sorted([S(1)/2, I, -I], key=lambda x: x.sort_key())
[1/2, -I, I]

>>> S(“[x, 1/x, 1/x**2, x**2, x**(1/2), x**(1/4), x**(3/2)]”)
[x, 1/x, x**(-2), x**2, sqrt(x), x**(1/4), x**(3/2)]

>>> sorted(x, key=lambda x: x.sort_key())
[x**(-2), 1/x, x**(1/4), sqrt(x), x, x**(3/2), x**2]
```

**subs(**\*args, **\*kwargs**)**

Substitutes old for new in an expression after sympifying \texttt{args}.

**args** is either:

- two arguments, e.g. \texttt{foo.subs(old, new)}
- one iterable argument, e.g. \texttt{foo.subs(iterable)}. The iterable may be
  - an iterable container with (old, new) pairs. In this case the replacements are processed in the order given with successive patterns possibly affecting replacements already made.
  - a dict or set whose key/value items correspond to old/new pairs. In this case the old/new pairs will be sorted by op count and in case of a tie, by number of args and the default_sort_key. The resulting sorted list is then processed as an iterable container (see previous).

If the keyword \texttt{simultaneous} is True, the subexpressions will not be evaluated until all the substitutions have been made.
Examples

```python
>>> from sympy import pi, exp, limit, oo
>>> from sympy.abc import x, y

>>> (1 + x*y).subs(x, pi)
pi*y + 1
>>> (1 + x*y).subs({x:pi, y:2})
1 + 2*pi
>>> (1 + x*y).subs([(x, pi), (y, 2)])
1 + 2*pi
>>> reps = [(y, x**2), (x, 2)]
>>> (x + y).subs(reps)
6
>>> (x + y).subs(reversed(reps))
x**2 + 2

>>> (x**2 + x**4).subs(x**2, y)
y**2 + y

To replace only the x**2 but not the x**4, use xreplace:

>>> (x**2 + x**4).xreplace({x**2: y})
x**4 + y

To delay evaluation until all substitutions have been made, set the keyword simultaneous to True:

>>> (x/y).subs([(x, 0), (y, 0)])
0
>>> (x/y).subs([(x, 0), (y, 0)], simultaneous=True)
nan

This has the added feature of not allowing subsequent substitutions to affect those already made:

>>> ((x + y)/y).subs({x + y: y, y: x + y})
y/(x + y)

>>> ((x + y)/y).subs({x + y: y, y: x + y}, simultaneous=True)
nan
```

In order to obtain a canonical result, unordered iterables are sorted by count_op length, number of arguments and by the default_sort_key to break any ties. All other iterables are left unsorted.

```python
>>> from sympy import sqrt, sin, cos
>>> from sympy.abc import a, b, c, d, e

>>> A = (sqrt(sin(2*x)), a)
>>> B = (sin(2*x), b)
>>> C = (cos(2*x), c)
>>> D = (x, d)
>>> E = (exp(x), e)
```
```python
>>> expr = sqrt(sin(2*x))*sin(exp(x)*x)*cos(2*x) + sin(2*x)
```

```python
>>> expr.subs(dict([A, B, C, D, E]))
a*c*sin(d*e) + b
```

The resulting expression represents a literal replacement of the old arguments with the new arguments. This may not reflect the limiting behavior of the expression:

```python
>>> (x**3 - 3*x).subs({x: oo})
nan
```

```python
>>> limit(x**3 - 3*x, x, oo)

Inf
```

If the substitution will be followed by numerical evaluation, it is better to pass the substitution to `evalf` as

```python
>>> (1/x).evalf(subs={x: 3.0}, n=21)

0.333333333333333333333
```

rather than

```python
>>> (1/x).subs({x: 3.0}).evalf(21)

0.333333333333333314830
```

as the former will ensure that the desired level of precision is obtained.

See also:

- `replace` (page 989)
  - replacement capable of doing wildcard-like matching, parsing of match, and conditional replacements
- `xreplace` (page 995)
  - exact node replacement in expr tree; also capable of using matching rules
- `sympy.core.evalf.EvalfMixin.evalf` (page 1111)
  - calculates the given formula to a desired level of precision

`xreplace(rule)`

Replace occurrences of objects within the expression.

**Parameters**

- `rule`: dict-like
  
  Expresses a replacement rule

**Returns**

- `xreplace`: the result of the replacement
Examples

```python
>>> from sympy import symbols, pi, exp
>>> x, y, z = symbols('x y z')
>>> (1 + x*y).xreplace({x: pi})
pi*y + 1
>>> (1 + x*y).xreplace({x: pi, y: 2})
1 + 2*pi
```

Replacements occur only if an entire node in the expression tree is matched:

```python
>>> (x*y + z).xreplace({x*y: pi})
z + pi
>>> (x*y*z).xreplace({x*y: pi})
x*y*z
>>> (2*x).xreplace({2*x: y, x: z})
y
>>> (2*2*x).xreplace({2*x: y, x: z})
4*z
>>> (x + y + 2).xreplace({x + y: 2})
x + y + 2
>>> (x + 2 + exp(x + 2)).xreplace({x + 2: y})
x + exp(y) + 2
```

xreplace does not differentiate between free and bound symbols. In the following, `subs(x, y)` would not change `x` since it is a bound symbol, but `xreplace` does:

```python
>>> from sympy import Integral
>>> Integral(x, (x, 1, 2*x)).xreplace({x: y})
Integral(y, (y, 1, 2*y))
```

Trying to replace `x` with an expression raises an error:

```python
>>> Integral(x, (x, 1, 2*x)).xreplace({x: 2*y})
ValueError: Invalid limits given: ((2*y, 1, 4*y),)
```

See also:

- `replace` (page 989) replacement capable of doing wildcard-like matching, parsing of match, and conditional replacements
- `subs` (page 993) substitution of subexpressions as defined by the objects themselves.

```python
class sympy.core.basic.Atom(*args)
 A parent class for atomic things. An atom is an expression with no subexpressions.
```
**Examples**

Symbol, Number, Rational, Integer, ... But not: Add, Mul, Pow, ...

**singleton**

```python
class sympy.core.singleton.SingletonRegistry
 The registry for the singleton classes (accessible as S).
```

**Explanation**

This class serves as two separate things.

The first thing it is is the SingletonRegistry. Several classes in SymPy appear so often that they are singletonized, that is, using some metaprogramming they are made so that they can only be instantiated once (see the `sympy.core.singleton.Singleton` (page 998) class for details). For instance, every time you create `Integer(0)`, this will return the same instance, `sympy.core.numbers.Zero` (page 1045). All singleton instances are attributes of the `S` object, so `Integer(0)` can also be accessed as `S.Zero`.

Singletonization offers two advantages: it saves memory, and it allows fast comparison. It saves memory because no matter how many times the singletonized objects appear in expressions in memory, they all point to the same single instance in memory. The fast comparison comes from the fact that you can use `is` to compare exact instances in Python (usually, you need to use `==` to compare things). `is` compares objects by memory address, and is very fast.

**Examples**

```python
>>> from sympy import S, Integer
>>> a = Integer(0)
>>> a is S.Zero
True
```

For the most part, the fact that certain objects are singletonized is an implementation detail that users should not need to worry about. In SymPy library code, `is` comparison is often used for performance purposes. The primary advantage of `S` for end users is the convenient access to certain instances that are otherwise difficult to type, like `S.Half` (instead of `Rational(1, 2)`).

When using `is` comparison, make sure the argument is sympified. For instance,

```python
>>> x = 0
>>> x is S.Zero
False
```

This problem is not an issue when using `==`, which is recommended for most use-cases:

```python
>>> 0 == S.Zero
True
```
The second thing \( S \) is is a shortcut for `sympy.core.sympify.sympify()` (page 970). `sympy.core.sympify.sympify()` (page 970) is the function that converts Python objects such as \( \text{int}(1) \) into SymPy objects such as \( \text{Integer}(1) \). It also converts the string form of an expression into a SymPy expression, like \( \text{sympify(”x**2”)} \rightarrow \text{Symbol(”x”)**2} \). \( S(1) \) is the same thing as \( \text{sympify}(1) \) (basically, \( S._\text{call} \) has been defined to call \( \text{sympify} \)).

This is for convenience, since \( S \) is a single letter. It’s mostly useful for defining rational numbers. Consider an expression like \( x + 1/2 \). If you enter this directly in Python, it will evaluate the \( 1/2 \) and give \( 0.5 \), because both arguments are ints (see also Two Final Notes: ^ and / (page 13)). However, in SymPy, you usually want the quotient of two integers to give an exact rational number. The way Python’s evaluation works, at least one side of an operator needs to be a SymPy object for the SymPy evaluation to take over. You could write this as \( x + \text{Rational(1, 2)} \), but this is a lot more typing. A shorter version is \( x + S(1)/2 \). Since \( S(1) \) returns \( \text{Integer}(1) \), the division will return a Rational type, since it will call \( \text{Integer._truediv} \), which knows how to return a Rational.

```python
class sympy.core.singleton.Singleton(*args, **kwargs)

Metaclass for singleton classes.

Explanation

A singleton class has only one instance which is returned every time the class is instantiated. Additionally, this instance can be accessed through the global registry object \(S \) as \(S.<\text{class name}> \).

Examples

```python
>>> from sympy import S, Basic
>>> from sympy.core.singleton import Singleton

```python
>>> class MySingleton(Basic, metaclass=Singleton):
 pass

```python
>>> Basic() is Basic()
False

```python
>>> MySingleton() is MySingleton()
True

```python
>>> S.MySingleton is MySingleton()
True

Notes

Instance creation is delayed until the first time the value is accessed. (SymPy versions before 1.0 would create the instance during class creation time, which would be prone to import cycles.)
**expr**

**class** sympy.core.expr.Expr(*args)

Base class for algebraic expressions.

**Explanation**

Everything that requires arithmetic operations to be defined should subclass this class, instead of Basic (which should be used only for argument storage and expression manipulation, i.e. pattern matching, substitutions, etc).

If you want to override the comparisons of expressions: Should use \_\_eval\_is\_ge for inequality, or \_\_eval\_is\_eq, with multiple dispatch. \_\_eval\_is\_ge return true if \(x \geq y\), false if \(x < y\), and None if the two types are not comparable or the comparison is indeterminate.

**See also:**

sympy.core.basic.Basic (page 979)

**apart**(x=None, **args)

See the apart function in sympy.polys

**args**\_\_cnc**(cset=False, warn=True, split\_1=True)**

Return \([\text{commutative factors}, \text{non-commutative factors}]\) of self.

**Explanation**

\(\text{self}\) is treated as a Mul and the ordering of the factors is maintained. If \(cset\) is True the commutative factors will be returned in a set. If there were repeated factors (as may happen with an unevaluated Mul) then an error will be raised unless it is explicitly suppressed by setting \(\text{warn}\) to False.

Note: -1 is always separated from a Number unless split\_1 is False.

**Examples**

```python
>>> from sympy import symbols, oo
>>> A, B = symbols('A B', commutative=0)
>>> x, y = symbols('x y')
>>> (-2*x*y).args_cnc()
\([-1, 2, x, y], []\]
>>> (-2.5*x).args_cnc()
\([-1, 2.5, x], []\]
>>> (-2*x*A*B*y).args_cnc()
\([-1, 2, x, y], [A, B]\]
>>> (-2*x*A*B*y).args_cnc(split_1=False)
\([-2, x, y], [A, B]\]
>>> (-2*x*y).args_cnc(cset=True)
\([-1, 2, x, y], []\]
```

The arg is always treated as a Mul:
as_coeff_Add(rational=False) → tuple[Number (page 1033), Expr (page 999)]
Efficiently extract the coefficient of a summation.

as_coeff_Mul(rational: bool = False) → tuple[Number (page 1033), Expr (page 999)]
Efficiently extract the coefficient of a product.

as_coeff_add(*deps) → tuple[Expr (page 999), tuple[Expr (page 999), ...]]
Return the tuple (c, args) where self is written as an Add, a.

c should be a Rational added to any terms of the Add that are independent of deps.
args should be a tuple of all other terms of a; args is empty if self is a Number or if self is independent of deps (when given).

This should be used when you do not know if self is an Add or not but you want to treat self as an Add or if you want to process the individual arguments of the tail of self as an Add.

• if you know self is an Add and want only the head, use self.args[0];
• if you do not want to process the arguments of the tail but need the tail then use self.as_two_terms() which gives the head and tail.
• if you want to split self into an independent and dependent parts use self.as_independent(*deps)

as_coeff_exponent(x) → tuple[Expr (page 999), Expr (page 999)]
c*x**e -> c, e where x can be any symbolic expression.

as_coeff_mul(*deps, **kwargs) → tuple[Expr (page 999), tuple[Expr (page 999), ...]]
Return the tuple (c, args) where self is written as a Mul, m.

c should be a Rational multiplied by any factors of the Mul that are independent of deps.
args should be a tuple of all other factors of m; args is empty if self is a Number or if self is independent ofdeps (when given).

This should be used when you do not know if self is a Mul or not but you want to treat self as a Mul or if you want to process the individual arguments of the tail of self as a Mul.

• if you know self is a Mul and want only the head, use self.args[0];
• if you do not want to process the arguments of the tail but need the tail then use `self.as_two_terms()` which gives the head and tail;
• if you want to split `self` into an independent and dependent parts use `self.as_independent(*deps)`

```python
>>> from sympy import S
>>> from sympy.abc import x, y
>>> (S(3)).as_coeff_mul()
(3, ())
>>> (3*x*y).as_coeff_mul()
(3, (x, y))
>>> (3*x*y).as_coeff_mul(x)
(3*y, (x,))
>>> (3*y).as_coeff_mul(x)
(3*y, ())
```

`as_coefficient(expr)`

Extracts symbolic coefficient at the given expression. In other words, this function separates 'self' into the product of 'expr' and 'expr'-free coefficient. If such separation is not possible it will return None.

**Examples**

```python
>>> from sympy import E, pi, sin, I, Poly
>>> from sympy.abc import x

>>> E.as_coefficient(E)
1
>>> (2*E).as_coefficient(E)
2
>>> (2*sin(E)*E).as_coefficient(E)
```

Two terms have E in them so a sum is returned. (If one were desiring the coefficient of the term exactly matching E then the constant from the returned expression could be selected. Or, for greater precision, a method of Poly can be used to indicate the desired term from which the coefficient is desired.)

```python
>>> (2*E + x*E).as_coefficient(E)
x + 2
>>> _.args[0] # just want the exact match
2
>>> p = Poly(2*E + x*E); p
Poly(x*E + 2*E, x, E, domain='ZZ')
>>> p.coeff_monomial(E)
2
>>> p.nth(0, 1)
2
```

Since the following cannot be written as a product containing E as a factor, None is returned. (If the coefficient 2*x is desired then the `coeff` method should be used.)
>>> (2*E*x + x).as_coefficient(E)
>>> (2*E*x + x).coeff(E)
2*x

>>> (E*(x + 1) + x).as_coefficient(E)

>>> (2*pi*I).as_coefficient(pi*I)
2
>>> (2*I).as_coefficient(pi*I)

See also:

coeff (page 1010)
return sum of terms have a given factor

as_coeff_Add (page 1000)
separate the additive constant from an expression

as_coeff_Mul (page 1000)
separate the multiplicative constant from an expression

as_independent (page 1004)
separate x-dependent terms/factors from others

sympy.polys.polytools.Poly.coeff_monomial (page 2459)
efficiently find the single coefficient of a monomial in Poly

sympy.polys.polytools.Poly.nth (page 2483)
like coeff_monomial but powers of monomial terms are used

as_coefficients_dict(*syms)
Return a dictionary mapping terms to their Rational coefficient. Since the dictionary is a defaultdict, inquiries about terms which were not present will return a coefficient of 0.

If symbols syms are provided, any multiplicative terms independent of them will be considered a coefficient and a regular dictionary of syms-dependent generators as keys and their corresponding coefficients as values will be returned.

Examples

```python
>>> from sympy.abc import a, x, y
>>> (3*x + a*x + 4).as_coefficients_dict()
{1: 4, x: 3, a*x: 1}
>>> [a]
0
>>> (3*a*x).as_coefficients_dict()
{a*x: 3}
>>> (3*a*x).as_coefficients_dict(x)
{x: 3*a}
>>> (3*a*x).as_coefficients_dict(y)
{1: 3*a*x}
```
**as_content_primitive** (*radical=False, clear=True*)

This method should recursively remove a Rational from all arguments and return that (content) and the new self (primitive). The content should always be positive and Mul(*foo.as_content_primitive()) == foo. The primitive need not be in canonical form and should try to preserve the underlying structure if possible (i.e. expand_mul should not be applied to self).

### Examples

```python
def example():
 from sympy import sqrt
 from sympy.abc import x, y, z

 eq = 2 + 2*x + 2*y*(3 + 3*y)

 # The as_content_primitive function is recursive and retains structure:
 print(eq.as_content_primitive())
 # Output: (2, x + 3*y*(y + 1) + 1)

 # Integer powers will have Rationals extracted from the base:
 print((2 + 6*x)**2).as_content_primitive())
 # Output: (4, (3*x + 1)**2)

 # Terms may end up joining once their as_content_primitives are added:
 print((x*(1 + y) + 2*x*(3 + 3*y)).as_content_primitive())
 # Output: (11, x*(y + 1))
 print((x*(1 + y) + 2*x*(3 + 3*y)).as_content_primitive())
 # Output: (9, x*(y + 1))
 print((z*(1 + y) + 2.0*x*(3 + 3*y)).as_content_primitive())
 # Output: (1, 6.0*x*(y + 1) + 3*z*(y + 1))
 print((x*(1 + y) + 0.4*x*(3 + 3*y)).as_content_primitive())
 # Output: (1, 4.84*x**2*(y + 1)**2)

 # Radical content can also be factored out of the primitive:
 print(2*sqrt(2) + 4*sqrt(10)).as_content_primitive(radical=True)
 # Output: (2, sqrt(2)*(1 + 2*sqrt(5)))

 # If clear=False (default is True) then content will not be removed from an Add if it can be distributed to leave one or more terms with integer coefficients.
 print((x/2 + y).as_content_primitive())
 # Output: (1/2, x + 2*y)
 print((x/2 + y).as_content_primitive(clear=False)
 # Output: (1, x/2 + y)
```

5.8. Topics 1003
as_expr(*gens)
Convert a polynomial to a SymPy expression.

Examples

```python
>>> from sympy import sin
>>> from sympy.abc import x, y

>>> f = (x**2 + x*y).as_poly(x, y)
>>> f.as_expr()
```
```
x**2 + x*y
```
```python

>>> sin(x).as_expr()
```
```
sin(x)
```

as_independent(*deps, **hint) → tuple[Expr (page 999), Expr (page 999)]
A mostly naive separation of a Mul or Add into arguments that are not are dependent on deps. To obtain as complete a separation of variables as possible, use a separation method first, e.g.:

- separatevars() to change Mul, Add and Pow (including exp) into Mul
- .expand(mul=True) to change Add or Mul into Add
- .expand(log=True) to change log expr into an Add

The only non-naive thing that is done here is to respect noncommutative ordering of variables and to always return (0, 0) for self of zero regardless of hints.

For nonzero self, the returned tuple (i, d) has the following interpretation:

- i will have no variable that appears in deps
- d will either have terms that contain variables that are in deps, or be equal to 0 (when self is an Add) or 1 (when self is a Mul)

- if self is an Add then self = i + d
- if self is a Mul then self = i*d
- otherwise (self, S.One) or (S.One, self) is returned.

To force the expression to be treated as an Add, use the hint as_Add=True

Examples

- self is an Add

```python
>>> from sympy import sin, cos, exp
>>> from sympy.abc import x, y, z

>>> (x + x*y).as_independent(x)
```
```
(0, x*y + x)
```
```python

>>> (x + x*y).as_independent(y)
```
```
(x, x*y)
```
```
```python
>>> (2*x*sin(x) + y + x + z).as_independent(x)
(y + z, 2*x*sin(x) + x)
>>> (2*x*sin(x) + y + x + z).as_independent(x, y)
(z, 2*x*sin(x) + x + y)

- self is a Mul

>>> (x*sin(x)*cos(y)).as_independent(x)
(cos(y), x*sin(x))

non-commutative terms cannot always be separated out when self is a Mul

```from sympy import symbols
>>> n1, n2, n3 = symbols('n1 n2 n3', commutative=False)
>>> (n1 + n1*n2).as_independent(n2)
(n1, n1*n2)
>>> (n2*n1 + n1*n2).as_independent(n2)
(0, n1*n2 + n2*n1)
>>> (n1*n2*n3).as_independent(n1)
(1, n1*n2*n3)
>>> (n1*n2*n3).as_independent(n2)
(n1, n2*n3)
>>> ((x-n1)*(x-y)).as_independent(x)
(1, (x - y)*(x - n1))

- self is anything else:

```from sympy import symbols
>>> n1, n2, n3 = symbols('n1 n2 n3', commutative=False)
>>> (sin(x)).as_independent(x)
(1, sin(x))
>>> (sin(x)).as_independent(y)
(sinx, 1)
>>> exp(x+y).as_independent(x)
(1, exp(x + y))
```

- force self to be treated as an Add:

```python
>>> (3*x).as_independent(x, as_Add=True)
(0, 3*x)
```

- force self to be treated as a Mul:

```python
>>> (3+x).as_independent(x, as_Add=False)
(1, x + 3)
>>> (-3+x).as_independent(x, as_Add=False)
(1, x - 3)
```

Note how the below differs from the above in making the constant on the dep term positive.

```python
>>> (y*(-3+x)).as_independent(x)
(y, x - 3)
```

- use .as_independent() for true independence testing instead
of \texttt{.has()}. The former considers only symbols in the free symbols while the latter considers all symbols

defining an integral and checking properties:

```python
>>> from sympy import Integral
>>> I = Integral(x, (x, 1, 2))
>>> I.has(x)
True
>>> x in I.free_symbols
False
>>> I.as_independent(x) == (I, 1)
True
>>> (I + x).as_independent(x) == (I, x)
True
```

Note: when trying to get independent terms, a separation method might need to be used first. In this case, it is important to keep track of what you send to this routine so you know how to interpret the returned values

```python
>>> from sympy import separatevars, log
>>> separatevars(exp(x+y)).as_independent(x)
(exp(y), exp(x))
>>> (x + x*y).as_independent(y)
(x, x*y)
>>> separatevars(x + x*y).as_independent(y)
(x, y + 1)
>>> (x*(1 + y)).as_independent(y)
(x, y + 1)
>>> (x*(1 + y)).expand(mul=True).as_independent(y)
(x, x*y)
>>> a, b=symbols('a b', positive=True)
>>> (log(a*b).expand(log=True)).as_independent(b)
(log(a), log(b))
```

See also:

- \texttt{separatevars} (page 722), \texttt{expand_log} (page 1107), \texttt{sympy.core.add.Add.as_two_terms} (page 1065), \texttt{sympy.core.mul.Mul.as_two_terms} (page 1060), \texttt{as_coeff_mul} (page 1000)
- \texttt{as_leading_term}(*symbols, logx=None, cdir=0)
 Returns the leading (nonzero) term of the series expansion of self.

The _eval_as_leading_term routines are used to do this, and they must always return a non-zero value.
Examples

```python
>>> from sympy import x
>>> (1 + x + x**2).as_leading_term(x)
1
>>> (1/x**2 + x + x**2).as_leading_term(x)
x**(-2)
```

`as_numer_denom()`

Return the numerator and the denominator of an expression.
expression -> a/b -> a, b
This is just a stub that should be defined by an object’s class methods to get anything else.

See also:

`normal` (page 1023)

```
return a/b instead of (a, b)
```

`as_ordered_factors(order=None)`

Return list of ordered factors (if Mul) else [self].

`as_ordered_terms(order=None, data=False)`

Transform an expression to an ordered list of terms.

Examples

```
>>> from sympy import sin, cos

>>> from sympy import x

>>> (sin(x)**2*cos(x) + sin(x)**2 + 1).as_ordered_terms()
[sin(x)**2*cos(x), sin(x)**2, 1]
```

`as_poly(*gens, **args)`

Converts self to a polynomial or returns None.

Explanation

```
>>> from sympy import sin

>>> from sympy import x, y

>>> print((x**2 + x*y).as_poly())
Poly(x**2 + x*y, x, y, domain='ZZ')

>>> print((x**2 + x*y).as_poly(x, y))
Poly(x**2 + x*y, x, y, domain='ZZ')
```
```python
>>> print((x**2 + sin(y)).as_poly(x, y))
None
```

as_powers_dict()

Return self as a dictionary of factors with each factor being treated as a power. The keys are the bases of the factors and the values, the corresponding exponents. The resulting dictionary should be used with caution if the expression is a Mul and contains non-commutative factors since the order that they appeared will be lost in the dictionary.

See also:

as_ordered_factors (page 1007)

An alternative for noncommutative applications, returning an ordered list of factors.

args_cnc (page 999)

Similar to as_ordered_factors, but guarantees separation of commutative and noncommutative factors.

as_real_imag (deep=True, **hints)**

Performs complex expansion on ‘self’ and returns a tuple containing collected both real and imaginary parts. This method cannot be confused with re() and im() functions, which does not perform complex expansion at evaluation. However it is possible to expand both re() and im() functions and get exactly the same results as with a single call to this function.

```python
>>> from sympy import symbols, I

>>> x, y = symbols('x,y', real=True)

>>> (x + y*I).as_real_imag()
(x, y)

>>> from sympy.abc import z, w

>>> (z + w*I).as_real_imag()
(re(z) - im(w), re(w) + im(z))
```

as_terms()

Transform an expression to a list of terms.

aseries (x=None, n=6, bound=0, hir=False)

Asymptotic Series expansion of self. This is equivalent to `self.series(x, oo, n)`.

Parameters

- **self**: Expression
 - The expression whose series is to be expanded.
- **x**: Symbol
 - It is the variable of the expression to be calculated.
- **n**: Value
The value used to represent the order in terms of x^n, up to which the series is to be expanded.

hir : Boolean

Set this parameter to be True to produce hierarchical series. It stops
the recursion at an early level and may provide nicer and more useful
results.

bound : Value, Integer

Use the bound parameter to give limit on rewriting coefficients in its
normalised form.

Returns

Expr

Asymptotic series expansion of the expression.

Examples

```python
>>> from sympy import sin, exp
>>> from sympy.abc import x

>>> e = sin(1/x + exp(-x)) - sin(1/x)

>>> e.assoces(x)
(1/(24*x**4) - 1/(2*x**2) + 1 + O(x**(-6), (x, oo)))*exp(-x)

>>> e.assoces(x, n=3, hir=True)
-exp(-2*x)*sin(1/x)/2 + exp(-x)*cos(1/x) + 0(exp(-3*x), (x, oo))

>>> e = exp(exp(x)/(1 - 1/x))

>>> e.assoces(x)
exp(exp(x)/(1 - 1/x))

>>> e.assoces(x, bound=3)
exp(exp(x)/x**2)*exp(exp(x)/x)*exp(-exp(x) + exp(x)/(1 - 1/x) -
-exp(x)/x - exp(x)/x**2)*exp(exp(x))
```

For rational expressions this method may return original expression without the
Order term. >>> (1/x).assoces(x, n=8) 1/x
Notes

This algorithm is directly induced from the limit computational algorithm provided by Gruntz. It majorly uses the mrv and rewrite sub-routines. The overall idea of this algorithm is first to look for the most rapidly varying subexpression w of a given expression f and then expands f in a series in w. Then same thing is recursively done on the leading coefficient till we get constant coefficients.

If the most rapidly varying subexpression of a given expression f is f itself, the algorithm tries to find a normalised representation of the mrv set and rewrites f using this normalised representation.

If the expansion contains an order term, it will be either $O(x^{-n})$ or $O(w^{-n})$ where w belongs to the most rapidly varying expression of $self$.

See also:

Expr.aseries (page 1008)

See the docstring of this function for complete details of this wrapper.

References

[R113], [R114], [R115]

cancel(*gens, **args)

See the cancel function in sympy.polys

coeff(x, n=1, right=False, _first=True)

Returns the coefficient from the term(s) containing x^n. If n is zero then all terms independent of x will be returned.

Explanation

When x is noncommutative, the coefficient to the left (default) or right of x can be returned. The keyword ‘right’ is ignored when x is commutative.

Examples

```python
>>> from sympy import symbols
>>> from sympy.abc import x, y, z
```

You can select terms that have an explicit negative in front of them:

```python
>>> (-x + 2*y).coeff(-1)
x
>>> (x - 2*y).coeff(-1)
2*y
```

You can select terms with no Rational coefficient:
```python
>>> (x + 2*y).coeff(1)
x
>>> (3 + 2*x + 4*x**2).coeff(1)
0
```
You can select terms independent of `x` by making `n=0`; in this case `Expr.as_independent(x)[0]` is returned (and 0 will be returned instead of `None`):

```python
>>> (3 + 2*x + 4*x**2).coeff(x, 0)
3
>>> eq = ((x + 1)**3).expand() + 1
>>> eq
x**3 + 3*x**2 + 3*x + 2
>>> [eq.coeff(x, i) for i in reversed(range(4))]
[1, 3, 3, 2]
>>> eq -= 2
>>> [eq.coeff(x, i) for i in reversed(range(4))]
[1, 3, 3, 0]
```
You can select terms that have a numerical term in front of them:

```python
>>> (-x - 2*y).coeff(2)
-y
>>> from sympy import sqrt
>>> (x + sqrt(2)*x).coeff(sqrt(2))
x
```
The matching is exact:

```python
>>> (3 + 2*x + 4*x**2).coeff(x)
2
>>> (3 + 2*x + 4*x**2).coeff(x**2)
4
>>> (3 + 2*x + 4*x**2).coeff(x**3)
0
>>> (z*(x + y)**2).coeff((x + y)**2)
z
>>> (z*(x + y)**2).coeff(x + y)
0
```
In addition, no factoring is done, so `1 + z*(1 + y)` is not obtained from the following:

```python
>>> (x + z*(x + x*y)).coeff(x)
1
```
If such factoring is desired, `factor_terms` can be used first:

```python
>>> from sympy import factor_terms
>>> factor_terms(x + z*(x + x*y)).coeff(x)
z*(y + 1) + 1
```
```python
>>> n, m, o = symbols('n m o', commutative=False)
>>> n.coeff(n)
```
(continues on next page)
If there is more than one possible coefficient 0 is returned:

```python
>>> (n*m + m*n).coeff(n)
0
```

If there is only one possible coefficient, it is returned:

```python
>>> (n*m + x*m*n).coeff(m*n)
x
>>> (n*m + x*m*n).coeff(m*n, right=1)
1
```

See also:

- `as_coefficient` (page 1001)
 separate the expression into a coefficient and factor
- `as_coeff_Add` (page 1000)
 separate the additive constant from an expression
- `as_coeff_Mul` (page 1000)
 separate the multiplicative constant from an expression
- `as_independent` (page 1004)
 separate x-dependent terms/factors from others
- `sympy.polys.polytools.Poly.coeff_monomial` (page 2459)
 efficiently find the single coefficient of a monomial in Poly
- `sympy.polys.polytools.Poly.nth` (page 2483)
 like coeff_monomial but powers of monomial terms are used

`collect(syms, func=None, evaluate=True, exact=False, distribute_order_term=True)`

See the collect function in sympy.simplify

`combsimp()`

See the combsimp function in sympy.simplify

`compute_leading_term(x, logx=None)`

Deprecated function to compute the leading term of a series.

as leading_term is only allowed for results of .series() This is a wrapper to compute a series first.

`conjugate()`

Returns the complex conjugate of ‘self’.
could_extract_minus_sign()
Return True if self has -1 as a leading factor or has more literal negative signs than positive signs in a sum, otherwise False.

Examples

```python
>>> from sympy import x, y
>>> e = x - y
>>> {i.could_extract_minus_sign() for i in (e, -e)}
{False, True}
```

Though the y - x is considered like -(x - y), since it is in a product without a leading factor of -1, the result is false below:

```python
>>> (x*(y - x)).could_extract_minus_sign()
False
```

To put something in canonical form wrt to sign, use `signsimp`:

```python
>>> from sympy import signsimp
>>> signsimp(x*(y - x))
-x*(x - y)
>>> _.could_extract_minus_sign()
True
```

equals(other, failing_expression=False)
Return True if self == other, False if it does not, or None. If failing_expression is True then the expression which did not simplify to a 0 will be returned instead of None.

Explanation

If self is a Number (or complex number) that is not zero, then the result is False.

If self is a number and has not evaluated to zero, evalf will be used to test whether the expression evaluates to zero. If it does so and the result has significance (i.e. the precision is either -1, for a Rational result, or is greater than 1) then the evalf value will be used to return True or False.

expand(deep=True, modulus=None, power_base=True, power_exp=True, mul=True, log=True, multinomial=True, basic=True, **hints)
Expand an expression using hints.

See the docstring of the expand() function in sympy.core.function for more information.

property expr_free_symbols
Like free_symbols, but returns the free symbols only if they are contained in an expression node.
Examples

```python
>>> from sympy.abc import x, y
>>> (x + y).expr_free_symbols
{x, y}
```

If the expression is contained in a non-expression object, do not return the free symbols. Compare:

```python
>>> from sympy import Tuple

>>> t = Tuple(x + y)
>>> t.expr_free_symbols
set()
>>> t.free_symbols
{x, y}
```

eextract_additively(c)

Return self - c if it’s possible to subtract c from self and make all matching coefficients move towards zero, else return None.

Examples

```python
>>> from sympy.abc import x, y

>>> e = 2*x + 3
>>> e.extract_additively(x + 1)  
x + 2
>>> e.extract_additively(3*x)
>>> e.extract_additively(4)
>>> (y*(x + 1)).extract_additively(x + 1)
>>> ((x + 1)*(x + 2*y + 1) + 3).extract_additively(x + 1)
(x + 1)*(x + 2*y) + 3
```

See also:

extract_multiplicatively (page 1015), coeff (page 1010), as_coefficient (page 1001)

eextract_branch_factor(allow_half=False)

Try to write self as exp_polar(2*pi*I*n)*z in a nice way. Return (z, n).

```python
>>> from sympy import exp_polar, I, pi

>>> exp_polar(I*pi).extract_branch_factor()
(exp_polar(I*pi), 0)
>>> exp_polar(2*I*pi).extract_branch_factor()
(1, 1)
>>> exp_polar(-pi*I).extract_branch_factor()
(exp_polar(I*pi), -1)
>>> exp_polar(3*pi*I + x).extract_branch_factor()
(exp_polar(x + I*pi), 1)
>>> (y*exp_polar(-5*pi*I)*exp_polar(3*pi*I + 2*pi*x)).extract_branch_factor()
```

(continues on next page)
extract_multiplicatively\((c) \)
Return None if it’s not possible to make self in the form \(c \ast \) something in a nice way, i.e. preserving the properties of arguments of self.

Examples

```python
>>> from sympy import symbols, Rational

>>> x, y = symbols('x,y', real=True)

>>> ((x*y)**3).extract_multiplicatively(x**2 * y)
x*y**2

>>> ((x*y)**3).extract_multiplicatively(x**4 * y)

>>> (2*x).extract_multiplicatively(2)
x

>>> (2*x).extract_multiplicatively(3)

>>> (Rational(1, 2)*x).extract_multiplicatively(3)
x/6
```

factor\((*gens, **args) \)
See the factor() function in sympy.polys.polytools

fourier_series\((limits=None) \)
Compute fourier sine/cosine series of self.
See the docstring of the fourier_series() (page 1015) in sympy.series.fourier for more information.

fps\((x=None, x0=0, dir=1, hyper=True, order=4, rational=True, full=False) \)
Compute formal power power series of self.
See the docstring of the `fps()` function in `sympy.series.formal` for more information.

gammassimp()

See the gammassimp function in `sympy.simplify`.

getO()

Returns the additive `O(..)` symbol if there is one, else None.

getn()

Returns the order of the expression.

Explanation

The order is determined either from the `O(...)` term. If there is no `O(...)` term, it returns None.

Examples

```python
>>> from sympy import O
>>> from sympy.abc import x
>>> (1 + x + O(x**2)).getn()
2
>>> (1 + x).getn()
```

integrate(args**, **kwargs**)**

See the integrate function in `sympy.integrals`.

invert(g, **gens, **args**)**

Return the multiplicative inverse of self mod g where self (and g) may be symbolic expressions).

See also:

`sympy.core.numbers.mod_inverse` (page 1053), `sympy.polys.polytools.invert` (page 2439)

is_algebraic_expr(syms**)**

This tests whether a given expression is algebraic or not, in the given symbols, syms. When syms is not given, all free symbols will be used. The rational function does not have to be in expanded or in any kind of canonical form.

This function returns False for expressions that are “algebraic expressions” with symbolic exponents. This is a simple extension to the is_rational_function, including rational exponentiation.
Examples

```python
>>> from sympy import Symbol, sqrt
>>> x = Symbol('x', real=True)
>>> sqrt(1 + x).is_rational_function()
False
>>> sqrt(1 + x).is_algebraic_expr()
True
```

This function does not attempt any nontrivial simplifications that may result in an expression that does not appear to be an algebraic expression to become one.

```python
>>> from sympy import exp, factor
>>> a = sqrt(exp(x)**2 + 2*exp(x) + 1)/(exp(x) + 1)
>>> a.is_algebraic_expr(x)
False
>>> factor(a).is_algebraic_expr()
True
```

See also:

`is_rational_function` (page 1021)

References

[R116]

`is_constant(*wrt, **flags)`

Return True if self is constant, False if not, or None if the constancy could not be determined conclusively.

Explanation

If an expression has no free symbols then it is a constant. If there are free symbols it is possible that the expression is a constant, perhaps (but not necessarily) zero. To test such expressions, a few strategies are tried:

1) numerical evaluation at two random points. If two such evaluations give two different values and the values have a precision greater than 1 then self is not constant. If the evaluations agree or could not be obtained with any precision, no decision is made. The numerical testing is done only if wrt is different than the free symbols.

2) differentiation with respect to variables in ‘wrt’ (or all free symbols if omitted) to see if the expression is constant or not. This will not always lead to an expression that is zero even though an expression is constant (see added test in test_expr.py). If all derivatives are zero then self is constant with respect to the given symbols.

3) finding out zeros of denominator expression with free_symbols. It will not be constant if there are zeros. It gives more negative answers for expression that are not constant.

If neither evaluation nor differentiation can prove the expression is constant, None is returned unless two numerical values happened to be the same and the flag failing_number is True – in that case the numerical value will be returned.
If flag simplify=False is passed, self will not be simplified; the default is True since self should be simplified before testing.

Examples

```python
>>> from sympy import cos, sin, Sum, S, pi
>>> from sympy.abc import a, n, x, y
>>> x.is_constant()
False
>>> S(2).is_constant()
True
>>> Sum(x, (x, 1, 10)).is_constant()
True
>>> Sum(x, (x, 1, n)).is_constant()
False
>>> Sum(x, (x, 1, n)).is_constant(y)
True
>>> Sum(x, (x, 1, n)).is_constant(n)
False
>>> Sum(x, (x, 1, n)).is_constant(x)
True
>>> eq = a*cos(x)**2 + a*sin(x)**2 - a
>>> eq.is_constant()
True
>>> eq.subs({x: pi, a: 2}) == eq.subs({x: pi, a: 3}) == 0
True
```

```python
>>> (0**x).is_constant()
False
>>> x.is_constant()
False
>>> (x**x).is_constant()
False
>>> one = cos(x)**2 + sin(x)**2
>>> one.is_constant()
True
>>> ((one - 1)**(x + 1)).is_constant() in (True, False) # could be 0, or 1
True
```

`is_meromorphic(x, a)`

This tests whether an expression is meromorphic as a function of the given symbol x at the point a.

This method is intended as a quick test that will return None if no decision can be made without simplification or more detailed analysis.
Examples

```python
>>> from sympy import zoo, log, sin, sqrt
>>> from sympy.abc import x

>>> f = 1/x**2 + 1 - 2*x**3
>>> f.is_meromorphic(x, 0)
True
>>> f.is_meromorphic(x, 1)
True
>>> f.is_meromorphic(x, zoo)
True

>>> g = x**log(3)
>>> g.is_meromorphic(x, 0)
False
>>> g.is_meromorphic(x, 1)
True
>>> g.is_meromorphic(x, zoo)
False

>>> h = sin(1/x)*x**2
>>> h.is_meromorphic(x, 0)
False
>>> h.is_meromorphic(x, 1)
True
>>> h.is_meromorphic(x, zoo)
True

Multivalued functions are considered meromorphic when their branches are meromorphic. Thus most functions are meromorphic everywhere except at essential singularities and branch points. In particular, they will be meromorphic also on branch cuts except at their endpoints.

```python
>>> log(x).is_meromorphic(x, -1)
True
>>> log(x).is_meromorphic(x, 0)
False
>>> sqrt(x).is_meromorphic(x, -1)
True
>>> sqrt(x).is_meromorphic(x, 0)
False
```

**property is_number**

Returns True if self has no free symbols and no undefined functions (AppliedUndef, to be precise). It will be faster than if not self.free_symbols, however, since is_number will fail as soon as it hits a free symbol or undefined function.
Examples

```python
>>> from sympy import Function, Integral, cos, sin, pi
>>> from sympy.abc import x
>>> f = Function('f')

>>> x.is_number
False
>>> f(1).is_number
False
>>> (2*x).is_number
False
>>> (2 + Integral(2, x)).is_number
False
>>> (2 + Integral(2, (x, 1, 2))).is_number
True
```

Not all numbers are Numbers in the SymPy sense:

```python
>>> pi.is_number, pi.is_Number
(True, False)
```

If something is a number it should evaluate to a number with real and imaginary parts that are Numbers; the result may not be comparable, however, since the real and/or imaginary part of the result may not have precision.

```python
>>> cos(1).is_number and cos(1).is_comparable
True
>>> z = cos(1)**2 + sin(1)**2 - 1
>>> z.is_number
True
>>> z.is_comparable
False
```

See also:

`sympy.core.basic.Basic.is_comparable` (page 987)

`is_polynomial(*syms)`

Return True if self is a polynomial in syms and False otherwise.

This checks if self is an exact polynomial in syms. This function returns False for expressions that are "polynomials" with symbolic exponents. Thus, you should be able to apply polynomial algorithms to expressions for which this returns True, and Poly(expr,*syms) should work if and only if expr.is_polynomial(*syms) returns True. The polynomial does not have to be in expanded form. If no symbols are given, all free symbols in the expression will be used.

This is not part of the assumptions system. You cannot do Symbol('z', polynomial=True).
Examples

```python
>>> from sympy import Symbol, Function
>>> x = Symbol('x')
>>> ((x**2 + 1)**4).is_polynomial(x)
True
>>> ((x**2 + 1)**4).is_polynomial()
True
>>> (2**x + 1).is_polynomial(x)
False
>>> (2**x + 1).is_polynomial(2**x)
True
>>> f = Function('f')
>>> (f(x) + 1).is_polynomial(x)
False
>>> (f(x) + 1).is_polynomial(f(x))
True
>>> (1/f(x) + 1).is_polynomial(f(x))
False

>>> n = Symbol('n', nonnegative=True, integer=True)
>>> (x**n + 1).is_polynomial(x)
False
```

This function does not attempt any nontrivial simplifications that may result in an expression that does not appear to be a polynomial to become one.

```python
>>> from sympy import sqrt, factor, cancel
>>> y = Symbol('y', positive=True)
>>> a = sqrt(y**2 + 2*y + 1)
>>> a.is_polynomial(y)
False
>>> factor(a)
y + 1
>>> factor(a).is_polynomial(y)
True

>>> b = (y**2 + 2*y + 1)/(y + 1)
>>> b.is_polynomial(y)
False
>>> cancel(b)
y + 1
>>> cancel(b).is_polynomial(y)
True
```

See also `.is_rational_function()`

`.is_rational_function(*syms)`

Test whether function is a ratio of two polynomials in the given symbols, syms. When syms is not given, all free symbols will be used. The rational function does not have to be in expanded or in any kind of canonical form.

This function returns False for expressions that are “rational functions” with symbolic exponents. Thus, you should be able to call `.as_numer_denom()` and apply
polynomial algorithms to the result for expressions for which this returns True. This is not part of the assumptions system. You cannot do Symbol('z', rational_function=True).

**Examples**

```python
>>> from sympy import Symbol, sin
>>> from sympy.abc import x, y

>>> (x/y).is_rational_function()
True

>>> (x**2).is_rational_function()
True

>>> (x/sin(y)).is_rational_function(y)
False

>>> n = Symbol('n', integer=True)
>>> (x**n + 1).is_rational_function(x)
False

This function does not attempt any nontrivial simplifications that may result in an expression that does not appear to be a rational function to become one.

```python
>>> from sympy import sqrt, factor
>>> y = Symbol('y', positive=True)
>>> a = sqrt(y**2 + 2*y + 1)/y
>>> a.is_rational_function(y)
False
>>> factor(a)
(y + 1)/y
>>> factor(a).is_rational_function(y)
True
```

See also is_algebraic_expr().

leadterm *(x, logx=None, cdir=0)*

Returns the leading term a*x**b as a tuple (a, b).

Examples

```python
>>> from sympy.abc import x

>>> (1+x+x**2).leadterm(x)
(1, 0)

>>> (1/x**2+x+x**2).leadterm(x)
(1, -2)
```

limit *(x, xlim, dir='+')*

Compute limit x->xlim.
\texttt{lseries}(x=\texttt{None}, x0=0, dir='+', logx=\texttt{None}, cdir=0)

Wrapper for series yielding an iterator of the terms of the series.

Note: an infinite series will yield an infinite iterator. The following, for example, will never terminate. It will just keep printing terms of the \texttt{sin(x)} series:

\begin{verbatim}
for \texttt{term} in \texttt{sin(x).lseries(x)}:
 \texttt{print term}
\end{verbatim}

The advantage of \texttt{lseries()} over \texttt{nseries()} is that many times you are just interested in the next term in the series (i.e. the first term for example), but you do not know how many you should ask for in \texttt{nseries()} using the “n” parameter.

See also \texttt{nseries()}.

\textbf{normal()}

Return the expression as a fraction.

\texttt{expression -> a/b}

\textbf{See also:}

\texttt{as_numer_denom (page 1007)}

return (a, b) instead of \texttt{a/b}

\texttt{nseries}(x=\texttt{None}, x0=0, n=6, dir='+', logx=\texttt{None}, cdir=0)

Wrapper to \texttt{_eval_nseries} if assumptions allow, else to \texttt{series}.

If \texttt{x} is given, \texttt{x0} is 0, \texttt{dir='+'}, and \texttt{self} has \texttt{x}, then \texttt{_eval_nseries} is called. This calculates “n” terms in the innermost expressions and then builds up the final series just by “cross-multiplying” everything out.

The optional \texttt{logx} parameter can be used to replace any \texttt{log(x)} in the returned series with a symbolic value to avoid evaluating \texttt{log(x)} at 0. A symbol to use in place of \texttt{log(x)} should be provided.

Advantage – it’s fast, because we do not have to determine how many terms we need to calculate in advance.

Disadvantage – you may end up with less terms than you may have expected, but the \texttt{O(x**n)} term appended will always be correct and so the result, though perhaps shorter, will also be correct.

If any of those assumptions is not met, this is treated like a wrapper to \texttt{series} which will try harder to return the correct number of terms.

See also \texttt{lseries()}.

\textbf{Examples}

\begin{verbatim}
>>> \texttt{from sympy import sin, log, Symbol}
>>> \texttt{from sympy.abc import x, y}
>>> \texttt{sin(x).nseries(x, 0, 6)}
\texttt{x} - \texttt{x**3/6 + x**5/120 + 0(x**6)}
>>> \texttt{log(x+1).nseries(x, 0, 5)}
\texttt{x} - \texttt{x**2/2 + x**3/3 - x**4/4 + 0(x**5)}
\end{verbatim}
Handling of the logx parameter — in the following example the expansion fails since sin does not have an asymptotic expansion at -oo (the limit of log(x) as x approaches 0):

```python
>>> e = sin(log(x))
>>> e.nseries(x, 0, 6)
Traceback (most recent call last):
...  PoleError: ...
...
>>> logx = Symbol('logx')
>>> e.nseries(x, 0, 6, logx=logx)
sin(logx)
```

In the following example, the expansion works but only returns self unless the logx parameter is used:

```python
>>> e = x**y
>>> e.nseries(x, 0, 2)
x**y
>>> e.nseries(x, 0, 2, logx=logx)
exp(logx*y)
```

`nsimplify(constants=(), tolerance=None, full=False)`
See the nsimplify function in sympy.simplify

`powsimp(*args, **kwargs)`
See the powsimp function in sympy.simplify

`primitive()`
Return the positive Rational that can be extracted non-recursively from every term of self (i.e., self is treated like an Add). This is like the as_coeff_Mul() method but primitive always extracts a positive Rational (never a negative or a Float).

Examples

```python
>>> from sympy.abc import x
>>> (3*(x + 1)**2).primitive()
(3, (x + 1)**2)
>>> a = (6*x + 2); a.primitive()
(2, 3*x + 1)
>>> b = (x/2 + 3); b.primitive()
(1/2, x + 6)
>>> (a*b).primitive() == (1, a*b)
True
```

`radsimp(**kwargs)`
See the radsimp function in sympy.simplify

`ratsimp()`
See the ratsimp function in sympy.simplify
removeO()
Remove the additive O(..) symbol if there is one

round(n=None)
Return x rounded to the given decimal place.
If a complex number would results, apply round to the real and imaginary components of the number.

Examples

```python
>>> from sympy import pi, E, I, S, Number
>>> pi.round()
3
>>> pi.round(2)
3.14
>>> (2*pi + E*I).round()
6 + 3*I
```

The round method has a chopping effect:

```python
>>> (2*pi + I/10).round()
6
>>> (pi/10 + 2*I).round()
2*I
>>> (pi/10 + E*I).round(2)
0.31 + 2.72*I
```

Notes
The Python round function uses the SymPy round method so it will always return a SymPy number (not a Python float or int):

```python
>>> isinstance(round(S(123), -2), Number)
True
```

separate(deep=False, force=False)
See the separate function in sympy.simplify

series(x=None, x0=0, n=6, dir='+', logx=None, cdir=0)
Series expansion of “self” around x = x0 yielding either terms of the series one by one (the lazy series given when n=None), else all the terms at once when n != None.
Returns the series expansion of “self” around the point x = x0 with respect to x up to O((x - x0)**n, x, x0) (default n is 6).
If x=None and self is univariate, the univariate symbol will be supplied, otherwise an error will be raised.

Parameters
expr : Expression
The expression whose series is to be expanded.
x : Symbol
It is the variable of the expression to be calculated.

x_0 : Value

The value around which x is calculated. Can be any value from $-\infty$ to ∞.

n : Value

The value used to represent the order in terms of x^n, up to which the series is to be expanded.

dir : String, optional

The series-expansion can be bi-directional. If dir="+", then $(x->x_0+)$. If dir="-", then $(x->x_0-)$. For infinite `\`x0 (oo or -oo), the dir argument is determined from the direction of the infinity (i.e., dir="-" for oo).

$logx$: optional

It is used to replace any log(x) in the returned series with a symbolic value rather than evaluating the actual value.

cdir : optional

It stands for complex direction, and indicates the direction from which the expansion needs to be evaluated.

Returns

Expr : Expression

Series expansion of the expression about x_0

Raises

TypeError

If "n" and "x0" are infinity objects

PoleError

If "x0" is an infinity object

Examples

```python
>>> from sympy import cos, exp, tan
>>> from sympy.abc import x, y

>>> cos(x).series()
1 - x**2/2 + x**4/24 + O(x**6)

>>> cos(x).series(n=4)
1 - x**2/2 + O(x**4)

>>> cos(x).series(x, x0=1, n=2)
cos(1) - (x - 1)*sin(1) + O((x - 1)**2, (x, 1))

>>> e = cos(x + exp(y))

>>> e.series(y, n=2)
cos(x + 1) - y*sin(x + 1) + O(y**2)

>>> e.series(x, n=2)
cos(exp(y)) - x*sin(exp(y)) + O(x**2)
```

If n=None then a generator of the series terms will be returned.
>>> term = cos(x).series(n=None)
>>> [next(term) for i in range(2)]
[1, -x**2/2]

For dir=+ (default) the series is calculated from the right and for dir=- the series from the left. For smooth functions this flag will not alter the results.

>>> abs(x).series(dir="+")
1
>>> abs(x).series(dir="-")
-x
>>> f = tan(x)
>>> f.series(x, 2, 6, "+")
tan(2) + (1 + tan(2)**2)*(x - 2) + (x - 2)**2*(tan(2)**3 + tan(2)) + (x - 2)**3*(1/3 + 4*tan(2)**2/3 + tan(2)**4) + (x - 2)**4*(tan(2)**5 + 5*tan(2)**3/3 + 2*tan(2)/3) + (x - 2)**5*(2/15 + 17*tan(2)**2/15 + 2*tan(2)**4 + tan(2)**6) + O((x - 2)**6, (x, 2))

>>> f.series(x, 2, 3, "-")
tan(2) + (2 - x)*(-tan(2)**2 - 1) + (2 - x)**2*(tan(2)**3 + tan(2)) + O((x - 2)**3, (x, 2))

For rational expressions this method may return original expression without the Order term. >>> (1/x).series(x, n=8) 1/x

taylor_term(n, x, *previous_terms)
General method for the taylor term.
This method is slow, because it differentiates n-times. Subclasses can redefine it to make it faster by using the “previous_terms”.

together(*args, **kwargs)
See the together function in sympy.polys

trigsimp(**args)
See the trigsimp function in sympy.simplify

class sympy.core.expr.UnevaluatedExpr(arg, **kwargs)
Expression that is not evaluated unless released.

Examples

>>> from sympy import UnevaluatedExpr
>>> from sympy.abc import x
>>> x*(1/x)
1
>>> x*UnevaluatedExpr(1/x)
x*1/x

class sympy.core.expr.AtomicExpr(*args)
A parent class for object which are both atoms and Exprs.
For example: Symbol, Number, Rational, Integer, ... But not: Add, Mul, Pow, ...
symbol

class sympy.core.symbol.Symbol(name, **assumptions)

 Assumptions:
 commutative = True

You can override the default assumptions in the constructor.

Examples

```python
>>> from sympy import symbols
>>> A, B = symbols('A,B', commutative=False)
>>> bool(A*B != B*A)
True
>>> bool(A*B*2 == 2*A*B) == True  # multiplication by scalars is commutative
True
```

class sympy.core.symbol.Wild(name, exclude=(), properties=(), **assumptions)

A Wild symbol matches anything, or anything without whatever is explicitly excluded.

Parameters

- **name**: str
 Name of the Wild instance.

- **exclude**: iterable, optional
 Instances in exclude will not be matched.

- **properties**: iterable of functions, optional
 Functions, each taking an expressions as input and returns a bool.
 All functions in properties need to return True in order for the Wild instance to match the expression.

Examples

```python
>>> from sympy import Wild, WildFunction, cos, pi
>>> from sympy.abc import x, y, z
>>> a = Wild('a')
>>> x.match(a)
{a_: x}
>>> pi.match(a)
{a_: pi}
>>> (3*x**2).match(a*x)
{a_: 3*x}
>>> cos(x).match(a)
{a_: cos(x)}
>>> b = Wild('b', exclude=[x])
>>> (3*x**2).match(b*x)
{a_: b_}
```
Tips

When using Wild, be sure to use the exclude keyword to make the pattern more precise. Without the exclude pattern, you may get matches that are technically correct, but not what you wanted. For example, using the above without exclude:

```python
>>> from sympy import symbols
>>> a, b = symbols('a b', cls=Wild)
>>> (2 + 3*y).match(a*x + b*y)
{a_: 2/x, b_: 3}
```

This is technically correct, because \((2/x)*x + 3*y = 2 + 3*y\), but you probably wanted it to not match at all. The issue is that you really did not want \(a\) and \(b\) to include \(x\) and \(y\), and the exclude parameter lets you specify exactly this. With the exclude parameter, the pattern will not match.

```python
>>> a = Wild('a', exclude=[x, y])
>>> b = Wild('b', exclude=[x, y])
>>> (2 + 3*y).match(a*x + b*y)
```

Exclude also helps remove ambiguity from matches.

```python
>>> E = 2*x**3*y*z
>>> a, b = symbols('a b', cls=Wild)
>>> E.match(a*b)
{a_: 2*y*z, b_: x**3}
>>> a = Wild('a', exclude=[x, y])
>>> E.match(a*b)
{a_: z, b_: 2*x**3*y}
>>> a = Wild('a', exclude=[x, y, z])
>>> E.match(a*b)
{a_: 2, b_: x**3*y*z}
```

Wild also accepts a properties parameter:

```python
>>> a = Wild('a', properties=[lambda k: k.is_Integer])
>>> E.match(a*b)
{a_: 2, b_: x**3*y*z}
```

class *sympy.core.symbol.Dummy*(name=None, dummy_index=None, **assumptions)*

Dummy symbols are each unique, even if they have the same name:
Examples

```python
>>> from sympy import Dummy
>>> Dummy("x") == Dummy("x")
False
```

If a name is not supplied then a string value of an internal count will be used. This is useful when a temporary variable is needed and the name of the variable used in the expression is not important.

```python
>>> Dummy()
_Dummy_10
```

`sympy.core.symbol.symbols(names, *, cls=<class 'sympy.core.symbol.Symbol'>, **args)`

→ Any

Transform strings into instances of `Symbol` (page 1028) class.

`symbols()` (page 1030) function returns a sequence of symbols with names taken from names argument, which can be a comma or whitespace delimited string, or a sequence of strings:

```python
>>> from sympy import symbols, Function
>>> x, y, z = symbols('x,y,z')
>>> a, b, c = symbols('a b c')
```

The type of output is dependent on the properties of input arguments:

```python
>>> symbols('x')
x
>>> symbols('x,')
(x,)
>>> symbols('x,y')
(x, y)
```

If an iterable container is needed for a single symbol, set the seq argument to True or terminate the symbol name with a comma:

```python
>>> symbols('x', seq=True)
(x,)
```

To reduce typing, range syntax is supported to create indexed symbols. Ranges are indicated by a colon and the type of range is determined by the character to the right of the colon. If the character is a digit then all contiguous digits to the left are taken as the nonnegative starting value (or 0 if there is no digit left of the colon) and all contiguous digits to the right are taken as 1 greater than the ending value:
>>> symbols('x:10')
(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9)

>>> symbols('x5:10')
(x5, x6, x7, x8, x9)

>>> symbols('x5:2')
(x50, x51)

>>> symbols('x5:10, y:5')
((x5, x6, x7, x8, x9), (y0, y1, y2, y3, y4))

If the character to the right of the colon is a letter, then the single letter to the left (or 'a' if there is none) is taken as the start and all characters in the lexicographic range through the letter to the right are used as the range:

>>> symbols('x:z')
(x, y, z)

>>> symbols('x:c') # null range
()

>>> symbols('x(:c)')
(xa, xb, xc)

>>> symbols(':c')
(a, b, c)

>>> symbols('a:d, x:z')
(a, b, c, d, x, y, z)

>>> symbols(['a:d', 'x:z'])
((a, b, c, d), (x, y, z))

Multiple ranges are supported; contiguous numerical ranges should be separated by parentheses to disambiguate the ending number of one range from the starting number of the next:

>>> symbols('x:2(1:3)')
(x01, x02, x11, x12)

>>> symbols('3:2') # parsing is from left to right
(00, 01, 10, 11, 20, 21)

Only one pair of parentheses surrounding ranges are removed, so to include parentheses around ranges, double them. And to include spaces, commas, or colons, escape them with a backslash:

>>> symbols('x((a:b))')
(x(a), x(b))

>>> symbols(r'x(1\,:,2)') # or r'x((1),(2))'
(x(0,0), x(0,1))

All newly created symbols have assumptions set according to args:
Despite its name, `symbols()` (page 1030) can create symbol-like objects like instances of Function or Wild classes. To achieve this, set `cls` keyword argument to the desired type:

```python
>>> symbols('f,g,h', cls=Function)
(f, g, h)
>>> type([0])
<class 'sympy.core.function.UndefinedFunction'>
```

```python
sympy.core.symbol.var(names, **args)

Create symbols and inject them into the global namespace.
```

Explanation

This calls `symbols()` (page 1030) with the same arguments and puts the results into the global namespace. It’s recommended not to use `var()` (page 1032) in library code, where `symbols()` (page 1030) has to be used:

```
.. rubric:: Examples

```python
>>> from sympy import var
```

```python
>>> var('x')
x
>>> x # noqa: F821
x
```

```python
>>> var('a,ab,abc')
(a, ab, abc)
>>> abc # noqa: F821
abc
```

```python
>>> var('x,y', real=True)
(x, y)
>>> x.is_real and y.is_real # noqa: F821
True
```

See `symbols()` (page 1030) documentation for more details on what kinds of arguments can be passed to `var()` (page 1032).
numbers

class sympy.core.numbers.Number(*obj)
    Represents atomic numbers in SymPy.

Explanation

Floating point numbers are represented by the Float class. Rational numbers (of any size) are represented by the Rational class. Integer numbers (of any size) are represented by the Integer class. Float and Rational are subclasses of Number; Integer is a subclass of Rational.

For example, 2/3 is represented as Rational(2, 3) which is a different object from the floating point number obtained with Python division 2/3. Even for numbers that are exactly represented in binary, there is a difference between how two forms, such as Rational(1, 2) and Float(0.5), are used in SymPy. The rational form is to be preferred in symbolic computations.

Other kinds of numbers, such as algebraic numbers sqrt(2) or complex numbers 3 + 4*I, are not instances of Number class as they are not atomic.

See also:
Float (page 1033), Integer (page 1038), Rational (page 1036)

as_coeff_Add(rational=False)
    Efficiently extract the coefficient of a summation.

as_coeff_Mul(rational=False)
    Efficiently extract the coefficient of a product.

cofactors(other)
    Compute GCD and cofactors of self and other.

gcd(other)
    Compute GCD of self and other.

lcm(other)
    Compute LCM of self and other.

class sympy.core.numbers.Float(num, dps=None, precision=None)
    Represent a floating-point number of arbitrary precision.

Examples

>>> from sympy import Float
>>> Float(3.5)
3.50000000000000
>>> Float(3)
3.00000000000000

Creating Floats from strings (and Python int and long types) will give a minimum precision of 15 digits, but the precision will automatically increase to capture all digits entered.
However, `floating-point` numbers (Python float types) retain only 15 digits of precision:

```
>>> Float(1e20)
1.00000000000000e+20
>>> Float('1e20')
1.23456789123457
```

It may be preferable to enter high-precision decimal numbers as strings:

```
>>> Float('1.23456789123456789')
1.23456789123457
```

The desired number of digits can also be specified:

```
>>> Float('1e-3', 3)
0.00100
>>> Float(100, 4)
100.0
```

Float can automatically count significant figures if a null string is sent for the precision; spaces or underscores are also allowed. (Auto-counting is only allowed for strings, ints and longs).

```
>>> Float('123 456 789.123_456', '')
123456789.123456
>>> Float('12e-3', '')
0.012
>>> Float(3, '')
3.
```

If a number is written in scientific notation, only the digits before the exponent are considered significant if a decimal appears, otherwise the “e” signifies only how to move the decimal:

```
>>> Float('60.e2', '') # 2 digits significant
6.0e+3
>>> Float('60e2', '') # 4 digits significant
6000.
>>> Float('600e-2', '') # 3 digits significant
6.00
```
## Notes

Floats are inexact by their nature unless their value is a binary-exact value.

```python
>>> approx, exact = Float(.1, 1), Float(.125, 1)
```

For calculation purposes, `evalf` needs to be able to change the precision but this will not increase the accuracy of the inexact value. The following is the most accurate 5-digit approximation of a value of 0.1 that had only 1 digit of precision:

```python
>>> approx.evalf(5)
0.099609
```

By contrast, 0.125 is exact in binary (as it is in base 10) and so it can be passed to `Float` or `evalf` to obtain an arbitrary precision with matching accuracy:

```python
>>> Float(exact, 5)
0.12500
>>> exact.evalf(20)
0.12500000000000000000
```

Trying to make a high-precision `Float` from a float is not disallowed, but one must keep in mind that the underlying float (not the apparent decimal value) is being obtained with high precision. For example, 0.3 does not have a finite binary representation. The closest rational is the fraction $5404319552844595/2^{54}$. So if you try to obtain a Float of 0.3 to 20 digits of precision you will not see the same thing as 0.3 followed by 19 zeros:

```python
>>> Float(0.3, 20)
0.29999999999999998890
```

If you want a 20-digit value of the decimal 0.3 (not the floating point approximation of 0.3) you should send the 0.3 as a string. The underlying representation is still binary but a higher precision than Python’s float is used:

```python
>>> Float('0.3', 20)
0.30000000000000000000
```

Although you can increase the precision of an existing `Float` using `Float` it will not increase the accuracy – the underlying value is not changed:

```python
>>> def show(f): # binary rep of Float...
... from sympy import Mul, Pow...
... s, m, e, b = f._mpf_...
... v = Mul(int(m), Pow(2, int(e), evaluate=False), evaluate=False)
... print('%s at prec=%s' % (v, f._prec))...
>>> t = Float('0.3', 3)
>>> show(t)
4915/2**14 at prec=13
>>> show(Float(t, 20)) # higher prec, not higher accuracy
4915/2**14 at prec=70
>>> show(Float(t, 2)) # lower prec
307/2**10 at prec=10
```

The same thing happens when `evalf` is used on a `Float`:
Finally, Floats can be instantiated with an mpf tuple \((n, c, p)\) to produce the number \((-1)^n c \times 2^p\):

```python
>>> n, c, p = 1, 5, 0
>>> (-1)**n * c * 2**p
-5
>>> Float((1, 5, 0))
-5.00000000000000
```

An actual mpf tuple also contains the number of bits in \(c\) as the last element of the tuple:

```python
>>> _.mpf_
(1, 5, 0, 3)
```

This is not needed for instantiation and is not the same thing as the precision. The mpf tuple and the precision are two separate quantities that Float tracks.

In SymPy, a Float is a number that can be computed with arbitrary precision. Although floating point ‘inf’ and ‘nan’ are not such numbers, Float can create these numbers:

```python
>>> Float('-inf')
-inf
>>> _.is_Float
False
```

Zero in Float only has a single value. Values are not separate for positive and negative zeroes.

class sympy.core.numbers.Rational\((p, q=\text{None}, \text{gcd=\text{None}})\)

Represents rational numbers \((p/q)\) of any size.

**Examples**

```python
>>> from sympy import Rational, nsimplify, S, pi
>>> Rational(1, 2)
1/2
```

Rational is unprejudiced in accepting input. If a float is passed, the underlying value of the binary representation will be returned:

```python
>>> Rational(.5)
1/2
>>> Rational(.2)
3602879701896397/18014398509481984
```

If the simpler representation of the float is desired then consider limiting the denominator to the desired value or convert the float to a string (which is roughly equivalent to limiting the denominator to \(10^{\times12}\)):
An arbitrarily precise Rational is obtained when a string literal is passed:

```python
>>> Rational("1.23")
123/100
>>> Rational('1e-2')
1/100
>>> Rational(".1")
1/10
>>> Rational('1e-2/3.2')
1/320
```

The conversion of other types of strings can be handled by the `sympify()` function, and conversion of floats to expressions or simple fractions can be handled with `nsimplify`:

```python
>>> S('.[3]') # repeating digits in brackets
1/3
>>> S('3**2/10') # general expressions
9/10
>>> nsimplify(.3) # numbers that have a simple form
3/10
```

But if the input does not reduce to a literal Rational, an error will be raised:

```python
>>> Rational(pi)
Traceback (most recent call last):
 ... TypeError: invalid input: pi
```

### Low-level

Access numerator and denominator as `.p` and `.q`:

```python
>>> r = Rational(3, 4)
>>> r
3/4
>>> r.p
3
>>> r.q
4
```

Note that `p` and `q` return integers (not SymPy Integers) so some care is needed when using them in expressions:

```python
>>> r.p/r.q
0.75
```

If an unevaluated Rational is desired, `gcd=1` can be passed and this will keep common divisors of the numerator and denominator from being eliminated. It is not possible,
however, to leave a negative value in the denominator.

```python
>>> Rational(2, 4, gcd=1)
2/4
>>> Rational(2, -4, gcd=1).q
4
```

**See also:**

`sympy.core.sympify.sympify` (page 970), `sympy.simplify.simplify.njsimplify` (page 725)

- `as_coeff_Add(rational=False)`
  Efficiently extract the coefficient of a summation.

- `as_coeff_Mul(rational=False)`
  Efficiently extract the coefficient of a product.

- `as_content_primitive(radical=False, clear=True)`
  Return the tuple (R, self/R) where R is the positive Rational extracted from self.

**Examples**

```python
>>> from sympy import S
>>> (S(-3)/2).as_content_primitive()
(3/2, -1)
```

See docstring of Expr.as_content_primitive for more examples.

- `factors(limit=None, use_trial=True, use_rho=False, use_pm1=False, verbose=False, visual=False)`
  A wrapper to factorint which return factors of self that are smaller than limit (or cheap to compute). Special methods of factoring are disabled by default so that only trial division is used.

- `limit_denominator(max_denominator=1000000)`
  Closest Rational to self with denominator at most max_denominator.

**Examples**

```python
>>> from sympy import Rational
>>> Rational('3.141592653589793').limit_denominator(10)
22/7
>>> Rational('3.141592653589793').limit_denominator(100)
311/99
```

class sympy.core.numbers.Integer(i)

Represents integer numbers of any size.
Examples

```python
>>> from sympy import Integer
>>> Integer(3)
3
```

If a float or a rational is passed to `Integer`, the fractional part will be discarded; the effect is of rounding toward zero.

```python
>>> Integer(3.8)
3
>>> Integer(-3.8)
-3
```

A string is acceptable input if it can be parsed as an integer:

```python
>>> Integer("9" * 20)
99999999999999999999
```

It is rarely needed to explicitly instantiate an `Integer`, because Python integers are automatically converted to `Integer` when they are used in SymPy expressions.

```python
class sympy.core.numbers.AlgebraicNumber(expr, coeffs=None, alias=None, **args)
```

Class for representing algebraic numbers in SymPy.

Symbolically, an instance of this class represents an element \( \alpha \in \mathbb{Q}(\theta) \hookrightarrow \mathbb{C} \). That is, the algebraic number \( \alpha \) is represented as an element of a particular number field \( \mathbb{Q}(\theta) \), with a particular embedding of this field into the complex numbers.

Formally, the primitive element \( \theta \) is given by two data points: (1) its minimal polynomial (which defines \( \mathbb{Q}(\theta) \)), and (2) a particular complex number that is a root of this polynomial (which defines the embedding \( \mathbb{Q}(\theta) \hookrightarrow \mathbb{C} \)). Finally, the algebraic number \( \alpha \) which we represent is then given by the coefficients of a polynomial in \( \theta \).

```python
static __new__(cls, expr, coeffs=None, alias=None, **args)
```

Construct a new algebraic number \( \alpha \) belonging to a number field \( k = \mathbb{Q}(\theta) \).

There are four instance attributes to be determined:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type/meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>root</td>
<td><code>Expr</code> (page 999) for ( \theta ) as a complex number</td>
</tr>
<tr>
<td>minpoly</td>
<td><code>Poly</code> (page 2453), the minimal polynomial of ( \theta )</td>
</tr>
<tr>
<td>rep</td>
<td><code>DMP</code> (page 2643) giving ( \alpha ) as poly in ( \theta )</td>
</tr>
<tr>
<td>alias</td>
<td><code>Symbol</code> (page 1028) for ( \theta ), or None</td>
</tr>
</tbody>
</table>

See Parameters section for how they are determined.

Parameters

- **expr**: `Expr` (page 999), or pair \((m, r)\)

There are three distinct modes of construction, depending on what is passed as `expr`.

1. **expr** is an `AlgebraicNumber` (page 1039): In this case we begin by copying all four instance attributes from `expr`. If `coeffs` were also
given, we compose the two coeff polynomials (see below). If an alias was given, it overrides.

(2) \textit{expr} is any other type of \textit{Expr} (page 999): Then root will equal \textit{expr}. Therefore it must express an algebraic quantity, and we will compute its \textit{minpoly}.

(3) \textit{expr} is an ordered pair \((m, r)\) giving the \textit{minpoly} \(m\), and a root \(r\) thereof, which together define \(\theta\). In this case \(m\) may be either a univariate \textit{Poly} (page 2453) or any \textit{Expr} (page 999) representing the same, while \(r\) must be some \textit{Expr} (page 999) representing a complex number that is a root of \(m\), including both explicit expressions in radicals, and instances of \textit{ComplexRootOf} (page 2507) or \textit{AlgebraicNumber} (page 1039).

coeffs : list, \textit{ANP} (page 2650), None, optional (default=None)

This defines \textit{rep}, giving the algebraic number \(\alpha\) as a polynomial in \(\theta\). If a list, the elements should be integers or rational numbers. If an \textit{ANP} (page 2650), we take its coefficients, using \textit{its \textit{to_list}()} (page 2650) method). If None, then the list of coefficients defaults to \([1, 0]\), meaning that \(\alpha = \theta\) is the primitive element of the field.

If \textit{expr} was an \textit{AlgebraicNumber} (page 1039), let \(g(x)\) be its \textit{rep} polynomial, and let \(f(x)\) be the polynomial defined by \textit{coeffs}. Then self. \textit{rep} will represent the composition \((f \circ g)(x)\).

alias : str, \textit{Symbol} (page 1028), None, optional (default=None)

This is a way to provide a name for the primitive element. We described several ways in which \textit{the \textit{expr} argument can define the value of the primitive element, but none of these methods gave it a name. Here, for example, \textit{alias} could be set as \textit{Symbol}('theta'), in order to make this symbol appear when \(\alpha\) is printed, or rendered as a polynomial, using the \textit{as_poly()} (page 1042) method.

\section*{Examples}

Recall that we are constructing an algebraic number as a field element \(\alpha \in \mathbb{Q}(\theta)\).

\begin{verbatim}
>>> from sympy import AlgebraicNumber, sqrt, CRootOf, S
>>> from sympy.abc import x

Example (1): \(\alpha = \theta = \sqrt{2}\)

>>> a1 = AlgebraicNumber(sqrt(2))
>>> a1.minpoly_of_element().as_expr(x)
1.414213562

Example (2): \(\alpha = 3\sqrt{2} - 5, \theta = \sqrt{2}\). We can either build on the last example:

>>> a2 = AlgebraicNumber(a1, [3, -5])
>>> a2.as_expr()
-5 + 3*sqrt(2)
\end{verbatim}
or start from scratch:

```python
>>> a2 = AlgebraicNumber(sqrt(2), [3, -5])
>>> a2.as_expr()
-5 + 3*sqrt(2)
```

Example (3): $\alpha = 6\sqrt{2} - 11, \theta = \sqrt{2}$. Again we can build on the previous example, and we see that the coeff polys are composed:

```python
>>> a3 = AlgebraicNumber(a2, [2, -1])
>>> a3.as_expr()
-11 + 6*sqrt(2)
```

reflecting the fact that $(2x - 1) \circ (3x - 5) = 6x - 11$.

Example (4): $\alpha = \sqrt{2}, \theta = \sqrt{2} + \sqrt{3}$. The easiest way is to use the `to_number_field()` function:

```python
>>> from sympy import to_number_field
>>> a4 = to_number_field(sqrt(2), sqrt(2) + sqrt(3))
>>> a4.minpoly_of_element().as_expr(x)
x**2 - 2
>>> a4.to_root()
sqrt(2)
>>> a4.primitive_element()
sqrt(2) + sqrt(3)
>>> a4.coeffs()
[1/2, 0, -9/2, 0]
```

but if you already knew the right coefficients, you could construct it directly:

```python
>>> a4 = AlgebraicNumber(sqrt(2) + sqrt(3), [S(1)/2, 0, S(-9)/2, 0])
>>> a4.to_root()
sqrt(2)
>>> a4.primitive_element()
sqrt(2) + sqrt(3)
```

Example (5): Construct the Golden Ratio as an element of the 5th cyclotomic field, supposing we already know its coefficients. This time we introduce the alias $\zeta$ for the primitive element of the field:

```python
>>> from sympy import cyclotomic_poly
>>> from sympy.abc import zeta
>>> a5 = AlgebraicNumber(CRootOf(cyclotomic_poly(5), -1), ...
... [-1, -1, 0, 0], alias=zeta)
>>> a5.as_poly().as_expr()
-zeta**3 - zeta**2
>>> a5.evalf()
1.61803398874989
```

(The index -1 to `CRootOf` selects the complex root with the largest real and imaginary parts, which in this case is $e^{2i\pi/5}$. See `ComplexRootOf` (page 2507).)

Example (6): Building on the last example, construct the number $2\phi \in \mathbb{Q}(\phi)$, where $\phi$ is the Golden Ratio:
```
>>> from sympy import phi
>>> a6 = AlgebraicNumber(a5.to_root(), coeffs=[2, 0], alias=phi)
>>> a6.as_poly().as_expr()
2*phi
>>> a6.primitive_element().evalf()
1.61803398874989
```

Note that we needed to use `a5.to_root()`, since passing `a5` as the first argument would have constructed the number `2\phi` as an element of the field \( \mathbb{Q}(\phi) \):

```
>>> a6_wrong = AlgebraicNumber(a5, coeffs=[2, 0])
>>> a6_wrong.as_poly().as_expr()
-2*zeta**3 - 2*zeta**2
>>> a6_wrong.primitive_element().evalf()
0.309016994374947 + 0.951056516295154*I
```

**as_expr**

Create a Basic expression from self.

**as_poly**

Create a Poly instance from self.

**coeffs()**

Returns all SymPy coefficients of an algebraic number.

**field_element(coeffs)**

Form another element of the same number field.

**Parameters**

- **coeffs**: list, \( \text{ANP} \) (page 2650)
  
  Like the `coeffs` arg to the class constructor (page 1039), defines the new element as a polynomial in the primitive element.

  If a list, the elements should be integers or rational numbers. If an \( \text{ANP} \) (page 2650), we take its coefficients (using its `to_list()` (page 2650) method).

**Explanation**

If we represent \( \alpha \in \mathbb{Q}(\theta) \), form another element \( \beta \in \mathbb{Q}(\theta) \) of the same number field.

**Examples**

```
>>> from sympy import AlgebraicNumber, sqrt
>>> a = AlgebraicNumber(sqrt(5), [-1, 1])
>>> b = a.field_element([3, 2])
>>> print(a)
1 - sqrt(5)
>>> print(b)
2 + 3*sqrt(5)
>>> print(b.primitive_element() == a.primitive_element())
True
```
See also:

AlgebraicNumber (page 1039)

**property is_aliened**

Returns True if alias was set.

**property is_primitive_element**

Say whether this algebraic number \( \alpha \in \mathbb{Q}(\theta) \) is equal to the primitive element \( \theta \) for its field.

**minpoly_of_element()**

Compute the minimal polynomial for this algebraic number.

**Explanation**

Recall that we represent an element \( \alpha \in \mathbb{Q}(\theta) \). Our instance attribute self.minpoly is the minimal polynomial for our primitive element \( \theta \). This method computes the minimal polynomial for \( \alpha \).

**native_coeffs()**

Returns all native coefficients of an algebraic number.

**primitive_element()**

Get the primitive element \( \theta \) for the number field \( \mathbb{Q}(\theta) \) to which this algebraic number \( \alpha \) belongs.

**Returns**

AlgebraicNumber

**to_algebraic_integer()**

Convert self to an algebraic integer.

**to_primitive_element(radiicals=True)**

Convert self to an AlgebraicNumber (page 1039) instance that is equal to its own primitive element.

**Parameters**

radiicals : boolean, optional (default=True)

If True, then we will try to return an AlgebraicNumber (page 1039) whose root is an expression in radicals. If that is not possible (or if radicals is False), root will be a ComplexRootOf (page 2507).

**Returns**

AlgebraicNumber
Explanation

If we represent $\alpha \in \mathbb{Q}(\theta)$, $\alpha \neq \theta$, construct a new *AlgebraicNumber* (page 1039) that represents $\alpha \in \mathbb{Q}(\alpha)$.

Examples

```python
>>> from sympy import sqrt, to_number_field
>>> from sympy.abc import x
>>> a = to_number_field(sqrt(2), sqrt(2) + sqrt(3))

The *AlgebraicNumber* (page 1039) a represents the number $\sqrt{2}$ in the field $\mathbb{Q}(\sqrt{2} + \sqrt{3})$. Rendering a as a polynomial,

```python
>>> a.as_poly().as_expr(x)
```
x**3/2 - 9*x/2
```

reflects the fact that $\sqrt{2} = \theta^3/2 - 9\theta/2$, where $\theta = \sqrt{2} + \sqrt{3}$. $a$ is not equal to its own primitive element. Its minpoly

```python
>>> a.minpoly.as_poly().as_expr(x)
```
x**4 - 10*x**2 + 1
```

is that of θ.

Converting to a primitive element,

```python
>>> a_prim = a.to_primitive_element()
>>> a_prim.minpoly.as_poly().as_expr(x)
```
x**2 - 2
```

we obtain an *AlgebraicNumber* (page 1039) whose minpoly is that of the number itself.

See also:

* is_primitive_element (page 1043)

**to_root**(radicals=True, minpoly=None)

Convert to an *Expr* (page 999) that is not an *AlgebraicNumber* (page 1039), specifically, either a *ComplexRootOf* (page 2507), or, optionally and where possible, an expression in radicals.

Parameters

- **radicals** : boolean, optional (default=True)
  - If True, then we will try to return the root as an expression in radicals.
  - If that is not possible, we will return a *ComplexRootOf* (page 2507).

- **minpoly** : *Poly* (page 2453)
  - If the minimal polynomial for *self* has been pre-computed, it can be passed in order to save time.
approximation(number_cls)
Return an interval with number_cls endpoints that contains the value of NumberSymbol. If not implemented, then return None.

sympy.core.numbers.RealNumber
alias of Float (page 1033)

sympy.core.numbers.igcd(*args)
Computes nonnegative integer greatest common divisor:

Explanation
The algorithm is based on the well known Euclid’s algorithm [R117]. To improve speed, igcd() has its own caching mechanism.

Examples

```python
>>> from sympy import igcd
>>> igcd(2, 4)
2
>>> igcd(5, 10, 15)
5
```

References

[R117]
sympy.core.numbers.ilcm(*args)
Computes integer least common multiple.

Examples

```python
>>> from sympy import ilcm
>>> ilcm(5, 10)
10
>>> ilcm(7, 3)
21
>>> ilcm(5, 10, 15)
30
```
sympy.core.numbers.seterr(divide=False)
Should SymPy raise an exception on 0/0 or return a nan?
divide == True .... raise an exception divide == False ... return nan
class sympy.core.numbers.Zero
The number zero.
Zero is a singleton, and can be accessed by S.Zero
Examples

```python
>>> from sympy import S, Integer
>>> Integer(0) is S.Zero
True
>>> 1/S.Zero
zoo
```

References

[R118]

class sympy.core.numbers.One
The number one.
One is a singleton, and can be accessed by S.One.

Examples

```python
>>> from sympy import S, Integer
>>> Integer(1) is S.One
True
```

References

[R119]

class sympy.core.numbers.NegativeOne
The number negative one.
NegativeOne is a singleton, and can be accessed by S.NegativeOne.

Examples

```python
>>> from sympy import S, Integer
>>> Integer(-1) is S.NegativeOne
True
```

See also:

One (page 1046)
References

[R120]

class sympy.core.numbers.Half

The rational number 1/2.

Half is a singleton, and can be accessed by S.Half.

Examples

>>> from sympy import S, Rational
>>> Rational(1, 2) is S.Half
True

References

[R121]

class sympy.core.numbers.NaN

Not a Number.

Explanation

This serves as a place holder for numeric values that are indeterminate. Most operations on NaN, produce another NaN. Most indeterminate forms, such as 0/0 or oo - oo` produce NaN. Two exceptions are `0**0 and oo**0, which all produce 1 (this is consistent with Python’s float).

NaN is loosely related to floating point nan, which is defined in the IEEE 754 floating point standard, and corresponds to the Python float('nan'). Differences are noted below.

NaN is mathematically not equal to anything else, even NaN itself. This explains the initially counter-intuitive results with Eq and == in the examples below.

NaN is not comparable so inequalities raise a TypeError. This is in contrast with floating point nan where all inequalities are false.

NaN is a singleton, and can be accessed by S.NaN, or can be imported as nan.

Examples

>>> from sympy import nan, S, oo, Eq
>>> nan is S.NaN
True
>>> oo - oo
nan
>>> nan + 1
nan
>>> Eq(nan, nan) # mathematical equality

(continues on next page)
False

>>> nan == nan  # structural equality
True

References

[R122]

```
class sympy.core.numbers.Infinity

Positive infinite quantity.
```

Explanation

In real analysis the symbol $\infty$ denotes an unbounded limit: $x \to \infty$ means that $x$ grows without bound.

Infinity is often used not only to define a limit but as a value in the affinely extended real number system. Points labeled $+\infty$ and $-\infty$ can be added to the topological space of the real numbers, producing the two-point compactification of the real numbers. Adding algebraic properties to this gives us the extended real numbers. Infinity is a singleton, and can be accessed by `S.Infinity`, or can be imported as `oo`.

Examples

```python
>>> from sympy import oo, exp, limit, Symbol
>>> 1 + oo
oo
>>> 42/oo
0
>>> x = Symbol('x')
>>> limit(exp(x), x, oo)
oo
```

See also:

```
NegativeInfinity (page 1048), NaN (page 1047)
```

References

[R123]

```
class sympy.core.numbers.NegativeInfinity

Negative infinite quantity.
```

NegativeInfinity is a singleton, and can be accessed by `S.NegativeInfinity`.

See also:

```
Infinity (page 1048)
```
class sympy.core.numbers.ComplexInfinity
Complex infinity.

Explanation

In complex analysis the symbol \( \infty \), called “complex infinity”, represents a quantity with infinite magnitude, but undetermined complex phase.

ComplexInfinity is a singleton, and can be accessed by \( S.\text{ComplexInfinity} \), or can be imported as \( \text{zoo} \).

Examples

```python
>>> from sympy import zoo
>>> zoo + 42
zoo
>>> 42/zoo
\(0 \)
>>> zoo + zoo
\(\text{nan} \)
>>> zoo*zoo
zoo
```

See also:

Infinity (page 1048)

---

class sympy.core.numbers.Exp1
The \( e \) constant.

Explanation

The transcendental number \( e = 2.718281828 \cdots \) is the base of the natural logarithm and of the exponential function, \( e = \exp(1) \). Sometimes called Euler’s number or Napier’s constant.

Exp1 is a singleton, and can be accessed by \( S.\text{Exp1} \), or can be imported as \( E \).

Examples

```python
>>> from sympy import exp, log, E
>>> E is exp(1)
True
>>> log(E)
1
```
References

[R124]
class sympy.core.numbers.ImaginaryUnit

The imaginary unit, \( i = \sqrt{-1} \).

I is a singleton, and can be accessed by S.I, or can be imported as I.

Examples

```python
>>> from sympy import I, sqrt
>>> sqrt(-1)
I
>>> I*I
-1
>>> 1/I
-I
```

References

[R125]
class sympy.core.numbers.Pi

The \( \pi \) constant.

Explanation

The transcendental number \( \pi = 3.141592654 \ldots \) represents the ratio of a circle’s circumference to its diameter, the area of the unit circle, the half-period of trigonometric functions, and many other things in mathematics.

Pi is a singleton, and can be accessed by S.Pi, or can be imported as pi.

Examples

```python
>>> from sympy import S, pi, oo, sin, exp, integrate, Symbol
>>> S.Pi
pi
>>> pi > 3
True
>>> pi.is_irrational
True
>>> x = Symbol('x')
>>> sin(x + 2*pi)
sin(x)
>>> integrate(exp(-x**2), (x, -oo, oo))
sqrt(pi)
```
class sympy.core.numbers.EulerGamma
The Euler-Mascheroni constant.

Explanation

\( \gamma = 0.5772157\ldots \) (also called Euler’s constant) is a mathematical constant recurring in analysis and number theory. It is defined as the limiting difference between the harmonic series and the natural logarithm:

\[
\gamma = \lim_{n \to \infty} \left( \sum_{k=1}^{n} \frac{1}{k} - \ln n \right)
\]

EulerGamma is a singleton, and can be accessed by `S.EulerGamma`.

Examples

```python
>>> from sympy import S
>>> S.EulerGamma.is_irrational
True
>>> S.EulerGamma > 0
True
>>> S.EulerGamma > 1
False
```

References

[R126]

class sympy.core.numbers.Catalan
Catalan’s constant.

Explanation

\( G = 0.91596559\ldots \) is given by the infinite series

\[
G = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^2}
\]

Catalan is a singleton, and can be accessed by `S.Catalan`.

References

[R127]
Examples

```python
>>> from sympy import S
>>> S.Catalan.is_irrational
True
>>> S.Catalan > 0
True
>>> S.Catalan > 1
False
```

References

[R128]

```python
class sympy.core.numbers.GoldenRatio
The golden ratio, \(\phi \).
```

Explanation

\( \phi = \frac{1 + \sqrt{5}}{2} \) is an algebraic number. Two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities, i.e. their maximum. GoldenRatio is a singleton, and can be accessed by `S.GoldenRatio`.

Examples

```python
>>> from sympy import S
>>> S.GoldenRatio > 1
True
>>> S.GoldenRatio.expand(func=True)
1/2 + sqrt(5)/2
>>> S.GoldenRatio.is_irrational
True
```

References

[R129]

```python
class sympy.core.numbers.TribonacciConstant
The tribonacci constant.
```
Explanation

The tribonacci numbers are like the Fibonacci numbers, but instead of starting with two predetermined terms, the sequence starts with three predetermined terms and each term afterwards is the sum of the preceding three terms.

The tribonacci constant is the ratio toward which adjacent tribonacci numbers tend. It is a root of the polynomial $x^3 - x^2 - x - 1 = 0$, and also satisfies the equation $x + x^{-3} = 2$. TribonacciConstant is a singleton, and can be accessed by `S.TribonacciConstant`.

Examples

```python
>>> from sympy import S
>>> S.TribonacciConstant > 1
True
>>> S.TribonacciConstant.expand(func=True)
1/3 + (19 - 3*sqrt(33))**(1/3)/3 + (3*sqrt(33) + 19)**(1/3)/3
>>> S.TribonacciConstant.is_irrational
True
>>> S.TribonacciConstant.n(20)
1.8392867552141611326
```

References

[R130] sympy.core.numbers.mod_inverse(a, m)

Return the number $c$ such that, $a \times c = 1 \pmod{m}$ where $c$ has the same sign as $m$. If no such value exists, a ValueError is raised.

Examples

```python
>>> from sympy import mod_inverse, S

Suppose we wish to find multiplicative inverse x of 3 modulo 11. This is the same as finding x such that $3x = 1 \pmod{11}$. One value of x that satisfies this congruence is 4. Because $3 \times 4 = 12$ and $12 = 1 \pmod{11}$. This is the value returned by `mod_inverse`:

```python
>>> mod_inverse(3, 11)
4
>>> mod_inverse(-3, 11)
7
```

When there is a common factor between the numerators of a and m the inverse does not exist:

```python
>>> mod_inverse(2, 4)
Traceback (most recent call last):
...
ValueError: inverse of 2 mod 4 does not exist
```
>>> mod_inverse(S(2)/7, S(5)/2)
7/2

References

[R131], [R132]
sympy.core.numbers.equal_valued(x, y)

Compare expressions treating plain floats as rationals.

Examples

```python
>>> from sympy import S, symbols, Rational, Float
>>> from sympy.core.numbers import equal_valued
>>> equal_valued(1, 2)
False
>>> equal_valued(1, 1)
True
```

In SymPy expressions with Floats compare unequal to corresponding expressions with rationals:

```python
>>> x = symbols('x')
>>> x**2 == x**2.0
False
```

However an individual Float compares equal to a Rational:

```python
>>> Rational(1, 2) == Float(0.5)
True
```

In a future version of SymPy this might change so that Rational and Float compare unequal. This function provides the behavior currently expected of == so that it could still be used if the behavior of == were to change in future.

```python
>>> equal_valued(1, 1.0) # Float vs Rational
True
>>> equal_valued(S(1).n(3), S(1).n(5)) # Floats of different precision
True
```

Explanation

In future SymPy versions Float and Rational might compare unequal and floats with different precisions might compare unequal. In that context a function is needed that can check if a number is equal to 1 or 0 etc. The idea is that instead of testing if \(x == 1 \): if we want to accept floats like \(1.0 \) as well then the test can be written as if equal_valued(x, 1): or if equal_valued(x, 2):. Since this function is intended to be used in situations where one or both operands are expected to be concrete numbers like 1 or 0 the function does not recurse through the args of any compound expression to compare any nested floats.
References

[R133]

power

class sympy.core.power.Pow(b, e, evaluate=None)

Defines the expression x**y as “x raised to a power y”

Deprecated since version 1.7: Using arguments that aren’t subclasses of Expr (page 999) in core operators (Mul (page 1058), Add (page 1062), and Pow (page 1055)) is deprecated. See Core operators no longer accept non-Expr args (page 226) for details.

Singleton definitions involving (0, 1, -1, oo, -oo, I, -I):

<table>
<thead>
<tr>
<th>expr</th>
<th>value</th>
<th>reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>z**0</td>
<td>1</td>
<td>Although arguments over 0**0 exist, see [2].</td>
</tr>
<tr>
<td>z**1</td>
<td>z</td>
<td></td>
</tr>
<tr>
<td>(-oo)**(-1)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(-1)**-1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>S.Zero**(1/-1)</td>
<td>zoo</td>
<td>This is not strictly true, as 0**-1 may be undefined, but is convenient in some contexts where the base is assumed to be positive.</td>
</tr>
<tr>
<td>1**-1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>oo**-1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0**oo</td>
<td>0</td>
<td>Because for all complex numbers z near 0, z**oo -> 0.</td>
</tr>
<tr>
<td>0**-oo</td>
<td>zoo</td>
<td>This is not strictly true, as 0**oo may be oscillating between positive and negative values or rotating in the complex plane. It is convenient, however, when the base is positive.</td>
</tr>
<tr>
<td>1**oo</td>
<td>nan</td>
<td>Because there are various cases where lim(x(t),t)=1, lim(y(t),t)=oo (or -oo), but lim(x(t)**y(t), t) != 1. See [3].</td>
</tr>
<tr>
<td>1**-oo</td>
<td>nan</td>
<td>Because of oscillations in the limit.</td>
</tr>
<tr>
<td>b**zoo</td>
<td>nan</td>
<td>Because b**z has no limit as z -> zoo</td>
</tr>
<tr>
<td>(-1)**oo</td>
<td>nan</td>
<td></td>
</tr>
<tr>
<td>(-1)**(-oo)</td>
<td>nan</td>
<td></td>
</tr>
<tr>
<td>oo**oo</td>
<td>oo</td>
<td></td>
</tr>
<tr>
<td>oo**-oo</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(-oo)**oo</td>
<td>nan</td>
<td></td>
</tr>
<tr>
<td>(-oo)**-oo</td>
<td>nan</td>
<td></td>
</tr>
<tr>
<td>oo**(1+I)</td>
<td>nan</td>
<td>ooe could probably be best thought of as the limit of xe for real x as x tends to oo. If e is 1, then the limit does not exist and nan is used to indicate that.</td>
</tr>
<tr>
<td>(-oo)**(1+I)</td>
<td>zoo</td>
<td>If the real part of e is positive, then the limit of abs(x**e) is oo. So the limit value is zoo.</td>
</tr>
<tr>
<td>oo**(-1+I)</td>
<td>0</td>
<td>If the real part of e is negative, then the limit is 0.</td>
</tr>
</tbody>
</table>
Because symbolic computations are more flexible than floating point calculations and we prefer to never return an incorrect answer, we choose not to conform to all IEEE 754 conventions. This helps us avoid extra test-case code in the calculation of limits.

See also:

sympy.core.numbers.Infinity (page 1048), *sympy.core.numbers.NegativeInfinity* (page 1048), *sympy.core.numbers.NaN* (page 1047)

References

[R134], [R135], [R136]

as_base_exp()

Return base and exp of self.

Explanation

If base a Rational less than 1, then return 1/Rational, -exp. If this extra processing is not needed, the base and exp properties will give the raw arguments.

Examples

```python
>>> from sympy import Pow, S
>>> p = Pow(S.Half, 2, evaluate=False)
>>> p.as_base_exp()
(2, -2)
>>> p.args
(1/2, 2)
>>> p.base, p.exp
(1/2, 2)
```

as_content_primitive *(radical=False, clear=True)*

Return the tuple (R, self/R) where R is the positive Rational extracted from self.

Examples

```python
>>> from sympy import sqrt
>>> sqrt(4 + 4*sqrt(2)).as_content_primitive()
(2, sqrt(1 + sqrt(2)))
>>> sqrt(3 + 3*sqrt(2)).as_content_primitive()
(1, sqrt(3)*sqrt(1 + sqrt(2)))
```

```python
>>> from sympy import expand_power_base, powsimp, Mul
>>> from sympy.abc import x, y
```
```python
>>> ((2*x + 2)**2).as_content_primitive()
(4, (x + 1)**2)
>>> (4**(1 + y)/2).as_content_primitive()
(2, 4**(y/2))
>>> (3**(1 + y)/2).as_content_primitive()
(1, 3**(y + 1)/2))
>>> (3**(5 + y)/2).as_content_primitive()
(9, 3**(y + 1)/2)
>>> eq = 3**(2 + 2*x)
>>> powsimp(eq) == eq
True
>>> eq.as_content_primitive()
(9, 3**(2*x))
>>> powsimp(Mul(*_))
3**(2*x + 2)
```

See docstring of Expr.as_content_primitive for more examples.

```python
>>> eq = (2 + 2*x)**y
>>> s = expand_power_base(eq); s.is_Mul, s
(False, (2*x + 2)**y)
>>> eq.as_content_primitive()
(1, (2*(x + 1))**y)
>>> s = expand_power_base(_[1]); s.is_Mul, s
(True, 2**y*(x + 1)**y)
```

```python
>>> from sympy import integer_nthroot
>>> integer_nthroot(16, 2)
(4, True)
>>> integer_nthroot(26, 2)
(5, False)
```

To simply determine if a number is a perfect square, the is_square function should be used:

```python
>>> from sympy.ntheory.primetest import is_square
>>> is_square(26)
False
```

See also:

- `sympy.ntheory.primetest.is_square` (page 1559), `integer_log` (page 1057)

```python
>>> from sympy import integer_log
>>> integer_log(y, x)
```

Returns \((e, \text{bool})\) where \(e\) is the largest nonnegative integer such that \(|y| \geq |x^e|\) and \(\text{bool}\) is True if \(y = x^e\).
Examples

```python
>>> from sympy import integer_log
>>> integer_log(125, 5)
(3, True)
>>> integer_log(17, 9)
(1, False)
>>> integer_log(4, -2)
(2, True)
>>> integer_log(-125, -5)
(3, True)
```

See also:

integer_nthroot (page 1057), sympy.ntheory.primetest.is_square (page 1559), sympy.ntheory.factor_.multiplicity (page 1533), sympy.ntheory.factor_.perfect_power (page 1534)

mul

class sympy.core.mul.Mul(*args, evaluate=None, _sympify=True)

Expression representing multiplication operation for algebraic field.

Deprecated since version 1.7: Using arguments that aren’t subclasses of Expr (page 999) in core operators (Mul (page 1058), Add (page 1062), and Pow (page 1055)) is deprecated. See Core operators no longer accept non-Expr args (page 226) for details.

Every argument of Mul() must be Expr. Infix operator * on most scalar objects in SymPy calls this class.

Another use of Mul() is to represent the structure of abstract multiplication so that its arguments can be substituted to return different class. Refer to examples section for this.

Mul() evaluates the argument unless evaluate=False is passed. The evaluation logic includes:

1. **Flattening**

 Mul(x, Mul(y, z)) -> Mul(x, y, z)

2. **Identity removing**

 Mul(x, 1, y) -> Mul(x, y)

3. **Exponent collecting by .as_base_exp()**

 Mul(x, x**2) -> Pow(x, 3)

4. **Term sorting**

 Mul(y, x, 2) -> Mul(2, x, y)

Since multiplication can be vector space operation, arguments may have the different sympy.core.kind.Kind() (page 1118). Kind of the resulting object is automatically inferred.
Examples

```python
>>> from sympy import Mul
>>> from sympy import x, y
>>> Mul(x, 1)
x
>>> Mul(x, x)
x**2
```

If `evaluate=False` is passed, result is not evaluated.

```python
>>> Mul(1, 2, evaluate=False)
1*2
>>> Mul(x, x, evaluate=False)
x*x
```

`Mul()` also represents the general structure of multiplication operation.

```python
>>> from sympy import MatrixSymbol
>>> A = MatrixSymbol('A', 2, 2)
>>> expr = Mul(x, y).subs({y:A})
>>> expr
x*A
>>> type(expr)
<class 'sympy.matrices.expressions.matmul.MatMul'>
```

See also:

- `MatMul` (page 1417)
- `as_coeff_Mul(rational=False)`
 Efficiently extract the coefficient of a product.
- `as_content_primitive(radical=False, clear=True)`
 Return the tuple (R, self/R) where R is the positive Rational extracted from self.

Examples

```python
>>> from sympy import sqrt
>>> (-3*sqrt(2)*(2 - 2*sqrt(2))).as_content_primitive()
(6, -sqrt(2)*(1 - sqrt(2)))
```

See docstring of Expr.as_content_primitive for more examples.

- `as_ordered_factors(order=None)`
 Transform an expression into an ordered list of factors.
Examples

```python
>>> from sympy import sin, cos
>>> from sympy.abc import x, y

>>> (2*x*y*sin(x)*cos(x)).as_ordered_factors()
[2, x, y, sin(x), cos(x)]
```

as_two_terms()

Return head and tail of self.

This is the most efficient way to get the head and tail of an expression.

- if you want only the head, use `self.args[0]`;
- if you want to process the arguments of the tail then use `self.as_coeff_mul()` which gives the head and a tuple containing the arguments of the tail when treated as a `Mul`.
- if you want the coefficient when self is treated as an `Add` then use `self.as_coeff_add()[0]`

Examples

```python
>>> from sympy import Mul, sqrt
>>> from sympy.abc import x, y, z

>>> 2*(x + 1) # this is the 2-arg Mul behavior
2*x + 2
>>> y*(x + 1)*2
2*y*(x + 1)
>>> 2*(x + 1)*y # 2-arg result will be obtained first
y*(2*x + 2)
>>> Mul(2, x + 1, y) # all 3 args simultaneously processed
2*y*(x + 1)
>>> 2*((x + 1)*y) # parentheses can control this behavior
2*y*(x + 1)
```

classmethod flatten(seq)

Return commutative, noncommutative and order arguments by combining related terms.

Notes

- In an expression like `a*b*c`, Python process this through SymPy as `Mul(Mul(a, b), c)`. This can have undesirable consequences.
 - Sometimes terms are not combined as one would like: {c.f. https://github.com/sympy/sympy/issues/4596}
Powers with compound bases may not find a single base to combine with unless all arguments are processed at once. Post-processing may be necessary in such cases. {c.f. https://github.com/sympy/sympy/issues/5728}

```python
>>> a = sqrt(x*sqrt(y))
>>> a**3
(x*sqrt(y))**(3/2)
>>> Mul(a, a, a)
(x*sqrt(y))**(3/2)
>>> a*a*a
x*sqrt(y)*sqrt(x*sqrt(y))
>>> _.subs(a.base, z).subs(z, a.base)
(x*sqrt(y))**(3/2)
```

- If more than two terms are being multiplied then all the previous terms will be re-processed for each new argument. So if each of a, b and c were `Mul` (page 1058) expression, then `a*b*c` (or building up the product with `*=`) will process all the arguments of a and b twice: once when `a*b` is computed and again when c is multiplied.

Using `Mul(a, b, c)` will process all arguments once.

- The results of `Mul` are cached according to arguments, so flatten will only be called once for `Mul(a, b, c)`. If you can structure a calculation so the arguments are most likely to be repeats then this can save time in computing the answer. For example, say you had a `Mul`, M, that you wished to divide by `d[i]` and multiply by `n[i]` and you suspect there are many repeats in `n`. It would be better to compute `M*n[i]/d[i]` rather than `M/d[i]*n[i]` since every time `n[i]` is a repeat, the product, `M*n[i]` will be returned without flattening - the cached value will be returned. If you divide by the `d[i]` first (and those are more unique than the `n[i]`) then that will create a new `Mul`, `M/d[i]` the args of which will be traversed again when it is multiplied by `n[i]`.

{c.f. https://github.com/sympy/sympy/issues/5706}

This consideration is moot if the cache is turned off.

Nb

The validity of the above notes depends on the implementation details of `Mul` and flatten which may change at any time. Therefore, you should only consider them when your code is highly performance sensitive.

Removal of 1 from the sequence is already handled by `AssocOp.__new__`.

```python
sympy.core.mul.prod(a, start=1)
```

Return product of elements of a. Start with int 1 so if only

ints are included then an int result is returned.
Examples

```python
>>> from sympy import prod, S
>>> prod(range(3))
0
>>> type(_) is int
True
>>> prod([S(2), 3])
6
>>> _.is_Integer
True
```

You can start the product at something other than 1:

```python
>>> prod([1, 2], 3)
6
```

add

```
class sympy.core.add.Add(*args, evaluate=None, _sympify=True)
```

Expression representing addition operation for algebraic group.

Deprecated since version 1.7: Using arguments that aren’t subclasses of `Expr` (page 999) in core operators (`Mul` (page 1058), `Add` (page 1062), and `Pow` (page 1055)) is deprecated. See `Core operators no longer accept non-Expr args` (page 226) for details.

Every argument of `Add()` must be `Expr`. Infix operator + on most scalar objects in SymPy calls this class.

Another use of `Add()` is to represent the structure of abstract addition so that its arguments can be substituted to return different class. Refer to examples section for this.

`Add()` evaluates the argument unless `evaluate=False` is passed. The evaluation logic includes:

1. **Flattening**

 `Add(x, Add(y, z)) -> Add(x, y, z)`

2. **Identity removing**

 `Add(x, 0, y) -> Add(x, y)`

3. **Coefficient collecting by \texttt{as_coeff_Mul()}**

 `Add(x, 2*x) -> Mul(3, x)`

4. **Term sorting**

 `Add(y, x, 2) -> Add(2, x, y)`

If no argument is passed, identity element 0 is returned. If single element is passed, that element is returned.

Note that `Add(*args)` is more efficient than `sum(args)` because it flattens the arguments. `sum(a, b, c, ...)` recursively adds the arguments as `a + (b + (c + ...))`, which has quadratic complexity. On the other hand, `Add(a, b, c, d)` does not assume nested structure, making the complexity linear.

Since addition is group operation, every argument should have the same `sympy.core.kind.Kind()` (page 1118).
Examples

```python
>>> from sympy import Add, I
>>> from sympy.abc import x, y
>>> Add(x, 1)
x + 1
>>> Add(x, x)
2*x
>>> 2*x**2 + 3*x + I*y + 2*y + 2*x/5 + 1.0*y + 1
2*x**2 + 17*x/5 + 3.0*y + I*y + 1
```

If evaluate=False is passed, result is not evaluated.

```python
>>> Add(1, 2, evaluate=False)
1 + 2
>>> Add(x, x, evaluate=False)
x + x
```

Add() also represents the general structure of addition operation.

```python
>>> from sympy import MatrixSymbol
>>> A, B = MatrixSymbol('A', 2, 2), MatrixSymbol('B', 2, 2)
>>> expr = Add(x, y).subs({x:A, y:B})
>>> expr
A + B
>>> type(expr)
<class 'sympy.matrices.expressions.matadd.MatAdd'>
```

Note that the printers do not display in args order.

```python
>>> Add(x, 1)
x + 1
>>> Add(x, 1).args
(1, x)
```

See also:

- `MatAdd` (page 1417)
- `as_coeff_Add(rational=False, deps=None)`
 Efficiently extract the coefficient of a summation.
- `as_coeff_add(*deps)`
 Returns a tuple (coeff, args) where self is treated as an Add and coeff is the Number term and args is a tuple of all other terms.
Examples

```python
>>> from sympy.abc import x
>>> (7 + 3*x).as_coeff_add()
(7, (3*x,))
>>> (7*x).as_coeff_add()
(0, (7*x,))
```

as_content_primitive(radical=False, clear=True)

Return the tuple (R, self/R) where R is the positive Rational extracted from self. If radical is True (default is False) then common radicals will be removed and included as a factor of the primitive expression.

Examples

```python
>>> from sympy import sqrt
>>> (3 + 3*sqrt(2)).as_content_primitive()
(3, 1 + sqrt(2))
```

Radical content can also be factored out of the primitive:

```python
>>> (2*sqrt(2) + 4*sqrt(10)).as_content_primitive(radical=True)
(2, sqrt(2)*(1 + 2*sqrt(5)))
```

See docstring of Expr.as_content_primitive for more examples.

as_numer_denom()

Decomposes an expression to its numerator part and its denominator part.

Examples

```python
>>> from sympy.abc import x, y, z
>>> (x*y/z).as_numer_denom()
(x*y, z)
>>> (x*(y + 1)/y**7).as_numer_denom()
(x*(y + 1), y**7)
```

See also:

```
sympy.core.expr.Expr.as_numer_denom (page 1007)
```

as_real_imag(deep=True, **hints)**

Return a tuple representing a complex number.
Examples

```python
>>> from sympy import I
>>> (7 + 9*I).as_real_imag()
(7, 9)
>>> ((1 + I)/(1 - I)).as_real_imag()
(0, 1)
>>> ((1 + 2*I)*(1 + 3*I)).as_real_imag()
(-5, 5)
```

as_two_terms()

Return head and tail of self.

This is the most efficient way to get the head and tail of an expression.

- if you want only the head, use self.args[0];
- if you want to process the arguments of the tail then use self.as_coef_add() which gives the head and a tuple containing the arguments of the tail when treated as an Add.
- if you want the coefficient when self is treated as a Mul then use self.as_coeff_mul()[0]

```python
>>> from sympy.abc import x, y
>>> (3*x - 2*y + 5).as_two_terms()
(5, 3*x - 2*y)
```

extract_leading_order(symbols, point=None)

Returns the leading term and its order.

Examples

```python
>>> from sympy.abc import x
>>> (x + 1 + 1/x**5).extract_leading_order(x)
((x**(-5), 0(x**(1))),)
>>> (1 + x).extract_leading_order(x)
((1, 0(1)),)
>>> (x + x**2).extract_leading_order(x)
((x, 0(x)),)
```

classmethod flatten(seq)

Takes the sequence “seq” of nested Adds and returns a flatten list.

Returns: (commutative_part, noncommutative_part, order_symbols)

Applies associativity, all terms are commutable with respect to addition.

NB: the removal of 0 is already handled by AssocOp.__new__

See also:

sympy.core.mul.Mul.flatten (page 1060)
primitive()

Return $(R, \text{self}/R)$ where R is the Rational GCD of self.

R is collected only from the leading coefficient of each term.

Examples

```python
>>> from sympy.abc import x, y

>>> (2*x + 4*y).primitive()
(2, x + 2*y)

>>> (2*x/3 + 4*y/9).primitive()
(2/9, 3*x + 2*y)

>>> (2*x/3 + 4.2*y).primitive()
(1/3, 2*x + 12.6*y)
```

No subprocessing of term factors is performed:

```python
>>> ((2 + 2*x)*x + 2).primitive()
(1, x*(2*x + 2) + 2)
```

Recursive processing can be done with the `as_content_primitive()` method:

```python
>>> ((2 + 2*x)*x + 2).as_content_primitive()
(2, x*(x + 1) + 1)
```

See also: primitive() function in polytools.py

mod

class sympy.core.mod.Mod\((p, q)\)

Represents a modulo operation on symbolic expressions.

Parameters

\(p\) : Expr
- Dividend.

\(q\) : Expr
- Divisor.
Notes

The convention used is the same as Python’s: the remainder always has the same sign as the divisor.

Examples

```python
>>> from sympy.abc import x, y
>>> x**2 % y
Mod(x**2, y)
>>> _.subs({x: 5, y: 6})
1
```

relational

class sympy.core.relational.Relational(lhs, rhs, rop=None, **assumptions)

Base class for all relation types.

Parameters

- **rop**: str or None

 Indicates what subclass to instantiate. Valid values can be found in the keys of Relational.ValidRelationOperator.

Explanation

Subclasses of Relational should generally be instantiated directly, but Relational can be instantiated with a valid rop value to dispatch to the appropriate subclass.

Examples

```python
>>> from sympy import Rel
>>> from sympy.abc import x, y
>>> Rel(y, x + x**2, '==')
Eq(y, x**2 + x)
```

A relation’s type can be defined upon creation using rop. The relation type of an existing expression can be obtained using its rel_op property. Here is a table of all the relation types, along with their rop and rel_op values:

<table>
<thead>
<tr>
<th>Relation</th>
<th>rop</th>
<th>rel_op</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equality</td>
<td>== or eq or None</td>
<td>==</td>
</tr>
<tr>
<td>Unequality</td>
<td>!= or ne</td>
<td>!=</td>
</tr>
<tr>
<td>GreaterThan</td>
<td>>= or ge</td>
<td>>=</td>
</tr>
<tr>
<td>LessThan</td>
<td><= or le</td>
<td><=</td>
</tr>
<tr>
<td>StrictGreaterThan</td>
<td>> or gt</td>
<td>></td>
</tr>
<tr>
<td>StrictLessThan</td>
<td>< or lt</td>
<td><</td>
</tr>
</tbody>
</table>
For example, setting rop to == produces an Equality relation, Eq(). So does setting rop to eq, or leaving rop unspecified. That is, the first three Rel() below all produce the same result. Using a rop from a different row in the table produces a different relation type. For example, the fourth Rel() below using lt for rop produces a StrictLessThan inequality:

```python
>>> from sympy import Rel
>>> from sympy.abc import x, y
>>> Rel(y, x + x**2, '==')
Eq(y, x**2 + x)
>>> Rel(y, x + x**2, 'eq')
Eq(y, x**2 + x)
>>> Rel(y, x + x**2)
Eq(y, x**2 + x)
>>> Rel(y, x + x**2, 'lt')
y < x**2 + x
```

To obtain the relation type of an existing expression, get its rel_op property. For example, rel_op is == for the Equality relation above, and < for the strict less than inequality above:

```python
>>> from sympy import Rel
>>> from sympy.abc import x, y
>>> my_equality = Rel(y, x + x**2, '==')
>>> my_equality.rel_op
'=='
>>> my_inequality = Rel(y, x + x**2, 'lt')
>>> my_inequality.rel_op
'<'
```

property canonical

Return a canonical form of the relational by putting a number on the rhs, canonically removing a sign or else ordering the args canonically. No other simplification is attempted.

Examples

```python
>>> from sympy.abc import x, y
>>> x < 2
x < 2
>>> _.reversed.canonical
x < 2
>>> (-y < x).canonical
x > -y
>>> (-y > x).canonical
x < -y
>>> (-y < -x).canonical
x < y
```

The canonicalization is recursively applied:
equals(other, failing_expression=False)

Return True if the sides of the relationship are mathematically identical and the type of relationship is the same. If failing_expression is True, return the expression whose truth value was unknown.

property lhs
The left-hand side of the relation.

property negated
Return the negated relationship.

Examples

```python
>>> from sympy import Eq
>>> Eq(x < y, y > x).canonical
True
```

```python
>>> from sympy import Eq
>>> from sympy.abc import x

>>> Eq(x, 1)
Eq(x, 1)

>>> _.negated
Ne(x, 1)

>>> x < 1
x < 1

>>> _.negated
x >= 1
```

Notes

This works more or less identical to ~/Not. The difference is that negated returns the relationship even if evaluate=False. Hence, this is useful in code when checking for e.g. negated relations to existing ones as it will not be affected by the `evaluate` flag.

property reversed
Return the relationship with sides reversed.

Examples

```python
>>> from sympy import Eq
>>> from sympy.abc import x

>>> Eq(x, 1)
Eq(x, 1)

>>> _.reversed
Eq(1, x)

>>> x < 1
x < 1

>>> _.reversed
1 > x
```
property `reversedsign`
Return the relationship with signs reversed.

Examples

```python
>>> from sympy import Eq
>>> from sympy.abc import x
>>> Eq(x, 1)
Eq(x, 1)
>>> _.reversedsign
Eq(-x, -1)
>>> x < 1
x < 1
>>> _.reversedsign
-x > -1
```

property `rhs`
The right-hand side of the relation.

property `strict`
return the strict version of the inequality or self

Examples

```python
>>> from sympy.abc import x
>>> (x <= 1).strict
x < 1
>>> _.strict
x < 1
```

property `weak`
return the non-strict version of the inequality or self

Examples

```python
>>> from sympy.abc import x
>>> (x < 1).weak
x <= 1
>>> _.weak
x <= 1
```
class sympy.core.relational.Equality(lhs, rhs, **options)

An equal relation between two objects.

Explanation

Represents that two objects are equal. If they can be easily shown to be definitively equal (or unequal), this will reduce to True (or False). Otherwise, the relation is maintained as an unevaluated Equality object. Use the `simplify` function on this object for more nontrivial evaluation of the equality relation.

As usual, the keyword argument `evaluate=False` can be used to prevent any evaluation.

Examples

```python
>>> from sympy import Eq, simplify, exp, cos
>>> from sympy.abc import x, y
>>> Eq(y, x + x**2)
Eq(y, x**2 + x)
>>> Eq(2, 5)
False
>>> Eq(2, 5, evaluate=False)
Eq(2, 5)
>>> _.doit()
False
>>> Eq(exp(x), exp(x).rewrite(cos))
Eq(exp(x), sinh(x) + cosh(x))
>>> simplify(_)
True
```

Notes

Python treats 1 and True (and 0 and False) as being equal; SymPy does not. And integer will always compare as unequal to a Boolean:

```python
>>> Eq(True, 1), True == 1
(False, True)
```

This class is not the same as the `==` operator. The `==` operator tests for exact structural equality between two expressions; this class compares expressions mathematically.
If either object defines an _eval_Eq method, it can be used in place of the default algorithm. If \(\text{lhs]._\text{eval}_\text{Eq}(\text{rhs}) \) or \(\text{rhs}._\text{eval}_\text{Eq}(\text{lhs}) \) returns anything other than None, that return value will be substituted for the Equality. If None is returned by _eval_Eq, an Equality object will be created as usual.

Since this object is already an expression, it does not respond to the method as_expr if one tries to create \(x-y \) from Eq(\(x \), \(y \)). This can be done with the rewrite(Add) method.

Deprecated since version 1.5: Eq(expr) with a single argument is a shorthand for Eq(expr, 0), but this behavior is deprecated and will be removed in a future version of SymPy.

See also:

sympy.logic.boolalg.Equivalent (page 1215)
for representing equality between two boolean expressions

```
\text{as\_poly}(\ast\text{gens}, \ast\text{kwargs})
\text{Returns lhsh rhs as a Poly}
```

Examples

```
>>> \text{from \text{sympy} import Eq}
>>> \text{from \text{sympy.abc} import \text{x}}
>>> \text{Eq(\text{x}\ast\ast2, 1).\text{as\_poly(\text{x})}}
\text{Poly(\text{x}\ast\ast2 - 1, \text{x}, \text{domain='ZZ'}))}
```

```
\text{integrate}(\ast\text{args}, \ast\text{kwargs})
\text{See the integrate function in sympy.integrals}
```

```
\text{class sympy.core.relational.GreaterThan(lhs, rhs, **options)}
\text{Class representations of inequalities.}
```

Explanation

The *Than classes represent inequal relationships, where the left-hand side is generally bigger or smaller than the right-hand side. For example, the GreaterThan class represents an inequal relationship where the left-hand side is at least as big as the right side, if not bigger. In mathematical notation:

\(\text{lhs} \geq \text{rhs} \)

In total, there are four *Than classes, to represent the four inequalities:

```
\begin{array}{|l|l|}
\hline
\text{Class Name} & \text{Symbol} \\
\hline
\text{GreaterThan} & \geq \\
\text{LessThan} & \leq \\
\text{StrictGreaterThan} & > \\
\text{StrictLessThan} & < \\
\hline
\end{array}
```

All classes take two arguments, lhs and rhs.
In addition to the normal .lhs and .rhs of Relations, *Than inequality objects also have the .lts and .gts properties, which represent the “less than side” and “greater than side” of the operator. Use of .lts and .gts in an algorithm rather than .lhs and .rhs as an assumption of inequality direction will make more explicit the intent of a certain section of code, and will make it similarly more robust to client code changes:

```python
>>> from sympy import GreaterThan, StrictGreaterThan
>>> from sympy import LessThan, StrictLessThan
>>> from sympy import And, Ge, Gt, Le, Lt, Rel, S
>>> from sympy.abc import x, y, z
>>> from sympy.core.relational import Relational

>>> e = GreaterThan(x, 1)
>>> e
x >= 1
>>> '%s >= %s is the same as %s <= %s' % (e.gts, e.lts, e.lts, e.gts)
'x >= 1 is the same as 1 <= x'
```

Examples

One generally does not instantiate these classes directly, but uses various convenience methods:

```python
>>> for f in [Ge, Gt, Le, Lt]:  # convenience wrappers
...     print(f(x, 2))
  x >= 2
  x > 2
  x <= 2
  x < 2
```

Another option is to use the Python inequality operators (>=, >, <=, <) directly. Their main advantage over the Ge, Gt, Le, and Lt counterparts, is that one can write a more “mathematical looking” statement rather than littering the math with oddball function calls. However there are certain (minor) caveats of which to be aware (search for ‘gotcha’, below).

```python
>>> x >= 2
x >= 2
>>> _ == Ge(x, 2)
True
```

However, it is also perfectly valid to instantiate a *Than class less succinctly and less conveniently:

<table>
<thead>
<tr>
<th>Signature Example</th>
<th>Math Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>GreaterThan(lhs, rhs)</td>
<td>lhs \geq rhs</td>
</tr>
<tr>
<td>LessThan(lhs, rhs)</td>
<td>lhs \leq rhs</td>
</tr>
<tr>
<td>StrictGreaterThan(lhs, rhs)</td>
<td>lhs > rhs</td>
</tr>
<tr>
<td>StrictLessThan(lhs, rhs)</td>
<td>lhs < rhs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signature Example</th>
<th>Math Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>GreaterThan(lhs, rhs)</td>
<td>lhs \geq rhs</td>
</tr>
<tr>
<td>LessThan(lhs, rhs)</td>
<td>lhs \leq rhs</td>
</tr>
<tr>
<td>StrictGreaterThan(lhs, rhs)</td>
<td>lhs > rhs</td>
</tr>
<tr>
<td>StrictLessThan(lhs, rhs)</td>
<td>lhs < rhs</td>
</tr>
</tbody>
</table>
SymPy Documentation, Release 1.12.1

>>> Rel(x, 1, ">")
 x > 1
>>> Relational(x, 1, ">")
 x > 1

>>> StrictGreaterThan(x, 1)
 x > 1
>>> GreaterThan(x, 1)
 x >= 1
>>> LessThan(x, 1)
 x <= 1
>>> StrictLessThan(x, 1)
 x < 1

Notes

There are a couple of “gotchas” to be aware of when using Python’s operators. The first is that what your write is not always what you get:

```python
>>> 1 < x
 x > 1
```

Due to the order that Python parses a statement, it may not immediately find two objects comparable. When `1 < x` is evaluated, Python recognizes that the number 1 is a native number and that x is not. Because a native Python number does not know how to compare itself with a SymPy object Python will try the reflective operation, `x > 1` and that is the form that gets evaluated, hence returned.

If the order of the statement is important (for visual output to the console, perhaps), one can work around this annoyance in a couple ways:

(1) “sympify” the literal before comparison

```python
>>> S(1) < x
 1 < x
```

(2) use one of the wrappers or less succinct methods described above

```python
>>> Lt(1, x)
 1 < x
>>> Relational(1, x, "<")
 1 < x
```

The second gotcha involves writing equality tests between relationals when one or both sides of the test involve a literal relational:

```python
>>> e = x < 1; e
 x < 1
>>> e == e # neither side is a literal
 True
>>> e == x < 1 # expecting True, too
```

(continues on next page)
The solution for this case is to wrap literal relationals in parentheses:

```python
>>> e == (x < 1)
True
>>> e != (x < 1)
False
>>> (x < 1) != (x < 1)
False
```

The third gotcha involves chained inequalities not involving == or !=. Occasionally, one may be tempted to write:

```python
>>> e = x < y < z
Traceback (most recent call last):
...
TypeError: symbolic boolean expression has no truth value.
```

Due to an implementation detail or decision of Python [R137], there is no way for SymPy to create a chained inequality with that syntax so one must use And:

```python
>>> e = And(x < y, y < z)
>>> type(e)
And
>>> e
(x < y) & (y < z)
```

Although this can also be done with the ‘&’ operator, it cannot be done with the ‘and’ operator:

```python
>>> (x < y) & (y < z)
(x < y) & (y < z)
>>> (x < y) and (y < z)
Traceback (most recent call last):
...
TypeError: cannot determine truth value of Relational
```

```python
class sympy.core.relational.LessThan(lhs, rhs, **options)
```

Class representations of inequalities.
Explanation

The *Than classes represent inequal relationships, where the left-hand side is generally bigger or smaller than the right-hand side. For example, the GreaterThan class represents an inequal relationship where the left-hand side is at least as big as the right side, if not bigger. In mathematical notation:

\[\text{lhs} \geq \text{rhs} \]

In total, there are four *Than classes, to represent the four inequalities:

<table>
<thead>
<tr>
<th>Class Name</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>GreaterThan</td>
<td>>=</td>
</tr>
<tr>
<td>LessThan</td>
<td><=</td>
</tr>
<tr>
<td>StrictGreaterThan</td>
<td>></td>
</tr>
<tr>
<td>StrictLessThan</td>
<td><</td>
</tr>
</tbody>
</table>

All classes take two arguments, lhs and rhs.

<table>
<thead>
<tr>
<th>Signature Example</th>
<th>Math Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>GreaterThan(lhs, rhs)</td>
<td>lhs \geq rhs</td>
</tr>
<tr>
<td>LessThan(lhs, rhs)</td>
<td>lhs \leq rhs</td>
</tr>
<tr>
<td>StrictGreaterThan(lhs, rhs)</td>
<td>lhs > rhs</td>
</tr>
<tr>
<td>StrictLessThan(lhs, rhs)</td>
<td>lhs < rhs</td>
</tr>
</tbody>
</table>

In addition to the normal .lhs and .rhs of Relations, *Than inequality objects also have the .lts and .gts properties, which represent the “less than side” and “greater than side” of the operator. Use of .lts and .gts in an algorithm rather than .lhs and .rhs as an assumption of inequality direction will make more explicit the intent of a certain section of code, and will make it similarly more robust to client code changes:

```python
>>> from sympy import GreaterThan, StrictGreaterThan
>>> from sympy import LessThan, StrictLessThan
>>> from sympy import And, Ge, Gt, Le, Lt, Rel, S
>>> from sympy.abc import x, y, z
>>> from sympy.core.relation import Relational

>>> e = GreaterThan(x, 1)
>>> e
x >= 1
>>> '%s >= %s is the same as %s <= %s' % (e.gts, e.lts, e.lts, e.gts)
'x >= 1 is the same as 1 <= x'
```
Examples

One generally does not instantiate these classes directly, but uses various convenience methods:

```
>>> for f in [Ge, Gt, Le, Lt]:    # convenience wrappers
...     print(f(x, 2))
```

```
x >= 2
x > 2
x <= 2
x < 2
```

Another option is to use the Python inequality operators (>=, >, <=, <) directly. Their main advantage over the Ge, Gt, Le, and Lt counterparts, is that one can write a more “mathematical looking” statement rather than littering the math with oddball function calls. However there are certain (minor) caveats of which to be aware (search for ‘gotcha’, below).

```
>>> x >= 2
x >= 2
>>> _ == Ge(x, 2)
True
```

However, it is also perfectly valid to instantiate a *Than class less succintly and less conveniently:

```
>>> Rel(x, 1, ">")
x > 1
>>> Relational(x, 1, ">")
x > 1
```

```
>>> StrictGreaterThan(x, 1)
x > 1
>>> GreaterThan(x, 1)
x >= 1
>>> LessThan(x, 1)
x <= 1
>>> StrictLessThan(x, 1)
x < 1
```

Notes

There are a couple of “gotchas” to be aware of when using Python’s operators. The first is that what you write is not always what you get:

```
>>> 1 < x
x > 1
```

Due to the order that Python parses a statement, it may not immediately find two objects comparable. When 1 < x is evaluated, Python recognizes that the number 1 is a native number and that x is not. Because a native Python number does not know how to compare itself with a SymPy object Python will try
the reflective operation, \(x > 1 \) and that is the form that gets evaluated, hence returned.

If the order of the statement is important (for visual output to the console, perhaps), one can work around this annoyance in a couple ways:

(1) “sympify” the literal before comparison

```python
>>> S(1) < x
1 < x
```

(2) use one of the wrappers or less succinct methods described above

```python
>>> Lt(1, x)
1 < x
>>> Relational(1, x, "<")
1 < x
```

The second gotcha involves writing equality tests between relationals when one or both sides of the test involve a literal relational:

```python
>>> e = x < 1; e
x < 1
>>> e == e  # neither side is a literal
True
>>> e == x < 1  # expecting True, too
False
>>> e != x < 1  # expecting False
x < 1
>>> x < 1 != x < 1  # expecting False or the same thing as before
Traceback (most recent call last):
  ...
TypeError: cannot determine truth value of Relational
```

The solution for this case is to wrap literal relationals in parentheses:

```python
>>> e == (x < 1)
True
>>> e != (x < 1)
False
>>> (x < 1) != (x < 1)
False
```

The third gotcha involves chained inequalities not involving \(== \) or \(!= \). Occasionally, one may be tempted to write:

```python
>>> e = x < y < z
Traceback (most recent call last):
  ...
TypeError: symbolic boolean expression has no truth value.
```

Due to an implementation detail or decision of Python [R138], there is no way for SymPy to create a chained inequality with that syntax so one must use \(\text{And} \):
Although this can also be done with the ‘&’ operator, it cannot be done with the ‘and’ operator:

```python
>>> (x < y) & (y < z)
(x < y) & (y < z)
>>> (x < y) and (y < z)
Traceback (most recent call last):
...  
TypeError: cannot determine truth value of Relational
```

```python
class sympy.core.relational.Unequality(lhs, rhs, **options)

An unequal relation between two objects.

Explanation

Represents that two objects are not equal. If they can be shown to be definitively equal, this will reduce to False; if definitively unequal, this will reduce to True. Otherwise, the relation is maintained as an Unequality object.

Examples

```python
>>> from sympy import Ne
>>> from sympy import x, y
>>> Ne(y, x**2 + x)
Ne(y, x**2 + x)
```

Notes

This class is not the same as the != operator. The != operator tests for exact structural equality between two expressions; this class compares expressions mathematically.

This class is effectively the inverse of Equality. As such, it uses the same algorithms, including any available \texttt{evalEq} methods.

See also:

Equality (page 1071)

```python
class sympy.core.relational.StrictGreaterThan(lhs, rhs, **options)

Class representations of inequalities.
```
Explanation

The *Than classes represent inequal relationships, where the left-hand side is generally bigger or smaller than the right-hand side. For example, the GreaterThan class represents an inequal relationship where the left-hand side is at least as big as the right side, if not bigger. In mathematical notation:

\[ \text{lhs} \geq \text{rhs} \]

In total, there are four *Than classes, to represent the four inequalities:

<table>
<thead>
<tr>
<th>Class Name</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>GreaterThan</td>
<td>(\geq)</td>
</tr>
<tr>
<td>LessThan</td>
<td>(\leq)</td>
</tr>
<tr>
<td>StrictGreaterThan</td>
<td>(&gt;)</td>
</tr>
<tr>
<td>StrictLessThan</td>
<td>(&lt;)</td>
</tr>
</tbody>
</table>

All classes take two arguments, lhs and rhs.

<table>
<thead>
<tr>
<th>Signature Example</th>
<th>Math Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>GreaterThan(lhs, rhs)</td>
<td>lhs (\geq) rhs</td>
</tr>
<tr>
<td>LessThan(lhs, rhs)</td>
<td>lhs (\leq) rhs</td>
</tr>
<tr>
<td>StrictGreaterThan(lhs, rhs)</td>
<td>lhs (&gt;) rhs</td>
</tr>
<tr>
<td>StrictLessThan(lhs, rhs)</td>
<td>lhs (&lt;) rhs</td>
</tr>
</tbody>
</table>

In addition to the normal .lhs and .rhs of Relations, *Than inequality objects also have the .lts and .gts properties, which represent the “less than side” and “greater than side” of the operator. Use of .lts and .gts in an algorithm rather than .lhs and .rhs as an assumption of inequality direction will make more explicit the intent of a certain section of code, and will make it similarly more robust to client code changes:

```python
>>> from sympy import GreaterThan, StrictGreaterThan
>>> from sympy import LessThan, StrictLessThan
>>> from sympy import And, Ge, Gt, Le, Lt, Rel, S
>>> from sympy.abc import x, y, z
>>> from sympy.core.relational import Relational

>>> e = GreaterThan(x, 1)
>>> e
x >= 1
>>> '%s >= %s is the same as %s <= %s' % (e.gts, e.lts, e.lts, e.gts)
'x >= 1 is the same as 1 <= x'
```
Examples

One generally does not instantiate these classes directly, but uses various convenience methods:

```python
>>> for f in [Ge, Gt, Le, Lt]: # convenience wrappers
... print(f(x, 2))
x >= 2
x > 2
x <= 2
x < 2
```

Another option is to use the Python inequality operators (>=, >, <=, <) directly. Their main advantage over the Ge, Gt, Le, and Lt counterparts, is that one can write a more “mathematical looking” statement rather than littering the math with oddball function calls. However there are certain (minor) caveats of which to be aware (search for ‘gotcha’, below).

```python
>>> x >= 2
x >= 2
>>> _ == Ge(x, 2)
True
```

However, it is also perfectly valid to instantiate a *Than class less succinctly and less conveniently:

```python
>>> Rel(x, 1, ">")
x > 1
>>> Relational(x, 1, ">")
x > 1
```

```python
>>> StrictGreaterThan(x, 1)
x > 1
>>> GreaterThan(x, 1)
x >= 1
>>> LessThan(x, 1)
x <= 1
>>> StrictLessThan(x, 1)
x < 1
```

Notes

There are a couple of “gotchas” to be aware of when using Python’s operators. The first is that what your write is not always what you get:

```python
>>> 1 < x
x > 1
```

Due to the order that Python parses a statement, it may not immediately find two objects comparable. When 1 < x is evaluated, Python recognizes that the number 1 is a native number and that x is not. Because a native Python number does not know how to compare itself with a SymPy object Python will try
the reflective operation, \( x > 1 \) and that is the form that gets evaluated, hence returned.

If the order of the statement is important (for visual output to the console, perhaps), one can work around this annoyance in a couple ways:

(1) “sympify” the literal before comparison

\[
\text{```python}
>>> S(1) < x
1 < x
\text{```}
\]

(2) use one of the wrappers or less succinct methods described above

\[
\text{```python}
>>> Lt(1, x)
1 < x
>>> Relational(1, x, "<")
1 < x
\text{```}
\]

The second gotcha involves writing equality tests between relational when one or both sides of the test involve a literal relational:

\[
\text{```python}
>>> e = x < 1; e
x < 1
>>> e == e  # neither side is a literal
True
>>> e == x < 1  # expecting True, too
False
>>> e != x < 1  # expecting False
x < 1
>>> x < 1 != x < 1  # expecting False or the same thing as before
Traceback (most recent call last):
...
TypeError: cannot determine truth value of Relational
\text{```}
\]

The solution for this case is to wrap literal relationals in parentheses:

\[
\text{```python}
>>> e == (x < 1)
True
>>> e != (x < 1)
False
>>> (x < 1) != (x < 1)
False
\text{```}
\]

The third gotcha involves chained inequalities not involving == or !=. Occasionally, one may be tempted to write:

\[
\text{```python}
>>> e = x < y < z
Traceback (most recent call last):
...
TypeError: symbolic boolean expression has no truth value.
\text{```}
\]

Due to an implementation detail or decision of Python [R139], there is no way for SymPy to create a chained inequality with that syntax so one must use And:
```python
>>> e = And(x < y, y < z)
>>> type(e)
And
>>> e
(x < y) & (y < z)
```

Although this can also be done with the ‘&’ operator, it cannot be done with the ‘and’ operator:

```python
>>> (x < y) & (y < z)
(x < y) & (y < z)
>>> (x < y) and (y < z)
Traceback (most recent call last):
 ...TypeError: cannot determine truth value of Relational
```

```python
class sympy.core.relational.StrictLessThan(lhs, rhs, **options)
```

Class representations of inequalities.

**Explanation**

The *Than classes represent inequal relationships, where the left-hand side is generally bigger or smaller than the right-hand side. For example, the GreaterThan class represents an inequal relationship where the left-hand side is at least as big as the right side, if not bigger. In mathematical notation:

\[
\text{lhs} \geq \text{rhs}
\]

In total, there are four *Than classes, to represent the four inequalities:

<table>
<thead>
<tr>
<th>Class Name</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>GreaterThan</td>
<td>&gt;=</td>
</tr>
<tr>
<td>LessThan</td>
<td>&lt;=</td>
</tr>
<tr>
<td>StrictGreaterThan</td>
<td>&gt;</td>
</tr>
<tr>
<td>StrictLessThan</td>
<td>&lt;</td>
</tr>
</tbody>
</table>

All classes take two arguments, lhs and rhs.

<table>
<thead>
<tr>
<th>Signature Example</th>
<th>Math Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>GreaterThan(lhs, rhs)</td>
<td>lhs ≥ rhs</td>
</tr>
<tr>
<td>LessThan(lhs, rhs)</td>
<td>lhs ≤ rhs</td>
</tr>
<tr>
<td>StrictGreaterThan(lhs, rhs)</td>
<td>lhs &gt; rhs</td>
</tr>
<tr>
<td>StrictLessThan(lhs, rhs)</td>
<td>lhs &lt; rhs</td>
</tr>
</tbody>
</table>

In addition to the normal .lhs and .rhs of Relations, *Than inequality objects also have the .lts and .gts properties, which represent the “less than side” and “greater than side” of the operator. Use of .lts and .gts in an algorithm rather than .lhs and .rhs as an assumption of inequality direction will make more explicit the intent of a certain section of code, and will make it similarly more robust to client code changes:
Examples

One generally does not instantiate these classes directly, but uses various convenience methods:

```python
>>> for f in [Ge, Gt, Le, Lt]: # convenience wrappers
... print(f(x, 2))
 x >= 2
 x > 2
 x <= 2
 x < 2
```

Another option is to use the Python inequality operators (>=, >, <=, <) directly. Their main advantage over the Ge, Gt, Le, and Lt counterparts, is that one can write a more “mathematical looking” statement rather than littering the math with oddball function calls. However there are certain (minor) caveats of which to be aware (search for ‘gotcha’, below).

```python
>>> x >= 2
 x >= 2
 >>> _ == Ge(x, 2)
 True
```

However, it is also perfectly valid to instantiate a *Than class less succinctly and less conveniently:

```python
>>> Rel(x, 1, ">")
 x > 1
 >>> Relational(x, 1, ">")
 x > 1
```

```python
>>> StrictGreaterThan(x, 1)
 x > 1
 >>> GreaterThan(x, 1)
 x >= 1
 >>> LessThan(x, 1)
 x <= 1
 >>> StrictLessThan(x, 1)
 x < 1
```
Notes

There are a couple of “gotchas” to be aware of when using Python’s operators.
The first is that what your write is not always what you get:

```python
>>> 1 < x
x > 1
```

Due to the order that Python parses a statement, it may not immediately find
two objects comparable. When `1 < x` is evaluated, Python recognizes that the
number `1` is a native number and that `x` is not. Because a native Python num-
ber does not know how to compare itself with a SymPy object Python will try
the reflective operation, `x > 1` and that is the form that gets evaluated, hence
returned.

If the order of the statement is important (for visual output to the console, per-
haps), one can work around this annoyance in a couple ways:

1. “sympify” the literal before comparison

```python
>>> S(1) < x
1 < x
```

2. Use one of the wrappers or less succinct methods described above

```python
>>> Lt(1, x)
1 < x
>>> Relational(1, x, "<")
1 < x
```

The second gotcha involves writing equality tests between relationals when one or both
sides of the test involve a literal relational:

```python
>>> e = x < 1; e
x < 1
>>> e == e # neither side is a literal
True
>>> e == x < 1 # expecting True, too
False
>>> e != x < 1 # expecting False
x < 1
>>> x < 1 != x < 1 # expecting False or the same thing as before
Traceback (most recent call last):
 ... TypeError: cannot determine truth value of Relational
```

The solution for this case is to wrap literal relationals in parentheses:

```python
>>> e == (x < 1)
True
>>> e != (x < 1)
False
>>> (x < 1) != (x < 1)
False
```
The third gotcha involves chained inequalities not involving == or !=. Occasionally, one may be tempted to write:

```python
>>> e = x < y < z
Traceback (most recent call last):
...TypeError: symbolic boolean expression has no truth value.
```

Due to an implementation detail or decision of Python [R140], there is no way for SymPy to create a chained inequality with that syntax so one must use And:

```python
>>> e = And(x < y, y < z)
>>> type(e)
And
>>> e
(x < y) & (y < z)
```

Although this can also be done with the ‘&’ operator, it cannot be done with the ‘and’ operator:

```python
>>> (x < y) & (y < z)
(x < y) & (y < z)
>>> (x < y) and (y < z)
Traceback (most recent call last):
...TypeError: cannot determine truth value of Relational
```

**multidimensional**

class sympy.core.multidimensional.vectorize(*mdargs)

Generalizes a function taking scalars to accept multidimensional arguments.

**Examples**

```python
>>> from sympy import vectorize, diff, sin, symbols, Function
>>> x, y, z = symbols('x y z')
>>> f, g, h = list(map(Function, 'fgh'))

>>> @vectorize(0)
... def vsin(x):
... return sin(x)

>>> vsin([1, x, y])
[sin(1), sin(x), sin(y)]

>>> @vectorize(0, 1)
... def vdiff(f, y):
... return diff(f, y)

>>> vdiff(f, y)
```


SymPy Documentation, Release 1.12.1

>>> vdiff([f(x, y, z), g(x, y, z), h(x, y, z)], [x, y, z])
[[Derivative(f(x, y, z), x), Derivative(f(x, y, z), y), Derivative(f(x, u → y, z), z)],
 [Derivative(g(x, y, z), x), Derivative(g(x, y, z), y), Derivative(g(x, y, z), z)],
 [Derivative(h(x, y, z), x), Derivative(h(x, y, z), y), Derivative(h(x, y, z), z)]]

**function**

class sympy.core.function.Lambda(signature, expr)

Lambda(x, expr) represents a lambda function similar to Python’s ‘lambda x: expr’. A function of several variables is written as Lambda((x, y, ...), expr).

**Examples**

A simple example:

```python
>>> from sympy import Lambda
>>> from sympy.abc import x
>>> f = Lambda(x, x**2)
>>> f(4)
16
```

For multivariate functions, use:

```python
>>> from sympy.abc import y, z, t
>>> f2 = Lambda((x, y, z, t), x + y*z + t*z)
>>> f2(1, 2, 3, 4)
73
```

It is also possible to unpack tuple arguments:

```python
>>> f = Lambda(((x, y), z), x + y + z)
>>> f((1, 2), 3)
6
```

A handy shortcut for lots of arguments:

```python
>>> p = x, y, z
>>> f = Lambda(p, x + y*z)
>>> f(*p)
x + y*z
```

**property bound_symbols**

The variables used in the internal representation of the function

**property expr**

The return value of the function

**property is_identity**

Return True if this Lambda is an identity function.
**property signature**

The expected form of the arguments to be unpacked into variables

**property variables**

The variables used in the internal representation of the function

```python
class sympy.core.function.WildFunction(*args)
A WildFunction function matches any function (with its arguments).
```

**Examples**

```python
>>> from sympy import WildFunction, Function, cos
>>> from sympy.abc import x, y
>>> F = WildFunction('F')
>>> f = Function('f')
>>> F.nargs
Naturals0
>>> x.match(F)
>>> F.match(F)
{F_: F_}
>>> f(x).match(F)
{F_: f(x)}
>>> cos(x).match(F)
{F_: cos(x)}
>>> f(x, y).match(F)
{F_: f(x, y)}
```

To match functions with a given number of arguments, set `nargs` to the desired value at instantiation:

```python
>>> F = WildFunction('F', nargs=2)
>>> F.nargs
{2}
>>> f(x).match(F)
>>> f(x, y).match(F)
{F_: f(x, y)}
```

To match functions with a range of arguments, set `nargs` to a tuple containing the desired number of arguments, e.g. if `nargs = (1, 2)` then functions with 1 or 2 arguments will be matched.

```python
>>> F = WildFunction('F', nargs=(1, 2))
>>> F.nargs
{1, 2}
>>> f(x).match(F)
{F_: f(x)}
>>> f(x, y).match(F)
{F_: f(x, y)}
>>> f(x, y, 1).match(F)
```

```python
class sympy.core.function.Derivative(expr, *variables, **kwargs)
```

Carries out differentiation of the given expression with respect to symbols.
Examples

```python
>>> from sympy import Derivative, Function, symbols, Subs
>>> from sympy.abc import x, y
>>> f, g = symbols('f g', cls=Function)

>>> Derivative(x**2, x, evaluate=True)
2*x
```

Denesting of derivatives retains the ordering of variables:

```python
>>> Derivative(Derivative(f(x, y), y), x)
Derivative(f(x, y), y, x)
```

Contiguously identical symbols are merged into a tuple giving the symbol and the count:

```python
>>> Derivative(f(x), x, x, y, x)
Derivative(f(x), (x, 2), y, x)
```

If the derivative cannot be performed, and evaluate is True, the order of the variables of differentiation will be made canonical:

```python
>>> Derivative(f(x, y), y, x, evaluate=True)
Derivative(f(x, y), x, y)
```

Derivatives with respect to undefined functions can be calculated:

```python
>>> Derivative(f(x)**2, f(x), evaluate=True)
2*f(x)
```

Such derivatives will show up when the chain rule is used to evaluate a derivative:

```python
>>> f(g(x)).diff(x)
Derivative(f(g(x)), g(x))*Derivative(g(x), x)
```

Substitution is used to represent derivatives of functions with arguments that are not symbols or functions:

```python
>>> f(2*x + 3).diff(x) == 2*Subs(f(y).diff(y), y, 2*x + 3)
True
```

Notes

Simplification of high-order derivatives:

Because there can be a significant amount of simplification that can be done when multiple differentiations are performed, results will be automatically simplified in a fairly conservative fashion unless the keyword simplify is set to False.

```python
>>> from sympy import sqrt, diff, Function, symbols
>>> from sympy.abc import x, y, z
>>> f, g = symbols('f,g', cls=Function)
```
```python
>>> e = sqrt((x + 1)**2 + x)
>>> diff(e, (x, 5), simplify=False).count_ops()
136
>>> diff(e, (x, 5)).count_ops()
30
```

Ordering of variables:

If evaluate is set to True and the expression cannot be evaluated, the list of differentiation symbols will be sorted, that is, the expression is assumed to have continuous derivatives up to the order asked.

Derivative wrt non-Symbols:

For the most part, one may not differentiate wrt non-symbols. For example, we do not allow differentiation wrt \( x \cdot y \) because there are multiple ways of structurally defining where \( x \cdot y \) appears in an expression: a very strict definition would make \((x*y+z).diff(x*y) == 0\). Derivatives wrt defined functions (like \( \cos(x) \)) are not allowed, either:

```python
>>> (x*y*z).diff(x*y)
Traceback (most recent call last):
...
ValueError: Can't calculate derivative wrt x*y.
```

To make it easier to work with variational calculus, however, derivatives wrt AppliedUnndef and Derivatives are allowed. For example, in the Euler-Lagrange method one may write \( F(t, u, v) \) where \( u = f(t) \) and \( v = f'(t) \). These variables can be written explicitly as functions of time:

```python
>>> from sympy import t
>>> F = Function('F')
>>> U = f(t)
>>> V = U.diff(t)
```

The derivative wrt \( f(t) \) can be obtained directly:

```python
>>> direct = F(t, U, V).diff(U)
```

When differentiation wrt a non-Symbol is attempted, the non-Symbol is temporarily converted to a Symbol while the differentiation is performed and the same answer is obtained:

```python
>>> indirect = F(t, U, V).subs(U, x).diff(x).subs(x, U)
```

The implication of this non-symbol replacement is that all functions are treated as independent of other functions and the symbols are independent of the functions that contain them:

```python
>>> x.diff(f(x))
0
>>> g(x).diff(f(x))
0
```

It also means that derivatives are assumed to depend only on the variables of differentiation, not on anything contained within the expression being differentiated:
The last example can be made explicit by showing the replacement of \( F_x \) in \( F_{xx} \) with \( y \):

\[
\text{>>> } F_{xx}.\text{subs}(F_x, y)
\]

\[
\text{Derivative}(y, x)
\]

Since that in itself will evaluate to zero, differentiating \( \text{wrt} \) \( F_x \) will also be zero:

\[
\text{>>> } _.\text{doit()}
\]

\[
0
\]

Replacing undefined functions with concrete expressions

One must be careful to replace undefined functions with expressions that contain variables consistent with the function definition and the variables of differentiation or else inconsistent result will be obtained. Consider the following example:

\[
\text{>>> eq} = f(x)\ast g(y)
\]

\[
\text{>>> eq}\text{.subs}(f(x), x\ast y).\text{diff(x, y)}.\text{doit()}
\]

\[
y\ast \text{Derivative}(g(y), y) + g(y)
\]

\[
\text{>>> eq}\text{.diff(x, y)}.\text{subs}(f(x), x\ast y).\text{doit()}
\]

\[
y\ast \text{Derivative}(g(y), y)
\]

The results differ because \( f(x) \) was replaced with an expression that involved both variables of differentiation. In the abstract case, differentiation of \( f(x) \) by \( y \) is 0; in the concrete case, the presence of \( y \) made that derivative nonvanishing and produced the extra \( g(y) \) term.

Defining differentiation for an object

An object must define \_eval_derivative(symbol) method that returns the differentiation result. This function only needs to consider the non-trivial case where expr contains symbol and it should call the \text{diff()} method internally (not \_eval_derivative); \text{Derivative} should be the only one to call \_eval_derivative.

Any class can allow derivatives to be taken with respect to itself (while indicating its scalar nature). See the docstring of Expr\_.diff_wrt.

\textbf{See also:}

\texttt{\_sort\_variable\_count} (page 1092)

\texttt{property \_diff\_wrt}

An expression may be differentiated \( \text{wrt} \) a Derivative if it is in elementary form.
Examples

```python
>>> from sympy import Function, Derivative, cos
>>> from sympy.abc import x
>>> f = Function('f')

>>> Derivative(f(x), x)._diff_wrt True
>>> Derivative(cos(x), x)._diff_wrt False
>>> Derivative(x + 1, x)._diff_wrt False
```

A Derivative might be an unevaluated form of what will not be a valid variable of differentiation if evaluated. For example,

```python
>>> Derivative(f(f(x)), x).doit()
Derivative(f(x), x)*Derivative(f(f(x)), f(x))
```

Such an expression will present the same ambiguities as arise when dealing with any other product, like 2*x, so _diff_wrt is False:

```python
>>> Derivative(f(f(x)), x)._diff_wrt False
```

classmethod _sort_variable_count(vc)

Sort (variable, count) pairs into canonical order while retaining order of variables that do not commute during differentiation:

- symbols and functions commute with each other
- derivatives commute with each other
- a derivative does not commute with anything it contains
- any other object is not allowed to commute if it has free symbols in common with another object

Examples

```python
>>> from sympy import Derivative, Function, symbols
>>> vsort = Derivative._sort_variable_count
>>> x, y, z = symbols('x y z')
>>> f, g, h = symbols('f g h', cls=Function)

Contiguous items are collapsed into one pair:

```python
>>> vsort([[x, 1], (x, 1)])
[(x, 2)]
>>> vsort([[y, 1], (f(x), 1), (y, 1), (f(x), 1)])
[(y, 2), (f(x), 2)]
```

Ordering is canonical.
```python
>>> def vsort0(*v):
    ... # docstring helper to
    ... # change vi -> (vi, 0), sort, and return vi vals
    ... return [i[0] for i in vsort([(i, 0) for i in v])]

>>> vsort0(y, x)
[x, y]
>>> vsort0(g(y), g(x), f(y))
[f(y), g(x), g(y)]
```

Symbols are sorted as far to the left as possible but never move to the left of a derivative having the same symbol in its variables; the same applies to AppliedUndef which are always sorted after Symbols:

```python
>>> dfx = f(x).diff(x)
>>> assert vsort0(dfx, y) == [y, dfx]
>>> assert vsort0(dfx, x) == [dfx, x]
```

as_finite_difference(*points=1, x0=None, wrt=None*)

Express a Derivative instance as a finite difference.

Parameters

- **points**: sequence or coefficient, optional

 If sequence: discrete values (length >= order+1) of the independent variable used for generating the finite difference weights. If it is a coefficient, it will be used as the step-size for generating an equidistant sequence of length order+1 centered around x0. Default: 1 (step-size 1)

- **x0**: number or Symbol, optional

 the value of the independent variable (wrt) at which the derivative is to be approximated. Default: same as wrt.

- **wrt**: Symbol, optional

 “with respect to” the variable for which the (partial) derivative is to be approximated for. If not provided it is required that the derivative is ordinary. Default: None.

Examples

```python
>>> from sympy import symbols, Function, exp, sqrt, Symbol
>>> x, h = symbols('x h')
>>> f = Function('f')
>>> f(x).diff(x).as_finite_difference()  
-f(x - 1/2) + f(x + 1/2)  
```

The default step size and number of points are 1 and order + 1 respectively. We can change the step size by passing a symbol as a parameter:

```python
>>> f(x).diff(x).as_finite_difference(h)  
-f(-h/2 + x)/h + f(h/2 + x)/h  
```
We can also specify the discretized values to be used in a sequence:

```python
>>> f(x).diff(x).as_finite_difference([x, x+h, x+2*h])
-3*f(x)/(2*h) + 2*f(h + x)/h - f(2*h + x)/(2*h)
```

The algorithm is not restricted to use equidistant spacing, nor do we need to make the approximation around x₀, but we can get an expression estimating the derivative at an offset:

```python
>>> e, sq2 = exp(1), sqrt(2)
>>> xl = [x-h, x+h, x+e*h]
>>> f(x).diff(x, 1).as_finite_difference(xl, x+h*sq2)
2*h*(((h + sqrt(2)*h)/(2*h) - (-sqrt(2)*h + h)/(2*h))*f(E*h + x)/...
```

To approximate Derivative around x₀ using a non-equidistant spacing step, the algorithm supports assignment of undefined functions to points:

```python
>>> dx = Function('dx')
>>> f(x).diff(x).as_finite_difference(points=dx(x), x0=x-h)
-f(-h + x - dx(-h + x)/2)/dx(-h + x) + f(-h + x + dx(-h + x)/2)/dx(-h + x)
```

Partial derivatives are also supported:

```python
>>> y = Symbol('y')
>>> d2fdxdy=f(x,y).diff(x,y)
>>> d2fdxdy.as_finite_difference(wrt=x)
-Derivative(f(x - 1/2, y), y) + Derivative(f(x + 1/2, y), y)
```

We can apply `as_finite_difference` to `Derivative` instances in compound expressions using replace:

```python
>>> (1 + 42**f(x).diff(x)).replace(lambda arg: arg.is_Derivative,
... lambda arg: arg.as_finite_difference())
42**(-f(x - 1/2) + f(x + 1/2)) + 1
```

See also:

- `sympy.calculus.finite_diff.apply_finite_diff` (page 294),
- `sympy.calculus.finite_diff.differentiate_finite` (page 296),
- `sympy.calculus.finite_diff.finite_diff_weights` (page 296)

doit_numerically(z₀)

Evaluate the derivative at z numerically.

When we can represent derivatives at a point, this should be folded into the normal evalf. For now, we need a special method.

```python
sympy.core.function.diff(f, *symbols, **kwargs)
```

Differentiate f with respect to symbols.
Explanation

This is just a wrapper to unify .diff() and the Derivative class; its interface is similar to that of integrate(). You can use the same shortcuts for multiple variables as with Derivative. For example, diff(f(x), x, x, x) and diff(f(x), x, 3) both return the third derivative of f(x).

You can pass evaluate=False to get an unevaluated Derivative class. Note that if there are 0 symbols (such as diff(f(x), x, 0), then the result will be the function (the zeroth derivative), even if evaluate=False.

Examples

```python
>>> from sympy import sin, cos, Function, diff
>>> from sympy.abc import x, y
>>> f = Function('f')

>>> diff(sin(x), x)
  cos(x)

>>> diff(f(x), x, x, x)
  Derivative(f(x), (x, 3))

>>> diff(f(x), x, 3)
  Derivative(f(x), (x, 3))

>>> diff(sin(x)*cos(y), x, 2, y, 2)
  sin(x)*cos(y)

>>> type(diff(sin(x), x))
  cos

>>> type(diff(sin(x), x, evaluate=False))
  <class 'sympy.core.function.Derivative'>

>>> type(diff(sin(x), x, 0))
  sin

>>> type(diff(sin(x), x, 0, evaluate=False))
  sin

>>> diff(sin(x))
  cos(x)

>>> diff(sin(x*y))
  Traceback (most recent call last):
    ...
  ValueError: specify differentiation variables to differentiate sin(x*y)
```

Note that diff(sin(x)) syntax is meant only for convenience in interactive sessions and should be avoided in library code.

See also:

Derivative (page 1088)

idiff (page 2276)

computes the derivative implicitly
class sympy.core.function.FunctionClass(*args, **kwargs)
Base class for function classes. FunctionClass is a subclass of type.
Use Function('<function name>'[, signature]) to create undefined function classes.

property nargs
Return a set of the allowed number of arguments for the function.

Examples

```python
>>> from sympy import Function
>>> f = Function('f')
```
If the function can take any number of arguments, the set of whole numbers is returned:

```python
>>> Function('f').nargs
Naturals0
```
If the function was initialized to accept one or more arguments, a corresponding set will be returned:

```python
>>> Function('f', nargs=1).nargs
{1}
>>> Function('f', nargs=(2, 1)).nargs
{1, 2}
```
The undefined function, after application, also has the nargs attribute; the actual number of arguments is always available by checking the args attribute:

```python
>>> f = Function('f')
>>> f(1).nargs
Naturals0
>>> len(f(1).args)
1
```

class sympy.core.function.Function(*args)
Base class for applied mathematical functions.
It also serves as a constructor for undefined function classes.

See the Writing Custom Functions (page 102) guide for details on how to subclass Function and what methods can be defined.
Examples

Undefined Functions

To create an undefined function, pass a string of the function name to Function.

```python
>>> from sympy import Function, Symbol
>>> x = Symbol('x')
>>> f = Function('f')
>>> g = Function('g')(x)
>>> f
f
>>> f(x)
f(x)
>>> g
g(x)
>>> g(x).diff(x)
Derivative(f(x), x)
>>> g.diff(x)
Derivative(g(x), x)
```

Assumptions can be passed to Function the same as with a `Symbol` (page 1028). Alternatively, you can use a Symbol with assumptions for the function name and the function will inherit the name and assumptions associated with the Symbol:

```python
>>> f_real = Function('f', real=True)
>>> f_real(x).is_real
True
>>> f_real_inherit = Function(Symbol('f', real=True))
>>> f_real_inherit(x).is_real
True
```

Note that assumptions on a function are unrelated to the assumptions on the variables it is called on. If you want to add a relationship, subclass `Function` and define custom assumptions handler methods. See the Assumptions (page 111) section of the Writing Custom Functions (page 102) guide for more details.

Custom Function Subclasses

The Writing Custom Functions (page 102) guide has several Complete Examples (page 122) of how to subclass `Function` to create a custom function.

```python
as_base_exp()
    Returns the method as the 2-tuple (base, exponent).

fdiff(argindex=1)
    Returns the first derivative of the function.

classmethod is_singular(a)
    Tests whether the argument is an essential singularity or a branch point, or the functions is non-holomorphic.
```

Note: Not all functions are the same

SymPy defines many functions (like *cos* and *factorial*). It also allows the user to create generic functions which act as argument holders. Such functions are created just like symbols:
```python
>>> from sympy import Function, cos
>>> from sympy.abc import x
>>> f = Function('f')
>>> f(2) + f(x)
f(2) + f(x)
```

If you want to see which functions appear in an expression you can use the atoms method:

```python
>>> e = (f(x) + cos(x) + 2)
>>> e.atoms(Function)
{f(x), cos(x)}
```

If you just want the function you defined, not SymPy functions, the thing to search for is AppliedUndef:

```python
>>> from sympy.core.function import AppliedUndef
>>> e.atoms(AppliedUndef)
{f(x)}
```

```python
class sympy.core.function.Subs(expr, variables, point, **assumptions)
Representes unevaluated substitutions of an expression.

Subs(expr, x, x0) represents the expression resulting from substituting x with x0 in expr.

Parameters

expr : Expr
    An expression.

x : tuple, variable
    A variable or list of distinct variables.

x0 : tuple or list of tuples
    A point or list of evaluation points corresponding to those variables.

Examples

>>> from sympy import Subs, Function, sin, cos
>>> from sympy.abc import x, y, z
>>> f = Function('f')

Subs are created when a particular substitution cannot be made. The x in the derivative cannot be replaced with 0 because 0 is not a valid variables of differentiation:

```python
>>> f(x).diff(x).subs(x, 0)
Subs(Derivative(f(x), x), x, 0)
```

Once f is known, the derivative and evaluation at 0 can be done:

```python
>>> _.subs(f, sin).doit() == sin(x).diff(x).subs(x, 0) == cos(0)
True
```
Subs can also be created directly with one or more variables:

```python
>>> Subs(f(x)*sin(y) + z, (x, y), (0, 1))
Subs(z + f(x)*sin(y), (x, y), (0, 1))
>>> _.doit()
z + f(0)*sin(1)
```

**Notes**

Subs objects are generally useful to represent unevaluated derivatives calculated at a point.

The variables may be expressions, but they are subjected to the limitations of subs(), so it is usually a good practice to use only symbols for variables, since in that case there can be no ambiguity.

There’s no automatic expansion - use the method .doit() to effect all possible substitutions of the object and also of objects inside the expression.

When evaluating derivatives at a point that is not a symbol, a Subs object is returned. One is also able to calculate derivatives of Subs objects - in this case the expression is always expanded (for the unevaluated form, use Derivative()).

In order to allow expressions to combine before doit is done, a representation of the Subs expression is used internally to make expressions that are superficially different compare the same:

```python
>>> a, b = Subs(x, x, 0), Subs(y, y, 0)
>>> a + b
2*Subs(x, x, 0)
```

This can lead to unexpected consequences when using methods like has that are cached:

```python
>>> s = Subs(x, x, 0)
>>> s.has(x), s.has(y)
(True, False)
>>> ss = s.subs(x, y)
>>> ss.has(x), ss.has(y)
(True, False)
>>> s, ss
(Subs(x, x, 0), Subs(y, y, 0))
```

**property bound_symbols**
- The variables to be evaluated

**property expr**
- The expression on which the substitution operates

**property point**
- The values for which the variables are to be substituted

**property variables**
- The variables to be evaluated
SymPy Documentation, Release 1.12.1

**sympy.core.function.expand**

\[ e, \text{deep}=True, \text{modulus}=None, \text{power_base}=True, \]
\[ \text{power_exp}=True, \text{mul}=True, \text{log}=True, \text{multinomial}=True, \]
\[ \text{basic}=True, **\text{hints} \]

Expand an expression using methods given as hints.

**Explanation**

Hints evaluated unless explicitly set to False are: basic, log, multinomial, mul, power_base, and power_exp. The following hints are supported but not applied unless set to True: complex, func, and trig. In addition, the following meta-hints are supported by some or all of the other hints: frac, numer, denom, modulus, and force. deep is supported by all hints. Additionally, subclasses of Expr may define their own hints or meta-hints.

The basic hint is used for any special rewriting of an object that should be done automatically (along with the other hints like mul) when expand is called. This is a catch-all hint to handle any sort of expansion that may not be described by the existing hint names. To use this hint an object should override the \_eval\_expand\_basic method. Objects may also define their own expand methods, which are not run by default. See the API section below.

If deep is set to True (the default), things like arguments of functions are recursively expanded. Use deep=False to only expand on the top level.

If the force hint is used, assumptions about variables will be ignored in making the expansion.

**Hints**

These hints are run by default

**Mul**

Distributes multiplication over addition:

```python
>>> from sympy import cos, exp, sin
>>> from sympy.abc import x, y, z
>>> (y*(x + z)).expand(mul=True)
x*y + y*z
```

**Multinomial**

Expand (x + y + ...)**n** where n is a positive integer.

```python
>>> ((x + y + z)**2).expand(multinomial=True)
x**2 + 2*x*y + 2*x*z + y**2 + 2*y*z + z**2
```
**Power_exp**

Expand addition in exponents into multiplied bases.

```python
>>> exp(x + y).expand(power_exp=True)
exp(x)*exp(y)
>>> (2**(x + y)).expand(power_exp=True)
2**x*2**y
```

**Power_base**

Split powers of multiplied bases.

This only happens by default if assumptions allow, or if the `force` meta-hint is used:

```python
>>> ((x*y)**z).expand(power_base=True)
(x*y)**z
>>> ((x*y)**z).expand(power_base=True, force=True)
x**z*y**z
>>> ((2*y)**z).expand(power_base=True)
2**z*y**z
```

Note that in some cases where this expansion always holds, SymPy performs it automatically:

```python
>>> (x*y)**2
x**2*y**2
```

**Log**

Pull out power of an argument as a coefficient and split logs products into sums of logs.

Note that these only work if the arguments of the log function have the proper assumptions–the arguments must be positive and the exponents must be real—or else the `force` hint must be True:

```python
>>> from sympy import log, symbols
>>> log(x**2*y).expand(log=True)
log(x**2*y)
>>> log(x**2*y).expand(log=True, force=True)
2*log(x) + log(y)
>>> x, y = symbols('x,y', positive=True)
>>> log(x**2*y).expand(log=True)
2*log(x) + log(y)
```
Basic

This hint is intended primarily as a way for custom subclasses to enable expansion by default.

These hints are not run by default:

Complex

Split an expression into real and imaginary parts.

```
>>> x, y = symbols('x, y')
>>> (x + y).expand(complex=True)
re(x) + re(y) + I*im(x) + I*im(y)
>>> cos(x).expand(complex=True)
-I*sin(re(x))*sinh(im(x)) + cos(re(x))*cosh(im(x))
```

Note that this is just a wrapper around as_real_imag(). Most objects that wish to redefine _eval_expand_complex() should consider redefining as_real_imag() instead.

Func

Expand other functions.

```
>>> from sympy import gamma
>>> gamma(x + 1).expand(func=True)
x*gamma(x)
```

Trig

Do trigonometric expansions.

```
>>> cos(x + y).expand(trig=True)
-sin(x)*sin(y) + cos(x)*cos(y)
>>> sin(2*x).expand(trig=True)
2*sin(x)*cos(x)
```

Note that the forms of \( \sin(n\times x) \) and \( \cos(n\times x) \) in terms of \( \sin(x) \) and \( \cos(x) \) are not unique, due to the identity \( \sin^2(x) + \cos^2(x) = 1 \). The current implementation uses the form obtained from Chebyshev polynomials, but this may change. See this MathWorld article for more information.
Notes

- You can shut off unwanted methods:

  ```python
 >>> (exp(x + y)*(x + y)).expand()
 x*exp(x)*exp(y) + y*exp(x)*exp(y)
 >>> (exp(x + y)*(x + y)).expand(power_exp=False)
 x*exp(x + y) + y*exp(x + y)
 >>> (exp(x + y)*(x + y)).expand(mul=False)
 (x + y)*exp(x)*exp(y)
  ```

- Use deep=False to only expand on the top level:

  ```python
 >>> exp(x + exp(x + y)).expand()
 exp(x)*exp(x)*exp(y)
 >>> exp(x + exp(x + y)).expand(deep=False)
 exp(x)*exp(x + y)
  ```

- Hints are applied in an arbitrary, but consistent order (in the current implementation, they are applied in alphabetical order, except multinomials come before `mul`, but this may change). Because of this, some hints may prevent expansion by other hints if they are applied first. For example, `mul` may distribute multiplications and prevent `log` and `power_base` from expanding them. Also, if `mul` is applied before `multinomial`, the expression might not be fully distributed. The solution is to use the various `expand_hint` helper functions or to use `hint=False` to this function to finely control which hints are applied. Here are some examples:

  ```python
 >>> from sympy import expand, expand_mul, expand_power_base
 >>> x, y, z = symbols('x,y,z', positive=True)
 >>> expand(log(x*(y + z)))
 log(x) + log(y + z)
  ```

  Here, we see that `log` was applied before `mul`. To get the `mul` expanded form, either of the following will work:

  ```python
 >>> expand_mul(log(x*(y + z)))
 log(x*y + x*z)
 >>> expand(log(x*(y + z)), log=False)
 log(x*y + x*z)
  ```

  A similar thing can happen with the `power_base` hint:

  ```python
 >>> expand((x*(y + z))**x)
 (x*y + x*z)**x
  ```

  To get the `power_base` expanded form, either of the following will work:

  ```python
 >>> expand((x*(y + z))**x, mul=False)
 x**x*(y + z)**x
 >>> expand_power_base((x*(y + z))**x)
 x**x*(y + z)**x
  ```

(continues on next page)
>>> expand((x + y)*y/x)
y + y**2/x

The parts of a rational expression can be targeted:

>>> expand((x + y)*y/x/(x + 1), frac=True)
(x*y + y**2)/(x**2 + x)

>>> expand((x + y)*y/x/(x + 1), numer=True)
(x*y + y**2)/(x*(x + 1))

>>> expand((x + y)*y/x/(x + 1), denom=True)
y*(x + y)/(x**2 + x)

• The modulus meta-hint can be used to reduce the coefficients of an expression post-expansion:

>>> expand((3*x + 1)**2)
9*x**2 + 6*x + 1

>>> expand((3*x + 1)**2, modulus=5)
4*x**2 + x + 1

• Either expand() the function or .expand() the method can be used. Both are equivalent:

>>> expand((x + 1)**2)
x**2 + 2*x + 1

>>> ((x + 1)**2).expand()
x**2 + 2*x + 1

**Api**

Objects can define their own expand hints by defining _eval_expand_hint(). The function should take the form:

```python
def _eval_expand_hint(self, **hints):
 # Only apply the method to the top-level expression
 ...
```

See also the example below. Objects should define _eval_expand_hint() methods only if hint applies to that specific object. The generic _eval_expand_hint() method defined in Expr will handle the no-op case.

Each hint should be responsible for expanding that hint only. Furthermore, the expansion should be applied to the top-level expression only. expand() takes care of the recursion that happens when deep=True.

You should only call _eval_expand_hint() methods directly if you are 100% sure that the object has the method, as otherwise you are liable to get unexpected AttributeError`s. Note, again, that you do not need to recursively apply the hint to args of your object: this is handled automatically by ```expand()```. _eval_expand_hint() should generally not be used at all outside of an _eval_expand_hint() method. If you want to apply a specific expansion from within another method, use the public expand() function, method, or expand_hint() functions.
In order for expand to work, objects must be rebuildable by their args, i.e., \( \text{obj. func(*obj.args)} \approx \text{obj} \) must hold.

Expand methods are passed **hints** so that expand hints may use ‘metahints’-hints that control how different expand methods are applied. For example, the force=True hint described above that causes expand(log=True) to ignore assumptions is such a metahint. The deep meta-hint is handled exclusively by expand() and is not passed to _eval_expand_hint() methods.

Note that expansion hints should generally be methods that perform some kind of ‘expansion’. For hints that simply rewrite an expression, use the .rewrite() API.

### Examples

```python
>>> from sympy import Expr, sympify
>>> class MyClass(Expr):
... def __new__(cls, *args):
... args = sympify(args)
... return Expr.__new__(cls, *args)
...
... def _eval_expand_double(self, *, force=False, **hints):
... """
... Doubles the args of MyClass.
... """
... if not force and len(self.args) > 4:
... return self
... return self.func(*self.args + self.args)
...
>>> a = MyClass(1, 2, MyClass(3, 4))
>>> a
MyClass(1, 2, MyClass(3, 4))
>>> a.expand(double=True)
MyClass(1, 2, MyClass(3, 4, 3, 4), 1, 2, MyClass(3, 4, 3, 4))
>>> a.expand(double=True, deep=False)
MyClass(1, 2, MyClass(3, 4), 1, 2, MyClass(3, 4))
>>> b = MyClass(1, 2, 3, 4, 5)
>>> b.expand(double=True)
MyClass(1, 2, 3, 4, 5)
>>> b.expand(double=True, force=True)
MyClass(1, 2, 3, 4, 5, 1, 2, 3, 4, 5)
```

See also:

- expand_log (page 1107), expand_mul (page 1107), expand_multinomial (page 1108), expand_complex (page 1108), expand_trig (page 1107), expand_power_base (page 1109), expand_power_exp (page 1108), expand_func (page 1107), sympy.simplify.hyperexpand.hyperexpand (page 743)

class sympy.core.function.PoleError
**SymPy Documentation, Release 1.12.1**

```python
sympy.core.function.count_ops(expr, visual=False)
```

Return a representation (integer or expression) of the operations in `expr`.

**Parameters**

- `expr`: Expr
  
  If `expr` is an iterable, the sum of the op counts of the items will be returned.

- `visual`: bool, optional
  
  If False (default) then the sum of the coefficients of the visual expression will be returned. If True then the number of each type of operation is shown with the core class types (or their virtual equivalent) multiplied by the number of times they occur.

**Examples**

```python
>>> from sympy.abc import a, b, x, y
>>> from sympy import sin, count_ops
```

Although there is not a SUB object, minus signs are interpreted as either negations or subtractions:

```python
>>> (x - y).count_ops(visual=True)
SUB
>>> (-x).count_ops(visual=True)
NEG
```

Here, there are two Adds and a Pow:

```python
>>> (1 + a + b**2).count_ops(visual=True)
2*ADD + POW
```

In the following, an Add, Mul, Pow and two functions:

```python
>>> (sin(x)*x + sin(x)**2).count_ops(visual=True)
ADD + MUL + POW + 2*SIN
```

for a total of 5:

```python
>>> (sin(x)*x + sin(x)**2).count_ops(visual=False)
5
```

Note that “what you type” is not always what you get. The expression `1/x/y` is translated by sympy into `1/(x*y)` so it gives a DIV and MUL rather than two DIVs:

```python
>>> (1/x/y).count_ops(visual=True)
DIV + MUL
```

The visual option can be used to demonstrate the difference in operations for expressions in different forms. Here, the Horner representation is compared with the expanded form of a polynomial:
>>> eq=x*(1 + x*(2 + x*(3 + x)))
>>> count_ops(eq.expand(), visual=True) - count_ops(eq, visual=True)
-MUL + 3*POW

The count_ops function also handles iterables:

>>> count_ops([x, sin(x), None, True, x + 2], visual=False)
2
>>> count_ops([x, sin(x), None, True, x + 2], visual=True)
ADD + SIN
>>> count_ops({x: sin(x), x + 2: y + 1}, visual=True)
2*ADD + SIN

**sympy.core.function.expand_mul**(expr, deep=True)

Wrapper around expand that only uses the mul hint. See the expand docstring for more information.

**Examples**

```python
>>> from sympy import symbols, expand_mul, exp, log
>>> x, y = symbols('x,y', positive=True)
>>> expand_mul(exp(x+y)*(x+y)*log(x*y**2))
x*exp(x + y)*log(x*y**2) + y*exp(x + y)*log(x*y**2)
```

**sympy.core.function.expand_log**(expr, deep=True, force=False, factor=False)

Wrapper around expand that only uses the log hint. See the expand docstring for more information.

**Examples**

```python
>>> from sympy import symbols, expand_log, exp, log
>>> x, y = symbols('x,y', positive=True)
>>> expand_log(exp(x+y)*(x+y)*log(x*y**2))
(x + y)*(log(x) + 2*log(y))*exp(x + y)
```

**sympy.core.function.expand_func**(expr, deep=True)

Wrapper around expand that only uses the func hint. See the expand docstring for more information.

**Examples**

```python
>>> from sympy import expand_func, gamma
>>> from sympy.abc import x
>>> expand_func(gamma(x + 2))
x*(x + 1)*gamma(x)
```

**sympy.core.function.expand_trig**(expr, deep=True)

Wrapper around expand that only uses the trig hint. See the expand docstring for more information.

**Examples**

```python
```
Examples

```python
>>> from sympy import expand_trig, sin
>>> from sympy.abc import x, y
>>> expand_trig(sin(x+y)*(x+y))
(x + y)*(sin(x)*cos(y) + sin(y)*cos(x))
```

`sympy.core.function.expand_complex(expr, deep=True)`

Wrapper around expand that only uses the complex hint. See the expand docstring for more information.

Examples

```python
>>> from sympy import expand_complex, exp, sqrt, I
>>> from sympy.abc import z
>>> expand_complex(exp(z))
I*exp(re(z))*sin(im(z)) + exp(re(z))*cos(im(z))
>>> expand_complex(sqrt(I))
sqrt(2)/2 + sqrt(2)*I/2
```

See also:

`sympy.core.expr.Expr.as_real_imag` (page 1008)

`sympy.core.function.expand_multinomial(expr, deep=True)`

Wrapper around expand that only uses the multinomial hint. See the expand docstring for more information.

Examples

```python
>>> from sympy import symbols, expand_multinomial, exp
>>> x, y = symbols('x y', positive=True)
>>> expand_multinomial((x + exp(x + 1))**2)
x**2 + 2*x*exp(x + 1) + exp(2*x + 2)
```

`sympy.core.function.expand_power_exp(expr, deep=True)`

Wrapper around expand that only uses the power_exp hint. See the expand docstring for more information.

Examples

```python
>>> from sympy import expand_power_exp, Symbol
>>> from sympy.abc import x, y
>>> expand_power_exp(3**(y + 2))
g3**(y + 2)
>>> expand_power_exp(x**(y + 2))
x**(y + 2)
```

If \( x = 0 \) the value of the expression depends on the value of \( y \); if the expression were expanded the result would be 0. So expansion is only done if \( x \neq 0 \):
```python
>>> expand_power_exp(Symbol('x', zero=False)**(y + 2))
x**2*x**y
```

SymPy's `expand_power_exp` function

```python
sympy.core.function.expand_power_base(expr, deep=True, force=False)
```

Wrapper around `expand` that only uses the `power_base` hint.

A wrapper to `expand(power_base=True)` which separates a power with a base that is a `Mul` into a product of powers, without performing any other expansions, provided that assumptions about the power's base and exponent allow.

- `deep=False` (default is True) will only apply to the top-level expression.
- `force=True` (default is False) will cause the expansion to ignore assumptions about the base and exponent. When False, the expansion will only happen if the base is non-negative or the exponent is an integer.

```python
>>> from sympy.abc import x, y, z

>>> from sympy import expand_power_base, sin, cos, exp, Symbol

>>> (x*y)**2
x**2*y**2

>>> (2*x)**y
(2*x)**y
>>> expand_power_base(_)
2**y*x**y

>>> expand_power_base((x*y)**z)
(x*y)**z
>>> expand_power_base((x*y)**z, force=True)
x**y*z**y

>>> expand_power_base(sin((x*y)**z), deep=False)
sin((x*y)**z)
>>> expand_power_base(sin((x*y)**z), force=True)
sin(x**y*z**y)

>>> expand_power_base((2*sin(x))**y + (2*cos(x))**y)
2**y*sin(x)**y + 2**y*cos(x)**y

>>> expand_power_base((2*exp(y))**x)
2**x*exp(y)**x

>>> expand_power_base((2*cos(x))**y)
2**y*cos(x)**y
```

Notice that sums are left untouched. If this is not the desired behavior, apply full `expand()` to the expression:

```python
>>> expand_power_base(((x+y)*z)**2)
z**2*(x + y)**2
>>> (((x+y)**z)**2).expand()
x**2*z**2 + 2*x*y*z**2 + y**2*z**2
```
>>> expand_power_base((2*y)**(1+z))
2**(z + 1)*y**(z + 1)
>>> ((2*y)**(1+z)).expand()
2*2**z*y**(z + 1)

The power that is unexpanded can be expanded safely when \( y \neq 0 \), otherwise different values might be obtained for the expression:

>>> prev = _

If we indicate that \( y \) is positive but then replace it with a value of 0 after expansion, the expression becomes 0:

>>> p = Symbol('p', positive=True)
>>> prev.subs(y, p).expand().subs(p, 0)
0

But if \( z = -1 \) the expression would not be zero:

>>> prev.subs(y, 0).subs(z, -1)
1

See also: 

`expand` (page 1099)

`sympy.core.function.nfloat(expr, n=15, exponent=False, dkeys=False)`

Make all Rationals in expr Floats except those in exponents (unless the exponents flag is set to True) and those in undefined functions. When processing dictionaries, do not modify the keys unless dkeys=True.

Examples

```python
>>> from sympy import nfloat, cos, pi, sqrt
>>> from sympy.abc import x, y
>>> nfloat(x**4 + x/2 + cos(pi/3) + 1 + sqrt(y))
x**4 + 0.5*x + sqrt(y) + 1.5
>>> nfloat(x**4 + sqrt(y), exponent=True)
x**4.0 + y**0.5
```

Container types are not modified:

```python
>>> type(nfloat((1, 2))) is tuple
True
```
evalf

class sympy.core.evalf.EvalfMixin
   Mixin class adding evalf capability.

   evalf(n=15, subs=None, maxn=100, chop=False, strict=False, quad=None, verbose=False)
   Evaluate the given formula to an accuracy of n digits.

   Parameters
   subs : dict, optional
      Substitute numerical values for symbols, e.g. subs={x:3, y:1+pi}. The substitutions must be given as a dictionary.
   maxn : int, optional
      Allow a maximum temporary working precision of maxn digits.
   chop : bool or number, optional
      Specifies how to replace tiny real or imaginary parts in subresults by exact zeros.
      When True the chop value defaults to standard precision.
      Otherwise the chop value is used to determine the magnitude of “small” for purposes of chopping.

>>> from sympy import N
>>> x = 1e-4
>>> N(x, chop=True)
0.00010000000000000
>>> N(x, chop=1e-5)
0.00010000000000000
>>> N(x, chop=1e-4)
0

   strict : bool, optional
      Raise PrecisionExhausted if any subresult fails to evaluate to full accuracy, given the available maxprec.

   quad : str, optional
      Choose algorithm for numerical quadrature. By default, tanh-sinh quadrature is used. For oscillatory integrals on an infinite interval, try quad='osc'.

   verbose : bool, optional
      Print debug information.
Notes

When Floats are naively substituted into an expression, precision errors may adversely affect the result. For example, adding 1e16 (a Float) to 1 will truncate to 1e16; if 1e16 is then subtracted, the result will be 0. That is exactly what happens in the following:

```python
>>> from sympy import x, y, z
>>> values = {x: 1e16, y: 1, z: 1e16}
>>> (x + y - z).subs(values)
0
```

Using the subs argument for evalf is the accurate way to evaluate such an expression:

```python
>>> (x + y - z).evalf(subs=values)
1.00000000000000
```

`n(n=15, subs=None, maxn=100, chop=False, strict=False, quad=None, verbose=False)`

Evaluate the given formula to an accuracy of n digits.

- **subs** : dict, optional
  Substitute numerical values for symbols, e.g. subs={x:3, y:1+pi}. The substitutions must be given as a dictionary.

- **maxn** : int, optional
  Allow a maximum temporary working precision of maxn digits.

- **chop** : bool or number, optional
  Specifies how to replace tiny real or imaginary parts in subresults by exact zeros.

  When True the chop value defaults to standard precision.

  Otherwise the chop value is used to determine the magnitude of “small” for purposes of chopping.

```python
>>> from sympy import N
>>> x = 1e-4
>>> N(x, chop=True)
0.00010000000000
>>> N(x, chop=1e-5)
0.00010000000000000
>>> N(x, chop=1e-4)
0
```

- **strict** : bool, optional
  Raise PrecisionExhausted if any subresult fails to evaluate to full accuracy, given the available maxprec.

- **quad** : str, optional
Choose algorithm for numerical quadrature. By default, tanh-sinh quadrature is used. For oscillatory integrals on an infinite interval, try quad='osc'.

verbose : bool, optional
Print debug information.

Notes

When Floats are naively substituted into an expression, precision errors may adversely affect the result. For example, adding 1e16 (a Float) to 1 will truncate to 1e16; if 1e16 is then subtracted, the result will be 0. That is exactly what happens in the following:

```python
from sympy import x, y, z
values = {x: 1e16, y: 1, z: 1e16}
(x + y - z).subs(values)
```

0

Using the subs argument for evaf is the accurate way to evaluate such an expression:

```python
(x + y - z).evalf(subs=values)
```

1.00000000000000

class sympy.core.evalf.PrecisionExhausted

sympy.core.evalf.N(x, n=15, **options)
Calls x.evalf(n, **options).

Explanations

Both .n() and N() are equivalent to .evalf(); use the one that you like better. See also the docstring of .evalf() for information on the options.

Examples

```python
from sympy import Sum, oo, N
from sympy.abc import k
Sum(1/k**k, (k, 1, oo))
Sum(k**(-k), (k, 1, oo))
N(_, 4)
```

1.291
containers

class sympy.core.containers.Tuple(*args, **kwargs)
    Wrapper around the builtin tuple object.

    Parameters
    =========
    sympify : bool
        If False, sympify is not called on args. This can be used for speedups
        for very large tuples where the elements are known to already be
        SymPy objects.

    Explanation

    The Tuple is a subclass of Basic, so that it works well in the SymPy framework. The
    wrapped tuple is available as self.args, but you can also access elements or slices with
    [:] syntax.

    Examples

    ```python
 >>> from sympy import Tuple, symbols
 >>> a, b, c, d = symbols('a b c d')
 >>> Tuple(a, b, c)[1:]
 (b, c)
 >>> Tuple(a, b, c).subs(a, d)
 (d, b, c)
    ```

    index(value, start=None, stop=None)
        Searches and returns the first index of the value.

    property kind
        The kind of a Tuple instance.
        The kind of a Tuple is always of TupleKind (page 1115) but parametrised by the
        number of elements and the kind of each element.

    Examples

    ```python
 >>> from sympy import Tuple, Matrix
 >>> Tuple(1, 2).kind
 TupleKind(NumberKind, NumberKind)
 >>> Tuple(Matrix([[1, 2]]), 1).kind
 TupleKind(MatrixKind(NumberKind), NumberKind)
 >>> Tuple(1, 2).kind.element_kind
 (NumberKind, NumberKind)
    ```

    See also:

    sympy.matrices.common.MatrixKind (page 1405), sympy.core.kind.NumberKind
    (page 1118)
**tuple_count**(value) → int

Return number of occurrences of value.

**class** sympy.core.containers.TupleKind(*args)

TupleKind is a subclass of Kind, which is used to define Kind of Tuple.

Parameters of TupleKind will be kinds of all the arguments in Tuples, for example

**Parameters**

args : tuple(element_kind)

element_kind is kind of element. args is tuple of kinds of element

**Examples**

```python
>>> from sympy import Tuple
>>> Tuple(1, 2).kind
TupleKind(NumberKind, NumberKind)
>>> Tuple(1, 2).kind.element_kind
(NumberKind, NumberKind)
```

**See also:**

sympy.core.kind.NumberKind (page 1118), MatrixKind (page 1405), sympy.sets.sets.SetKind (page 1259)

**class** sympy.core.containers.Dict(*args)

Wrapper around the built-in dict object.

**Explanation**

The Dict is a subclass of Basic, so that it works well in the SymPy framework. Because it is immutable, it may be included in sets, but its values must all be given at instantiation and cannot be changed afterwards. Otherwise it behaves identically to the Python dict.

**Examples**

```python
>>> from sympy import Dict, Symbol
>>>
>>> D = Dict({1: 'one', 2: 'two'})
>>> for key in D:
... if key == 1:
... print('%s %s' % (key, D[key]))
1 one
```

The args are sympified so the 1 and 2 are Integers and the values are Symbols. Queries automatically sympify args so the following work:

```python
>>> 1 in D
True
>>> D.has(Symbol('one')) # searches keys and values
True
```

(continues on next page)
get(key, default=None)

Returns the value for key if the key is in the dictionary.

items()

Returns a set-like object providing a view on dict’s items.

keys()

Returns the list of the dict’s keys.

values()

Returns the list of the dict’s values.

exprtools

sympy.core.expertools.gcd_terms(terms, isprimitive=False, clear=True, fraction=True)

Compute the GCD of terms and put them together.

Parameters

terms : Expr

Can be an expression or a non-Basic sequence of expressions which will be handled as though they are terms from a sum.

isprimitive : bool, optional

If isprimitive is True the _gcd_terms will not run the primitive method on the terms.

clear : bool, optional

It controls the removal of integers from the denominator of an Add expression. When True (default), all numerical denominator will be cleared; when False the denominators will be cleared only if all terms had numerical denominators other than 1.

fraction : bool, optional

When True (default), will put the expression over a common denominator.

Examples

>>> from sympy import gcd_terms
>>> from sympy.abc import x, y

>>> gcd_terms((x + 1)**2*y + (x + 1)*y**2)
y*(x + 1)*(x + y + 1)
>>> gcd_terms(x/2 + 1)
The `clear` flag was ignored in this case because the returned expression was a rational expression, not a simple sum.

**See also:**

`factor_terms` (page 1117), `sympy.polys.polytools.terms_gcd` (page 2441)

Remove common factors from terms in all arguments without changing the underlying structure of the expr. No expansion or simplification (and no processing of non-commutatives) is performed.

**Parameters**

- **radical**: bool, optional
  
  If `radical=True` then a radical common to all terms will be factored out of any Add sub-expressions of the expr.

- **clear**: bool, optional
  
  If `clear=False` (default) then coefficients will not be separated from a single Add if they can be distributed to leave one or more terms with integer coefficients.

- **fraction**: bool, optional
  
  If `fraction=True` (default is False) then a common denominator will be constructed for the expression.

- **sign**: bool, optional
  
  If `sign=True` (default) then even if the only factor in common is a -1, it will be factored out of the expression.
Examples

```python
>>> from sympy import factor_terms, Symbol
>>> from sympy.abc import x, y
>>> factor_terms(x + x*(2 + 4*y)**3)
x*(8*(2*y + 1)**3 + 1)
>>> A = Symbol('A', commutative=False)
>>> factor_terms(x*A + x*A + x*y*A)
x*(y*A + 2*A)
```

When `clear` is False, a rational will only be factored out of an Add expression if all terms of the Add have coefficients that are fractions:

```python
>>> factor_terms(x/2 + 1, clear=False)
x/2 + 1
>>> factor_terms(x/2 + 1, clear=True)
(x + 2)/2
```

If a -1 is all that can be factored out, to not factor it out, the flag `sign` must be False:

```python
>>> factor_terms(-x - y)
-(x + y)
>>> factor_terms(-x - y, sign=False)
-x - y
>>> factor_terms(-2*x - 2*y, sign=False)
-2*(x + y)
```

See also:

- `gcd_terms` (page 1116), `sympy.polys.polytools.terms_gcd` (page 2441)

kind

class sympy.core.kind.Kind(*args)

Base class for kinds.

Kind of the object represents the mathematical classification that the entity falls into. It is expected that functions and classes recognize and filter the argument by its kind.

Kind of every object must be carefully selected so that it shows the intention of design. Expressions may have different kind according to the kind of its arguments. For example, arguments of `Add` must have common kind since addition is group operator, and the resulting `Add()` has the same kind.

For the performance, each kind is as broad as possible and is not based on set theory. For example, `NumberKind` includes not only complex number but expression containing `S.Infinity` or `S.NaN` which are not strictly number.

Kind may have arguments as parameter. For example, `MatrixKind()` may be constructed with one element which represents the kind of its elements.

Kind behaves in singleton-like fashion. Same signature will return the same object.

`sympy.core.kind.NumberKind`

alias of `NumberKind`
SymPy.core.kind.UndefinedKind
    alias of UndefinedKind
SymPy.core.kind.BooleanKind
    alias of BooleanKind

Sorting

SymPy.core.sorting.default_sort_key(item, order=None)
    Return a key that can be used for sorting.
    The key has the structure:
    (class_key, (len(args), args), exponent.sort_key(), coefficient)
    This key is supplied by the sort_key routine of Basic objects when item is a Basic object or
    an object (other than a string) that sympifies to a Basic object. Otherwise, this function
    produces the key.
    The order argument is passed along to the sort_key routine and is used to determine
    how the terms within an expression are ordered. (See examples below) order options are: 'lex', 'grlex', 'grevlex', and reversed values of the same (e.g. 'rev-lex'). The default
    order value is None (which translates to 'lex').

Examples

```python
>>> from sympy import S, I, default_sort_key, sin, cos, sqrt
>>> from sympy.core.function import UndefinedFunction
>>> from sympy.abc import x
```

The following are equivalent ways of getting the key for an object:

```python
>>> x.sort_key() == default_sort_key(x)
True
```

Here are some examples of the key that is produced:

```python
>>> default_sort_key(UndefindedFunction('f'))
((0, 0, 'UndefindedFunction'), (1, ('f',)), ((1, 0, 'Number'),
 (0, ()), (1), 1))
>>> default_sort_key('1')
((0, 0, 'str'), (1, ('1',)), ((1, 0, 'Number'), (0, ()), ()), 1)
```

While sort_key is a method only defined for SymPy objects, default_sort_key will accept
anything as an argument so it is more robust as a sorting key. For the following, using
key=lambda i: i.sort_key() would fail because 2 does not have a sort_key method; that's
why default_sort_key is used. Note, that it also handles sympification of non-string items
likes ints:
>>> a = [2, I, -I]
>>> sorted(a, key=default_sort_key)
[2, -I, I]

The returned key can be used anywhere that a key can be specified for a function, e.g. sort, min, max, etc.:

>>> a.sort(key=default_sort_key); a[0]
2
>>> min(a, key=default_sort_key)
2

**Notes**

The key returned is useful for getting items into a canonical order that will be the same across platforms. It is not directly useful for sorting lists of expressions:

>>> a, b = x, 1/x

Since a has only 1 term, its value of sort_key is unaffected by order:

>>> a.sort_key() == a.sort_key('rev-lex')
True

If a and b are combined then the key will differ because there are terms that can be ordered:

>>> eq = a + b
>>> eq.sort_key() == eq.sort_key('rev-lex')
False
>>> eq.as_ordered_terms()
[x, 1/x]
>>> eq.as_ordered_terms('rev-lex')
[1/x, x]

But since the keys for each of these terms are independent of order’s value, they do not sort differently when they appear separately in a list:

>>> sorted(eq.args, key=default_sort_key)
[1/x, x]
>>> sorted(eq.args, key=lambda i: default_sort_key(i, order='rev-lex'))
[1/x, x]

The order of terms obtained when using these keys is the order that would be obtained if those terms were factors in a product.

Although it is useful for quickly putting expressions in canonical order, it does not sort expressions based on their complexity defined by the number of operations, power of variables and others:

>>> sorted([sin(x)*cos(x), sin(x)], key=default_sort_key)
[sin(x)*cos(x), sin(x)]

(continues on next page)
See also:

ordered (page 1121), sympy.core.expr.Expr.as_ordered_factors (page 1007),
sympy.core.expr.Expr.as_ordered_terms (page 1007)

sympy.core.sorting.ordered(seq, keys=None, default=True, warn=False)

Return an iterator of the seq where keys are used to break ties in a conservative fashion:
if, after applying a key, there are no ties then no other keys will be computed.

Two default keys will be applied if 1) keys are not provided or 2) the given keys do not
resolve all ties (but only if default is True). The two keys are _nodes (which places
smaller expressions before large) and default_sort_key which (if the sort_key for an
object is defined properly) should resolve any ties.

If warn is True then an error will be raised if there were no keys remaining to break ties.
This can be used if it was expected that there should be no ties between items that are
not identical.

Examples

```python
>>> from sympy import ordered, count_ops
>>> from sympy.abc import x, y
```

The count_ops is not sufficient to break ties in this list and the first two items appear in
their original order (i.e. the sorting is stable):

```python
>>> list(ordered([y + 2, x + 2, x**2 + y + 3],
... count_ops, default=False, warn=False))
[...]
[y + 2, x + 2, x**2 + y + 3]
```

The default_sort_key allows the tie to be broken:

```python
>>> list(ordered([y + 2, x + 2, x**2 + y + 3]))
[x + 2, y + 2, x**2 + y + 3]
```

Here, sequences are sorted by length, then sum:

```python
>>> seq, keys = [[1, 2, 1], [0, 3, 1], [1, 1, 3], [2], [1]], [
... lambda x: len(x),
... lambda x: sum(x)]
```

```python
>>> list(ordered(seq, keys, default=False, warn=False))
[[1], [2], [1, 2, 1], [0, 3, 1], [1, 1, 3]]
```

If warn is True, an error will be raised if there were not enough keys to break ties:

```python
>>> list(ordered(seq, keys, default=False, warn=True))
Traceback (most recent call last):
```
... 

```
ValueError: not enough keys to break ties
```

**Notes**

The decorated sort is one of the fastest ways to sort a sequence for which special item comparison is desired: the sequence is decorated, sorted on the basis of the decoration (e.g. making all letters lower case) and then undecorated. If one wants to break ties for items that have the same decorated value, a second key can be used. But if the second key is expensive to compute then it is inefficient to decorate all items with both keys: only those items having identical first key values need to be decorated. This function applies keys successively only when needed to break ties. By yielding an iterator, use of the tie-breaker is delayed as long as possible.

This function is best used in cases when use of the first key is expected to be a good hashing function; if there are no unique hashes from application of a key, then that key should not have been used. The exception, however, is that even if there are many collisions, if the first group is small and one does not need to process all items in the list then time will not be wasted sorting what one was not interested in. For example, if one were looking for the minimum in a list and there were several criteria used to define the sort order, then this function would be good at returning that quickly if the first group of candidates is small relative to the number of items being processed.

**Random**

When you need to use random numbers in SymPy library code, import from here so there is only one generator working for SymPy. Imports from here should behave the same as if they were being imported from Python’s random module. But only the routines currently used in SymPy are included here. To use others import rng and access the method directly. For example, to capture the current state of the generator use rng.getstate().

There is intentionally no Random to import from here. If you want to control the state of the generator, import seed and call it with or without an argument to set the state.

**Examples**

```python
>>> from sympy.core.random import random, seed
>>> assert random() < 1
>>> seed(1); a = random()
>>> b = random()
>>> seed(1); c = random()
>>> assert a == c
>>> assert a != b # remote possibility this will fail
```

```
sympy.core.random.random_complex_number(a=2, b=-1, c=3, d=1, rational=False, tolerance=None)
```

Return a random complex number.

To reduce chance of hitting branch cuts or anything, we guarantee $b \leq \text{Im} \ z \leq d$, $a \leq \text{Re} \ z \leq c$.
When rational is True, a rational approximation to a random number is obtained within specified tolerance, if any.

`sympy.core.random.verify_numerically(f, g, z=None, tol=1e-06, a=2, b=-1, c=3, d=1)`

Test numerically that $f$ and $g$ agree when evaluated in the argument $z$.

If $z$ is None, all symbols will be tested. This routine does not test whether there are Floats present with precision higher than 15 digits so if there are, your results may not be what you expect due to round-off errors.

**Examples**

```python
>>> from sympy import sin, cos
>>> from sympy.abc import x
>>> from sympy.core.random import verify_numerically as tn
>>> tn(sin(x)**2 + cos(x)**2, 1, x)
True
```

`sympy.core.random.test_derivative_numerically(f, z, tol=1e-06, a=2, b=-1, c=3, d=1)`

Test numerically that the symbolically computed derivative of $f$ with respect to $z$ is correct.

This routine does not test whether there are Floats present with precision higher than 15 digits so if there are, your results may not be what you expect due to round-off errors.

**Examples**

```python
>>> from sympy import sin
>>> from sympy.abc import x
>>> from sympy.core.random import test_derivative_numerically as td
>>> td(sin(x), x)
True
```

`sympy.core.random._randrange(seed=None)`

Return a randrange generator.

`seed` can be

- None - return randomly seeded generator
- int - return a generator seeded with the int
- list - the values to be returned will be taken from the list in the order given; the provided list is not modified.
Examples

```python
>>> from sympy.core.random import _randrange
>>> rr = _randrange()
999
>>> rr = _randrange(3)
>>> rr(1000)
238
>>> rr = _randrange([0, 5, 1, 3, 4])
>>> rr(3), rr(3)
(0, 1)
```

**sympy.core.random._randint**(seed=None)

Return a randint generator.

seed can be

- None - return randomly seeded generator
- int - return a generator seeded with the int
- list - the values to be returned will be taken from the list in the order given; the provided list is not modified.

Examples

```python
>>> from sympy.core.random import _randint
>>> ri = _randint()
>>> ri(1, 1000)
999
>>> ri = _randint(3)
>>> ri(1, 1000)
238
>>> ri = _randint([0, 5, 1, 2, 4])
>>> ri(1, 3), ri(1, 3)
(1, 2)
```

Traversal

**sympy.core.traversal.bottom_up**(rv, F, atoms=False, nonbasic=False)

Apply F to all expressions in an expression tree from the bottom up. If atoms is True, apply F even if there are no args; if nonbasic is True, try to apply F to non-Basic objects.

**sympy.core.traversal.postorder_traversal**(node, keys=None)

Do a postorder traversal of a tree.

This generator recursively yields nodes that it has visited in a postorder fashion. That is, it descends through the tree depth-first to yield all of a node’s children’s postorder traversal before yielding the node itself.

**Parameters**

- **node**: SymPy expression
The expression to traverse.

**keys** : (default None) sort key(s)

The key(s) used to sort args of Basic objects. When None, args of Basic objects are processed in arbitrary order. If key is defined, it will be passed along to ordered() as the only key(s) to use to sort the arguments; if key is simply True then the default keys of ordered will be used (node count and default_sort_key).

**Yields**

**subtree** : SymPy expression

All of the subtrees in the tree.

### Examples

```python
>>> from sympy import postorder_traversal
>>> from sympy.abc import w, x, y, z
```

The nodes are returned in the order that they are encountered unless key is given; simply passing key=True will guarantee that the traversal is unique.

```python
>>> list(postorder_traversal(w + (x + y)*z))
[z, y, x, x + y, z*(x + y), w, w + z*(x + y)]
```

```python
>>> list(postorder_traversal(w + (x + y)*z, keys=True))
[w, z, x, y, x + y, z*(x + y), w + z*(x + y)]
```

**sympy.core.traversal.preorder_traversal** *(node, keys=None)*

Do a pre-order traversal of a tree.

This iterator recursively yields nodes that it has visited in a pre-order fashion. That is, it yields the current node then descends through the tree breadth-first to yield all of a node’s children’s pre-order traversal.

For an expression, the order of the traversal depends on the order of .args, which in many cases can be arbitrary.

### Parameters

**node** : SymPy expression

The expression to traverse.

**keys** : (default None) sort key(s)

The key(s) used to sort args of Basic objects. When None, args of Basic objects are processed in arbitrary order. If key is defined, it will be passed along to ordered() as the only key(s) to use to sort the arguments; if key is simply True then the default keys of ordered will be used.

**Yields**

**subtree** : SymPy expression

All of the subtrees in the tree.
Examples

```python
>>> from sympy import preorder_traversal, symbols
>>> x, y, z = symbols('x y z')
```

The nodes are returned in the order that they are encountered unless key is given; simply passing key=True will guarantee that the traversal is unique.

```python
>>> list(preorder_traversal((x + y) * z, keys=None))
[z*(x + y), z, x + y, y, x]
>>> list(preorder_traversal((x + y) * z, keys=True))
[z*(x + y), z, x + y, x, y]
```

```python
sympy.core.traversal.use(expr, func, level=0, args=(), kwargs={})
```

Use func to transform expr at the given level.

Examples

```python
>>> from sympy import use, expand
>>> from sympy import x, y
```

```python
>>> f = (x + y)**2*x + 1
```

```python
>>> use(f, expand, level=2)
```

```python
x*(x**2 + 2*x*y + y**2) + 1
```

```python
>>> expand(f)
```

```python
x**3 + 2*x**2*y + x*y**2 + 1
```

```python
sympy.core.traversal.walk(e, *target)
```

Iterate through the args that are the given types (target) and return a list of the args that were traversed; arguments that are not of the specified types are not traversed.

Examples

```python
>>> from sympy.core.traversal import walk
>>> from sympy import Min, Max
```

```python
>>> list(walk(Min(x, Max(y, Min(1, z))), Min))
[Min(x, Max(y, Min(1, z)))]
```

```python
>>> list(walk(Min(x, Max(y, Min(1, z))), Min, Max))
[Min(x, Max(y, Min(1, z))), Max(y, Min(1, z)), Min(1, z)]
```

See also:

`bottom_up` (page 1124)
**Discrete**

The discrete module in SymPy implements methods to compute discrete transforms and convolutions of finite sequences. This module contains functions which operate on discrete sequences.

**Transforms** - `fft`, `ifft`, `ntt`, `intt`, `fwht`, `ifwht`, `mobius_transform`, `inverse_mobius_transform`

**Convolutions** - `convolution`, `convolution_fft`, `convolution_ntt`, `convolution_fwht`, `convolution_subset`, `covering_product`, `intersecting_product`

Since the discrete transforms can be used to reduce the computational complexity of the discrete convolutions, the convolutions module makes use of the transforms module for efficient computation (notable for long input sequences).

**Transforms**

This section lists the methods which implement the basic transforms for discrete sequences.

**Fast Fourier Transform**

```python
def fft(seq, dps=None):
 # Perform the Discrete Fourier Transform (DFT) in the complex domain.
 # The sequence is automatically padded to the right with zeros, as the radix-2 FFT requires
 # the number of sample points to be a power of 2.
 # This method should be used with default arguments only for short sequences as the
 # complexity of expressions increases with the size of the sequence.
 #
 # Parameters
 # seq : iterable
 # The sequence on which DFT is to be applied.
 #
 # dps : Integer
 # Specifies the number of decimal digits for precision.
```

**Examples**

```python
>>> from sympy import fft, ifft

>>> fft([1, 2, 3, 4])
[10, -2 - 2*I, -2, -2 + 2*I]
>>> ifft(_)
[1, 2, 3, 4]

>>> ifft([1, 2, 3, 4])
[5/2, -1/2 + I/2, -1/2, -1/2 - I/2]
>>> fft(_)
[1, 2, 3, 4]
```
>>> ifft([1, 7, 3, 4], dps=15)
[3.75, -0.5 - 0.75*I, -1.75, -0.5 + 0.75*I]
>>> fft(_)
[1.0, 7.0, 3.0, 4.0]

References

[R169], [R170]
sympy.discrete.transforms.ifft(seq, dps=None)
Performsthe Discrete Fourier Transform (DFT) in the complex domain.
The sequence is automatically padded to the right with zeros, as the radix-2 FFT requires
the number of sample points to be a power of 2.
This method should be used with default arguments only for short sequences as the
complexity of expressions increases with the size of the sequence.

Parameters

seq : iterable
The sequence on which DFT is to be applied.
dps : Integer
Specifiesthenumberofdecimaldigitsforprecision.

Examples

>>> from sympy import fft, ifft

>>> fft([1, 2, 3, 4])
[10, -2 - 2*I, -2, -2 + 2*I]
>>> ifft(_)
[1, 2, 3, 4]

>>> ifft([1, 2, 3, 4])
[5/2, -1/2 + I/2, -1/2, -1/2 - I/2]
>>> fft(_)
[1, 2, 3, 4]

>>> ifft([1, 7, 3, 4], dps=15)
[3.75, -0.5 - 0.75*I, -1.75, -0.5 + 0.75*I]
>>> fft(_)
[1.0, 7.0, 3.0, 4.0]
References

[R171], [R172]

Number Theoretic Transform

sympy.discrete.transforms.ntt(seq, prime)

Performs the Number Theoretic Transform (NTT), which specializes the Discrete Fourier Transform (DFT) over quotient ring \( \mathbb{Z}/p\mathbb{Z} \) for prime \( p \) instead of complex numbers \( C \).

The sequence is automatically padded to the right with zeros, as the \( \text{radix-2 NTT} \) requires the number of sample points to be a power of 2.

Parameters

seq : iterable

The sequence on which DFT is to be applied.

prime : Integer

Prime modulus of the form \((m^{2^k} + 1)\) to be used for performing NTT on the sequence.

Examples

```python
>>> from sympy import ntt, intt
>>> ntt([1, 2, 3, 4], prime=3*2**8 + 1)
[10, 643, 767, 122]
>>> intt(_, 3*2**8 + 1)
[1, 2, 3, 4]
>>> intt([1, 2, 3, 4], prime=3*2**8 + 1)
[387, 415, 384, 353]
>>> ntt(_, prime=3*2**8 + 1)
[1, 2, 3, 4]
```

References

[R173], [R174], [R175]

sympy.discrete.transforms.intt(seq, prime)

Performs the Number Theoretic Transform (NTT), which specializes the Discrete Fourier Transform (DFT) over quotient ring \( \mathbb{Z}/p\mathbb{Z} \) for prime \( p \) instead of complex numbers \( C \).

The sequence is automatically padded to the right with zeros, as the \( \text{radix-2 NTT} \) requires the number of sample points to be a power of 2.

Parameters

seq : iterable

The sequence on which DFT is to be applied.

prime : Integer

Prime modulus of the form \((m^{2^k} + 1)\) to be used for performing NTT on the sequence.
Examples

```python
>>> from sympy import ntt, intt
>>> ntt([1, 2, 3, 4], prime=3*2**8 + 1)
[10, 643, 767, 122]
>>> intt(_, 3*2**8 + 1)
[1, 2, 3, 4]
>>> intt([1, 2, 3, 4], prime=3*2**8 + 1)
[387, 415, 384, 353]
>>> ntt(_, prime=3*2**8 + 1)
[1, 2, 3, 4]
```

References

[R176], [R177], [R178]

Fast Walsh Hadamard Transform

`sympy.discrete.transforms.fwht(seq)`

Performs the Walsh Hadamard Transform (WHT), and uses Hadamard ordering for the sequence.

The sequence is automatically padded to the right with zeros, as the radix-2 FWHT requires the number of sample points to be a power of 2.

Parameters

- `seq`: iterable

  The sequence on which WHT is to be applied.

Examples

```python
>>> from sympy import fwh, ifwht
>>> fwh([4, 2, 2, 0, 0, 2, -2, 0])
[8, 0, 8, 0, 8, 0, 0, 0]
>>> ifwht(_)
[4, 2, 2, 0, 0, 2, -2, 0]

>>> ifwht([19, -1, 11, -9, -7, 13, -15, 5])
[2, 0, 4, 0, 3, 10, 0, 0]
>>> fwh(_)
[19, -1, 11, -9, -7, 13, -15, 5]
```
SymPy Documentation, Release 1.12.1

References

[R179], [R180]

sympy.discrete.transforms.ifwht(seq)
PerformstheWalshHadamardTransform(WHT), and uses Hadamard ordering for the sequence.
The sequence is automatically padded to the right with zeros, as the radix-2 FWHT requires the number of sample points to be a power of 2.

Parameters

seq : iterable
The sequence on which WHT is to be applied.

Examples

```python
>>> from sympy import fwhit, ifwht
>>> fwhit([4, 2, 2, 0, 2, -2, 0])
[8, 0, 8, 0, 8, 8, 0, 0]
>>> ifwht(_)
[4, 2, 2, 0, 0, 2, -2, 0]
```

```python
>>> ifwht([19, -1, 11, -9, -7, 13, -15, 5])
[2, 0, 4, 0, 3, 10, 0, 0]
>>> fwhit(_)
[19, -1, 11, -9, -7, 13, -15, 5]
```

References

[R181], [R182]

Möbius Transform

sympy.discrete.transforms.mobius_transform(seq, subset=True)
PerformstheMobiusTransformforsubsetlatticewithindicesofsequenceasbitmasks.
The indices of each argument, considered as bit strings, correspond to subsets of a finite set.
The sequence is automatically padded to the right with zeros, as the definition of subset/superset based on bitmasks (indices) requires the size of sequence to be a power of 2.

Parameters

seq : iterable
The sequence on which Mobius Transform is to be applied.

subset : bool
Specifies if Mobius Transform is applied by enumerating subsets or supersets of the given set.
Examples

```python
>>> from sympy import symbols
>>> from sympy import mobius_transform, inverse_mobius_transform
>>> x, y, z = symbols('x y z')

>>> mobius_transform([x, y, z])
[x, x + y, x + z, x + y + z]

>>> inverse_mobius_transform(_)
[x, y, z, 0]

>>> mobius_transform([x, y, z], subset=False)
[x + y + z, y, z, 0]

>>> inverse_mobius_transform(_, subset=False)
[x, y, z, 0]

>>> mobius_transform([1, 2, 3, 4])
[1, 3, 4, 10]

>>> inverse_mobius_transform(_)
[1, 2, 3, 4]

>>> mobius_transform([1, 2, 3, 4], subset=False)
[10, 6, 7, 4]

>>> inverse_mobius_transform(_, subset=False)
[1, 2, 3, 4]
```

References

[R183], [R184], [R185]

`sympy.discrete.transforms.inverse_mobius_transform(seq, subset=True)`

Performs the Mobius Transform for subset lattice with indices of sequence as bitmasks. The indices of each argument, considered as bit strings, correspond to subsets of a finite set. The sequence is automatically padded to the right with zeros, as the definition of subset/superset based on bitmasks (indices) requires the size of sequence to be a power of 2.

**Parameters**

- **seq**: iterable
  The sequence on which Mobius Transform is to be applied.

- **subset**: bool
  Specifies if Mobius Transform is applied by enumerating subsets or superset of the given set.
Examples

```python
>>> from sympy import symbols
>>> from sympy import mobius_transform, inverse_mobius_transform
>>> x, y, z = symbols('x y z')

>>> mobius_transform([x, y, z])
[x, x + y, x + z, x + y + z]
>>> inverse_mobius_transform(_)
[x, y, z, 0]

>>> mobius_transform([x, y, z], subset=False)
[x + y + z, y, z, 0]
>>> inverse_mobius_transform(_, subset=False)
[x, y, z, 0]

>>> mobius_transform([1, 2, 3, 4])
[1, 3, 4, 10]
>>> inverse_mobius_transform(_)
[1, 2, 3, 4]
>>> mobius_transform([1, 2, 3, 4], subset=False)
[10, 6, 7, 4]
>>> inverse_mobius_transform(_, subset=False)
[1, 2, 3, 4]
```

References

[R186], [R187], [R188]

Convolutions

This section lists the methods which implement the basic convolutions for discrete sequences.

Convolution

This is a general method for calculating the convolution of discrete sequences, which internally calls one of the methods convolution_fft, convolution_ntt, convolution_fwht, or convolution_subset.

```python
sympy.discrete.convolutions.convolutions.convolution(a, b, cycle=0, dps=None, prime=None, dyadic=None, subset=None)
```

Performs convolution by determining the type of desired convolution using hints.

Exactly one of dps, prime, dyadic, subset arguments should be specified explicitly for identifying the type of convolution, and the argument cycle can be specified optionally.

For the default arguments, linear convolution is performed using FFT.

Parameters
- `a, b`: iterables
The sequences for which convolution is performed.

**cycle** : Integer
Specifies the length for doing cyclic convolution.

**dps** : Integer
Specifies the number of decimal digits for precision for performing FFT on the sequence.

**prime** : Integer
Prime modulus of the form \((m^{2^k} + 1)\) to be used for performing NTT on the sequence.

**dyadic** : bool
Identifies the convolution type as dyadic (bitwise-XOR) convolution, which is performed using FWHIT.

**subset** : bool
Identifies the convolution type as subset convolution.

**Examples**

```python
>>> from sympy import convolution, symbols, S, I
>>> u, v, w, x, y, z = symbols('u v w x y z')

>>> convolution([1 + 2*I, 4 + 3*I], [S(5)/4, 6], dps=3)
[1.25 + 2.5*I, 11.0 + 15.8*I, 24.0 + 18.0*I]

>>> convolution([1, 2, 3], [4, 5, 6], cycle=3)
[31, 31, 28]

>>> convolution([111, 777], [888, 444], prime=19*2**10 + 1)
[1283, 19351, 14219]

>>> convolution([111, 777], [888, 444], prime=19*2**10 + 1, cycle=2)
[15502, 19351]

>>> convolution([u, v], [x, y, z], dyadic=True)
[u*x + v*y, u*y + v*x, u*z, v*z]

>>> convolution([u, v], [x, y, z], dyadic=True, cycle=2)
[u*x + u*z + v*y, u*y + v*x + v*z]

>>> convolution([u, v, w], [x, y, z], subset=True)
[u*x, u*y + v*x, u*z + w*x, v*z + w*y]

>>> convolution([u, v, w], [x, y, z], subset=True, cycle=3)
[u*x + v*z + w*y, u*y + v*x, u*z + w*x]
```
Convolution using Fast Fourier Transform

\texttt{sympy.discrete.convolutions.convolution\_fft(a, b, dps=None)}

Performs linear convolution using Fast Fourier Transform.

\textbf{Parameters}
\begin{itemize}
  \item \texttt{a, b} : iterables
    The sequences for which convolution is performed.
  \item \texttt{dps} : Integer
    Specifies the number of decimal digits for precision.
\end{itemize}

\textbf{Examples}

\begin{verbatim}
>>> from sympy import S, I
>>> from sympy.discrete.convolutions import convolution_fft

>>> convolution_fft([2, 3], [4, 5])
[8, 22, 15]
>>> convolution_fft([2, 5], [6, 7, 3])
[12, 44, 41, 15]
>>> convolution_fft([1 + 2*I, 4 + 3*I], [S(5)/4, 6])
[5/4 + 5*I/2, 11 + 63*I/4, 24 + 18*I]
\end{verbatim}

\textbf{References}

[R189], [R190]

Convolution using Number Theoretic Transform

\texttt{sympy.discrete.convolutions.convolution\_ntt(a, b, prime)}

Performs linear convolution using Number Theoretic Transform.

\textbf{Parameters}
\begin{itemize}
  \item \texttt{a, b} : iterables
    The sequences for which convolution is performed.
  \item \texttt{prime} : Integer
    Prime modulus of the form \((m^{2^k} + 1)\) to be used for performing NTT
    on the sequence.
\end{itemize}
Examples

```python
>>> from sympy.discrete.convolutions import convolution_ntt
>>> convolution_ntt([2, 3], [4, 5], prime=19*2**10 + 1)
[8, 22, 15]
>>> convolution_ntt([2, 5], [6, 7, 3], prime=19*2**10 + 1)
[12, 44, 41, 15]
>>> convolution_ntt([333, 555], [222, 666], prime=19*2**10 + 1)
[15555, 14219, 19404]
```

References

[R191], [R192]

Convolution using Fast Walsh Hadamard Transform

```python
sympy.discrete.convolutions.convolution_fwht(a, b)
```

Performs dyadic (bitwise-XOR) convolution using Fast Walsh Hadamard Transform.

The convolution is automatically padded to the right with zeros, as the radix-2 FWHT requires the number of sample points to be a power of 2.

**Parameters**

- `a, b` : iterables

  The sequences for which convolution is performed.

Examples

```python
>>> from sympy import symbols, S, I
>>> from sympy.discrete.convolutions import convolution_fwht
```

```python
>>> u, v, x, y = symbols('u v x y')
>>> convolution_fwht([u, v], [x, y])
[u*x + v*y, u*y + v*x]
```

```python
>>> convolution_fwht([2, 3], [4, 5])
[23, 22]
>>> convolution_fwht([2, 5 + 4*I, 7], [6*I, 7, 3 + 4*I])
[56 + 68*I, -10 + 30*I, 6 + 50*I, 48 + 32*I]
```

```python
>>> convolution_fwht([S(33)/7, S(55)/6, S(7)/4], [S(2)/3, 5])
[2057/42, 1870/63, 7/6, 35/4]
```
Subset Convolution

```
sympy.discrete.convolutions.convolution_subset(a, b)
```

Performs Subset Convolution of given sequences.

The indices of each argument, considered as bit strings, correspond to subsets of a finite set.

The sequence is automatically padded to the right with zeros, as the definition of subset based on bitmasks (indices) requires the size of sequence to be a power of 2.

**Parameters**

- `a, b`: iterables
  
  The sequences for which convolution is performed.

**Examples**

```
>>> from sympy import symbols, S
>>> from sympy.discrete.convolutions import convolution_subset
>>> u, v, x, y, z = symbols('u v x y z')

>>> convolution_subset([u, v], [x, y])
[u*x, u*y + v*x]

>>> convolution_subset([u, v, x], [y, z])
[u*y, u*z + v*y, x*y, x*z]

>>> convolution_subset([1, S(2)/3], [3, 4])
[3, 6]

>>> convolution_subset([1, 3, S(5)/7], [7])
[7, 21, 5, 0]
```

**References**

[R193], [R194]

Covering Product

```
sympy.discrete.convolutions.covering_product(a, b)
```

Returns the covering product of given sequences.

The indices of each argument, considered as bit strings, correspond to subsets of a finite set.

The covering product of given sequences is a sequence which contains the sum of products of the elements of the given sequences grouped by the bitwise-OR of the corresponding indices.
The sequence is automatically padded to the right with zeros, as the definition of subset based on bitmasks (indices) requires the size of sequence to be a power of 2.

**Parameters**

\[a, b\] : iterables

The sequences for which covering product is to be obtained.

**Examples**

```python
>>> from sympy import symbols, S, I, covering_product
>>> u, v, x, y, z = symbols('u v x y z')

>>> covering_product([u, v], [x, y])
[u*x, u*y + v*x + v*y]

>>> covering_product([u, v, x], [y, z])
[u*y, u*z + v*y + v*z, x*y, x*z]

>>> covering_product([1, S(2)/3], [3, 4 + 5*I])
[3, 26/3 + 25*I/3]

>>> covering_product([1, 3, S(5)/7], [7, 8])
[7, 53, 5, 40/7]
```

**References**

[R196]

### Intersecting Product

sympy.discrete.convolutions\.__intersecting_product\(a, b\)

Returns the intersecting product of given sequences.

The indices of each argument, considered as bit strings, correspond to subsets of a finite set.

The intersecting product of given sequences is the sequence which contains the sum of products of the elements of the given sequences grouped by the bitwise-AND of the corresponding indices.

The sequence is automatically padded to the right with zeros, as the definition of subset based on bitmasks (indices) requires the size of sequence to be a power of 2.

**Parameters**

\[a, b\] : iterables

The sequences for which intersecting product is to be obtained.
Examples

```python
>>> from sympy import symbols, S, I, intersecting_product
>>> u, v, x, y, z = symbols('u v x y z')

>>> intersecting_product([u, v], [x, y])
[u*x + u*y + v*x, v*y]

>>> intersecting_product([u, v, x], [y, z])
[u*y + u*z + v*y + x*y + x*z, v*z, 0, 0]

>>> intersecting_product([1, S(2)/3], [3, 4 + 5*I])
[9 + 5*I, 8/3 + 10*I/3]

>>> intersecting_product([1, 3, S(5)/7], [7, 8])
[327/7, 24, 0, 0]
```

References

[R197]

Numerical Evaluation

Basics

Exact SymPy expressions can be converted to floating-point approximations (decimal numbers) using either the .evalf() method or the N() function. N(expr, <args>) is equivalent to sympify(expr).evalf(<args>).

```python
>>> from sympy import *

>>> N(sqrt(2)*pi)
4.44288293815837

>>> (sqrt(2)*pi).evalf()
4.44288293815837
```

By default, numerical evaluation is performed to an accuracy of 15 decimal digits. You can optionally pass a desired accuracy (which should be a positive integer) as an argument to evalf or N:

```python
>>> N(sqrt(2)*pi, 5)
4.4429

>>> N(sqrt(2)*pi, 50)
4.4428829385185576441794882829564277581138933281738
```

Complex numbers are supported:

```python
>>> N(1/(pi + I), 20)
0.289025482222362421 - 0.09199668350375232456*I
```

If the expression contains symbols or for some other reason cannot be evaluated numerically, calling .evalf() or N() returns the original expression, or in some cases a partially evaluated expression. For example, when the expression is a polynomial in expanded form, the coefficients are evaluated:
You can also use the standard Python functions \texttt{float()}, \texttt{complex()} to convert SymPy expressions to regular Python numbers:

\begin{verbatim}
>>> float(pi)
3.1415926535...

>>> complex(pi+E*I)
(3.1415926535...+2.7182818284...j)
\end{verbatim}

If these functions are used, failure to evaluate the expression to an explicit number (for example if the expression contains symbols) will raise an exception.

There is essentially no upper precision limit. The following command, for example, computes the first 100,000 digits of $\pi/e$:

\begin{verbatim}
>>> N(pi/E, 10**6)
...
\end{verbatim}

This shows digits 999,951 through 1,000,000 of $\pi$:

\begin{verbatim}
>>> str(N(pi, 10**6))[-50:]
'95678796130331164628399634646042209010610577945815'
\end{verbatim}

High-precision calculations can be slow. It is recommended (but entirely optional) to install gmpy (https://github.com/aleaxit/gmpy), which will significantly speed up computations such as the one above.

**Floating-point numbers**

Floating-point numbers in SymPy are instances of the class \texttt{Float}. A \texttt{Float} can be created with a custom precision as second argument:

\begin{verbatim}
>>> Float(0.1)
0.100000000000000

>>> Float(0.1, 10)
0.1000000000

>>> Float(0.125, 30)
0.12500000000000000000000000000000000000

>>> Float(0.1, 30)
0.100000000000000005551115123126
\end{verbatim}

As the last example shows, some Python floats are only accurate to about 15 digits as inputs, while others (those that have a denominator that is a power of 2, like $0.125 = 1/8$) are exact. To create a \texttt{Float} from a high-precision decimal number, it is better to pass a string, \texttt{Rational}, or \texttt{evalf} a \texttt{Rational}:

\begin{verbatim}
>>> Float('0.1', 30)
0.10000000000000000000000000000000000000

>>> Float(Rational(1, 10), 30)
0.10000000000000000000000000000000000000
\end{verbatim}
Rational(1, 10).evalf(30)
0.100000000000000000000000000000

The precision of a number determines 1) the precision to use when performing arithmetic with the number, and 2) the number of digits to display when printing the number. When two numbers with different precision are used together in an arithmetic operation, the higher of the precisions is used for the result. The product of 0.1 +/- 0.001 and 3.1415 +/- 0.0001 has an uncertainty of about 0.003 and yet 5 digits of precision are shown.

Float(0.1, 3)*Float(3.1415, 5)
0.31417

So the displayed precision should not be used as a model of error propagation or significance arithmetic; rather, this scheme is employed to ensure stability of numerical algorithms.

N and evalf can be used to change the precision of existing floating-point numbers:

Accuracy and error handling

When the input to N or evalf is a complicated expression, numerical error propagation becomes a concern. As an example, consider the 100'th Fibonacci number and the excellent (but not exact) approximation \( \phi^{100}/\sqrt{5} \) where \( \phi \) is the golden ratio. With ordinary floating-point arithmetic, subtracting these numbers from each other erroneously results in a complete cancellation:

a, b = GoldenRatio**100/sqrt(5), fibonacci(1000)
float(a)
4.3465576869e+208
float(b)
4.3465576869e+208
float(a) - float(b)
0.0

N and evalf keep track of errors and automatically increase the precision used internally in order to obtain a correct result:

N(fibonacci(100) - GoldenRatio**100/sqrt(5))
-5.64613129282185e-22

Unfortunately, numerical evaluation cannot tell an expression that is exactly zero apart from one that is merely very small. The working precision is therefore capped, by default to around 100 digits. If we try with the 1000'th Fibonacci number, the following happens:

N(fibonacci(1000) - (GoldenRatio)**1000/sqrt(5))
0.e+85
The lack of digits in the returned number indicates that \( N \) failed to achieve full accuracy. The result indicates that the magnitude of the expression is something less than \( 10^{84} \), but that is not a particularly good answer. To force a higher working precision, the \( \text{maxn} \) keyword argument can be used:

```
>>> N(fibonacci(1000) - (GoldenRatio)**1000/sqrt(5), maxn=500)
-4.60123853010113e-210
```

Normally, \( \text{maxn} \) can be set very high (thousands of digits), but be aware that this may cause significant slowdown in extreme cases. Alternatively, the \( \text{strict=True} \) option can be set to force an exception instead of silently returning a value with less than the requested accuracy:

```
>>> N(fibonacci(1000) - (GoldenRatio)**1000/sqrt(5), strict=True)
Traceback (most recent call last):
 ...
PrecisionExhausted: Failed to distinguish the expression:
-\sqrt{5}*GoldenRatio**1000/5 + ...
 -434665576869374564356885276758025646605173717804024817290895365541794905189040387...

from zero. Try simplifying the input, using \(\text{chop=True} \), or providing a higher \(\text{maxn} \) for \(\text{evalf} \)
```

If we add a term so that the Fibonacci approximation becomes exact (the full form of Binet’s formula), we get an expression that is exactly zero, but \( N \) does not know this:

```
>>> f = fibonacci(100) - (GoldenRatio**100 - (GoldenRatio - 1)**100)/sqrt(5)
>>> N(f)
0.e-104
>>> N(f, maxn=1000)
0.e-1336
```

In situations where such cancellations are known to occur, the \( \text{chop} \) options is useful. This basically replaces very small numbers in the real or imaginary portions of a number with exact zeros:

```
>>> N(f, chop=True)
0
```

```
>>> N(3 + I*f, chop=True)
3.00000000000000
```

In situations where you wish to remove meaningless digits, re-evaluation or the use of the \( \text{round} \) method are useful:

```
>>> Float('1.', '')*Float('1.2345', '')
0.012297
>>> ans = _
>>> N(ans, 1)
0.01
>>> ans.round(2)
0.01
```

If you are dealing with a numeric expression that contains no floats, it can be evaluated to arbitrary precision. To round the result relative to a given decimal, the \( \text{round} \) method is useful:
Sums and integrals

Sums (in particular, infinite series) and integrals can be used like regular closed-form expressions, and support arbitrary-precision evaluation:

```python
>>> var('n x')
(n, x)
>>> Sum(1/n**n, (n, 1, oo)).evalf()
1.29128599706266
>>> Integral(x**(-x), (x, 0, 1)).evalf()
1.29128599706266
>>> Sum(1/n**n, (n, 1, oo)).evalf(50)
1.291285997062663540407839297800340614319785661292
>>> Integral(x**(-x), (x, 0, 1)).evalf(50)
1.291285997062663540407839297800340614319785661292
>>> (Integral(exp(-x**2), (x, -oo, oo)) ** 2).evalf(30)
3.14159265358979323846264338328
```

By default, the tanh-sinh quadrature algorithm is used to evaluate integrals. This algorithm is very efficient and robust for smooth integrands (and even integrals with endpoint singularities), but may struggle with integrals that are highly oscillatory or have mid-interval discontinuities. In many cases, `evalf/N` will correctly estimate the error. With the following integral, the result is accurate but only good to four digits:

```python
>>> f = abs(sin(x))
>>> Integral(abs(sin(x)), (x, 0, 4)).evalf()
2.346
```

It is better to split this integral into two pieces:

```python
>>> (Integral(f, (x, 0, pi)) + Integral(f, (x, pi, 4))).evalf()
2.34635637913639
```

A similar example is the following oscillatory integral:

```python
>>> Integral(sin(x)/x**2, (x, 1, oo)).evalf(maxn=20)
0.5
```

It can be dealt with much more efficiently by telling `evalf` or `N` to use an oscillatory quadrature algorithm:

```python
>>> Integral(sin(x)/x**2, (x, 1, oo)).evalf(quad='osc')
0.504067061906928
>>> Integral(sin(x)/x**2, (x, 1, oo)).evalf(20, quad='osc')
0.50406706190692837199
```

5.8. Topics
Oscillatory quadrature requires an integrand containing a factor $\cos(ax+b)$ or $\sin(ax+b)$. Note that many other oscillatory integrals can be transformed to this form with a change of variables:

```python
>>> init_printing(use_unicode=False, wrap_line=False)
>>> intgrl = Integral(sin(1/x), (x, 0, 1)).transform(x, 1/x)
>>> intgrl
oo
/ | sin(x) ------- dx
| 2
/ x
1
>>> N(intgrl, quad='osc')
0.504067061906928
```

Infinite series use direct summation if the series converges quickly enough. Otherwise, extrapolation methods (generally the Euler-Maclaurin formula but also Richardson extrapolation) are used to speed up convergence. This allows high-precision evaluation of slowly convergent series:

```python
>>> var('k')
k
>>> Sum(1/k**2, (k, 1, oo)).evalf()
1.64493406684823
>>> zeta(2).evalf()
1.64493406684823
>>> Sum(1/k-log(1+1/k), (k, 1, oo)).evalf()
0.577215664901533
>>> Sum(1/k-log(1+1/k), (k, 1, oo)).evalf(50)
0.5772156649015328606651209008240243104215933593992
>>> EulerGamma.evalf(50)
0.5772156649015328606651209008240243104215933593992
```

The Euler-Maclaurin formula is also used for finite series, allowing them to be approximated quickly without evaluating all terms:

```python
>>> Sum(1/k, (k, 1000000, 2000000)).evalf()
0.693147255559946
```

Note that `evalf` makes some assumptions that are not always optimal. For fine-tuned control over numerical summation, it might be worthwhile to manually use the method `Sum.euler_maclaurin`.

Special optimizations are used for rational hypergeometric series (where the term is a product of polynomials, powers, factorials, binomial coefficients and the like). `N/evalf` sum series of this type very rapidly to high precision. For example, this Ramanujan formula for pi can be summed to 10,000 digits in a fraction of a second with a simple command:

```python
>>> f = factorial
>>> n = Symbol('n', integer=True)
```
Numerical simplification

The function `nsimplify` attempts to find a formula that is numerically equal to the given input. This feature can be used to guess an exact formula for an approximate floating-point input, or to guess a simpler formula for a complicated symbolic input. The algorithm used by `nsimplify` is capable of identifying simple fractions, simple algebraic expressions, linear combinations of given constants, and certain elementary functional transformations of any of the preceding.

Optionally, `nsimplify` can be passed a list of constants to include (e.g. `pi`) and a minimum numerical tolerance. Here are some elementary examples:

>>> nsimplify(0.1)
1/10

>>> nsimplify(6.28, [pi], tolerance=0.01)
2*pi

>>> nsimplify(pi, tolerance=0.01)
22/7

>>> nsimplify(pi, tolerance=0.001)
355

---

113

>>> nsimplify(0.33333, tolerance=1e-4)
1/3

>>> nsimplify(2.0**(1/3.), tolerance=0.001)
635

---

504

>>> nsimplify(2.0**(1/3.), tolerance=0.001, full=True)
3

\sqrt{2}

Here are several more advanced examples:

>>> nsimplify(Float('0.130198866629986772369127970337', 30), [pi, E])
1

-------
5*pi

---- + 2*e
7

>>> nsimplify(cos(atan('1/3')))

(continues on next page)
3*\ / 10
---
10

```python
>>> nsimplify(4/(1+sqrt(5)), [GoldenRatio])
-2 + 2*GoldenRatio
```

```python
>>> nsimplify(2 + exp(2*atan('1/4')*I))
49 8*I
-- + ---
17 17
```

```python
>>> nsimplify((1/(exp(3*pi*I/5)+1))
```

```
1 / \ 5 1
--- I* / ------ + -
2 \ / 10 4
```

```python
>>> nsimplify(I**I, [pi])
-pi

2
e
```

```python
>>> n = Symbol('n')
```

```python
>>> nsimplify(Sum(1/n**2, (n, 1, oo)), [pi])
2
pi

6
```

```python
>>> nsimplify(gamma('1/4')*gamma('3/4'), [pi])
\sqrt{2}*pi
```

### Numeric Computation

Symbolic computer algebra systems like SymPy facilitate the construction and manipulation of mathematical expressions. Unfortunately when it comes time to evaluate these expressions on numerical data, symbolic systems often have poor performance.

Fortunately SymPy offers a number of easy-to-use hooks into other numeric systems, allowing you to create mathematical expressions in SymPy and then ship them off to the numeric system of your choice. This page documents many of the options available including the math library, the popular array computing package numpy, code generation in Fortran or C, and the use of the array compiler Aesara.
Subs/evalf

Subs is the slowest but simplest option. It runs at SymPy speeds. The \( \text{.subs(...).evalf()} \) method can substitute a numeric value for a symbolic one and then evaluate the result within SymPy.

```python
>>> from sympy import *
>>> from sympy.abc import x
>>> expr = sin(x)/x
>>> expr.evalf(subs={x: 3.14})
0.000507214304613640
```

This method is slow. You should use this method production only if performance is not an issue. You can expect \( \text{.subs} \) to take tens of microseconds. It can be useful while prototyping or if you just want to see a value once.

Lambdify

The \( \text{lambdify} \) function translates SymPy expressions into Python functions, leveraging a variety of numerical libraries. It is used as follows:

```python
>>> from sympy import *
>>> from sympy.abc import x
>>> expr = sin(x)/x
>>> f = lambdify(x, expr)
>>> f(3.14)
0.000507214304614
```

Here lambdify makes a function that computes \( f(x) = \sin(x)/x \). By default lambdify relies on implementations in the \text{math} standard library. This numerical evaluation takes on the order of hundreds of nanoseconds, roughly two orders of magnitude faster than the \( \text{.subs} \) method. This is the speed difference between SymPy and raw Python.

Lambdify can leverage a variety of numerical backends. By default it uses the \text{math} library. However it also supports mpmath and most notably, \text{numpy}. Using the \text{numpy} library gives the generated function access to powerful vectorized ufuncs that are backed by compiled C code.

```python
>>> from sympy import *
>>> from sympy.abc import x
>>> expr = sin(x)/x
>>> f = lambdify(x, expr, "numpy")

>>> import numpy
>>> data = numpy.linspace(1, 10, 10000)
>>> f(data)
[0.84147098 0.84119981 0.84092844 ... -0.05426074 -0.05433146 -0.05440211]
```

If you have array-based data this can confer a considerable speedup, on the order of 10 nanoseconds per element. Unfortunately \text{numpy} incurs some start-up time and introduces an overhead of a few microseconds.

CuPy is a NumPy-compatible array library that mainly runs on CUDA, but has increasing support for other GPU manufacturers. It can in many cases be used as a drop-in replacement.
for numpy.

```python
>>> f = lambdify(x, expr, "cupy")
>>> import cupy as cp
>>> data = cp.linspace(1, 10, 10000)
>>> y = f(data) # perform the computation
>>> cp.asnumpy(y) # explicitly copy from GPU to CPU / numpy array
[0.84147098 0.84119981 0.84092844 ... -0.05426074 -0.05433146
 -0.05440211]
```

JAX is a similar alternative to CuPy that provides GPU and TPU acceleration via just-in-time compilation to XLA. It too, can in some cases, be used as a drop-in replacement for numpy.

```python
>>> f = lambdify(x, expr, "jax")
>>> import jax.numpy as jnp
>>> data = jnp.linspace(1, 10, 10000)
>>> y = f(data) # perform the computation
>>> numpy.asarray(y) # explicitly copy to CPU / numpy array
array([0.84147096, 0.8411998 , 0.84092844, ..., -0.05426079,
 -0.05433151, -0.05440211], dtype=float32)
```

### uFuncify

The autowrap module contains methods that help in efficient computation.

- **autowrap** (page 1159) method for compiling code generated by the `codegen` (page 1153) module, and wrap the binary for use in python.
- **binary_function** (page 1160) method automates the steps needed to autowrap the SymPy expression and attaching it to a Function object with `implemented_function()`.
- **ufuncify** (page 1160) generates a binary function that supports broadcasting on numpy arrays using different backends that are faster as compared to `subs/evalf` and `lambdify`.

The API reference of all the above is listed here: `sympy.utilities.autowrap()` (page 2110).

### Aesara

SymPy has a strong connection with Aesara, a mathematical array compiler. SymPy expressions can be easily translated to Aesara graphs and then compiled using the Aesara compiler chain.

```python
>>> from sympy import *
>>> from sympy.abc import x
>>> expr = sin(x)/x

>>> from sympy.printing.aesaracode import aesara_function
>>> f = aesara_function([x], [expr])
```

If array broadcasting or types are desired then Aesara requires this extra information
Aesara has a more sophisticated code generation system than SymPy’s C/Fortran code printers. Among other things it handles common sub-expressions and compilation onto the GPU. Aesara also supports SymPy Matrix and Matrix Expression objects.

**So Which Should I Use?**

The options here were listed in order from slowest and least dependencies to fastest and most dependencies. For example, if you have Aesara installed then that will often be the best choice. If you don’t have Aesara but do have f2py then you should use ufuncify. If you have been comfortable using lambdify with the numpymodule, but have a GPU, CuPy and JAX can provide substantial speedups with little effort.

<table>
<thead>
<tr>
<th>Tool</th>
<th>Speed</th>
<th>Qualities</th>
<th>Dependencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>subs/evalf</td>
<td>50us</td>
<td>Simple</td>
<td>None</td>
</tr>
<tr>
<td>lambdify</td>
<td>1us</td>
<td>Scalar functions</td>
<td>math</td>
</tr>
<tr>
<td>lambdify-numpy</td>
<td>10ns</td>
<td>Vector functions</td>
<td>numpy</td>
</tr>
<tr>
<td>ufuncify</td>
<td>10ns</td>
<td>Complex vector expressions</td>
<td>f2py, Cython</td>
</tr>
<tr>
<td>lambdify-cupy</td>
<td>10ns</td>
<td>Vector functions on GPUs</td>
<td>cupy</td>
</tr>
<tr>
<td>lambdify-jax</td>
<td>10ns</td>
<td>Many outputs, CSE, GPUs</td>
<td>jax</td>
</tr>
<tr>
<td>Aesara</td>
<td>10ns</td>
<td>Many outputs, CSE, GPUs</td>
<td>Aesara</td>
</tr>
</tbody>
</table>

**Term Rewriting**

Term rewriting is a very general class of functionalities which are used to convert expressions of one type in terms of expressions of different kind. For example expanding, combining and converting expressions apply to term rewriting, and also simplification routines can be included here. Currently SymPy has several functions and basic built-in methods for performing various types of rewriting.

**Expanding**

The simplest rewrite rule is expanding expressions into a _sparse_ form. Expanding has several flavors and include expanding complex valued expressions, arithmetic expand of products and powers but also expanding functions in terms of more general functions is possible. Below are listed all currently available expand rules.

**Expanding of arithmetic expressions involving products and powers:**

```
>>> from sympy import *
>>> x, y, z = symbols('x,y,z')
>>> ((x + y)*(x - y)).expand(basic=True)

x**2 - y**2

>>> ((x + y + z)**2).expand(basic=True)

x**2 + 2*x*y + 2*x*z + y**2 + 2*y*z + z**2
```
Arithmetic expand is done by default in expand() so the keyword basic can be omitted. However you can set basic=False to avoid this type of expand if you use rules described below. This give complete control on what is done with the expression.

Another type of expand rule is expanding complex valued expressions and putting them into a normal form. For this complex keyword is used. Note that it will always perform arithmetic expand to obtain the desired normal form:

```python
>>> (x + I*y).expand(complex=True)
re(x) + I*re(y) + I*im(x) - im(y)
```

```python
>>> sin(x + I*y).expand(complex=True)
sin(re(x) - im(y))*cosh(re(y) + im(x)) + I*cos(re(x) - im(y))*sinh(re(y) + im(x))
```

Note also that the same behavior can be obtained by using as_real_imag() method. However it will return a tuple containing the real part in the first place and the imaginary part in the other. This can be also done in a two step process by using collect function:

```python
>>> (x + I*y).as_real_imag()
(re(x) - im(y), re(y) + im(x))
```

```python
>>> collect((x + I*y).expand(complex=True), I, evaluate=False)
{1: re(x) - im(y), I: re(y) + im(x)}
```

There is also possibility for expanding expressions in terms of expressions of different kind. This is very general type of expanding and usually you would use rewrite() to do specific type of rewrite:

```python
>>> GoldenRatio.expand(func=True)
1/2 + sqrt(5)/2
```

**Common Subexpression Detection and Collection**

Before evaluating a large expression, it is often useful to identify common subexpressions, collect them and evaluate them at once. This is implemented in the cse function. Examples:

```python
>>> from sympy import cse, sqrt, sin, pprint
>>> from sympy.abc import x

>>> pprint(cse(sqrt(sin(x))), use_unicode=True)
([], [\sqrt{\sin(x)}])

>>> pprint(cse(sqrt(sin(x)+5)*sqrt(sin(x)+4)), use_unicode=True)
([[x_0, \sin(x)]], [\sqrt{x_0 + 4} \cdot \sqrt{x_0 + 5}])

>>> pprint(cse(sqrt(sin(x+1) + 5 + cos(y))*sqrt(sin(x+1) + 4 + cos(y))), use_unicode=True)
([[x_0, \sin(x + 1) + \cos(y)]], [\sqrt{x_0 + 4} \cdot \sqrt{x_0 + 5}])
```

(continues on next page)
>>> pprint(cse((x-y)*(z-y) + sqrt((x-y)*(z-y))), use_unicode=True)

\[
\left\{
\begin{array}{l}
\left(x_0, (x - y) \cdot (-y + z)\right), \\
\left(\sqrt{x_0^2 + x_0}\right)
\end{array}
\right.
\]

Optimizations to be performed before and after common subexpressions elimination can be passed in the optimizations optional argument. A set of predefined basic optimizations can be applied by passing optimizations='basic':

>>> pprint(cse((x-y)*(z-y) + sqrt((x-y)*(z-y)), optimizations='basic'),
          use_unicode=True)

\[
\left\{
\begin{array}{l}
\left(x_0, -(x - y) \cdot (y - z)\right), \\
\left(\sqrt{x_0^2 + x_0}\right)
\end{array}
\right.
\]

However, these optimizations can be very slow for large expressions. Moreover, if speed is a concern, one can pass the option order='none'. Order of terms will then be dependent on hashing algorithm implementation, but speed will be greatly improved.

More information:

sympy.simplify.cse_main.cse(exprs, symbols=None, optimizations=None,
                           postprocess=None, order='canonical', ignore=(),
                           list=True)

Perform common subexpression elimination on an expression.

Parameters

texprs : list of SymPy expressions, or a single SymPy expression

The expressions to reduce.

symbols : infinite iterator yielding unique Symbols

The symbols used to label the common subexpressions which are pulled out. The numbered_symbols generator is useful. The default is a stream of symbols of the form “x0”, “x1”, etc. This must be an infinite iterator.

optimizations : list of (callable, callable) pairs

The (preprocessor, postprocessor) pairs of external optimization functions. Optionally ‘basic’ can be passed for a set of predefined basic optimizations. Such ‘basic’ optimizations were used by default in old implementation, however they can be really slow on larger expressions. Now, no pre or post optimizations are made by default.

postprocess : a function which accepts the two return values of cse and returns the desired form of output from cse, e.g. if you want the replacements reversed the function might be the following lambda: lambda r, e: return reversed(r), e

order : string, ‘none’ or ‘canonical’

The order by which Mul and Add arguments are processed. If set to ‘canonical’, arguments will be canonically ordered. If set to ‘none’, ordering will be faster but dependent on expressions hashes, thus machine dependent and variable. For large expressions where speed is a concern, use the setting order=‘none’.

5.8. Topics
ignore : iterable of Symbols

Substitutions containing any Symbol from ignore will be ignored.

list : bool, (default True)

Returns expression in list or else with same type as input (when False).

Returns

replacements : list of (Symbol, expression) pairs

All of the common subexpressions that were replaced. Subexpressions earlier in this list might show up in subexpressions later in this list.

reduced_exprs : list of SymPy expressions

The reduced expressions with all of the replacements above.

Examples

```python
>>> from sympy import cse, SparseMatrix
>>> from sympy.abc import x, y, z, w
>>> cse(((w + x + y + z)*(w + y + z))/(w + x)**3)
([(x0, y + z), (x1, w + x)], [(w + x0)*(x0 + x1)/x1**3])
```

List of expressions with recursive substitutions:

```python
>>> m = SparseMatrix([[x + y, x + y + z]])
>>> cse([(x+y)**2, x + y + z, y + z, x + z + y, m])
([(x0, x + y), (x1, x0 + z)], [x0**2, x1, y + z, x1, Matrix([x0], [x1])])
```

Note: the type and mutability of input matrices is retained.

```python
>>> isinstance(_[1][-1], SparseMatrix)
True
```

The user may disallow substitutions containing certain symbols:

```python
>>> cse([y**2*(x + 1), 3*y**2*(x + 1)], ignore=(y,))
([(x0, x + 1)], [x0*y**2, 3*x0*y**2])
```

The default return value for the reduced expression(s) is a list, even if there is only one expression. The list flag preserves the type of the input in the output:

```python
>>> cse(x)
([], [x])
>>> cse(x, list=False)
([], x)
```
5.8.2 Code Generation

Contents

Code Generation

Several submodules in SymPy allow one to generate directly compilable and executable code in a variety of different programming languages from SymPy expressions. In addition, there are functions that generate Python importable objects that can evaluate SymPy expressions very efficiently.

We will start with a brief introduction to the components that make up the code generation capabilities of SymPy.

Introduction

There are four main levels of abstractions:

```
expression
 | code printers
 | code generators
 | autowrap
```

`sympy.utilities.autowrap` (page 2110) uses codegen, and codegen uses the code printers. `sympy.utilities.autowrap` (page 2110) does everything: it lets you go from SymPy expression to numerical function in the same Python process in one step. Codegen is actual code generation, i.e., to compile and use later, or to include in some larger project.

The code printers translate the SymPy objects into actual code, like `abs(x) -> fabs(x)` (for C).

The code printers don’t print optimal code in many cases. An example of this is powers in C. `x**2` prints as `pow(x, 2)` instead of `x*x`. Other optimizations (like mathematical simplifications) should happen before the code printers.

Currently, `sympy.simplify.cse_main.cse()` (page 741) is not applied automatically anywhere in this chain. It ideally happens at the codegen level, or somewhere above it.

We will iterate through the levels below.

The following three lines will be used to setup each example:

```
>>> from sympy import *
>>> init_printing(use_unicode=True)
>>> from sympy.abc import a, e, k, n, r, t, x, y, z, T, Z
>>> from sympy.abc import beta, omega, tau
>>> f, g = symbols('f, g', cls=Function)
```
Code printers (sympy.printing)

This is where the meat of code generation is; the translation of SymPy actually more like a lightweight version of codegen for Python, and Python (sympy.printing.pcode.pcode() (page 2251)), and sympy.printing.lambdarepr.lambdarepr() (page 2245), which supports many libraries (like NumPy), and Aesara (sympy.printing.aesaracode.aesara_function() (page 2242)). The code printers are special cases of the other prints in SymPy (str printer, pretty printer, etc.).

An important distinction is that the code printer has to deal with assignments (using the sympy.codegen.ast.Assignment (page 1170) object). This serves as building blocks for the code printers and hence the codegen module. An example that shows the use of Assignment in C code:

```python
>>> from sympy.codegen.ast import Assignment
>>> print(ccode(Assignment(x, y + 1)))
x = y + 1;
```

Here is another simple example of printing a C version of a SymPy expression:

```python
>>> expr = (Rational(-1, 2) * Z * k * (e**2) / r)
>>> ccode(expr)
-1.0/2.0*Z*pow(e, 2)*k/r
>>> from sympy.codegen.ast import real, float80
>>> ccode(expr, assign_to="E", type_aliases={real: float80})
E = -1.0L/2.0L*Z*powl(e, 2)*k/r;
```

To generate code with some math functions provided by e.g. the C99 standard we need to import functions from sympy.codegen.cfunctions (page 1187):

```python
>>> from sympy.codegen.cfunctions import expm1
>>> ccode(expm1(x), standard='C99')
expm1(x)
```

Piecewise expressions are converted into conditionals. If an assign_to variable is provided an if statement is created, otherwise the ternary operator is used. Note that if the Piecewise lacks a default term, represented by (expr, True) then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything. A use case for Piecewise:

```python
>>> expr = Piecewise((x + 1, x > 0), (x, True))
>>> print(fcode(expr, tau))
if (x > 0) then
tau = x + 1
else
 tau = x
end if
```

The various printers also tend to support Indexed objects well. With contract=True these expressions will be turned into loops, whereas contract=False will just print the assignment expression that should be looped over:
Custom printing can be defined for certain types by passing a dictionary of "type": "function" to the user_functions kwarg. Alternatively, the dictionary value can be a list of tuples i.e., [(argument_test, cfunction_string)]. This can be used to call a custom Octave function:

```python
custom_functions = {
 "f": "existing_octave_fcn",
 "g": [(lambda x: x.is_Matrix, "my_mat_fcn"),
 (lambda x: not x.is_Matrix, "my_fcn")]
}
mat = Matrix([[1, x]])
octave_code(f(x) + g(x) + g(mat), user_functions=custom_functions)
```

An example of Mathematica code printer:

```python
x_ = Function('x')
expr = x_((n*T) * sin((t - n*T) / T))
expr = expr / ((-T*n + t) / T)
expr
```

We can go through a common expression in different languages we support and see how it

5.8. Topics 1155
## Codegen (sympy.utilities.codegen)

This module deals with creating compilable code from SymPy expressions. This is lower level than autowrap, as it doesn’t actually attempt to compile the code, but higher level than the printers, as it generates compilable files (including header files), rather than just code snippets.

The user friendly functions, here, are codegen and make_routine. codegen takes a list of (variable, expression) pairs and a language (C, F95, and Octave/Matlab are supported). It returns, as strings, a code file and a header file (for relevant languages). The variables are created as functions that return the value of the expression as output.

**Note:** The codegen callable is not in the sympy namespace automatically, to use it you must first import codegen from sympy.utilities.codegen

For instance:

```python
>>> from sympy.utilities.codegen import codegen
>>> length, breadth, height = symbols('length, breadth, height')
>>> [(c_name, c_code), (h_name, c_header)] = \
... codegen(('volume', length*breadth*height), "C99", "test", \
... header=False, empty=False)
>>> print(c_name)

test.c
```
Various flags to codegen let you modify things. The project name for preprocessor instructions can be varied using project. Variables listed as global variables in arg global_vars will not show up as function arguments.

language is a case-insensitive string that indicates the source code language. Currently, C, F95 and Octave are supported. Octave generates code compatible with both Octave and Matlab.

to_files when True, the code will be written to one or more files with the given prefix.

Here is an example:

```python
>>> [(f_name, f_code), header] = codegen(("volume", length*breadth*height), ...
 ... "F95", header=False, empty=False, argument_sequence=(breadth, length), ...
 ... global_vars=(height,))
>>> print(f_code)
REAL*8 function volume(breadth, length)
implicit none
REAL*8, intent(in) :: breadth
REAL*8, intent(in) :: length
volume = breadth*height*length
end function
```

The method make_routine creates a Routine object, which represents an evaluation routine for a set of expressions. This is only good for internal use by the CodeGen objects, as an intermediate representation from SymPy expression to generated code. It is not recommended to make a Routine object yourself. You should instead use make_routine method. make_routine in turn calls the routine method of the CodeGen object depending upon the language of choice. This creates the internal objects representing assignments and so on, and creates the Routine class with them.

The various codegen objects such as Routine and Variable aren’t SymPy objects (they don’t subclass from Basic).
For example:

```python
>>> from sympy.utilities.codegen import make_routine
>>> from sympy.physics.hydrogen import R_nl
>>> expr = R_nl(3, y, x, 6)
>>> routine = make_routine('my_routine', expr)
[result]
>>> [arg.result_var for arg in routine.results]
[514 234168139771 9428]
>>> [arg.expr for arg in routine.results]
[[y \sqrt{(2 - y)!} -2\cdot x \cdot \text{e}^{\text{assoc_laguerre}(2 - y, 2\cdot y + 1, 4\cdot x)} \sqrt{(y + 3)!}]]
>>> [arg.name for arg in routine.arguments]
[x, y]
```

Another more complicated example with a mixture of specified and automatically-assigned names. Also has Matrix output:

```python
>>> routine = make_routine('fcn', [x*y, Eq(a, 1), Eq(r, x + r), Matrix([[x, 2]])])
>>> [arg.result_var for arg in routine.results]
[result]
>>> [arg.expr for arg in routine.results]
[x\cdot y]
>>> [arg.name for arg in routine.arguments]
[x, y, a, r, out_8598435338784878]
```

We can examine the various arguments more closely:

```python
>>> [a.name for a in routine.arguments if isinstance(a, InputArgument)]
[x, y]
```
Autowrap

Autowrap automatically generates code, writes it to disk, compiles it, and imports it into the current session. Main functions of this module are autowrap, binary_function, and ufuncify.

It also automatically converts expressions containing Indexed objects into summations. The classes IndexedBase, Indexed and Idx represent a matrix element M[i, j]. See Tensor (page 1432) for more on this.

autowrap creates a wrapper using f2py or Cython and creates a numerical function.

**Note:** The autowrap callable is not in the sympy namespace automatically, to use it you must first import autowrap from sympy.utilities.autowrap

The callable returned from autowrap() is a binary Python function, not a SymPy object. For example:

```python
>>> from sympy.utilities.autowrap import autowrap
>>> expr = ((x - y + z)**(13)).expand()
>>> binary_func = autowrap(expr)
>>> binary_func(1, 4, 2)
-1.0
```

The various flags available with autowrap() help to modify the services provided by the method. The argument tempdir tells autowrap to compile the code in a specific directory, and leave the files intact when finished. For instance:

```python
>>> from sympy.utilities.autowrap import autowrap
>>> from sympy.physics.qho_1d import psi_n
>>> x_ = IndexedBase('x')
>>> y_ = IndexedBase('y')
>>> m = symbols('m', integer=True)
>>> i = Idx('i', m)
>>> qho = autowrap(Eq(y_[i], psi_n(0, x_[i], m, omega)), tempdir='/tmp')
```

Checking the Fortran source code in the directory specified reveals this:

```
subroutine autofunc(m, omega, x, y)
implicit none
INTEGER*4, intent(in) :: m
REAL*8, intent(in) :: omega
REAL*8, intent(in), dimension(1:m) :: x
REAL*8, intent(out), dimension(1:m) :: y
INTEGER*4 :: i

REAL*8, parameter :: hbar = 1.05457162d-34
REAL*8, parameter :: pi = 3.14159265358979d0

do i = 1, m
 y(i) = (m*omega)**((1.0d0/4.0d0)*exp(-4.74126166983329d+33*m*omega*x(i &)**2))/(hbar**(1.0d0/4.0d0)*pi**(1.0d0/4.0d0))
end do
```

5.8. Topics

1159
Using the argument args along with it changes argument sequence:

```python
>>> eq = Eq(y[i], psi_n(0, x[i], m, omega))
>>> qho = autowrap(eq, tempdir='~/tmp', args=[y, x, m, omega])
```

yields:

```fortran
subroutine autofunc(y, x, m, omega)
implicit none
INTEGER*4, intent(in) :: m
REAL*8, intent(in) :: omega
REAL*8, intent(out), dimension(1:m) :: y
REAL*8, intent(in), dimension(1:m) :: x
INTEGER*4 :: i

REAL*8, parameter :: hbar = 1.05457162d-34
REAL*8, parameter :: pi = 3.14159265358979d0

do i = 1, m
y(i) = (m*omega)**(1.0d0/4.0d0)*exp(-4.74126166983329d+33*m*omega*x(i &)**2)/(hbar**(1.0d0/4.0d0)*pi**(1.0d0/4.0d0))
end do

end subroutine
```

The argument verbose is boolean, optional and if True, autowrap will not mute the command line backends. This can be helpful for debugging.

The argument language and backend are used to change defaults: Fortran and f2py to C and Cython. The argument helpers is used to define auxiliary expressions needed for the main expression. If the main expression needs to call a specialized function it should be put in the helpers iterable. Autowrap will then make sure that the compiled main expression can link to the helper routine. Items should be tuples with (<function_name>, <sympy_expression>, <arguments>). It is mandatory to supply an argument sequence to helper routines.

Another method available at the autowrap level is binary_function. It returns a sympy function. The advantage is that we can have very fast functions as compared to SymPy speeds. This is because we will be using compiled functions with SymPy attributes and methods. An illustration:

```python
>>> from sympy.utilities.autowrap import binary_function
>>> from sympy.physics.hydrogen import R_nl
>>> psi_nl = R_nl(1, 0, a, r)
>>> f = binary_function('f', psi_nl)
>>> f(a, r).evalf(3, subs={a: 1, r: 2})
0.766
```

While NumPy operations are very efficient for vectorized data but they sometimes incur unnecessary costs when chained together. Consider the following operation

```python
>>> x = get_numpy_array(...)
>>> y = sin(x) / x
```

The operators sin and / call routines that execute tight for loops in C. The resulting computation looks something like this.
```c
for(int i = 0; i < n; i++)
{
 temp[i] = sin(x[i]);
}
for(int i = i; i < n; i++)
{
 y[i] = temp[i] / x[i];
}
```

This is slightly sub-optimal because

1. We allocate an extra temp array
2. We walk over x memory twice when once would have been sufficient

A better solution would fuse both element-wise operations into a single for loop

```c
for(int i = i; i < n; i++)
{
 y[i] = sin(x[i]) / x[i];
}
```

Statically compiled projects like NumPy are unable to take advantage of such optimizations. Fortunately, SymPy is able to generate efficient low-level C or Fortran code. It can then depend on projects like Cython or f2py to compile and reconnect that code back up to Python. Fortunately this process is well automated and a SymPy user wishing to make use of this code generation should call the ufuncify function.

ufuncify is the third method available with Autowrap module. It basically implies ‘Universal functions’ and follows an ideology set by NumPy. The main point of ufuncify as compared to autowrap is that it allows arrays as arguments and can operate in an element-by-element fashion. The core operation done element-wise is in accordance to Numpy’s array broadcasting rules. See this for more.

```python
>>> from sympy import *
>>> from sympy.abc import x
>>> expr = sin(x)/x
```  

```python
>>> from sympy.utilities.autowrap import ufuncify
>>> f = ufuncify([x], expr)
```  

This function f consumes and returns a NumPy array. Generally ufuncify performs at least as well as lambdify. If the expression is complicated then ufuncify often significantly outperforms the NumPy backed solution. Jensen has a good blog post on this topic.

Let us see an example for some quantitative analysis:

```python
>>> from sympy.physics.hydrogen import R_nl
>>> expr = R_nl(3, 1, x, 6)
>>> expr
-2*x
8*x*(4 - 4*x)*e
3
```
The lambdify function translates SymPy expressions into Python functions, leveraging a variety of numerical libraries. By default, lambdify relies on implementations in the math standard library. Naturally, Raw Python is faster than SymPy. However, it also supports mpmath and most notably, numpy. Using the NumPy library gives the generated function access to powerful vectorized ufuncs that are backed by compiled C code.

Let us compare the speeds:

```python
>>> from sympy.utilities.autowrap import ufuncify
>>> from sympy.utilities.lambdify import lambdify
>>> fn_numpy = lambdify(x, expr, 'numpy')
>>> fn_fortran = ufuncify([x], expr, backend='f2py')
>>> from numpy import linspace
>>> xx = linspace(0, 1, 5)
>>> fn_numpy(xx)
array([0. , 1.21306132, 0.98101184, 0.44626032, 0.])
>>> fn_fortran(xx)
array([0. , 1.21306132, 0.98101184, 0.44626032, 0.])
>>> import timeit
>>> timeit.timeit('fn_numpy(xx)', 'from __main__ import fn_numpy, xx', number=10000)
0.18891601900395472
>>> timeit.timeit('fn_fortran(xx)', 'from __main__ import fn_fortran, xx', number=10000)
0.004707066000264604
```

The options available with ufuncify are more or less the same as those available with autowrap.

There are other facilities available with SymPy to do efficient numeric computation. See this (page 1146) page for a comparison among them.

### Classes and functions for rewriting expressions (sympy.codegen.rewriting)

Classes and functions useful for rewriting expressions for optimized code generation. Some languages (or standards thereof), e.g., C99, offer specialized math functions for better performance and/or precision.

Using the optimize function in this module, together with a collection of rules (represented as instances of Optimization), one can rewrite the expressions for this purpose:

```python
>>> from sympy import Symbol, exp, log
>>> from sympy.codegen.rewriting import optimize, optims_c99
>>> x = Symbol('x')
>>> optimize(3*exp(2*x) - 3, optims_c99)
3*expm1(2*x)
>>> optimize(exp(2*x) - 1 - exp(-33), optims_c99)
expm1(2*x) - expm1(33)
>>> optimize(log(3*x + 3), optims_c99)
log1p(x) + log(3)
>>> optimize(log(2*x + 3), optims_c99)
log(2*x + 3)
```

The optims_c99 imported above is tuple containing the following instances (which may be imported from sympy.codegen.rewriting):
```python
>>> from sympy import symbols, exp
>>> from sympy.codegen.rewriting import FuncMinusOneOptim
>>> from sympy.codegen.cfunctions import expm1
>>> x, y = symbols('x y')
>>> expm1_opt = FuncMinusOneOptim(exp, expm1)
>>> expm1_opt(exp(x) + 2*exp(5*y) - 3)
expm1(x) + 2*expm1(5*y)
```

replace_in_Add(e)  
passed as second argument to Basic.replace(...)  

```python
class sympy.codegen.rewriting.Optimization(cost_function=None, priority=1)
Abstract base class for rewriting optimization.
Subclasses should implement __call__ taking an expression as argument.
```
class sympy.codegen.rewriting.ReplaceOptim(query, value, **kwargs)

Rewriting optimization calling replace on expressions.

Parameters
query :
First argument passed to replace.

value :
Second argument passed to replace.

Explanation

The instance can be used as a function on expressions for which it will apply the replace
method (see sympy.core.basic.Basic.replace() (page 989)).

Examples

```python
>>> from sympy import Symbol
>>> from sympy.codegen.rewriting import ReplaceOptim
>>> from sympy.codegen.cfunctions import exp2
>>> x = Symbol('x')
>>> exp2_opt = ReplaceOptim(lambda p: p.is_Pow and p.base == 2,
... lambda p: exp2(p.exp))
>>> exp2_opt(2**x)
exp2(x)
```

sympy.codegen.rewriting.create_expand_pow_optimization(limit, *,
    base_req=<function
    <lambda>>)

Creates an instance of ReplaceOptim (page 1164) for expanding Pow.

Parameters

limit : int
The highest power which is expanded into multiplication.

base_req : function returning bool
Requirement on base for expansion to happen, default is to return the
is_symbol attribute of the base.

Explanation

The requirements for expansions are that the base needs to be a symbol and the exponent
needs to be an Integer (and be less than or equal to limit).
Examples

```python
>>> from sympy import Symbol, sin
cpy>>> from sympy.codegen.rewriting import create_expand_pow_optimization
>>> x = Symbol('x')
cpy>>> expand_opt = create_expand_pow_optimization(3)
>>> expand_opt(x**5 + x**3)
x**5 + x*x*x
>>> expand_opt(x**5 + x**3 + sin(x)**3)
x**5 + sin(x)**3 + x*x*x
>>> opt2 = create_expand_pow_optimization(3, base_req=lambda b: not b.is_Function)
>>> opt2((x+1)**2 + sin(x)**2)
sin(x)**2 + (x + 1)*(x + 1)
```

sympy.codegen.rewriting.optimize(expr, optimizations)

Apply optimizations to an expression.

**Parameters**

- **expr**: expression
- **optimizations**: iterable of Optimization instances

The optimizations will be sorted with respect to priority (highest first).

Examples

```python
>>> from sympy import log, Symbol
cpy>>> from sympy.codegen.rewriting import optims_c99, optimize
>>> x = Symbol('x')
>>> optimize(log(x + 3)/log(2) + log(x**2 + 1), optims_c99)
log1p(x**2) + log2(x + 3)
```

Additional AST nodes for operations on matrices. The nodes in this module are meant to represent optimization of matrix expressions within codegen's target languages that cannot be represented by SymPy expressions.

As an example, we can use sympy.codegen.rewriting.optimize() (page 1165) and the matin_opt optimization provided in sympy.codegen.rewriting (page 1162) to transform matrix multiplication under certain assumptions:

```python
>>> from sympy import symbols, MatrixSymbol
>>> n = symbols('n', integer=True)
>>> A = MatrixSymbol('A', n, n)
>>> x = MatrixSymbol('x', n, 1)
>>> expr = A**(-1) * x
>>> from sympy import assuming, Q
>>> from sympy.codegen.rewriting import matinv_opt, optimize
>>> with assuming(Q.fullrank(A)):
... optimize(expr, [matinv_opt])
MatrixSolve(A, vector=x)
```
class sympy.codegen.matrix_nodes.MatrixSolve(*args, **kwargs)

Represents an operation to solve a linear matrix equation.

Parameters

matrix : MatrixSymbol
    Matrix representing the coefficients of variables in the linear equation. This matrix must be square and full-rank (i.e. all columns must be linearly independent) for the solving operation to be valid.

vector : MatrixSymbol
    One-column matrix representing the solutions to the equations represented in matrix.

Examples

>>> from sympy import symbols, MatrixSymbol
>>> from sympy.codegen.matrix_nodes import MatrixSolve
>>> n = symbols('n', integer=True)
>>> A = MatrixSymbol('A', n, n)
>>> x = MatrixSymbol('x', n, 1)
>>> from sympy.printing.numpy import NumPyPrinter
>>> NumPyPrinter().doprint(MatrixSolve(A, x))
'numpy.linalg.solve(A, x)'
>>> from sympy import octave_code
>>> octave_code(MatrixSolve(A, x))
'A \ x'

Tools for simplifying expressions using approximations (sympy.codegen.approximations)

class sympy.codegen.approximations.SeriesApprox(bounds, reltol, max_order=4, n_point_checks=4, **kwargs)

Approximates functions by expanding them as a series.

Parameters

bounds : dict
    Mapping expressions to length 2 tuple of bounds (low, high).

reltol : number
    Threshold for when to ignore a term. Taken relative to the largest lower bound among bounds.

max_order : int
    Largest order to include in series expansion

n_point_checks : int (even)
    The validity of an expansion (with respect to reltol) is checked at discrete points (linearly spaced over the bounds of the variable). The number of points used in this numerical check is given by this number.
Examples

```python
>>> from sympy import sin, pi
>>> from sympy.abc import x, y
>>> from sympy.codegen.rewriting import optimize
>>> from sympy.codegen.approximations import SeriesApprox
>>> bounds = {x: (-.1, .1), y: (pi-1, pi+1)}
>>> series_approx2 = SeriesApprox(bounds, reltol=1e-2)
>>> series_approx3 = SeriesApprox(bounds, reltol=1e-3)
>>> series_approx8 = SeriesApprox(bounds, reltol=1e-8)
>>> expr = sin(x) * sin(y)
>>> optimize(expr, [series_approx2])
x*(-y + (y - pi)**3/6 + pi)
>>> optimize(expr, [series_approx3])
(-x**3/6 + x)*sin(y)
>>> optimize(expr, [series_approx8])
sin(x)*sin(y)
```

```python
class sympy.codegen.approximations.SumApprox(bounds, reltol, **kwargs)
 Approximates sum by neglecting small terms.

 Parameters

 bounds : dict
 Mapping expressions to length 2 tuple of bounds (low, high).
 reltol : number
 Threshold for when to ignore a term. Taken relative to the largest lower bound among bounds.

Explanation

If terms are expressions which can be determined to be monotonic, then bounds for those expressions are added.

Examples

```python
>>> from sympy import exp
>>> from sympy.abc import x, y, z
>>> from sympy.codegen.rewriting import optimize
>>> from sympy.codegen.approximations import SumApprox
>>> bounds = {x: (-1, 1), y: (1000, 2000), z: (-10, 3)}
>>> sum_approx3 = SumApprox(bounds, reltol=1e-3)
>>> sum_approx2 = SumApprox(bounds, reltol=1e-2)
>>> sum_approx1 = SumApprox(bounds, reltol=1e-1)
>>> expr = 3*(x + y + exp(z))
>>> optimize(expr, [sum_approx3])
3*(x + y + exp(z))
>>> optimize(expr, [sum_approx2])
3*y + 3*exp(z)
>>> optimize(expr, [sum_approx1])
3*y
```
Classes for abstract syntax trees (sympy.codegen.ast)

Types used to represent a full function/module as an Abstract Syntax Tree.
Most types are small, and are merely used as tokens in the AST. A tree diagram has been included below to illustrate the relationships between the AST types.

AST Type Tree

```
*Basic*  
   |  
CodegenAST  
   |  
   -->AssignmentBase  
      |  
      |  -->Assignment  
      |  -->AugmentedAssignment
      |  -->AddAugmentedAssignment
      |  -->SubAugmentedAssignment
      |  -->MulAugmentedAssignment
      |  -->DivAugmentedAssignment
      |  -->ModAugmentedAssignment
      -->CodeBlock
      -->Token
         |  
         |  -->Attribute
         |  -->For
         |  -->String
         |      |  -->QuotedString
         |      |  -->Comment
         |  -->Type
         |      |  -->IntBaseType
         |      |      |  -->_SizedIntType
         |      |      |  -->SignedIntType
         |      |      |  -->UnsignedIntType
         |      |  -->FloatBaseType
         |      |      |  -->FloatType
         |      |      |  -->ComplexBaseType
         |      |      |  -->ComplexType
         |  -->Node
         |      |  -->Variable
         |      |      |  -->Pointer
         |      |  -->FunctionPrototype
         |      |  -->FunctionDefinition
         -->Element
         -->Declaration
         -->While
         -->Scope
         -->Stream
         -->Print
```

(continues on next page)
Predefined types

A number of Type instances are provided in the sympy.codegen.ast module for convenience. Perhaps the two most common ones for code-generation (of numeric codes) are float32 and float64 (known as single and double precision respectively). There are also precision generic versions of Types (for which the codeprinters selects the underlying data type at time of printing): real, integer, complex, bool.

The other Type instances defined are:
- intc: Integer type used by C’s “int”.
- intp: Integer type used by C’s “unsigned”.
- int8, int16, int32, int64: n-bit integers.
- uint8, uint16, uint32, uint64: n-bit unsigned integers.
- float80: known as “extended precision” on modern x86/amd64 hardware.
- complex64: Complex number represented by two float32 numbers
- complex128: Complex number represented by two float64 numbers

Using the nodes

It is possible to construct simple algorithms using the AST nodes. Let’s construct a loop applying Newton’s method:

```python
>>> from sympy import symbols, cos
>>> from sympy.codegen.ast import While, Assignment, aug_assign, Print
>>> t, dx, x = symbols('tol delta val')
>>> expr = cos(x) - x**3
>>> whl = While(abs(dx) > t, [
...     Assignment(dx, -expr/expr.diff(x)),
...     aug_assign(x, '+', dx),
...     Print([x])
... ])
>>> from sympy import pycode
>>> py_str = pycode(whl)
>>> print(py_str)
while (abs(delta) > tol):
    delta = (val**3 - math.cos(val))/(-3*val**2 - math.sin(val))
    val += delta
    print(val)
>>> import math
>>> tol, val, delta = 1e-5, 0.5, float('inf')
```

(continues on next page)
If we want to generate Fortran code for the same while loop we simple call fcode:

```python
>>> from sympy import fcode
>>> print(fcode(whl, standard=2003, source_format='free'))
do while (abs(delta) > tol)
    delta = (val**3 - cos(val))/(-3*val**2 - sin(val))
    val = val + delta
    print *, val
end do
```

There is a function constructing a loop (or a complete function) like this in `sympy.codegen.algorithms` (page 1201).

```python
class sympy.codegen.ast.Assignment(lhs, rhs)

    Represents variable assignment for code generation.

    Parameters
    
    lhs : Expr
        SymPy object representing the lhs of the expression. These should
        be singular objects, such as one would use in writing code. Notable
        types include Symbol, MatrixSymbol, MatrixElement, and Indexed.
        Types that subclass these types are also supported.

    rhs : Expr
        SymPy object representing the rhs of the expression. This can be any
        type, provided its shape corresponds to that of the lhs. For example,
        a Matrix type can be assigned to MatrixSymbol, but not to Symbol,
        as the dimensions will not align.
```
Assignment(A[0, 1], x)
Assignment(A[0, 1], x)

```python
>>> from sympy.codegen.ast import Assignment
>>> Assignment(A[0, 1], x)
```

class sympy.codegen.ast.AssignmentBase(lhs, rhs)

Abstract base class for Assignment and AugmentedAssignment.

Attributes:

op

[str] Symbol for assignment operator, e.g. “=”, “+=”, etc.

```python
>>> Assignment(A[0, 1], x)
```

class sympy.codegen.ast.Attribute(possibly parametrized)

For use with `sympy.codegen.ast.Node` (page 1178) (which takes instances of Attribute as attrs).

Parameters

- **name**: str
- **parameters**: Tuple

Examples

```python
>>> from sympy.codegen.ast import Attribute
>>> volatile = Attribute('volatile')
>>> volatile
Attribute(String('volatile'))
>>> a = Attribute('foo', [1, 2, 3])
>>> a
foo(1, 2, 3)
>>> a.parameters == (1, 2, 3)
True
```

class sympy.codegen.ast.AugmentedAssignment(lhs, rhs)

Base class for augmented assignments.

Attributes:

binop

[str] Symbol for binary operation being applied in the assignment, such as “+”, “*”, etc.

class sympy.codegen.ast.BreakToken(*args, **kwargs)

Represents ‘break’ in C/Python (‘exit’ in Fortran).

Use the premade instance break_ or instantiate manually.

5.8. Topics
Examples

```python
>>> from sympy import ccode, fcode
>>> from sympy.codegen.ast import break_
>>> ccode(break_)
'broke'
>>> fcode(break_, source_format='free')
'exit'
```

class symy.codegen.ast.CodeBlock(*args)

Represents a block of code.

Explanation

For now only assignments are supported. This restriction will be lifted in the future.

Useful attributes on this object are:

- `left_hand_sides`:
 Tuple of left-hand sides of assignments, in order.

- `left_hand_sides`:
 Tuple of right-hand sides of assignments, in order.

- `free_symbols`:
 Free symbols of the expressions in the right-hand sides
 which do not appear in the left-hand side of an assignment.

Useful methods on this object are:

- `topological_sort`:
 Class method. Return a CodeBlock with assignments sorted so that variables are
 assigned before they are used.

- `cse`:
 Return a new CodeBlock with common subexpressions eliminated and pulled out as
 assignments.

Examples

```python
>>> from sympy import symbols, ccode
>>> from sympy.codegen.ast import CodeBlock, Assignment
>>> x, y = symbols('x y')
>>> c = CodeBlock(Assignment(x, 1), Assignment(y, x + 1))
>>> print(ccode(c))
x = 1;
y = x + 1;
```

cse(symbols=None, optimizations=None, postprocess=None, order='canonical')

Return a new code block with common subexpressions eliminated.
Explanation

See the docstring of `sympy.simplify.cse_main.cse()` (page 741) for more information.

Examples

```python
>>> from sympy import symbols, sin
>>> from sympy.codegen.ast import CodeBlock, Assignment
>>> x, y, z = symbols('x y z')
>>> c = CodeBlock(  
...    Assignment(x, 1),  
...    Assignment(y, sin(x) + 1),  
...    Assignment(z, sin(x) - 1),  
... )
>>> c.cse()
CodeBlock(  
    Assignment(x, 1),  
    Assignment(x0, sin(x)),  
    Assignment(y, x0 + 1),  
    Assignment(z, x0 - 1)
)
```

classmethod topological_sort(assignments)

Return a CodeBlock with topologically sorted assignments so that variables are assigned before they are used.

Examples

The existing order of assignments is preserved as much as possible.

This function assumes that variables are assigned to only once.

This is a class constructor so that the default constructor for CodeBlock can error when variables are used before they are assigned.

```python
>>> from sympy import symbols
>>> from sympy.codegen.ast import CodeBlock, Assignment
>>> x, y, z = symbols('x y z')
>>> assignments = [  
...    Assignment(x, y + z),  
...    Assignment(y, z + 1),  
...    Assignment(z, 2),  
... ]
>>> CodeBlock.topological_sort(assignments)
CodeBlock(  
    Assignment(z, 2),  
    Assignment(y, z + 1),
```

(continues on next page)
class sympy.codegen.ast.Comment(*args, **kwargs)
 Represents a comment.

class sympy.codegen.ast.ComplexType(*args, **kwargs)
 Represents a complex floating point number.

class sympy.codegen.ast.ContinueToken(*args, **kwargs)
 Represents ‘continue’ in C/Python (‘cycle’ in Fortran)
 Use the premade instance continue_ or instantiate manually.

Examples

```python
>>> from sympy import ccode, fcode
>>> from sympy.codegen.ast import continue_
>>> ccode(continue_)
'continue'
>>> fcode(continue_, source_format='free')
'cycle'
```

class sympy.codegen.ast.Declaration(*args, **kwargs)
 Represents a variable declaration

 Parameters

 variable : Variable

Examples

```python
>>> from sympy.codegen.ast import Declaration, NoneToken, untyped
>>> z = Declaration('z')
>>> z.variable.type == untyped
True
>>> # value is special NoneToken() which must be tested with == operator
>>> z.variable.value is None  # won't work
False
>>> z.variable.value == None  # not PEP-8 compliant
True
>>> z.variable.value == NoneToken()  # OK
True
```

class sympy.codegen.ast.Element(*args, **kwargs)
 Element in (a possibly N-dimensional) array.
Examples

```python
>>> from sympy.codegen.ast import Element
>>> elem = Element('x', 'ijk')
>>> elem.symbol.name == 'x'
True
>>> elem.indices
(i, j, k)
>>> from sympy import ccode
>>> ccode(elem)
'x[i][j][k]'
>>> ccode(Element('x', 'ijk', strides='lmn', offset='o'))
'x[i*l + j*m + k*n + o]'
```

class sympy.codegen.ast.FloatBaseType(*args, **kwargs)
Represents a floating point number type.

cast_nocheck
 alias of Float (page 1033)

class sympy.codegen.ast.FloatType(*args, **kwargs)
Represents a floating point type with fixed bit width.
Base 2 & one sign bit is assumed.

Parameters

- **name** : str
 Name of the type.

- **nbits** : integer
 Number of bits used (storage).

- **nmant** : integer
 Number of bits used to represent the mantissa.

- **nexp** : integer
 Number of bits used to represent the mantissa.

Examples

```python
>>> from sympy import S
>>> from sympy.codegen.ast import FloatType
>>> half_precision = FloatType('f16', nbits=16, nmant=10, nexp=5)
>>> half_precision.max
65504
>>> half_precision.tiny == S(2)**-14
True
>>> half_precision.eps == S(2)**-10
True
>>> half_precision.dig == 3
True
>>> half_precision.decimal_dig == 5
```
(continues on next page)
True
>>> half_precision.cast_check(1.0)
1.0
>>> half_precision.cast_check(1e5)
Traceback (most recent call last):
...
 ValueError: Maximum value for data type smaller than new value.

cast_nocheck(value)
 Casts without checking if out of bounds or subnormal.

property decimal_dig
 Number of digits needed to store & load without loss.

 Explanation

 Number of decimal digits needed to guarantee that two consecutive conversions
 (float -> text -> float) to be idempotent. This is useful when one do not want to loose
 precision due to rounding errors when storing a floating point value as text.

property dig
 Number of decimal digits that are guaranteed to be preserved in text.

 When converting text -> float -> text, you are guaranteed that at least dig number
 of digits are preserved with respect to rounding or overflow.

property eps
 Difference between 1.0 and the next representable value.

property max
 Maximum value representable.

property max_exponent
 The largest positive number n, such that 2**(n - 1) is a representable finite value.

property min_exponent
 The lowest negative number n, such that 2**(n - 1) is a valid normalized number.

property tiny
 The minimum positive normalized value.

class sympy.codegen.ast.For(*args, **kwargs)
 Represents a ‘for-loop’ in the code.

 Expressions are of the form:

 "for target in iter:
 body..."

 Parameters

 target : symbol
 iter : iterable body : CodeBlock or iterable

 ! When passed an iterable it is used to instantiate a CodeBlock.
Examples

```python
>>> from sympy import symbols, Range
>>> from sympy.codegen.ast import aug_assign, For
>>> x, i, j, k = symbols('x i j k')
>>> for i = For(i, Range(10), [aug_assign(x, '+', i*j*k)]
>>> for i
For(i, iterable=Range(0, 10, 1), body=CodeBlock(AddAugmentedAssignment(x, i*j*k))
)
>>> for ji = For(j, Range(7), [for_i])
>>> for ji
For(j, iterable=Range(0, 7, 1), body=CodeBlock(For(i, iterable=Range(0, 10, 1), body=CodeBlock(AddAugmentedAssignment(x, i*j*k))
))
>>> for kji =For(k, Range(5), [for_ji])
>>> for kji
For(k, iterable=Range(0, 5, 1), body=CodeBlock(For(j, iterable=Range(0, 7, 1), body=CodeBlock(For(i, iterable=Range(0, 10, 1), body=CodeBlock(AddAugmentedAssignment(x, i*j*k))
))
))
)
```
attrs : iterable of Attribute instances

Examples

```python
>>> from sympy import ccode, symbols
>>> from sympy.codegen.ast import real, FunctionPrototype
>>> x, y = symbols('x y', real=True)
>>> fp = FunctionPrototype(real, 'foo', [x, y])
>>> ccode(fp)
'double foo(double x, double y)'
>>> from sympy.codegen.ast import FunctionDefinition, Return
>>> body = [Return(x*y)]
>>> fd = FunctionDefinition.from_FunctionPrototype(fp, body)
>>> print(ccode(fd))
double foo(double x, double y){
    return x*y;
}
```

class sympy.codegen.ast.FunctionPrototype(*args, **kwargs)

Represents a function prototype

Allows the user to generate forward declaration in e.g. C/C++.

Parameters

- **return_type** : Type
- **name** : str
- **parameters** : iterable of Variable instances
- **attrs** : iterable of Attribute instances

Examples

```python
>>> from sympy import ccode, symbols
>>> from sympy.codegen.ast import real, FunctionPrototype
>>> x, y = symbols('x y', real=True)
>>> fp = FunctionPrototype(real, 'foo', [x, y])
>>> ccode(fp)
'double foo(double x, double y)'
```

class sympy.codegen.ast.IntBaseType(*args, **kwargs)

Integer base type, contains no size information.

class sympy.codegen.ast.Node(*args, **kwargs)

Subclass of Token, carrying the attribute ‘attrs’ (Tuple)
Examples

```python
>>> from sympy.codegen.ast import Node, value_const, pointer_const
>>> n1 = Node([value_const])
>>> n1.attr_params('value_const')  # get the parameters of attribute (by
˓→name)
()  
>>> from sympy.codegen.fnodes import dimension
>>> n2 = Node([value_const, dimension(5, 3)])
>>> n2.attr_params(value_const)  # get the parameters of attribute (by
˓→Attribute instance)
()  
>>> n2.attr_params('dimension')  # get the parameters of attribute (by
˓→name)
(5, 3)
>>> n2.attr_params(pointer_const) is None
True
```

``attr_params(looking_for)``

Returns the parameters of the Attribute with name `looking_for` in `self.attrs`

class sympy.codegen.ast.NoneToken(*args, **kwargs)

The AST equivalence of Python’s `NoneType`

The corresponding instance of Python’s `None` is `None`.

Examples

```python
>>> from sympy.codegen.ast import none, Variable
>>> from sympy import pycode
>>> print(pycode(Variable('x').as_Declaration(value=none)))
```

``x = None``

class sympy.codegen.ast.Pointer(*args, **kwargs)

Represents a pointer. See `Variable`.

Examples

Can create instances of Element:

```python
>>> from sympy import Symbol
>>> from sympy.codegen.ast import Pointer
>>> i = Symbol('i', integer=True)
>>> p = Pointer('x')
>>> p[i+1]
Element(x, indices=(i + 1,))
```

class sympy.codegen.ast.Print(*args, **kwargs)

Represents print command in the code.

Parameters

- **formatstring**: str
*args : Basic instances (or convertible to such through sympify)

Examples

```python
>>> from sympy.codegen.ast import Print
>>> from sympy import pycode
>>> print(pycode(Print('x y'.split(), "coordinate: %12.5g %12.5g")))
print("coordinate: %12.5g %12.5g" % (x, y))
```

class sympy.codegen.ast.QuotedString(*args, **kwargs)
Represents a string which should be printed with quotes.

class sympy.codegen.ast.Return(*args, **kwargs)
Represents a return command in the code.

Parameters

- return : Basic

Examples

```python
>>> from sympy.codegen.ast import Return
>>> from sympy.printing.pycode import pycode
>>> from sympy import Symbol
>>> x = Symbol('x')
>>> print(pycode(Return(x)))
return x
```

class sympy.codegen.ast.Scope(*args, **kwargs)
Represents a scope in the code.

Parameters

- body : CodeBlock or iterable

When passed an iterable it is used to instantiate a CodeBlock.

class sympy.codegen.ast.SignedIntType(*args, **kwargs)
Represents a signed integer type.

class sympy.codegen.ast.Stream(*args, **kwargs)
Represents a stream.

There are two predefined Stream instances stdout & stderr.

Parameters

- name : str
Examples

```py
>>> from sympy import pcode, Symbol
>>> from sympy.codegen import Print, stderr, QuotedString
>>> print(pcode(Print(['x'], file=stderr)))
print(x, file=sys.stderr)
>>> x = Symbol('x')
>>> print(pcode(Print([QuotedString('x')], file=stderr)))  # print_literally "x"
print("x", file=sys.stderr)
```

class sympy.codegen.ast.String(*args, **kwargs)

SymPy object representing a string.

Atomic object which is not an expression (as opposed to Symbol).

Parameters

- text : str

Examples

```py
>>> from sympy.codegen.ast import String
>>> f = String('foo')
>>> f
foo
>>> str(f)
'foo'
>>> f.text
'foo'
>>> print(repr(f))
String('foo')
```

class sympy.codegen.ast.Token(*args, **kwargs)

Base class for the AST types.

Explanation

Defining fields are set in _fields. Attributes (defined in _fields) are only allowed to contain instances of Basic (unless atomic, see String). The arguments to __new__() correspond to the attributes in the order defined in _fields`. The ``defaults class attribute is a dictionary mapping attribute names to their default values.

Subclasses should not need to override the __new__() method. They may define a class or static method named _construct_<attr> for each attribute to process the value passed to __new__(). Attributes listed in the class attribute not_in_args are not passed to Basic (page 979).

kwargsexclude=(), apply=None)

Get instance’s attributes as dict of keyword arguments.

Parameters

- exclude : collection of str

5.8. Topics
Collection of keywords to exclude.

apply: callable, optional
Function to apply to all values.

class sympy.codegen.ast.Type(*args, **kwargs)
Represents a type.

Parameters

- **name**: str
 Name of the type, e.g. object, int16, float16 (where the latter two would use the Type sub-classes IntType and FloatType respectively). If a Type instance is given, the said instance is returned.

Explanation

The naming is a super-set of NumPy naming. Type has a classmethod `from_expr` which offer type deduction. It also has a method `cast_check` which casts the argument to its type, possibly raising an exception if rounding error is not within tolerances, or if the value is not representable by the underlying data type (e.g. unsigned integers).

Examples

```python
>>> from sympy.codegen.ast import Type
>>> t = Type.from_expr(42)
>>> t
integer
>>> print(repr(t))
IntBaseType(String('integer'))
>>> from sympy.codegen.ast import uint8
>>> uint8.cast_check(-1)
Traceback (most recent call last):
  ... ValueError: Minimum value for data type bigger than new value.
>>> from sympy.codegen.ast import float32
>>> v6 = 0.123456
>>> float32.cast_check(v6)
0.123456
>>> v10 = 12345.67894
>>> float32.cast_check(v10)
Traceback (most recent call last):
  ... ValueError: Casting gives a significantly different value.
>>> boost_mp50 = Type('boost::multiprecision::cpp_dec_float_50')
>>> from sympy import cxxcode
>>> from sympy.codegen.ast import Declaration, Variable
>>> cxxcode(Declaration(Variable('x', type=boost_mp50)))
'boost::multiprecision::cpp_dec_float_50 x'
```
References

[R39]

cast_check(value, rtol=None, atol=0, precision_targets=None)

Casts a value to the data type of the instance.

Parameters

value : number

rtol : floating point number
 Relative tolerance. (will be deduced if not given).

atol : floating point number
 Absolute tolerance (in addition to rtol).

type_aliases : dict
 Maps substitutions for Type, e.g. {integer: int64, real: float32}

Examples

```python
>>> from sympy.codegen.ast import integer, float32, int8
>>> integer.cast_check(3.0) == 3
True
>>> float32.cast_check(1e-40)
Traceback (most recent call last):
...
ValueError: Minimum value for data type bigger than new value.
>>> int8.cast_check(256)
Traceback (most recent call last):
...
ValueError: Maximum value for data type smaller than new value.
>>> v10 = 12345.67894
>>> float32.cast_check(v10)
Traceback (most recent call last):
...
ValueError: Casting gives a significantly different value.
>>> from sympy.codegen.ast import float64
>>> float64.cast_check(v10)
12345.67894
>>> from sympy import Float
>>> v18 = Float('0.123456789012345646')
>>> float64.cast_check(v18)
Traceback (most recent call last):
...
ValueError: Casting gives a significantly different value.
>>> from sympy.codegen.ast import float80
>>> float80.cast_check(v18)
0.123456789012345649
```

classmethod from_expr(expr)

Deduces type from an expression or a Symbol.
Parameters

- expr: number or SymPy object
 The type will be deduced from type or properties.

Raises

- ValueError when type deduction fails.

Examples

```python
>>> from sympy.codegen.ast import Type, integer, complex_
>>> Type.from_expr(2) == integer
True
>>> from sympy import Symbol
>>> Type.from_expr(Symbol('z', complex=True)) == complex_
True
>>> Type.from_expr(sum)
Traceback (most recent call last):
...
ValueError: Could not deduce type from expr.
```

class sympy.codegen.ast.UnsignedIntType(*args, **kwargs)

Represents an unsigned integer type.

class sympy.codegen.ast.Variable(*args, **kwargs)

Represents a variable.

Parameters

- symbol: Symbol
- type: Type (optional)
 Type of the variable.
- attrs: iterable of Attribute instances
 Will be stored as a Tuple.

Examples

```python
>>> from sympy import Symbol
>>> from sympy.codegen.ast import Variable, float32, integer
>>> x = Symbol('x')
>>> v = Variable(x, type=float32)
>>> v.attrs
()  # False
>>> v == Variable('x')
False
>>> v == Variable('x', type=float32)
True
>>> v
Variable(x, type=float32)
```

One may also construct a Variable instance with the type deduced from assumptions about the symbol using the deduced classmethod:
>>> i = Symbol('i', integer=True)
>>> v = Variable.deduced(i)
>>> v.type == integer
True
>>> v == Variable('i')
False
>>> from sympy.codegen.ast import value_const
>>> value_const in v.attrs
False
>>> w = Variable('w', attrs=[value_const])
>>> w
Variable(w, attrs=(value_const,))
>>> value_const in w.attrs
True
>>> w.as_Declaration(value=42)
Declaration(Variable(w, value=42, attrs=(value_const,)))

asm_classmethod deduced(symbol, value=None, attrs=(), cast_check=True)
Alt. constructor with type deduction from Type.from_expr.
Deduces type primarily from symbol, secondarily from value.

Parameters

symbol : Symbol

value : expr
 (optional) value of the variable.

Explanation

If the variable of the Declaration need to wrap a modified variable keyword arguments may be passed (overriding e.g. the value of the Variable instance).

Examples

>>> from sympy.codegen.ast import Variable, NoneToken
>>> x = Variable('x')
>>> decl1 = x.as_Declaration()
>>> # value is special NoneToken() which must be tested with ==
>>> decl1.variable.value is None # won't work
False
>>> decl1(variable.value == None # not PEP-8 compliant
True
>>> decl1.variable.value == NoneToken() # OK
True
>>> decl2 = x.as_Declaration(value=42.0)
>>> decl2.variable.value == 42.0
True
attrs: iterable of Attribute instances

cast_check: bool

Whether to apply `Type.cast_check` on value.

Examples

```python
>>> from sympy import Symbol
>>> from sympy.codegen.ast import Variable, complex_
>>> n = Symbol('n', integer=True)
>>> str(Variable.deduced(n).type)
'integer'
>>> x = Symbol('x', real=True)
>>> v = Variable.deduced(x)
>>> v.type
real
>>> z = Symbol('z', complex=True)
>>> Variable.deduced(z).type == complex_
True
```

```python
class sympy.codegen.ast.While(*args, **kwargs)
```

Represents a `for-loop` in the code.

Expressions are of the form:

```
“while condition:
  body...”
```

Parameters

condition: expression convertible to Boolean

body: CodeBlock or iterable

When passed an iterable it is used to instantiate a CodeBlock.

Examples

```python
>>> from sympy import symbols, Gt, Abs
>>> from sympy.codegen import aug_assign, Assignment, While
>>> x, dx = symbols('x dx')
>>> expr = 1 - x**2
>>> whl = While(Gt(Abs(dx), 1e-9), [
  ... Assignment(dx, -expr/expr.diff(x)),
  ... aug_assign(x, '+', dx)
  ... ])
```

```python
sympy.codegen.ast.aug_assign(lhs, op, rhs)
```

Create `lhs op= rhs`.

Parameters

lhs: Expr
SymPy object representing the lhs of the expression. These should be singular objects, such as one would use in writing code. Notable types include Symbol, MatrixSymbol, MatrixElement, and Indexed. Types that subclass these types are also supported.

op: str
Operator (+, -, /, *, %).

rhs: Expr
SymPy object representing the rhs of the expression. This can be any type, provided its shape corresponds to that of the lhs. For example, a Matrix type can be assigned to MatrixSymbol, but not to Symbol, as the dimensions will not align.

Explanation

Represents augmented variable assignment for code generation. This is a convenience function. You can also use the AugmentedAssignment classes directly, like AddAugmentedAssignment(x, y).

Examples

```python
>>> from sympy import symbols
>>> from sympy.codegen.ast import aug_assign
>>> x, y = symbols('x, y')
>>> aug_assign(x, '+', y)
AddAugmentedAssignment(x, y)
```

Special C math functions (sympy.codegen.cfunctions)

This module contains SymPy functions mathcin corresponding to special math functions in the C standard library (since C99, also available in C++11).

The functions defined in this module allows the user to express functions such as expm1 as a SymPy function for symbolic manipulation.

class sympy.codegen.cfunctions.Cbrt(*args)

 Represents the cube root function.

Explanation

The reason why one would use Cbrt(x) over cbrrt(x) is that the latter is internally represented as Pow(x, Rational(1, 3)) which may not be what one wants when doing code-generation.
Examples

```python
>>> from sympy.abc import x
>>> from sympy.codegen.cfunctions import Cbrt
>>> Cbrt(x)
Cbrt(x)
>>> Cbrt(x).diff(x)
1/(3*x**(2/3))
```

See also:

- `Sqrt` (page 1188)
- `fdiff(argindex=1)`
 Returns the first derivative of this function.

Explanation

The reason why one would use `Sqrt(x)` over `sqrt(x)` is that the latter is internally represented as `Pow(x, S.Half)` which may not be what one wants when doing code-generation.

Examples

```python
>>> from sympy.abc import x
>>> from sympy.codegen.cfunctions import Sqrt
>>> Sqrt(x)
Sqrt(x)
>>> Sqrt(x).diff(x)
1/(2*sqrt(x))
```

See also:

- `Cbzt` (page 1187)
- `fdiff(argindex=1)`
 Returns the first derivative of this function.

Explanation

The reason why one would use `Sqrt(x)` over `sqrt(x)` is that the latter is internally represented as `Pow(x, S.Half)` which may not be what one wants when doing code-generation.
Explanation

The benefit of using \(\exp2(x) \) over \(2^x \) is that the latter is not as efficient under finite precision arithmetic.

Examples

```python
>>> from sympy.abc import x
>>> from sympy.codegen.cfunctions import exp2
>>> exp2(2).evalf() == 4.0
True
>>> exp2(x).diff(x)
log(2)*exp2(x)
```

See also:
- \(\log2 \) (page 1191)
- \(\text{fdiff}(\text{argindex}=1) \)
 Returns the first derivative of this function.

class sympy.codegen.cfunctions.expml(arg)

Represents the exponential function minus one.

Explanation

The benefit of using \(\expml(x) \) over \(\exp(x) - 1 \) is that the latter is prone to cancellation under finite precision arithmetic when \(x \) is close to zero.

Examples

```python
>>> from sympy.abc import x
>>> from sympy.codegen.cfunctions import expml
>>> '%.0e' % expml(1e-99).evalf()
'1e-99'
>>> from math import exp
>>> exp(1e-99) - 1
0.0
>>> expml(x).diff(x)
exp(x)
```

See also:
- \(\log1p \) (page 1191)
- \(\text{fdiff}(\text{argindex}=1) \)
 Returns the first derivative of this function.

class sympy.codegen.cfunctions.fma(*args)

Represents “fused multiply add”.
Explanation

The benefit of using \(\text{fma}(x, y, z) \) over \(x \cdot y + z \) is that, under finite precision arithmetic, the former is supported by special instructions on some CPUs.

Examples

```python
>>> from sympy.abc import x, y, z
>>> from sympy.codegen.cfunctions import fma
>>> fma(x, y, z).diff(x)
```

\(fdiff(\text{argindex}=1) \)

Returns the first derivative of this function.

```python
class sympy.codegen.cfunctions.hypot(*args)
```

Represents the hypotenuse function.

Explanation

The hypotenuse function is provided by e.g. the math library in the C99 standard, hence one may want to represent the function symbolically when doing code-generation.

Examples

```python
>>> from sympy.abc import x, y
>>> from sympy.codegen.cfunctions import hypot
>>> hypot(3, 4).evalf() == 5.0
True
>>> hypot(x, y)
hypot(x, y)
>>> hypot(x, y).diff(x)
x/hypot(x, y)
```

\(fdiff(\text{argindex}=1) \)

Returns the first derivative of this function.

```python
class sympy.codegen.cfunctions.log10(arg)
```

Represents the logarithm function with base ten.
Examples

```python
>>> from sympy.abc import x
>>> from sympy.codegen.cfunctions import log10
>>> log10(100).evalf() == 2.0
True
>>> log10(x).diff(x)
1/(x*log(10))
```

See also:

- `log2` (page 1191)
- `fdiff(argindex=1)`
 Returns the first derivative of this function.

```python
class sympy.codegen.cfunctions.log1p(arg)

    Represents the natural logarithm of a number plus one.
```

Explanation

The benefit of using `log1p(x)` over `log(x + 1)` is that the latter is prone to cancellation under finite precision arithmetic when `x` is close to zero.

Examples

```python
>>> from sympy.abc import x
>>> from sympy.codegen.cfunctions import log1p
>>> from sympy import expand_log
>>> '%.0e' % expand_log(log1p(1e-99)).evalf()
'1e-99'
>>> from math import log
>>> log(1 + 1e-99)
0.0
>>> log1p(x).diff(x)
1/(x + 1)
```

See also:

- `expm1` (page 1189)
- `fdiff(argindex=1)`
 Returns the first derivative of this function.

```python
class sympy.codegen.cfunctions.log2(arg)

    Represents the logarithm function with base two.
```
Explanation

The benefit of using \(\log_2(x) \) over \(\log(x)/\log(2) \) is that the latter is not as efficient under finite precision arithmetic.

Examples

```python
>>> from sympy.abc import x
>>> from sympy.codegen.cfunctions import log2
>>> log2(4).evalf() == 2.0
True
>>> log2(x).diff(x)
1/(x*log(2))
```

See also:

- \(\exp_2 \) (page 1188), \(\log_{10} \) (page 1190)
- \(\texttt{fdiff} \) (argindex=1)

 Returns the first derivative of this function.

C specific AST nodes (sympy.codegen.cnodes)

AST nodes specific to the C family of languages

- **class sympy.codegen.cnodes.CommaOperator(*args)**

 Represents the comma operator in C

- **class sympy.codegen.cnodes.Label(*args, **kwargs)**

 Label for use with e.g. goto statement.

Examples

```python
>>> from sympy import ccode, Symbol
>>> from sympy.codegen.cnodes import Label, PreIncrement
>>> print(ccode(Label('foo')))
foo:
>>> print(ccode(Label('bar', [PreIncrement(Symbol('a'))])))
bar:
  ++(a);
```

- **class sympy.codegen.cnodes.PostDecrement(*args)**

 Represents the post-decrement operator

- **class sympy.codegen.cnodes.PostIncrement(*args)**

 Represents the post-increment operator

- **class sympy.codegen.cnodes.PreDecrement(*args)**

 Represents the pre-decrement operator
Examples

```python
from sympy.abc import x
from sympy.codegen.cnodes import PreDecrement
from sympy import ccode
ccode(PreDecrement(x))
'--(x)'
```

class sympy.codegen.cnodes.PreIncrement(*args)
 Represents the pre-increment operator

sympy.codegen.cnodes.alignof(arg)
 Generate of FunctionCall instance for calling ‘alignof’

class sympy.codegen.cnodes.goto(*args, **kwargs)
 Represents goto in C

sympy.codegen.cnodes.sizeof(arg)
 Generate of FunctionCall instance for calling ‘sizeof’

Examples

```python
from sympy.codegen.ast import real
from sympy.codegen.cnodes import sizeof
from sympy import ccode
ccode(sizeof(real))
'sizeof(double)'
```

class sympy.codegen.cnodes.struct(*args, **kwargs)
 Represents a struct in C

class sympy.codegen.cnodes.union(*args, **kwargs)
 Represents a union in C

C++ specific AST nodes (sympy.codegen.cxxnodes)

AST nodes specific to C++.

class sympy.codegen.cxxnodes.using(*args, **kwargs)
 Represents a ‘using’ statement in C++

Fortran specific AST nodes (sympy.codegen.fnodes)

AST nodes specific to Fortran.
The functions defined in this module allows the user to express functions such as dsign as a
SymPy function for symbolic manipulation.

class sympy.codegen.fnodes.ArrayConstructor(*args, **kwargs)
 Represents an array constructor.
Examples

```python
>>> from sympy import fcode
>>> from sympy.codegen.fnodes import ArrayConstructor
>>> ac = ArrayConstructor([1, 2, 3])
>>> fcode(ac, standard=95, source_format='free')
'(/1, 2, 3/)

>>> fcode(ac, standard=2003, source_format='free')
'[1, 2, 3]
```

class sympy.codegen.fnodes.Do(*args, **kwargs)
Represents a Do loop in in Fortran.

Examples

```python
>>> from sympy import fcode, symbols
>>> from sympy.codegen.ast import aug_assign, Print
>>> from sympy.codegen.fnodes import Do
>>> i, n = symbols('i n', integer=True)
>>> r = symbols('r', real=True)
>>> body = [aug_assign(r, '+', 1/i), Print([i, r])]
>>> do1 = Do(body, i, 1, n)
>>> print(fcode(do1, source_format='free'))
do i = 1, n
  r = r + 1d0/i
  print *, i, r
end do

>>> do2 = Do(body, i, 1, n, 2)
>>> print(fcode(do2, source_format='free'))
do i = 1, n, 2
  r = r + 1d0/i
  print *, i, r
end do
```

class sympy.codegen.fnodes.Extent(*args)
Represents a dimension extent.

Examples

```python
>>> from sympy.codegen.fnodes import Extent
>>> e = Extent(-3, 3)  # -3, -2, -1, 0, 1, 2, 3
>>> from sympy import fcode
>>> fcode(e, source_format='free')
'--3:3'
>>> from sympy.codegen.ast import Variable, real
>>> from sympy.codegen.fnodes import dimension, intent_out
>>> dim = dimension(e, e)
>>> arr = Variable('x', real, attrs=[dim, intent_out])
>>> fcode(arr.as_Declaration(), source_format='free', standard=2003)
'real*8, dimension(-3:3, -3:3), intent(out) :: x'
```
class sympy.codegen.fnodes.FortranReturn(*args, **kwargs)
AST node explicitly mapped to a fortran “return”.

Explanation

Because a return statement in fortran is different from C, and in order to aid reuse of our codegen ASTs the ordinary .codegen.ast.Return is interpreted as assignment to the result variable of the function. If one for some reason needs to generate a fortran RETURN statement, this node should be used.

Examples

```python
>>> from sympy.codegen.fnodes import FortranReturn
>>> from sympy import fcode
>>> fcode(FortranReturn('x'))
' return x'
```

class sympy.codegen.fnodes.GoTo(*args, **kwargs)
Represents a goto statement in Fortran

Examples

```python
>>> from sympy.codegen.fnodes import GoTo
>>> go = GoTo([10, 20, 30], 'i')
>>> from sympy import fcode
>>> fcode(go, source_format='free')
'go to (10, 20, 30), i'
```

class sympy.codegen.fnodes.ImpliedDoLoop(*args, **kwargs)
Represents an implied do loop in Fortran.

Examples

```python
>>> from sympy import Symbol, fcode
>>> from sympy.codegen.fnodes import ImpliedDoLoop, ArrayConstructor
>>> i = Symbol('i', integer=True)
>>> idl = ImpliedDoLoop(i**3, i, -3, 3, 2)  # -27, -1, 1, 27
>>> ac = ArrayConstructor([-28, idl, 28])  # -28, -27, -1, 1, 27, 28
>>> fcode(ac, standard=2003, source_format='free')
'[-28, (i**3, i = -3, 3, 2), 28]
```

class sympy.codegen.fnodes.Module(*args, **kwargs)
Represents a module in Fortran.
Examples

```python
>>> from sympy.codegen.fnodes import Module
>>> from sympy import fcode
>>> print(fcode(Module('signallib', ['implicit none'], []), source_format='free'))
module signallib
implicit none
contains
end module
```

class sympy.codegen.fnodes.Program(*args, **kwargs)
Represents a ‘program’ block in Fortran.

Examples

```python
>>> from sympy.codegen.ast import Print
>>> from sympy.codegen.fnodes import Program
>>> prog = Program('myprogram', [Print([42])])
>>> from sympy import fcode
>>> print(fcode(prog, source_format='free'))
program myprogram
 print *, 42
end program
```

class sympy.codegen.fnodes.Subroutine(*args, **kwargs)
Represents a subroutine in Fortran.

Examples

```python
>>> from sympy import fcode, symbols
>>> from sympy.codegen.ast import Print
>>> from sympy.codegen.fnodes import Subroutine
>>> x, y = symbols('x y', real=True)
>>> sub = Subroutine('mysub', [x, y], [Print([x**2 + y**2, x*y])])
>>> print(fcode(sub, source_format='free', standard=2003))
subroutine mysub(x, y)
 real*8 :: x
 real*8 :: y
 print *, x**2 + y**2, x*y
end subroutine
```

class sympy.codegen.fnodes.SubroutineCall(*args, **kwargs)
Represents a call to a subroutine in Fortran.
Examples

```python
>>> from sympy.codegen.fnodes import SubroutineCall
>>> from sympy import fcode
>>> fcode(SubroutineCall('mysub', 'x y'.split()))
'call mysub(x, y)'
```

`sympy.codegen.fnodes.allocated(array)`

Creates an AST node for a function call to Fortran’s “allocated(...)

Examples

```python
>>> from sympy import fcode
>>> from sympy.codegen.fnodes import allocated
>>> alloc = allocated('x')
>>> fcode(alloc, source_format='free')
'allocated(x)'
```

`sympy.codegen.fnodes.array(symbol, dim, intent=None, *, attrs=(), value=None, type=None)`

Convenience function for creating a Variable instance for a Fortran array.

Parameters

- **symbol**: symbol
- **dim**: Attribute or iterable
 - If `dim` is an Attribute it need to have the name ‘dimension’. If it is not an Attribute, then it is passed to `dimension()` (page 1198) as *dim
- **intent**: str
 - One of: ‘in’, ‘out’, ‘inout’ or None
- ****kwargs**:
 - Keyword arguments for `Variable` (‘type’ & ‘value’)

Examples

```python
>>> from sympy import fcode
>>> from sympy.codegen.ast import integer, real
>>> from sympy.codegen.fnodes import array
>>> arr = array('a', '*', 'in', type=integer)
>>> print(fcode(arr.as_Declaration(), source_format='free',
... standard=2003))
integer*4, dimension(*), intent(in) :: a
>>> x = array('x', [3, ':', ':'], intent='out', type=real)
>>> print(fcode(x.as_Declaration(value=1), source_format='free',
... standard=2003))
real*8, dimension(3, :, :), intent(out) :: x = 1
```
sympy.codegen.fnodes.bind_C(name=None)

Creates an Attribute bind_C with a name.

Parameters

name : str

Examples

```python
>>> from sympy import fcode, Symbol
>>> from sympy.codegen.ast import FunctionDefinition, real, Return
>>> from sympy.codegen.fnodes import array, sum_, bind_C
>>> a = Symbol('a', real=True)
>>> s = Symbol('s', integer=True)
>>> arr = array(a, dim=[s], intent='in')
>>> body = [Return((sum_(a**2)/s)**.5)]
>>> fd = FunctionDefinition(real, 'rms', [arr, s], body, attrs=[bind_C(→'rms')])
>>> print(fcode(fd, source_format='free', standard=2003))
real*8 function rms(a, s) bind(C, name="rms")
real*8, dimension(s), intent(in) :: a
integer*4 :: s
rms = sqrt(sum(a**2)/s)
end function
```

class sympy.codegen.fnodes.cmplx(*args)

Fortran complex conversion function.

class sympy.codegen.fnodes.dimension(*args)

Creates a ‘dimension’ Attribute with (up to 7) extents.

Examples

```python
>>> from sympy import fcode
>>> from sympy.codegen.fnodes import dimension, intent_in
>>> dim = dimension('2', ':')  # 2 rows, runtime determined number of columns
>>> from sympy.codegen.ast import Variable, integer
>>> arr = Variable('a', integer, attrs=[dim, intent_in])
>>> fcode(arr.as_Declaration(), source_format='free', standard=2003)
'integer*4, dimension(2, :), intent(in) :: a'
```

class sympy.codegen.fnodes.dsign(*args)

Fortran sign intrinsic for double precision arguments.

class sympy.codegen.fnodes.isign(*args)

Fortran sign intrinsic for integer arguments.

class sympy.codegen.fnodes.kind(*args)

Fortran kind function.

sympy.codegen.fnodes.lbound(array, dim=None, kind=None)

Creates an AST node for a function call to Fortran’s “lbound(...)”
Parameters

- **array**: Symbol or String
- **dim**: expr
- **kind**: expr

Examples

```python
class sympy.codegen.fnodes.literal_dp(num, dps=None, precision=None)
    Fortran double precision real literal
class sympy.codegen.fnodes.literal_sp(num, dps=None, precision=None)
    Fortran single precision real literal
class sympy.codegen.fnodes.merge(*args)
    Fortran merge function
sympy.codegen.fnodes.reshape(source, shape, pad=None, order=None)
    Creates an AST node for a function call to Fortran’s “reshape(...)”
    **Parameters**
    - **source**: Symbol or String
    - **shape**: ArrayExpr
sympy.codegen.fnodes.shape(source, kind=None)
    Creates an AST node for a function call to Fortran’s “shape(...)”
    **Parameters**
    - **source**: Symbol or String
    - **kind**: expr
```

```python
class sympy.codegen.fnodes.size(array, dim=None, kind=None)
    Creates an AST node for a function call to Fortran’s “size(...)”
```
Examples

```python
>>> from sympy import fcode, Symbol
>>> from sympy.codegen.ast import FunctionDefinition, real, Return
>>> from sympy.codegen.fnodes import array, sum_, size
>>> a = Symbol('a', real=True)
>>> body = [Return((sum_(a ** 2) / size(a)) ** 0.5)]
>>> arr = array(a, dim=[':'], intent='in')
>>> fd = FunctionDefinition(real, ['rms'], [arr], body)
>>> print(fcode(fd, source_format='free', standard=2003))
real*8 function rms(a)
  real*8, dimension(:), intent(in) :: a
  rms = sqrt(sum(a**2)*1d0/size(a))
end function
```

class sympy.codegen.fnodes.use(*args, **kwargs)

Represents a use statement in Fortran.

Examples

```python
>>> from sympy.codegen.fnodes import use
>>> from sympy import fcode

use signallib

fcode(use('signallib'), source_format='free')

use signallib, metric => snr

fcode(use('signallib', only=['snr', 'convolution2d']), source_format='free')

use signallib, only: snr, convolution2d
```

class sympy.codegen.fnodes.use_rename(*args, **kwargs)

Represents a renaming in a use statement in Fortran.

Examples

```python
>>> from sympy.codegen.fnodes import use_rename, use
>>> from sympy import fcode

ren = use_rename("thingy", "convolution2d")

print(fcode(ren, source_format='free'))
thingy => convolution2d

full = use('signallib', only=['snr', ren])

print(fcode(full, source_format='free'))
use signallib, only: snr, thingy => convolution2d
```
Algorithms (sympy.codegen.algorithms)

sympy.codegen.algorithms.newtons_method(expr, wrt, atol=1e-12, delta=None, debug=False, itermax=None, counter=None)

Generates an AST for Newton-Raphson method (a root-finding algorithm).

Parameters
expr : expression
 wrt : Symbol
 With respect to, i.e. what is the variable.
 atol : number or expr
 Absolute tolerance (stopping criterion)
 delta : Symbol
 Will be a Dummy if None.
 debug : bool
 Whether to print convergence information during iterations
 itermax : number or expr
 Maximum number of iterations.
 counter : Symbol
 Will be a Dummy if None.

Explanation
Returns an abstract syntax tree (AST) based on sympy.codegen.ast for Newton's method of root-finding.

Examples

```python
>>> from sympy import symbols, cos
>>> from sympy.codegen import Assignment
>>> from sympy.codegen.ast import newtons_method
>>> x, dx, atol = symbols('x dx atol')
>>> expr = cos(x) - x**3
>>> algo = newtons_method(expr, x, atol, dx)
>>> algo.has(Assignment(dx, -expr/expr.diff(x)))
True
```
References

[R40]
sympy.codegen.algorithms.newtons_method_function(expr, wrt, params=None,
func_name='newton', attrs=(), *,
delta=delta, **kwargs)

Generates an AST for a function implementing the Newton-Raphson method.

Parameters

- **expr**: expression
 - With respect to, i.e. what is the variable
- **wrt**: Symbol
 - Symbols appearing in expr that are taken as constants during the iterations (these will be accepted as parameters to the generated function).
- **params**: iterable of symbols
 - Name of the generated function.
- **func_name**: str
 - Attribute instances passed as attrs to FunctionDefinition.
- **kwargs**: Keyword arguments passed to sympy.codegen.algorithms.newtons_method() (page 1201).

Examples

```python
>>> from sympy import symbols, cos
cos
from sympy.codegen.algorithms import newtons_method_function
from sympy.codegen.pyutils import render_as_module
x = symbols('x')
expr = cos(x) - x**3
func = newtons_method_function(expr, x)
py_mod = render_as_module(func)  # source code as string
namespace = {}
exec(py_mod, namespace, namespace)
res = eval('newton(0.5)', namespace)
abs(res - 0.865474033102) < 1e-12
True
```

See also:

sympy.codegen.algorithms.newtons_method (page 1201)
Python utilities (sympy.codegen.pyutils)

`sympy.codegen.pyutils.render_as_module(content, standard='python3')`

Renders Python code as a module (with the required imports).

Parameters

`standard`

See the parameter `standard` in `sympy.printing.pycode.pycode()` (page 2251)

C utilities (sympy.codegen.cutils)

`sympy.codegen.cutils.render_as_source_file(content, Printer=class sympy.printing.c.C99CodePrinter, settings=None)`

Renders a C source file (with required #include statements)

Fortran utilities (sympy.codegen.futils)

`sympy.codegen.futils.render_as_module(definitions, name, declarations=(), printer_settings=None)`

Creates a Module instance and renders it as a string.

This generates Fortran source code for a module with the correct use statements.

Parameters

`definitions` : iterable

Passed to `sympy.codegen.fnodes.Module` (page 1195).

`name` : str

Passed to `sympy.codegen.fnodes.Module` (page 1195).

`declarations` : iterable

Passed to `sympy.codegen.fnodes.Module` (page 1195). It will be extended with use statements, ‘implicit none’ and public list generated from definitions.

`printer_settings` : dict

Passed to `FCodePrinter` (default: {
'standard': 2003,
'source_format': 'free'}).
5.8.3 Logic

Contents

Logic

Introduction

The logic module for SymPy allows to form and manipulate logic expressions using symbolic and Boolean values.

Forming logical expressions

You can build Boolean expressions with the standard python operators & (\texttt{And} (page 1210)), \texttt{|} (\texttt{Or} (page 1211)), \texttt{~} (\texttt{Not} (page 1211)):

```python
>>> from sympy import *
>>> x, y = symbols('x,y')
>>> y | (x & y)
>>> x | y
>>> ~x
```

You can also form implications with >> and <<:

```python
>>> x >> y
Implies(x, y)
>>> x << y
Implies(y, x)
```

Like most types in SymPy, Boolean expressions inherit from \texttt{Basic} (page 979):

```python
>>> (y & x).subs({x: True, y: True})
True
>>> (x | y).atoms()
{x, y}
```

The logic module also includes the following functions to derive boolean expressions from their truth tables:

\texttt{sympy.logic.boolalg.SOPform} (\texttt{variables, minterms, dontcares=None})

The SOPform function uses simplified pairs and a redundant group- eliminating algorithm to convert the list of all input combos that generate ‘1’ (the minterms) into the smallest sum-of-products form.

The variables must be given as the first argument.

Return a logical \texttt{Or} (page 1211) function (i.e., the “sum of products” or “SOP” form) that gives the desired outcome. If there are inputs that can be ignored, pass them as a list, too.

The result will be one of the (perhaps many) functions that satisfy the conditions.
Examples

```python
>>> from sympy.logic import SOPform
>>> from sympy import symbols

>>> w, x, y, z = symbols('w x y z')

>>> minterms = [[0, 0, 0, 1], [0, 0, 1, 1],
              [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]]

>>> dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]]

>>> SOPform([w, x, y, z], minterms, dontcares)
(y & z) | (~w & ~x)
```

The terms can also be represented as integers:

```python
>>> minterms = [1, 3, 7, 11, 15]

>>> dontcares = [0, 2, 5]

>>> SOPform([w, x, y, z], minterms, dontcares)
(y & z) | (~w & ~x)
```

They can also be specified using dicts, which does not have to be fully specified:

```python
>>> minterms = [{w: 0, x: 1}, {y: 1, z: 1, x: 0}]

>>> SOPform([w, x, y, z], minterms)
(x & ~w) | (y & z & ~x)
```

Or a combination:

```python
>>> minterms = [4, 7, 11, [1, 1, 1, 1]]

>>> dontcares = [{w : 0, x : 0, y: 0}, 5]

>>> SOPform([w, x, y, z], minterms, dontcares)
(w & y & z) | (~w & ~y) | (x & z & ~w)
```

See also:

POSform (page 1205)

References

[R572], [R573]

sympy.logic.boolalg.POSform(variables, minterms, dontcares=None)

The POSform function uses simplified_pairs and a redundant-group eliminating algorithm to convert the list of all input combinations that generate ‘1’ (the minterms) into the smallest product-of-sums form.

The variables must be given as the first argument.

Return a logical And (page 1210) function (i.e., the “product of sums” or “POS” form) that gives the desired outcome. If there are inputs that can be ignored, pass them as a list, too.

The result will be one of the (perhaps many) functions that satisfy the conditions.
Examples

```python
>>> from sympy.logic import POSform
>>> from sympy import symbols

>>> w, x, y, z = symbols('w x y z')

>>> minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1],
              [1, 0, 1, 1], [1, 1, 1, 1]]
>>> dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]]

>>> POSform([w, x, y, z], minterms, dontcares)
z & (y | ~w)
```

The terms can also be represented as integers:

```python
>>> minterms = [1, 3, 7, 11, 15]
>>> dontcares = [0, 2, 5]

>>> POSform([w, x, y, z], minterms, dontcares)
z & (y | ~w)
```

They can also be specified using dicts, which does not have to be fully specified:

```python
>>> minterms = [{w: 0, x: 1}, {y: 1, z: 1, x: 0}]

>>> POSform([w, x, y, z], minterms)
(x | y) & (x | z) & (~w | ~x)
```

Or a combination:

```python
>>> minterms = [4, 7, 11, [1, 1, 1, 1]]
>>> dontcares = [{w : 0, x : 0, y: 0}, 5]

>>> POSform([w, x, y, z], minterms, dontcares)
(w | x) & (y | ~w) & (z | ~y)
```

See also:

SOPform (page 1204)

References

[R574], [R575]

`sympy.logic.boolalg.ANFform(variables, truthvalues)`

The ANFform function converts the list of truth values to Algebraic Normal Form (ANF). The variables must be given as the first argument.

Return True, False, logical `And` (page 1210) function (i.e., the “Zhegalkin monomial”) or logical `Xor` (page 1212) function (i.e., the “Zhegalkin polynomial”). When True and False are represented by 1 and 0, respectively, then `And` (page 1210) is multiplication and `Xor` (page 1212) is addition.

Formally a “Zhegalkin monomial” is the product (logical `And`) of a finite set of distinct variables, including the empty set whose product is denoted 1 (True). A “Zhegalkin polynomial” is the sum (logical `Xor`) of a set of Zhegalkin monomials, with the empty set denoted by 0 (False).

Parameters

- `variables` : list of variables
truthvalues: list of 1’s and 0’s (result column of truth table)

Examples

```python
>>> from sympy.logic.boolalg import ANFform
>>> from sympy.abc import x, y
>>> ANFform([x], [1, 0])
x ^ True
>>> ANFform([x, y], [0, 1, 1, 1])
x ^ y ^ (x & y)
```

References

[R576]

Boolean functions

class sympy.logic.boolalg.Boolean(*args)
A Boolean object is an object for which logic operations make sense.

as_set()
Rewrites Boolean expression in terms of real sets.

Examples

```python
>>> from sympy import Symbol, Eq, Or, And
>>> x = Symbol('x', real=True)
>>> Eq(x, 0).as_set()
{0}
>>> (x > 0).as_set()
Interval.open(0, oo)
>>> And(-2 < x, x < 2).as_set()
Interval.open(-2, 2)
>>> Or(x < -2, 2 < x).as_set()
Union(Interval.open(-oo, -2), Interval.open(2, oo))
```

equals(other)
Returns True if the given formulas have the same truth table. For two formulas to be equal they must have the same literals.
Examples

```python
>>> from sympy.abc import A, B, C
>>> from sympy import And, Or, Not
>>> (A >> B).equals(~B >> ~A)
True
>>> Not(And(A, B, C)).equals(And(Not(A), Not(B), Not(C)))
False
>>> Not(And(A, Not(A))).equals(Or(B, Not(B)))
False
```

class sympy.logic.boolalg.BooleanTrue

SymPy version of True, a singleton that can be accessed via S.true.

This is the SymPy version of True, for use in the logic module. The primary advantage of using true instead of True is that shorthand Boolean operations like ~ and >> will work as expected on this class, whereas with True they act bitwise on 1. Functions in the logic module will return this class when they evaluate to true.

Notes

There is liable to be some confusion as to when True should be used and when S.true should be used in various contexts throughout SymPy. An important thing to remember is that sympify(True) returns S.true. This means that for the most part, you can just use True and it will automatically be converted to S.true when necessary, similar to how you can generally use 1 instead of S.One.

The rule of thumb is:

“If the boolean in question can be replaced by an arbitrary symbolic Boolean, like Or(x, y) or x > 1, use S.true. Otherwise, use True”

In other words, use S.true only on those contexts where the boolean is being used as a symbolic representation of truth. For example, if the object ends up in the .args of any expression, then it must necessarily be S.true instead of True, as elements of .args must be Basic. On the other hand, == is not a symbolic operation in SymPy, since it always returns True or False, and does so in terms of structural equality rather than mathematical, so it should return True. The assumptions system should use True and False. Aside from not satisfying the above rule of thumb, the assumptions system uses a three-valued logic (True, False, None), whereas S.true and S.false represent a two-valued logic. When in doubt, use True.

“S.true == True is True.”

While “S.true is True” is False, “S.true == True” is True, so if there is any doubt over whether a function or expression will return S.true or True, just use == instead of is to do the comparison, and it will work in either case. Finally, for boolean flags, it’s better to just use if x instead of if x is True. To quote PEP 8:

Do not compare boolean values to True or False using ==.

- Yes: if greeting:
- No: if greeting == True:
- Worse: if greeting is True:
Examples

```python
>>> from sympy import sympify, true, false, Or
>>> sympify(True)
True
>>> _ is True, _ is true
(False, True)
```

```python
>>> Or(true, false)
True
>>> _ is true
True
```

Python operators give a boolean result for true but a bitwise result for True

```python
>>> ~true, ~True
(False, -2)
>>> true >> true, True >> True
(True, 0)
```

See also:

`sympy.logic.boolalg.BooleanFalse` (page 1209)

```python
as_set()
```

Rewrite logic operators and relationals in terms of real sets.

Examples

```python
>>> from sympy import true
>>> true.as_set()
UniversalSet
```

class sympy.logic.boolalg.BooleanFalse

SymPy version of `False`, a singleton that can be accessed via `S.false`.

This is the SymPy version of `False`, for use in the logic module. The primary advantage of using `false` instead of `False` is that shorthand Boolean operations like `~` and `>>` will work as expected on this class, whereas with `False` they act bitwise on 0. Functions in the logic module will return this class when they evaluate to false.
Notes

See the notes section in `sympy.logic.boolalg.BooleanTrue` (page 1208)

Examples

```python
>>> from sympy import sympify, true, false, Or
>>> sympify(False)
False
>>> _ is False, _ is false
(True, False)
```

```python
>>> Or(true, false)
True
>>> _ is true
(True, True)
```

Python operators give a boolean result for false but a bitwise result for False

```python
>>> ~false, ~False
(True, False)
>>> false >> false, False >> False
(True, False)
```

See also:

`sympy.logic.boolalg.BooleanTrue` (page 1208)

as_set()

Rewrite logic operators and relationals in terms of real sets.

Examples

```python
>>> from sympy import false
>>> false.as_set()
EmptySet
```

class `sympy.logic.boolalg.And(*args)`

Logical AND function.

It evaluates its arguments in order, returning false immediately when an argument is false and true if they are all true.
Examples

```python
>>> from sympy.abc import x, y
>>> from sympy import And
>>> x & y
x & y
```

Notes

The & operator is provided as a convenience, but note that its use here is different from its normal use in Python, which is bitwise and. Hence, `And(a, b)` and `a & b` will produce different results if `a` and `b` are integers.

```python
>>> And(x, y).subs(x, 1)
y
```

```python
class sympy.logic.boolalg.Or(*args)
Logical OR function
```

It evaluates its arguments in order, returning true immediately when an argument is true, and false if they are all false.

Examples

```python
>>> from sympy.abc import x, y
>>> from sympy import Or
>>> x | y
x | y
```

Notes

The | operator is provided as a convenience, but note that its use here is different from its normal use in Python, which is bitwise or. Hence, `Or(a, b)` and `a | b` will return different things if `a` and `b` are integers.

```python
>>> Or(x, y).subs(x, 0)
y
```

```python
class sympy.logic.boolalg.Not(arg)
Logical Not function (negation)
```

Returns true if the statement is false or False. Returns false if the statement is true or True.
Examples

```python
>>> from sympy import Not, And, Or
>>> from sympy.abc import x, A, B
>>> Not(True)
False
>>> Not(False)
True
>>> Not(And(True, False))
True
>>> Not(Or(True, False))
False
>>> Not(And(And(True, x), Or(x, False)))
~x
>>> ~x
~x
>>> Not(And(Or(A, B), Or(~A, ~B)))
~((A | B) & (~A | ~B))
```

Notes

- The `~` operator is provided as a convenience, but note that its use here is different from its normal use in Python, which is bitwise not. In particular, `~a` and `Not(a)` will be different if `a` is an integer. Furthermore, since bools in Python subclass from `int`, `~True` is the same as `~1` which is `-2`, which has a boolean value of `True`. To avoid this issue, use the SymPy boolean types `true` and `false`.

```python
>>> from sympy import true
>>> ~true
False
```

class sympy.logic.boolalg.Xor(*args)

Logical XOR (exclusive OR) function.

Returns True if an odd number of the arguments are True and the rest are False.

Returns False if an even number of the arguments are True and the rest are False.

Examples

```python
>>> from sympy.logic.boolalg import Xor
>>> from sympy import symbols
>>> x, y = symbols('x y')
>>> Xor(True, False)
True
>>> Xor(True, True)
False
>>> Xor(True, False, True, True, False)
(continues on next page)
```
True
>>> Xor(True, False, True, False)
False
>>> x ^ y
x ^ y

Notes

The `^` operator is provided as a convenience, but note that its use here is different from its normal use in Python, which is bitwise xor. In particular, `a ^ b` and `Xor(a, b)` will be different if `a` and `b` are integers.

```python
>>> Xor(x, y).subs(y, 0)
x
```

class sympy.logic.boolalg.Nand(*args)
Logical NAND function.
It evaluates its arguments in order, giving True immediately if any of them are False, and False if they are all True.
Returns True if any of the arguments are False Returns False if all arguments are True

Examples

```python
>>> from sympy.logic.boolalg import Nand
>>> from sympy import symbols
>>> x, y = symbols('x y')
>>> Nand(False, True)
True
>>> Nand(True, True)
False
>>> Nand(x, y)
~(x & y)
```

class sympy.logic.boolalg.Nor(*args)
Logical NOR function.
It evaluates its arguments in order, giving False immediately if any of them are True, and True if they are all False.
Returns False if any argument is True Returns True if all arguments are False
Examples

```python
>>> from sympy.logic.boolalg import Nor
>>> from sympy import symbols
>>> x, y = symbols('x y')
```

```python
>>> Nor(True, False)
False
>>> Nor(True, True)
False
>>> Nor(False, True)
False
>>> Nor(False, False)
True
>>> Nor(x, y)
~(x | y)
```

class sympy.logic.boolalg.Xnor(*args)

Logical XNOR function.

Returns False if an odd number of the arguments are True and the rest are False.

Returns True if an even number of the arguments are True and the rest are False.

Examples

```python
>>> from sympy.logic.boolalg import Xnor
>>> from sympy import symbols
>>> x, y = symbols('x y')
>>> Xnor(True, False)
False
>>> Xnor(True, True)
True
>>> Xnor(True, False, True, True, False)
False
>>> Xnor(True, False, True, False)
True
```

class sympy.logic.boolalg.Implies(*args)

Logical implication.

A implies B is equivalent to if A then B. Mathematically, it is written as $A \Rightarrow B$ and is equivalent to $\neg A \lor B$ or $\neg A \mid B$.

Accepts two Boolean arguments; A and B. Returns False if A is True and B is False Returns True otherwise.
Examples

```python
>>> from sympy.logic.boolalg import Implies
>>> from sympy import symbols
>>> x, y = symbols('x y')

>>> Implies(True, False)
False
>>> Implies(False, False)
True
>>> Implies(True, True)
True
>>> Implies(False, True)
True
>>> x >> y
Implies(x, y)
>>> y << x
Implies(x, y)
```

Notes

The `>>` and `<<` operators are provided as a convenience, but note that their use here is different from their normal use in Python, which is bit shifts. Hence, `Implies(a, b)` and `a >> b` will return different things if `a` and `b` are integers. In particular, since Python considers `True` and `False` to be integers, `True >> True` will be the same as `1 >> 1`, i.e., `0`, which has a truth value of `False`. To avoid this issue, use the SymPy objects `true` and `false`.

```python
>>> from sympy import true, false
>>> True >> False
1
>>> true >> false
False
```

class sympy.logic.boolalg.Equivalent(*args)

Equivalence relation.

`Equivalent(A, B)` is True iff A and B are both True or both False.

Returns True if all of the arguments are logically equivalent. Returns False otherwise.

For two arguments, this is equivalent to `Xnor` (page 1214).
Examples

```python
>>> from sympy.logic.boolalg import Equivalent, And
>>> from sympy.abc import x
>>> Equivalent(False, False, False)
True
>>> Equivalent(True, False, False)
False
>>> Equivalent(x, And(x, True))
True
```

class sympy.logic.boolalg.ITE(*args)
If-then-else clause.

ITE(A, B, C) evaluates and returns the result of B if A is true else it returns the result of C. All args must be Booleans.

From a logic gate perspective, ITE corresponds to a 2-to-1 multiplexer, where A is the select signal.

Examples

```python
>>> from sympy.logic.boolalg import ITE, And, Xor, Or
>>> from sympy.abc import x, y, z
>>> ITE(True, False, True)
False
>>> ITE(Or(True, False), And(True, True), Xor(True, True))
True
>>> ITE(x, y, z)
ITE(x, y, z)
```

Trying to use non-Boolean args will generate a TypeError:

```python
>>> ITE(True, [], ())
Traceback (most recent call last):
...
TypeError: expecting bool, Boolean or ITE, not `[]`
```

class sympy.logic.boolalg.Exclusive(*args)
True if only one or no argument is true.

Exclusive(A, B, C) is equivalent to ~(A & B) & ~(A & C) & ~(B & C).

For two arguments, this is equivalent to Xor (page 1212).
Examples

```python
>>> from sympy.logic.boolalg import Exclusive
>>> Exclusive(False, False, False)
True
>>> Exclusive(False, True, False)
True
>>> Exclusive(False, True, True)
False
```

The following functions can be used to handle Algebraic, Conjunctive, Disjunctive, and Negated Normal forms:

sympy.logic.boolalg.to_anf(expr, deep=True)

Converts `expr` to Algebraic Normal Form (ANF).

ANF is a canonical normal form, which means that two equivalent formulas will convert to the same ANF.

A logical expression is in ANF if it has the form

\[1 \oplus a \oplus b \oplus ab \oplus abc \]

i.e. it can be:

- purely true,
- purely false,
- conjunction of variables,
- exclusive disjunction.

The exclusive disjunction can only contain true, variables or conjunction of variables. No negations are permitted.

If `deep` is `False`, arguments of the boolean expression are considered variables, i.e. only the top-level expression is converted to ANF.

Examples

```python
>>> from sympy.logic.boolalg import And, Or, Not, Implies, Equivalent
>>> from sympy.logic.boolalg import to_anf
>>> from sympy.abc import A, B, C
>>> to_anf(Not(A))
A ^ True
>>> to_anf(And(Or(A, B), Not(C)))
A ^ B ^ (A & B) ^ (A & C) ^ (B & C) ^ (A & B & C)
>>> to_anf(Implies(Not(A), Equivalent(B, C)), deep=False)
True ^ ~A ^ (~A & (Equivalent(B, C)))
```

sympy.logic.boolalg.to_cnf(expr, simplify=False, force=False)

Convert a propositional logical sentence `expr` to conjunctive normal form: \((A \mid \neg B \mid \ldots) \& (B \mid C \mid \ldots) \& \ldots\). If `simplify` is `True`, `expr` is evaluated to its simplest CNF form using the Quine-McCluskey algorithm; this may take a long time. If there are more than 8 variables the `force` flag must be set to `True` to simplify (default is `False`).
Examples

```python
>>> from sympy.logic.boolalg import to_cnf
>>> from sympy import A, B, D
>>> to_cnf(~(A | B) | D)
(D | ~A) & (D | ~B)
>>> to_cnf((A | B) & (A | ~A), True)
A | B
```

`sympy.logic.boolalg.to_dnf(expr, simplify=False, force=False)`

Convert a propositional logical sentence `expr` to disjunctive normal form: `((A & ~B & ...) | (B & C & ...) | ...)`. If `simplify` is `True`, `expr` is evaluated to its simplest DNF form using the Quine-McCluskey algorithm; this may take a long time. If there are more than 8 variables, the `force` flag must be set to `True` to simplify (default is `False`).

Examples

```python
>>> from sympy.logic.boolalg import to_dnf
>>> from sympy import A, B, C
>>> to_dnf(B & (A | C))
(A & B) | (B & C)
>>> to_dnf((A & B) | (A & ~B) | (B & C) | (~B & C), True)
A | C
```

`sympy.logic.boolalg.to_nnf(expr, simplify=True)`

Converts `expr` to Negation Normal Form (NNF).

A logical expression is in NNF if it contains only `And` (page 1210), `Or` (page 1211) and `Not` (page 1211), and `Not` (page 1211) is applied only to literals. If `simplify` is `True`, the result contains no redundant clauses.

Examples

```python
>>> from sympy.abc import A, B, C, D
>>> from sympy.logic.boolalg import Not, Equivalent, to_nnf
>>> to_nnf(Not(~(A & ~B) | (C & D)))
(A | B) & (~C | ~D)
>>> to_nnf(Equivalent(A >> B, B >> A))
(A | ~B | (A & ~B)) & (B | ~A | (B & ~A))
```

`sympy.logic.boolalg.is_anf(expr)`

Checks if `expr` is in Algebraic Normal Form (ANF).

A logical expression is in ANF if it has the form

```
1 \oplus a \oplus b \oplus ab \oplus abc
```

i.e. it is purely true, purely false, conjunction of variables or exclusive disjunction. The exclusive disjunction can only contain true, variables or conjunction of variables. No negations are permitted.
Examples

```python
>>> from sympy.logic.boolalg import And, Not, Xor, true, is_anf
>>> from sympy.abc import A, B, C
>>> is_anf(true)
True
>>> is_anf(A)
True
>>> is_anf(And(A, B, C))
True
>>> is_anf(Xor(A, Not(B)))
False
```

-symy.logic.boolalg.is_cnf(expr)-

Test whether or not an expression is in conjunctive normal form.

Examples

```python
>>> from sympy.logic.boolalg import is_cnf
>>> from sympy.abc import A, B, C
>>> is_cnf(A | B | C)
True
>>> is_cnf(A & B & C)
True
>>> is_cnf((A & B) | C)
False
```

-symy.logic.boolalg.is_dnf(expr)-

Test whether or not an expression is in disjunctive normal form.

Examples

```python
>>> from sympy.logic.boolalg import is_dnf
>>> from sympy.abc import A, B, C
>>> is_dnf(A | B | C)
True
>>> is_dnf(A & B & C)
True
>>> is_dnf((A & B) | C)
True
>>> is_dnf(A & (B | C))
False
```

-symy.logic.boolalg.is_nnf(expr, simplified=True)-

Checks if expr is in Negation Normal Form (NNF).

A logical expression is in NNF if it contains only `And` (page 1210), `Or` (page 1211) and `Not` (page 1211), and `Not` (page 1211) is applied only to literals. If `simplified` is `True`, checks if result contains no redundant clauses.
Examples

```python
>>> from sympy.abc import A, B, C
>>> from sympy.logic.boolalg import Not, is_nnf
>>> is_nnf(A & B | ~C)
True
>>> is_nnf((A | ~A) & (B | C))
False
>>> is_nnf((A | ~A) & (B | C), False)
True
>>> is_nnf(Not(A & B) | C)
False
>>> is_nnf((A >> B) & (B >> A))
False
```

`sympy.logic.boolalg.gateinputcount(expr)`

Return the total number of inputs for the logic gates realizing the Boolean expression.

Returns

`int`

Number of gate inputs

Note

Not all Boolean functions count as gate here, only those that are considered to be standard gates. These are: `And` (page 1210), `Or` (page 1211), `Xor` (page 1212), `Not` (page 1211), and `ITE` (page 1216) (multiplexer). `Nand` (page 1213), `Nor` (page 1213), and `Xnor` (page 1214) will be evaluated to `Not(And())` etc.

Examples

```python
>>> from sympy.logic import And, Or, Nand, Not, gateinputcount
>>> from sympy.abc import x, y, z
>>> expr = And(x, y)
>>> gateinputcount(expr)
2
>>> gateinputcount(Or(expr, z))
4
```

Note that `Nand` is automatically evaluated to `Not(And())` so

```python
>>> gateinputcount(Nand(x, y, z))
4
>>> gateinputcount(Not(And(x, y, z)))
4
```

Although this can be avoided by using `evaluate=False`

```python
>>> gateinputcount(Nand(x, y, z, evaluate=False))
3
```
Also note that a comparison will count as a Boolean variable:

```python
>>> gateinputcount(And(x > z, y >= 2))
2
```

As will a symbol: >>> gateinputcount(x) 0

Simplification and equivalence-testing

`sympy.logic.boolalg.simplify_logic(expr, form=None, deep=True, force=False, dontcare=None)`

This function simplifies a boolean function to its simplified version in SOP or POS form. The return type is an `Or` (page 1211) or `And` (page 1210) object in SymPy.

Parameters

- `expr`: Boolean
- `form`: string ('cnf' or 'dnf') or None (default).
 - If 'cnf' or 'dnf', the simplest expression in the corresponding normal form is returned; if None, the answer is returned according to the form with fewest args (in CNF by default).
- `deep`: bool (default True)
 - Indicates whether to recursively simplify any non-boolean functions contained within the input.
- `force`: bool (default False)
 - As the simplifications require exponential time in the number of variables, there is by default a limit on expressions with 8 variables. When the expression has more than 8 variables only symbolical simplification (controlled by `deep`) is made. By setting `force` to True, this limit is removed. Be aware that this can lead to very long simplification times.
- `dontcare`: Boolean
 - Optimize expression under the assumption that inputs where this expression is true are don’t care. This is useful in e.g. Piecewise conditions, where later conditions do not need to consider inputs that are converted by previous conditions. For example, if a previous condition is `And(A, B)`, the simplification of `expr` can be made with don’t cares for `And(A, B)`.

Examples

```python
>>> from sympy.logic import simplify_logic
>>> from sympy.abc import x, y, z
>>> b = (~x & ~y & ~z) | (~x & ~y & z)
>>> simplify_logic(b)
~x & ~y
>>> simplify_logic(x | y, dontcare=y)
x
```
SymPy's `simplify()` function can also be used to simplify logic expressions to their simplest forms.

```
sympy.logic.boolalg.bool_map(bool1, bool2)
```

Return the simplified version of `bool1`, and the mapping of variables that makes the two expressions `bool1` and `bool2` represent the same logical behaviour for some correspondence between the variables of each. If more than one mappings of this sort exist, one of them is returned.

For example, `And(x, y)` is logically equivalent to `And(a, b)` for the mapping `{x: a, y: b}` or `{x: b, y: a}`. If no such mapping exists, return `False`.

Examples

```python
>>> from sympy import SOPform, bool_map, Or, And, Not, Xor
>>> from sympy.abc import w, x, y, z, a, b, c, d
>>> function1 = SOPform([x, z, y], [[1, 0, 1], [0, 0, 1]])
>>> function2 = SOPform([a, b, c], [[1, 0, 1], [1, 0, 0]])
>>> bool_map(function1, function2)
(y & ~z, {y: a, z: b})
```

The results are not necessarily unique, but they are canonical. Here, `(w, z)` could be `(a, d)` or `(d, a):

```python
>>> eq = Or(And(Not(y), w), And(Not(y), z), And(x, y))
>>> eq2 = Or(And(Not(c), a), And(Not(c), d), And(b, c))
>>> bool_map(eq, eq2)
((x & y) | (w & ~y) | (z & ~y), {w: a, x: b, y: c, z: d})
```

Manipulating expressions

The following functions can be used to manipulate Boolean expressions:

```
sympy.logic.boolalg.distribute_and_over_or(expr)
```

Given a sentence `expr` consisting of conjunctions and disjunctions of literals, return an equivalent sentence in CNF.
Examples

```python
>>> from sympy.logic.boolalg import distribute_and_over_or, And, Or, Not
>>> from sympy.abc import A, B, C
>>> distribute_and_over_or(Or(A, And(Not(B), Not(C))))
(A | ~B) & (A | ~C)
```

`sympy.logic.boolalg.distribute_or_over_and(expr)`

Given a sentence `expr` consisting of conjunctions and disjunctions of literals, return an equivalent sentence in DNF.

Note that the output is NOT simplified.

Examples

```python
>>> from sympy.logic.boolalg import distribute_or_over_and, And, Or, Not
>>> from sympy.abc import A, B, C
>>> distribute_or_over_and(And(Or(Not(A), B), C))
(B & C) | (C & ~A)
```

`sympy.logic.boolalg.distribute_xor_over_and(expr)`

Given a sentence `expr` consisting of conjunction and exclusive disjunctions of literals, return an equivalent exclusive disjunction.

Note that the output is NOT simplified.

Examples

```python
>>> from sympy.logic.boolalg import distribute_xor_over_and, And, Xor,
>>> from sympy.abc import A, B, C
>>> distribute_xor_over_and(And(Xor(Not(A), B), C))
(B & C) ^ (C & ~A)
```

`sympy.logic.boolalg.eliminate_implications(expr)`

Change `Implies` (page 1214) and `Equivalent` (page 1215) into `And` (page 1210), `Or` (page 1211), and `Not` (page 1211). That is, return an expression that is equivalent to `expr`, but has only `&`, `|`, and `~` as logical operators.

Examples

```python
>>> from sympy.logic.boolalg import Implies, Equivalent, Not
>>> eliminate_implications
>>> from sympy.abc import A, B, C
>>> eliminate_implications(Implies(A, B))
B | ~A
>>> eliminate_implications(Equivalent(A, B))
(A | ~B) & (B | ~A)
>>> eliminate_implications(Equivalent(A, B, C))
(A | ~C) & (B | ~A) & (C | ~B)
```
Truth tables and related functions

It is possible to create a truth table for a Boolean function with
sympy.logic.boolalg.truth_table(expr, variables, input=True)

Return a generator of all possible configurations of the input variables, and the result of the boolean expression for those values.

Parameters
 expr : Boolean expression
 variables : list of variables
 input : bool (default True)

Indicates whether to return the input combinations.

Examples

```python
>>> from sympy.logic.boolalg import truth_table
>>> from sympy.abc import x,y
>>> table = truth_table(x >> y, [x, y])
>>> for t in table:
...   print('{0} -> {1}'.format(*t))
[0, 0] -> True
[0, 1] -> True
[1, 0] -> False
[1, 1] -> True
```

If input is False, truth_table returns only a list of truth values. In this case, the corresponding input values of variables can be deduced from the index of a given output.

```python
>>> table = truth_table(x | y, [x, y])
>>> list(table)
[[[0, 0], False], [[0, 1], True], [[1, 0], True], [[1, 1], True]]
```

For mapping between integer representations of truth table positions, lists of zeros and ones and symbols, the following functions can be used:

```python
>>> from sympy.utilities.iterables import ibin
>>> vars = [y, x]
>>> values = truth_table(x >> y, vars, input=False)
>>> values = list(values)
>>> values
[True, False, True, True]

>>> for i, value in enumerate(values):
...   print('{0} -> {1}'.format(list(zip(...   vars, ibin(i, len(vars)))), value))
[(y, 0), (x, 0)] -> True
[(y, 0), (x, 1)] -> False
[(y, 1), (x, 0)] -> True
[(y, 1), (x, 1)] -> True
```
sympy.logic.boolalg.integer_to_term \(n, \text{bits=None, str=False} \)

Return a list of length \(\text{bits} \) corresponding to the binary value of \(n \) with small bits to the right (last). If \(\text{bits} \) is omitted, the length will be the number required to represent \(n \). If the bits are desired in reversed order, use the \([::-1]\) slice of the returned list.

If a sequence of all bits-length lists starting from \([0,0,...,0]\) through \([1,1,...,1]\) are desired, pass a non-integer for \(\text{bits} \), e.g. 'all'.

If the bit \textit{string} is desired pass \text{str=True}.

\section*{Examples}

\begin{verbatim}
>>> from sympy.utilities.iterables import ibin
>>> ibin(2)
[1, 0]
>>> ibin(2, 4)
[0, 0, 1, 0]
\end{verbatim}

If all lists corresponding to 0 to \(2^n-1 \), pass a non-integer for \(\text{bits} \):

\begin{verbatim}
>>> bits = 2
>>> for i in ibin(2, 'all'):
... print(i)
(0, 0)
(0, 1)
(1, 0)
(1, 1)
\end{verbatim}

If a bit string is desired of a given length, use \text{str=True}:

\begin{verbatim}
>>> n = 123
>>> bits = 10
>>> ibin(n, bits, \text{str=True})
'0001111011'
>>> ibin(n, bits, \text{str=True})[::-1] # small bits left
'1101111000'
>>> list(ibin(3, 'all', \text{str=True}))
['000', '001', '010', '011', '100', '101', '110', '111']
\end{verbatim}

sympy.logic.boolalg.term_to_integer \(\text{term} \)

Return an integer corresponding to the base-2 digits given by \(\text{term} \).

\subsection*{Parameters}

\text{term} : a string or list of ones and zeros
Examples

```python
>>> from sympy.logic.boolalg import term_to_integer
>>> term_to_integer([1, 0, 0])
4
>>> term_to_integer('100')
4
```

```python
sympy.logic.boolalg.bool_maxterm(k, variables)
```

Return the k-th maxterm.

Each maxterm is assigned an index based on the opposite conventional binary encoding used for minterms. The maxterm convention assigns the value 0 to the direct form and 1 to the complemented form.

Parameters
- `k` : int or list of 1’s and 0’s (complementation pattern)
- `variables` : list of variables

Examples

```python
>>> from sympy.logic.boolalg import bool_maxterm
>>> from sympy.abc import x, y, z
>>> bool_maxterm([1, 0, 1], [x, y, z])
y | ~x | ~z
>>> bool_maxterm(6, [x, y, z])
z | ~x | ~y
```

References

[R578]

```python
sympy.logic.boolalg.bool_minterm(k, variables)
```

Return the k-th minterm.

Minterms are numbered by a binary encoding of the complementation pattern of the variables. This convention assigns the value 1 to the direct form and 0 to the complemented form.

Parameters
- `k` : int or list of 1’s and 0’s (complementation pattern)
- `variables` : list of variables
Examples

```python
>>> from sympy.logic.boolalg import bool_minterm
>>> from sympy.abc import x, y, z
>>> bool_minterm([1, 0, 1], [x, y, z])
x & z & ~y
>>> bool_minterm(6, [x, y, z])
x & y & ~z
```

References

[R579]

sympy.logic.boolalg.bool_monomial(k, variables)

Return the k-th monomial.

Monomials are numbered by a binary encoding of the presence and absences of the variables. This convention assigns the value 1 to the presence of variable and 0 to the absence of variable.

Each boolean function can be uniquely represented by a Zhegalkin Polynomial (Algebraic Normal Form). The Zhegalkin Polynomial of the boolean function with \(n \) variables can contain up to \(2^n \) monomials. We can enumerate all the monomials. Each monomial is fully specified by the presence or absence of each variable.

For example, boolean function with four variables \((a, b, c, d)\) can contain up to \(2^4 = 16\) monomials. The 13-th monomial is the product \(a \& b \& d\), because 13 in binary is 1, 1, 0, 1.

Parameters

- \(k \): int or list of 1’s and 0’s
- `variables`: list of variables

Examples

```python
>>> from sympy.logic.boolalg import bool_monomial
>>> from sympy.abc import x, y, z
>>> bool_monomial([1, 0, 1], [x, y, z])
x & z
>>> bool_monomial(6, [x, y, z])
x & y
```

sympy.logic.boolalg.anf_coeffs(truthvalues)

Convert a list of truth values of some boolean expression to the list of coefficients of the polynomial mod 2 (exclusive disjunction) representing the boolean expression in ANF (i.e., the “Zhegalkin polynomial”).

There are \(2^n\) possible Zhegalkin monomials in \(n \) variables, since each monomial is fully specified by the presence or absence of each variable.

We can enumerate all the monomials. For example, boolean function with four variables \((a, b, c, d)\) can contain up to \(2^4 = 16\) monomials. The 13-th monomial is the product \(a \& b \& d\), because 13 in binary is 1, 1, 0, 1.
A given monomial’s presence or absence in a polynomial corresponds to that monomial’s coefficient being 1 or 0 respectively.

Examples

```python
>>> from sympy.logic.boolalg import anf_coeffs, bool_monomial, Xor
>>> from sympy import a, b, c
>>> truthvalues = [0, 1, 1, 0, 0, 1, 0, 1]
>>> coeffs = anf_coeffs(truthvalues)
>>> coeffs
[0, 1, 0, 0, 1, 0, 1, 0]
>>> polynomial = Xor(*
...     for k, coeff in enumerate(coeffs) if coeff == 1
...     bool_monomial(k, [a, b, c])
... )
>>> polynomial
b ^ c ^ (a & b)
```

sympy.logic.boolalg.to_int_repr(clauses, symbols)

Takes clauses in CNF format and puts them into an integer representation.

Examples

```python
>>> from sympy.logic.boolalg import to_intrepr
>>> from sympy import x, y
>>> to_intrepr([x | y, y]) == [{1, 2}, {2}]
True
```

Inference

This module implements some inference routines in propositional logic.

The function satisfiable will test that a given Boolean expression is satisfiable, that is, you can assign values to the variables to make the sentence True.

For example, the expression \(x \& \neg x\) is not satisfiable, since there are no values for \(x\) that make this sentence True. On the other hand, \((x \mid y) \& (x \mid \neg y) \& (\neg x \mid y)\) is satisfiable with both \(x\) and \(y\) being True.

```python
>>> from sympy.logic.inference import satisfiable
>>> from sympy import Symbol
>>> x = Symbol('x')
>>> y = Symbol('y')
>>> satisfiable(x & ~x)
False
>>> satisfiable((x | y) & (x | ~y) & (~x | y))
{x: True, y: True}
```

As you see, when a sentence is satisfiable, it returns a model that makes that sentence True. If it is not satisfiable it will return False.
sympy.logic.inference.satisfiable(expr, algorithm=None, all_models=False, minimal=False)

Checks satisfiability of a propositional sentence. Returns a model when it succeeds. Returns {true: true} for trivially true expressions.

On setting all_models to True, if given expr is satisfiable then returns a generator of models. However, if expr is unsatisfiable then returns a generator containing the single element False.

Examples

```python
>>> from sympy import A, B
>>> from sympy.logic.inference import satisfiable
>>> satisfiable(A & ~B)
{A: True, B: False}
>>> satisfiable(A & ~A)
False
>>> satisfiable(True)
{True: True}
>>> next(satisfiable(A & ~A, all_models=True))
False
>>> models = satisfiable((A >> B) & B, all_models=True)
>>> next(models)
{A: False, B: True}
>>> next(models)
{A: True, B: True}
>>> def use_models(models):
...     for model in models:
...         if model:
...             # Do something with the model.
...             print(model)
...         else:
...             # Given expr is unsatisfiable.
...             print("UNSAT")
>>> use_models(satisfiable(A >> ~A, all_models=True))
{A: False}
>>> use_models(satisfiable(A ^ A, all_models=True))
UNSAT
```

Sets

Basic Sets

```python
class sympy.sets.sets.Set(*args)
```

The base class for any kind of set.
Explanation

This is not meant to be used directly as a container of items. It does not behave like the built-in set; see `FiniteSet` (page 1241) for that.

Real intervals are represented by the `Interval` (page 1239) class and unions of sets by the `Union` (page 1241) class. The empty set is represented by the `EmptySet` (page 1245) class and available as a singleton as `S.EmptySet`.

property boundary

The boundary or frontier of a set.

Explanation

A point x is on the boundary of a set S if

1. x is in the closure of S. I.e. Every neighborhood of x contains a point in S.
2. x is not in the interior of S. I.e. There does not exist an open set centered on x contained entirely within S.

There are the points on the outer rim of S. If S is open then these points need not actually be contained within S.

For example, the boundary of an interval is its start and end points. This is true regardless of whether or not the interval is open.

Examples

```python
>>> from sympy import Interval
>>> Interval(0, 1).boundary
{0, 1}
>>> Interval(0, 1, True, False).boundary
{0, 1}
```

property closure

Property method which returns the closure of a set. The closure is defined as the union of the set itself and its boundary.

Examples

```python
>>> from sympy import S, Interval
>>> S.Reals.closure
Reals
>>> Interval(0, 1).closure
Interval(0, 1)
```

complement(universe)

The complement of ‘self’ w.r.t the given universe.
Examples

```
>>> from sympy import Interval, S
>>> Interval(0, 1).complement(S.Reals)
Union(Interval.open(-oo, 0), Interval.open(1, oo))

>>> Interval(0, 1).complement(S.UniversalSet)
Complement(UniversalSet, Interval(0, 1))
```

`contains(other)`
Returns a SymPy value indicating whether other is contained in self: true if it is, false if it is not, else an unevaluated Contains expression (or, as in the case of ConditionSet and a union of FiniteSet/Intervals, an expression indicating the conditions for containment).

Examples

```
>>> from sympy import Interval, S
>>> from sympy.abc import x

>>> Interval(0, 1).contains(0.5)
True

As a shortcut it is possible to use the in operator, but that will raise an error unless an affirmative true or false is not obtained.

>>> Interval(0, 1).contains(x)
(0 <= x) & (x <= 1)
>>> x in Interval(0, 1)
 Traceback (most recent call last):
   ...
TypeError: did not evaluate to a bool: None
```

The result of ‘in’ is a bool, not a SymPy value

```
>>> 1 in Interval(0, 2)
True
>>> _ is S.true
False
```

`property inf`
The infimum of self.
Examples

```python
>>> from sympy import Interval, Union
>>> Interval(0, 1).inf
0
>>> Union(Interval(0, 1), Interval(2, 3)).inf
0
```

property interior

Property method which returns the interior of a set. The interior of a set S consists of all points of S that do not belong to the boundary of S.

Examples

```python
>>> from sympy import Interval
>>> Interval(0, 1).interior
Interval.open(0, 1)
>>> Interval(0, 1).boundary.interior
EmptySet
```

intersect(other)

Returns the intersection of ‘self’ and ‘other’.

Examples

```python
>>> from sympy import Interval
>>> Interval(1, 3).intersect(Interval(1, 2))
Interval(1, 2)
```

intersection(other)

Alias for `intersect()` (page 1232)

property is_closed

A property method to check whether a set is closed.
Explanation

A set is closed if its complement is an open set. The closedness of a subset of the reals is determined with respect to R and its standard topology.

Examples

```python
>>> from sympy import Interval
>>> Interval(0, 1).is_closed
True
```

is_disjoint(other)

Returns True if self and other are disjoint.

Examples

```python
>>> from sympy import Interval
>>> Interval(0, 2).is_disjoint(Interval(1, 2))
False
>>> Interval(0, 2).is_disjoint(Interval(3, 4))
True
```

References

[R769]

property is_open

Property method to check whether a set is open.

Explanation

A set is open if and only if it has an empty intersection with its boundary. In particular, a subset A of the reals is open if and only if each one of its points is contained in an open interval that is a subset of A.

Examples

```python
>>> from sympy import S
>>> S.Reals.is_open
True
>>> S.Rationals.is_open
False
```

is_proper_subset(other)

Returns True if self is a proper subset of other.
Examples

```python
>>> from sympy import Interval
>>> Interval(0, 0.5).is_proper_subset(Interval(0, 1))
True
>>> Interval(0, 1).is_proper_subset(Interval(0, 1))
False
```

is_proper_superset(other)

Returns True if self is a proper superset of other.

Examples

```python
>>> from sympy import Interval
>>> Interval(0, 1).is_proper_superset(Interval(0, 0.5))
True
>>> Interval(0, 1).is_proper_superset(Interval(0, 1))
False
```

is_subset(other)

Returns True if self is a subset of other.

Examples

```python
>>> from sympy import Interval
>>> Interval(0, 0.5).is_subset(Interval(0, 1))
True
>>> Interval(0, 1).is_subset(Interval(0, 1, left_open=True))
False
```

is_superset(other)

Returns True if self is a superset of other.

Examples

```python
>>> from sympy import Interval
>>> Interval(0, 0.5).is_superset(Interval(0, 1))
False
>>> Interval(0, 1).is_superset(Interval(0, 1, left_open=True))
True
```

isdisjoint(other)

Alias for `is_disjoint()` (page 1233)

issubset(other)

Alias for `is_subset()` (page 1234)

issuperset(other)

Alias for `is_superset()` (page 1234)
property kind

The kind of a Set

Explanation

Any Set (page 1229) will have kind SetKind (page 1259) which is parametrised by the kind of the elements of the set. For example most sets are sets of numbers and will have kind SetKind(NumberKind). If elements of sets are different in kind than their kind will SetKind(UndefinedKind). See sympy.core.kind.Kind (page 1118) for an explanation of the kind system.

Examples

```
>>> from sympy import Interval, Matrix, FiniteSet, EmptySet, 
    ProductSet, PowerSet

>>> FiniteSet(Matrix([1, 2])).kind
SetKind(MatrixKind(NumberKind))

>>> Interval(1, 2).kind
SetKind(NumberKind)

>>> EmptySet.kind
SetKind()

A sympy.sets.powerset.PowerSet (page 1256) is a set of sets:

>>> PowerSet({1, 2, 3}).kind
SetKind(SetKind(NumberKind))

A ProductSet (page 1242) represents the set of tuples of elements of other sets. Its kind is sympy.core.containers.TupleKind (page 1115) parametrised by the kinds of the elements of those sets:

```
>>> p = ProductSet(FiniteSet(1, 2), FiniteSet(3, 4))
>>> list(p)
[(1, 3), (2, 3), (1, 4), (2, 4)]
>>> p.kind
SetKind(TupleKind(NumberKind, NumberKind))
```

When all elements of the set do not have same kind, the kind will be returned as SetKind(UndefinedKind):

```
>>> FiniteSet(0, Matrix([[1, 2]])).kind
SetKind(UndefinedKind)
```

The kind of the elements of a set are given by the element_kind attribute of SetKind:

```
>>> Interval(1, 2).kind.element_kind
NumberKind
```
See also:

- `NumberKind` (page 1118), `sympy.core.kind.UndefinedKind` (page 1118),
- `sympy.core.containers.TupleKind` (page 1115), `MatrixKind` (page 1405),
- `sympy.matrices.expressions.sets.MatrixSet` (page 1424), `sympy.sets.conditionset.ConditionSet` (page 1257), `Rationals` (page 1246), `Naturals` (page 1246),
- `Integers` (page 1247), `sympy.sets.fancysets.ImageSet` (page 1248), `sympy.sets.fancysets.Range` (page 1249), `sympy.sets.fancysets.ComplexRegion` (page 1251),
- `sympy.sets.powerset.PowerSet` (page 1256), `sympy.sets.sets.ProductSet` (page 1242), `sympy.sets.sets.Interval` (page 1239),
- `sympy.sets.sets.Union` (page 1241), `sympy.sets.sets.Intersection` (page 1242), `sympy.sets.sets.Complement` (page 1244), `sympy.sets.sets.EmptySet` (page 1245),
- `sympy.sets.sets.UniversalSet` (page 1246), `sympy.sets.sets.FiniteSet` (page 1241),
- `sympy.sets.sets.SymmetricDifference` (page 1244), `sympy.sets.sets.DisjointUnion` (page 1245)

**property measure**

The (Lebesgue) measure of self.

**Examples**

```python
>>> from sympy import Interval, Union
>>> Interval(0, 1).measure
1
>>> Union(Interval(0, 1), Interval(2, 3)).measure
2
```

**powerset()**

Find the Power set of self.

**Examples**

```python
>>> from sympy import EmptySet, FiniteSet, Interval

A power set of an empty set:

```python
>>> A = EmptySet
>>> A.powerset()
{EmptySet}
```

A power set of a finite set:

```python
>>> A = FiniteSet(1, 2)
>>> a, b, c = FiniteSet(1), FiniteSet(2), FiniteSet(1, 2)
>>> A.powerset() == FiniteSet(a, b, c, EmptySet)
True
```

A power set of an interval:

```python
>>> Interval(1, 2).powerset()
PowerSet(Interval(1, 2))
```
property sup

The supremum of self.

Examples

```python
>>> from sympy import Interval, Union
>>> Interval(0, 1).sup
1
>>> Union(Interval(0, 1), Interval(2, 3)).sup
3
```

symmetric_difference(other)

Returns symmetric difference of self and other.

Examples

```python
>>> from sympy import Interval, S
>>> Interval(1, 3).symmetric_difference(S.Reals)
Union(Interval.open(-oo, 1), Interval.open(3, oo))
>>> Interval(1, 10).symmetric_difference(S.Reals)
Union(Interval.open(-oo, 1), Interval.open(10, oo))
```

References

[R771]

union(other)

Returns the union of self and other.

Examples

As a shortcut it is possible to use the + operator:

```python
>>> from sympy import Interval, FiniteSet
>>> Interval(0, 1).union(Interval(2, 3))
Union(Interval(0, 1), Interval(2, 3))
>>> Interval(0, 1) + Interval(2, 3)
Union(Interval(0, 1), Interval(2, 3))
>>> Interval(1, 2, True, True) + FiniteSet(2, 3)
Union({3}, Interval.Lopen(1, 2))
```
Similarly it is possible to use the - operator for set differences:

```
>>> Interval(0, 2) - Interval(0, 1)
Interval.Lopen(1, 2)
>>> Interval(1, 3) - FiniteSet(2)
Union(Interval.Ropen(1, 2), Interval.Lopen(2, 3))
```

`sympy.sets.sets.imageset(*args)`

Return an image of the set under transformation f.

Explanation

If this function cannot compute the image, it returns an unevaluated `ImageSet` object:

\[
\{f(x) \mid x \in \text{self}\}
\]

Examples

```python
>>> from sympy import S, Interval, imageset, sin, Lambda
>>> from sympy.abc import x

>>> imageset(x, 2*x, Interval(0, 2))
Interval(0, 4)

>>> imageset(lambda x: 2*x, Interval(0, 2))
Interval(0, 4)

>>> imageset(Lambda(x, sin(x)), Interval(-2, 1))
ImageSet(Lambda(x, sin(x)), Interval(-2, 1))

>>> imageset(sin, Interval(-2, 1))
ImageSet(Lambda(x, sin(x)), Interval(-2, 1))

>>> imageset('lambda y: x + y', Interval(-2, 1))
ImageSet(Lambda(y, x + y), Interval(-2, 1))
```

Expressions applied to the set of Integers are simplified to show as few negatives as possible and linear expressions are converted to a canonical form. If this is not desirable then the unevaluated `ImageSet` should be used.

```python
>>> imageset(x, -2*x + 5, S.Integers)
ImageSet(Lambda(x, 2*x + 1), Integers)
```

See also:

`sympy.sets.fancysets.ImageSet` (page 1248)
Elementary Sets

class sympy.sets.sets.Interval(start, end, left_open=False, right_open=False)
Represents a real interval as a Set.

Usage:
Returns an interval with end points start and end.
For left_open=True (default left_open is False) the interval will be open on the left. Similarly, for right_open=True the interval will be open on the right.

Examples

```python
>>> from sympy import Symbol, Interval
>>> Interval(0, 1)
Interval(0, 1)
>>> Interval.Ropen(0, 1)
Interval.Ropen(0, 1)
>>> Interval.Ropen(0, 1)
Interval.Ropen(0, 1)
>>> Interval.Lopen(0, 1)
Interval.Lopen(0, 1)
>>> Interval.open(0, 1)
Interval.open(0, 1)
>>> a = Symbol('a', real=True)
>>> Interval(0, a)
Interval(0, a)
```

Notes

- Only real end points are supported
- Interval(a, b) with a > b will return the empty set
- Use the evalf() method to turn an Interval into an mpmath mpi interval instance

References

[R772]
classmethod Lopen(a, b)
Return an interval not including the left boundary.
classmethod Ropen(a, b)
Return an interval not including the right boundary.
as_relational(x)
Rewrite an interval in terms of inequalities and logic operators.
property end

The right end point of the interval.
This property takes the same value as the sup property.

Examples

```python
from sympy import Interval
>>> Interval(0, 1).end
1
```

property is_left_unbounded

Return True if the left endpoint is negative infinity.

property is_right_unbounded

Return True if the right endpoint is positive infinity.

property left_open

True if interval is left-open.

Examples

```python
from sympy import Interval
>>> Interval(0, 1, left_open=True).left_open
True
>>> Interval(0, 1, left_open=False).left_open
False
```

classmethod open(a, b)

Return an interval including neither boundary.

property right_open

True if interval is right-open.

Examples

```python
from sympy import Interval
>>> Interval(0, 1, right_open=True).right_open
True
>>> Interval(0, 1, right_open=False).right_open
False
```

property start

The left end point of the interval.
This property takes the same value as the inf property.
Examples

```python
>>> from sympy import Interval
>>> Interval(0, 1).start
0
```

class sympy.sets.sets.FiniteSet(*args, **kwargs)

Represents a finite set of Sympy expressions.

Examples

```python
>>> from sympy import FiniteSet, Symbol, Interval, Naturals0
>>> FiniteSet(1, 2, 3, 4)
{1, 2, 3, 4}
>>> 3 in FiniteSet(1, 2, 3, 4)
True
>>> FiniteSet(1, (1, 2), Symbol('x'))
{1, x, (1, 2)}
>>> FiniteSet(Interval(1, 2), Naturals0, {1, 2})
FiniteSet({1, 2}, Interval(1, 2), Naturals0)
```

References

[R773]

as_relational(symbol)

Rewrite a FiniteSet in terms of equalities and logic operators.

Compound Sets

class sympy.sets.sets.Union(*args, **kwargs)

Represents a union of sets as a Set (page 1229).
Examples

```python
>>> from sympy import Union, Interval
>>> Union(Interval(1, 2), Interval(3, 4))
Union(Interval(1, 2), Interval(3, 4))
```

The Union constructor will always try to merge overlapping intervals, if possible. For example:

```python
>>> Union(Interval(1, 2), Interval(2, 3))
Interval(1, 3)
```

See also:

Intersection (page 1242)

References

[R774]

as_relnalional(symbol)

Rewrite a Union in terms of equalities and logic operators.

class sympy.sets.sets.Intersection(*args, **kwargs)

Represents an intersection of sets as a Set (page 1229).

Examples

```python
>>> from sympy import Intersection, Interval
>>> Intersection(Interval(1, 3), Interval(2, 4))
Interval(2, 3)
```

We often use the .intersect method

```python
>>> Interval(1,3).intersect(Interval(2,4))
Interval(2, 3)
```

See also:

Union (page 1241)

References

[R775]

as_relnalional(symbol)

Rewrite an Intersection in terms of equalities and logic operators.

class sympy.sets.sets.ProductSet(*sets, **assumptions)

Represents a Cartesian Product of Sets.
Explanation

Returns a Cartesian product given several sets as either an iterable or individual arguments.
Can use * operator on any sets for convenient shorthand.

Examples

```python
>>> from sympy import Interval, FiniteSet, ProductSet
>>> I = Interval(0, 5); S = FiniteSet(1, 2, 3)
>>> ProductSet(I, S)
ProductSet(Interval(0, 5), {1, 2, 3})

>>> (2, 2) in ProductSet(I, S)
True

>>> Interval(0, 1) * Interval(0, 1) # The unit square
ProductSet(Interval(0, 1), Interval(0, 1))

>>> coin = FiniteSet('H', 'T')
>>> set(coin**2)
{(H, H), (H, T), (T, H), (T, T)}
```

The Cartesian product is not commutative or associative e.g.:

```python
>>> I*S == S*I
False
>>> (I*I)*I == I*(I*I)
False
```

Notes

- Passes most operations down to the argument sets

References

[R776]

property is_iterable

A property method which tests whether a set is iterable or not. Returns True if set is iterable, otherwise returns False.
Examples

```python
>>> from sympy import FiniteSet, Interval
>>> I = Interval(0, 1)
>>> A = FiniteSet(1, 2, 3, 4, 5)
>>> I.is_iterable
False
>>> A.is_iterable
True
```

```python
class sympy.sets.sets.Complement(a, b, evaluate=True)

Represents the set difference or relative complement of a set with another set.

\[
A - B = \{ x \in A \mid x \notin B \}
\]

### Examples

```python
>>> from sympy import Complement, FiniteSet
>>> Complement(FiniteSet(0, 1, 2), FiniteSet(1))
{0, 2}
```

**See also:**

*Intersection* (page 1242), *Union* (page 1241)

### References

[R777]

as_relational(symbol)

Rewrite a complement in terms of equalities and logic operators

static reduce(A, B)

Simplify a *Complement* (page 1244).

### SymmetricDifference

```python
class sympy.sets.sets.SymmetricDifference(a, b, evaluate=True)

Represents the set of elements which are in either of the sets and not in their intersection.

Examples

```python```

```python
>>> from sympy import SymmetricDifference, FiniteSet
>>> SymmetricDifference(FiniteSet(1, 2, 3), FiniteSet(3, 4, 5))
{1, 2, 4, 5}
```

**See also:**

*Complement* (page 1244), *Union* (page 1241)
References

[R778]

`as_relational(symbol)`
Rewrite a symmetric_difference in terms of equalities and logic operators

```python
class sympy.sets.sets.DisjointUnion(*sets)
```
Represents the disjoint union (also known as the external disjoint union) of a finite number of sets.

Examples

```python
>>> from sympy import DisjointUnion, FiniteSet, Interval, Union, Symbol
>>> A = FiniteSet(1, 2, 3)
>>> B = Interval(0, 5)
>>> DisjointUnion(A, B)
DisjointUnion({1, 2, 3}, Interval(0, 5))
```

References


Singleton Sets

```python
class sympy.sets.sets.EmptySet
```
Represents the empty set. The empty set is available as a singleton as `S.EmptySet`.

Examples

```python
>>> from sympy import S, Interval
>>> S.EmptySet
EmptySet
```

See also:

UniversalSet (page 1246)
class sympy.sets.sets.UniversalSet

Represents the set of all things. The universal set is available as a singleton as S.UniversalSet.

Examples

```python
>>> from sympy import S, Interval
>>> S.UniversalSet
UniversalSet

>>> Interval(1, 2).intersect(S.UniversalSet)
Interval(1, 2)
```

See also:

EmptySet (page 1245)

References

[R780]

Special Sets

class sympy.sets.fancysets.Rationals

Represents the rational numbers. This set is also available as the singleton S.Rationals.

Examples

```python
>>> from sympy import S
>>> S.Half in S.Rationals
True
>>> iterable = iter(S.Rationals)
>>> [next(iterable) for i in range(12)]
[0, 1, -1, 1/2, 2, -1/2, -2, 1/3, 3, -1/3, -3, 2/3]
```

class sympy.sets.fancysets.Naturals

Represents the natural numbers (or counting numbers) which are all positive integers starting from 1. This set is also available as the singleton S.Naturals.
Examples

```
>>> from sympy import S, Interval, pprint
>>> 5 in S.Naturals
True
>>> iterable = iter(S.Naturals)
>>> next(iterable)
1
>>> next(iterable)
2
>>> next(iterable)
3
>>> pprint(S.Naturals.intersect(Interval(0, 10)))
{1, 2, ..., 10}
```

See also:

**Naturals0** *(page 1247)*

- non-negative integers (i.e. includes 0, too)

**Integers** *(page 1247)*

- also includes negative integers

**class** `sympy.sets.fancysets.Naturals0`

Represents the whole numbers which are all the non-negative integers, inclusive of zero.

See also:

**Naturals** *(page 1246)*

- positive integers; does not include 0

**Integers** *(page 1247)*

- also includes the negative integers

**class** `sympy.sets.fancysets.Integers`

Represents all integers: positive, negative and zero. This set is also available as the singleton `S.Integers`.

Examples

```
>>> from sympy import S, Interval, pprint
>>> 5 in S.Naturals
True
>>> iterable = iter(S.Integers)
>>> next(iterable)
0
>>> next(iterable)
1
>>> next(iterable)
-1
>>> next(iterable)
2
```
>>> pprint(S.Integers.intersect(Interval(-4, 4)))
{-4, -3, ..., 4}

See also:

*Naturals0* (page 1247)
on-negative integers

*Integers* (page 1247)
positive and negative integers and zero

class sympy.sets.fancysets.Reals
Represents all real numbers from negative infinity to positive infinity, including all integer, rational and irrational numbers. This set is also available as the singleton S.Reals.

Examples

```python
>>> from sympy import S, Rational, pi, I
>>> 5 in S.Reals
True
>>> Rational(-1, 2) in S.Reals
True
>>> pi in S.Reals
True
>>> 3*I in S.Reals
False
>>> S.Reals.contains(pi)
True
```

See also:

*ComplexRegion* (page 1251)

class sympy.sets.fancysets.Complexes
The Set of all complex numbers

Examples

```python
>>> from sympy import S, I
>>> S.Complexes
Complexes
>>> 1 + I in S.Complexes
True
```

See also:

*Reals* (page 1248), *ComplexRegion* (page 1251)

class sympy.sets.fancysets.ImageSet(*flambda, *sets*)
Image of a set under a mathematical function. The transformation must be given as a Lambda function which has as many arguments as the elements of the set upon which it operates, e.g. 1 argument when acting on the set of integers or 2 arguments when acting on a complex region.
This function is not normally called directly, but is called from `imageset`.

**Examples**

```python
>>> from sympy import Symbol, S, pi, Dummy, Lambda

>>> from sympy import FiniteSet, ImageSet, Interval

>>> x = Symbol('x')
>>> N = S.Naturals
>>> squares = ImageSet(Lambda(x, x**2), N) # {x**2 for x in N}
>>> 4 in squares
True
>>> 5 in squares
False

>>> FiniteSet(0, 1, 2, 3, 4, 5, 6, 7, 9, 10).intersect(squares)
{1, 4, 9}

>>> square_iterable = iter(squares)
>>> for i in range(4):
... next(square_iterable)
1
4
9
16
```

If you want to get value for $x = 2, 1/2$ etc. (Please check whether the $x$ value is in base_set or not before passing it as args)

```python
>>> squares.lamda(2)
4
>>> squares.lamda(S(1)/2)
1/4
```

```python
>>> n = Dummy('n')
>>> solutions = ImageSet(Lambda(n, n*pi), S.Integers) # solutions of $\sin(x) = 0$
>>> dom = Interval(-1, 1)
>>> dom.intersect(solutions)
{0}
```

See also:

- `sympy.sets.sets.imageset` (page 1238)

**class** *sympy.sets.fancysets.Range(*args)*

Represents a range of integers. Can be called as `Range(stop)`, `Range(start, stop)`, or `Range(start, stop, step)`; when step is not given it defaults to 1.

`Range(stop)` is the same as `Range(0, stop, 1)` and the stop value (just as for Python ranges) is not included in the Range values.
>>> from sympy import Range
>>> list(Range(3))
[0, 1, 2]

The step can also be negative:

>>> list(Range(10, 0, -2))
[10, 8, 6, 4, 2]

The stop value is made canonical so equivalent ranges always have the same args:

>>> Range(0, 10, 3)
Range(0, 12, 3)

Infinite ranges are allowed. \( \infty \) and \(-\infty\) are never included in the set (Range is always a subset of Integers). If the starting point is infinite, then the final value is \( \text{stop} - \text{step} \). To iterate such a range, it needs to be reversed:

>>> from sympy import oo
>>> r = Range(-oo, 1)
>>> r[-1]
0
>>> next(iter(r))
Traceback (most recent call last):
...
TypeError: Cannot iterate over Range with infinite start
>>> next(iter(r.reversed))
0

Although Range is a Set (and supports the normal set operations) it maintains the order of the elements and can be used in contexts where range would be used.

>>> from sympy import Interval
>>> Range(0, 10, 2).intersect(Interval(3, 7))
Range(4, 8, 2)
>>> list(_)
[4, 6]

Although slicing of a Range will always return a Range – possibly empty – an empty set will be returned from any intersection that is empty:

>>> Range(3)[::]
Range(0, 0, 1)
>>> Range(3).intersect(Interval(4, oo))
EmptySet
>>> Range(3).intersect(Range(4, oo))
EmptySet

Range will accept symbolic arguments but has very limited support for doing anything other than displaying the Range:

>>> from sympy import Symbol, pprint
>>> from sympy.abc import i, j, k
>>> Range(i, j, k).start

(continues on next page)
Better success will be had when using integer symbols:

```python
>>> n = Symbol('n', integer=True)
>>> r = Range(n, n + 20, 3)
>>> r.inf
n
>>> pprint(r)
{n, n + 3, ..., n + 18}
```

`as_relational(x)`

Rewrite a Range in terms of equalities and logic operators.

**property reversed**

Return an equivalent Range in the opposite order.

**Examples**

```python
>>> from sympy import Range
>>> Range(10).reversed
Range(9, -1, -1)
```

**class sympy.sets.fancysets.ComplexRegion(sets, polar=False)**

Represents the Set of all Complex Numbers. It can represent a region of Complex Plane in both the standard forms Polar and Rectangular coordinates.

- **Polar Form**
  
  Input is in the form of the ProductSet or Union of ProductSets of the intervals of $r$ and $\theta$, and use the flag `polar=True`.

  $$Z = \{ z \in \mathbb{C} \mid z = r \times (\cos(\theta) + I \sin(\theta)), r \in [r], \theta \in [\theta] \}$$

- **Rectangular Form**
  
  Input is in the form of the ProductSet or Union of ProductSets of interval of $x$ and $y$, the real and imaginary parts of the Complex numbers in a plane. Default input type is in rectangular form.

  $$Z = \{ z \in \mathbb{C} \mid z = x + I y, x \in [\text{re}(z)], y \in [\text{im}(z)] \}$$
Examples

```python
>>> from sympy import ComplexRegion, Interval, S, I, Union

>>> a = Interval(2, 3)
>>> b = Interval(4, 6)
>>> c1 = ComplexRegion(a*b) # Rectangular Form
>>> c1
CartesianComplexRegion(ProductSet(Interval(2, 3), Interval(4, 6)))

• c1 represents the rectangular region in complex plane surrounded by the coordinates (2, 4), (3, 4), (3, 6) and (2, 6), of the four vertices.

>>> c = Interval(1, 8)
>>> c2 = ComplexRegion(Union(a*b, b*c))
>>> c2
CartesianComplexRegion(Union(ProductSet(Interval(2, 3), Interval(4, 6)),
ProductSet(Interval(4, 6), Interval(1, 8))))

• c2 represents the Union of two rectangular regions in complex plane. One of them surrounded by the coordinates of c1 and other surrounded by the coordinates (4, 1), (6, 1), (6, 8) and (4, 8).

>>> 2.5 + 4.5*I in c1
True
>>> 2.5 + 6.5*I in c1
False

>>> r = Interval(0, 1)
>>> theta = Interval(0, 2*S.Pi)
>>> c2 = ComplexRegion(r*theta, polar=True) # Polar Form
>>> c2 # unit Disk
PolarComplexRegion(ProductSet(Interval(0, 1), Interval.Ropen(0, 2*pi)))

• c2 represents the region in complex plane inside the Unit Disk centered at the origin.

>>> 0.5 + 0.5*I in c2
True
>>> 1 + 2*I in c2
False

>>> unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, 2*S.Pi),
polar=True)
>>> upper_half_unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, S.Pi),
polar=True)
>>> intersection = unit_disk.intersect(upper_half_unit_disk)
>>> intersection
PolarComplexRegion(ProductSet(Interval(0, 1), Interval(0, pi)))
>>> intersection == upper_half_unit_disk
True
```
property a_interval

Return the union of intervals of $x$ when, self is in rectangular form, or the union of intervals of $r$ when self is in polar form.

Examples

```python
>>> from sympy import Interval, ComplexRegion, Union
>>> a = Interval(2, 3)
>>> b = Interval(4, 5)
>>> c = Interval(1, 7)
>>> C1 = ComplexRegion(a*b)
>>> C1.a_interval
Interval(2, 3)
>>> C2 = ComplexRegion(Union(a*b, b*c))
>>> C2.a_interval
Union(Interval(2, 3), Interval(4, 5))
```

property b_interval

Return the union of intervals of $y$ when, self is in rectangular form, or the union of intervals of $\theta$ when self is in polar form.

Examples

```python
>>> from sympy import Interval, ComplexRegion, Union
>>> a = Interval(2, 3)
>>> b = Interval(4, 5)
>>> c = Interval(1, 7)
>>> C1 = ComplexRegion(a*b)
>>> C1.b_interval
Interval(4, 5)
>>> C2 = ComplexRegion(Union(a*b, b*c))
>>> C2.b_interval
Interval(1, 7)
```

classmethod from_real(sets)

Converts given subset of real numbers to a complex region.
Examples

```python
from sympy import Interval, ComplexRegion

unit = Interval(0, 1)
ComplexRegion.from_real(unit)
CartesianComplexRegion(ProductSet(Interval(0, 1), {0}))
```

**property psets**

Return a tuple of sets (ProductSets) input of the self.

Examples

```python
from sympy import Interval, ComplexRegion, Union

a = Interval(2, 3)
b = Interval(4, 5)
c = Interval(1, 7)
C1 = ComplexRegion(a*b)
C1.psets
(ProductSet(Interval(2, 3), Interval(4, 5)),)
C2 = ComplexRegion(Union(a*b, b*c))
C2.psets
(ProductSet(Interval(2, 3), Interval(4, 5)), ProductSet(Interval(4, 5), Interval(1, 7)))
```

**property sets**

Return raw input sets to the self.

Examples

```python
from sympy import Interval, ComplexRegion, Union

a = Interval(2, 3)
b = Interval(4, 5)
c = Interval(1, 7)
C1 = ComplexRegion(a*b)
C1.sets
ProductSet(Interval(2, 3), Interval(4, 5))
C2 = ComplexRegion(Union(a*b, b*c))
C2.sets
Union(ProductSet(Interval(2, 3), Interval(4, 5)),
 ProductSet(Interval(4, 5), Interval(1, 7)))
```

class sympy.sets.fancysets.CartesianComplexRegion(sets)

Set representing a square region of the complex plane.

\[
Z = \{ z \in \mathbb{C} \mid z = x + iy, x \in [\text{re}(z)], y \in [\text{im}(z)] \}\]
Examples

```python
>>> from sympy import ComplexRegion, I, Interval
>>> region = ComplexRegion(Interval(1, 3) * Interval(4, 6))
>>> 2 + 5*I in region
True
>>> 5*I in region
False
```

See also:

- `ComplexRegion` (page 1251), `PolarComplexRegion` (page 1255), `Complexes` (page 1248)

```python
class sympy.sets.fancysets.PolarComplexRegion(sets)
```

Set representing a polar region of the complex plane.

\[ Z = \{ z \in \mathbb{C} \mid z = r \times (\cos(\theta) + I\sin(\theta)), r \in [r], \theta \in [\theta] \}\]

Examples

```python
>>> from sympy import ComplexRegion, Interval, oo, pi, I
>>> rset = Interval(0, oo)
>>> thetaset = Interval(0, pi)
>>> upper_half_plane = ComplexRegion(rset * thetaset, polar=True)
>>> 1 + I in upper_half_plane
True
>>> 1 - I in upper_half_plane
False
```

See also:

- `ComplexRegion` (page 1251), `CartesianComplexRegion` (page 1254), `Complexes` (page 1248)

```python
sympy.sets.fancysets.normalize_theta_set(theta)
```

Normalize a Real Set \( \theta \) in the interval \([0, 2\pi)\). It returns a normalized value of \( \theta \) in the Set. For Interval, a maximum of one cycle \([0, 2\pi]\), is returned i.e. for \( \theta \) equal to \([0, 10\pi]\), returned normalized value would be \([0, 2\pi]\). As of now intervals with end points as non-multiples of \( \pi \) is not supported.

Raises

- `NotImplementedError`
  The algorithms for Normalizing theta Set are not yet implemented.

- `ValueError`
  The input is not valid, i.e. the input is not a real set.

- `RuntimeError`
  It is a bug, please report to the github issue tracker.
Examples

```python
>>> from sympy.sets.fancysets import normalize_theta_set
>>> from sympy import Interval, FiniteSet, pi
>>> normalize_theta_set(Interval(9*pi/2, 5*pi))
Interval(pi/2, pi)
>>> normalize_theta_set(Interval(-3*pi/2, pi/2))
Interval.Ropen(0, 2*pi)
>>> normalize_theta_set(Interval(-pi/2, pi/2))
Union(Interval(0, pi/2), Interval.Ropen(3*pi/2, 2*pi))
>>> normalize_theta_set(Interval(-4*pi, 3*pi))
Interval.Ropen(0, 2*pi)
>>> normalize_theta_set(Interval(-3*pi/2, -pi/2))
Interval(pi/2, 3*pi/2)
>>> normalize_theta_set(FiniteSet(0, pi, 3*pi))
{0, pi}
```

Power sets

class sympy.sets.powerset.PowerSet(arg, evaluate=None)

A symbolic object representing a power set.

Parameters

arg : Set
    The set to take power of.

evaluate : bool
    The flag to control evaluation.

If the evaluation is disabled for finite sets, it can take advantage of using subset test as a membership test.

Notes

Power set \( \mathcal{P}(S) \) is defined as a set containing all the subsets of \( S \).
If the set \( S \) is a finite set, its power set would have \( 2^{|S|} \) elements, where \( |S| \) denotes the cardinality of \( S \).

Examples

```python
>>> from sympy import PowerSet, S, FiniteSet

A power set of a finite set:

```
>>> PowerSet(S.EmptySet)
PowerSet(EmptySet)
>>> PowerSet(PowerSet(S.EmptySet))
PowerSet(PowerSet(EmptySet))

A power set of an infinite set:

>>> PowerSet(S.Reals)
PowerSet(Reals)

Evaluating the power set of a finite set to its explicit form:

>>> PowerSet(FiniteSet(1, 2, 3)).rewrite(FiniteSet)
FiniteSet(EmptySet, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3})

References

[R781], [R782]

Condition Sets

class sympy.sets.conditionset.ConditionSet(sym, condition, base_set=UniversalSet)
Set of elements which satisfies a given condition.

\{x \mid \text{condition}(x) = \text{True}, x \in S\}

Examples

>>> from sympy import Symbol, S, ConditionSet, pi, Eq, sin, Interval
>>> from sympy.abc import x, y, z

>>> sin_sols = ConditionSet(x, Eq(sin(x), 0), Interval(0, 2*pi))
>>> 2*pi in sin_sols
True
>>> pi/2 in sin_sols
False
>>> 3*pi in sin_sols
False
>>> 5 in ConditionSet(x, x**2 > 4, S.Reals)
True

If the value is not in the base set, the result is false:

>>> 5 in ConditionSet(x, x**2 > 4, Interval(2, 4))
False
Notes

Symbols with assumptions should be avoided or else the condition may evaluate without consideration of the set:

```python
>>> n = Symbol('n', negative=True)
>>> cond = (n > 0); cond
False
>>> ConditionSet(n, cond, S.Integers)
EmptySet
```

Only free symbols can be changed by using `subs`:

```python
>>> c = ConditionSet(x, x < 1, {x, z})
>>> c.subs(x, y)
ConditionSet(x, x < 1, {y, z})
```

To check if pi is in c use:

```python
>>> pi in c
False
```

If no base set is specified, the universal set is implied:

```python
>>> ConditionSet(x, x < 1).base_set
UniversalSet
```

Only symbols or symbol-like expressions can be used:

```python
>>> ConditionSet(x + 1, x + 1 < 1, S.Integers)
Traceback (most recent call last):
 ...
ValueError: non-symbol dummy not recognized in condition
```

When the base set is a ConditionSet, the symbols will be unified if possible with preference for the outermost symbols:

```python
>>> ConditionSet(x, x < y, ConditionSet(z, z + y < 2, S.Integers))
ConditionSet(x, (x < y) & (x + y < 2), Integers)
```

class sympy.sets.conditionset.Contains(x, s)

Asserts that `x` is an element of the set `S`.

Examples

```python
>>> from sympy import Symbol, Integer, S, Contains
>>> Contains(Integer(2), S.Integers)
True
>>> Contains(Integer(-2), S.Naturals)
False
>>> i = Symbol('i', integer=True)
>>> Contains(i, S.Naturals)
Contains(i, Naturals)
```
SetKind

class sympy.sets.conditionset.SetKind(element_kind=None)

SetKind is kind for all Sets

Every instance of Set will have kind SetKind parametrised by the kind of the elements of the Set. The kind of the elements might be NumberKind, or TupleKind or something else. When not all elements have the same kind then the kind of the elements will be given as UndefinedKind.

Parameters

element_kind: Kind (optional)

The kind of the elements of the set. In a well defined set all elements will have the same kind. Otherwise the kind should sympy.core.kind.UndefinedKind (page 1118). The element_kind argument is optional but should only be omitted in the case of EmptySet whose kind is simply SetKind()

Examples

```python
>>> from sympy import Interval
>>> Interval(1, 2).kind
SetKind(NumberKind)
```

See also:
sympy.core.kind.NumberKind (page 1118), sympy.matrices.common.MatrixKind (page 1405), sympy.core.containers.TupleKind (page 1115)

Iteration over sets

For set unions, \{a, b\} ∪ \{x, y\} can be treated as \{a, b, x, y\} for iteration regardless of the distinctiveness of the elements, however, for set intersections, assuming that \{a, b\} ∩ \{x, y\} is ∅ or \{a, b\} would not always be valid, since some of a, b, x or y may or may not be the elements of the intersection.

Iterating over the elements of a set involving intersection, complement, or symmetric difference yields (possibly duplicate) elements of the set provided that all elements are known to be the elements of the set. If any element cannot be determined to be a member of a set then the iteration gives TypeError. This happens in the same cases where x in y would give an error.

There are some reasons to implement like this, even if it breaks the consistency with how the python set iterator works. We keep in mind that sympy set comprehension like FiniteSet(*s) from a existing sympy sets could be a common usage. And this approach
would make `FiniteSet(*s)` to be consistent with any symbolic set processing methods like `FiniteSet(*simplify(s))`.

### 5.8.4 Matrices

**Contents**

**Matrices**

A module that handles matrices. Includes functions for fast creating matrices like zero, one/eye, random matrix, etc. Contents:

**Matrices (linear algebra)**

**Creating Matrices**

The linear algebra module is designed to be as simple as possible. First, we import and declare our first `Matrix` object:

```python
>>> from sympy.interactive.printing import init_printing
>>> init_printing(use_unicode=False, wrap_line=False)
>>> from sympy.matrices import Matrix, eye, zeros, ones, diag, GramSchmidt
>>> M = Matrix([[1,0,0], [0,0,0]]); M
[1 0 0]
[]
[0 0 0]
>>> Matrix([[M, (0, 0, -1)]])
[1 0 0]
[]
[0 0 0]
[]
[0 0 -1]
>>> Matrix([[1, 2, 3]])
[1 2 3]
>>> Matrix([[1, 2, 3]])
[1]
[]
[2]
[]
[3]
```

In addition to creating a matrix from a list of appropriately-sized lists and/or matrices, SymPy also supports more advanced methods of matrix creation including a single list of values and dimension inputs:

```python
>>> Matrix(2, 3, [1, 2, 3, 4, 5, 6])
[1 2 3]
(continues on next page)```
More interesting (and useful), is the ability to use a 2-variable function (or lambda) to create a matrix. Here we create an indicator function which is 1 on the diagonal and then use it to make the identity matrix:

```python
>>> def f(i,j):
...     if i == j:
...         return 1
...     else:
...         return 0
...

>>> Matrix(4, 4, f)
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
```

Finally let’s use lambda to create a 1-line matrix with 1’s in the even permutation entries:

```python
>>> Matrix(3, 4, lambda i,j: 1 - (i+j) % 2)
[1 0 1 0]
[0 1 0 1]
[1 0 1 0]
```

There are also a couple of special constructors for quick matrix construction: eye is the identity matrix, zeros and ones for matrices of all zeros and ones, respectively, and diag to put matrices or elements along the diagonal:

```python
>>> eye(4)
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]

>>> zeros(2)
[0 0]
[0 0]

>>> zeros(2, 5)
[0 0 0 0 0]
[0 0 0 0 0]

>>> ones(3)
[1 1 1]
```
Basic Manipulation

While learning to work with matrices, let’s choose one where the entries are readily identifiable. One useful thing to know is that while matrices are 2-dimensional, the storage is not and so it is allowable - though one should be careful - to access the entries as if they were a 1-d list.

```python
>>> M = Matrix(2, 3, [1, 2, 3, 4, 5, 6])
>>> M[4]
5
```

Now, the more standard entry access is a pair of indices which will always return the value at the corresponding row and column of the matrix:

```python
>>> M[1, 2]
6
>>> M[0, 0]
1
>>> M[1, 1]
5
```

Since this is Python we’re also able to slice submatrices; slices always give a matrix in return, even if the dimension is 1 x 1:

```python
>>> M[0:2, 0:2]
[1 2]
[4 5]
>>> M[2:2, 2]
[]
>>> M[:, 2]
[3]
[6]
>>> M[1:2]
[3]
```

In the second example above notice that the slice 2:2 gives an empty range. Note also (in keeping with 0-based indexing of Python) the first row/column is 0.
You cannot access rows or columns that are not present unless they are in a slice:

```python
>>> M[:, 10]  # the 10-th column (not there)
Traceback (most recent call last):
...
IndexError: Index out of range: a[[0, 10]]
>>> M[:, 10:11]  # the 10-th column (if there)
[]
>>> M[:, :10]  # all columns up to the 10-th
[1 2 3]
[4 5 6]
```

Slicing an empty matrix works as long as you use a slice for the coordinate that has no size:

```python
>>> Matrix(0, 3, []).[:, 1]
[]
```

Slicing gives a copy of what is sliced, so modifications of one object do not affect the other:

```python
>>> M2 = M[:, :]
>>> M2[0, 0] = 100
>>> M[0, 0] == 100
False
```

Notice that changing M2 didn’t change M. Since we can slice, we can also assign entries:

```python
>>> M = Matrix(((1, 2, 3, 4), [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]))
>>> M
[1 2 3 4]
[5 6 7 8]
[9 10 11 12]
[13 14 15 16]
>>> M[2, 2] = M[0, 3] = 0
>>> M
[1 2 3 0]
[5 6 7 8]
[9 10 0 12]
[13 14 15 16]
```

as well as assign slices:

```python
>>> M = Matrix(((1, 2, 3, 4), [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]))
>>> M[2:, 2:] = Matrix(2, 2, lambda i, j: 0)
>>> M
[1 2 3 4]
[5 6 7 8]
(continues on next page)```
All the standard arithmetic operations are supported:

```python
>>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> M - M
[0 0 0]
[0 0 0]
[0 0 0]
>>> M + M
[2 4 6]
[8 10 12]
[14 16 18]
>>> M * M
[30 36 42]
[66 81 96]
[102 126 150]
>>> M2 = Matrix([3, 1, [1, 5, 0]])
>>> M * M2
[11]
[29]
[47]
>>> M ** 2
[30 36 42]
[66 81 96]
[102 126 150]
```

As well as some useful vector operations:

```python
>>> M.row_del(0)
>>> M
[4 5 6]
[7 8 9]
>>> M.col_del(1)
>>> M
[4 6]
[7 9]
```
Recall that the `row_del()` and `col_del()` operations don't return a value - they simply change the matrix object. We can also "glue" together matrices of the appropriate size:

```
>>> M1 = eye(3)
>>> M2 = zeros(3, 4)
>>> M1.row_join(M2)
[1 0 0 0 0 0 0]
[0 1 0 0 0 0 0]
[0 0 1 0 0 0 0]
>>> M3 = zeros(4, 3)
>>> M1.col_join(M3)
[1 0 0]
[0 1 0]
[0 0 1]
[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]
```

**Operations on entries**

We are not restricted to having multiplication between two matrices:

```
>>> M = eye(3)
>>> 2*M
[2 0 0]
[0 2 0]
[0 0 2]
>>> 3*M
[3 0 0]
[0 0 0]
```

(continues on next page)
but we can also apply functions to our matrix entries using applyfunc(). Here we’ll declare a function that double any input number. Then we apply it to the 3x3 identity matrix:

```python
>>> f = lambda x: 2*x
>>> eye(3).applyfunc(f)
[2 0 0]
[]
[0 2 0]
[]
[0 0 2]
```

If you want to extract a common factor from a matrix you can do so by applying gcd to the data of the matrix:

```python
>>> from sympy.abc import x, y
>>> from sympy import gcd
>>> m = Matrix([[x, y], [1, x*y]]).inv('ADJ'); m
 [x*y -y]
[------------------------]
 [2 2]
 [x*y - y x*y - y]
 []
 [-1 x]
 [------------------------]
 [2 2]
 [x*y - y x*y - y]
```

```python
>>> gcd(tuple(_))
1

2
x*y - y
```

```python
>>> m/_
 [x*y -y]
[]
[-1 x]
```

One more useful matrix-wide entry application function is the substitution function. Let’s declare a matrix with symbolic entries then substitute a value. Remember we can substitute anything - even another symbol!:

```python
>>> from sympy import Symbol
>>> x = Symbol('x')
>>> M = eye(3) * x
>>> M
 [x 0 0]
[]
[0 x 0]
[]
[0 0 x]
```

(continues on next page)
Linear algebra

Now that we have the basics out of the way, let’s see what we can do with the actual matrices. Of course, one of the first things that comes to mind is the determinant:

```python
>>> M = Matrix(((1, 2, 3), [3, 6, 2], [2, 0, 1]))
>>> M.det()
-28
>>> M2 = eye(3)
>>> M2.det()
1
>>> M3 = Matrix(((1, 0, 0), [1, 0, 0], [1, 0, 0]))
>>> M3.det()
0
```

Another common operation is the inverse: In SymPy, this is computed by Gaussian elimination by default (for dense matrices) but we can specify it be done by $LU$ decomposition as well:

```python
>>> M2.inv()
[1 0 0]
[0 1 0]
[0 0 1]
>>> M2.inv(method="LU")
[1 0 0]
[0 1 0]
[0 0 1]
>>> M.inv(method="LU")
[-3/14 1/14 1/2]
[]
[-1/28 5/28 -1/4]
[]
[3/7 -1/7 0]
>>> M * M.inv(method="LU")
```
We can perform a $QR$ factorization which is handy for solving systems:

```python
>>> A = Matrix([[1, 1, 1], [1, 1, 3], [2, 3, 4]])
>>> Q, R = A.QRdecomposition()
>>> Q
[\sqrt{6} -\sqrt{3} -\sqrt{2}]
[6 3 2]
[\sqrt{6} -\sqrt{3} \sqrt{2}]
[6 3 2]
[\sqrt{6} \sqrt{3}]
[6 3 0]
[3 3]
>>> R
[4*\sqrt{6}]
[\sqrt{6} 2*\sqrt{6}]
[3]
[\sqrt{3}]
[0 0]
[0]
>>> Q*R
[1 1 1]
[1 1 3]
[2 3 4]
```

In addition to the solvers in the `solver.py` file, we can solve the system $Ax=b$ by passing the $b$ vector to the matrix $A$'s LU$\text{solve}$ function. Here we'll cheat a little choose $A$ and $x$ then multiply to get $b$. Then we can solve for $x$ and check that it's correct:

```python
>>> A = Matrix([[2, 3, 5], [3, 6, 2], [8, 3, 6]])
>>> x = Matrix([3, 1, [3, 7, 5]])
>>> b = A*x
```
There's also a nice Gram-Schmidt orthogonalizer which will take a set of vectors and orthogonalize them with respect to another. There is an optional argument which specifies whether or not the output should also be normalized, it defaults to False. Let's take some vectors and orthogonalize them - one normalized and one not:

```python
>>> L = [Matrix([2, 3, 5]), Matrix([3, 6, 2]), Matrix([8, 3, 6])]
>>> out1 = GramSchmidt(L)
>>> out2 = GramSchmidt(L, True)
```

Let's take a look at the vectors:

```python
>>> for i in out1:
... print(i)
...
Matrix([[2], [3], [5]])
Matrix([[23/19], [63/19], [-47/19]])
Matrix([[1692/353], [-1551/706], [-423/706]])
>>> for i in out2:
... print(i)
...
Matrix([[sqrt(38)/19], [3*sqrt(38)/38], [5*sqrt(38)/38]])
Matrix([[23*sqrt(6707)/6707], [63*sqrt(6707)/6707], [-47*sqrt(6707)/6707]])
Matrix([[12*sqrt(706)/353], [-11*sqrt(706)/706], [-3*sqrt(706)/706]])
```

We can spot-check their orthogonality with dot() and their normality with norm():

```python
>>> out1[0].dot(out1[1])
0
>>> out1[0].dot(out1[2])
0
>>> out1[1].dot(out1[2])
0
>>> out2[0].norm()
1
>>> out2[1].norm()
1
>>> out2[2].norm()
1
```

So there is quite a bit that can be done with the module including eigenvalues, eigenvectors, nullspace calculation, cofactor expansion tools, and so on. From here one might want to look over the `matrices.py` file for all functionality.
Matrix Base Classes

The Matrix classes are built from functionality in various base classes. Every method and attribute of Matrix is implemented on one of these base classes. See also Common Matrices (page 1373), Dense Matrices (page 1406), and Sparse Matrices (page 1409).

class sympy.matrices.matrices.MatrixDeterminant

Provides basic matrix determinant operations. Should not be instantiated directly. See determinant.py for their implementations.

adjugate(method='berkowitz')

Returns the adjugate, or classical adjoint, of a matrix. That is, the transpose of the matrix of cofactors.

Parameters

method : string, optional

Method to use to find the cofactors, can be “bareiss”, “berkowitz” or “lu”.

Examples

```python
>>> from sympy import Matrix
>>> M = Matrix([[1, 2], [3, 4]])
>>> M.adjugate()
Matrix([[4, -2], [-3, 1]])
```

See also:

cofactor_matrix (page 1272), sympy.matrices.common.MatrixCommon.
transpose (page 1400)

charpoly(x='lambda', simplify=<function_simplify>,

Computes characteristic polynomial det(x*I - M) where I is the identity matrix.

A PurePoly is returned, so using different variables for x does not affect the comparison or the polynomials:

Parameters

x : string, optional

Name for the “lambda” variable, defaults to “lambda”.

simplify : function, optional

Simplification function to use on the characteristic polynomial calculated. Defaults to simplify.
Examples

```python
>>> from sympy import Matrix
>>> from sympy.abc import x, y
>>> M = Matrix([[1, 3], [2, 0]])
>>> M.charpoly()
PurePoly(lambda**2 - lambda - 6, lambda, domain='ZZ')
>>> M.charpoly(x) == M.charpoly(y)
True
>>> M.charpoly(x) == M.charpoly(y)
True
```

Specifying x is optional; a symbol named lambda is used by default (which looks good when pretty-printed in unicode):

```python
>>> M.charpoly().as_expr()
lambda**2 - lambda - 6
```

And if x clashes with an existing symbol, underscores will be prepended to the name to make it unique:

```python
>>> M = Matrix([[1, 2], [x, 0]])
>>> M.charpoly(x).as_expr()
_x**2 - _x - 2*x
```

Whether you pass a symbol or not, the generator can be obtained with the gen attribute since it may not be the same as the symbol that was passed:

```python
>>> M.charpoly(x).gen
_x
>>> M.charpoly(x).gen == x
False
```

Notes

The Samuelson-Berkowitz algorithm is used to compute the characteristic polynomial efficiently and without any division operations. Thus the characteristic polynomial over any commutative ring without zero divisors can be computed.

If the determinant \( \det(xI - M) \) can be found out easily as in the case of an upper or a lower triangular matrix, then instead of Samuelson-Berkowitz algorithm, eigenvalues are computed and the characteristic polynomial with their help.

See also:

- `det` (page 1272)
- `cofactor(i, j, method='berkowitz')`

Calculate the cofactor of an element.

Parameters

- `method` : string, optional

  Method to use to find the cofactors, can be “bareiss”, “berkowitz” or “lu”.

5.8. Topics 1271
Examples

```python
>>> from sympy import Matrix
>>> M = Matrix([[1, 2], [3, 4]])
>>> M.cofactor(0, 1)
-3
```

See also:

cofactor_matrix (page 1272), minor (page 1273), minor_submatrix (page 1274)

cofactor_matrix(method='berkowitz')

Return a matrix containing the cofactor of each element.

Parameters

method : string, optional

Method to use to find the cofactors, can be “bareiss”, “berkowitz” or “lu”.

Examples

```python
>>> from sympy import Matrix
>>> M = Matrix([[1, 2], [3, 4]])
>>> M.cofactor_matrix()
Matrix([[4, -3], [-2, 1]])
```

See also:

cofactor (page 1271), minor (page 1273), minor_submatrix (page 1274)

det(method='bareiss', iszerofunc=None)

Computes the determinant of a matrix if M is a concrete matrix object otherwise return an expressions Determinant(M) if M is a MatrixSymbol or other expression.

Parameters

method : string, optional

Specifies the algorithm used for computing the matrix determinant.

If the matrix is at most 3x3, a hard-coded formula is used and the specified method is ignored. Otherwise, it defaults to 'bareiss'.

Also, if the matrix is an upper or a lower triangular matrix, determinant is computed by simple multiplication of diagonal elements, and the specified method is ignored.

If it is set to 'domain-ge', then Gaussian elimination method will be used via using DomainMatrix.

If it is set to 'bareiss', Bareiss' fraction-free algorithm will be used.

If it is set to 'berkowitz', Berkowitz' algorithm will be used.

Otherwise, if it is set to 'lu', LU decomposition will be used.
Note: For backward compatibility, legacy keys like “bareis” and “det_lu” can still be used to indicate the corresponding methods. And the keys are also case-insensitive for now. However, it is suggested to use the precise keys for specifying the method.

**iszerofunc** : FunctionType or None, optional

If it is set to None, it will be defaulted to _iszero if the method is set to 'bareiss', and _is_zero_after_expand_mul if the method is set to 'lu'.

It can also accept any user-specified zero testing function, if it is formatted as a function which accepts a single symbolic argument and returns True if it is tested as zero and False if it tested as non-zero, and also None if it is undecidable.

**Returns**

- **det** : Basic
  Result of determinant.

**Raises**

- **ValueError**
  If unrecognized keys are given for method or iszerofunc.

- **NonSquareMatrixError**
  If attempted to calculate determinant from a non-square matrix.

**Examples**

```python
>>> from sympy import Matrix, eye, det
>>> I3 = eye(3)
>>> det(I3)
1
>>> M = Matrix([[1, 2], [3, 4]])
>>> det(M)
-2
>>> det(M) == M.det()
True
>>> M.det(method="domain-ge")
-2
```

**minor** *(i, j, method='berkowitz')*

Return the (i,j) minor of M. That is, return the determinant of the matrix obtained by deleting the *ith row and jth column from M*.

**Parameters**

- **i, j** : int
  The row and column to exclude to obtain the submatrix.

- **method** : string, optional
  Method to use to find the determinant of the submatrix, can be “bareiss”, “berkowitz” or “lu”.
Examples

```python
>>> from sympy import Matrix
>>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> M.minor(1, 1)
-12
```

See also:

- `minor_submatrix` (page 1274), `cofactor` (page 1271), `det` (page 1272)

**minor_submatrix**

Return the submatrix obtained by removing the \textit{i}'th row and \textit{j}'th column from 'M' (works with Pythonic negative indices).

**Parameters**

- \textit{i}, \textit{j}: int

  The row and column to exclude to obtain the submatrix.

Examples

```python
>>> from sympy import Matrix
>>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> M.minor_submatrix(1, 1)
Matrix([[1, 3],
 [7, 9]])
```

See also:

- `minor` (page 1273), `cofactor` (page 1271)

**per()**

Returns the permanent of a matrix. Unlike determinant, permanent is defined for both square and non-square matrices.

For an \textit{m} \times \textit{n} matrix, with \textit{m} less than or equal to \textit{n}, it is given as the sum over the permutations \textit{s} of size less than or equal to \textit{m} on \{1, 2, ... \textit{n}\} of the product from \textit{i} = 1 to \textit{m} of \textit{M}[\textit{i}, \textit{s}[\textit{i}]]. Taking the transpose will not affect the value of the permanent.

In the case of a square matrix, this is the same as the permutation definition of the determinant, but it does not take the sign of the permutation into account. Computing the permanent with this definition is quite inefficient, so here the Ryser formula is used.
Examples

```python
>>> from sympy import Matrix
>>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> M.per()
450
>>> M = Matrix([1, 5, 7])
>>> M.per()
13
```

References

[R584], [R585], [R586], [R587]

class sympy.matrices.matrices.MatrixReductions

Provides basic matrix row/column operations. Should not be instantiated directly. See reductions.py for some of their implementations.

echelon_form(iszerofunc=<function _iszero>, simplify=False, with_pivots=False)

Returns a matrix row-equivalent to \( M \) that is in echelon form. Note that echelon form of a matrix is not unique, however, properties like the row space and the null space are preserved.

Examples

```python
>>> from sympy import Matrix
>>> M = Matrix([[1, 2], [3, 4]])
>>> M.echelon_form()
Matrix([[1, 2], [0, -2]])
```

elementary_col_op(op='n->kn', col=None, k=None, col1=None, col2=None)

Performs the elementary column operation \( op \).

\( op \) may be one of

- "n->kn" (column \( n \) goes to \( k*n \))
- "n<->m" (swap column \( n \) and column \( m \))
- "n->n+km" (column \( n \) goes to column \( n + k*column \))

Parameters

- **op**: string; the elementary row operation
- **col**: the column to apply the column operation
- **k**: the multiple to apply in the column operation
- **col1**: one column of a column swap
- **col2**: second column of a column swap or column "m" in the column operation
"n->n+km"

**elementary_row_op** *(op='n->kn', row=None, k=None, row1=None, row2=None)*

Performs the elementary row operation *op*.

*op* may be one of

- "n->kn" (row n goes to k*n)
- "n<->m" (swap row n and row m)
- "n->n+km" (row n goes to row n + k*row m)

**Parameters**

- **op** : string; the elementary row operation
- **row** : the row to apply the row operation
- **k** : the multiple to apply in the row operation
- **row1** : one row of a row swap
- **row2** : second row of a row swap or row “m” in the row operation

**property is_echelon**

Returns *True* if the matrix is in echelon form. That is, all rows of zeros are at the bottom, and below each leading non-zero in a row are exclusively zeros.

**rank** *(iszerofunc=<function _iszero>, simplify=False)*

Returns the rank of a matrix.

**Examples**

```python
>>> from sympy import Matrix
>>> from sympy.abc import x
>>> m = Matrix([[1, 2], [x, 1 - 1/x]])
>>> m.rank()
2
>>> n = Matrix(3, 3, range(1, 10))
>>> n.rank()
2
```

**rref** *(iszerofunc=<function _iszero>, simplify=False, pivots=True, normalize_last=True)*

Return reduced row-echelon form of matrix and indices of pivot vars.

**Parameters**

- **iszerofunc** : Function
  A function used for detecting whether an element can act as a pivot.
  `lambda x: x.is_zero` is used by default.

- **simplify** : Function
  A function used to simplify elements when looking for a pivot. By default SymPy’s `simplify` is used.
**pivots** : True or False

If **True**, a tuple containing the row-reduced matrix and a tuple of pivot columns is returned. If **False** just the row-reduced matrix is returned.

**normalize_last** : True or False

If **True**, no pivots are normalized to 1 until after all entries above and below each pivot are zeroed. This means the row reduction algorithm is fraction free until the very last step. If **False**, the naive row reduction procedure is used where each pivot is normalized to be 1 before row operations are used to zero above and below the pivot.

**Examples**

```python
>>> from sympy import Matrix
>>> from sympy.abc import x
>>> m = Matrix([[1, 2], [x, 1 - 1/x]])
>>> m.rref()
(Matrix([[1, 0],
 [0, 1]]), (0, 1))
```

```python
>>> rref_matrix, rref_pivots = m.rref()
>>> rref_matrix
Matrix([[1, 0],
 [0, 1]])
>>> rref_pivots
(0, 1)
```

**iszerofunc** can correct rounding errors in matrices with float values. In the following example, calling **rref()** leads to floating point errors, incorrectly row reducing the matrix. **iszerofunc = lambda x: abs(x)<1e-9** sets sufficiently small numbers to zero, avoiding this error:

```python
>>> m = Matrix([[0.9, -0.1, -0.2, 0], [-0.8, 0.9, -0.4, 0], [-0.1, -0.8, 0.6, 0]])
>>> m.rref()
(Matrix([[1, 0, 0, 0],
 [0, 1, 0, 0],
 [0, 0, 1, 0]]), (0, 1, 2))
```

```python
>>> m.rref(iszerofunc=lambda x: abs(x)<1e-9)
(Matrix([[1, 0, -0.301369863013699, 0],
 [0, 1, -0.712328767123288, 0],
 [0, 0, 0, 0]]), (0, 1))
```
Notes

The default value of `normalize_last=True` can provide significant speedup to row reduction, especially on matrices with symbols. However, if you depend on the form row reduction algorithm leaves entries of the matrix, set `noramlize_last=False`

```python
class sympy.matrices.matrices.MatrixSubspaces
 Provides methods relating to the fundamental subspaces of a matrix. Should not be instantiated directly. See subspaces.py for their implementations.

columnspace(simplify=False)
 Returns a list of vectors (Matrix objects) that span columnspace of M
```

Examples

```python
>>> from sympy import Matrix
>>> M = Matrix(3, 3, [1, 3, 0, -2, -6, 0, 3, 9, 6])
>>> M
Matrix([1, 3, 0],
[-2, -6, 0],
[3, 9, 6])
>>> M.columnspace()
[Matrix([[1],
 [-2],
 [3]]), Matrix([[0],
 [0],
 [6]])]
```

See also:

`nullspace` (page 1278), `rowspace` (page 1279)

```python
nullspace(simplify=False, iszerofunc=<function iszero>)
 Returns list of vectors (Matrix objects) that span nullspace of M
```

Examples

```python
>>> from sympy import Matrix
>>> M = Matrix(3, 3, [1, 3, 0, -2, -6, 0, 3, 9, 6])
>>> M
Matrix([1, 3, 0],
[-2, -6, 0],
[3, 9, 6])
>>> M.nullspace()
[Matrix([[-3],
 [1],
 [0]])]
```
See also:

columnspace (page 1278), rowspace (page 1279)

classmethod orthogonalize(*vecs, **kwargs)

Apply the Gram-Schmidt orthogonalization procedure to vectors supplied in vecs.

**Parameters**

- **vecs**
  - vectors to be made orthogonal
- **normalize** : bool
  - If True, return an orthonormal basis.
- **rankcheck** : bool
  - If True, the computation does not stop when encountering linearly dependent vectors.
  - If False, it will raise ValueError when any zero or linearly dependent vectors are found.

**Returns**

- list
  - List of orthogonal (or orthonormal) basis vectors.

**Examples**

```python
>>> from sympy import I, Matrix
>>> v = [Matrix([[1, I]]), Matrix([[1, -I]])]
>>> Matrix.orthogonalize(*v)
[Matrix([[1], [I]]), Matrix([[1], [-I]])]
```

See also:

MatrixBase.QRdecomposition (page 1328)

**References**

[R588]

rowspace(simplify=False)

Returns a list of vectors that span the row space of M.
Examples

```python
>>> from sympy import Matrix
>>> M = Matrix(3, 3, [1, 3, 0, -2, -6, 0, 3, 9, 6])
>>> M
Matrix([[1, 3, 0], [-2, -6, 0], [3, 9, 6]])
```

```python
>>> M.rowspace()
[Matrix([[1, 3, 0]]), Matrix([[0, 0, 6]]))]
```

class sympy.matrices.matrices.MatrixEigen

Provides basic matrix eigenvalue/vector operations. Should not be instantiated directly. See eigen.py for their implementations.

    bidiagonal_decomposition(upper=True)

Returns \((U, B, V.H)\) for

\[ A = U B V^H \]

where \(A\) is the input matrix, and \(B\) is its Bidiagonalized form

Note: Bidiagonal Computation can hang for symbolic matrices.

Parameters

    upper : bool. Whether to do upper bidiagonalization or lower.

                        True for upper and False for lower.

References

[R589], [R590]

bidimensionalize(upper=True)

Returns \(B\), the Bidiagonalized form of the input matrix.

Note: Bidiagonal Computation can hang for symbolic matrices.

Parameters

    upper : bool. Whether to do upper bidiagonalization or lower.

                        True for upper and False for lower.

References

[R591], [R592]

diagonalize(reals_only=False, sort=False, normalize=False)

Return \((P, D)\), where \(D\) is diagonal and

\[ D = P^{-1} \ast M \ast P \]

where \(M\) is current matrix.
Parameters

- **reals_only**: bool. Whether to throw an error if complex numbers are need
to diagonalize. (Default: False)

- **sort**: bool. Sort the eigenvalues along the diagonal. (Default: False)

- **normalize**: bool. If True, normalize the columns of P. (Default: False)

Examples

```python
>>> from sympy import Matrix
>>> M = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2])
>>> M
Matrix([[1, 2, 0],
[0, 3, 0],
[2, -4, 2]])
>>> (P, D) = M.diagonalize()
>>> D
Matrix([[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
>>> P
Matrix([[-1, 0, -1],
[0, 0, -1],
[2, 1, 2]])
>>> P.inv() * M * P
Matrix([[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
```

See also:

- `is_diagonal` (page 1383), `is_diagonalizable` (page 1284)

- `eigenvals` (`error_when_incomplete=True`, `**flags`)

  Compute eigenvalues of the matrix.

Parameters

- **error_when_incomplete**: bool, optional
  If it is set to True, it will raise an error if not all eigenvalues are computed. This is caused by roots not returning a full list of eigenvalues.

- **simplify**: bool or function, optional
  If it is set to True, it attempts to return the most simplified form of expressions returned by applying default simplification method in every routine.

  If it is set to False, it will skip simplification in this particular routine to save computation resources.
If a function is passed to, it will attempt to apply the particular function as simplification method.

**rational** : bool, optional

If it is set to True, every floating point numbers would be replaced with rationals before computation. It can solve some issues of roots routine not working well with floats.

**multiple** : bool, optional

If it is set to True, the result will be in the form of a list.

If it is set to False, the result will be in the form of a dictionary.

**Returns**

**eigs** : list or dict

Eigenvalues of a matrix. The return format would be specified by the key multiple.

**Raises**

**MatrixError**

If not enough roots had got computed.

**NonSquareMatrixError**

If attempted to compute eigenvalues from a non-square matrix.

**Examples**

```python
>>> from sympy import Matrix
>>> M = Matrix([0, 1, 1, 0, 0, 1, 1, 1])
>>> M.eigenvals()
{-1: 1, 0: 1, 2: 1}
```

**Notes**

Eigenvalues of a matrix $A$ can be computed by solving a matrix equation $\det(A - \lambda I) = 0$.

It’s not always possible to return radical solutions for eigenvalues for matrices larger than 4,4 shape due to Abel-Ruffini theorem.

If there is no radical solution is found for the eigenvalue, it may return eigenvalues in the form of `sympy.polys.rootoftools.ComplexRootOf` (page 2507).

**See also:**

`MatrixDeterminant.charpoly` (page 1270), `eigenvects` (page 1282)

**eigenvects** *(error_when_incomplete=True, iszerofunc=<function iszero>, **flags)*

Compute eigenvectors of the matrix.

**Parameters**

**error_when_incomplete** : bool, optional

Raise an error when not all eigenvalues are computed. This is caused by roots not returning a full list of eigenvalues.
iszerofunc : function, optional

Specifies a zero testing function to be used in rref.

Default value is _iszero, which uses SymPy’s naive and fast default assumption handler.

It can also accept any user-specified zero testing function, if it is formatted as a function which accepts a single symbolic argument and returns True if it is tested as zero and False if it is tested as non-zero, and None if it is undecidable.

simplify : bool or function, optional

If True, as_content_primitive() will be used to tidy up normalization artifacts.

It will also be used by the nullspace routine.

chop : bool or positive number, optional

If the matrix contains any Floats, they will be changed to Rationals for computation purposes, but the answers will be returned after being evaluated with evalf. The chop flag is passed to evalf. When chop=True a default precision will be used; a number will be interpreted as the desired level of precision.

Returns

ret : [(eigenval, multiplicity, eigenspace), ...]

A ragged list containing tuples of data obtained by eigenvals and nullspace.

eigenspace is a list containing the eigenvector for each eigenvalue.

eigenvector is a vector in the form of a Matrix. e.g. a vector of length 3 is returned as Matrix([a_1, a_2, a_3]).

Raises

NotImplementedError

If failed to compute nullspace.

Examples

```python
>>> from sympy import Matrix
>>> M = Matrix(3, 3, [0, 1, 1, 0, 0, 1, 1, 1, 1])
>>> M.eigenvects()
[(-1, 1, [Matrix([[-1],
 [1],
 [0]])]), (0, 1, [Matrix([[0],
 [-1],
 [1]])]), (2, 1, [Matrix([[2/3],
 [1/3],
 [1]])])]
```
See also:

eigenvals (page 1281), MatrixSubspaces.nullspace (page 1278)

is_diagonalizable(\texttt{reals\_only=False}, **\texttt{kwargs})

Returns True if a matrix is diagonalizable.

Parameters

\texttt{reals\_only} : bool, optional

If True, it tests whether the matrix can be diagonalized to contain only real numbers on the diagonal.

If False, it tests whether the matrix can be diagonalized at all, even with numbers that may not be real.

Examples

Example of a diagonalizable matrix:

\begin{verbatim}
>>> from sympy import Matrix
>>> M = Matrix([[1, 2, 0], [0, 3, 0], [2, -4, 2]])
>>> M.is_diagonalizable()
True
\end{verbatim}

Example of a non-diagonalizable matrix:

\begin{verbatim}
>>> M = Matrix([[0, 1], [0, 0]])
>>> M.is_diagonalizable()
False
\end{verbatim}

Example of a matrix that is diagonalized in terms of non-real entries:

\begin{verbatim}
>>> M = Matrix([[\theta, 1], [-1, \theta]])
>>> M.is_diagonalizable(\texttt{reals\_only=False})
True
>>> M.is_diagonalizable(\texttt{reals\_only=True})
False
\end{verbatim}

See also:

\texttt{is\_diagonal} (page 1383), \texttt{diagonalize} (page 1280)

property is_indefinite

Finds out the definiteness of a matrix.

Explanation

A square real matrix $A$ is:

- A positive definite matrix if $x^T A x > 0$ for all non-zero real vectors $x$.
- A positive semidefinite matrix if $x^T A x \geq 0$ for all non-zero real vectors $x$.
- A negative definite matrix if $x^T A x < 0$ for all non-zero real vectors $x$.
- A negative semidefinite matrix if $x^T A x \leq 0$ for all non-zero real vectors $x$. 
• An indefinite matrix if there exists non-zero real vectors $x, y$ with $x^T A x > 0 > y^T A y$.

A square complex matrix $A$ is:

• A positive definite matrix if $\text{re}(x^H A x) > 0$ for all non-zero complex vectors $x$.
• A positive semidefinite matrix if $\text{re}(x^H A x) \geq 0$ for all non-zero complex vectors $x$.
• A negative definite matrix if $\text{re}(x^H A x) < 0$ for all non-zero complex vectors $x$.
• A negative semidefinite matrix if $\text{re}(x^H A x) \leq 0$ for all non-zero complex vectors $x$.
• An indefinite matrix if there exists non-zero complex vectors $x, y$ with $\text{re}(x^H A x) > 0 > \text{re}(y^H A y)$.

A matrix need not be symmetric or hermitian to be positive definite.

• A real non-symmetric matrix is positive definite if and only if $\frac{A + A^T}{2}$ is positive definite.
• A complex non-hermitian matrix is positive definite if and only if $\frac{A + A^H}{2}$ is positive definite.

And this extension can apply for all the definitions above.

However, for complex cases, you can restrict the definition of $\text{re}(x^H A x) > 0$ to $x^H A x > 0$ and require the matrix to be hermitian. But we do not present this restriction for computation because you can check $M.is\_hermitian$ independently with this and use the same procedure.

**Examples**

An example of symmetric positive definite matrix:

```python
>>> from sympy import Matrix, symbols
>>> from sympy.plotting import plot3d
>>> a, b = symbols('a b')
>>> x = Matrix([a, b])

>>> A = Matrix([[1, 0], [0, 1]])
>>> A.is_positive_definite
True
>>> A.is_positive_semidefinite
True

>>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))
```

An example of symmetric positive semidefinite matrix:

```python
>>> A = Matrix([[1, -1], [-1, 1]])
>>> A.is_positive_definite
False
>>> A.is_positive_semidefinite
True
```
f(a, b)
An example of symmetric negative definite matrix:

```python
>>> A = Matrix([[[-1, 0], [0, -1]]])
>>> A.is_negative_definite
True
>>> A.is_negative_semidefinite
True
>>> A.is_indefinite
False
```

An example of symmetric indefinite matrix:

```python
>>> A = Matrix([[1, 2], [2, -1]])
>>> A.is_indefinite
True
```

An example of non-symmetric positive definite matrix:

```python
>>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))
```
$f(a, b)$
>>> A = Matrix([[1, 2], [-2, 1]])
>>> A.is_positive_definite
True
>>> A.is_positive_semidefinite
True

>>> p = plot3d((x.T*Ax)[0, 0], (a, -1, 1), (b, -1, 1))

Notes

Although some people trivialize the definition of positive definite matrices only for symmetric or hermitian matrices, this restriction is not correct because it does not classify all instances of positive definite matrices from the definition \(x^TAx > 0\) or \(\text{re}(x^HAx) > 0\).

For instance, \(\text{Matrix}([[1, 2], [-2, 1]])\) presented in the example above is an example of real positive definite matrix that is not symmetric.

However, since the following formula holds true;

\[
\text{re}(x^HAx) > 0 \iff \text{re}(x^HA + A^Hx) > 0
\]
We can classify all positive definite matrices that may or may not be symmetric or hermitian by transforming the matrix to $\frac{A + A^T}{2}$ or $\frac{A + A^H}{2}$ (which is guaranteed to be always real symmetric or complex hermitian) and we can defer most of the studies to symmetric or hermitian positive definite matrices.

But it is a different problem for the existance of Cholesky decomposition. Because even though a non symmetric or a non hermitian matrix can be positive definite, Cholesky or LDL decomposition does not exist because the decompositions require the matrix to be symmetric or hermitian.

**References**

[R593], [R594], [R595]

**property is_negative_definite**

Finds out the definiteness of a matrix.

**Explanation**

A square real matrix $A$ is:

- A positive definite matrix if $x^T A x > 0$ for all non-zero real vectors $x$.
- A positive semidefinite matrix if $x^T A x \geq 0$ for all non-zero real vectors $x$.
- A negative definite matrix if $x^T A x < 0$ for all non-zero real vectors $x$.
- A negative semidefinite matrix if $x^T A x \leq 0$ for all non-zero real vectors $x$.
- An indefinite matrix if there exists non-zero real vectors $x, y$ with $x^T A x > 0 > y^T A y$.

A square complex matrix $A$ is:

- A positive definite matrix if $\text{re}(x^H A x) > 0$ for all non-zero complex vectors $x$.
- A positive semidefinite matrix if $\text{re}(x^H A x) \geq 0$ for all non-zero complex vectors $x$.
- A negative definite matrix if $\text{re}(x^H A x) < 0$ for all non-zero complex vectors $x$.
- A negative semidefinite matrix if $\text{re}(x^H A x) \leq 0$ for all non-zero complex vectors $x$.
- An indefinite matrix if there exists non-zero complex vectors $x, y$ with $\text{re}(x^H A x) > 0 > \text{re}(y^H A y)$.

A matrix need not be symmetric or hermitian to be positive definite.

- A real non-symmetric matrix is positive definite if and only if $\frac{A + A^T}{2}$ is positive definite.
- A complex non-hermitian matrix is positive definite if and only if $\frac{A + A^H}{2}$ is positive definite.

And this extension can apply for all the definitions above.

However, for complex cases, you can restrict the definition of $\text{re}(x^H A x) > 0$ to $x^H A x > 0$ and require the matrix to be hermitian. But we do not present this restriction for computation because you can check $M.is\_hermitian$ independently with this and use the same procedure.
Examples

An example of symmetric positive definite matrix:

```python
>>> from sympy import Matrix, symbols
>>> from sympy.plotting import plot3d
>>> a, b = symbols('a b')
>>> x = Matrix([a, b])

>>> A = Matrix([[1, 0], [0, 1]])
>>> A.is_positive_definite
True
>>> A.is_positive_semidefinite
True

>>> p = plot3d((x.T * A * x)[0, 0], (a, -1, 1), (b, -1, 1))
```

An example of symmetric positive semidefinite matrix:

```python
>>> A = Matrix([[1, -1], [-1, 1]])
>>> A.is_positive_definite
False
```
An example of symmetric negative definite matrix:

```python
>>> A = Matrix([[-1, 0], [0, -1]])
>>> A.is_negative_definite
True
>>> A.is_negative_semidefinite
True
>>> A.is_indefinite
False
```

```
>>> p = plot3d((x**T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))
```

An example of symmetric indefinite matrix:

```python
>>> A = Matrix([[1, 2], [2, -1]])
>>> A.is_indefinite
True
```
$f(a, b)$
An example of non-symmetric positive definite matrix.

```python
>>> A = Matrix([[1, 2], [-2, 1]])
>>> A.is_positive_definite
True
>>> A.is_positive_semidefinite
True
```

**Notes**

Although some people trivialize the definition of positive definite matrices only for symmetric or hermitian matrices, this restriction is not correct because it does not classify all instances of positive definite matrices from the definition $x^T A x > 0$ or $\text{re}(x^H A x) > 0$.

For instance, `Matrix([[1, 2], [-2, 1]])` presented in the example above is an example of real positive definite matrix that is not symmetric.
$$f(a, b)$$
However, since the following formula holds true;

\[
\text{re}(x^H Ax) > 0 \iff \text{re}\left(\frac{x^H A + A^H}{2}x\right) > 0
\]

We can classify all positive definite matrices that may or may not be symmetric or hermitian by transforming the matrix to \(\frac{A + A^T}{2}\) or \(\frac{A + A^H}{2}\) (which is guaranteed to be always real symmetric or complex hermitian) and we can defer most of the studies to symmetric or hermitian positive definite matrices.

But it is a different problem for the existence of Cholesky decomposition. Because even though a non symmetric or a non hermitian matrix can be positive definite, Cholesky or LDL decomposition does not exist because the decompositions require the matrix to be symmetric or hermitian.

**References**

[R596], [R597], [R598]

**property is_negative_semidefinite**

Finds out the definiteness of a matrix.

**Explanation**

A square real matrix \(A\) is:

- A positive definite matrix if \(x^T A x > 0\) for all non-zero real vectors \(x\).
- A positive semidefinite matrix if \(x^T A x \geq 0\) for all non-zero real vectors \(x\).
- A negative definite matrix if \(x^T A x < 0\) for all non-zero real vectors \(x\).
- A negative semidefinite matrix if \(x^T A x \leq 0\) for all non-zero real vectors \(x\).
- An indefinite matrix if there exists non-zero real vectors \(x, y\) with \(x^T A y > 0 > y^T A y\).

A square complex matrix \(A\) is:

- A positive definite matrix if \(\text{re}(x^H A x) > 0\) for all non-zero complex vectors \(x\).
- A positive semidefinite matrix if \(\text{re}(x^H A x) \geq 0\) for all non-zero complex vectors \(x\).
- A negative definite matrix if \(\text{re}(x^H A x) < 0\) for all non-zero complex vectors \(x\).
- A negative semidefinite matrix if \(\text{re}(x^H A x) \leq 0\) for all non-zero complex vectors \(x\).
- An indefinite matrix if there exists non-zero complex vectors \(x, y\) with \(\text{re}(x^H A y) > 0 > \text{re}(y^H A y)\).

A matrix need not be symmetric or hermitian to be positive definite.

- A real non-symmetric matrix is positive definite if and only if \(\frac{A + A^T}{2}\) is positive definite.
- A complex non-hermitian matrix is positive definite if and only if \(\frac{A + A^H}{2}\) is positive definite.
And this extension can apply for all the definitions above. However, for complex cases, you can restrict the definition of \( \text{re}(x^H A x) > 0 \) to \( x^H A x > 0 \) and require the matrix to be hermitian. But we do not present this restriction for computation because you can check \( M \text{.is_hermitian} \) independently with this and use the same procedure.

**Examples**

An example of symmetric positive definite matrix:

```python
>>> from sympy import Matrix, symbols
>>> from sympy.plotting import plot3d
>>> a, b = symbols('a b')
>>> x = Matrix([a, b])

>>> A = Matrix([[1, 0], [0, 1]])
>>> A.is_positive_definite
True
>>> A.is_positive_semidefinite
True

>>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))
```

An example of symmetric positive semidefinite matrix:

```python
>>> A = Matrix([[1, -1], [-1, 1]])
>>> A.is_positive_definite
False
>>> A.is_positive_semidefinite
True

>>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))
```

An example of symmetric negative definite matrix:

```python
>>> A = Matrix([[-1, 0], [0, -1]])
>>> A.is_negative_definite
True
>>> A.is_negative_semidefinite
True
>>> A.is_indefinite
False

>>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))
```

An example of symmetric indefinite matrix:

```python
>>> A = Matrix([[1, 2], [2, -1]])
>>> A.is_indefinite
True
```
5.8. Topics
$f(a, b)$
An example of non-symmetric positive definite matrix.

```python
>>> A = Matrix([[1, 2], [-2, 1]])
>>> A.is_positive_definite
True
>>> A.is_positive_semidefinite
True
```

Notes

Although some people trivialize the definition of positive definite matrices only for symmetric or hermitian matrices, this restriction is not correct because it does not classify all instances of positive definite matrices from the definition $x^T Ax > 0$ or $\text{re}(x^H Ax) > 0$.

For instance, `Matrix([[1, 2], [-2, 1]])` presented in the example above is an example of real positive definite matrix that is not symmetric.
$f(a, b)$
However, since the following formula holds true;

\[
\text{re}(x^H Ax) > 0 \iff \text{re}(x^H \frac{A + A^H}{2} x) > 0
\]

We can classify all positive definite matrices that may or may not be symmetric or hermitian by transforming the matrix to \( \frac{A + A^T}{2} \) or \( \frac{A + A^H}{2} \) (which is guaranteed to be always real symmetric or complex hermitian) and we can defer most of the studies to symmetric or hermitian positive definite matrices.

But it is a different problem for the existence of Cholesky decomposition. Because even though a non symmetric or a non hermitian matrix can be positive definite, Cholesky or LDL decomposition does not exist because the decompositions require the matrix to be symmetric or hermitian.

**References**

[R599], [R600], [R601]

**property is_positive_definite**

Finds out the definiteness of a matrix.

**Explanation**

A square real matrix \( A \) is:

- A positive definite matrix if \( x^T Ax > 0 \) for all non-zero real vectors \( x \).
- A positive semidefinite matrix if \( x^T Ax \geq 0 \) for all non-zero real vectors \( x \).
- A negative definite matrix if \( x^T Ax < 0 \) for all non-zero real vectors \( x \).
- A negative semidefinite matrix if \( x^T Ax \leq 0 \) for all non-zero real vectors \( x \).
- An indefinite matrix if there exists non-zero real vectors \( x, y \) with \( x^T Ax > 0 > y^T Ay \).

A square complex matrix \( A \) is:

- A positive definite matrix if \( \text{re}(x^H Ax) > 0 \) for all non-zero complex vectors \( x \).
- A positive semidefinite matrix if \( \text{re}(x^H Ax) \geq 0 \) for all non-zero complex vectors \( x \).
- A negative definite matrix if \( \text{re}(x^H Ax) < 0 \) for all non-zero complex vectors \( x \).
- A negative semidefinite matrix if \( \text{re}(x^H Ax) \leq 0 \) for all non-zero complex vectors \( x \).
- An indefinite matrix if there exists non-zero complex vectors \( x, y \) with \( \text{re}(x^H Ax) > 0 > \text{re}(y^H Ay) \).

A matrix need not be symmetric or hermitian to be positive definite.

- A real non-symmetric matrix is positive definite if and only if \( \frac{A + A^T}{2} \) is positive definite.
- A complex non-hermitian matrix is positive definite if and only if \( \frac{A + A^H}{2} \) is positive definite.
And this extension can apply for all the definitions above.

However, for complex cases, you can restrict the definition of $\text{re}(x^HAx) > 0$ to $x^HAx > 0$ and require the matrix to be hermitian. But we do not present this restriction for computation because you can check $M$.is_hermitian independently with this and use the same procedure.

**Examples**

An example of symmetric positive definite matrix:

```python
>>> from sympy import Matrix, symbols
>>> from sympy.plotting import plot3d
>>> a, b = symbols('a b')
>>> x = Matrix([a, b])

>>> A = Matrix([[1, 0], [0, 1]])
>>> A.is_positive_definite
True
>>> A.is_positive_semidefinite
True

>>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))
```

An example of symmetric positive semidefinite matrix:

```python
>>> A = Matrix([[1, -1], [-1, 1]])
>>> A.is_positive_definite
False
>>> A.is_positive_semidefinite
True

>>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))
```

An example of symmetric negative definite matrix:

```python
>>> A = Matrix([[-1, 0], [0, -1]])
>>> A.is_negative_definite
True
>>> A.is_negative_semidefinite
True
>>> A.is_indefinite
False

>>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))
```

An example of symmetric indefinite matrix:

```python
>>> A = Matrix([[1, 2], [2, -1]])
>>> A.is_indefinite
True
```
$f(a, b)$
$f(a, b)$

The figure shows a 3D graph of the function $f(a, b)$ over the ranges of $a$ and $b$.
An example of non-symmetric positive definite matrix.

```python
>>> A = Matrix([[1, 2], [-2, 1]])
>>> A.is_positive_definite
True
>>> A.is_positive_semidefinite
True
```

Notes

Although some people trivialize the definition of positive definite matrices only for symmetric or hermitian matrices, this restriction is not correct because it does not classify all instances of positive definite matrices from the definition $x^T A x > 0$ or $\text{re}(x^H A x) > 0$.

For instance, `Matrix([[1, 2], [-2, 1]])` presented in the example above is an example of real positive definite matrix that is not symmetric.
\[ f(a, b) \]
However, since the following formula holds true;

\[
\text{re}(x^H Ax) > 0 \iff \text{re}\left(\frac{x^H \left( A + A^H \right)x}{2}\right) > 0
\]

We can classify all positive definite matrices that may or may not be symmetric or hermitian by transforming the matrix to \( \frac{A + A^T}{2} \) or \( \frac{A + A^H}{2} \) (which is guaranteed to be always real symmetric or complex hermitian) and we can defer most of the studies to symmetric or hermitian positive definite matrices.

But it is a different problem for the existence of Cholesky decomposition. Because even though a non symmetric or a non hermitian matrix can be positive definite, Cholesky or LDL decomposition does not exist because the decompositions require the matrix to be symmetric or hermitian.

**References**

[R602], [R603], [R604]

**property is_positive_semidefinite**

Finds out the definiteness of a matrix.

**Explanation**

A square real matrix \( A \) is:

- A positive definite matrix if \( x^T Ax > 0 \) for all non-zero real vectors \( x \).
- A positive semidefinite matrix if \( x^T Ax \geq 0 \) for all non-zero real vectors \( x \).
- A negative definite matrix if \( x^T Ax < 0 \) for all non-zero real vectors \( x \).
- A negative semidefinite matrix if \( x^T Ax \leq 0 \) for all non-zero real vectors \( x \).
- An indefinite matrix if there exists non-zero real vectors \( x, y \) with \( x^T Ax > 0 > y^T Ay \).

A square complex matrix \( A \) is:

- A positive definite matrix if \( \text{re}(x^H Ax) > 0 \) for all non-zero complex vectors \( x \).
- A positive semidefinite matrix if \( \text{re}(x^H Ax) \geq 0 \) for all non-zero complex vectors \( x \).
- A negative definite matrix if \( \text{re}(x^H Ax) < 0 \) for all non-zero complex vectors \( x \).
- A negative semidefinite matrix if \( \text{re}(x^H Ax) \leq 0 \) for all non-zero complex vectors \( x \).
- An indefinite matrix if there exists non-zero complex vectors \( x, y \) with \( \text{re}(x^H Ax) > 0 > \text{re}(y^H Ay) \).

A matrix need not be symmetric or hermitian to be positive definite.

- A real non-symmetric matrix is positive definite if and only if \( \frac{A + A^T}{2} \) is positive definite.
- A complex non-hermitian matrix is positive definite if and only if \( \frac{A + A^H}{2} \) is positive definite.
And this extension can apply for all the definitions above.
However, for complex cases, you can restrict the definition of \(\text{re}(x^H Ax) > 0\) to \(x^H Ax > 0\) and require the matrix to be hermitian. But we do not present this restriction for computation because you can check \(M.\text{is\_hermitian}\) independently with this and use the same procedure.

**Examples**

An example of symmetric positive definite matrix:

```python
>>> from sympy import Matrix, symbols
>>> from sympy.plotting import plot3d
>>> a, b = symbols('a b')
>>> x = Matrix([a, b])

>>> A = Matrix([[1, 0], [0, 1]])
>>> A.is_positive_definite
True
>>> A.is_positive_semidefinite
True

>>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))
```

An example of symmetric positive semidefinite matrix:

```python
>>> A = Matrix([[1, -1], [-1, 1]])
>>> A.is_positive_definite
False
>>> A.is_positive_semidefinite
True

>>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))
```

An example of symmetric negative definite matrix:

```python
>>> A = Matrix([[-1, 0], [0, -1]])
>>> A.is_negative_definite
True
>>> A.is_negative_semidefinite
True
>>> A.is_indefinite
False

>>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))
```

An example of symmetric indefinite matrix:

```python
>>> A = Matrix([[1, 2], [2, -1]])
>>> A.is_indefinite
True
```
\[ f(a, b) \]
$f(a, b)$
5.8. Topics
An example of non-symmetric positive definite matrix.

```python
>>> A = Matrix([[1, 2], [-2, 1]])
>>> A.is_positive_definite
True
>>> A.is_positive_semidefinite
True
```

**Notes**

Although some people trivialize the definition of positive definite matrices only for symmetric or hermitian matrices, this restriction is not correct because it does not classify all instances of positive definite matrices from the definition $x^T Ax > 0$ or $\text{re}(x^H Ax) > 0$.

For instance, `Matrix([[1, 2], [-2, 1]])` presented in the example above is an example of real positive definite matrix that is not symmetric.
However, since the following formula holds true;

\[ \text{re}(x^H Ax) > 0 \iff \text{re}(x^H \frac{A + A^H}{2} x) > 0 \]

We can classify all positive definite matrices that may or may not be symmetric or hermitian by transforming the matrix to \( \frac{A + A^T}{2} \) or \( \frac{A + A^H}{2} \) (which is guaranteed to be always real symmetric or complex hermitian) and we can defer most of the studies to symmetric or hermitian positive definite matrices.

But it is a different problem for the existence of Cholesky decomposition. Because even though a non symmetric or a non hermitian matrix can be positive definite, Cholesky or LDL decomposition does not exist because the decompositions require the matrix to be symmetric or hermitian.

References

[R605], [R606], [R607]

**jordan_form** *(calc_transform=True, **kwargs)*

Return \((P, J)\) where \(J\) is a Jordan block matrix and \(P\) is a matrix such that \(M = PJP^{-1}\)

**Parameters**

- **calc_transform** : bool
  - If False, then only \(J\) is returned.
- **chop** : bool
  - All matrices are converted to exact types when computing eigenvalues and eigenvectors. As a result, there may be approximation errors. If chop==True, these errors will be truncated.

**Examples**

```python
>>> from sympy import Matrix
>>> M = Matrix([[6, 5, -2, -3], [-3, -1, 3, 3], [2, 1, -2, -3], [-1, 1, 5, 5]])
>>> P, J = M.jordan_form()
>>> J
Matrix([[2, 1, 0, 0],
 [0, 2, 0, 0],
 [0, 0, 2, 1],
 [0, 0, 0, 2]])
```

**See also:**

- **jordan_block** (page 1391)
- **left_eigenvects** (**flags**)
  - Returns left eigenvectors and eigenvalues.
  
  This function returns the list of triples (eigenval, multiplicity, basis) for the left eigenvectors. Options are the same as for eigenvects(), i.e. the **flags** arguments gets passed directly to eigenvects().
Examples

```python
>>> from sympy import Matrix
>>> M = Matrix([[0, 1, 1], [1, 0, 0], [1, 1, 1]])
>>> M.eigenvects()
[(-1, 1, [Matrix([[-1],
 [1],
 [0]])]), (0, 1, [Matrix([[0],
 [-1],
 [1]])]), (2, 1, [Matrix([[2/3],
 [1/3],
 [1]])]])]

singualar_values()
Compute the singular values of a Matrix

Examples

```python
>>> from sympy import Matrix, Symbol
>>> x = Symbol('x', real=True)
>>> M = Matrix([[0, 1, 0], [0, x, 0], [-1, 0, 0]])
>>> M.singular_values()
[sqrt(x**2 + 1), 1, 0]

See also:
```
condition_number (page 1333)
```
See also:

integrate (page 1320), limit (page 1321)

`integrate(*args, **kwargs)`
Integrate each element of the matrix. args will be passed to the integrate function.

Examples

```python
>>> from sympy import Matrix
>>> from sympy import x, y
>>> M = Matrix([[x, y], [1, 0]])
>>> M.integrate((x,))
Matrix([[x**2/2, x*y], [x, 0]])
>>> M.integrate((x, 0, 2))
Matrix([[2, 2*y], [2, 0]])
```

See also:

limit (page 1321), diff (page 1319)

`jacobian(X)`
Calculates the Jacobian matrix (derivative of a vector-valued function).

Parameters

```
```

```

Both `self` and X can be a row or a column matrix in any order (i.e., jacobian() should always work).

Examples

```python
>>> from sympy import sin, cos, Matrix
>>> from sympy import rho, phi
>>> X = Matrix([rho*cos(phi), rho*sin(phi), rho**2])
>>> Y = Matrix([rho, phi])
>>> X.jacobian(Y)
Matrix([[cos(phi), -rho*sin(phi)], [sin(phi), rho*cos(phi)], [2*rho, 0]])
>>> X = Matrix([rho*cos(phi), rho*sin(phi)])
>>> Y = X.jacobian(Y)
Matrix([[cos(phi), -rho*sin(phi)], [sin(phi), rho*cos(phi)]])
```
See also:

hessian (page 1361), *wronskian* (page 1362)

limit(*args*)

Calculate the limit of each element in the matrix. *args* will be passed to the limit function.

Examples

```python
>>> from sympy import Matrix
>>> from sympy.abc import x, y
>>> M = Matrix([[x, y], [1, 0]])
>>> M.limit(x, 2)
Matrix([[2, y], [1, 0]])
```

See also:

integrate (page 1320), *diff* (page 1319)

class sympy.matrices.matrices.MatrixBase

Base class for matrix objects.

property D

Return Dirac conjugate (if self.rows == 4).

Examples

```python
>>> from sympy import Matrix, I, eye
>>> m = Matrix((0, 1 + I, 2, 3))
>>> m.D
Matrix([[0, 1 - I, -2, -3]])
>>> m = (eye(4) + I*eye(4))
>>> m[0, 3] = 2
>>> m.D
Matrix([[1 - I, 0, 0, 0],
[0, 1 - I, 0, 0],
[0, 0, -1 + I, 0],
[2, 0, 0, -1 + I]])
```

If the matrix does not have 4 rows an AttributeError will be raised because this property is only defined for matrices with 4 rows.

```python
>>> Matrix(eye(2)).D
Traceback (most recent call last):
... AttributeError: Matrix has no attribute D.
```

See also:
```python
>>> from sympy import Matrix, eye
>>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))
>>> L, D = A.LDLdecomposition()

L
Matrix([[1, 0, 0],
[3/5, 1, 0],
[-1/5, 1/3, 1]])

D
Matrix([[25, 0, 0],
[0, 9, 0],
[0, 0, 9]])

>>> L * D * L.T * A.inv() == eye(A.rows)
True
```

The matrix can have complex entries:

```python
>>> from sympy import I
>>> A = Matrix(((9, 3*I), (-3*I, 5)))
>>> L, D = A.LDLdecomposition()

L
Matrix([[1, 0],
[-I/3, 1]])

D
Matrix([[9, 0],
[0, 4]])

>>> L*D*L.H == A
True
```

See also:

LDLsolve(rhs)
Solves \(Ax = B \) using LDL decomposition, for a general square and non-singular matrix.
For a non-square matrix with rows > cols, the least squares solution is returned.

Examples

```python
>>> from sympy import Matrix, eye
>>> A = eye(2)*2
>>> B = Matrix([[1, 2], [3, 4]])
>>> A.LDLsolve(B) == B/2
True
```

See also:
- `sympy.matrices.dense.DenseMatrix.LDLdecomposition` (page 1406)
- `sympy.matrices.dense.DenseMatrix.lower_triangular_solve` (page 1408)
- `sympy.matrices.dense.DenseMatrix.upper_triangular_solve` (page 1408)
- `gauss_jordan_solve` (page 1338)
- `cholesky_solve` (page 1333)
- `diagonal_solve` (page 1336)
- `LUsolve` (page 1328)
- `QRsolve` (page 1331)
- `pinv_solve` (page 1347)

LUdecomposition(iszerofunc=<function _iszero>, simpfunc=None, rankcheck=False)
Returns \((L, U, perm)\) where \(L\) is a lower triangular matrix with unit diagonal, \(U\) is an upper triangular matrix, and \(perm\) is a list of row swap index pairs. If \(A\) is the original matrix, then \(A = (L*U).permuteBkwd(perm)\), and the row permutation matrix \(P\) such that \(PA = LU\) can be computed by \(P = eye(A.rows).permuteFwd(perm)\).

See documentation for LUCombined for details about the keyword argument rankcheck, iszerofunc, and simpfunc.

Parameters

rankcheck : bool, optional
Determines if this function should detect the rank deficiency of the matrix and should raise a ValueError.

iszerofunc : function, optional
A function which determines if a given expression is zero.
The function should be a callable that takes a single SymPy expression and returns a 3-valued boolean value True, False, or None.
It is internally used by the pivot searching algorithm. See the notes section for a more information about the pivot searching algorithm.

simpfunc : function or None, optional
A function that simplifies the input.
If this is specified as a function, this function should be a callable that takes a single SymPy expression and returns an another SymPy expression that is algebraically equivalent.
If None, it indicates that the pivot search algorithm should not attempt to simplify any candidate pivots.
It is internally used by the pivot searching algorithm. See the notes section for a more information about the pivot searching algorithm.
Examples

```python
>>> from sympy import Matrix
>>> a = Matrix([[4, 3], [6, 3]])
>>> L, U, _ = a.LUdecomposition()
>>> L
Matrix([[1, 0], [3/2, 1]])
>>> U
Matrix([[4, 3], [0, -3/2]])
```

See also:

- `sympy.matrices.dense.DenseMatrix.cholesky` (page 1407),
- `sympy.matrices.dense.DenseMatrix.LDLdecomposition` (page 1328),
- `LUdecomposition_Simple` (page 1324),
- `LUdecompositionFF` (page 1324),
- `LUsolve` (page 1328)

LUdecompositionFF()

Compute a fraction-free LU decomposition.

Returns 4 matrices P, L, D, U such that PA = L D**-1 U. If the elements of the matrix belong to some integral domain I, then all elements of L, D and U are guaranteed to belong to I.

See also:

- `sympy.matrices.matrices.MatrixBase.LUdecomposition` (page 1323),
- `LUdecomposition_Simple` (page 1324),
- `LUsolve` (page 1328)

References

[R608]

LUdecomposition_Simple

```
(iszerofunc=<function _iszero>, simpfunc=None,
 rankcheck=False)
```

Compute the PLU decomposition of the matrix.

Parameters

- `rankcheck` : bool, optional
 Determines if this function should detect the rank deficiency of the matrix and should raise a ValueError.
- `iszerofunc` : function, optional
 A function which determines if a given expression is zero.
 The function should be a callable that takes a single SymPy expression and returns a 3-valued boolean value True, False, or None.
 It is internally used by the pivot searching algorithm. See the notes section for a more information about the pivot searching algorithm.
- `simpfunc` : function or None, optional
A function that simplifies the input.

If this is specified as a function, this function should be a callable that takes a single SymPy expression and returns another SymPy expression that is algebraically equivalent.

If None, it indicates that the pivot search algorithm should not attempt to simplify any candidate pivots.

It is internally used by the pivot searching algorithm. See the notes section for more information about the pivot searching algorithm.

Returns

lu, row_swaps : (Matrix, list)

If the original matrix is a \(m \times n \) matrix:

- \(lu \) is a \(m \times n \) matrix, which contains result of the decomposition in a compressed form. See the notes section to see how the matrix is compressed.

- \(row_swaps \) is a \(m \)-element list where each element is a pair of row exchange indices.

\[A = (L*U).\text{permute_backward}(perm), \] and the row permutation matrix \(P \) from the formula \(PA = LU \) can be computed by \(P=\text{eye}(A.row)\). \(\text{permute_forward}(perm) \).

Raises

ValueError

Raised if rankcheck=True and the matrix is found to be rank deficient during the computation.

Notes

About the PLU decomposition:

PLU decomposition is a generalization of a LU decomposition which can be extended for rank-deficient matrices.

It can further be generalized for non-square matrices, and this is the notation that SymPy is using.

PLU decomposition is a decomposition of a \(m \times n \) matrix \(A \) in the form of \(PA = LU \) where

- \(L \) is a \(m \times m \) lower triangular matrix with unit diagonal entries.

- \(U \) is a \(m \times n \) upper triangular matrix.

- \(P \) is a \(m \times m \) permutation matrix.

So, for a square matrix, the decomposition would look like:

\[
L = \begin{bmatrix}
1 & 0 & 0 & \cdots & 0 \\
L_{1,0} & 1 & 0 & \cdots & 0 \\
L_{2,0} & L_{2,1} & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
L_{n-1,0} & L_{n-1,1} & L_{n-1,2} & \cdots & 1
\end{bmatrix}
\]
\[
U = \begin{bmatrix}
U_{0,0} & U_{0,1} & U_{0,2} & \cdots & U_{0,n-1} \\
0 & U_{1,1} & U_{1,2} & \cdots & U_{1,n-1} \\
0 & 0 & U_{2,2} & \cdots & U_{2,n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & U_{n-1,n-1}
\end{bmatrix}
\]

And for a matrix with more rows than the columns, the decomposition would look like:

\[
L = \begin{bmatrix}
1 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
L_{1,0} & 1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
L_{2,0} & L_{2,1} & 1 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
L_{n-1,0} & L_{n-1,1} & L_{n-1,2} & \cdots & 1 & 0 & \cdots & 0 \\
L_{n,0} & L_{n,1} & L_{n,2} & \cdots & L_{n,n-1} & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
L_{m-1,0} & L_{m-1,1} & L_{m-1,2} & \cdots & L_{m-1,n-1} & 0 & \cdots & 1
\end{bmatrix}
\]

\[
U = \begin{bmatrix}
U_{0,0} & U_{0,1} & U_{0,2} & \cdots & U_{0,n-1} \\
0 & U_{1,1} & U_{1,2} & \cdots & U_{1,n-1} \\
0 & 0 & U_{2,2} & \cdots & U_{2,n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & U_{n-1,n-1} \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{bmatrix}
\]

Finally, for a matrix with more columns than the rows, the decomposition would look like:

\[
L = \begin{bmatrix}
1 & 0 & 0 & \cdots & 0 \\
L_{1,0} & 1 & 0 & \cdots & 0 \\
L_{2,0} & L_{2,1} & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
L_{m-1,0} & L_{m-1,1} & L_{m-1,2} & \cdots & 1
\end{bmatrix}
\]

\[
U = \begin{bmatrix}
U_{0,0} & U_{0,1} & U_{0,2} & \cdots & U_{0,m-1} & \cdots & U_{0,n-1} \\
0 & U_{1,1} & U_{1,2} & \cdots & U_{1,m-1} & \cdots & U_{1,n-1} \\
0 & 0 & U_{2,2} & \cdots & U_{2,m-1} & \cdots & U_{2,n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & U_{m-1,m-1} & \cdots & U_{m-1,n-1}
\end{bmatrix}
\]

About the compressed LU storage:

The results of the decomposition are often stored in compressed forms rather than returning \(L \) and \(U \) matrices individually.

It may be less intuitive, but it is commonly used for a lot of numeric libraries because of the efficiency.

The storage matrix is defined as following for this specific method:

- The subdiagonal elements of \(L \) are stored in the subdiagonal portion of \(LU \), that is \(LU_{i,j} = L_{i,j} \) whenever \(i > j \).
• The elements on the diagonal of L are all 1, and are not explicitly stored.

• U is stored in the upper triangular portion of LU, that is $LU_{i,j} = U_{i,j}$ whenever $i \leq j$.

• For a case of $m > n$, the right side of the L matrix is trivial to store.

• For a case of $m < n$, the below side of the U matrix is trivial to store.

So, for a square matrix, the compressed output matrix would be:

$$LU = \begin{bmatrix} U_{0,0} & U_{0,1} & U_{0,2} & \cdots & U_{0,n-1} \\ L_{1,0} & U_{1,1} & U_{1,2} & \cdots & U_{1,n-1} \\ L_{2,0} & L_{2,1} & U_{2,2} & \cdots & U_{2,n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ L_{n-1,0} & L_{n-1,1} & L_{n-1,2} & \cdots & U_{n-1,n-1} \end{bmatrix}$$

For a matrix with more rows than the columns, the compressed output matrix would be:

$$LU = \begin{bmatrix} U_{0,0} & U_{0,1} & U_{0,2} & \cdots & U_{0,n-1} \\ L_{1,0} & U_{1,1} & U_{1,2} & \cdots & U_{1,n-1} \\ L_{2,0} & L_{2,1} & U_{2,2} & \cdots & U_{2,n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ L_{n-1,0} & L_{n-1,1} & L_{n-1,2} & \cdots & U_{n-1,n-1} \\ L_{m-1,0} & L_{m-1,1} & L_{m-1,2} & \cdots & L_{m-1,n-1} \end{bmatrix}$$

For a matrix with more columns than the rows, the compressed output matrix would be:

$$LU = \begin{bmatrix} U_{0,0} & U_{0,1} & U_{0,2} & \cdots & U_{0,m-1} & \cdots & U_{0,n-1} \\ L_{1,0} & U_{1,1} & U_{1,2} & \cdots & U_{1,m-1} & \cdots & U_{1,n-1} \\ L_{2,0} & L_{2,1} & U_{2,2} & \cdots & U_{2,m-1} & \cdots & U_{2,n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ L_{m-1,0} & L_{m-1,1} & L_{m-1,2} & \cdots & U_{m-1,m-1} & \cdots & U_{m-1,n-1} \end{bmatrix}$$

About the pivot searching algorithm:

When a matrix contains symbolic entries, the pivot search algorithm differs from the case where every entry can be categorized as zero or nonzero. The algorithm searches column by column through the submatrix whose top left entry coincides with the pivot position. If it exists, the pivot is the first entry in the current search column that iszerofunc guarantees is nonzero. If no such candidate exists, then each candidate pivot is simplified if iszerofunc is not None. The search is repeated, with the difference that a candidate may be the pivot if iszerofunc() cannot guarantee that it is nonzero. In the second search the pivot is the first candidate that iszerofunc can guarantee is nonzero. If no such candidate exists, then the pivot is the first candidate for which iszerofunc returns None. If no such candidate exists, then the search is repeated in the next column to the right. The pivot search algorithm differs from the one in rref(), which relies on rref(). Future versions of LUdecomposition_simple() may use rref().
See also:

sympy.matrices.matrices.MatrixBase.LUdecomposition (page 1323),
LUdecompositionFF (page 1324), LUsolve (page 1328)

LUsolve(rhs, iszerofunc=<function _iszero>)
Solve the linear system $Ax = rhs$ for x where $A = M$.
This is for symbolic matrices, for real or complex ones use mpmath.lu_solve or mpmath.qr_solve.

See also:

sympy.matrices.dense.DenseMatrix.lower_triangular_solve (page 1408),
sympy.matrices.dense.DenseMatrix.upper_triangular_solve (page 1408),
gauss_jordan_solve (page 1338), cholesky_solve (page 1333), diagonal_solve (page 1336), LDLsolve (page 1322), QRsolve (page 1331), pinv_solve (page 1347),
LUdecomposition (page 1323)

QRdecomposition()
Returns a QR decomposition.

Explanation

A QR decomposition is a decomposition in the form $A = QR$ where

- Q is a column orthogonal matrix.
- R is a upper triangular (trapezoidal) matrix.

A column orthogonal matrix satisfies $I = Q^H Q$ while a full orthogonal matrix satisfies relation $I = QQ^H = Q^HQ$ where I is an identity matrix with matching dimensions.

For matrices which are not square or are rank-deficient, it is sufficient to return a column orthogonal matrix because augmenting them may introduce redundant computations. And an another advantage of this is that you can easily inspect the matrix rank by counting the number of columns of Q.

If you want to augment the results to return a full orthogonal decomposition, you should use the following procedures.

- Augment the Q matrix with columns that are orthogonal to every other columns and make it square.
- Augment the R matrix with zero rows to make it have the same shape as the original matrix.

The procedure will be illustrated in the examples section.
Examples

A full rank matrix example:

```python
>>> from sympy import Matrix
>>> A = Matrix([[12, -51, 4], [6, 167, -68], [-4, 24, -41]])
>>> Q, R = A.QRdecomposition()
>>> Q
Matrix([[6/7, -69/175, -58/175],
        [3/7, 158/175, 6/175],
        [-2/7, 6/35, -33/35]])
>>> R
Matrix([[14, 21, -14],
        [0, 175, -70],
        [0, 0, 35]])
```

If the matrix is square and full rank, the Q matrix becomes orthogonal in both directions, and needs no augmentation.

```python
>>> Q * Q.H
Matrix([[1, 0, 0],
        [0, 1, 0],
        [0, 0, 1]])
>>> Q.H * Q
Matrix([[1, 0, 0],
        [0, 1, 0],
        [0, 0, 1]])
```

```python
>>> A == Q*R
True
```

A rank deficient matrix example:

```python
>>> A = Matrix([[12, -51, 0], [6, 167, 0], [-4, 24, 0]])
>>> Q, R = A.QRdecomposition()
>>> Q
Matrix([[6/7, -69/175],
        [3/7, 158/175],
        [-2/7, 6/35]])
>>> R
Matrix([[14, 21, 0],
        [0, 175, 0]])
```

QR decomposition might return a matrix Q that is rectangular. In this case the orthogonality condition might be satisfied as $I = Q.H * Q$ but not in the reversed product $I = Q * Q.H$.

If you want to augment the results to be a full orthogonal decomposition, you should augment Q with an another orthogonal column.

You are able to append an arbitrary standard basis that are linearly independent to every other columns and you can run the Gram-Schmidt process to make them augmented as orthogonal basis.

Augmenting the R matrix with zero row is straightforward.

A zero matrix example:
As the same augmentation rule described above, Q can be augmented with columns of an identity matrix and R can be augmented with rows of a zero matrix.

```
>>> Q_aug = Q.row_join(Matrix.eye(3))
>>> R_aug = R.col_join(Matrix.zeros(3, 4))
>>> Q_aug * R_aug == A
True
```

See also:

QRsolve(b)

Solve the linear system $Ax = b$.

M is the matrix A, the method argument is the vector b. The method returns the solution vector x. If b is a matrix, the system is solved for each column of b and the return value is a matrix of the same shape as b.

This method is slower (approximately by a factor of 2) but more stable for floating-point arithmetic than the LUsolve method. However, LUsolve usually uses an exact arithmetic, so you do not need to use QRsolve.

This is mainly for educational purposes and symbolic matrices, for real (or complex) matrices use mpmath.qr_solve.

See also:

- `sympy.matrices.dense.DenseMatrix.lower_triangular_solve` (page 1408), `sympy.matrices.dense.DenseMatrix.upper_triangular_solve` (page 1408), `gauss_jordan_solve` (page 1338), `cholesky_solve` (page 1333), `diagonal_solve` (page 1336), `LDLSolve` (page 1322), `LUsolve` (page 1328), `pinv_solve` (page 1347), `QRdecomposition` (page 1328)
add(b)
 Return self + b.

analytic_func(f, x)
 Computes f(A) where A is a Square Matrix and f is an analytic function.

 Parameters
 f : Expr
 Analytic Function
 x : Symbol
 parameter of f

Examples

>>> from sympy import Symbol, Matrix, S, log

>>> x = Symbol('x')
>>> m = Matrix([[S(5)/4, S(3)/4], [S(3)/4, S(5)/4]])
>>> f = log(x)
>>> m.analytic_func(f, x)
Matrix([[0, log(2)],
 [log(2), 0]])

cholesky(hermitian=True)
 Returns the Cholesky-type decomposition L of a matrix A such that L * L.H == A if
hermitian flag is True, or L * L.T == A if hermitian is False.

 A must be a Hermitian positive-definite matrix if hermitian is True, or a symmetric
matrix if it is False.

Examples

>>> from sympy import Matrix

>>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))
>>> A.cholesky()
Matrix([[5, 0, 0],
 [3, 3, 0],
 [-1, 1, 3]])

>>> A.cholesky() * A.cholesky().T
Matrix([[25, 15, -5],
 [15, 18, 0],
 [-5, 0, 11]])

 The matrix can have complex entries:
```python
>>> from sympy import I
>>> A = Matrix(((9, 3*I), (-3*I, 5)))
>>> A.cholesky()
Matrix([ [ 3, 0], [-I, 2]])
>>> A.cholesky() * A.cholesky().H
Matrix([ [ 9, 3*I], [-3*I, 5]])
```

Non-hermitian Cholesky-type decomposition may be useful when the matrix is not positive-definite.

```python
>>> A = Matrix([[1, 2], [2, 1]])
>>> L = A.cholesky(hermitian=False)
>>> L
Matrix([ [1, 0], [2, sqrt(3)*I]])
>>> L*L.T == A
True
```

See also:

cholesky_solve(rhs)

Solves $Ax = B$ using Cholesky decomposition, for a general square non-singular matrix. For a non-square matrix with rows $> cols$, the least squares solution is returned.

See also:

- `sympy.matrices.dense.DenseMatrix.lower_triangular_solve` (page 1408), `sympy.matrices.dense.DenseMatrix.upper_triangular_solve` (page 1408), `gauss_jordan_solve` (page 1338), `diagonal_solve` (page 1336), `LDLsolve` (page 1322), `LUsolve` (page 1328), `QRsolve` (page 1331), `pinv_solve` (page 1347)

condition_number()

Returns the condition number of a matrix.

This is the maximum singular value divided by the minimum singular value

Examples

```python
>>> from sympy import Matrix, S
>>> A = Matrix([[1, 0, 0], [0, 10, 0], [0, 0, S.One/10]])
>>> A.condition_number()
100
```

See also:

- `singular_values` (page 1319)
connected_components()

Returns the list of connected vertices of the graph when a square matrix is viewed as a weighted graph.

Examples

```python
>>> from sympy import Matrix
>>> A = Matrix([...
  ... [66, 0, 0, 68, 0, 0, 0, 67],
  ... [0, 55, 0, 0, 0, 0, 54, 53, 0],
  ... [0, 0, 0, 0, 1, 2, 0, 0, 0],
  ... [86, 0, 88, 0, 0, 0, 0, 87],
  ... [0, 0, 10, 0, 11, 12, 0, 0, 0],
  ... [0, 0, 20, 0, 21, 22, 0, 0, 0],
  ... [0, 45, 0, 0, 0, 0, 44, 43, 0],
  ... [0, 35, 0, 0, 0, 0, 34, 33, 0],
  ... [76, 0, 78, 0, 0, 0, 0, 77]])
>>> A.connected_components()
[[0, 3, 8], [1, 6, 7], [2, 4, 5]]
```

Notes

Even if any symbolic elements of the matrix can be indeterminate to be zero mathematically, this only takes the account of the structural aspect of the matrix, so they will considered to be nonzero.

connected_components_decomposition()

Decomposes a square matrix into block diagonal form only using the permutations.

Returns

\(P, B : \text{PermutationMatrix}, \text{BlockDiagMatrix} \)

\(P \) is a permutation matrix for the similarity transform as in the explanation. And \(B \) is the block diagonal matrix of the result of the permutation.

If you would like to get the diagonal blocks from the BlockDiagMatrix, see `get_diag_blocks()` (page 1430).

Explanation

The decomposition is in a form of \(A = P^{-1}BP \) where \(P \) is a permutation matrix and \(B \) is a block diagonal matrix.
Examples

```python
>>> from sympy import Matrix, pprint
>>> A = Matrix([...       [66, 0, 0, 68, 0, 0, 0, 0, 67],...       [0, 55, 0, 0, 0, 54, 53, 0],...       [0, 0, 0, 1, 2, 0, 0, 0],...       [86, 0, 0, 88, 0, 0, 0, 87],...       [0, 0, 10, 11, 12, 0, 0, 0],...       [0, 0, 20, 0, 21, 22, 0, 0],...       [0, 45, 0, 0, 0, 44, 43, 0],...       [0, 35, 0, 0, 0, 34, 33, 0],...       [76, 0, 0, 78, 0, 0, 0, 77]])
```

```python
>>> P, B = A.connected_components_decomposition()
>>> pprint(P)
PermutationMatrix((1 3)(2 8 5 7 4 6))
```

```python
>>> pprint(B)
[[66 68 67]]
[[0 0 0]]
[[86 88 87]]
[[0 0 0]]
[[76 78 77]]
[[55 54 53]]
[[45 44 43]]
[[35 34 33]]
[[0 1 2]]
[[0 0 0]]
[[10 11 12]]
[[0 0 0]]
```

```python
>>> P = P.as_explicit()
>>> B = B.as_explicit()
>>> P.T*B*P == A
True
```

Notes

This problem corresponds to the finding of the connected components of a graph, when a matrix is viewed as a weighted graph.

`copy()`

Returns the copy of a matrix.
Examples

```python
>>> from sympy import Matrix
>>> A = Matrix([2, 2, 1, 2, 3, 4])
>>> A.copy()
Matrix([
    [1, 2],
    [3, 4]])
```

cross(b)

Return the cross product of self and b relaxing the condition of compatible dimensions: if each has 3 elements, a matrix of the same type and shape as self will be returned. If b has the same shape as self then common identities for the cross product (like \(a \times b = -b \times a\)) will hold.

Parameters
- **b**: 3x1 or 1x3 Matrix

See also:
- `dot` (page 1336), `multiply` (page 1392), `multiply_elementwise` (page 1393)

diagonal_solve(rhs)

Solves \(Ax = B\) efficiently, where A is a diagonal Matrix, with non-zero diagonal entries.

Examples

```python
>>> from sympy import Matrix, eye
>>> A = eye(2)*2
>>> B = Matrix([[1, 2], [3, 4]])
>>> A.diagonal_solve(B) == B/2
True
```

See also:
- `sympy.matrices.dense.DenseMatrix.lower_triangular_solve` (page 1408),
- `sympy.matrices.dense.DenseMatrix.upper_triangular_solve` (page 1408),
- `gauss_jordan_solve` (page 1338),
- `cholesky_solve` (page 1333),
- `LDLsolve` (page 1322),
- `LUsolve` (page 1328),
- `QRsolve` (page 1331),
- `pinv_solve` (page 1347)

dot(b, hermitian=None, conjugate_convention=None)

Return the dot or inner product of two vectors of equal length. Here self must be a Matrix of size 1 x n or n x 1, and b must be either a matrix of size 1 x n, n x 1, or a list/tuple of length n. A scalar is returned.

By default, dot does not conjugate self or b, even if there are complex entries. Set hermitian=True (and optionally a conjugate_convention) to compute the hermitian inner product.

Possible kwargs are hermitian and conjugate_convention.

If conjugate_convention is "left", "math" or "maths", the conjugate of the first vector (self) is used. If "right" or "physics" is specified, the conjugate of the second vector b is used.
Examples

```python
>>> from sympy import Matrix
>>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> v = Matrix([1, 1, 1])
>>> M.row(0).dot(v)
6
>>> M.col(0).dot(v)
12
>>> v = [3, 2, 1]
>>> M.row(0).dot(v)
10
```

```python
>>> from sympy import I
>>> q = Matrix([1*I, 1*I, 1*I])
>>> q.dot(q, hermitian=False)
-3
```

```python
>>> q.dot(q, hermitian=True)
3
```

```python
>>> q1 = Matrix([1, 1, 1*I])
>>> q.dot(q1, hermitian=True, conjugate_convention="maths")
1 - 2*I
```

```python
>>> q.dot(q1, hermitian=True, conjugate_convention="physics")
1 + 2*I
```

See also:

cross (page 1336), multiply (page 1392), multiply_elementwise (page 1393)

dual()

Returns the dual of a matrix.

A dual of a matrix is:

\[
(1/2) \text{levicivita}(i, j, k, l) \times M(k, l) \text{ summed over indices } k \text{ and } l
\]

Since the levicivita method is anti_symmetric for any pairwise exchange of indices, the dual of a symmetric matrix is the zero matrix. Strictly speaking the dual defined here assumes that the 'matrix' \(M \) is a contravariant anti_symmetric second rank tensor, so that the dual is a covariant second rank tensor.

exp()

Return the exponential of a square matrix.
Examples

```python
>>> from sympy import Symbol, Matrix

>>> t = Symbol('t')
>>> m = Matrix([[0, 1], [-1, 0]]) * t
>>> m.exp()
Matrix([
    [exp(I*t)/2 + exp(-I*t)/2, -I*exp(I*t)/2 + I*exp(-I*t)/2],
    [I*exp(I*t)/2 - I*exp(-I*t)/2, exp(I*t)/2 + exp(-I*t)/2]])
```

gauss_jordan_solve(B, freevar=False)

Solves $Ax = B$ using Gauss Jordan elimination.

There may be zero, one, or infinite solutions. If one solution exists, it will be returned. If infinite solutions exist, it will be returned parametrically. If no solutions exist, it will throw ValueError.

Parameters

- **B**: Matrix

The right hand side of the equation to be solved for. Must have the same number of rows as matrix A.

- **freevar**: boolean, optional

 Flag, when set to True will return the indices of the free variables in the solutions (column Matrix), for a system that is underdetermined (e.g. A has more columns than rows), for which infinite solutions are possible, in terms of arbitrary values of free variables. Default False.

Returns

- **x**: Matrix

The matrix that will satisfy $Ax = B$. Will have as many rows as matrix A has columns, and as many columns as matrix B.

- **params**: Matrix

 If the system is underdetermined (e.g. A has more columns than rows), infinite solutions are possible, in terms of arbitrary parameters. These arbitrary parameters are returned as params Matrix.

- **free_var_index**: List, optional

 If the system is underdetermined (e.g. A has more columns than rows), infinite solutions are possible, in terms of arbitrary values of free variables. Then the indices of the free variables in the solutions (column Matrix) are returned by free_var_index, if the flag freevar is set to True.
Examples

```python
>>> from sympy import Matrix
>>> A = Matrix([[1, 2, 1, 1], [1, 2, 2, -1], [2, 4, 0, 6]])
>>> B = Matrix([7, 12, 4])
>>> sol, params = A.gauss_jordan_solve(B)
>>> sol
Matrix([[-2*tau0 - 3*tau1 + 2],
          [tau0],
          [2*tau1 + 5],
          [tau1]])
>>> params
Matrix([tau0, tau1])
```

```python
>>> taus_zeroes = { tau: 0 for tau in params }
>>> sol_unique = sol.xreplace(taus_zeroes)
>>> sol_unique
Matrix([[2],
        [0],
        [5],
        [0]])
```

```python
>>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 10]])
>>> B = Matrix([3, 6, 9])
>>> sol, params = A.gauss_jordan_solve(B)
>>> sol
Matrix([[-1],
        [2],
        [0]])
>>> params
Matrix(0, 1, [])
```

```python
>>> A = Matrix([[2, -7], [-1, 4]])
>>> B = Matrix([[-21, 3], [12, -2]])
>>> sol, params = A.gauss_jordan_solve(B)
>>> sol
Matrix([[0, -2],
        [3, -1]])
>>> params
Matrix(0, 2, [])
```

```python
>>> from sympy import Matrix
>>> A = Matrix([[1, 2, 1, 1], [1, 2, 2, -1], [2, 4, 0, 6]])
>>> B = Matrix([7, 12, 4])
>>> sol, params, freevars = A.gauss_jordan_solve(B, freevar=True)
>>> sol
Matrix([[-2*tau0 - 3*tau1 + 2],
          [tau0],
          [2*tau1 + 5],
          [tau1]])
```

(continues on next page)
[-2*tau0 - 3*tau1 + 2],
[tau0],
[2*tau1 + 5],
[tau1])

>>> params
Matrix([tau0],
[tau1])

>>> freevars
[1, 3]

See also:
sympy.matrices.dense.DenseMatrix.lower_triangular_solve (page 1408),
sympy.matrices.dense.DenseMatrix.upper_triangular_solve (page 1408),
cholesky_solve (page 1333), diagonal_solve (page 1336), LDLsolve (page 1322),
LUsolve (page 1328), QRsolve (page 1331), pinv (page 1346)

References

[R609]

inv(method=None, iszerofunc=<function_iszero>, try_block_diag=False)
Return the inverse of a matrix using the method indicated. Default for dense matrices is Gauss elimination, default for sparse matrices is LDL.

Parameters

- method : ('GE', 'LU', 'ADJ', 'CH', 'LDL')
- iszerofunc : function, optional
 Zero-testing function to use.
- try_block_diag : bool, optional
 If True then will try to form block diagonal matrices using the method get_diag_blocks(), invert these individually, and then reconstruct the full inverse matrix.

Raises

ValueError
If the determinant of the matrix is zero.

Examples

>>> from sympy import SparseMatrix, Matrix
>>> A = SparseMatrix([...
... [2, -1, 0],
... [-1, 2, -1],
... [0, 0, 2]])
>>> A.inv('CH')
Matrix([...[2/3, 1/3, 1/6],
...
>>> A.inv(method='LDL') # use of 'method=' is optional
Matrix([
 [2/3, 1/3, 1/6],
 [1/3, 2/3, 1/3],
 [0, 0, 1/2]
])

>>> A._ * _
Matrix([
 [1, 0, 0],
 [0, 1, 0],
 [0, 0, 1]
])

>>> A = Matrix(A)

>>> A.inv('CH')
Matrix([
 [2/3, 1/3, 1/6],
 [1/3, 2/3, 1/3],
 [0, 0, 1/2]
])

>>> A.inv('ADJ') == A.inv('GE') == A.inv('LU') == A.inv('CH') == A.
... .inv('LDL') == A.inv('QR')
True

Notes

According to the method keyword, it calls the appropriate method:

GE inverse_GE(); default for dense matrices
LU inverse_LU() ADJ ...
inverse_ADJ(); CH ... inverse_CH() LDL inverse_LDL(); default for sparse
matrices QR ... inverse_QR()

Note, the GE and LU methods may require the matrix to be simplified before it is
inverted in order to properly detect zeros during pivoting. In difficult cases a custom
zero detection function can be provided by setting the iszerofunc argument to a
function that should return True if its argument is zero. The ADJ routine computes
the determinant and uses that to detect singular matrices in addition to testing for
zeros on the diagonal.

See also:

inverse_ADJ (page 1342), inverse_GE (page 1342), inverse_LU (page 1342),
inverse_CH (page 1342), inverse_LDL (page 1342)

inv_mod(m)

Returns the inverse of the matrix $K \mod m$, if it exists.

Method to find the matrix inverse of $K \mod m$ implemented in this function:

- Compute $\text{adj}(K) = \text{cof}(K)^\dagger$, the adjoint matrix of K.
- Compute $r = 1/\det(K) \mod m$.
- $K^{-1} = r \cdot \text{adj}(K) \mod m$.

5.8. Topics 1341
Examples

```python
>>> from sympy import Matrix
>>> A = Matrix(2, 2, [1, 2, 3, 4])
>>> A.inv_mod(5)
Matrix([[3, 1],
        [4, 2]])
>>> A.inv_mod(3)
Matrix([[1, 1],
        [0, 1]])
```

inverse_ADJ

Calculates the inverse using the adjugate matrix and a determinant.

See also:

inverse_BLOCK

Calculates the inverse using BLOCKWISE inversion.

See also:

inverse_CH

Calculates the inverse using cholesky decomposition.

See also:

inverse_GE

Calculates the inverse using Gaussian elimination.

See also:

inverse_LDL

Calculates the inverse using LDL decomposition.

See also:

inverse_LU

Calculates the inverse using LU decomposition.

See also:

inverse_QR(iszerofunc=<function iszero>)
Calculates the inverse using QR decomposition.

See also:
inv (page 1340), inverse_ADJ (page 1342), inverse_GE (page 1342), inverse_CH (page 1342), inverse_LDL (page 1342)

classmethod irregular(ntop, *matrices, **kwargs)
Return a matrix filled by the given matrices which are listed in order of appearance from left to right, top to bottom as they first appear in the matrix. They must fill the matrix completely.

Examples

```python
>>> from sympy import ones, Matrix
>>> Matrix.irregular(3, ones(2,1), ones(3,3)*2, ones(2,2)*3, ...
    ones(1,1)*4, ones(2,2)*5, ones(1,2)*6, ones(1,2)*7)
Matrix([[1, 2, 2, 2, 3, 3],
        [1, 2, 2, 2, 3, 3],
        [4, 2, 2, 2, 5, 5],
        [6, 6, 7, 7, 5, 5]])
```

is_nilpotent()
Checks if a matrix is nilpotent.

A matrix B is nilpotent if for some integer k, B**k is a zero matrix.

Examples

```python
>>> from sympy import Matrix
>>> a = Matrix([[0, 0, 0], [1, 0, 0], [1, 1, 0]])
>>> a.is_nilpotent()
True

>>> a = Matrix([[1, 0, 1], [1, 0, 0], [1, 1, 0]])
>>> a.is_nilpotent()
False
```

key2bounds(keys)
Converts a key with potentially mixed types of keys (integer and slice) into a tuple of ranges and raises an error if any index is out of self’s range.

See also:
key2ij (page 1343)

key2ij(key)
Converts key into canonical form, converting integers or indexable items into valid integers for self’s range or returning slices unchanged.

See also:
key2bounds (page 1343)
\texttt{log(simplify=<function cancel>)}

Return the logarithm of a square matrix.

Parameters

\texttt{simplify} : function, bool

The function to simplify the result with.

Default is cancel, which is effective to reduce the expression growing for taking reciprocals and inverses for symbolic matrices.

Examples

```python
>>> from sympy import S, Matrix

Examples for positive-definite matrices:

```python
>>> m = Matrix([[1, 1], [0, 1]])
>>> m.log()
Matrix([[0, 1],
 [0, 0]])
```  

```python
>>> m = Matrix([[S(5)/4, S(3)/4], [S(3)/4, S(5)/4]])
>>> m.log()
Matrix([[0, log(2)],
 [log(2), 0]])
```  

Examples for non positive-definite matrices:

```python
>>> m = Matrix([[S(3)/4, S(5)/4], [S(5)/4, S(3)/4]])
>>> m.log()
Matrix([[I*pi/2, log(2) - I*pi/2],
 [log(2) - I*pi/2, I*pi/2]])
```  

```python
>>> m = Matrix(...[[0, 0, 1, 0],
... [0, 0, 1, 0],
... [0, 1, 0, 0],
... [1, 0, 0, 0]])
>>> m.log()
Matrix([[I*pi/2, 0, 0, -I*pi/2],
 [0, I*pi/2, -I*pi/2, 0],
 [0, -I*pi/2, I*pi/2, 0],
 [-I*pi/2, 0, 0, I*pi/2]])
```  

**lower_triangular_solve**(\texttt{rhs})

Solves \(Ax = B\), where \(A\) is a lower triangular matrix.

**See also:**

\texttt{upper_triangular_solve} (page 1359), \texttt{gauss_jordan_solve} (page 1338)
**norm** (ord=None)

Return the Norm of a Matrix or Vector.

In the simplest case this is the geometric size of the vector. Other norms can be specified by the ord parameter.

<table>
<thead>
<tr>
<th>ord</th>
<th>norm for matrices</th>
<th>norm for vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Frobenius norm</td>
<td>2-norm</td>
</tr>
<tr>
<td>‘fro’</td>
<td>Frobenius norm</td>
<td>• does not exist</td>
</tr>
<tr>
<td>inf</td>
<td>maximum row sum</td>
<td>max(abs(x))</td>
</tr>
<tr>
<td>-inf</td>
<td>–</td>
<td>min(abs(x))</td>
</tr>
<tr>
<td>1</td>
<td>maximum column sum</td>
<td>as below</td>
</tr>
<tr>
<td>-1</td>
<td>–</td>
<td>as below</td>
</tr>
<tr>
<td>2</td>
<td>2-norm (largest sing.</td>
<td>as below</td>
</tr>
<tr>
<td>-2</td>
<td>smallest singular value</td>
<td>as below</td>
</tr>
<tr>
<td>other</td>
<td>• does not exist</td>
<td>sum(abs(x)<strong>ord)</strong>(1./ord)</td>
</tr>
</tbody>
</table>

**Examples**

```python
>>> from sympy import Matrix, Symbol, trigsimp, cos, sin, oo
>>> x = Symbol('x', real=True)
>>> v = Matrix([[cos(x), sin(x)]])
>>> trigsimp(v.norm())
1
>>> v.norm(10)
(cos(x)**10 + sin(x)**10)**(1/10)
>>> A = Matrix([[1, 1], [1, 1]])
>>> A.norm(1) # maximum sum of absolute values of A is 2
2
>>> A.norm(2) # Spectral norm (max of |Ax|/|x| under 2-vector-norm)
2
>>> A.norm(-2) # Inverse spectral norm (smallest singular value)
0
>>> A.norm() # Frobenius Norm
2
>>> A.norm(oo) # Infinity Norm
2
>>> Matrix([[1, -2]]).norm(oo)
2
>>> Matrix([-1, 2]).norm(-oo)
1
```
See also:

normalized (page 1346)

`normalized(iszerofunc=<function_iszero>)`

Return the normalized version of self.

Parameters

- `iszerofunc`: Function, optional
  A function to determine whether `self` is a zero vector. The default `_iszero` tests to see if each element is exactly zero.

Returns

Matrix

Normalized vector form of `self`. It has the same length as a unit vector. However, a zero vector will be returned for a vector with norm 0.

Raises

- `ShapeError`
  If the matrix is not in a vector form.

See also:

`norm` (page 1345)

`pinv(method='RD')`

Calculate the Moore-Penrose pseudoinverse of the matrix.

The Moore-Penrose pseudoinverse exists and is unique for any matrix. If the matrix is invertible, the pseudoinverse is the same as the inverse.

Parameters

- `method`: String, optional
  Specifies the method for computing the pseudoinverse.
  If 'RD', Rank-Decomposition will be used.
  If 'ED', Diagonalization will be used.

Examples

Computing pseudoinverse by rank decomposition:

```python
>>> from sympy import Matrix
>>> A = Matrix([[1, 2, 3], [4, 5, 6]])
>>> A.pinv()
Matrix([[-17/18, 4/9], [-1/9, 1/9], [13/18, -2/9]])
```

Computing pseudoinverse by diagonalization:
>>> B = A.pinv(method='ED')
>>> B.simplify()
>>> B
Matrix([[-17/18, 4/9],
         [-1/9, 1/9],
         [13/18, -2/9]])

See also:

inv (page 1340), pinv_solve (page 1347)

References

[R610]

pinv_solve(B, arbitrary_matrix=None)

Solve \( Ax = B \) using the Moore-Penrose pseudoinverse.

There may be zero, one, or infinite solutions. If one solution exists, it will be
returned. If infinite solutions exist, one will be returned based on the value of arbi-
trary_matrix. If no solutions exist, the least-squares solution is returned.

Parameters

B : Matrix

The right hand side of the equation to be solved for. Must have the
same number of rows as matrix A.

arbitrary_matrix : Matrix

If the system is underdetermined (e.g. \( A \) has more columns than
rows), infinite solutions are possible, in terms of an arbitrary matrix.
This parameter may be set to a specific matrix to use for that purpose;
if so, it must be the same shape as \( x \), with as many rows as matrix \( A \)
has columns, and as many columns as matrix \( B \). If left as None, an ap-
propriate matrix containing dummy symbols in the form of \( w_n \_m \) will
be used, with \( n \) and \( m \) being row and column position of each symbol.

Returns

x : Matrix

The matrix that will satisfy \( Ax = B \). Will have as many rows as matrix
\( A \) has columns, and as many columns as matrix \( B \).

Examples

>>> from sympy import Matrix
>>> A = Matrix([[1, 2, 3], [4, 5, 6]])
>>> B = Matrix([7, 8])
>>> A.pinv_solve(B)
Matrix([[ _w0_0/6 - _w1_0/3 + _w2_0/6 - 55/18],
        [-_w0_0/3 + 2*_w1_0/3 - _w2_0/3 + 1/9],
        [ _w0_0/6 - _w1_0/3 + _w2_0/6 - 55/18]]

(continues on next page)
Notes

This may return either exact solutions or least squares solutions. To determine which, check $A \times A.pinv() \times B == B$. It will be True if exact solutions exist, and False if only a least-squares solution exists. Be aware that the left hand side of that equation may need to be simplified to correctly compare to the right hand side.

See also:

- `sympy.matrices.dense.DenseMatrix.lower_triangular_solve` (page 1408),
- `sympy.matrices.dense.DenseMatrix.upper_triangular_solve` (page 1408),
- `gauss_jordan_solve` (page 1338),
- `cholesky_solve` (page 1333),
- `diagonal_solve` (page 1336),
- `LDLsolve` (page 1322),
- `LUsolve` (page 1328),
- `QRsolve` (page 1331),
- `pinv` (page 1346)

References

[R611]

`print_nonzero(symb='X')`

Shows location of non-zero entries for fast shape lookup.

Examples

```python
>>> from sympy import Matrix, eye
>>> m = Matrix(2, 3, lambda i, j: i*3+j)
>>> m
Matrix([[0, 1, 2],
 [3, 4, 5]])
>>> m.print_nonzero()
[XX]
[XXX]
>>> m = eye(4)
>>> m.print_nonzero("x")
[x]
[x]
[x]
[x]
```

`project(v)`

Return the projection of self onto the line containing v.
Examples

```python
>>> from sympy import Matrix, S, sqrt
>>> V = Matrix([[sqrt(3)/2, S.Half]])
>>> x = Matrix([[1], [0]])
>>> V.project(x)
Matrix([[sqrt(3)/2], [0]])
>>> V.project(-x)
Matrix([[sqrt(3)/2], [0]])
```

`rank_decomposition(iszerofunc=<function _iszero>, simplify=False)`

Returns a pair of matrices \((C, F)\) with matching rank such that \(A = CF\).

**Parameters**

- **iszerofunc**: Function, optional
  
  A function used for detecting whether an element can act as a pivot. `lambda x: x.is_zero` is used by default.

- **simplify**: Bool or Function, optional
  
  A function used to simplify elements when looking for a pivot. By default SymPy’s `simplify` is used.

**Returns**

\((C, F)\) : Matrices

\(C\) and \(F\) are full-rank matrices with rank as same as \(A\), whose product gives \(A\).

See Notes for additional mathematical details.

Examples

```python
>>> from sympy import Matrix
>>> A = Matrix([...
... [1, 3, 1, 4],
... [2, 7, 3, 9],
... [1, 5, 3, 1],
... [1, 2, 0, 8]
...])
>>> C, F = A.rank_decomposition()
>>> C
Matrix([[1, 3, 4], [2, 7, 9], [1, 5, 1], [1, 2, 8]])
>>> F
Matrix([[1, 0, -2, 0], [0, 1, 1, 0], [0, 0, 0, 1]])
>>> C * F == A
True
```
**Notes**

Obtaining \( F \), an RREF of \( A \), is equivalent to creating a product

\[
E_n E_{n-1} \ldots E_1 A = F
\]

where \( E_n, E_{n-1}, \ldots, E_1 \) are the elimination matrices or permutation matrices equivalent to each row-reduction step.

The inverse of the same product of elimination matrices gives \( C \):

\[
C = (E_n E_{n-1} \ldots E_1)^{-1}
\]

It is not necessary, however, to actually compute the inverse: the columns of \( C \) are those from the original matrix with the same column indices as the indices of the pivot columns of \( F \).

**See also:**

`sympy.matrices.matrices.MatrixReductions.rref` (page 1276)

**References**

[R612], [R613]

`singular_value_decomposition()`

Returns a Condensed Singular Value decomposition.

**Explanation**

A Singular Value decomposition is a decomposition in the form \( A = U \Sigma V \) where

- \( U, V \) are column orthogonal matrix.
- \( \Sigma \) is a diagonal matrix, where the main diagonal contains singular values of matrix \( A \).

A column orthogonal matrix satisfies \( I = U^H U \) while a full orthogonal matrix satisfies relation \( I = U U^H = U^H U \) where \( I \) is an identity matrix with matching dimensions.

For matrices which are not square or are rank-deficient, it is sufficient to return a column orthogonal matrix because augmenting them may introduce redundant computations. In condensed Singular Value Decomposition we only return column orthogonal matrices because of this reason.

If you want to augment the results to return a full orthogonal decomposition, you should use the following procedures.

- Augment the \( U, V \) matrices with columns that are orthogonal to every other columns and make it square.
- Augment the \( \Sigma \) matrix with zero rows to make it have the same shape as the original matrix.

The procedure will be illustrated in the examples section.
Examples

We take a full rank matrix first:

```python
>>> from sympy import Matrix
>>> A = Matrix([[1, 2],[2,1]])
>>> U, S, V = A.singular_value_decomposition()
>>> U
Matrix([[sqrt(2)/2, sqrt(2)/2], [-sqrt(2)/2, sqrt(2)/2]])
>>> S
Matrix([[1, 0], [0, 3]])
>>> V
Matrix([[sqrt(2)/2, sqrt(2)/2], [-sqrt(2)/2, sqrt(2)/2]])
```

If a matrix is square and full rank both U, V are orthogonal in both directions

```python
>>> U * U.H
Matrix([[1, 0], [0, 1]])
>>> U.H * U
Matrix([[1, 0], [0, 1]])
>>> V * V.H
Matrix([[1, 0], [0, 1]])
```

```python
>>> A == U * S * V.H
True
```

```python
>>> C = Matrix([... [1, 0, 0, 0, 2],... [0, 0, 3, 0, 0],... [0, 0, 0, 0, 0],... [0, 2, 0, 0, 0],...])
>>> U, S, V = C.singular_value_decomposition()
```

```python
>>> V.H * V
Matrix([[1, 0, 0],
 [0, 2, 0],
 [0, 0, 3]])
```
If you want to augment the results to be a full orthogonal decomposition, you should augment \( V \) with another orthogonal column.

You are able to append an arbitrary standard basis that are linearly independent to every other columns and you can run the Gram-Schmidt process to make them augmented as orthogonal basis.

Similarly we augment \( U \)

```python
>>> U_aug = U.row_join(Matrix([[0, 0, 1, 0]]))
>>> U_aug = U_aug.QRdecomposition()[0]
>>> U_aug
Matrix([[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], [1, 0, 0, 0]])
```
We add 2 zero columns and one row to S

```python
>>> S_aug = S.col_join(Matrix([[0, 0, 0]]))
>>> S_aug = S_aug.row_join(Matrix([[0, 0, 0, 0], [0, 0, 0, 0], ...
... [0, 0, 0, 0]]).H)
>>> S_aug
Matrix([%
[2, 0, 0, 0, 0],
[0, sqrt(5), 0, 0, 0],
[0, 0, 3, 0, 0],
[0, 0, 0, 0, 0]])
```

>>> U_aug * S_aug * V_aug.H == C
True

**solve**(*rhs*, *method='GJ'* )

Solves linear equation where the unique solution exists.

**Parameters**

- **rhs** : Matrix
  Vector representing the right hand side of the linear equation.

- **method** : string, optional
  If set to 'GJ' or 'GE', the Gauss-Jordan elimination will be used, which is implemented in the routine `gauss_jordan_solve`. If set to 'LU', LU solve routine will be used.
  If set to 'QR', QR solve routine will be used.
  If set to 'PINV', pinv solve routine will be used.
  It also supports the methods available for special linear systems
  For positive definite systems:
  If set to 'CH', cholesky solve routine will be used.
  If set to 'LDL', LDL solve routine will be used.

  To use a different method and to compute the solution via the inverse, use a method defined in the .inv() docstring.

**Returns**

- **solutions** : Matrix
Vector representing the solution.

Raises

ValueError

If there is not a unique solution then a ValueError will be raised.

If M is not square, a ValueError and a different routine for solving
the system will be suggested.

solve_least_squares(rhs, method='CH')

Return the least-square fit to the data.

Parameters

rhs : Matrix

Vector representing the right hand side of the linear equation.

method : string or boolean, optional

If set to 'CH', cholesky_solve routine will be used.

If set to 'LDL', LDLsolve routine will be used.

If set to 'QR', QRsolve routine will be used.

If set to 'PINV', pinv_solve routine will be used.

Otherwise, the conjugate of M will be used to create a system of equa-
tions that is passed to solve along with the hint defined by method.

Returns

solutions : Matrix

Vector representing the solution.

Examples

>>> from sympy import Matrix, ones

>>> A = Matrix([[1, 2, 3]])

>>> B = Matrix([[2, 3, 4]])

>>> S = Matrix(A.row_join(B))

>>> S

Matrix([ [1, 2],
          [2, 3],
          [3, 4]])

If each line of S represent coefficients of Ax + By and x and y are [2, 3] then S*xy is:

>>> r = S*Matrix([[2, 3]]); r

Matrix([ [ 8],
          [13],
          [18]])

But let’s add 1 to the middle value and then solve for the least-squares value of xy:
```python
>>> xy = S.solve_least_squares(Matrix([[8, 14, 18]])); xy
Matrix([[5/3],
 [10/3]])
```

The error is given by \( S \cdot xy - r \):

```python
>>> S*xy - r
Matrix([[1/3],
 [1/3],
 [1/3]])
```

If a different \( xy \) is used, the norm will be higher:

```python
>>> xy += ones(2, 1)/10
>>> (S*xy - r).norm().n(2)
1.5
```

### strongly_connected_components()

Returns the list of strongly connected vertices of the graph when a square matrix is viewed as a weighted graph.

### Examples

```python
>>> from sympy import Matrix
>>> A = Matrix([...
 [44, 0, 0, 0, 43, 0, 45, 0, 0],
 [0, 66, 62, 61, 0, 68, 0, 60, 67],
 [0, 0, 22, 21, 0, 0, 0, 20, 0],
 [0, 0, 12, 11, 0, 0, 0, 10, 0],
 [34, 0, 0, 0, 33, 0, 35, 0, 0],
 [0, 86, 82, 81, 0, 88, 0, 80, 87],
 [54, 0, 0, 0, 53, 0, 55, 0, 0],
 [0, 0, 2, 1, 0, 0, 0, 0, 0],
 [0, 76, 72, 71, 0, 78, 0, 70, 77]])
```

```python
>>> A.strongly_connected_components()
[[0, 4, 6], [2, 3, 7], [1, 5, 8]]
```

### strongly_connected_components_decomposition(lower=True)

Decomposes a square matrix into block triangular form only using the permutations.

**Parameters**

- **lower** : bool

  Makes \( B \) lower block triangular when True. Otherwise, makes \( B \) upper block triangular.

**Returns**

- \( P, B \) : PermutationMatrix, BlockMatrix
$P$ is a permutation matrix for the similarity transform as in the explanation. And $B$ is the block triangular matrix of the result of the permutation.

**Explanation**

The decomposition is in a form of $A = P^{-1}BP$ where $P$ is a permutation matrix and $B$ is a block diagonal matrix.

**Examples**

```python
>>> from sympy import Matrix, pprint
>>> A = Matrix([...
... [44, 0, 0, 0, 43, 0, 45, 0, 0],
... [0, 66, 62, 61, 0, 68, 0, 60, 67],
... [0, 0, 22, 21, 0, 0, 0, 20, 0],
... [0, 0, 12, 11, 0, 0, 0, 10, 0],
... [34, 0, 0, 0, 33, 0, 35, 0, 0],
... [0, 86, 82, 81, 0, 88, 0, 80, 87],
... [54, 0, 0, 0, 53, 0, 55, 0, 0],
... [0, 0, 2, 1, 0, 0, 0, 0, 0],
... [0, 76, 72, 71, 0, 78, 0, 70, 77]])

A lower block triangular decomposition:

```python
>>> P, B = A.strongly_connected_components_decomposition()
>>> pprint(P)
PermutationMatrix((8)(1 4 3 2 6)(5 7))

>>> pprint(B)
[[44 43 45] [0 0 0] [0 0 0] ]
[[ ] [ ] [ ] ]
[[34 33 35] [0 0 0] [0 0 0] ]
[[ ] [ ] [ ] ]
[[54 53 55] [0 0 0] [0 0 0] ]
[[ ] [ ] [ ] ]
[[0 0 0] [22 21 20] [0 0 0] ]
[[ ] [ ] [ ] ]
[[0 0 0] [12 11 10] [0 0 0] ]
[[ ] [ ] [ ] ]
[[0 0 0] [2 1 0] [0 0 0] ]
[[ ] [ ] [ ] ]
[[0 0 0] [62 61 60] [66 68 67]]
[[ ] [ ] [ ] ]
[[0 0 0] [82 81 80] [86 88 87]]
[[ ] [ ] [ ] ]
[[0 0 0] [72 71 70] [76 78 77]]
```
An upper block triangular decomposition:

```python
>>> P, B = A.strongly_connected_components_decomposition(lower=False)
>>> pprint(P)
PermutationMatrix((0 1 5 7 4 3 2 8 6))
>>> pprint(B)
[[66 68 67] [62 61 60] [0 0 0] ]
[[ ] [ ] [ ] ]
[[66 88 87] [82 81 80] [0 0 0] ]
[[ ] [ ] [ ] ]
[[76 78 77] [72 71 70] [0 0 0] ]
[ ]
[ [0 0 0] [22 21 20] [0 0 0] ]
[ [ ] [ ] [ ] ]
[ [0 0 0] [12 11 10] [0 0 0] ]
[ [ ] [ ] [ ] ]
[ [0 0 0] [2 1 0] [0 0 0] ]
[ ]
[ [0 0 0] [0 0 0] [44 43 45]]
[ [ ] [ ] [ ] ]
[ [0 0 0] [0 0 0] [34 33 35]]
[ [ ] [ ] [ ] ]
[ [0 0 0] [0 0 0] [54 53 55]]
```

```python
>>> P = P.as_explicit()
>>> B = B.as_explicit()
>>> P.T * B * P == A
True
```

`table(printer, rowstart='[', rowend=']', rowsep='\n', colsep=', ', align='right')`

String form of Matrix as a table.

- `printer` is the printer to use for on the elements (generally something like StrPrinter())
- `rowstart` is the string used to start each row (by default '[').
- `rowend` is the string used to end each row (by default ']').
- `rowsep` is the string used to separate rows (by default a newline).
- `colsep` is the string used to separate columns (by default ',', '.').
- `align` defines how the elements are aligned. Must be one of 'left', 'right', or 'center'. You can also use '<', '>', and '^' to mean the same thing, respectively.

This is used by the string printer for Matrix.
Examples

```python
>>> from sympy import Matrix, StrPrinter
>>> M = Matrix([[1, 2], [-33, 4]])
>>> printer = StrPrinter()
>>> M.table(printer)
'[[ 1, 2]
 [-33, 4]]

>>> print(M.table(printer))
[ 1, 2]
[-33, 4]

>>> print(M.table(printer, rowsep=',\n'))
[ 1, 2],
[-33, 4]

>>> print('[' + M.table(printer, rowsep=',\n') + '])
[[ 1, 2],
 [-33, 4]]

>>> print(M.table(printer, colsep=' '))
[ 1 2]
[-33 4]

>>> print(M.table(printer, align='center'))
[ 1 , 2]
[-33 , 4]

>>> print(M.table(printer, rowstart='{', rowend='}'))
{ 1, 2}
{ -33, 4}
```

upper_hessenberg_decomposition()

Converts a matrix into Hessenberg matrix H.

Returns 2 matrices H, P s.t. \(PH^T = A\), where H is an upper hessenberg matrix and P is an orthogonal matrix

Examples

```python
>>> from sympy import Matrix
>>> A = Matrix([...[1,2,3],...
[-3,5,6],...
[4,-8,9],...
])
>>> H, P = A.upper_hessenberg_decomposition()
>>> H
Matrix([[1, 6/5, 17/5],
        [5, 213/25, -134/25],
        [0, 216/25, 137/25]])

>>> P
Matrix([[1, 0, 0],
        [0, -3/5, 4/5],
        [0, 4/5, 3/5]])
```

(continues on next page)
References

`upper_triangular_solve(rhs)`
Solves $Ax = B$, where A is an upper triangular matrix.

See also:
- `lower_triangular_solve` (page 1344), `gauss_jordan_solve` (page 1338),
- `cholesky_solve` (page 1333), `diagonal_solve` (page 1336),
- `LDLsolve` (page 1322), `LUsolve` (page 1328),
- `QRsolve` (page 1331), `pinv_solve` (page 1347)

Matrix Exceptions

```python
class sympy.matrices.matrices.MatrixError
class sympy.matrices.matrices.ShapeError
    Wrong matrix shape
class sympy.matrices.matrices.NonSquareMatrixError
```

Matrix Functions

```python
sympy.matrices.dense.matrix_multiply_elementwise(A, B)
    Return the Hadamard product (elementwise product) of A and B
```

```python
>>> from sympy import Matrix, matrix_multiply_elementwise
>>> A = Matrix([[0, 1, 2], [3, 4, 5]])
>>> B = Matrix([[1, 10, 100], [100, 10, 1]])
>>> matrix_multiply_elementwise(A, B)
Matrix([[0, 10, 200],
        [300, 40, 5]])
```

See also:
- `sympy.matrices.common.MatrixCommon.__mul__` (page 1374)

```python
sympy.matrices.dense.zeros(*args, **kwargs)
    Returns a matrix of zeros with rows rows and cols columns; if cols is omitted a square
    matrix will be returned.
```

See also:
- `ones` (page 1359), `eye` (page 1360), `diag` (page 1360)

5.8. Topics 1359
sympy.matrices.dense.ones(*args, **kwargs)

Returns a matrix of ones with rows rows and cols columns; if cols is omitted a square matrix will be returned.

See also:
zeros (page 1359), eye (page 1360), diag (page 1360)

sympy.matrices.dense.eye(*args, **kwargs)

Create square identity matrix n x n

See also:
diag (page 1360), zeros (page 1359), ones (page 1359)

sympy.matrices.dense.diag(*values, strict=True, unpack=False, **kwargs)

Returns a matrix with the provided values placed on the diagonal. If non-square matrices are included, they will produce a block-diagonal matrix.

Examples

This version of diag is a thin wrapper to Matrix.diag that differs in that it treats all lists like matrices – even when a single list is given. If this is not desired, either put a * before the list or set unpack = True.

```python
>>> from sympy import diag
>>> diag([1, 2, 3], unpack=True)  # = diag(1,2,3) or diag(*[1,2,3])
Matrix([[1, 0, 0],
       [0, 2, 0],
       [0, 0, 3]])

>>> diag([1, 2, 3])  # a column vector
Matrix([[1],
        [2],
        [3]])
```

See also:
common.MatrixCommon.eye (page 1381), common.MatrixCommon.diagonal (page 1379),
common.MatrixCommon.diag (page 1377), expressions.blockmatrix.BlockMatrix (page 1424)

sympy.matrices.dense.jordan_cell(eigenval, n)

Create a Jordan block:
Examples

```python
>>> from sympy import jordan_cell
>>> from sympy.abc import x
>>> jordan_cell(x, 4)
Matrix([[x, 1, 0, 0],
       [0, x, 1, 0],
       [0, 0, x, 1],
       [0, 0, 0, x]])
```

`sympy.matrices.dense.hessian(f, varlist, constraints=())`

Compute Hessian matrix for a function f wrt parameters in varlist which may be given as a sequence or a row/column vector. A list of constraints may optionally be given.

Examples

```python
>>> from sympy import Function, hessian, pprint
>>> from sympy.abc import x, y
>>> f = Function('f')(x, y)
>>> g1 = Function('g')(x, y)
>>> g2 = x**2 + 3*y
>>> pprint(hessian(f, (x, y), [g1, g2]))
```

```
[ d  d
[ 0 0 --(g(x, y)) --(g(x, y)) ]
[ dx dy ]
[ ]
[ 0 0 2*x 3 ]
[ ]
[ d  d 2 2
[d -(-g(x, y)) 2*x ---(f(x, y)) -----(f(x, y))]
[dx 2 2 2
[ dy dx ]
[ ]
[ ]
[d  d 2 2
 [d -(-g(x, y)) 3 -----(f(x, y)) ---(f(x, y))]
[dy 2 2
[ dy dx dy ]
```

See also:

`sympy.matrices.matrices.MatrixCalculus.jacobian` (page 1320), `wronskian` (page 1362)
References

[R614]
sympy.matrices.dense.GramSchmidt(vlist, orthonormal=False)
Apply the Gram-Schmidt process to a set of vectors.

Parameters

vlist : List of Matrix
Vectors to be orthogonalized for.

orthonormal : Bool, optional
If true, return an orthonormal basis.

Returns

vlist : List of Matrix
Orthogonalized vectors

Notes

This routine is mostly duplicate from Matrix.orthogonalize, except for some difference that this always raises error when linearly dependent vectors are found, and the keyword normalize has been named as orthonormal in this function.

See also:

matrices.MatrixSubspaces.orthogonalize (page 1279)

References

[R615]
sympy.matrices.dense.wronskian(functions, var, method='bareiss')
Compute Wronskian for [] of functions

\[
W(f_1, \ldots, f_n) = \begin{vmatrix}
f_1 & f_2 & \cdots & f_n \\
f_1' & f_2' & \cdots & f_n' \\
\vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
(n) & (n) & (n) & \cdots \\
D (f_1) & D (f_2) & \cdots & D (f_n)
\end{vmatrix}
\]

see: https://en.wikipedia.org/wiki/Wronskian

See also:

sympy.matrices.matrices.MatrixCalculus.jacobian (page 1320), hessian (page 1361)
sympy.matrices.dense.casoratian(seqs, n, zero=True)
Given linear difference operator L of order ‘k’ and homogeneous equation Ly = 0 we want to compute kernel of L, which is a set of ‘k’ sequences: a(n), b(n), ... z(n).
Solutions of L are linearly independent iff their Casoratian, denoted as C(a, b, ..., z), do not vanish for n = 0.

Casoratian is defined by k x k determinant:

\[
\begin{vmatrix}
 a(n) & b(n) & \ldots & z(n) \\
 a(n+1) & b(n+1) & \ldots & z(n+1) \\
 \vdots & \vdots & \ddots & \vdots \\
 \vdots & \vdots & \ddots & \vdots \\
 a(n+k-1) & b(n+k-1) & \ldots & z(n+k-1)
\end{vmatrix}
\]

It proves very useful in \texttt{rsolve_hyper()} where it is applied to a generating set of a recurrence to factor out linearly dependent solutions and return a basis:

```python
>>> from sympy import Symbol, casoratian, factorial
>>> n = Symbol('n', integer=True)
```

Exponential and factorial are linearly independent:

```python
>>> casoratian([2**n, factorial(n)], n) != 0
True
```

\texttt{sympy.matrices.dense.randMatrix}(r, c=None, min=0, max=99, seed=None, symmetric=False, percent=100, prng=None)

Create random matrix with dimensions r x c. If c is omitted the matrix will be square. If symmetric is True the matrix must be square. If percent is less than 100 then only approximately the given percentage of elements will be non-zero.

The pseudo-random number generator used to generate matrix is chosen in the following way.

- If \texttt{prng} is supplied, it will be used as random number generator. It should be an instance of \texttt{random.Random}, or at least have \texttt{randint} and \texttt{shuffle} methods with same signatures.
- if \texttt{prng} is not supplied but \texttt{seed} is supplied, then new \texttt{random.Random} with given seed will be created;
- otherwise, a new \texttt{random.Random} with default seed will be used.

Examples

```python
>>> from sympy import randMatrix
>>> randMatrix(3)
[25, 45, 27]
[44, 54, 9]
[23, 96, 46]
```

(continues on next page)
>>> randMatrix(3, symmetric=True)
[85, 26, 29]
[26, 71, 43]
[29, 43, 57]
>>> A = randMatrix(3, seed=1)
>>> B = randMatrix(3, seed=2)
>>> A == B
False
>>> A == randMatrix(3, seed=1)
True
>>> randMatrix(3, symmetric=True, percent=50)
[77, 70, 0],
[70, 0, 0],
[0, 0, 88]

Rotation matrices

```
sympy.matrices.dense.rot_givens(i, j, theta, dim=3)
```

Returns a a Givens rotation matrix, a a rotation in the plane spanned by two coordinates axes.

Parameters

- **i**: int between 0 and dim - 1

 Represents first axis

- **j**: int between 0 and dim - 1

 Represents second axis

- **dim**: int bigger than 1

 Number of dimensions. Defaults to 3.

Explanation

The Givens rotation corresponds to a generalization of rotation matrices to any number of dimensions, given by:

\[
G(i, j, \theta) = \begin{bmatrix}
1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
0 & \cdots & c & \cdots & -s & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & s & \cdots & c & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & \cdots & 0 & \cdots & 1
\end{bmatrix}
\]

Where \(c = \cos(\theta)\) and \(s = \sin(\theta)\) appear at the intersections ith and jth rows and columns.

For fixed \(i > j\), the non-zero elements of a Givens matrix are given by:

- \(g_{kk} = 1\) for \(k \neq i, j\)
• \(g_{kk} = c \) for \(k = i, j \)
• \(g_{ji} = -g_{ij} = -s \)

Examples

```python
>>> from sympy import pi, rot_givens
```

A counterclockwise rotation of \(\pi/3 \) (60 degrees) around the third axis (z-axis):

```python
>>> rot_givens(1, 0, pi/3)
Matrix([[1/2, -sqrt(3)/2, 0],
        [sqrt(3)/2, 1/2, 0],
        [0, 0, 1]])
```

If we rotate by \(\pi/2 \) (90 degrees):

```python
>>> rot_givens(1, 0, pi/2)
Matrix([[0, -1, 0],
        [1, 0, 0],
        [0, 0, 1]])
```

This can be generalized to any number of dimensions:

```python
>>> rot_givens(1, 0, pi/2, dim=4)
Matrix([[0, -1, 0, 0],
        [1, 0, 0, 0],
        [0, 0, 1, 0],
        [0, 0, 0, 1]])
```

See also:

- `rot_axis1` *(page 1366)*
 Returns a rotation matrix for a rotation of theta (in radians) about the 1-axis (clockwise around the x axis)

- `rot_axis2` *(page 1367)*
 Returns a rotation matrix for a rotation of theta (in radians) about the 2-axis (clockwise around the y axis)

- `rot_axis3` *(page 1368)*
 Returns a rotation matrix for a rotation of theta (in radians) about the 3-axis (clockwise around the z axis)

- `rot_ccw_axis1` *(page 1369)*
 Returns a rotation matrix for a rotation of theta (in radians) about the 1-axis (counterclockwise around the x axis)

- `rot_ccw_axis2` *(page 1369)*
 Returns a rotation matrix for a rotation of theta (in radians) about the 2-axis (counterclockwise around the y axis)
SymPy Documentation, Release 1.12.1

rot_ccw_axis3 (page 1370)
Returns a rotation matrix for a rotation of theta (in radians) about the 3-axis (counterclockwise around the z axis)

References

[R616]
sympy.matrices.dense.rot_axis1(theta)
Returns a rotation matrix for a rotation of theta (in radians) about the 1-axis.

Explanation

For a right-handed coordinate system, this corresponds to a clockwise rotation around the x-axis, given by:

\[
R = \begin{bmatrix}
1 & 0 & 0 \\
0 & \cos(\theta) & \sin(\theta) \\
0 & -\sin(\theta) & \cos(\theta)
\end{bmatrix}
\]

Examples

>>> from sympy import pi, rot_axis1
A rotation of pi/3 (60 degrees):

>>> theta = pi/3
>>> rot_axis1(theta)
Matrix([[1, 0, 0],
[0, 1/2, sqrt(3)/2],
[0, -sqrt(3)/2, 1/2]])
If we rotate by pi/2 (90 degrees):

>>> rot_axis1(pi/2)
Matrix([[1, 0, 0],
[0, 0, 1],
[0, -1, 0]])

See also:

rot_givens (page 1364)
Returns a Givens rotation matrix (generalized rotation for any number of dimensions)

rot_ccw_axis1 (page 1369)
Returns a rotation matrix for a rotation of theta (in radians) about the 1-axis (counterclockwise around the x axis)
rot_axis2 (page 1367)
Returns a rotation matrix for a rotation of theta (in radians) about the 2-axis (clockwise around the y axis)

rot_axis3 (page 1368)
Returns a rotation matrix for a rotation of theta (in radians) about the 3-axis (clockwise around the z axis)

sympy.matrices.dense.rot_axis2(theta)
Returns a rotation matrix for a rotation of theta (in radians) about the 2-axis.

Explanation
For a right-handed coordinate system, this corresponds to a clockwise rotation around the y-axis, given by:

\[
R = \begin{bmatrix}
\cos(\theta) & 0 & -\sin(\theta) \\
0 & 1 & 0 \\
\sin(\theta) & 0 & \cos(\theta)
\end{bmatrix}
\]

Examples

```python
>>> from sympy import pi, rot_axis2

A rotation of \(\pi/3\) (60 degrees):

```python
>>> theta = pi/3
>>> rot_axis2(theta)
Matrix([[\frac{1}{2}, 0, -\frac{\sqrt{3}}{2}],
 [0, 1, 0],
 [\frac{\sqrt{3}}{2}, 0, \frac{1}{2}]])
```

If we rotate by \(\pi/2\) (90 degrees):

```python
>>> rot_axis2(pi/2)
Matrix([[0, 0, -1],
 [0, 1, 0],
 [1, 0, 0]])
```

See also:
rot_givens (page 1364)
Returns a Givens rotation matrix (generalized rotation for any number of dimensions)

rot_ccw_axis2 (page 1369)
Returns a rotation matrix for a rotation of theta (in radians) about the 2-axis (clockwise around the y axis)

rot_axis1 (page 1366)
Returns a rotation matrix for a rotation of theta (in radians) about the 1-axis (counterclockwise around the x axis)
**rot_axis3** *(page 1368)*

Returns a rotation matrix for a rotation of theta (in radians) about the 3-axis (counterclockwise around the z axis)

```
sympy.matrices.dense.rot_axis3(theta)
```

This function returns a rotation matrix for a rotation of theta (in radians) about the 3-axis.

### Explanation

For a right-handed coordinate system, this corresponds to a clockwise rotation around the z-axis, given by:

\[
R = \begin{bmatrix}
\cos(\theta) & \sin(\theta) & 0 \\
-\sin(\theta) & \cos(\theta) & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

### Examples

```python
>>> from sympy import pi, rot_axis3

A rotation of pi/3 (60 degrees):

```python
>>> theta = pi/3
>>> rot_axis3(theta)
Matrix([ [1/2, sqrt(3)/2, 0], [-sqrt(3)/2, 1/2, 0], [0, 0, 1]])
```

If we rotate by pi/2 (90 degrees):

```python
>>> rot_axis3(pi/2)
Matrix([ [0, 1, 0], [-1, 0, 0], [0, 0, 1]])
```

See also:

- **rot_givens** *(page 1364)*
 - Returns a Givens rotation matrix (generalized rotation for any number of dimensions)

- **rot_ccw_axis3** *(page 1370)*
 - Returns a rotation matrix for a rotation of theta (in radians) about the 3-axis (counterclockwise around the z axis)

- **rot_axis1** *(page 1366)*
 - Returns a rotation matrix for a rotation of theta (in radians) about the 1-axis (clockwise around the x axis)

- **rot_axis2** *(page 1367)*
 - Returns a rotation matrix for a rotation of theta (in radians) about the 2-axis (clockwise around the y axis)
sympy.matrices.dense.rot_ccw_axis1(θ)

Returns a rotation matrix for a rotation of θ (in radians) about the 1-axis.

Explanation

For a right-handed coordinate system, this corresponds to a counterclockwise rotation around the x-axis, given by:

\[
R = \begin{bmatrix}
1 & 0 & 0 \\
0 & \cos(θ) & -\sin(θ) \\
0 & \sin(θ) & \cos(θ)
\end{bmatrix}
\]

Examples

```python
>>> from sympy import pi, rot_ccw_axis1

A rotation of pi/3 (60 degrees):
>>> theta = pi/3
>>> rot_ccw_axis1(theta)
Matrix([[1, 0, 0],
[0, 1/2, -sqrt(3)/2],
[0, sqrt(3)/2, 1/2]])
```

If we rotate by pi/2 (90 degrees):

```python
>>> rot_ccw_axis1(pi/2)
Matrix([[1, 0, 0],
[0, 0, -1],
[0, 1, 0]])
```

See also:

- `rot_givens` ([page 1364](#))
 Returns a Givens rotation matrix (generalized rotation for any number of dimensions)

- `rot_axis1` ([page 1366](#))
 Returns a rotation matrix for a rotation of θ (in radians) about the 1-axis (clockwise around the x axis)

- `rot_ccw_axis2` ([page 1369](#))
 Returns a rotation matrix for a rotation of θ (in radians) about the 2-axis (counterclockwise around the y axis)

- `rot_ccw_axis3` ([page 1370](#))
 Returns a rotation matrix for a rotation of θ (in radians) about the 3-axis (counterclockwise around the z axis)

- sympy.matrices.dense.rot_ccw_axis2(θ)
 Returns a rotation matrix for a rotation of θ (in radians) about the 2-axis.
Explanation

For a right-handed coordinate system, this corresponds to a counterclockwise rotation around the y-axis, given by:

$$
R = \begin{bmatrix}
\cos(\theta) & 0 & \sin(\theta) \\
0 & 1 & 0 \\
-\sin(\theta) & 0 & \cos(\theta)
\end{bmatrix}
$$

Examples

```python
>>> from sympy import pi, rot_ccw_axis2

A rotation of $\pi/3$ (60 degrees):

```python
>>> theta = pi/3
>>> rot_ccw_axis2(theta)
Matrix([[1/2, 0, sqrt(3)/2],
[0, 1, 0],
[-sqrt(3)/2, 0, 1/2]])
```

If we rotate by $\pi/2$ (90 degrees):

```python
>>> rot_ccw_axis2(pi/2)
Matrix([[0, 0, 1],
[0, 1, 0],
[-1, 0, 0]])
```

**See also:**

* **`rot_givens` (page 1364)**
  Returns a Givens rotation matrix (generalized rotation for any number of dimensions)

* **`rot_axis2` (page 1367)**
  Returns a rotation matrix for a rotation of $\theta$ (in radians) about the 2-axis (clockwise around the $y$ axis)

* **`rot_ccw_axis1` (page 1369)**
  Returns a rotation matrix for a rotation of $\theta$ (in radians) about the 1-axis (counterclockwise around the $x$ axis)

* **`rot_ccw_axis3` (page 1370)**
  Returns a rotation matrix for a rotation of $\theta$ (in radians) about the 3-axis (counterclockwise around the $z$ axis)

* `sympy.matrices.dense.rot_ccw_axis3(theta)`
  Returns a rotation matrix for a rotation of $\theta$ (in radians) about the 3-axis.
Explanation

For a right-handed coordinate system, this corresponds to a counterclockwise rotation around the $z$-axis, given by:

$$R = \begin{bmatrix}
\cos(\theta) & -\sin(\theta) & 0 \\
\sin(\theta) & \cos(\theta) & 0 \\
0 & 0 & 1
\end{bmatrix}$$

Examples

```python
>>> from sympy import pi, rot_ccw_axis3

A rotation of $\pi/3$ (60 degrees):

```python
def rot_ccw_axis3(theta):
    return Matrix([[1/2, -sqrt(3)/2, 0],
                    [sqrt(3)/2, 1/2, 0],
                    [0, 0, 1]])
```  

If we rotate by $\pi/2$ (90 degrees):

```python
def rot_ccw_axis3(\pi/2):
    return Matrix([[0, -1, 0],
                   [1, 0, 0],
                   [0, 0, 1]])
```  

See also:

- **rot_givens** (page 1364)
 - Returns a Givens rotation matrix (generalized rotation for any number of dimensions)

- **rot_axis3** (page 1368)
 - Returns a rotation matrix for a rotation of theta (in radians) about the 3-axis (clockwise around the z axis)

- **rot_ccw_axis1** (page 1369)
 - Returns a rotation matrix for a rotation of theta (in radians) about the 1-axis (counterclockwise around the x axis)

- **rot_ccw_axis2** (page 1369)
 - Returns a rotation matrix for a rotation of theta (in radians) about the 2-axis (counterclockwise around the y axis)
Numpy Utility Functions

.. currentmodule:: sympy.matrices.dense

.. function:: list2numpy(l, dtype=<class 'object'>)

 Converts Python list of SymPy expressions to a NumPy array.

 See also:
 `matrix2numpy` (page 1372)

.. function:: matrix2numpy(m, dtype=<class 'object'>)

 Converts SymPy's matrix to a NumPy array.

 See also:
 `list2numpy` (page 1372)

.. function:: symarray(prefix, shape, **kwargs)

 Create a numpy ndarray of symbols (as an object array).
 The created symbols are named `prefix_i1_i2_` ... You should thus provide a non-empty
 prefix if you want your symbols to be unique for different output arrays, as SymPy symbols
 with identical names are the same object.

 Parameters

 - `prefix` : string
 A prefix prepended to the name of every symbol.

 - `shape` : int or tuple
 Shape of the created array. If an int, the array is one-dimensional; for
 more than one dimension the shape must be a tuple.

 - `**kwargs` : dict
 keyword arguments passed on to `Symbol`

 Examples

 These doctests require `numpy`.

 >>> from sympy import symarray
 >>> symarray('', 3)
 [_0 _1 _2]

 If you want multiple symarrays to contain distinct symbols, you must provide unique
 prefixes:

 >>> a = symarray('', 3)
 >>> b = symarray('', 3)
 >>> a[0] == b[0]
 True
 >>> a = symarray('a', 3)
 >>> b = symarray('b', 3)
 >>> a[0] == b[0]
 False

 Creating symarrays with a prefix:
>>> symarray('a', 3)
[a_0 a_1 a_2]

For more than one dimension, the shape must be given as a tuple:

>>> symarray('a', (2, 3))
[[a_0_0 a_0_1 a_0_2]
 [a_1_0 a_1_1 a_1_2]]

>>> symarray('a', (2, 3, 2))
[[[a_0_0 a_0_1]
 [a_1_0 a_1_1]
 [a_2_0 a_2_1]]

[[a_0_0 a_1_0]
 [a_1_0 a_1_1]
 [a_2_0 a_2_1]]]

For setting assumptions of the underlying Symbols:

>>> [s.is_real for s in symarray('a', 2, real=True)]
[True, True]

sympy.matrices.matrices.a2idx(j, n=None)
Return integer after making positive and validating against n.

Common Matrices

class sympy.matrices.common.MatrixCommon
All common matrix operations including basic arithmetic, shaping, and special matrices like zeros, and eye.

property C
By-element conjugation

property H
Return Hermite conjugate.

Examples

>>> from sympy import Matrix, I
>>> m = Matrix(((0, 1 + I, 2, 3))
>>> m
Matrix([[0],
 [1 + I],
 [2],
 [3]])

>>> m.H
Matrix([[0, 1 - I, 2, 3]])

See also:
conjugate *(page 1377)*
By-element conjugation

sym.py.matrices.matrices.MatrixBase.D *(page 1321)*
Dirac conjugation

property T
Matrix transposition

__abs__()
Returns a new matrix with entry-wise absolute values.

__add__(other)
Return self + other, raising ShapeError if shapes do not match.

__getitem__(key)
Implementations of __getitem__ should accept ints, in which case the matrix is indexed as a flat list,
tuples (i,j) in which case the (i,j) entry is returned, slices, or mixed tuples (a,b) where a and b are any combination of slices and integers.

__len__()
The total number of entries in the matrix.

__mul__(other)
Return self*other where other is either a scalar or a matrix of compatible dimensions.

Examples

```python
>>> from sympy import Matrix
>>> A = Matrix([[1, 2, 3], [4, 5, 6]])
>>> 2*A == A*2 == Matrix([[2, 4, 6], [8, 10, 12]])
True
>>> B = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> A*B
Matrix([[
    30, 36, 42],
   [66, 81, 96]])
>>> B*A
Traceback (most recent call last):
...
ShapeError: Matrices size mismatch.
```

See also:
matrix_multiply_elementwise *(page 1359)*

__pow__(exp)
Return self**exp a scalar or symbol.

__weakref__
list of weak references to the object (if defined)
adjoint()
Conjugate transpose or Hermitian conjugation.

applyfunc(f)
Apply a function to each element of the matrix.

Examples

```python
>>> from sympy import Matrix
>>> m = Matrix(2, 2, lambda i, j: i*2+j)
>>> m
Matrix([[0, 4], [1, 6]])
>>> m.applyfunc(lambda i: 2*i)
Matrix([[0, 8], [2, 12]])
```

as_real_imag(deep=True, **hints)
Returns a tuple containing the (real, imaginary) part of matrix.

atoms(*types)
Returns the atoms that form the current object.

Examples

```python
>>> from sympy.abc import x, y
>>> from sympy import Matrix
>>> Matrix([[x]])
Matrix([[x]])
>>> _.atoms()
{x}
>>> Matrix([[x, y], [y, x]])
Matrix([[x, y], [y, x]])
>>> _.atoms()
{x, y}
```

col(j)
Elementary column selector.
Examples

```python
>>> from sympy import eye
def eye(2).col(0)
Matrix([1, 0])
```

See also:

* row (page 1397), col_del (page 1376), col_join (page 1376), col_insert (page 1376)

col_del(*col*)
Delete the specified column.

col_insert(*pos, other*)
Insert one or more columns at the given column position.

Examples

```python
>>> from sympy import zeros, ones
def M = zeros(3)
def V = ones(3, 1)
def M.col_insert(1, V)
Matrix([0, 1, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0])
```

See also:

col (page 1375), row_insert (page 1397)

col_join(*other*)
Concatenates two matrices along self’s last and other’s first row.

Examples

```python
>>> from sympy import zeros, ones
def M = zeros(3)
def V = ones(1, 3)
def M.col_join(V)
Matrix([0, 0, 0], [0, 0, 0], [0, 0, 0], [1, 1, 1])
```

See also:

col (page 1375), row_join (page 1398)
classmethod companion(poly)
Returns a companion matrix of a polynomial.

Examples

```
>>> from sympy import Matrix, Poly, Symbol, symbols
>>> x = Symbol('x')
>>> c0, c1, c2, c3, c4 = symbols('c0:5')
>>> p = Poly(c0 + c1*x + c2*x**2 + c3*x**3 + c4*x**4 + x**5, x)
>>> Matrix.companion(p)
Matrix([[0, 0, 0, 0, -c0],
       [1, 0, 0, 0, -c1],
       [0, 1, 0, 0, -c2],
       [0, 0, 1, 0, -c3],
       [0, 0, 0, 1, -c4]])
```

conjugate()
Return the by-element conjugation.

Examples

```
>>> from sympy import SparseMatrix, I
>>> a = SparseMatrix(((1, 2 + I), (3, 4), (I, -I)))
>>> a
Matrix([[1, 2 + I],
       [3, 4],
       [I, -I]])
>>> a.C
Matrix([[1, 2 - I],
       [3, 4],
       [-I, I]])
```

See also:

transpose (page 1400)
Matrix transposition

H (page 1373)
Hermite conjugation

Dirac conjugation

classmethod diag(*args, strict=False, unpack=True, rows=None, cols=None, **kwargs)
Returns a matrix with the specified diagonal. If matrices are passed, a block-diagonal matrix is created (i.e. the “direct sum” of the matrices).
Kwargs

rows
[rows of the resulting matrix; computed if] not given.

cols
[columns of the resulting matrix; computed if] not given.

cls : class for the resulting matrix
unpack : bool which, when True (default), unpacks a single sequence rather than interpreting it as a Matrix.
strict : bool which, when False (default), allows Matrices to have variable-length rows.

Examples

```python
>>> from sympy import Matrix

```  
```python
>>> Matrix.diag(1, 2, 3)
Matrix([[1, 0, 0], [0, 2, 0], [0, 0, 3]])
```  
The current default is to unpack a single sequence. If this is not desired, set `unpack = False` and it will be interpreted as a matrix.

```python
>>> Matrix.diag([1, 2, 3]) == Matrix.diag(1, 2, 3)
True
```  
When more than one element is passed, each is interpreted as something to put on the diagonal. Lists are converted to matrices. Filling of the diagonal always continues from the bottom right hand corner of the previous item: this will create a block-diagonal matrix whether the matrices are square or not.

```python
>>> col = [1, 2, 3]
>>> row = [[4, 5]]
>>> Matrix.diag(col, row)
Matrix([[1, 0, 0], [2, 0, 0], [3, 0, 0], [0, 4, 5]])
```  
When `unpack` is False, elements within a list need not all be of the same length. Setting `strict` to True would raise a ValueError for the following:

```python
>>> Matrix.diag([1, 2, 3], [4, 5], [6], unpack=False)
Matrix([[1, 2, 3], [4, 5, 0], [6, 0, 0]])
```  
The type of the returned matrix can be set with the `cls` keyword.
A zero dimension matrix can be used to position the start of the filling at the start of an arbitrary row or column:

```
>>> from sympy import ones
g2 = ones(0, 2)
>>> Matrix.diag(g2, 1, 2)
Matrix([[0, 0, 1, 0], [0, 0, 0, 2]])
```

See also:

- `eye` (page 1381), `diagonal` (page 1379), `dense.diag` (page 1360), `expressions.blockmatrix.BlockMatrix` (page 1424), `sparsetools.banded` (page 1410)

`diagonal(k=0)`

Returns the kth diagonal of self. The main diagonal corresponds to \(k = 0 \); diagonals above and below correspond to \(k > 0 \) and \(k < 0 \), respectively. The values of self[i,j] for which \(j - i = k \), are returned in order of increasing \(i + j \), starting with \(i + j = |k| \).

Examples

```
>>> from sympy import Matrix

>>> m = Matrix(3, 3, lambda i, j: j - i); m
Matrix([[0, 1, 2], [-1, 0, 1], [-2, -1, 0]])
>>> m.diagonal()
Matrix([[0, 0, 0]])
>>> m.diagonal(1)
Matrix([[1, 1]])
>>> m.diagonal(-2)
Matrix([[[-2]])
```

Even though the diagonal is returned as a Matrix, the element retrieval can be done with a single index:

```
>>> Matrix.diag(1, 2, 3).diagonal()[1]    # instead of [0, 1]
2
```

See also:

- `diag` (page 1377)
- `evalf` (\(n=15, \)subs=None, \(maxn=100, \)chop=False, strict=False, quad=None, verbose=False)

Apply `evalf()` to each element of self.
expand\((deep=True, modulus=None, power_base=True, power_exp=True, mul=True, log=True, multinomial=True, basic=True, **hints)\)

Apply core.function.expand to each entry of the matrix.

Examples

```python
>>> from sympy import x
>>> from sympy import Matrix
>>> Matrix(1, 1, [x*(x + 1)])
Matrix([[x**2 + x]])
```

extract\((rowsList, colsList)\)

Return a submatrix by specifying a list of rows and columns. Negative indices can be given. All indices must be in the range \(-n \leq i < n\) where \(n\) is the number of rows or columns.

Examples

```python
>>> from sympy import Matrix
>>> m = Matrix(4, 3, range(12))
>>> m.extract([0, 1, 3], [0, 1])
Matrix([[0, 1], [3, 4], [9, 10]])
```

Rows or columns can be repeated:

```python
>>> m.extract([0, 0, 1], [-1])
Matrix([[2], [2], [5]])
```

Every other row can be taken by using range to provide the indices:

```python
>>> m.extract(range(0, m.rows, 2), [-1])
Matrix([[2], [8]])
```

RowsList or colsList can also be a list of booleans, in which case the rows or columns corresponding to the True values will be selected:
>>> m.extract([0, 1, 2, 3], [True, False, True])
Matrix(
[0, 2],
[3, 5],
[6, 8],
[9, 11])

classmethod eye(rows, cols=None, **kwargs)
Returns an identity matrix.

Parameters
rows : rows of the matrix
cols : cols of the matrix (if None, cols=rows)

Kwargs
cls : class of the returned matrix

property free_symbols
Returns the free symbols within the matrix.

Examples

>>> from sympy import x
>>> from sympy import Matrix
>>> Matrix([[x], [1]]).free_symbols
{x}

get_diag_blocks()
Obtains the square sub-matrices on the main diagonal of a square matrix.
Useful for inverting symbolic matrices or solving systems of linear equations which
may be decoupled by having a block diagonal structure.

Examples

>>> from sympy import Matrix
>>> from sympy import x, y, z
>>> A = Matrix([[1, 3, 0, 0], [y, z, 0, 0], [0, 0, x, 0], [0, 0, 0, w]])
>>> a1, a2, a3 = A.get_diag_blocks()
>>> a1
Matrix([[1, 3],
[y, z**2]])
>>> a2
Matrix([[x]])
>>> a3
Matrix([[0]])
**has(
*patterns
)**

Test whether any subexpression matches any of the patterns.

Examples

```python
>>> from sympy import Matrix, SparseMatrix, Float
>>> from sympy.abc import x, y
>>> A = Matrix(((1, x), (0.2, 3)))
>>> B = SparseMatrix(((1, x), (0.2, 3)))
>>> A.has(x)
True
>>> A.has(y)
False
>>> A.has(Float)
True
>>> B.has(x)
True
>>> B.has(y)
False
>>> B.has(Float)
True
```

classmethod hstack(*args)

Return a matrix formed by joining args horizontally (i.e. by repeated application of row_join).

Examples

```python
>>> from sympy import Matrix, eye
>>> Matrix.hstack(eye(2), 2*eye(2))
Matrix([[1, 0, 2, 0],
[0, 1, 0, 2]])
```

is_anti_symmetric(simplify=True)

Check if matrix M is an antisymmetric matrix, that is, M is a square matrix with all
M[i, j] == -M[j, i].

When simplify=True (default), the sum M[i, j] + M[j, i] is simplified before testing to see if it is zero. By default, the SymPy simplify function is used. To use a custom function set simplify to a function that accepts a single argument which returns a simplified expression. To skip simplification, set simplify to False but note that although this will be faster, it may induce false negatives.
Examples

>>> from sympy import Matrix, symbols
>>> m = Matrix(2, 2, [0, 1, -1, 0])
>>> m
Matrix([[0, 1], [-1, 0]])
>>> m.isAntiSymmetric()
True
>>> x, y = symbols('x y')
>>> m = Matrix(2, 3, [0, 0, x, -y, 0, 0])
>>> m
Matrix([[0, 0, x], [-y, 0, 0]])
>>> m.isAntiSymmetric()
False

Simplification of matrix elements is done by default so even though two elements which should be equal and opposite would not pass an equality test, the matrix is still reported as anti-symmetric:

>>> m[0, 1] == -m[1, 0]
False
>>> m.isAntiSymmetric()
True

If simplify=False is used for the case when a Matrix is already simplified, this will speed things up. Here, we see that without simplification the matrix does not appear anti-symmetric:

>>> m.isAntiSymmetric(simplify=False)
False

But if the matrix were already expanded, then it would appear anti-symmetric and simplification in the isAntiSymmetric routine is not needed:

>>> m = m.expand()
>>> m.isAntiSymmetric(simplify=False)
True

is_diagonal()
Check if matrix is diagonal, that is matrix in which the entries outside the main diagonal are all zero.
Examples

```python
>>> from sympy import Matrix, diag
>>> m = Matrix(2, 2, [1, 0, 0, 2])
>>> m
Matrix([[1, 0], [0, 2]])
>>> m.is_diagonal()
True

>>> m = Matrix(2, 2, [1, 1, 0, 2])
>>> m
Matrix([[1, 1], [0, 2]])
>>> m.is_diagonal()
False

>>> m = diag(1, 2, 3)
>>> m
Matrix([[1, 0, 0], [0, 2, 0], [0, 0, 3]])
>>> m.is_diagonal()
True
```

See also:

- `is_lower` (page 1385), `is_upper` (page 1388), `sympy.matrices.matrices.MatrixEigen.is_diagonalizable` (page 1284), `diagonalize` (page 1280)

property is_hermitian

Checks if the matrix is Hermitian.

In a Hermitian matrix element \(i,j\) is the complex conjugate of element \(j,i\).

Examples

```python
>>> from sympy import Matrix
>>> from sympy import I
>>> from sympy.abc import x
>>> a = Matrix([[1, I], [-I, 1]])
>>> a
Matrix([[1, I], [-I, 1]])
>>> a.is_hermitian
True
>>> a[0, 0] = 2*I
>>> a.is_hermitian
(continues on next page)
```
```python
>>> a[0, 0] = x
>>> a.is_hermitian
False
>>> a[0, 1] = a[1, 0]*I
>>> a.is_hermitian
False
```

property is_lower

Check if matrix is a lower triangular matrix. True can be returned even if the matrix is not square.

Examples

```python
>>> from sympy import Matrix
>>> m = Matrix(2, 2, [1, 0, 0, 1])
>>> m
Matrix([[1, 0],
        [0, 1]])
>>> m.is_lower
True

>>> m = Matrix(4, 3, [0, 0, 0, 2, 0, 0, 1, 4, 0, 6, 6, 5])
>>> m
Matrix([[0, 0, 0],
        [2, 0, 0],
        [1, 4, 0],
        [6, 6, 5]])
>>> m.is_lower
False
```

See also:

`is_upper` (page 1388), `is_diagonal` (page 1383), `is_lower_hessenberg` (page 1385)

property is_lower_hessenberg

Checks if the matrix is in the lower-Hessenberg form.

The lower hessenberg matrix has zero entries above the first superdiagonal.
Examples

```python
>>> from sympy import Matrix
>>> a = Matrix([[1, 2, 0, 0], [5, 2, 3, 0], [3, 4, 3, 7], [5, 6, 1, 1]])
>>> a
Matrix([[1, 2, 0, 0], [5, 2, 3, 0], [3, 4, 3, 7], [5, 6, 1, 1]])
>>> a.is_lower_hessenberg
True
```

See also:
* `is_upper_hessenberg` (page 1389), `is_lower` (page 1385)

property `is_square`
Checks if a matrix is square.

A matrix is square if the number of rows equals the number of columns. The empty matrix is square by definition, since the number of rows and the number of columns are both zero.

Examples

```python
>>> from sympy import Matrix
>>> a = Matrix([[1, 2, 3], [4, 5, 6]])
>>> b = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> c = Matrix([])
>>> a.is_square
False
>>> b.is_square
True
>>> c.is_square
True
```

property `is_strongly_diagonally_dominant`
Tests if the matrix is row strongly diagonally dominant.

Explanation

A \(n \times n \) matrix \(A \) is row strongly diagonally dominant if

\[
|A_{i,i}| > \sum_{j=0, j\neq i}^{n-1} |A_{i,j}| \quad \text{for all } i \in \{0, ..., n-1\}
\]
Examples

```python
>>> from sympy import Matrix
>>> A = Matrix([[3, -2, 1], [1, -3, 2], [-1, 2, 4]])
>>> A.is_strongly_diagonally_dominant
False

>>> A = Matrix([[-2, 2, 1], [1, 3, 2], [1, -2, 0]])
>>> A.is_strongly_diagonally_dominant
False

>>> A = Matrix([[-4, 2, 1], [1, 6, 2], [1, -2, 5]])
>>> A.is_strongly_diagonally_dominant
True
```

Notes

If you want to test whether a matrix is column diagonally dominant, you can apply the test after transposing the matrix.

is_symbolic()
Checks if any elements contain Symbols.

Examples

```python
>>> from sympy import Matrix
>>> from sympy.abc import x, y
>>> M = Matrix([[x, y], [1, 0]])
>>> M.is_symbolic()
True
```

is_symmetric(simplify=True)
Check if matrix is symmetric matrix, that is square matrix and is equal to its transpose.

By default, simplifications occur before testing symmetry. They can be skipped using 'simplify=False'; while speeding things a bit, this may however induce false negatives.

Examples

```python
>>> from sympy import Matrix
>>> m = Matrix(2, 2, [0, 1, 1, 2])
>>> m
Matrix([[0, 1], [1, 2]])
>>> m.is_symmetric()
True
```
>>> m = Matrix(2, 2, [0, 1, 2, 0])
>>> m
Matrix([0, 1],
[2, 0])
>>> m.is_symmetric()
False

>>> m = Matrix(2, 3, [0, 0, 0, 0, 0, 0])
>>> m
Matrix([0, 0, 0],
[0, 0, 0])
>>> m.is_symmetric()
False

>>> from sympy.abc import x, y
>>> m = Matrix(3, 3, [1, x**2 + 2*x + 1, y, (x + 1)**2, 2, 0, y, 0, 3])
>>> m
Matrix([1, x**2 + 2*x + 1, y],
[(x + 1)**2, 2, 0],
[y, 0, 3])
>>> m.is_symmetric()
True

If the matrix is already simplified, you may speed-up is_symmetric() test by using ‘simplify=False’.

>>> bool(m.is_symmetric(simplify=False))
False
>>> m1 = m.expand()
>>> m1.is_symmetric(simplify=False)
True

property is_upper
Check if matrix is an upper triangular matrix. True can be returned even if the matrix is not square.

Examples

>>> from sympy import Matrix
>>> m = Matrix(2, 2, [1, 0, 0, 1])
>>> m
Matrix([[1, 0],
[0, 1]])
>>> m.is_upper
True
>>> m = Matrix(4, 3, [5, 1, 9, 0, 4, 6, 0, 0, 5, 0, 0, 0])
>>> m
Matrix([
[5, 1, 9],
[0, 4, 6],
[0, 0, 5],
[0, 0, 0]])
>>> m.is_upper
True

>>> m = Matrix(2, 3, [4, 2, 5, 6, 1, 1])
>>> m
Matrix([
[4, 2, 5],
[6, 1, 1]])
>>> m.is_upper
False

See also:

is_lower (page 1385), is_diagonal (page 1383), is_upper_hessenberg (page 1389)

property is_upper_hessenberg
Checks if the matrix is the upper-Hessenberg form.
The upper hessenberg matrix has zero entries below the first subdiagonal.

Examples

>>> from sympy import Matrix
>>> a = Matrix([[1, 4, 2, 3], [3, 4, 1, 7], [0, 2, 3, 4], [0, 0, 1, 3]])
>>> a
Matrix([
[1, 4, 2, 3],
[3, 4, 1, 7],
[0, 2, 3, 4],
[0, 0, 1, 3]])
>>> a.is_upper_hessenberg
True

See also:

is_lower_hessenberg (page 1385), is_upper (page 1388)

property is_weakly_diagonally_dominant
Tests if the matrix is row weakly diagonally dominant.
A n,n matrix A is row weakly diagonally dominant if

$$\left| A_{i,i} \right| \geq \sum_{j=0, j\neq i}^{n-1} \left| A_{i,j} \right| \quad \text{for all } i \in \{0, \ldots, n-1\}$$

Examples

```python
>>> from sympy import Matrix
>>> A = Matrix([[3, -2, 1], [1, -3, 2], [-1, 2, 4]])
>>> A.is_weakly_diagonally_dominant
True
```

```python
>>> A = Matrix([[-2, 2, 1], [1, 3, 2], [1, -2, 0]])
>>> A.is_weakly_diagonally_dominant
False
```

```python
>>> A = Matrix([[-4, 2, 1], [1, 6, 2], [1, -2, 5]])
>>> A.is_weakly_diagonally_dominant
True
```

Notes

If you want to test whether a matrix is column diagonally dominant, you can apply the test after transposing the matrix.

property is_zero_matrix

Checks if a matrix is a zero matrix.

A matrix is zero if every element is zero. A matrix need not be square to be considered zero. The empty matrix is zero by the principle of vacuous truth. For a matrix that may or may not be zero (e.g. contains a symbol), this will be None

Examples

```python
>>> from sympy import Matrix, zeros
>>> from sympy.abc import x
>>> a = Matrix([[0, 0], [0, 0]])
>>> b = zeros(3, 4)
>>> c = Matrix([[0, 1], [0, 0]])
>>> d = Matrix([[]])
>>> e = Matrix([[x, 0], [0, 0]])
>>> a.is_zero_matrix
True
>>> b.is_zero_matrix
True
>>> c.is_zero_matrix
```

(continues on next page)
False
>>> d.is_zero_matrix
True
>>> e.is_zero_matrix

```python
classmethod jordan_block__(size=None, eigenvalue=None, *, band='upper', **kwargs)
```

Returns a Jordan block

Parameters

- **size**: Integer, optional
 Specifies the shape of the Jordan block matrix.

- **eigenvalue**: Number or Symbol
 Specifies the value for the main diagonal of the matrix.

Note: The keyword `eigenval` is also specified as an alias of this keyword, but it is not recommended to use.

We may deprecate the alias in later release.

- **band**: ‘upper’ or ‘lower’, optional
 Specifies the position of the off-diagonal to put 1 s on.

- **cls**: Matrix, optional
 Specifies the matrix class of the output form.

 If it is not specified, the class type where the method is being executed on will be returned.

Returns

Matrix

A Jordan block matrix.

Raises

ValueError

If insufficient arguments are given for matrix size specification, or no `eigenvalue` is given.

Examples

Creating a default Jordan block:

```python
>>> from sympy import Matrix
>>> from sympy.abc import x
>>> Matrix.jordan_block(4, x)
Matrix([[x, 1, 0, 0],
        [0, x, 1, 0],
        [0, 0, x, 1],
        [0, 0, 0, x]])
```
Creating an alternative Jordan block matrix where 1 is on lower off-diagonal:

```python
>>> Matrix.jordan_block(4, x, band='lower')
Matrix([[/i],[x, 0, 0, 0],
[1, x, 0, 0],
[0, 1, x, 0],
[0, 0, 1, x]])
```

Creating a Jordan block with keyword arguments

```python
>>> Matrix.jordan_block(size=4, eigenvalue=x)
Matrix([[/i],[x, 1, 0, 0],
[0, x, 1, 0],
[0, 0, x, 1],
[0, 0, 0, x]])
```

References

[R580]
`lower_triangular(k=0)`
Return the elements on and below the kth diagonal of a matrix. If k is not specified then simply returns lower-triangular portion of a matrix

Examples

```python
>>> from sympy import ones
>>> A = ones(4)
>>> A.lower_triangular()
Matrix([[/i],[1, 0, 0, 0],
[1, 1, 0, 0],
[1, 1, 1, 0],
[1, 1, 1, 1]])
```

```python
>>> A.lower_triangular(-2)
Matrix([[/i],[0, 0, 0, 0],
[0, 0, 0, 0],
[1, 0, 0, 0],
[1, 1, 0, 0]])
```

```python
>>> A.lower_triangular(1)
Matrix([[/i],[1, 1, 0, 0],
[1, 1, 1, 0],
[1, 1, 1, 1],
[1, 1, 1, 1]])
```
multiply(other, dotprodsimp=None)

Same as __mul__() but with optional simplification.

Parameters

- **dotprodsimp**: bool, optional

 Specifies whether intermediate term algebraic simplification is used during matrix multiplications to control expression blowup and thus speed up calculation. Default is off.

multiply_elementwise(other)

Return the Hadamard product (elementwise product) of A and B

Examples

```python
>>> from sympy import Matrix
>>> A = Matrix([[0, 1, 2], [3, 4, 5]])
>>> B = Matrix([[1, 10, 100], [100, 10, 1]])
>>> A.multiply_elementwise(B)
Matrix([[0, 10, 200],
       [300, 40, 5]])
```

See also:

n(*args, **kwargs)

Apply evalf() to each element of self.

classmethod ones(rows, cols=None, **kwargs)

Returns a matrix of ones.

Parameters

- **rows**: rows of the matrix
- **cols**: cols of the matrix (if None, cols=rows)

Kwargs

- **cls**: class of the returned matrix

permute(perm, orientation='rows', direction='forward')

Permutes the rows or columns of a matrix by the given list of swaps.

Parameters

- **perm**: Permutation, list, or list of lists

 A representation for the permutation.

 If it is Permutation, it is used directly with some resizing with respect to the matrix size.

 If it is specified as list of lists, (e.g., [[0, 1], [0, 2]]), then the permutation is formed from applying the product of cycles. The direction how the cyclic product is applied is described in below.
If it is specified as a list, the list should represent an array form of a permutation. (e.g., [1, 2, 0]) which would form the swapping function 0 \mapsto 1, 1 \mapsto 2, 2 \mapsto 0.

orientation: `rows`, `cols`

A flag to control whether to permute the rows or the columns

direction: `forward`, `backward`

A flag to control whether to apply the permutations from the start of the list first, or from the back of the list first.

For example, if the permutation specification is [[0, 1], [0, 2]],
If the flag is set to `forward`, the cycle would be formed as 0 \mapsto 2, 2 \mapsto 1, 1 \mapsto 0.
If the flag is set to `backward`, the cycle would be formed as 0 \mapsto 1, 1 \mapsto 2, 2 \mapsto 0.
If the argument `perm` is not in a form of list of lists, this flag takes no effect.

Examples

```python
>>> from sympy import eye
>>> M = eye(3)
>>> M.permute([[0, 1], [0, 2]], orientation='rows', direction='forward')
Matrix([[0, 0, 1],
        [1, 0, 0],
        [0, 1, 0]])
```

```python
>>> from sympy import eye
>>> M = eye(3)
>>> M.permute([[0, 1], [0, 2]], orientation='rows', direction='backward')
Matrix([[0, 1, 0],
        [0, 0, 1],
        [1, 0, 0]])
```

Notes

If a bijective function \(\sigma : \mathbb{N}_0 \to \mathbb{N}_0 \) denotes the permutation.

If the matrix \(A \) is the matrix to permute, represented as a horizontal or a vertical stack of vectors:

\[
A = \begin{bmatrix}
 a_0 \\
 a_1 \\
 \vdots \\
 a_{n-1}
\end{bmatrix} = [a_0 \ a_1 \ \cdots \ a_{n-1}]
\]
If the matrix B is the result, the permutation of matrix rows is defined as:

$$B := \begin{bmatrix}
 a_{\sigma(0)} \\
 a_{\sigma(1)} \\
 \vdots \\
 a_{\sigma(n-1)}
\end{bmatrix}$$

And the permutation of matrix columns is defined as:

$$B := [a_{\sigma(0)} \ a_{\sigma(1)} \ \cdots \ a_{\sigma(n-1)}]$$

`permute_cols` *(swaps, direction='forward')*

Alias for `self.permute(swaps, orientation='cols', direction=direction)`

See also:

`permute` (page 1393)

`permute_rows` *(swaps, direction='forward')*

Alias for `self.permute(swaps, orientation='rows', direction=direction)`

See also:

`permute` (page 1393)

`pow` *(exp, method=None)*

Return `self**exp` a scalar or symbol.

Parameters

`method` : multiply, mulsimp, jordan, cayley

If multiply then it returns exponentiation using recursion. If jordan then Jordan form exponentiation will be used. If cayley then the exponentiation is done using Cayley-Hamilton theorem. If mulsimp then the exponentiation is done using recursion with dotprodsimp. This specifies whether intermediate term algebraic simplification is used during naive matrix power to control expression blowup and thus speed up calculation. If None, then it heuristically decides which method to use.

`refine` *(assumptions=True)*

Apply `refine` to each element of the matrix.

Examples

```python
>>> from sympy import Symbol, Matrix, Abs, sqrt, Q
>>> x = Symbol('x')
>>> Matrix([[Abs(x)**2, sqrt(x**2)],[sqrt(x**2), Abs(x)**2]])
Matrix([[Abs(x)**2, sqrt(x**2)],
        [sqrt(x**2), Abs(x)**2]])
>>> _.refine(Q.real(x))
Matrix([[x**2, Abs(x)],
        [Abs(x), x**2]])
```
replace(F, G, map=False, simultaneous=True, exact=None)
Replaces Function F in Matrix entries with Function G.

Examples

```python
>>> from sympy import symbols, Function, Matrix
>>> F, G = symbols('F, G', cls=Function)
>>> M = Matrix([ [F(0), F(1)], [F(1), F(2)] ]); M
Matrix([[F(0), F(1)], [F(1), F(2)]])
>>> N = M.replace(F,G)
>>> N
Matrix([[G(0), G(1)], [G(1), G(2)]])
```

reshape(rows, cols)
Reshape the matrix. Total number of elements must remain the same.

Examples

```python
>>> from sympy import Matrix
>>> m = Matrix([ [1, 1, 1], [1, 1, 1] ]); m
Matrix([[1, 1, 1], [1, 1, 1]])
>>> m.reshape(1, 6)
Matrix([[1, 1, 1, 1, 1, 1]])
>>> m.reshape(3, 2)
Matrix([[1, 1], [1, 1], [1, 1]])
```

rmultiply(other, dotprodsimp=None)
Same as __rmul__() but with optional simplification.

Parameters

- **dotprodsimp** : bool, optional
 Specifies whether intermediate term algebraic simplification is used during matrix multiplications to control expression blowup and thus speed up calculation. Default is off.

rot90($k=1$)
Rotates Matrix by 90 degrees

Parameters

- **k** : int
Specifies how many times the matrix is rotated by 90 degrees (clockwise when positive, counter-clockwise when negative).

Examples

```python
>>> from sympy import Matrix, symbols
>>> A = Matrix(2, 2, symbols('a:d'))
>>> A
Matrix([[a, b],
        [c, d]])
```

Rotating the matrix clockwise one time:

```python
>>> A.rot90(1)
Matrix([[c, a],
        [d, b]])
```

Rotating the matrix anticlockwise two times:

```python
>>> A.rot90(-2)
Matrix([[d, c],
        [b, a]])
```

row(i)

Elementary row selector.

Examples

```python
>>> from sympy import eye
>>> eye(2).row(0)
Matrix([[[1, 0]]])
```

See also:

`col` (page 1375), `row_del` (page 1397), `row_join` (page 1398), `row_insert` (page 1397)

row_del(row)

Delete the specified row.

row_insert(pos, other)

Insert one or more rows at the given row position.
Examples

```python
>>> from sympy import zeros, ones
>>> M = zeros(3)
>>> V = ones(1, 3)
>>> M.row_insert(1, V)
Matrix([[0, 0, 0], [1, 1, 1], [0, 0, 0], [0, 0, 0]])
```

See also:
- `row` (page 1397), `col_insert` (page 1376)

```
row_join(other)
```

Concatenates two matrices along self’s last and rhs’s first column.

Examples

```python
>>> from sympy import zeros, ones
>>> M = zeros(3)
>>> V = ones(3, 1)
>>> M.row_join(V)
Matrix([[0, 0, 0, 1], [0, 0, 0, 1], [0, 0, 0, 1]])
```

See also:
- `row` (page 1397), `col_join` (page 1376)

property shape

The shape (dimensions) of the matrix as the 2-tuple (rows, cols).

Examples

```python
>>> from sympy import zeros
>>> M = zeros(2, 3)
>>> M.shape
(2, 3)
>>> M.rows
2
>>> M.cols
3
```

`simplify(**kwargs)`

Apply `simplify` to each element of the matrix.
Examples

```python
>>> from sympy.abc import x, y
>>> from sympy import SparseMatrix, sin, cos
>>> SparseMatrix(1, 1, [x*sin(y)**2 + x*cos(y)**2])
Matrix([[x*sin(y)**2 + x*cos(y)**2]])
>>> _.simplify()
Matrix([[x]])
```

subs(*args, **kwargs)

Return a new matrix with subs applied to each entry.

Examples

```python
>>> from sympy.abc import x, y
>>> from sympy import SparseMatrix, Matrix
>>> SparseMatrix(1, 1, [x])
Matrix([[x]])
>>> _.subs(x, y)
Matrix([[y]])
>>> Matrix(_).subs(y, x)
Matrix([[x]])
```

todod()

Returns matrix as dict of dicts containing non-zero elements of the Matrix

Examples

```python
>>> from sympy import Matrix
>>> A = Matrix([[0, 1],[0, 3]])
>>> A.todod()
{0: {1: 1}, 1: {1: 3}}
```

todok()

Return the matrix as dictionary of keys.
Examples

```python
>>> from sympy import Matrix
>>> M = Matrix.eye(3)
>>> M.todok()
{(0, 0): 1, (1, 1): 1, (2, 2): 1}
```

tolist()
Return the Matrix as a nested Python list.

Examples

```python
>>> from sympy import Matrix, ones
>>> m = Matrix(3, 3, range(9))
>>> m
t Matrix([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
>>> m.tolist()
[[0, 1, 2], [3, 4, 5], [6, 7, 8]]
>>> ones(3, 0).tolist()
[[], [], []]
```

When there are no rows then it will not be possible to tell how many columns were in the original matrix:

```python
>>> ones(0, 3).tolist()
[]
```

trace()
Returns the trace of a square matrix i.e. the sum of the diagonal elements.

Examples

```python
>>> from sympy import Matrix
>>> A = Matrix(2, 2, [1, 2, 3, 4])
>>> A.trace()
5
```

transpose()
Returns the transpose of the matrix.
Examples

```python
>>> from sympy import Matrix
>>> A = Matrix(2, 2, [1, 2, 3, 4])
>>> A.transpose()
Matrix([[1, 3],
        [2, 4]])
```

```python
>>> from sympy import Matrix, I
>>> m = Matrix(((1, 2+I), (3, 4)))
>>> m
Matrix([[1, 2 + I],
        [3, 4]])
>>> m.transpose()
Matrix([[1, 3],
        [2 + I, 4]])
>>> m.T == m.transpose()
True
```

See also:

- `conjugate` (page 1377)
 - By-element conjugation

- `upper_triangular(k=0)`
 - Return the elements on and above the kth diagonal of a matrix. If k is not specified then simply returns upper-triangular portion of a matrix.

Examples

```python
>>> from sympy import ones
>>> A = ones(4)
>>> A.upper_triangular()
Matrix([[1, 1, 1, 1],
        [0, 1, 1, 1],
        [0, 0, 1, 1],
        [0, 0, 0, 1]])
```

```python
>>> A.upper_triangular(2)
Matrix([[0, 0, 1, 1],
        [0, 0, 0, 1],
        [0, 0, 0, 0],
        [0, 0, 0, 0]])
```
```
>>> A.upper_triangular(-1)
Matrix(
    [1, 1, 1, 1],
    [1, 1, 1, 1],
    [0, 1, 1, 1],
    [0, 0, 1, 1])
```

values()
Return non-zero values of self.

vec()
Return the Matrix converted into a one column matrix by stacking columns.

Examples
```
>>> from sympy import Matrix
>>> m=Matrix([[1, 3], [2, 4]])
>>> m
Matrix([[1, 3],
    [2, 4]])
>>> m.vec()
Matrix([1,
    2,
    3,
    4])
```

See also:

vec (page 1402)

vec(diagonal=True, check_symmetry=True)
Reshapes the matrix into a column vector by stacking the elements in the lower triangle.

Parameters
- **diagonal**: bool, optional
 - If True, it includes the diagonal elements.
- **check_symmetry**: bool, optional
 - If True, it checks whether the matrix is symmetric.
Examples

```python
>>> from sympy import Matrix
>>> m=Matrix([[1, 2], [2, 3]])
>>> m
Matrix([[1, 2],
        [2, 3]])
>>> m.vech()
Matrix([[1],
        [2],
        [3]])
>>> m.vech(diagonal=False)
Matrix([[2]])
```

Notes

This should work for symmetric matrices and vech can represent symmetric matrices in vector form with less size than vec.

See also:

vec (page 1402)

classmethod vstack(*args)

Return a matrix formed by joining args vertically (i.e. by repeated application of col_join).

Examples

```python
>>> from sympy import Matrix, eye
>>> Matrix.vstack(eye(2), 2*eye(2))
Matrix([[1, 0],
        [0, 1],
        [2, 0],
        [0, 2]])
```

classmethod wilkinson(n, **kwargs)

Returns two square Wilkinson Matrix of size $2n + 1$ $W_{2n+1}^-, W_{2n+1}^+ = Wilkinson(n)$

5.8. Topics
Examples

```python
>>> from sympy import Matrix
>>> wminus, wplus = Matrix.wilkinson(3)
>>> wminus
Matrix([[ -3,  1,  0,  0,  0,  0,  0],
        [  1, -2,  1,  0,  0,  0,  0],
        [  0,  1, -1,  1,  0,  0,  0],
        [  0,  0,  1,  0,  1,  0,  0],
        [  0,  0,  0,  1,  1,  1,  0],
        [  0,  0,  0,  0,  1,  2,  1],
        [  0,  0,  0,  0,  0,  1,  3]])
```

```python
>>> wplus
Matrix([[  3,  1,  0,  0,  0,  0,  0],
        [  1,  2,  1,  0,  0,  0,  0],
        [  0,  1,  1,  0,  0,  0,  0],
        [  0,  0,  1,  0,  1,  0,  0],
        [  0,  0,  0,  1,  1,  1,  0],
        [  0,  0,  0,  0,  1,  2,  1],
        [  0,  0,  0,  0,  0,  1,  3]])
```

References

[R581], [R582]

xreplace(rule)
Return a new matrix with xreplace applied to each entry.

Examples

```python
>>> from sympy import x, y
>>> from sympy import SparseMatrix, Matrix
>>> SparseMatrix(1, 1, [x])
Matrix([[x]])
>>> _.xreplace({x: y})
Matrix([[y]])
>>> Matrix(_.xreplace({y: x})
Matrix([[x]])
```

classmethod zeros(rows, cols=None, **kwargs)
Returns a matrix of zeros.

Parameters

- **rows**: rows of the matrix
- **cols**: cols of the matrix (if None, cols=rows)
Kwargs

cls : class of the returned matrix

class sympy.matrices.common.MatrixKind(element_kind=NumberKind)
Kind for all matrices in SymPy.
Basic class for this kind is MatrixBase and MatrixExpr, but any expression representing
the matrix can have this.

Parameters

- element_kind : Kind
 Kind of the element. Default is sympy.core.kind.NumberKind
 (page 1118), which means that the matrix contains only numbers.

Examples

Any instance of matrix class has MatrixKind:

```python
>>> from sympy import MatrixSymbol
>>> A = MatrixSymbol('A', 2, 2)
>>> A.kind
MatrixKind(NumberKind)
```

Although expression representing a matrix may be not instance of matrix class, it will
have MatrixKind as well:

```python
>>> from sympy import MatrixExpr, Integral
>>> from sympy.abc import x
>>> intM = Integral(A, x)
>>> isinstance(intM, MatrixExpr)
False
>>> intM.kind
MatrixKind(NumberKind)
```

Use isinstance() to check for MatrixKind without specifying the element kind. Use is
with specifying the element kind:

```python
>>> from sympy import Matrix
>>> from sympy.core import NumberKind
>>> from sympy.matrices import MatrixKind
>>> M = Matrix([1, 2])
>>> isinstance(M.kind, MatrixKind)
True
>>> M.kind is MatrixKind(NumberKind)
True
```

See also:

sympy.core.kind.NumberKind (page 1118), sympy.core.kind.UndefinedKind
(page 1118), sympy.core.containers.TupleKind (page 1115), sympy.sets.sets.
SetKind (page 1259)
Dense Matrices

sympy.matrices.dense.Matrix
 alias of MutableDenseMatrix (page 1408)

class sympy.matrices.dense.DenseMatrix
 Matrix implementation based on DomainMatrix as the internal representation

LDLdecomposition(hermitian=True)
 Returns the LDL Decomposition (L, D) of matrix A, such that L * D * L.H == A
 if hermitian flag is True, or L * D * L.T == A if hermitian is False. This method
 eliminates the use of square root. Further this ensures that all the diagonal entries
 of L are 1. A must be a Hermitian positive-definite matrix if hermitian is True, or a
 symmetric matrix otherwise.

Examples

```python
>>> from sympy import Matrix, eye
>>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))
>>> L, D = A.LDLdecomposition()
>>> L
Matrix([ [ 1, 0, 0],
         [ 3/5, 1, 0],
         [-1/5, 1/3, 1]])
>>> D
Matrix([ [25, 0, 0],
         [ 0, 9, 0],
         [ 0, 0, 9]])
>>> L * D * L.T * A.inv() == eye(A.rows)
True
```

The matrix can have complex entries:

```python
>>> from sympy import I
>>> A = Matrix(((9, 3*I), (-3*I, 5)))
>>> L, D = A.LDLdecomposition()
>>> L
Matrix([ [ 1, 0],
         [-I/3, 1]])
>>> D
Matrix([ [9, 0],
         [0, 4]])
>>> L*D*L.H == A
True
```

See also:

sympy.matrices.dense.DenseMatrix.cholesky (page 1407), sympy.matrices.
matrices.MatrixBase.LUdecomposition (page 1323), QRdecomposition
(page 1328)
as_immutable()

Returns an Immutable version of this Matrix

as_mutable()

Returns a mutable version of this matrix

Examples

```python
>>> from sympy import ImmutableMatrix
>>> X = ImmutableMatrix([[1, 2], [3, 4]])
>>> Y = X.as_mutable()
>>> Y[1, 1] = 5  # Can set values in Y
>>> Y
Matrix([[1, 2],
        [3, 5]])
```

cholesky(hermitian=True)

Returns the Cholesky-type decomposition L of a matrix A such that $L \cdot L.H == A$ if hermitian flag is True, or $L \cdot L.T == A$ if hermitian is False.

A must be a Hermitian positive-definite matrix if hermitian is True, or a symmetric matrix if it is False.

Examples

```python
>>> from sympy import Matrix
>>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))
>>> A.cholesky()
Matrix([[
          5 , 0 , 0 ],
          [ 3 , 3 , 0 ],
          [-1, 1, 3]])
>>> A.cholesky() * A.cholesky().T
Matrix([[
          25, 15, -5],
          [15, 18, 0],
          [-5, 0, 11]])
```

The matrix can have complex entries:

```python
>>> from sympy import I
>>> A = Matrix(((9, 3*I), (-3*I, 5)))
>>> A.cholesky()
Matrix([[
          3, 0 ],
          [-I, 2]])
>>> A.cholesky() * A.cholesky().H
Matrix([[
          9, 3*I ],
          [-3*I, 5]])
```
Non-hermitian Cholesky-type decomposition may be useful when the matrix is not positive-definite.

```python
>>> A = Matrix([[1, 2], [2, 1]])
>>> L = A.cholesky(hermitian=False)
>>> L
Matrix([[1, 0],
        [2, sqrt(3)*I]])
>>> L*L.T == A
True
```

See also:

* `sympy.matrices.dense.DenseMatrix.LDLdecomposition` (page 1406),
* `sympy.matrices.matrices.MatrixBase.LUdecomposition` (page 1323),
* `QRdecomposition` (page 1328)

`lower_triangular_solve(rhs)`

Solves $Ax = B$, where A is a lower triangular matrix.

See also:

* `upper_triangular_solve` (page 1408),
* `gauss_jordan_solve` (page 1338),
* `cholesky_solve` (page 1333),
* `diagonal_solve` (page 1336),
* `LDLsolve` (page 1322),
* `LUsolve` (page 1328),
* `QRsolve` (page 1331),
* `pinv_solve` (page 1347)

`upper_triangular_solve(rhs)`

Solves $Ax = B$, where A is an upper triangular matrix.

See also:

* `lower_triangular_solve` (page 1408),
* `gauss_jordan_solve` (page 1338),
* `cholesky_solve` (page 1333),
* `diagonal_solve` (page 1336),
* `LDLsolve` (page 1322),
* `LUsolve` (page 1328),
* `QRsolve` (page 1331),
* `pinv_solve` (page 1347)

class `sympy.matrices.dense.MutableDenseMatrix(*args, **kwargs)`

`applyfunc(applyfunc(applyfunc(lambda x: simplify(x, ratio, measure)))

See also:

* `sympy.simplify.simplify.simplify` (page 719)

class `sympy.matrices.immutable.ImmutableDenseMatrix(*args, **kwargs)`

Create an immutable version of a matrix.
Examples

```python
>>> from sympy import eye, ImmutableMatrix
>>> ImmutableMatrix(eye(3))
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> [0, 0] = 42
Traceback (most recent call last):
...
TypeError: Cannot set values of ImmutableDenseMatrix
```

Sparse Matrices

SparseMatrix Class Reference

sympy.matrices.sparse.SparseMatrix
alias of MutableSparseMatrix (page 1409)

class sympy.matrices.sparse.MutableSparseMatrix(*args, **kwargs)

ImmutableSparseMatrix Class Reference

class sympy.matrices.immutable.ImmutableSparseMatrix(*args, **kwargs)

Create an immutable version of a sparse matrix.

Examples

```python
>>> from sympy import eye, ImmutableSparseMatrix
>>> ImmutableSparseMatrix(eye(3))
Matrix([[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> [0, 0] = 42
Traceback (most recent call last):
...
TypeError: Cannot set values of ImmutableSparseMatrix
>>> _.shape
(3, 3)
```
Sparse Tools

sympy.matrices.sparsetools._doktocsr()

Converts a sparse matrix to Compressed Sparse Row (CSR) format.

Parameters
- **A**: contains non-zero elements sorted by key (row, column)
- **JA**: JA[i] is the column corresponding to A[i]
- **IA**: IA[i] contains the index in A for the first non-zero element of row[i]. Thus IA[i+1] - IA[i] gives number of non-zero elements row[i]. The length of IA is always 1 more than the number of rows in the matrix.

Examples

```python
>>> from sympy.matrices.sparsetools import _doktocsr
>>> from sympy import SparseMatrix, diag
>>> m = SparseMatrix(diag(1, 2, 3))
>>> m[2, 0] = -1
>>> _doktocsr(m)
([[1, 2, -1, 3], [0, 1, 0, 2], [0, 1, 2, 4], [3, 3]])
```

sympy.matrices.sparsetools._csrtodok()

Converts a CSR representation to DOK representation.

Examples

```python
>>> from sympy.matrices.sparsetools import _csrtodok
>>> _csrtodok([[5, 8, 3, 6], [0, 1, 2, 1], [0, 0, 2, 3, 4], [4, 3]])
Matrix(
[0, 0, 0],
[5, 8, 0],
[0, 0, 3],
[0, 6, 0])
```

sympy.matrices.sparsetools.banded(**kwargs)

Returns a SparseMatrix from the given dictionary describing the diagonals of the matrix. The keys are positive for upper diagonals and negative for those below the main diagonal. The values may be:

- expressions or single-argument functions,
- lists or tuples of values,
- matrices

Unless dimensions are given, the size of the returned matrix will be large enough to contain the largest non-zero value provided.
Kwargs

- **rows**
 [rows of the resulting matrix; computed if] not given.

- **cols**
 [columns of the resulting matrix; computed if] not given.

Examples

```python
>>> from sympy import banded, ones, Matrix
>>> from sympy.abc import x
```

If explicit values are given in tuples, the matrix will autosize to contain all values, otherwise a single value is filled onto the entire diagonal:

```python
>>> banded({1: (1, 2, 3), -1: (4, 5, 6), 0: x})
```

```
[x, 1, 0, 0],
[4, x, 2, 0],
[0, 5, x, 3],
[0, 0, 6, x]]
```

A function accepting a single argument can be used to fill the diagonal as a function of diagonal index (which starts at 0). The size (or shape) of the matrix must be given to obtain more than a 1x1 matrix:

```python
>>> s = lambda d: (1 + d)**2
>>> banded(5, {0: s, 2: s, -2: 2})
```

```
[1, 0, 1, 0, 0],
[0, 4, 0, 4, 0],
[2, 0, 9, 0, 9],
[0, 2, 0, 16, 0],
[0, 0, 2, 0, 25]]
```

The diagonal of matrices placed on a diagonal will coincide with the indicated diagonal:

```python
>>> vert = Matrix([1, 2, 3])
>>> banded({0: vert}, cols=3)
```

```
[1, 0, 0],
[2, 1, 0],
[3, 2, 1],
[0, 3, 2],
[0, 0, 3]]
```

```python
>>> banded(4, {0: ones(2)})
```

```
[1, 1, 0, 0],
[1, 1, 0, 0],
[0, 0, 1, 1],
[0, 0, 1, 1]]
```
Errors are raised if the designated size will not hold all values an integral number of times. Here, the rows are designated as odd (but an even number is required to hold the off-diagonal 2x2 ones):

```python
>>> banded({0: 2, 1: ones(2)}, rows=5)
Traceback (most recent call last):
... ValueError:
sequence does not fit an integral number of times in the matrix
```

And here, an even number of rows is given...but the square matrix has an even number of columns, too. As we saw in the previous example, an odd number is required:

```python
>>> banded(4, {0: 2, 1: ones(2)})  # trying to make 4x4 and cols must be odd
Traceback (most recent call last):
... ValueError:
sequence does not fit an integral number of times in the matrix
```

A way around having to count rows is to enclosing matrix elements in a tuple and indicate the desired number of them to the right:

```python
>>> banded({0: 2, 2: (ones(2),)*3})
Matrix([2, 0, 1, 1, 0, 0, 0, 0],
[0, 2, 1, 1, 0, 0, 0, 0],
[0, 0, 2, 0, 1, 1, 0, 0],
[0, 0, 0, 2, 1, 1, 0, 0],
[0, 0, 0, 0, 2, 0, 1, 1],
[0, 0, 0, 0, 0, 2, 1, 1])
```

An error will be raised if more than one value is written to a given entry. Here, the ones overlap with the main diagonal if they are placed on the first diagonal:

```python
>>> banded({0: (2,)*5, 1: (ones(2),)*3})
Traceback (most recent call last):
... ValueError: collision at (1, 1)
```

By placing a 0 at the bottom left of the 2x2 matrix of ones, the collision is avoided:

```python
>>> u2 = Matrix([... [1, 1],
... [0, 1]])
>>> banded({0: [2]*5, 1: [u2]*3})
Matrix([2, 1, 1, 0, 0, 0, 0],
[0, 2, 1, 0, 0, 0, 0],
[0, 0, 2, 1, 1, 0, 0],
[0, 0, 0, 2, 1, 0, 0],
[0, 0, 0, 0, 2, 1, 1],
[0, 0, 0, 0, 0, 0, 1])
```
Immutable Matrices

The standard *Matrix* (page 1406) class in SymPy is mutable. This is important for performance reasons but means that standard matrices cannot interact well with the rest of SymPy. This is because the *Basic* (page 979) object, from which most SymPy classes inherit, is mutable.

The mission of the *ImmutableDenseMatrix* (page 1413) class, which is aliased as *ImmutableMatrix* (page 1413) for short, is to bridge the tension between performance/mutability and safety/immutability. Immutable matrices can do almost everything that normal matrices can do but they inherit from *Basic* (page 979) and can thus interact more naturally with the rest of SymPy. *ImmutableMatrix* (page 1413) also inherits from *MatrixExpr* (page 1414), allowing it to interact freely with SymPy’s Matrix Expression module.

You can turn any Matrix-like object into an *ImmutableMatrix* (page 1413) by calling the constructor

```python
>>> from sympy import Matrix, ImmutableMatrix
>>> M = Matrix([ [1, 2, 3], [4, 5, 6], [7, 8, 9] ]) #
>>> M[1, 1] = 0
>>> IM = ImmutableMatrix(M)
>>> IM
Matrix([ [1, 2, 3], [4, 0, 6], [7, 8, 9] ])
>>> IM[1, 1] = 5
Traceback (most recent call last):
... TypeError: Can not set values in Immutable Matrix. Use Matrix instead.
```

ImmutableMatrix Class Reference

`sympy.matrices.immutable.ImmutableMatrix`

Alias of *ImmutableDenseMatrix* (page 1413)

```python
class sympy.matrices.immutable.ImmutableDenseMatrix(*args, **kwargs)
```

Create an immutable version of a matrix.

Examples

```python
>>> from sympy import eye, ImmutableMatrix
>>> ImmutableMatrix(eye(3))
Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1] ])
>>> [0, 0] = 42
Traceback (most recent call last):
... TypeError: Cannot set values of ImmutableDenseMatrix
```
Matrix Expressions

The Matrix expression module allows users to write down statements like

```python
>>> from sympy import MatrixSymbol, Matrix
>>> X = MatrixSymbol('X', 3, 3)
>>> Y = MatrixSymbol('Y', 3, 3)
>>> (X.T*X).I*Y
X**(-1)*X.T**(-1)*Y
```

```python
>>> Matrix(X)
Matrix([X[0, 0], X[0, 1], X[0, 2]], [X[1, 0], X[1, 1], X[1, 2]], [X[2, 0], X[2, 1], X[2, 2]])
```

```python
>>> (X*Y)[1, 2]
X[1, 0]*Y[0, 2] + X[1, 1]*Y[1, 2] + X[1, 2]*Y[2, 2]
```

where X and Y are `MatrixSymbol` (page 1417)'s rather than scalar symbols.

Matrix expression derivatives are supported. The derivative of a matrix by another matrix is generally a 4-dimensional array, but if some dimensions are trivial or diagonal, the derivation algorithm will try to express the result as a matrix expression:

```python
>>> a = MatrixSymbol("a", 3, 1)
>>> b = MatrixSymbol("b", 3, 1)
>>> (a.T*X**2*b).diff(X)
a*b.T*X.T + X.T*a*b.T
```

```python
>>> X.diff(X)
PermuteDims(ArrayTensorProduct(I, I), (3)(1 2))
```

The last output is an array expression, as the returned symbol is 4-dimensional.

Matrix Expressions Core Reference

```python
class sympy.matrices.expressions.MatrixExpr(*args, **kwargs)
    Superclass for Matrix Expressions
```

MatrixExprs represent abstract matrices, linear transformations represented within a particular basis.
Examples

```python
>>> from sympy import MatrixSymbol
>>> A = MatrixSymbol('A', 3, 3)
>>> y = MatrixSymbol('y', 3, 1)
>>> x = (A.T*A).I * A * y
```

See also:

`MatrixSymbol` (page 1417), `MatAdd` (page 1417), `MatMul` (page 1417), `Transpose` (page 1419), `Inverse` (page 1419)

property T

Matrix transposition

`as_coeff_Mul`(rational=False)

Efficiently extract the coefficient of a product.

`as_explicit`()

Returns a dense Matrix with elements represented explicitly

Returns an object of type `ImmutableDenseMatrix`.

Examples

```python
>>> from sympy import Identity
>>> I = Identity(3)
>>> I
I
>>> I.as_explicit()
Matrix([[-
    [1, 0, 0],
    [0, 1, 0],
    [0, 0, 1]])
```

See also:

`as_mutable` (page 1415)

returns mutable Matrix type

`as_mutable`()

Returns a dense, mutable matrix with elements represented explicitly

Examples

```python
>>> from sympy import Identity
>>> I = Identity(3)
>>> I
I
>>> I.shape
(3, 3)
```
```python
>>> I.as_mutable()
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
```

See also:

as_explicit (page 1415)

returns ImmutableDenseMatrix

equals(*other*)

Test elementwise equality between matrices, potentially of different types

```python
>>> from sympy import Identity, eye
>>> Identity(3).equals(eye(3))
True
```

static from_index_summation(*expr, first_index=None, last_index=None, dimensions=None*)

Parse expression of matrices with explicitly summed indices into a matrix expression without indices, if possible.

This transformation expressed in mathematical notation:

\[
\sum_{j=0}^{N-1} A_{i,j} B_{j,k} \rightarrow A \cdot B
\]

Optional parameter first_index: specify which free index to use as the index starting the expression.

Examples

```python
>>> from sympy import MatrixSymbol, MatrixExpr, Sum
>>> from sympy.abc import i, j, k, l, N
>>> A = MatrixSymbol("A", N, N)
>>> B = MatrixSymbol("B", N, N)
>>> expr = Sum(A[i, j]*B[j, k], (j, 0, N-1))
>>> MatrixExpr.from_index_summation(expr)
A*B
```

Transposition is detected:

```python
>>> expr = Sum(A[j, i]*B[j, k], (j, 0, N-1))
>>> MatrixExpr.from_index_summation(expr)
A.T*B
```

Detect the trace:

```python
>>> expr = Sum(A[i, i], (i, 0, N-1))
>>> MatrixExpr.from_index_summation(expr)
Trace(A)
```

More complicated expressions:
```python
>>> expr = Sum(A[i, j]*B[k, j]*A[l, k], (j, 0, N-1), (k, 0, N-1))
>>> MatrixExpr.from_index_summation(expr)
A*B.T*A.T
```

class sympy.matrices.expressions.MatrixSymbol(name, n, m)
Symbolic representation of a Matrix object

Creates a SymPy Symbol to represent a Matrix. This matrix has a shape and can be included in Matrix Expressions

Examples

```python
>>> from sympy import MatrixSymbol, Identity
>>> A = MatrixSymbol('A', 3, 4) # A 3 by 4 Matrix
>>> B = MatrixSymbol('B', 4, 3) # A 4 by 3 Matrix
>>> A.shape
(3, 4)
>>> 2*A*B + Identity(3)
I + 2*A*B
```

class sympy.matrices.expressions.MatAdd(*args, evaluate=False, check=None, _sympify=True)
A Sum of Matrix Expressions

MatAdd inherits from and operates like SymPy Add

Examples

```python
>>> from sympy import MatAdd, MatrixSymbol
>>> A = MatrixSymbol('A', 5, 4)
>>> B = MatrixSymbol('B', 4, 3)
>>> C = MatrixSymbol('C', 3, 6)
>>> MatAdd(A, B, C)
A + B + C
```

class sympy.matrices.expressions.MatMul(*args, evaluate=False, check=None, _sympify=True)
A product of matrix expressions

Examples

```python
>>> from sympy import MatMul, MatrixSymbol
>>> A = MatrixSymbol('A', 5, 4)
>>> B = MatrixSymbol('B', 4, 3)
>>> C = MatrixSymbol('C', 3, 6)
>>> MatMul(A, B, C)
A*B*C
```

class sympy.matrices.expressions.MatPow(base, exp, evaluate=False, **options)
sympy.matrices.expressions.hadamard_product(*matrices)

Return the elementwise (aka Hadamard) product of matrices.

Examples

```python
>>> from sympy import hadamard_product, MatrixSymbol
>>> A = MatrixSymbol('A', 2, 3)
>>> B = MatrixSymbol('B', 2, 3)
>>> hadamard_product(A)
A
>>> hadamard_product(A, B)
HadamardProduct(A, B)
>>> hadamard_product(A, B)[0, 1]
A[0, 1]*B[0, 1]
```

class sympy.matrices.expressions.HadamardProduct(*args, evaluate=False, check=None)

Elementwise product of matrix expressions

Examples

Hadamard product for matrix symbols:

```python
>>> from sympy import hadamard_product, HadamardProduct, MatrixSymbol
>>> A = MatrixSymbol('A', 5, 5)
>>> B = MatrixSymbol('B', 5, 5)
>>> isinstance(hadamard_product(A, B), HadamardProduct)
True
```

Notes

This is a symbolic object that simply stores its argument without evaluating it. To actually compute the product, use the function hadamard_product() or HadamardProduct.doit

class sympy.matrices.expressions.HadamardPower(base, exp)

Elementwise power of matrix expressions

Parameters

- `base` : scalar or matrix
- `exp` : scalar or matrix
Notes

There are four definitions for the hadamard power which can be used. Let’s consider A, B as (m, n) matrices, and a, b as scalars.

Matrix raised to a scalar exponent:

$$A^b = \begin{bmatrix}
A^b_{0,0} & A^b_{0,1} & \cdots & A^b_{0,n-1} \\
A^b_{1,0} & A^b_{1,1} & \cdots & A^b_{1,n-1} \\
& \vdots & \ddots & \vdots \\
A^b_{m-1,0} & A^b_{m-1,1} & \cdots & A^b_{m-1,n-1}
\end{bmatrix}$$

Scalar raised to a matrix exponent:

$$a^B = \begin{bmatrix}
a^{B_{0,0}} & a^{B_{0,1}} & \cdots & a^{B_{0,n-1}} \\
a^{B_{1,0}} & a^{B_{1,1}} & \cdots & a^{B_{1,n-1}} \\
& \vdots & \ddots & \vdots \\
a^{B_{m-1,0}} & a^{B_{m-1,1}} & \cdots & a^{B_{m-1,n-1}}
\end{bmatrix}$$

Matrix raised to a matrix exponent:

$$A^B = \begin{bmatrix}
A_{0,0}^B & A_{0,1}^B & \cdots & A_{0,n-1}^B \\
A_{1,0}^B & A_{1,1}^B & \cdots & A_{1,n-1}^B \\
& \vdots & \ddots & \vdots \\
A_{m-1,0}^B & A_{m-1,1}^B & \cdots & A_{m-1,n-1}^B
\end{bmatrix}$$

Scalar raised to a scalar exponent:

$$a^b = a^b$$

class `sympy.matrices.expressions.Inverse(mat, exp=-1)`

The multiplicative inverse of a matrix expression.

This is a symbolic object that simply stores its argument without evaluating it. To actually compute the inverse, use the `.inverse()` method of matrices.

Examples

```python
from sympy import MatrixSymbol, Inverse

A = MatrixSymbol('A', 3, 3)
B = MatrixSymbol('B', 3, 3)

Inverse(A)
A**(-1)
A.inverse() == Inverse(A)
True

(A*B).inverse()
B**(-1)*A**(-1)
Inverse(A*B)
(A*B)**(-1)
```

class `sympy.matrices.expressions.Transpose(*args, **kwargs)`

The transpose of a matrix expression.

This is a symbolic object that simply stores its argument without evaluating it. To actually compute the transpose, use the `transpose()` function, or the `.T` attribute of matrices.
Examples

```python
>>> from sympy import MatrixSymbol, Transpose, transpose
>>> A = MatrixSymbol('A', 3, 5)
>>> B = MatrixSymbol('B', 5, 3)
>>> Transpose(A)
A.T
>>> A.T == transpose(A) == Transpose(A)
True
>>> Transpose(A*B)
(A*B).T
>>> transpose(A*B)
B.T*A.T
```

class sympy.matrices.expressions.Trace(mat)
Matrix Trace
Represents the trace of a matrix expression.

Examples

```python
>>> from sympy import MatrixSymbol, Trace, eye
>>> A = MatrixSymbol('A', 3, 3)
>>> Trace(A)
Trace(A)
>>> Trace(eye(3))
Trace(Matrix([1, 0, 0], [0, 1, 0], [0, 0, 1]))
>>> Trace(eye(3)).simplify()
3
```

class sympy.matrices.expressions.FunctionMatrix(rows, cols, lamda)
Represents a matrix using a function (Lambda) which gives outputs according to the coordinates of each matrix entries.

Parameters
- **rows**: nonnegative integer. Can be symbolic.
- **cols**: nonnegative integer. Can be symbolic.
- **lamda**: Function, Lambda or str

 If it is a SymPy Function or Lambda instance, it should be able to accept two arguments which represents the matrix coordinates.

 If it is a pure string containing Python lambda semantics, it is interpreted by the SymPy parser and casted into a SymPy Lambda instance.
Examples

Creating a FunctionMatrix from Lambda:

```python
>>> from sympy import FunctionMatrix, symbols, Lambda, MatPow
>>> i, j, n, m = symbols('i,j,n,m')
>>> FunctionMatrix(n, m, Lambda((i, j), i + j))
FunctionMatrix(n, m, Lambda((i, j), i + j))
```

Creating a FunctionMatrix from a SymPy function:

```python
>>> from sympy import KroneckerDelta
>>> X = FunctionMatrix(3, 3, KroneckerDelta)
>>> X.as_explicit()
Matrix([[1, 0, 0],
        [0, 1, 0],
        [0, 0, 1]])
```

Creating a FunctionMatrix from a SymPy undefined function:

```python
>>> from sympy import Function
>>> f = Function('f')
>>> X = FunctionMatrix(3, 3, f)
>>> X.as_explicit()
Matrix([[f(0, 0), f(0, 1), f(0, 2)],
        [f(1, 0), f(1, 1), f(1, 2)],
        [f(2, 0), f(2, 1), f(2, 2)]])
```

Creating a FunctionMatrix from Python lambda:

```python
>>> FunctionMatrix(n, m, 'lambda i, j: i + j')
FunctionMatrix(n, m, Lambda((i, j), i + j))
```

Example of lazy evaluation of matrix product:

```python
>>> Y = FunctionMatrix(1000, 1000, Lambda((i, j), i + j))
>>> isinstance(Y*Y, MatPow) # this is an expression object
True
>>> (Y**2)[10,10] # So this is evaluated lazily
342923500
```

Notes

This class provides an alternative way to represent an extremely dense matrix with entries in some form of a sequence, in a most sparse way.

```python
class sympy.matrices.expressions.PermutationMatrix(perm)
    A Permutation Matrix
    Parameters
    perm : Permutation
```
The permutation the matrix uses.

The size of the permutation determines the matrix size.

See the documentation of `sympy.combinatorics.permutations.Permutation` (page 312) for the further information of how to create a permutation object.

Examples

```python
>>> from sympy import Matrix, PermutationMatrix
>>> from sympy.combinatorics import Permutation

Creating a permutation matrix:

```python
>>> p = Permutation(1, 2, 0)
>>> P = PermutationMatrix(p)
>>> P
Matrix([[0, 1, 0],
 [0, 0, 1],
 [1, 0, 0]])
```

Permuting a matrix row and column:

```python
>>> M = Matrix([[0, 1, 2]])
>>> Matrix(P*M)
Matrix([[1],
 [2],
 [0]])
```

```python
>>> Matrix(M.T*P)
Matrix([[2, 0, 1]])
```

See also:

`sympy.combinatorics.permutations.Permutation` (page 312)

class sympy.matrices.expressions.MatrixPermute(mat, perm, axis=0)

Symbolic representation for permuting matrix rows or columns.

**Parameters**

- `perm`: Permutation, PermutationMatrix
  
  The permutation to use for permuting the matrix. The permutation can be resized to the suitable one,

- `axis`: 0 or 1
  
  The axis to permute alongside. If 0, it will permute the matrix rows. If 1, it will permute the matrix columns.
Notes

This follows the same notation used in `sympy.matrices.common.MatrixCommon.permute()` (page 1393).

Examples

```python
>>> from sympy import Matrix, MatrixPermute
>>> from sympy.combinatorics import Permutation

Permuting the matrix rows:

```python
>>> p = Permutation(1, 2, 0)
>>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> B = MatrixPermute(A, p, axis=0)
>>> B.as_explicit()
Matrix(
    [4, 5, 6],
    [7, 8, 9],
    [1, 2, 3])
```

Permuting the matrix columns:

```python
>>> B = MatrixPermute(A, p, axis=1)
>>> B.as_explicit()
Matrix(
    [2, 3, 1],
    [5, 6, 4],
    [8, 9, 7])
```

See also:
`sympy.matrices.common.MatrixCommon.permute` (page 1393)

class `sympy.matrices.expressions.Identity(n)`
The Matrix Identity I - multiplicative identity

Examples

```python
>>> from sympy import Identity, MatrixSymbol
>>> A = MatrixSymbol('A', 3, 5)
>>> I = Identity(3)
>>> I*A
A
```

class `sympy.matrices.expressions.ZeroMatrix(m, n)`
The Matrix Zero 0 - additive identity
Examples

```python
>>> from sympy import MatrixSymbol, ZeroMatrix
>>> A = MatrixSymbol('A', 3, 5)
>>> Z = ZeroMatrix(3, 5)
>>> A + Z
A
>>> Z*A.T
0
```

class sympy.matrices.expressions.CompanionMatrix(poly)

A symbolic companion matrix of a polynomial.

Examples

```python
>>> from sympy import Poly, Symbol, symbols
>>> from sympy.matrices.expressions import CompanionMatrix
>>> x = Symbol('x')
>>> c0, c1, c2, c3, c4 = symbols('c0:5')
>>> p = Poly(c0 + c1*x + c2*x**2 + c3*x**3 + c4*x**4 + x**5, x)
>>> CompanionMatrix(p)
CompanionMatrix(Poly(x**5 + c4*x**4 + c3*x**3 + c2*x**2 + c1*x + c0, 
x, domain='ZZ[c0,c1,c2,c3,c4]'))
```

class sympy.matrices.expressions.MatrixSet(n, m, set)

MatrixSet represents the set of matrices with shape = (n, m) over the given set.

Examples

```python
>>> from sympy.matrices import MatrixSet
>>> from sympy import S, I, Matrix
>>> M = MatrixSet(2, 2, set=S.Reals)
>>> X = Matrix([[1, 2], [3, 4]])
>>> X in M
True
>>> X = Matrix([[1, 2], [I, 4]])
>>> X in M
False
```

Block Matrices

Block matrices allow you to construct larger matrices out of smaller sub-blocks. They can work with `MatrixExpr` (page 1414) or `ImmutableMatrix` (page 1413) objects.

class sympy.matrices.expressions.blockmatrix.BlockMatrix(*args, **kwargs)

A BlockMatrix is a Matrix comprised of other matrices.

The submatrices are stored in a SymPy Matrix object but accessed as part of a Matrix Expression
```python
>>> from sympy import (MatrixSymbol, BlockMatrix, symbols, ...
    Identity, ZeroMatrix, block_collapse)
>>> n, m, l = symbols('n m l')
>>> X = MatrixSymbol('X', n, n)
>>> Y = MatrixSymbol('Y', m, m)
>>> Z = MatrixSymbol('Z', n, m)
>>> B = BlockMatrix([[X, Z], [ZeroMatrix(m, n), Y]])
>>> print(B)
Matrix([[X, Z], [0, Y]])
```
L : Lower Diagonal Matrix D : Diagonal Matrix U : Upper Diagonal Matrix

Raises

ShapeError
 If the block matrix is not a 2x2 matrix

NonInvertibleMatrixError
 If the matrix “A” is non-invertible

Examples

```python
>>> from sympy import symbols, MatrixSymbol, BlockMatrix, block_collapse

>>> m, n = symbols('m n')
    A = MatrixSymbol('A', n, n)
    B = MatrixSymbol('B', n, m)
    C = MatrixSymbol('C', m, n)
    D = MatrixSymbol('D', m, m)
    X = BlockMatrix([[A, B], [C, D]])
    L, D, U = X.LDUdecomposition()
    block_collapse(L*D*U)
    Matrix([[A, B], [C, D]])
```

See also:

sympy.matrices.expressions.blockmatrix.BlockMatrix.UDLdecomposition
(page 1427), sympy.matrices.expressions.blockmatrix.BlockMatrix.LUdecomposition
(page 1426)

LUdecomposition()

Returns the Block LU decomposition of a 2x2 Block Matrix

Returns

(L, U) : Matrices
 L : Lower Diagonal Matrix U : Upper Diagonal Matrix

Raises

ShapeError
 If the block matrix is not a 2x2 matrix

NonInvertibleMatrixError
 If the matrix “A” is non-invertible
Examples

```python
from sympy import symbols, MatrixSymbol, BlockMatrix, block_collapse
m, n = symbols('m n')
A = MatrixSymbol('A', n, n)
B = MatrixSymbol('B', n, m)
C = MatrixSymbol('C', m, n)
D = MatrixSymbol('D', m, m)
X = BlockMatrix([[A, B], [C, D]])
L, U = X.LUdecomposition()
block_collapse(L*U)
```

See also:

sympy.matrices.expressions.blockmatrix.BlockMatrix.UDLdecomposition (page 1427), sympy.matrices.expressions.blockmatrix.BlockMatrix.LDUdecomposition (page 1425)

UDLdecomposition()

Returns the Block UDL decomposition of a 2x2 Block Matrix

Returns

(U, D, L) : Matrices

U : Upper Diagonal Matrix
D : Diagonal Matrix
L : Lower Diagonal Matrix

Raises

ShapeError

If the block matrix is not a 2x2 matrix

NonInvertibleMatrixError

If the matrix "D" is non-invertible

Examples

```python
from sympy import symbols, MatrixSymbol, BlockMatrix, block_collapse
m, n = symbols('m n')
A = MatrixSymbol('A', n, n)
B = MatrixSymbol('B', n, m)
C = MatrixSymbol('C', m, n)
D = MatrixSymbol('D', m, m)
X = BlockMatrix([[A, B], [C, D]])
U, D, L = X.LUdecomposition()
block_collapse(U*D*L)
```
See also:

- `sympy.matrices.expressions.blockmatrix.BlockMatrix.LDUdecomposition`
- `sympy.matrices.expressions.blockmatrix.BlockMatrix.LUdecomposition`

`schur(mat='A', generalized=False)`

Return the Schur Complement of the 2x2 BlockMatrix

Parameters

- `mat` : String, optional

 The matrix with respect to which the Schur Complement is calculated. ‘A’ is used by default

- `generalized` : bool, optional

 If True, returns the generalized Schur Component which uses Moore-Penrose Inverse

Returns

- `M` : Matrix

 The Schur Complement Matrix

Raises

- `ShapeError`

 If the block matrix is not a 2x2 matrix

- `NonInvertibleMatrixError`

 If given matrix is non-invertible

Examples

```python
>>> from sympy import symbols, MatrixSymbol, BlockMatrix
>>> m, n = symbols('m n')
>>> A = MatrixSymbol('A', n, n)
>>> B = MatrixSymbol('B', n, m)
>>> C = MatrixSymbol('C', m, n)
>>> D = MatrixSymbol('D', m, m)
>>> X = BlockMatrix([[A, B], [C, D]])
```

The default Schur Complement is evaluated with ‘A’

```python
>>> X.schur()
-C*A**(-1)*B + D
```

```python
>>> X.schur('D')
A - B*D**(-1)*C
```

Schur complement with non-invertible matrices is not defined. Instead, the generalized Schur complement can be calculated which uses the Moore-Penrose Inverse. To achieve this, `generalized` must be set to `True`

```python
>>> X.schur('B', generalized=True)
C - D*(B.T*B)**(-1)*B.T*A
```

(continues on next page)
```python
>>> X.schur('C', generalized=True)
-A*(C.T*C)**(-1)*C.T*D + B
```

See also:

`sympy.matrices.matrices.MatrixBase.pinv` (page 1346)

References

[R583]

transpose()

Return transpose of matrix.

Examples

```python
>>> from sympy import MatrixSymbol, BlockMatrix, ZeroMatrix
>>> from sympy.abc import m, n
>>> X = MatrixSymbol('X', n, n)
>>> Y = MatrixSymbol('Y', m, m)
>>> Z = MatrixSymbol('Z', n, m)
>>> B = BlockMatrix([[X, Z], [ZeroMatrix(m,n), Y]])
>>> B.transpose()
Matrix([[X.T, 0], [Z.T, Y.T]])
```

```python
>>> B.transpose()
Matrix([[X, Z], [0, Y]])
```

```python
class sympy.matrices.expressions.blockmatrix.BlockDiagMatrix(*mats)
A sparse matrix with block matrices along its diagonals
```

Examples

```python
>>> from sympy import MatrixSymbol, BlockDiagMatrix, symbols
>>> n, m, l = symbols('n m l')
>>> X = MatrixSymbol('X', n, n)
>>> Y = MatrixSymbol('Y', m, m)
>>> BlockDiagMatrix(X, Y)
Matrix([[X, 0], [0, Y]])
```

Notes

If you want to get the individual diagonal blocks, use `get_diag_blocks()` (page 1430).

See also:

* sympy.matrices.dense.diag (page 1360)

get_diag_blocks()

Return the list of diagonal blocks of the matrix.

Examples

```python
>>> from sympy import BlockDiagMatrix, Matrix

>>> A = Matrix([[1, 2], [3, 4]])
>>> B = Matrix([[5, 6], [7, 8]])
>>> M = BlockDiagMatrix(A, B)

How to get diagonal blocks from the block diagonal matrix:

```python
>>> diag_blocks = M.get_diag_blocks()
>>> diag_blocks[0]
Matrix([[1, 2],
 [3, 4]])
>>> diag_blocks[1]
Matrix([[5, 6],
 [7, 8]])
```

```
sympy.matrices.expressions.blockmatrix.block Collapse(expr)
```

Evaluates a block matrix expression

```python
>>> from sympy import MatrixSymbol, BlockMatrix, symbols, Identity,
 ZeroMatrix, block Collapse

>>> n,m,l = symbols('n m l')
>>> X = MatrixSymbol('X', n, n)
>>> Y = MatrixSymbol('Y', m, m)
>>> Z = MatrixSymbol('Z', n, m)
>>> B = BlockMatrix([[X, Z], [ZeroMatrix(m, n), Y]])
```

```python
>>> print(B)
Matrix([[X, Z],
 [0, Y]])
```

```python
>>> C = BlockMatrix([[Identity(n), Z]])
```

```python
>>> print(C)
Matrix([[I, Z]])
```

```python
>>> print(block Collapse(C*B))
Matrix([[X, Z + Z*Y]])
```
Matrix Normal Forms

```python
sympy.matrices.normalforms.smith_normal_form(m, domain=None)
```
Return the Smith Normal Form of a matrix $m$ over the ring $domain$. This will only work if the ring is a principal ideal domain.

Examples

```python
>>> from sympy import Matrix, ZZ
>>> from sympy.matrices.normalforms import smith_normal_form
>>> m = Matrix([[12, 6, 4], [3, 9, 6], [2, 16, 14]])
>>> print(smith_normal_form(m, domain=ZZ))
Matrix([[1, 0, 0], [0, 10, 0], [0, 0, -30]])
```

```python
sympy.matrices.normalforms.hermite_normal_form(A, *, D=None, check_rank=False)
```
Compute the Hermite Normal Form of a Matrix $A$ of integers.

Parameters

- $A$: $m \times n$ Matrix of integers.
- $D$: int, optional
  Let $W$ be the HNF of $A$. If known in advance, a positive integer $D$ being any multiple of $\det(W)$ may be provided. In this case, if $A$ also has rank $m$, then we may use an alternative algorithm that works mod $D$ in order to prevent coefficient explosion.
- $check\_rank$: boolean, optional (default=False)
  The basic assumption is that, if you pass a value for $D$, then you already believe that $A$ has rank $m$, so we do not waste time checking it for you. If you do want this to be checked (and the ordinary, non-modulo $D$ algorithm to be used if the check fails), then set $check\_rank$ to True.

Returns

- Matrix
  The HNF of matrix $A$.

Raises

- DMDomainError
  If the domain of the matrix is not $ZZ$ (page 2605).
- DMShapeError
  If the mod $D$ algorithm is used but the matrix has more rows than columns.
Examples

```python
>>> from sympy import Matrix
>>> from sympy.matrices.normalforms import hermite_normal_form
>>> m = Matrix([[12, 6, 4], [3, 9, 6], [2, 16, 14]])
>>> print(hermite_normal_form(m))
Matrix([[10, 0, 2], [0, 15, 3], [0, 0, 2]])
```

References

[R617]

Tensor

A module to manipulate symbolic objects with indices including tensors

Contents

N-dim array

N-dim array module for SymPy.

Four classes are provided to handle N-dim arrays, given by the combinations dense/sparse (i.e. whether to store all elements or only the non-zero ones in memory) and mutable/immutable (immutable classes are SymPy objects, but cannot change after they have been created).

Examples

The following examples show the usage of Array. This is an abbreviation for ImmutableDenseNDimArray, that is an immutable and dense N-dim array, the other classes are analogous. For mutable classes it is also possible to change element values after the object has been constructed.

Array construction can detect the shape of nested lists and tuples:

```python
>>> from sympy import Array
>>> a1 = Array([[1, 2], [3, 4], [5, 6]])
>>> a1
[[1, 2], [3, 4], [5, 6]]
>>> a1.shape
(3, 2)
>>> a1.rank()
2
>>> from sympy import x, y, z
>>> a2 = Array([[x, y], [z, x*z]], [[1, x*y], [1/x, x/y]])
>>> a2
[[[x, y], [z, x*z]], [[1, x*y], [1/x, x/y]]]
```
>>> a2.shape
(2, 2, 2)
>>> a2.rank()
3

Otherwise one could pass a 1-dim array followed by a shape tuple:

```python
>>> m1 = Array(range(12), (3, 4))
>>> m1
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]
>>> m2 = Array(range(12), (3, 2, 2))
>>> m2
[[[0, 1], [2, 3]], [[4, 5], [6, 7]], [[8, 9], [10, 11]]]
>>> m2[1,1,1]
7
>>> m2.reshape(4, 3)
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]]
```

Slice support:

```python
>>> m2[::, 1, 1]
[3, 7, 11]
```

Elementwise derivative:

```python
>>> from sympy.abc import x, y, z
>>> m3 = Array([x**3, x*y, z])
>>> m3.diff(x)
[3*x**2, y, 0]
>>> m3.diff(z)
[0, 0, 1]
```

Multiplication with other SymPy expressions is applied elementwisely:

```python
>>> (1+x)*m3
[x**3*(x + 1), x*y*(x + 1), z*(x + 1)]
```

To apply a function to each element of the N-dim array, use applyfunc:

```python
>>> m3.applyfunc(lambda x: x/2)
[x**3/2, x*y/2, z/2]
```

N-dim arrays can be converted to nested lists by the tolist() method:

```python
>>> m2.tolist()
[[[0, 1], [2, 3]], [[4, 5], [6, 7]], [[8, 9], [10, 11]]]
>>> isinstance(m2.tolist(), list)
True
```

If the rank is 2, it is possible to convert them to matrices with tomatrix():

```python
>>> m1.tomatrix()
Matrix([...
```
Products and contractions

Tensor product between arrays $A_{i_1,...,i_n}$ and $B_{j_1,...,j_m}$ creates the combined array $P = A \otimes B$ defined as

$$P_{i_1,...,i_n,j_1,...,j_m} := A_{i_1,...,i_n} \cdot B_{j_1,...,j_m}.$$  

It is available through `tensorproduct(...):

```python
>>> from sympy import Array, tensorproduct
>>> A = Array([x, y, z, t])
>>> B = Array([1, 2, 3, 4])
>>> tensorproduct(A, B)
[[x, 2*x, 3*x, 4*x], [y, 2*y, 3*y, 4*y], [z, 2*z, 3*z, 4*z], [t, 2*t, 3*t, 4*t]]
```

In case you don’t want to evaluate the tensor product immediately, you can use `ArrayTensorProduct`, which creates an unevaluated tensor product expression:

```python
>>> from sympy.tensor.array.expressions import ArrayTensorProduct
>>> ArrayTensorProduct(A, B)
ArrayTensorProduct([x, y, z, t], [1, 2, 3, 4])
```

Calling `.as_explicit()` on `ArrayTensorProduct` is equivalent to just calling `tensorproduct(...):

```python
>>> ArrayTensorProduct(A, B).as_explicit()
[[x, 2*x, 3*x, 4*x], [y, 2*y, 3*y, 4*y], [z, 2*z, 3*z, 4*z], [t, 2*t, 3*t, 4*t]]
```

Tensor product between a rank-1 array and a matrix creates a rank-3 array:

```python
>>> from sympy import eye
>>> p1 = tensorproduct(A, eye(4))
>>> p1
[[[x, 0, 0, 0], [0, x, 0, 0], [0, 0, x, 0], [0, 0, 0, x]], [[y, 0, 0, 0], [0, y, 0, 0], [0, 0, y, 0], [0, 0, 0, y]], [[z, 0, 0, 0], [0, z, 0, 0], [0, 0, z, 0], [0, 0, 0, z]], [[t, 0, 0, 0], [0, t, 0, 0], [0, 0, t, 0], [0, 0, 0, t]]]
```

Now, to get back $A_0 \otimes 1$ one can access $p_0,m,n$ by slicing:

```python
>>> p1[0,:,:]
[[x, 0, 0, 0], [0, x, 0, 0], [0, 0, x, 0], [0, 0, 0, x]]
```

Tensor contraction sums over the specified axes, for example contracting positions $a$ and $b$ means:

$$A_{i_1,...,i_a,...,i_b,...,i_n} \Rightarrow \sum_k A_{i_1,...,k,...,i_n}$$
Remember that Python indexing is zero starting, to contract the a-th and b-th axes it is therefore necessary to specify \( a - 1 \) and \( b - 1 \)

```python
>>> from sympy import tensorcontraction
>>> C = Array([[x, y], [z, t]])
```

The matrix trace is equivalent to the contraction of a rank-2 array:

\[
A_{m,n} \Rightarrow \sum_k A_{k,k}
\]

```python
>>> tensorcontraction(C, (0, 1))
t + x
```

To create an expression representing a tensor contraction that does not get evaluated immediately, use `ArrayContraction`, which is equivalent to `tensorcontraction(...)` if it is followed by `.as_explicit()`:

```python
>>> from sympy.tensor.array.expressions import ArrayContraction
>>> ArrayContraction(C, (0, 1))
ArrayContraction([[x, y], [z, t]], (0, 1))
>>> ArrayContraction(C, (0, 1)).as_explicit()
t + x
```

Matrix product is equivalent to a tensor product of two rank-2 arrays, followed by a contraction of the 2nd and 3rd axes (in Python indexing axes number 1, 2).

\[
A_{m,n} \cdot B_{i,j} \Rightarrow \sum_k A_{m,k} \cdot B_{k,j}
\]

```python
>>> D = Array([[2, 1], [0, -1]])
>>> tensorcontraction(tensorproduct(C, D), (1, 2))
[[2*x, x - y], [2*z, -t + z]]
```

One may verify that the matrix product is equivalent:

```python
>>> from sympy import Matrix
>>> Matrix([[x, y], [z, t]])*Matrix([[2, 1], [0, -1]])
Matrix([[2*x, x - y], [2*z, -t + z]])
```

or equivalently

```python
>>> C.tomatrix()*D.tomatrix()
Matrix([[2*x, x - y], [2*z, -t + z]])
```
Diagonal operator

The `tensordiagonal` function acts in a similar manner as `tensorcontraction`, but the joined indices are not summed over; for example diagonalizing positions \(a\) and \(b\) means

\[ A_{i_1, \ldots, i_a, \ldots, i_b, \ldots, i_n} \rightarrow \tilde{A}_{i_1, \ldots, i_a-1, i_a+1, \ldots, i_b-1, i_b+1, \ldots, i_n, k} \]

where \(\tilde{A}\) is the array equivalent to the diagonal of \(A\) at positions \(a\) and \(b\) moved to the last index slot.

Compare the difference between contraction and diagonal operators:

```python
>>> from sympy import tensordiagonal
>>> from sympy import Matrix
>>> m = Matrix([[a, b], [c, d]])
>>> tensorcontraction(m, [0, 1])
a + d
>>> tensordiagonal(m, [0, 1])
[a, d]
```

In short, no summation occurs with `tensordiagonal`.

Derivatives by array

The usual derivative operation may be extended to support derivation with respect to arrays, provided that all elements in the that array are symbols or expressions suitable for derivations.

The definition of a derivative by an array is as follows: given the array \(A_{i_1, \ldots, i_N}\) and the array \(X_{j_1, \ldots, j_M}\) the derivative of arrays will return a new array \(B\) defined by

\[ B_{j_1, \ldots, j_M, i_1, \ldots, i_N} := \frac{\partial A_{i_1, \ldots, i_N}}{\partial X_{j_1, \ldots, j_M}} \]

The function `derive_by_array` performs such an operation:

```python
>>> from sympy import derive_by_array
>>> from sympy import sin, exp

With scalars, it behaves exactly as the ordinary derivative:

```python
>>> derive_by_array(sin(x*y), x)
y*cos(x*y)
```

Scalar derived by an array basis:

```python
>>> derive_by_array(sin(x*y), [x, y, z])
[y*cos(x*y), x*cos(x*y), 0]
```

Deriving array by an array basis: \(B^n_m := \frac{\partial A^n}{\partial x^m}\)

```python
>>> basis = [x, y, z]
>>> ax = derive_by_array([exp(x), sin(y*z), t], basis)
>>> ax
[[exp(x), 0, 0], [0, z*cos(y*z), 0], [0, y*cos(y*z), 0]]
```

Contraction of the resulting array: \(\sum_m \frac{\partial A^n}{\partial x^m}\)
>>> tensorcontraction(ax, ([0, 1]))

\[z\cos(yz) + \exp(x)\]

Classes

```python
class sympy.tensor.array.ImmutableDenseNDimArray(iterable, shape=None, **kwargs)
class sympy.tensor.array.ImmutableSparseNDimArray(iterable=None, shape=None, **kwargs)
class sympy.tensor.array.MutableDenseNDimArray(iterable=None, shape=None, **kwargs)
class sympy.tensor.array.MutableSparseNDimArray(iterable=None, shape=None, **kwargs)
```

Functions

sympy.tensor.array.derive_by_array(expr, dx)

Derivative by arrays. Supports both arrays and scalars.

The equivalent operator for array expressions is `array_derive`.

Explanation

Given the array \(A_{i_1,...,i_N} \) and the array \(X_{j_1,...,j_M} \) this function will return a new array \(B \) defined by

\[
B_{j_1,...,j_M,i_1,...,i_N} = \frac{\partial A_{i_1,...,i_N}}{\partial X_{j_1,...,j_M}}
\]

Examples

```python
>>> from sympy import derive_by_array
>>> from sympy import x, y, z, t
>>> derive_by_array(cos(x*t), x)
-t*sin(t*x)

>>> derive_by_array(cos(x*t), [x, y, z, t])
[-t*sin(t*x), 0, 0, -x*sin(t*x)]

>>> derive_by_array([[x, y**2*z], [[x, y], [z, t]]]
[[[1, 0], [0, 2*y*z]], [[0, y**2], [0, 0]]]
```

sympy.tensor.array.permutedims(expr, perm=None, index_order_old=None, index_order_new=None)

Permutes the indices of an array.

Parameter specifies the permutation of the indices.

The equivalent operator for array expressions is `PermuteDims`, which can be used to keep the expression unevaluated.
Examples

```python
>>> from sympy.abc import x, y, z, t
>>> from sympy import sin
>>> from sympy import Array, permutedims

>>> a = Array([[x, y, z], [t, sin(x), 0]])
>>> a
[[x, y, z], [t, sin(x), 0]]
>>> permutedims(a, (1, 0))
[[x, t], [y, sin(x)], [z, 0]]
```

If the array is of second order, transpose can be used:

```python
>>> from sympy import transpose

>>> transpose(a)
[[x, t], [y, sin(x)], [z, 0]]
```

Examples on higher dimensions:

```python
>>> b = Array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
>>> permutedims(b, (2, 1, 0))
[[[1, 5], [3, 7]], [[2, 6], [4, 8]]]
>>> permutedims(b, (1, 2, 0))
[[[1, 5], [2, 6]], [[3, 7], [4, 8]]]
```

An alternative way to specify the same permutations as in the previous lines involves passing the old and new indices, either as a list or as a string:

```python
>>> permutedims(b, index_order_old="cba", index_order_new="abc")
[[[1, 5], [3, 7]], [[2, 6], [4, 8]]]
>>> permutedims(b, index_order_old="cab", index_order_new="abc")
[[[1, 5], [2, 6]], [[3, 7], [4, 8]]]
```

Permutation objects are also allowed:

```python
>>> from sympy.combinatorics import Permutation

>>> permutedims(b, Permutation([1, 2, 0]))
[[[1, 5], [2, 6]], [[3, 7], [4, 8]]]
```

See also:

- `sympy.tensor.array.expressions.array_expressions.PermuteDims` (page 1444)
- `sympy.tensor.array.tensorcontraction(array, *contraction_axes)`
 Contraction of an array-like object on the specified axes.

The equivalent operator for array expressions is ArrayContraction, which can be used to keep the expression unevaluated.
Examples

```python
>>> from sympy import Array, tensorcontraction
>>> from sympy import Matrix, eye

>>> tensorcontraction(eye(3), (0, 1))
3

>>> A = Array(range(18), (3, 2, 3))
>>> A
[[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]], [[12, 13, 14], [15, 16, 17]]]

>>> tensorcontraction(A, (0, 2))
[21, 30]
```

Matrix multiplication may be emulated with a proper combination of tensorcontraction and tensorproduct

```python
>>> from sympy import tensorproduct

>>> from sympy.abc import a, b, c, d, e, f, g, h

>>> m1 = Matrix([[a, b], [c, d]])
>>> m2 = Matrix([[e, f], [g, h]])

>>> p = tensorproduct(m1, m2)

>>> p
[[[a*e, a*f], [a*g, a*h]], [[b*e, b*f], [b*g, b*h]]]`  

>>> tensorcontraction(p, (1, 2))
```

See also:

- `sympy.tensor.array.expressions.array_expressions.ArrayContraction` (page 1444)

`sympy.tensor.array.tensorproduct(*args)`

Tensor product among scalars or array-like objects.

The equivalent operator for array expressions is `ArrayTensorProduct`, which can be used to keep the expression unevaluated.

Examples

```python
>>> from sympy.tensor.array import tensorproduct, Array

>>> from sympy.abc import x, y, z, t

>>> A = Array([[1, 2], [3, 4]])
>>> B = Array([x, y])

>>> tensorproduct(A, B)
```

(continues on next page)
Applying this function on two matrices will result in a rank 4 array.

\[
\begin{bmatrix}
[[[x^2, x*y], [x*y, y^2]], [[2*x^2, 2*x*y], [2*x*y, 2*y^2]]], \\
[[[3*x^2, 3*x*y], [3*x*y, 3*y^2]], [[4*x^2, 4*x*y], [4*x*y, 4*y^2]]]
\end{bmatrix}
\]

See also:

sympy.tensor.array.array_expressions.ArrayTensorProduct

Diagonalization of an array-like object on the specified axes.
This is equivalent to multiplying the expression by Kronecker deltas unifying the axes.
The diagonal indices are put at the end of the axes.
The equivalent operator for array expressions is ArrayDiagonal, which can be used to keep the expression unevaluated.

Examples

tensordiagonal acting on a 2-dimensional array by axes 0 and 1 is equivalent to the diagonal of the matrix:

```python
>>> from sympy import Array, tensordiagonal
>>> from sympy import Matrix, eye
>>> tensordiagonal(eye(3), (0, 1))
[1, 1, 1]
```

```python
>>> from sympy import a, b, c, d
>>> m1 = Matrix([[a, b], [c, d]])
>>> tensordiagonal(m1, [0, 1])
[a, d]
```

In case of higher dimensional arrays, the diagonalized out dimensions are appended removed and appended as a single dimension at the end:

```python
>>> A = Array(range(18), (3, 2, 3))
>>> A
[[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]], [[12, 13, 14], [15, 16, 17]]]
>>> tensordiagonal(A, (0, 2))
[[0, 7, 14], [3, 10, 17]]
```
See also:

`sympy.tensor.array.expressions.array_expressions.ArrayDiagonal` (page 1444)

N-dim array expressions

Array expressions are expressions representing N-dimensional arrays, without evaluating them. These expressions represent in a certain way abstract syntax trees of operations on N-dimensional arrays.

Every N-dimensional array operator has a corresponding array expression object.

Table of correspondences:

<table>
<thead>
<tr>
<th>Array operator</th>
<th>Array expression operator</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>tensorproduct</code></td>
<td><code>ArrayTensorProduct</code></td>
</tr>
<tr>
<td><code>tensorcontraction</code></td>
<td><code>ArrayContraction</code></td>
</tr>
<tr>
<td><code>tensordiagonal</code></td>
<td><code>ArrayDiagonal</code></td>
</tr>
<tr>
<td><code>permutedims</code></td>
<td><code>PermuteDims</code></td>
</tr>
</tbody>
</table>

Examples

ArraySymbol objects are the N-dimensional equivalent of MatrixSymbol objects in the matrix module:

```python
>>> from sympy.tensor.array.expressions import ArraySymbol
>>> from sympy import i, j, k
>>> A = ArraySymbol("A", (3, 2, 4))
>>> A.shape
(3, 2, 4)
>>> A[i, j, k]
A[i, j, k]
```

Component-explicit arrays can be added inside array expressions:

```python
>>> from sympy import Array
>>> from sympy import tensorproduct
>>> from sympy.tensor.array.expressions import ArrayTensorProduct
```

(continues on next page)
Constructing array expressions from index-explicit forms

Array expressions are index-implicit. This means they do not use any indices to represent array operations. The function `convert_indexed_to_array(...)` may be used to convert index-explicit expressions to array expressions. It takes as input two parameters: the index-explicit expression and the order of the indices:

```
>>> from sympy.tensor.array.expressions import convert_indexed_to_array
>>> from sympy import Sum
>>> A = ArraySymbol("A", (3, 3))
>>> B = ArraySymbol("B", (3, 3))
>>> convert_indexed_to_array(A[i, j], [i, j])
A
>>> convert_indexed_to_array(A[i, j], [j, i])
PermuteDims(A, (0 1))
>>> convert_indexed_to_array(A[i, j] + B[j, i], [i, j])
ArrayAdd(A, PermuteDims(B, (0 1)))
>>> convert_indexed_to_array(Sum(A[i, j]*B[j, k], (j, 0, 2)), [i, k])
ArrayContraction(ArrayTensorProduct(A, B), (1, 2))
```

The diagonal of a matrix in the array expression form:

```
>>> convert_indexed_to_array(A[i, i], [i])
ArrayDiagonal(A, (0, 1))
```

The trace of a matrix in the array expression form:

```
>>> convert_indexed_to_array(Sum(A[i, i], (i, 0, 2)), [i])
ArrayContraction(A, (0, 1))
```

Compatibility with matrices

Array expressions can be mixed with objects from the matrix module:

```
>>> from sympy import MatrixSymbol
>>> M = MatrixSymbol("M", 3, 3)
>>> N = MatrixSymbol("N", 3, 3)
```

Express the matrix product in the array expression form:
The expression can be converted back to matrix form:

```python
from sympy.tensor.array.expressions import convert_matrix_to_array
>>> convert_matrix_to_array(expr)
M*N
```

Add a second contraction on the remaining axes in order to get the trace of $M \cdot N$:

```python
>>> expr_tr = ArrayContraction(expr, (0, 1))
>>> expr_tr
ArrayContraction(ArrayContraction(ArrayTensorProduct(M, N), (1, 2)), (0, 1))
```

Flatten the expression by calling `.doit()` and remove the nested array contraction operations:

```python
>>> expr_tr.doit()
ArrayContraction(ArrayTensorProduct(M, N), (0, 3), (1, 2))
```

Get the explicit form of the array expression:

```python
>>> expr.as_explicit()
[[M[0, 0]*N[0, 0] + M[0, 1]*N[1, 0] + M[0, 2]*N[2, 0], M[0, 0]*N[0, 1] + M[0, 1]*N[1, 1] + M[0, 2]*N[2, 1], M[0, 0]*N[0, 2] + M[0, 1]*N[1, 2] + M[0, 2]*N[2, 2]],
 [M[1, 0]*N[0, 0] + M[1, 1]*N[1, 0] + M[1, 2]*N[2, 0], M[1, 0]*N[0, 1] + M[1, 1]*N[1, 1] + M[1, 2]*N[2, 1], M[1, 0]*N[0, 2] + M[1, 1]*N[1, 2] + M[1, 2]*N[2, 2]],
```

Express the trace of a matrix:

```python
from sympy import Trace
>>> convert_matrix_to_array(Trace(M))
ArrayContraction(M, (0, 1))
>>> convert_matrix_to_array(Trace(M*N))
ArrayContraction(ArrayTensorProduct(M, N), (0, 3), (1, 2))
```

Express the transposition of a matrix (will be expressed as a permutation of the axes):

```python
>>> convert_matrix_to_array(M.T)
PermuteDims(M, (0 1))
```

Compute the derivative array expressions:

```python
from sympy.tensor.array.expressions import array_derive
>>> d = array_derive(M, M)
>>> d
PermuteDims(ArrayTensorProduct(I, I), (3)(1 2))
```
Verify that the derivative corresponds to the form computed with explicit matrices:

```python
>>> d.as_explicit()

\[
\begin{bmatrix}
[1, 0, 0], [0, 0, 0], [0, 0, 0],
[0, 1, 0], [0, 0, 0], [0, 0, 0],
[0, 0, 0], [1, 0, 0], [0, 0, 0]
\end{bmatrix}
\]
```

```python
>>> M = M.as_explicit()
```

```python
>>> Me = M.diff(Me)
```

```python
[[[1, 0, 0], [0, 0, 0], [0, 0, 0]], [[0, 1, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [1, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 1, 0]], [[0, 0, 0], [0, 0, 0], [0, 0, 1]], [[0, 0, 0], [0, 1, 0]]]
```

class sympy.tensor.array.expressions.ArrayTensorProduct(*args, **kwargs)**

Class to represent the tensor product of array-like objects.

class sympy.tensor.array.expressions.ArrayContraction(expr, *contraction_indices, **kwargs)**

This class is meant to represent contractions of arrays in a form easily processable by the code printers.

class sympy.tensor.array.expressions.ArrayDiagonal(expr, *diagonal_indices, **kwargs)**

Class to represent the diagonal operator.

Explanation

In a 2-dimensional array it returns the diagonal, this looks like the operation:

\[A_{ij} \rightarrow A_{ii} \]

The diagonal over axes 1 and 2 (the second and third) of the tensor product of two 2-dimensional arrays \(A \otimes B \) is

\[[A_{ab} B_{cd}]_{abcd} \rightarrow [A_{ai} B_{id}]_{adi} \]

In this last example the array expression has been reduced from 4-dimensional to 3-dimensional. Notice that no contraction has occurred, rather there is a new index \(i \) for the diagonal, contraction would have reduced the array to 2 dimensions.

Notice that the diagonalized out dimensions are added as new dimensions at the end of the indices.

class sympy.tensor.array.expressions.PermuteDims(expr, permutation=None, index_order_old=None, index_order_new=None, **kwargs)**

Class to represent permutation of axes of arrays.
Examples

```python
>>> from sympy.tensor.array import permutedims
>>> from sympy import MatrixSymbol

>>> M = MatrixSymbol("M", 3, 3)
>>> cg = permutedims(M, [1, 0])
```

The object `cg` represents the transposition of `M`, as the permutation `[1, 0]` will act on its indices by switching them:

\[M_{ij} \Rightarrow M_{ji} \]

This is evident when transforming back to matrix form:

```python
>>> from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix

>>> convert_array_to_matrix(cg)
M.T
```

```python
>>> N = MatrixSymbol("N", 3, 2)
>>> cg = permutedims(N, [1, 0])
```

```python
>>> cg.shape
(2, 3)
```

There are optional parameters that can be used as alternative to the permutation:

```python
>>> from sympy.tensor.array.expressions import ArraySymbol, PermuteDims

>>> M = ArraySymbol("M", (1, 2, 3, 4, 5))
>>> expr = PermuteDims(M, index_order_old="ijklm", index_order_new="kijml")
```

```python
>>> expr.shape
(3, 1, 2, 5, 4)
```

Permutations of tensor products are simplified in order to achieve a standard form:

```python
>>> from sympy.tensor.array import tensorproduct

>>> M = MatrixSymbol("M", 4, 5)
>>> tp = tensorproduct(M, N)
```

```python
>>> tp.shape
(4, 5, 3, 2)
```

```python
>>> perm1 = permutedims(tp, [2, 3, 1, 0])
```

The args \((M, N)\) have been sorted and the permutation has been simplified, the expression is equivalent:

```python
>>> perm1.args
(N, M)
>>> perm1.shape
(3, 2, 5, 4)
>>> perm1.permutation
(2 3)
```
The permutation in its array form has been simplified from [2, 3, 1, 0] to [0, 1, 3, 2], as the arguments of the tensor product \(M \) and \(N \) have been switched:

```python
>>> perm1.permutation.array_form
[0, 1, 3, 2]
```

We can nest a second permutation:

```python
>>> perm2 = permutedims(perm1, [1, 0, 2, 3])
>>> perm2.shape
(2, 3, 5, 4)
>>> perm2.permutation.array_form
[1, 0, 3, 2]
```

Indexed Objects

Module that defines indexed objects.

The classes `IndexedBase`, `Indexed`, and `Idx` represent a matrix element \(M[i, j] \) as in the following diagram:

1) The `Indexed` class represents the entire indexed object.

```
            ,__|__,
            M[i, j]
            /   \__\____
```

2) The `Idx` class represents indices; each `Idx` can optionally contain information about its range.

```
            |
            2) The `Idx` class represents indices; each `Idx` can optionally contain information about its range.
```

3) `IndexedBase` represents the 'stem' of an indexed object, here `M`.

The stem used by itself is usually taken to represent the entire array.

There can be any number of indices on an Indexed object. No transformation properties are implemented in these Base objects, but implicit contraction of repeated indices is supported.

Note that the support for complicated (i.e. non-atomic) integer expressions as indices is limited. (This should be improved in future releases.)

Examples

To express the above matrix element example you would write:

```python
>>> from sympy import symbols, IndexedBase, Idx
>>> M = IndexedBase('M')
>>> i, j = symbols('i j', cls=Idx)
>>> M[i, j]
M[i, j]
```
Repeated indices in a product implies a summation, so to express a matrix-vector product in terms of Indexed objects:

```python
tax = IndexedBase('x')
M[i, j]*x[j]
```

If the indexed objects will be converted to component based arrays, e.g. with the code printers or the autowrap framework, you also need to provide (symbolic or numerical) dimensions. This can be done by passing an optional shape parameter to IndexedBase upon construction:

```python
dim1, dim2 = symbols('dim1 dim2', integer=True)
A = IndexedBase('A', shape=(dim1, 2*dim1, dim2))
A[i, j, 3].shape
(dim1, 2*dim1, dim2)
```

If an IndexedBase object has no shape information, it is assumed that the array is as large as the ranges of its indices:

```python
n, m = symbols('n m', integer=True)
i = Idx('i', m)
j = Idx('j', n)
M[i, j].shape
(m, n)
M[i, j].ranges
[(0, m - 1), (0, n - 1)]
```

The above can be compared with the following:

```python
A[i, 2, j].shape
(dim1, 2*dim1, dim2)
A[i, 2, j].ranges
[(0, 2 - 1), None, (0, n - 1)]
```

To analyze the structure of indexed expressions, you can use the methods `get_indices()` and `get_contraction_structure()`:

```python
from sympy.tensor import get_indices, get_contraction_structure
get_indices(A[i, j, j])
({i}, {})
get_contraction_structure(A[i, j, j])
{(j,): {A[i, j, j]}}
```

See the appropriate docstrings for a detailed explanation of the output.

```python
class sympy.tensor.indexed.Idx(label, range=None, **kw_args)
```
Represents an integer index as an Integer or integer expression.

There are a number of ways to create an Idx object. The constructor takes two arguments:

```python
label
An integer or a symbol that labels the index.
```
range

Optionally you can specify a range as either

- **Symbol or integer**: This is interpreted as a dimension. Lower and upper bounds are set to 0 and \(\text{range} - 1 \), respectively.
- **tuple**: The two elements are interpreted as the lower and upper bounds of the range, respectively.

Note: bounds of the range are assumed to be either integer or infinite (oo and -oo are allowed to specify an unbounded range). If \(n \) is given as a bound, then \(n \text{.is_integer} \) must not return false.

For convenience, if the label is given as a string it is automatically converted to an integer symbol. (Note: this conversion is not done for range or dimension arguments.)

Examples

```python
>>> from sympy import Idx, symbols, oo
>>> n, i, L, U = symbols('n i L U', integer=True)
```

If a string is given for the label an integer Symbol is created and the bounds are both None:

```python
>>> idx = Idx('qwerty'); idx
qwerty
>>> idx.lower, idx.upper
(None, None)
```

Both upper and lower bounds can be specified:

```python
>>> idx = Idx(i, (L, U)); idx
i
>>> idx.lower, idx.upper
(L, U)
```

When only a single bound is given it is interpreted as the dimension and the lower bound defaults to 0:

```python
>>> idx = Idx(i, n); idx.lower, idx.upper
(0, n - 1)
>>> idx = Idx(i, 4); idx.lower, idx.upper
(0, 3)
>>> idx = Idx(i, oo); idx.lower, idx.upper
(0, oo)
```

property label

Returns the label (Integer or integer expression) of the Idx object.
Examples

```python
>>> from sympy import Idx, Symbol
>>> x = Symbol('x', integer=True)
>>> Idx(x).label
x
>>> j = Symbol('j', integer=True)
>>> Idx(j).label
j
>>> Idx(j + 1).label
j + 1
```

property `lower`
Returns the lower bound of the `Idx`.

Examples

```python
>>> from sympy import Idx
>>> Idx('j', 2).lower
0
>>> Idx('j', 5).lower
0
>>> Idx('j').lower is None
True
```

property `upper`
Returns the upper bound of the `Idx`.

Examples

```python
>>> from sympy import Idx
>>> Idx('j', 2).upper
1
>>> Idx('j', 5).upper
4
>>> Idx('j').upper is None
True
```

class `sympy.tensor.indexed.Indexed`(base, *args, **kw_args)
Represents a mathematical object with indices.

```python
>>> from sympy import Indexed, IndexedBase, Idx, symbols
>>> i, j = symbols('i j', cls=Idx)
>>> Indexed('A', i, j)
A[i, j]
```

It is recommended that `Indexed` objects be created by indexing `IndexedBase`: `IndexedBase('A')[i, j]` instead of `Indexed(IndexedBase('A'), i, j)`.
```python
>>> A = IndexedBase('A')
>>> a_ij = A[i, j]  # Prefer this,
>>> b_ij = Indexed(A, i, j)  # over this.
>>> a_ij == b_ij
True
```

property base

Returns the IndexedBase of the Indexed object.

Examples

```python
>>> from sympy import Indexed, IndexedBase, Idx, symbols
>>> i, j = symbols('i j', cls=Idx)
>>> Indexed('A', i, j).base
A
>>> B = IndexedBase('B')
>>> B == B[i, j].base
True
```

property indices

Returns the indices of the Indexed object.

Examples

```python
>>> from sympy import Indexed, Idx, symbols
>>> i, j = symbols('i j', cls=Idx)
>>> Indexed('A', i, j).indices
(i, j)
```

property ranges

Returns a list of tuples with lower and upper range of each index.

If an index does not define the data members upper and lower, the corresponding slot in the list contains None instead of a tuple.

Examples

```python
>>> from sympy import Indexed, Idx, symbols
>>> Indexed('A', Idx('i', 2), Idx('j', 4), Idx('k', 8)).ranges
[(0, 1), (0, 3), (0, 7)]
>>> Indexed('A', Idx('i', 3), Idx('j', 3), Idx('k', 3)).ranges
[(0, 2), (0, 2), (0, 2)]
>>> x, y, z = symbols('x y z', integer=True)
>>> Indexed('A', x, y, z).ranges
[None, None, None]
```

property rank

Returns the rank of the Indexed object.
Examples

```python
>>> from sympy import Indexed, Idx, symbols
>>> i, j, k, l, m = symbols('i:m', cls=Idx)
>>> Indexed('A', i, j).rank
2
>>> q = Indexed('A', i, j, k, l, m)
>>> q.rank
5
>>> q.rank == len(q.indices)
True
```

property shape

Returns a list with dimensions of each index.

Dimensions is a property of the array, not of the indices. Still, if the IndexedBase does not define a shape attribute, it is assumed that the ranges of the indices correspond to the shape of the array.

```python
>>> from sympy import IndexedBase, Idx, symbols
>>> n, m = symbols('n m', integer=True)
>>> i = Idx('i', m)
>>> j = Idx('j', m)
>>> A = IndexedBase('A', shape=(n, n))
>>> B = IndexedBase('B')
>>> A[i, j].shape
(n, n)
>>> B[i, j].shape
(m, m)
```

class sympy.tensor.indexed.IndexedBase(label, shape=None, *, offset=0, strides=None, **kw_args)

Represent the base or stem of an indexed object

The IndexedBase class represent an array that contains elements. The main purpose of this class is to allow the convenient creation of objects of the Indexed class. The `__getitem__` method of IndexedBase returns an instance of Indexed. Alone, without indices, the IndexedBase class can be used as a notation for e.g. matrix equations, resembling what you could do with the Symbol class. But, the IndexedBase class adds functionality that is not available for Symbol instances:

- An IndexedBase object can optionally store shape information. This can be used in to check array conformance and conditions for numpy broadcasting. (TODO)
- An IndexedBase object implements syntactic sugar that allows easy symbolic representation of array operations, using implicit summation of repeated indices.
- The IndexedBase object symbolizes a mathematical structure equivalent to arrays, and is recognized as such for code generation and automatic compilation and wrapping.

```python
>>> from sympy.tensor import IndexedBase, Idx
>>> from sympy import symbols
>>> A = IndexedBase('A'); A
A
```

(continues on next page)
When an IndexedBase object receives indices, it returns an array with named axes, represented by an Indexed object:

```python
>>> i, j = symbols('i j', integer=True)
>>> A[i, j, 2]
A[i, j, 2]
>>> type(A[i, j, 2])
<class 'sympy.tensor.indexed.Indexed'>
```

The IndexedBase constructor takes an optional shape argument. If given, it overrides any shape information in the indices. (But not the index ranges!)

```python
>>> m, n, o, p = symbols('m n o p', integer=True)
>>> i = Idx('i', m)
>>> j = Idx('j', n)
>>> A[i, j].shape
(m, n)
>>> B = IndexedBase('B', shape=(o, p))
>>> B[i, j].shape
(o, p)
```

Assumptions can be specified with keyword arguments the same way as for Symbol:

```python
>>> A_real = IndexedBase('A', real=True)
>>> A_real.is_real
True
>>> A != A_real
True
```

Assumptions can also be inherited if a Symbol is used to initialize the IndexedBase:

```python
>>> I = symbols('I', integer=True)
>>> C_inherit = IndexedBase(I)
>>> C_explicit = IndexedBase('I', integer=True)
>>> C_inherit == C_explicit
True
```

property `label`

 Returns the label of the IndexedBase object.
Examples

```python
>>> from sympy import IndexedBase
>>> from sympy.abc import x, y
>>> IndexedBase('A', shape=(x, y)).label
A
```

property offset

Returns the offset for the IndexedBase object.

This is the value added to the resulting index when the 2D Indexed object is unrolled to a 1D form. Used in code generation.

Examples

```python
>>> from sympy.printing import ccode
>>> from sympy.tensor import IndexedBase, Idx
>>> from sympy import symbols
>>> l, m, n, o = symbols('l m n o', integer=True)
>>> A = IndexedBase('A', strides=(l, m, n), offset=o)
>>> i, j, k = map(Idx, 'ijk')
>>> ccode(A[i, j, k])
'A[l*i + m*j + n*k + o]'
```

property shape

Returns the shape of the IndexedBase object.

Examples

```python
>>> from sympy import IndexedBase, Idx
>>> from sympy.abc import x, y
>>> IndexedBase('A', shape=(x, y)).shape
(x, y)
```

Note: If the shape of the IndexedBase is specified, it will override any shape information given by the indices.

```python
>>> A = IndexedBase('A', shape=(x, y))
>>> B = IndexedBase('B')
>>> i = Idx('i', 2)
>>> j = Idx('j', 1)
>>> A[i, j].shape
(x, y)
>>> B[i, j].shape
(2, 1)
```

property strides

Returns the strided scheme for the IndexedBase object.

Normally this is a tuple denoting the number of steps to take in the respective dimension when traversing an array. For code generation purposes strides='C' and strides='F' can also be used.
strides='C' would mean that code printer would unroll in row-major order and 'F' means unroll in column major order.

Methods

Module with functions operating on IndexedBase, Indexed and Idx objects

• Check shape conformance
• Determine indices in resulting expression

etc.

Methods in this module could be implemented by calling methods on Expr objects instead. When things stabilize this could be a useful refactoring.

sympy.tensor.index_methods.get_contraction_structure(expr)

Determine dummy indices of expr and describe its structure

By dummy we mean indices that are summation indices.

The structure of the expression is determined and described as follows:

1) A conforming summation of Indexed objects is described with a dict where the keys are summation indices and the corresponding values are sets containing all terms for which the summation applies. All Add objects in the SymPy expression tree are described like this.

2) For all nodes in the SymPy expression tree that are not of type Add, the following applies:

If a node discovers contractions in one of its arguments, the node itself will be stored as a key in the dict. For that key, the corresponding value is a list of dicts, each of which is the result of a recursive call to get_contraction_structure(). The list contains only dicts for the non-trivial deeper contractions, omitting dicts with None as the one and only key.

Note: The presence of expressions among the dictionary keys indicates multiple levels of index contractions. A nested dict displays nested contractions and may itself contain dicts from a deeper level. In practical calculations the summation in the deepest nested level must be calculated first so that the outer expression can access the resulting indexed object.

Examples

```python
default_sort_key
def IndexedBase, Idx
d = map(Idx, ['i', 'j', 'k', 'l'])
get_contraction_structure(x[i]*y[i] + A[j, j])
{(i,): {x[i]*y[i]}, (j,): {A[j, j]}}
get_contraction_structure(x[i]*y[j])
{None: {x[i]*y[j]}}
```
A multiplication of contracted factors results in nested dicts representing the internal contractions.

```python
>>> d = get_contraction_structure(x[i, i]*y[j, j])
>>> sorted(d.keys(), key=default_sort_key)
[None, x[i, i]*y[j, j]]
```

In this case, the product has no contractions:

```python
>>> d[None]
{x[i, i]*y[j, j]}
```

Factors are contracted “first”:

```python
>>> sorted(d[x[i, i]*y[j, j]], key=default_sort_key)
[None, {x[i, i], y[j, j]}]
```

A parenthesized Add object is also returned as a nested dictionary. The term containing the parenthesis is a Mul with a contraction among the arguments, so it will be found as a key in the result. It stores the dictionary resulting from a recursive call on the Add expression.

```python
>>> d = get_contraction_structure(x[i]*(y[i] + A[i, j]*x[j]))
>>> sorted(d.keys(), key=default_sort_key)
[None: {y[i]}, (j,): {A[j, j]*x[j]}, (i,): {x[i]}]
```

Powers with contractions in either base or exponent will also be found as keys in the dictionary, mapping to a list of results from recursive calls:

```python
>>> d = get_contraction_structure(A[j, j]**A[i, i])
>>> d[None]
{A[j, j]**A[i, i]}
>>> nested_contractions = d[A[j, j]**A[i, i]]
>>> nested_contractions[0]
{(i,): {A[j, j]}}
>>> nested_contractions[1]
{(j,): {A[i, i]}}
```

The description of the contraction structure may appear complicated when represented with a string in the above examples, but it is easy to iterate over:

```python
>>> from sympy import Expr
>>> for key in d:
...     if isinstance(key, Expr):
...         continue
...     for term in d[key]:
...         if term in d:
...             # treat deepest contraction first
...             pass
...         # treat outermost contactions here
```
sympy.tensor.index_methods.get_indices(expr)

Determine the outer indices of expression expr

By outer we mean indices that are not summation indices. Returns a set and a dict. The set contains outer indices and the dict contains information about index symmetries.

Examples

```python
>>> from sympy.tensor.index_methods import get_indices
>>> from sympy import symbols
>>> from sympy.tensor import IndexedBase

>>> x, y, A = map(IndexedBase, ['x', 'y', 'A'])
>>> i, j, a, z = symbols('i j a z', integer=True)

The indices of the total expression is determined, Repeated indices imply a summation, for instance the trace of a matrix A:

```python
>>> get_indices(A[i, i])
(set(), {})
```

In the case of many terms, the terms are required to have identical outer indices. Else an IndexConformanceException is raised.

```python
>>> get_indices(x[i] + A[i, j]*y[j])
({i}, {})
```

Exceptions

An IndexConformanceException means that the terms ar not compatible, e.g.

```python
>>> get_indices(x[i] + y[j])
(...)
IndexConformanceException: Indices are not consistent: x(i) + y(j)
```

Warning: The concept of outer indices applies recursively, starting on the deepest level. This implies that dummies inside parenthesis are assumed to be summed first, so that the following expression is handled gracefully:

```python
>>> get_indices((x[i] + A[i, j]*y[j])*x[j])
({i, j}, {})
```

This is correct and may appear convenient, but you need to be careful with this as SymPy will happily .expand() the product, if requested. The resulting expression would mix the outer j with the dummies inside the parenthesis, which makes it a different expression. To be on the safe side, it is best to avoid such ambiguities by using unique indices for all contractions that should be held separate.
class sympy.tensor.tensor.TensorIndexType(name, dummy_name=None, dim=None, eps_dim=None, metric_symmetry=1, metric_name='metric', **kwargs)

A TensorIndexType is characterized by its name and its metric.

Parameters

name : name of the tensor type
dummy_name : name of the head of dummy indices
dim : dimension, it can be a symbol or an integer or None
eps_dim : dimension of the epsilon tensor
metric_symmetry : integer that denotes metric symmetry or None for no metric
metric_name : string with the name of the metric tensor

Notes

The possible values of the metric_symmetry parameter are:

1 : metric tensor is fully symmetric
0 : metric tensor possesses no index symmetry
-1 : metric tensor is fully antisymmetric
None : there is no metric tensor (metric equals to None)

The metric is assumed to be symmetric by default. It can also be set to a custom tensor
by the .set_metric() method.

If there is a metric the metric is used to raise and lower indices.

In the case of non-symmetric metric, the following raising and lowering conventions will
be adopted:

\[
\psi(a) = g(a, b)\psi(-b); \quad \chi(-a) = \chi(b)g(-b, -a)
\]

From these it is easy to find:

\[
g(-a, b) = \delta(-a, b)
\]

where \(\delta(-a, b) = \delta(b, -a)\) is the Kronecker delta (see TensorIndex for the
conventions on indices). For antisymmetric metrics there is also the following equality:

\[
g(a, -b) = -\delta(a, -b)
\]

If there is no metric it is not possible to raise or lower indices; e.g. the index of the
defining representation of SU(N) is ‘covariant’ and the conjugate representation is ‘con-
travariant’; for \(N > 2\) they are linearly independent.

eps_dim is by default equal to dim, if the latter is an integer; else it can be assigned (for
use in naive dimensional regularization); if eps_dim is not an integer epsilon is None.
Examples

```python
>>> from sympy.tensor.tensor import TensorIndexType
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> Lorentz.metric
metric(Lorentz, Lorentz)
```

Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>metric</td>
<td>(the metric tensor)</td>
</tr>
<tr>
<td>delta</td>
<td>(Kronecker delta)</td>
</tr>
<tr>
<td>epsilon</td>
<td>(the Levi-Civita epsilon tensor)</td>
</tr>
<tr>
<td>data</td>
<td>(deprecated) a property to add ndarray values, to work in a specified basis.</td>
</tr>
</tbody>
</table>

```
class sympy.tensor.tensor.TensorIndex(name, tensor_index_type, is_up=True)
```

Represents a tensor index

**Parameters**

- **name**: name of the index, or True if you want it to be automatically assigned
- **tensor_index_type**: TensorIndexType of the index
- **is_up**: flag for contravariant index (is_up=True by default)

**Notes**

Tensor indices are contracted with the Einstein summation convention.

An index can be in contravariant or in covariant form; in the latter case it is represented prepending a - to the index name. Adding - to a covariant (is_up=False) index makes it contravariant.

Dummy indices have a name with head given by `tensor_inde_type.dummy_name` with underscore and a number.

Similar to symbols multiple contravariant indices can be created at once using `tensor_indices(s, typ)`, where `s` is a string of names.

Examples

```python
>>> from sympy.tensor.tensor import TensorIndexType, TensorIndex, TensorHead, tensor_indices
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> mu = TensorIndex('mu', Lorentz, is_up=False)
>>> nu, rho = tensor_indices('nu, rho', Lorentz)
>>> A = TensorHead('A', [Lorentz, Lorentz])
>>> A(mu, nu)
A(-mu, nu)
>>> A(-mu, -rho)
```

(continues on next page)
Attributes

```
name
tensor_index_type
is_up
```

class sympy.tensor.tensor.TensorHead(name, index_types, symmetry=None, comm=0)

Tensor head of the tensor.

**Parameters**

- **name**: name of the tensor
- **index_types**: list of TensorIndexType
- **symmetry**: TensorSymmetry of the tensor
- **comm**: commutation group number

**Notes**

Similar to symbols multiple TensorHeads can be created using tensorhead(s, typ, sym=None, comm=0) function, where s is the string of names and sym is the monoterm tensor symmetry (see tensorsymmetry).

A TensorHead belongs to a commutation group, defined by a symbol on number comm (see _TensorManager.set_comm); tensors in a commutation group have the same commutation properties; by default comm is 0, the group of the commuting tensors.

**Examples**

Define a fully antisymmetric tensor of rank 2:

```
>>> from sympy.tensor.tensor import TensorIndexType, TensorHead,
>>> TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> asym2 = TensorSymmetry.fully_symmetric(-2)
>>> A = TensorHead('A', [Lorentz, Lorentz], asym2)
```

Examples with ndarray values, the components data assigned to the TensorHead object are assumed to be in a fully-contravariant representation. In case it is necessary to assign components data which represents the values of a non-fully covariant tensor, see the other examples.
>>> from sympy.tensor.tensor import tensor_indices
>>> from sympy import diag

>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')

>>> i0, i1 = tensor_indices('i0:2', Lorentz)

Specify a replacement dictionary to keep track of the arrays to use for replacements in the tensorial expression. The TensorIndexType is associated to the metric used for contractions (in fully covariant form):

>>> repl = {Lorentz: diag(1, -1, -1, -1)}

Let's see some examples of working with components with the electromagnetic tensor:

>>> from sympy import symbols

>>> Ex, Ey, Ez, Bx, By, Bz = symbols('E_x E_y E_z B_x B_y B_z')

>>> c = symbols('c', positive=True)

Let's define $F$, an antisymmetric tensor:

>>> F = TensorHead('F', [Lorentz, Lorentz], asym2)

Let's update the dictionary to contain the matrix to use in the replacements:

```python
>>> repl.update({F(-i0, -i1): [
... [0, Ex/c, Ey/c, Ez/c],
... [-Ex/c, 0, -Bz, By],
... [-Ey/c, Bz, 0, -Bx],
... [-Ez/c, -By, Bx, 0]]})
```

Now it is possible to retrieve the contravariant form of the Electromagnetic tensor:

```python
>>> F(i0, i1).replace_with_arrays(repl, [i0, i1])
[[0, Ex/c, Ey/c, Ez/c], [E_x/c, 0, -B_z, B_y], [E_y/c, B_z, 0, -B_x], [E_z/c, -B_y, B_x, 0]]
```

and the mixed contravariant-covariant form:

```python
>>> F(i0, -i1).replace_with_arrays(repl, [i0, -i1])
[[0, Ex/c, Ey/c, Ez/c], [E_x/c, 0, B_z, -B_y], [E_y/c, -B_z, 0, B_x], [E_z/c, B_y, -B_x, 0]]
```

Energy-momentum of a particle may be represented as:

```python
>>> from sympy import symbols

>>> P = TensorHead('P', [Lorentz], TensorSymmetry.no_symmetry(1))

>>> E, px, py, pz = symbols('E p_x p_y p_z', positive=True)

>>> repl.update({P(i0): [E, px, py, pz]})
```

The contravariant and covariant components are, respectively:

```python
>>> P(i0).replace_with_arrays(repl, [i0])
[E, p_x, p_y, p_z]

>>> P(-i0).replace_with_arrays(repl, [-i0])
[E, -p_x, -p_y, -p_z]
```
The contraction of a 1-index tensor by itself:

```python
>>> expr = P(i0)*P(-i0)
>>> expr.replace_with_arrays(repl, [])
E**2 - p_x**2 - p_y**2 - p_z**2
```

**Attributes**

<table>
<thead>
<tr>
<th>name</th>
<th>index_types</th>
<th>rank</th>
<th>symmetry</th>
<th>comm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(total number of indices)</td>
<td></td>
<td>(commutation group)</td>
</tr>
</tbody>
</table>

**commutes_with(other)**

Returns 0 if self and other commute, 1 if they anticommute.

Returns None if self and other neither commute nor anticommute.

**sympy.tensor.tensor.tensor_heads(s, index_types, symmetry=None, comm=0)**

Returns a sequence of TensorHeads from a string `s`

**class sympy.tensor.tensor.TensExpr(*args)**

Abstract base class for tensor expressions

**Notes**

A tensor expression is an expression formed by tensors; currently the sums of tensors are distributed.

A TensExpr can be a TensAdd or a TensMul.

TensMul objects are formed by products of component tensors, and include a coefficient, which is a SymPy expression.

In the internal representation contracted indices are represented by `(ipos1, ipos2, icomp1, icomp2)`, where `icomp1` is the position of the component tensor with contravariant index, `ipos1` is the slot which the index occupies in that component tensor.

Contracted indices are therefore nameless in the internal representation.

**get_matrix()**

DEPRECATED: do not use.

Returns ndarray components data as a matrix, if components data are available and ndarray dimension does not exceed 2.

**replace_with_arrays(replacement_dict, indices=None)**

Replace the tensorial expressions with arrays. The final array will correspond to the N-dimensional array with indices arranged according to `indices`.

**Parameters**

- `replacement_dict`
  - dictionary containing the replacement rules for tensors.
indices

the index order with respect to which the array is read. The original index order will be used if no value is passed.

Examples

```python
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices
>>> from sympy.tensor.tensor import TensorHead
>>> from sympy import symbols, diag

>>> L = TensorIndexType("L")
>>> i, j = tensor_indices("i j", L)
>>> A = TensorHead("A", [L])
>>> A(i).replace_with_arrays({A(i): [1, 2]}, [i])
[1, 2]
```

Since ‘indices’ is optional, we can also call replace_with_arrays by this way if no specific index order is needed:

```python
>>> A(i).replace_with_arrays({A(i): [1, 2]})
[1, 2]
```

For contractions, specify the metric of the TensorIndexType, which in this case is L, in its covariant form:

```python
>>> expr = A(i)*A(-i)
>>> expr.replace_with_arrays({A(i): [1, 2]}, L: diag(1, -1))
-3
```

Symmetrization of an array:

```python
>>> H = TensorHead("H", [L, L])
>>> a, b, c, d = symbols("a b c d")
>>> expr = H(i, j)/2 + H(j, i)/2
>>> expr.replace_with_arrays({H(i, j): [[a, b], [c, d]]})
[[a, b/2 + c/2], [b/2 + c/2, d]]
```

Anti-symmetrization of an array:

```python
>>> expr = H(i, j)/2 - H(j, i)/2
>>> repl = {H(i, j): [[a, b], [c, d]]}
>>> expr.replace_with_arrays(repl)
[[0, b/2 - c/2], [-b/2 + c/2, 0]]
```

The same expression can be read as the transpose by inverting i and j:

```python
>>> expr.replace_with_arrays(repl, [j, i])
[[0, -b/2 + c/2], [b/2 - c/2, 0]]
```
class sympy.tensor.tensor.TensAdd(*args, **kw_args)

Sum of tensors.

Parameters

**free_args**: list of the free indices

Examples

```python
>>> from sympy.tensor.tensor import TensorIndexType, tensor_heads, tensor_indices
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> a, b = tensor_indices('a,b', Lorentz)
>>> p, q = tensor_heads('p,q', [Lorentz])
>>> t = p(a) + q(a); t
p(a) + q(a)
```

Examples with components data added to the tensor expression:

```python
>>> from sympy import symbols, diag
>>> x, y, z, t = symbols("x y z t")
>>> repl = {}
>>> repl[Lorentz] = diag(1, -1, -1, -1)
>>> repl[p(a)] = [1, 2, 3, 4]
>>> repl[q(a)] = [x, y, z, t]
```

```python
>>> expr = p(a) + q(a)
>>> expr.replace_with_arrays(repl, [a])
[x + 1, y + 2, z + 3, t + 4]
```

Attributes

<table>
<thead>
<tr>
<th>args</th>
<th>(tuple of addends)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rank</td>
<td>(rank of the tensor)</td>
</tr>
<tr>
<td>free_args</td>
<td>(list of the free indices in sorted order)</td>
</tr>
</tbody>
</table>

`canon_bp()`

Canonicalize using the Butler-Portugal algorithm for canonicalization under monoterms symmetries.

`contract_metric(g)`

Raise or lower indices with the metric g.

Parameters

**g**: metric

**contract_all**: if True, eliminate all g which are contracted
Notes

see the TensorIndexType docstring for the contraction conventions

```python
class sympy.tensor.tensor.TensMul(*args, **kw_args)
```
Product of tensors.

Parameters

- `coeff`: SymPy coefficient of the tensor
- `args`

Notes

args[0] list of TensorHead of the component tensors.

args[1] list of (ind, ipos, icomp) where ind is a free index, ipos is the slot position of ind in the icomp-th component tensor.

args[2] list of tuples representing dummy indices. (ipos1, ipos2, icomp1, icomp2) indicates that the contravariant dummy index is the ipos1-th slot position in the icomp1-th component tensor; the corresponding covariant index is in the ipos2 slot position in the icomp2-th component tensor.

Attributes

- `components` (list of TensorHead of the component tensors)
- `types` (list of nonrepeated TensorIndexType)
- `free` (list of (ind, ipos, icomp), see Notes)
- `dum` (list of (ipos1, ipos2, icomp1, icomp2), see Notes)
- `ext_rank` (rank of the tensor counting the dummy indices)
- `rank` (rank of the tensor)
- `coeff` (SymPy coefficient of the tensor)
- `free_args` (list of the free indices in sorted order)
- `is_canon_bp` (True if the tensor in in canonical form)

```python
canon_bp()
```
Canonicalize using the Butler-Portugal algorithm for canonicalization under monoterms symmetries.

Examples

```python
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices,
... TensorHead, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(-2))
>>> t = A(m0,-m1)*A(m1,-m0)
>>> t.cannon_bp()
```
-A(L_0, L_1)*A(-L_0, -L_1)

```python
>>> t = A(m0,-m1)*A(m1,-m2)*A(m2,-m0)
>>> t.canon_bp()
0
```

**contract_metric(g)**

Raise or lower indices with the metric g.

**Parameters**

- `g`: metric

**Notes**

See the `TensorIndexType` docstring for the contraction conventions.

**Examples**

```python
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensor_heads('p,q', [Lorentz])
>>> t = p(m0)*q(m1)*g(-m0, -m1)
>>> t.canon_bp()
metric(L_0, L_1)*p(-L_0)*q(-L_1)
```

**get_free_indices()** → list[TensorIndex](page 1458)

Returns the list of free indices of the tensor.

**Explanation**

The indices are listed in the order in which they appear in the component tensors.

**Examples**

```python
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensor_heads('p,q', [Lorentz])
>>> t = p(m1)*g(m0,m2)
>>> t.get_free_indices()
[m1, m0, m2]
```
get_indices()
Returns the list of indices of the tensor.

Explanation
The indices are listed in the order in which they appear in the component tensors. The dummy indices are given a name which does not collide with the names of the free indices.

Examples

```
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices,
 tensor_heads
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensor_heads('p,q', [Lorentz])
>>> t = p(m1)*g(m0,m2)
>>> t.get_indices()
[m1, m0, m2]
>>> t2 = p(m1)*g(-m1, m2)
>>> t2.get_indices()
[L_0, -L_0, m2]
```

perm2tensor(g, is_canon_bp=False)
Returns the tensor corresponding to the permutation g
For further details, see the method in TIDS with the same name.

sorted_components()
Returns a tensor product with sorted components.

split()
Returns a list of tensors, whose product is self.

Explanation
Dummy indices contracted among different tensor components become free indices with the same name as the one used to represent the dummy indices.
Examples

```python
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices,
 tensor_heads, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> a, b, c, d = tensor_indices('a,b,c,d', Lorentz)
>>> A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
>>> t = A(a, b)*B(-b, c)
>>> t
A(a, L_0)*B(-L_0, c)
>>> t.split()
[A(a, L_0), B(-L_0, c)]
```

`sympy.tensor.tensor.canon_bp(p)`
Butler-Portugal canonicalization. See `tensor_can.py` from the combinatorics module for the details.

`sympy.tensor.tensor.riemann_cyclic_replace(t_r)`
replace Riemann tensor with an equivalent expression

\[ R(m,n,p,q) \rightarrow 2/3*R(m,n,p,q) - 1/3*R(m,q,n,p) + 1/3*R(m,p,n,q) \]

`sympy.tensor.tensor.riemann_cyclic(t2)`
Replace each Riemann tensor with an equivalent expression satisfying the cyclic identity. This trick is discussed in the reference guide to Cadabra.

Examples

```python
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices,
 TensorHead, riemann_cyclic, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz)
>>> R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann())
>>> t = R(i,j,k,l)*R(-i,-j,-k,-l) - 2*R(-i,-k,-j,-l)
>>> riemann_cyclic(t)
0
```

`class sympy.tensor.tensor.TensorSymmetry(*args, **kw_args)`
Monoterm symmetry of a tensor (i.e. any symmetric or anti-symmetric index permutation). For the relevant terminology see `tensor_can.py` section of the combinatorics module.

**Parameters**

- `bsgs`: tuple `(base, sgs)` BSGS of the symmetry of the tensor
Notes

A tensor can have an arbitrary monoterm symmetry provided by its BSGS. Multiterm symmetries, like the cyclic symmetry of the Riemann tensor (i.e., Bianchi identity), are not covered. See combinatorics module for information on how to generate BSGS for a general index permutation group. Simple symmetries can be generated using built-in methods.

Examples

Define a symmetric tensor of rank 2

```python
>>> from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, TensorHead
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> sym = TensorSymmetry(get_symmetric_group_sgs(2))
>>> T = TensorHead('T', [Lorentz]*2, sym)
```

Note, that the same can also be done using built-in TensorSymmetry methods

```python
>>> sym2 = TensorSymmetry.fully_symmetric(2)
>>> sym == sym2
True
```

See also:

* sympy.combinatorics.tensor_can.get_symmetric_group_sgs (page 430)*

Attributes

<table>
<thead>
<tr>
<th>base</th>
<th>(base of the BSGS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>generators</td>
<td>(generators of the BSGS)</td>
</tr>
<tr>
<td>rank</td>
<td>(rank of the tensor)</td>
</tr>
</tbody>
</table>

classmethod direct_product(*args)

Returns a TensorSymmetry object that is being a direct product of fully (anti-)symmetric index permutation groups.

Notes

Some examples for different values of (*args): (1) vector, equivalent to `TensorSymmetry.fully_symmetric(1)` (2) tensor with 2 symmetric indices, equivalent to `fully_symmetric(2)` (2) tensor with 2 antisymmetric indices, equivalent to `fully_symmetric(-2)` (2, -2) tensor with the first 2 indices commuting and the last 2 anticommuting (1, 1, 1) tensor with 3 indices without any symmetry

classmethod fully_symmetric(rank)

Returns a fully symmetric (antisymmetric if rank``<0) TensorSymmetry object for \`\`abs(rank) indices.
classmethod no_symmetry(rank)
    TensorSymmetry object for rank indices with no symmetry

classmethod riemann()
    Returns a monoterm symmetry of the Riemann tensor

sympy.tensor.tensor.tensorSymmetry(*args)
    Returns a TensorSymmetry object. This method is deprecated, use TensorSymmetry.

direct_product() or .riemann() instead.

**Explanation**

One can represent a tensor with any monoterm slot symmetry group using a BSGS.

args can be a BSGS args[0] base args[1] sgs

Usually tensors are in (direct products of) representations of the symmetric group; args can be a list of lists representing the shapes of Young tableaux

**Notes**

For instance: [[1]] vector [[1]*n] symmetric tensor of rank n [[n]] antisymmetric tensor of rank n [[2, 2]] monoterm slot symmetry of the Riemann tensor [[1],[1]] vector*vector [[2],[1],[1]] (antisymmetric tensor)*vector*vector

Notice that with the shape [2, 2] we associate only the monoterm symmetries of the Riemann tensor; this is an abuse of notation, since the shape [2, 2] corresponds usually to the irreducible representation characterized by the monoterm symmetries and by the cyclic symmetry.

class sympy.tensor.tensor.TensorType(*args, **kwargs)
    Class of tensor types. Deprecated, use tensor_heads() instead.

    **Parameters**
    - `index_types`: list of TensorIndexType of the tensor indices
    - `symmetry`: TensorSymmetry of the tensor

    **Attributes**

    | Attribute     |
    |---------------|
    | index_types   |
    | symmetry      |
    | types         |

    (list of TensorIndexType without repetitions)

class sympy.tensor.tensor._TensorManager
    Class to manage tensor properties.
Notes

Tensors belong to tensor commutation groups; each group has a label \( \text{comm} \); there are predefined labels:

0 tensors commuting with any other tensor
1 tensors anticommuting among themselves
2 tensors not commuting, apart with those with \( \text{comm}=0 \)

Other groups can be defined using \text{set}_{\text{comm}}; tensors in those groups commute with those with \( \text{comm}=0 \); by default they do not commute with any other group.

\text{clear}()

Clear the TensorManager.

\text{comm\_i2symbol}(i)

Returns the symbol corresponding to the commutation group number.

\text{comm\_symbols2i}(i)

Get the commutation group number corresponding to \( i \).

\( i \) can be a symbol or a number or a string.

If \( i \) is not already defined its commutation group number is set.

\text{get\_comm}(i, j)

Return the commutation parameter for commutation group numbers \( i, j \)

\text{see \_TensorManager.set\_comm}

\text{set\_comm}(i, j, c)

Set the commutation parameter \( c \) for commutation groups \( i, j \).

Parameters

\( i, j \) : symbols representing commutation groups
\( c \) : group commutation number

Notes

\( i, j \) can be symbols, strings or numbers, apart from 0, 1 and 2 which are reserved respectively for commuting, anticommuting tensors and tensors not commuting with any other group apart with the commuting tensors. For the remaining cases, use this method to set the commutation rules; by default \( c=\text{None} \).

The group commutation number \( c \) is assigned in correspondence to the group commutation symbols; it can be

0 commuting
1 anticommuting
None no commutation property
Examples

G and GH do not commute with themselves and commute with each other; A is commuting.

```python
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices,
 TensorHead, TensorManager, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz')
>>> i0,i1,i2,i3,i4 = tensor_indices('i0:5', Lorentz)
>>> A = TensorHead('A', [Lorentz])
>>> G = TensorHead('G', [Lorentz], TensorSymmetry.no_symmetry(1),
 'Gcomm')
>>> GH = TensorHead('GH', [Lorentz], TensorSymmetry.no_symmetry(1),
 'GHcomm')
>>> TensorManager.set_comm('Gcomm', 'GHcomm', 0)
>>> (GH(i1)*G(i0)).canon_bp()
G(i0)*GH(i1)
>>> (G(i1)*G(i0)).canon_bp()
G(i1)*G(i0)
>>> (G(i1)*A(i0)).canon_bp()
A(i0)*G(i1)
```

`set_comms(*args)`

Set the commutation group numbers c for symbols i, j.

**Parameters**

- `args`: sequence of (i, j, c)

Tensor Operators

```python
class sympy.tensor.toperators.PartialDerivative(expr,*variables)
```

Partial derivative for tensor expressions.

Examples

```python
>>> from sympy.tensor.tensor import TensorIndexType, TensorHead
>>> from sympy.tensor.toperators import PartialDerivative
>>> from sympy import symbols

>>> L = TensorIndexType("L")
>>> A = TensorHead("A", [L])
>>> B = TensorHead("B", [L])
>>> i, j, k = symbols("i j k")

>>> expr = PartialDerivative(A(i), A(j))
>>> expr
PartialDerivative(A(i), A(j))
```

The `PartialDerivative` object behaves like a tensorial expression:

```python
>>> expr.get_indices()
[i, -j]
```
Notice that the deriving variables have opposite valence than the printed one: \(A(j)\) is printed as covariant, but the index of the derivative is actually contravariant, i.e. \(-j\).

Indices can be contracted:

```python
>>> expr = PartialDerivative(A(i), A(i))
>>> expr
PartialDerivative(A(L_0), A(L_0))
>>> expr.get_indices()
[L_0, -L_0]
```

The method .get_indices() always returns all indices (even the contracted ones). If only uncontracted indices are needed, call .get_free_indices():

```python
>>> expr.get_free_indices()
[]
```

Nested partial derivatives are flattened:

```python
>>> expr = PartialDerivative(PartialDerivative(A(i), A(j)), A(k))
>>> expr
PartialDerivative(A(i), A(j), A(k))
>>> expr.get_indices()
[i, -j, -k]
```

Replace a derivative with array values:

```python
>>> from sympy.abc import x, y
>>> from sympy import sin, log
>>> compA = [sin(x), log(x)*y**3]
>>> compB = [x, y]
>>> expr = PartialDerivative(A(i), B(j))
>>> expr.replace_with_arrays({A(i): compA, B(i): compB})
[[cos(x), 0], [y**3/x, 3*y**2*log(x)]]
```

The returned array is indexed by \((i, -j)\).

Be careful that other SymPy modules put the indices of the deriving variables before the indices of the derivand in the derivative result. For example:

```python
>>> expr.get_free_indices()
[i, -j]
```

```python
>>> from sympy import Matrix, Array
>>> Matrix(compA).diff(Matrix(compB)).reshape(2, 2)
[[cos(x), y**3/x], [0, 3*y**2*log(x)]]
>>> Array(compA).diff(Array(compB))
[[cos(x), y**3/x], [0, 3*y**2*log(x)]]
```

These are the transpose of the result of PartialDerivative, as the matrix and the array modules put the index \(-j\) before \(i\) in the derivative result. An array read with index order \((-j, i)\) is indeed the transpose of the same array read with index order \((i, -j)\). By specifying the index order to .replace_with_arrays one can get a compatible expression:

```python
>>> expr.replace_with_arrays({A(i): compA, B(i): compB}, [-j, i])
[[cos(x), y**3/x], [0, 3*y**2*log(x)]]
```
Vector

The vector module provides tools for basic vector math and differential calculus with respect to 3D Cartesian coordinate systems. This documentation provides an overview of all the features offered, and relevant API.

Guide to Vector

Introduction

This page gives a brief conceptual overview of the functionality present in sympy.vector (page 1473).

Vectors and Scalars

In vector math, we deal with two kinds of quantities – scalars and vectors.

A scalar is an entity which only has a magnitude - no direction. Examples of scalar quantities include mass, electric charge, temperature, distance, etc.

A vector, on the other hand, is an entity that is characterized by a magnitude and a direction. Examples of vector quantities are displacement, velocity, magnetic field, etc.

A scalar can be depicted just by a number, for e.g. a temperature of 300 K. On the other hand, vectorial quantities like acceleration are usually denoted by a vector. Given a vector $\mathbf{V}$, the magnitude of the corresponding quantity can be calculated as the magnitude of the vector itself $\|\mathbf{V}\|$, while the direction would be specified by a unit vector in the direction of the original vector, $\hat{\mathbf{V}} = \frac{\mathbf{V}}{\|\mathbf{V}\|}$.

For example, consider a displacement of $(3\hat{i} + 4\hat{j} + 5\hat{k})$ m, where, as per standard convention, $\hat{i}$, $\hat{j}$ and $\hat{k}$ represent unit vectors along the $X$, $Y$ and $Z$ axes respectively. Therefore, it can be concluded that the distance traveled is $\|3\hat{i} + 4\hat{j} + 5\hat{k}\| = 5\sqrt{2}$ m. The direction of travel is given by the unit vector $\frac{3}{5\sqrt{2}}\hat{i} + \frac{4}{5\sqrt{2}}\hat{j} + \frac{5}{5\sqrt{2}}\hat{k}$.

Coordinate Systems

A coordinate system is an abstract mathematical entity used to define the notion of directions and locations in n-dimensional spaces. This module deals with 3-dimensional spaces, with the conventional $X$, $Y$ and $Z$ axes defined with respect to each coordinate system.

Each coordinate system also has a special reference point called the ‘origin’ defined for it. This point is used either while referring to locations in 3D space, or while calculating the coordinates of pre-defined points with respect to the system.

It is a pretty well-known concept that there is no absolute notion of location or orientation in space. Any given coordinate system defines a unique ‘perspective’ of quantifying positions and directions. Therefore, even if we assume that all systems deal with the same units of measurement, the expression of vectorial and scalar quantities differs according to the coordinate system a certain observer deals with.

Consider two points $P$ and $Q$ in space. Assuming units to be common throughout, the distance between these points remains the same regardless of the coordinate system in which the
measurements are being made. However, the 3-D coordinates of each of the two points, as well as the position vector of any of the points with respect to the other, do not. In fact, these two quantities don’t make sense at all, unless they are being measured keeping in mind a certain location and orientation of the measurer (essentially the coordinate system).

Therefore, it is quite clear that the orientation and location (of the origin) of a coordinate system define the way different quantities will be expressed with respect to it. Neither of the two properties can be measured on an absolute scale, but rather with respect to another coordinate system. The orientation of one system with respect to another is measured using the rotation matrix, while the relative position can be quantified via the position vector of one system’s origin with respect to the other.

**Fields**

A **field** is a vector or scalar quantity that can be specified everywhere in space as a function of position (Note that in general a field may also be dependent on time and other custom variables). Since we only deal with 3D spaces in this module, a field is defined as a function of the \( x, y \) and \( z \) coordinates corresponding to a location in the coordinate system. Here, \( x, y \) and \( z \) act as scalar variables defining the position of a general point.

For example, temperature in 3 dimensional space (a temperature field) can be written as \( T(x, y, z) \) – a scalar function of the position. An example of a scalar field in electromagnetism is the electric potential.

In a similar manner, a vector field can be defined as a vectorial function of the location \( (x, y, z) \) of any point in space.

For instance, every point on the earth may be considered to be in the gravitational force field of the earth. We may specify the field by the magnitude and the direction of acceleration due to gravity (i.e. force per unit mass) \( \vec{g}(x, y, z) \) at every point in space.

To give an example from electromagnetism, consider an electric potential of form \( 2x^2y \), a scalar field in 3D space. The corresponding conservative electric field can be computed as the gradient of the electric potential function, and expressed as \( 4xy\hat{i} + 2x^2\hat{j} \). The magnitude of this electric field can in turn be expressed as a scalar field of the form \( \sqrt{4x^4 + 16x^2y^2} \).

**Basic Implementation details**

**Coordinate Systems and Vectors**

Currently, `sympy.vector` (page 1473) is able to deal with the Cartesian (also called rectangular), spherical and other curvilinear coordinate systems.

A 3D Cartesian coordinate system can be initialized in `sympy.vector` (page 1473) as

```python
>>> from sympy.vector import CoordSys3D
>>> N = CoordSys3D('N')
```

The string parameter to the constructor denotes the name assigned to the system, and will primarily be used for printing purposes.

Once a coordinate system (in essence, a `CoordSys3D` instance) has been defined, we can access the orthonormal unit vectors (i.e. the \( \hat{i}, \hat{j} \) and \( \hat{k} \) vectors) and coordinate variables/base scalars (i.e. the \( x, y \) and \( z \) variables) corresponding to it. We will talk about coordinate variables in the later sections.
The basis vectors for the $X$, $Y$ and $Z$ axes can be accessed using the $i$, $j$ and $k$ properties respectively.

```python
>>> N.i
N.i
>>> type(N.i)
<class 'sympy.vector.vector.BaseVector'>
```

As seen above, the basis vectors are all instances of a class called `BaseVector`.

When a `BaseVector` is multiplied by a scalar (essentially any SymPy Expr), we get a `VectorMul` - the product of a base vector and a scalar.

```python
>>> 3*N.i
3*N.i
>>> type(3*N.i)
<class 'sympy.vector.vector.VectorMul'>
```

Addition of `VectorMul` and `BaseVectors` gives rise to formation of `VectorAdd` - except for special cases, of course.

```python
>>> v = 2*N.i + N.j
>>> type(v)
<class 'sympy.vector.vector.VectorAdd'>
>>> v - N.j
2*N.i
>>> type(v - N.j)
<class 'sympy.vector.vector.VectorMul'>
```

What about a zero vector? It can be accessed using the zero attribute assigned to class `Vector`. Since the notion of a zero vector remains the same regardless of the coordinate system in consideration, we use `Vector.zero` wherever such a quantity is required.

```python
>>> from sympy.vector import Vector
>>> Vector.zero
0
>>> type(Vector.zero)
<class 'sympy.vector.vector.VectorZero'>
>>> N.i + Vector.zero
N.i
>>> Vector.zero == 2*Vector.zero
True
```

All the classes shown above - `BaseVector`, `VectorMul`, `VectorAdd` and `VectorZero` are subclasses of `Vector`.

You should never have to instantiate objects of any of the subclasses of `Vector`. Using the `BaseVector` instances assigned to a `CoordSys3D` instance and (if needed) `Vector.zero` as building blocks, any sort of vectorial expression can be constructed with the basic mathematical operators $+$, $-$, $*$, and $/$.

```python
>>> v = N.i - 2*N.j
>>> v/3
1/3*N.i + (-2/3)*N.j
>>> v + N.k
```

(continues on next page)
In addition to the elementary mathematical operations, the vector operations of `dot` and `cross` can also be performed on `Vector`.

```python
>>> v1 = 2*N.i + 3*N.j - N.k
>>> v2 = N.i - 4*N.j + N.k
>>> v1.dot(v2)
-11
>>> v1.cross(v2)
(-1)*N.i + (-3)*N.j + (-11)*N.k
>>> v2.cross(v1)
N.i + 3*N.j + 11*N.k
```

The `&` and `^` operators have been overloaded for the `dot` and `cross` methods respectively.

```python
>>> v1 & v2
-11
>>> v1 ^ v2
(-1)*N.i + (-3)*N.j + (-11)*N.k
```

However, this is not the recommended way of performing these operations. Using the original methods makes the code clearer and easier to follow.

In addition to these operations, it is also possible to compute the outer products of `Vector` instances in `sympy.vector` (page 1473). More on that in a little bit.

### SymPy operations on Vectors

The SymPy operations of `simplify`, `trigsimp`, `diff`, and `factor` work on `Vector` objects, with the standard SymPy API.

In essence, the methods work on the measure numbers (The coefficients of the basis vectors) present in the provided vectorial expression.

```python
>>> from sympy.abc import a, b, c
>>> from sympy import sin, cos, trigsimp, diff
>>> v = (a*b + a*c + b**2 + b*c)*N.i + N.j
>>> v.factor()
((a + b)*(b + c))*N.i + N.j
>>> v = (sin(a)**2 + cos(a)**2)*N.i - (2*cos(b)**2 - 1)*N.k
>>> trigsimp(v)
N.i + (-cos(2*b))*N.k
>>> v.simplify()
N.i + (-cos(2*b))*N.k
>>> diff(v, b)
(4*sin(b)*cos(b))*N.k
>>> from sympy import Derivative
```

(continues on next page)
Integral also works with Vector instances, similar to Derivative.

```python
>>> from sympy import Integral
>>> v1 = a*N.i + sin(a)*N.j - N.k
>>> Integral(v1, a)
(Integral(a, a))*N.i + (Integral(sin(a), a))*N.j + (Integral(-1, a))*N.k
>>> Integral(v1, a).doit()
a**2/2*N.i + (-cos(a))*N.j + (-a)*N.k
```

### Points

As mentioned before, every coordinate system corresponds to a unique origin point. Points, in general, have been implemented in `sympy.vector` (page 1473) in the form of the `Point` class.

To access the origin of system, use the `origin` property of the `CoordSys3D` class.

```python
>>> from sympy.vector import CoordSys3D
>>> N = CoordSys3D('N')
>>> N.origin
N.origin
>>> type(N.origin)
<class 'sympy.vector.point.Point'>
```

You can instantiate new points in space using the `locate_new` method of `Point`. The arguments include the name(string) of the new `Point`, and its position vector with respect to the 'parent' `Point`.

```python
>>> from sympy.abc import a, b, c
>>> P = N.origin.locate_new('P', a*N.i + b*N.j + c*N.k)
>>> Q = P.locate_new('Q', -b*N.j)
```

Like Vector, a user never has to expressly instantiate an object of `Point`. This is because any location in space (albeit relative) can be pointed at by using the `origin` of a `CoordSys3D` as the reference, and then using `locate_new` on it and subsequent `Point` instances.

The position vector of a `Point` with respect to another `Point` can be computed using the `position_wrt` method.

```python
>>> P.position_wrt(Q)
b*N.j
>>> Q.position_wrt(N.origin)
a*N.i + c*N.k
```

Additionally, it is possible to obtain the $X$, $Y$ and $Z$ coordinates of a `Point` with respect to a `CoordSys3D` in the form of a tuple. This is done using the `express_coordinates` method.

```python
>>> Q.express_coordinates(N)
(a, 0, c)
```
Dyadics

A dyadic, or dyadic tensor, is a second-order tensor formed by the juxtaposition of pairs of vectors. Therefore, the outer products of vectors give rise to the formation of dyadics. Dyadic tensors have been implemented in `sympy.vector` (page 1473) in the Dyadic class.

Once again, you never have to instantiate objects of Dyadic. The outer products of vectors can be computed using the outer method of Vector. The \( | \) operator has been overloaded for outer.

```python
>>> from sympy.vector import CoordSys3D
>>> N = CoordSys3D('N')
>>> N.i.outer(N.j)
(N.i|N.j)
```

Similar to Vector, Dyadic also has subsequent subclasses like BaseDyadic, DyadicMul, DyadicAdd. As with Vector, a zero dyadic can be accessed from Dyadic.zero.

All basic mathematical operations work with Dyadic too.

```python
>>> dyad = N.i.outer(N.k)
>>> dyad*3
3*(N.i|N.k)
>>> dyad - dyad
0
>>> dyad + 2*(N.j|N.i)
(N.i|N.k) + 2*(N.j|N.i)
```

dot and cross also work among Dyadic instances as well as between a Dyadic and Vector (and also vice versa) - as per the respective mathematical definitions. As with Vector, & and ^ have been overloaded for dot and cross.

```python
>>> d = N.i.outer(N.j)
>>> d.dot(N.j|N.j)
(N.i|N.j)
>>> d.dot(N.i)
0
>>> d.dot(N.j)
N.i
>>> N.i.dot(d)
N.j
>>> N.k ^ d
(N.j|N.j)
```
More about Coordinate Systems

We will now look at how we can initialize new coordinate systems in sympy.vector (page 1473), transformed in user-defined ways with respect to already-existing systems.

Locating new systems

We already know that the origin property of a CoordSys3D corresponds to the Point instance denoting its origin reference point.

Consider a coordinate system \( N \). Suppose we want to define a new system \( M \), whose origin is located at \( 3\vec{i} + 4\vec{j} + 5\vec{k} \) from \( N \)'s origin. In other words, the coordinates of \( M \)'s origin from \( N \)'s perspective happen to be \((3, 4, 5)\). Moreover, this would also mean that the coordinates of \( N \)'s origin with respect to \( M \) would be \((-3, -4, -5)\).

This can be achieved programmatically as follows -

```python
>>> from sympy.vector import CoordSys3D
>>> N = CoordSys3D('N')
>>> M = N.locate_new('M', 3*N.i + 4*N.j + 5*N.k)
>>> M.position_wrt(N)
3*N.i + 4*N.j + 5*N.k
>>> N.origin.express_coordinates(M)
(-3, -4, -5)
```

It is worth noting that \( M \)'s orientation is the same as that of \( N \). This means that the rotation matrix of \( N \) with respect to \( M \), and also vice versa, is equal to the identity matrix of dimensions 3x3. The `locate_new` method initializes a CoordSys3D that is only translated in space, not re-oriented, relative to the ‘parent’ system.

Orienting new systems

Similar to ‘locating’ new systems, sympy.vector (page 1473) also allows for initialization of new CoordSys3D instances that are oriented in user-defined ways with respect to existing systems.

Suppose you have a coordinate system \( A \).

```python
>>> from sympy.vector import CoordSys3D
>>> A = CoordSys3D('A')
```

You want to initialize a new coordinate system \( B \), that is rotated with respect to \( A \)'s Z-axis by an angle \( \theta \).

```python
>>> from sympy import Symbol
>>> theta = Symbol('theta')
```

The orientation is shown in the diagram below:
There are two ways to achieve this.

**Using a method of CoordSys3D directly**

This is the easiest, cleanest, and hence the recommended way of doing it.

```
>>> B = A.orient_new_axis('B', theta, A.k)
```

This initializes $B$ with the required orientation information with respect to $A$.

CoordSys3D provides the following direct orientation methods in its API-

1. `orient_new_axis`
2. `orient_new_body`
3. `orient_new_space`
4. `orient_new_quaternion`

Please look at the CoordSys3D class API given in the docs of this module, to know their functionality and required arguments in detail.

**Using Orienter(s) and the `orient_new` method**

You would first have to initialize an `AxisOrienter` instance for storing the rotation information.

```
>>> from sympy.vector import AxisOrienter
>>> axis_orienter = AxisOrienter(theta, A.k)
```

And then apply it using the `orient_new` method, to obtain $B$.

```
>>> B = A.orient_new('B', axis_orienter)
```

`orient_new` also lets you orient new systems using multiple Orienter instances, provided in an iterable. The rotations/orientations are applied to the new system in the order the Orienter instances appear in the iterable.
from sympy.vector import BodyOrienter

from sympy.abc import a, b, c

body_orienter = BodyOrienter(a, b, c, 'XYZ')

C = A.orient_new('C', (axis_orienter, body_orienter))

The **sympy.vector** (page 1473) API provides the following four Orienter classes for orientation purposes:

1. AxisOrienter
2. BodyOrienter
3. SpaceOrienter
4. QuaternionOrienter

Please refer to the API of the respective classes in the docs of this module to know more.

In each of the above examples, the origin of the new coordinate system coincides with the origin of the ‘parent’ system.

B = A.orient_new_axis('B', a, A.k)

B.rotation_matrix(A)

Matrix(
    [[ cos(a), sin(a), 0],
    [-sin(a), cos(a), 0],
    [ 0, 0, 1]])

B.rotation_matrix(B)

Matrix(
    [[1, 0, 0],
    [0, 1, 0],
    [0, 0, 1]])

**Orienting AND Locating new systems**

What if you want to initialize a new system that is not only oriented in a pre-defined way, but also translated with respect to the parent?

Each of the orient_new_<method of orientation> methods, as well as the orient_new method, support a location keyword argument.

If a Vector is supplied as the value for this kwarg, the new system’s origin is automatically defined to be located at that position vector with respect to the parent coordinate system.

Thus, the orientation methods also act as methods to support orientation+ location of the new systems.

C = A.orient_new_axis('C', a, A.k, location=2*A.j)

C.position_wrt(A)

2*A.j

(continues on next page)
from sympy.vector import express

express(A.position_wrt(C), C)

(-2*sin(a))*C.i + (-2*cos(a))*C.j

More on the express function in a bit.

Transforming new system

The most general way of creating user-defined system is to use transformation parameter in CoordSys3D. Here we can define any transformation equations. If we are interested in some typical curvilinear coordinate system different that Cartesian, we can also use some predefined ones. It could be also possible to translate or rotate system by setting appropriate transformation equations.

from sympy.vector import CoordSys3D

from sympy import sin, cos

A = CoordSys3D('A', transformation='spherical')
B = CoordSys3D('A', transformation=lambda x,y,z: (x*sin(y), x*cos(y), z))

In CoordSys3D is also dedicated method, create_new which works similarly to methods like locate_new, orient_new_axis etc.

from sympy.vector import CoordSys3D

A = CoordSys3D('A')
B = A.create_new('B', transformation='spherical')

Expression of quantities in different coordinate systems

Vectors and Dyadics

As mentioned earlier, the same vector attains different expressions in different coordinate systems. In general, the same is true for scalar expressions and dyadic tensors.

sympy.vector (page 1473) supports the expression of vector/scalar quantities in different coordinate systems using the express function.

For purposes of this section, assume the following initializations:

from sympy.vector import CoordSys3D, express

from sympy.abc import a, b, c

N = CoordSys3D('N')
M = N.orient_new_axis('M', a, N.k)

Vector instances can be expressed in user defined systems using express.

v1 = N.i + N.j + N.k
express(v1, M)
(sin(a) + cos(a))*M.i + (-sin(a) + cos(a))*M.j + M.k

v2 = N.i + M.j
express(v2, N)
(1 - sin(a))*N.i + (cos(a))*N.j

1482 Chapter 5. API Reference
Apart from Vector instances, express also supports reexpression of scalars (general SymPy Expr) and Dyadic objects.

express also accepts a second coordinate system for re-expressing Dyadic instances.

```python
>>> d = 2*(M.i | N.j) + 3*(M.j | N.k)
>>> express(d, M)
(2*sin(a))*(M.i|M.i) + (2*cos(a))*(M.i|M.j) + 3*(M.j|M.k)
>>> express(d, M, N)
2*(M.i|N.j) + 3*(M.j|N.k)
```

**Coordinate Variables**

The location of a coordinate system’s origin does not affect the re-expression of BaseVector instances. However, it does affect the way BaseScalar instances are expressed in different systems.

BaseScalar instances, are coordinate ‘symbols’ meant to denote the variables used in the definition of vector/scalar fields in `sympy.vector` (page 1473).

For example, consider the scalar field \( T_N(x, y, z) = x + y + z \) defined in system \( N \). Thus, at a point with coordinates \( (a, b, c) \), the value of the field would be \( a + b + c \). Now consider system \( R \), whose origin is located at \((1, 2, 3)\) with respect to \( N \) (no change of orientation). A point with coordinates \( (a, b, c) \) in \( R \) has coordinates \((a + 1, b + 2, c + 3)\) in \( N \). Therefore, the expression for \( T_N \) in \( R \) becomes \( T_R(x, y, z) = x + y + z + 6 \).

Coordinate variables, if present in a vector/scalar/dyadic expression, can also be re-expressed in a given coordinate system, by setting the variables keyword argument of express to True.

The above mentioned example, done programmatically, would look like this -

```python
>>> R = N.locate_new('R', N.i + 2*N.j + 3*N.k)
>>> T_N = N.x + N.y + N.z
>>> express(T_N, R, variables=True)
R.x + R.y + R.z + 6
```

**Other expression-dependent methods**

The `to_matrix` method of Vector and `express_coordinates` method of Point also return different results depending on the coordinate system being provided.

```python
>>> P = R.origin.locate_new('P', a*R.i + b*R.j + c*R.k)
>>> P.express_coordinates(N)
(a + 1, b + 2, c + 3)
>>> P.express_coordinates(R)
(a, b, c)
>>> v = N.i + N.j + N.k
>>> v.to_matrix(M)
Matrix([[sin(a) + cos(a)], [-sin(a) + cos(a)], [1]])
>>> v.to_matrix(N)
```

(continues on next page)
Scalar and Vector Field Functionality

Implementation in sympy.vector

Scalar and vector fields

In sympy.vector (page 1473), every CoordSys3D instance is assigned basis vectors corresponding to the \( X \), \( Y \) and \( Z \) axes. These can be accessed using the properties named \( i \), \( j \) and \( k \) respectively. Hence, to define a vector \( \mathbf{v} \) of the form \( \mathbf{3i} + \mathbf{4j} + \mathbf{5k} \) with respect to a given frame \( \mathbf{R} \), you would do

\[
\mathbf{v} = 3\mathbf{R}.i + 4\mathbf{R}.j + 5\mathbf{R}.k
\]

Vector math and basic calculus operations with respect to vectors have already been elaborated upon in the earlier section of this module’s documentation.

On the other hand, base scalars (or coordinate variables) are implemented in a special class called BaseScalar, and are assigned to every coordinate system, one for each axis from \( X \), \( Y \) and \( Z \). These coordinate variables are used to form the expressions of vector or scalar fields in 3D space. For a system \( \mathbf{R} \), the \( X \), \( Y \) and \( Z \) BaseScalars instances can be accessed using the \( \mathbf{R}.x \), \( \mathbf{R}.y \) and \( \mathbf{R}.z \) expressions respectively.

Therefore, to generate the expression for the aforementioned electric potential field \( 2x^2y \), you would have to do

\[
\mathbf{electric\_potential} = 2\mathbf{R}.x*2\mathbf{R}.y
\]

It is to be noted that BaseScalar instances can be used just like any other SymPy Symbol, except that they store the information about the coordinate system and axis they correspond to.

Scalar fields can be treated just as any other SymPy expression, for any math/calculus functionality. Hence, to differentiate the above electric potential with respect to \( x \) (i.e. \( \mathbf{R}.x \)), you would use the diff method.

\[
diff(\mathbf{electric\_potential}, \mathbf{R}.x) = 4\mathbf{R}.x*\mathbf{R}.y
\]
It is worth noting that having a `BaseScalar` in the expression implies that a ‘field’ changes with position, in 3D space. Technically speaking, a simple Expr with no `BaseScalar` s is still a field, though constant.

Like scalar fields, vector fields that vary with position can also be constructed using `BaseScalar s` in the measure-number expressions.

```python
>>> from sympy.vector import CoordSys3D
>>> R = CoordSys3D('R')
>>> v = R.x**2*R.i + 2*R.x*R.z*R.k
```

**The Del operator**

The Del, or ‘Nabla’ operator - written as \(\nabla\) is commonly known as the vector differential operator. Depending on its usage in a mathematical expression, it may denote the gradient of a scalar field, the divergence of a vector field, or the curl of a vector field.

Essentially, \(\nabla\) is not technically an ‘operator’, but a convenient mathematical notation to denote any one of the aforementioned field operations.

In `sympy.vector` (page 1473), \(\nabla\) has been implemented as the `Del()` class. The instance of this class is independent of coordinate system. Hence, the \(\nabla\) operator would be accessible as `Del()`.

Given below is an example of usage of the `Del()` class.

```python
>>> from sympy.vector import CoordSys3D, Del
>>> C = CoordSys3D('C')
>>> delop = Del()
>>> gradient_field = delop(C.x*C.y*C.z)
>>> gradient_field
(Derivative(C.x*C.y*C.z, C.x))*C.i + (Derivative(C.x*C.y*C.z, C.y))*C.j + (Derivative(C.x*C.y*C.z, C.z))*C.k
```

The above expression can be evaluated using the SymPy `doit()` routine.

```python
>>> gradient_field.doit()
C.y*C.z*C.i + C.x*C.z*C.j + C.x*C.y*C.k
```

Usage of the \(\nabla\) notation in `sympy.vector` (page 1473) has been described in greater detail in the subsequent subsections.

**Field operators and related functions**

Here we describe some basic field-related functionality implemented in `sympy.vector` (page 1473).
Curl

A curl is a mathematical operator that describes an infinitesimal rotation of a vector in 3D space. The direction is determined by the right-hand rule (along the axis of rotation), and the magnitude is given by the magnitude of rotation.

In the 3D Cartesian system, the curl of a 3D vector \( \mathbf{F} \), denoted by \( \nabla \times \mathbf{F} \) is given by:
\[
\nabla \times \mathbf{F} = \left( \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \right) \mathbf{i} + \left( \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \right) \mathbf{j} + \left( \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right) \mathbf{k}
\]
where \( F_x \) denotes the \( X \) component of vector \( \mathbf{F} \).

Computing the curl of a vector field in `sympy.vector` (page 1473) can be accomplished in two ways.

One, by using the `Del()` class

```python
>>> from sympy.vector import CoordSys3D, Del
>>> C = CoordSys3D('C')
>>> delop = Del()
>>> delop.cross(C.x*C.y*C.z*C.i).doit()
C.x*C.y*C.j + (-C.x*C.z)*C.k
>>> (delop ^ C.x*C.y*C.z*C.i).doit()
C.x*C.y*C.j + (-C.x*C.z)*C.k
```

Or by using the dedicated function

```python
>>> from sympy.vector import curl
>>> curl(C.x*C.y*C.z*C.i)
C.x*C.y*C.j + (-C.x*C.z)*C.k
```

Divergence

Divergence is a vector operator that measures the magnitude of a vector field’s source or sink at a given point, in terms of a signed scalar.

The divergence operator always returns a scalar after operating on a vector.

In the 3D Cartesian system, the divergence of a 3D vector \( \mathbf{F} \), denoted by \( \nabla \cdot \mathbf{F} \) is given by:
\[
\nabla \cdot \mathbf{F} = \frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} + \frac{\partial W}{\partial z}
\]
where \( U, V \) and \( W \) denote the \( X, Y \) and \( Z \) components of \( \mathbf{F} \) respectively.

Computing the divergence of a vector field in `sympy.vector` (page 1473) can be accomplished in two ways.

One, by using the `Del()` class

```python
>>> from sympy.vector import CoordSys3D, Del
>>> C = CoordSys3D('C')
>>> delop = Del()
>>> delop.dot(C.x*C.y*C.z*(C.i + C.j + C.k)).doit()
C.x*C.y + C.x*C.z + C.y*C.z
>>> (delop & C.x*C.y*C.z*(C.i + C.j + C.k)).doit()
C.x*C.y + C.x*C.z + C.y*C.z
```
SymPy Documentation, Release 1.12.1

Or by using the dedicated function

```python
>>> from sympy import divergence
>>> divergence(C.x*C.y*C.z*(C.i + C.j + C.k))
C.x*C.y + C.x*C.z + C.y*C.z
```

**Gradient**

Consider a scalar field \( f(x, y, z) \) in 3D space. The gradient of this field is defined as the vector of the 3 partial derivatives of \( f \) with respect to \( x, y \) and \( z \) in the \( X, Y \) and \( Z \) axes respectively.

In the 3D Cartesian system, the divergence of a scalar field \( f \), denoted by \( \nabla f \) is given by:

\[
\nabla f = \frac{\partial f}{\partial x} \hat{i} + \frac{\partial f}{\partial y} \hat{j} + \frac{\partial f}{\partial z} \hat{k}
\]

Computing the divergence of a vector field in `sympy.vector` (page 1473) can be accomplished in two ways.

One, by using the `Del()` class

```python
>>> from sympy import CoordSys3D, Del
>>> C = CoordSys3D('C')
>>> delop = Del()
>>> delop.gradient(C.x*C.y*C.z).doit()
C.y*C.z*C.i + C.x*C.z*C.j + C.x*C.y*C.k
>>> delop(C.x*C.y*C.z).doit()
C.y*C.z*C.i + C.x*C.z*C.j + C.x*C.y*C.k
```

Or by using the dedicated function

```python
>>> from sympy import gradient
>>> gradient(C.x*C.y*C.z)
C.y*C.z*C.i + C.x*C.z*C.j + C.x*C.y*C.k
```

**Directional Derivative**

Apart from the above three common applications of \( \nabla \), it is also possible to compute the directional derivative of a field wrt a Vector in `sympy.vector` (page 1473).

By definition, the directional derivative of a field \( \mathbf{F} \) along a vector \( \mathbf{v} \) at point \( x \) represents the instantaneous rate of change of \( \mathbf{F} \) moving through \( x \) with the velocity \( \mathbf{v} \). It is represented mathematically as: \( (\mathbf{v} \cdot \nabla) \mathbf{F}(x) \).

Directional derivatives of vector and scalar fields can be computed in `sympy.vector` (page 1473) using the `Del()` class

```python
>>> from sympy import CoordSys3D, Del
>>> C = CoordSys3D('C')
>>> delop = Del()
>>> vel = C.i + C.j + C.k
>>> scalar_field = C.x*C.y*C.z
>>> vector_field = C.x*C.y*C.z*C.i
>>> (vel.dot(delop))(scalar_field)
(continues on next page)
C.x*C.y + C.x*C.z + C.y*C.z

```python
>>> (vel & delop)(vector_field)
(C.x*C.y + C.x*C.z + C.y*C.z)*C.i
```

Or by using the dedicated function

```python
>>> from sympy.vector import directional_derivative
>>> directional_derivative(C.x*C.y*C.z, 3*C.i + 4*C.j + C.k)
C.x*C.y + 4*C.x*C.z + 3*C.y*C.z
```

Field operator in orthogonal curvilinear coordinate system

vector package supports calculation in different kind of orthogonal curvilinear coordinate system. To do that, scaling factor (also known as Lame coefficients) are used to express curl, divergence or gradient in desired type of coordinate system.

For example if we want to calculate gradient in cylindrical coordinate system all we need to do is to create proper coordinate system

```python
>>> from sympy.vector import CoordSys3D
>>> c = CoordSys3D('c', transformation='cylindrical', variable_names=("r", "theta", "z"))
>>> gradient(c.r*c.theta*c.z)
  c.theta*c.z*c.i + c.z*c.j + c.r*c.theta*c.k
```

Conservative and Solenoidal fields

In vector calculus, a conservative field is a field that is the gradient of some scalar field. Conservative fields have the property that their line integral over any path depends only on the end-points, and is independent of the path travelled. A conservative vector field is also said to be 'irrotational', since the curl of a conservative field is always zero.

In physics, conservative fields represent forces in physical systems where energy is conserved.

To check if a vector field is conservative in `sympy.vector` (page 1473), the `is_conservative` function can be used.

```python
>>> from sympy.vector import CoordSys3D, is_conservative
>>> R = CoordSys3D('R')
>>> field = R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k
>>> is_conservative(field)
True
>>> curl(field)
0
```

A solenoidal field, on the other hand, is a vector field whose divergence is zero at all points in space.

To check if a vector field is solenoidal in `sympy.vector` (page 1473), the `is_solenoidal` function can be used.
Scalar potential functions

We have previously mentioned that every conservative field can be defined as the gradient of some scalar field. This scalar field is also called the ‘scalar potential field’ corresponding to the aforementioned conservative field.

The `scalar_potential` function in `sympy.vector` (page 1473) calculates the scalar potential field corresponding to a given conservative vector field in 3D space - minus the extra constant of integration, of course.

Example of usage -

```python
>>> from sympy.vector import CoordSys3D, scalar_potential
>>> R = CoordSys3D('R')
>>> conservative_field = 4*R.x*R.y*R.z*R.i + 2*R.x*R.y**2*R.z*R.j + 2*R.x*R.y**2*R.k
>>> scalar_potential(conservative_field, R)
2*R.x**2*R.y*R.z
```

Providing a non-conservative vector field as an argument to `scalar_potential` raises a `ValueError`.

The scalar potential difference, or simply ‘potential difference’, corresponding to a conservative vector field can be defined as the difference between the values of its scalar potential function at two points in space. This is useful in calculating a line integral with respect to a conservative function, since it depends only on the endpoints of the path.

This computation is performed as follows in `sympy.vector` (page 1473).

```python
>>> from sympy.vector import CoordSys3D, Point
>>> from sympy.vector import scalar_potential_difference
>>> R = CoordSys3D('R')
>>> P = R.origin.locate_new('P', 1*R.i + 2*R.j + 3*R.k)
>>> vectfield = 4*R.x*R.y*R.z*R.i + 2*R.x*R.y**2*R.j
>>> scalar_potential_difference(vectfield, R, R.origin, P)
4
```

If provided with a scalar expression instead of a vector field, `scalar_potential_difference` returns the difference between the values of that scalar field at the two given points in space.
Generalexamplesofusage

Thissectiondetailsthesolutionoftwobasicproblemsinvectormath/calculususingthesympy.vector(page 1473)package.

Quadrilateral problem

The Problem

OABCisanyquadrilateralin3Dspace. Pis themidpointofOA, Q is themidpointofAB, Ris themidpointofBCand S is themidpointofOC. ProvethatPQissimilar toSR

Solution

ThesolutiontothisproblemdemonstratestheusageofPoint, andbascicooperationsonVector.

Defineacoordinatesystem

```python
>>> from sympy.vector import CoordSys3D
>>> Sys = CoordSys3D('Sys')
```

DefinelpointOtoBesseys'origin.Wecandothisswithoutlossofgenerality

```python
>>> O = Sys.origin
```

DefinelpointAwithrespecttoO

```python
>>> from sympy import symbols
>>> a1, a2, a3 = symbols('a1 a2 a3')
>>> A = O.locate_new('A', a1*Sys.i + a2*Sys.j + a3*Sys.k)
```

SimilarlydefinedpointsBandC

```python
>>> b1, b2, b3 = symbols('b1 b2 b3')
>>> B = O.locate_new('B', b1*Sys.i + b2*Sys.j + b3*Sys.k)
>>> c1, c2, c3 = symbols('c1 c2 c3')
>>> C = O.locate_new('C', c1*Sys.i + c2*Sys.j + c3*Sys.k)
```

PisthemidpointofOA.LetsslacethitwithrespecttoO(youcouldalsodefinedithitrespect toA).

```python
>>> P = O.locate_new('P', A.position_wrt(O) + (O.position_wrt(A) / 2))
```

SimilarlydefinedpointsQ,Randsaspertheproblemdefinitions.

```python
>>> Q = A.locate_new('Q', B.position_wrt(A) / 2)
>>> R = B.locate_new('R', C.position_wrt(B) / 2)
>>> S = O.locate_new('R', C.position_wrt(O) / 2)
```

NowcomputethevectorsinthedirectionsspecifiedbyPQandSR.
>>> PQ = Q.position_wrt(P)
>>> SR = R.position_wrt(S)

Compute cross product

>>> PQ.cross(SR)
\[0\]

Since the cross product is a zero vector, the two vectors have to be parallel, thus proving that \(PQ \parallel SR\).

Third product rule for Del operator

See

The Problem

Prove the third rule - \(\nabla \cdot (f \vec{v}) = f(\nabla \cdot \vec{v}) + \vec{v} \cdot (\nabla f)\)

Solution

Start with a coordinate system

```python
>>> from sympy import CoordSys3D, Del
>>> delop = Del()
>>> C = CoordSys3D('C')
```

The scalar field \(f\) and the measure numbers of the vector field \(\vec{v}\) are all functions of the coordinate variables of the coordinate system in general. Hence, define SymPy functions that way.

```python
>>> from sympy import symbols, Function
>>> v1, v2, v3, f = symbols('v1 v2 v3 f', cls=Function)
```

\(v1, v2\) and \(v3\) are the \(X, Y\) and \(Z\) components of the vector field respectively. Define the vector field as `vfield` and the scalar field as `sfield`.

```python
>>> vfield = v1(C.x, C.y, C.z)*C.i + v2(C.x, C.y, C.z)*C.j + v3(C.x, C.y, C.z)*C.k
>>> sfield = f(C.x, C.y, C.z)
```

Construct the expression for the LHS of the equation using `Del()`.

```python
>>> lhs = (delop.dot(sfield * vfield)).doit()
```

Similarly, the RHS would be defined.

```python
>>> rhs = ((vfield.dot(delop(sfield))) + (sfield * (delop.dot(vfield)))).doit()
```
Now, to prove the product rule, we would just need to equate the expanded and simplified versions of the lhs and the rhs, so that the SymPy expressions match.

```python
>>> lhs.expand().simplify() == rhs.expand().doit().simplify()
True
```

Thus, the general form of the third product rule mentioned above can be proven using `symy.vector` (page 1473).

Applications of Vector Integrals

To integrate a scalar or vector field over a region, we have to first define a region. SymPy provides three methods for defining a region:

2. Using Implicit Equation with `ImplicitRegion` (page 1509).
3. Using objects of geometry module.

The `vector_integrate()` (page 1520) function is used to integrate scalar or vector field over any type of region. It automatically determines the type of integration (line, surface, or volume) depending on the nature of the object.

We define a coordinate system and make necessary imports for examples.

```python
>>> from sympy import sin, cos, exp, pi, symbols
>>> from sympy.vector import CoordSys3D, ParametricRegion, ImplicitRegion,
...     vector_integrate
>>> from sympy.abc import r, x, y, z, theta, phi
>>> C = CoordSys3D('C')
```

Calculation of Perimeter, Surface Area, and Volume

To calculate the perimeter of a circle, we need to define it. Let’s define it using its parametric equation.

```python
>>> param_circle = ParametricRegion(((4*cos(theta), 4*sin(theta)), (theta, 0, 2*pi))
```

We can also define a circle using its implicit equation.

```python
>>> implicit_circle = ImplicitRegion((x, y), x**2 + y**2 - 4)
```

The perimeter of a figure is equal to the absolute value of its integral over a unit scalar field.

```python
>>> vector_integrate(1, param_circle)
8*pi
>>> vector_integrate(1, implicit_circle)
4*pi
```

Suppose a user wants to calculate the perimeter of a triangle. Determining the parametric representation of a triangle can be difficult. Instead, the user can use an object of `Polygon` (page 2348) class in the geometry module.
To define a solid sphere, we need to use three parameters (r, theta and phi). For `ParametricRegion` (page 1508) `obextj`, the order of limits determine the sign of the integral.

```python
>>> solidsphere = ParametricRegion((r*sin(phi)*cos(theta),
   -r*sin(phi)*sin(theta), r*cos(phi)),
   ...
   (phi, 0, pi), (theta, 0, 2*pi), (r, 0, 3))
>>> vector_integrate(1, solidsphere)
36*pi
```

Calculation of mass of a body

Consider a triangular lamina R with vertices $(0,0)$, $(0, 5)$, $(5,0)$ and with density $\rho(x,y) = xy \text{ kg/m}^2$. Find the total mass.

```python
>>> triangle = ParametricRegion((x, y), (x, 0, 5), (y, 0, 5 - x))
>>> vector_integrate(C.x*C.y, triangle)
625/24
```

Find the mass of a cylinder centered on the z-axis which has height h, radius a, and density $\rho = x^2 + y^2 \text{ kg/m}^2$.

```python
>>> a, h = symbols('a h', positive=True)
>>> cylinder = ParametricRegion((r*cos(theta), r*sin(theta), z),
   ...
   (theta, 0, 2*pi), (z, 0, h), (r, 0, a))
>>> vector_integrate(C.x**2 + C.y**2, cylinder)
pi*a**4*h/2
```

Calculation of Flux

1. Consider a region of space in which there is a constant vectorfield $E(x,y,z) = a\hat{k}$. A hemisphere of radius r lies on the x-y plane. What is the flux of the field through the sphere?

```python
>>> semisphere = ParametricRegion((r*sin(phi)*cos(theta),
   -r*sin(phi)*sin(theta), r*cos(phi)),
   ...
   (phi, 0, pi/2), (theta, 0, 2*pi))
>>> flux = vector_integrate(a*C.k, semisphere)
>>> flux
pi*a*r**2
```

2. Consider a region of space in which there is a vector field $E(x,y,z) = x^2\hat{k}$ above the x-y plane, and a field $E(x,y,z) = y^2\hat{k}$ below the x-y plane. What is the flux of that vector field through a cube of side length L with its center at the origin?"

The field is parallel to the z-axis so only the top and bottom face of the box will contribute to flux.
>>> L = symbols('L', positive=True)

>>> top_face = ParametricRegion((x, y, L/2), (x, -L/2, L/2), (y, -L/2, L/2))
>>> bottom_face = ParametricRegion((x, y, -L/2), (x, -L/2, L/2), (y, -L/2, L/2))

>>> flux = vector_integrate(C.x**2*C.k, top_face) + vector_integrate(C.y**2*C.k, bottom_face)

>>> flux
L**4/6

Verifying Stoke's Theorem

See https://en.wikipedia.org/wiki/Stokes%27_theorem

Example 1

```python
>>> from sympy.vector import curl

>>> curve = ParametricRegion((cos(theta), sin(theta)), (theta, 0, pi/2))
>>> surface = ParametricRegion((r*cos(theta), r*sin(theta)), (r, 0, 1), (theta, 0, pi/2))
>>> F = C.y*C.i + C.z*C.k + C.x*C.k

>>> vector_integrate(F, curve)
-pi/4

>>> vector_integrate(curl(F), surface)
-pi/4
```

Example 2

```python
>>> circle = ParametricRegion((cos(theta), sin(theta), 1), (theta, 0, 2*pi))
>>> cone = ParametricRegion((r*cos(theta), r*sin(theta), r), (r, 0, 1), (theta, 0, 2*pi))

>>> f = (-C.y**3/3 + sin(C.x))*C.i + (C.x**3/3 + cos(C.y))*C.j + C.x*C.y*C.z*C.k

>>> vector_integrate(f, circle)
pi/2

>>> vector_integrate(curl(f), cone)
pi/2
```

Verifying Divergence Theorem

See https://en.wikipedia.org/wiki/Divergence_theorem

Example 1

```python
>>> from sympy.vector import divergence

>>> sphere = ParametricRegion((4*sin(phi)*cos(theta), 4*sin(phi)*sin(theta), 4*cos(phi)), ...
(phi, 0, pi), (theta, 0, 2*pi))
```
(continues on next page)
Example 2

```python
>>> cube = ParametricRegion((x, y, z), (x, 0, 1), (y, 0, 1), (z, 0, 1))
>>> field = 2*C.x*C.y*C.i + 3*C.x*C.y*C.j + C.z*exp(C.x + C.y)*C.k
>>> vector_integrate(divergence(field), cube)
-E + 7/2 + E*(-1 + E)
```

Vector API

Essential Classes in sympy.vector (docstrings)

```python
class sympy.vector.coordsysrect.CoordSys3D(name, transformation=None,
                                          parent=None, location=None,
                                          rotation_matrix=None,
                                          vector_names=None,
                                          variable_names=None)
```

Represents a coordinate system in 3-D space.

```python
__init__(name, location=None, rotation_matrix=None, parent=None,
         vector_names=None, variable_names=None, latex_vecs=None,
         pretty_vecs=None, latex_scalars=None, pretty_scalars=None,
         transformation=None)
```

The orientation/location parameters are necessary if this system is being defined at a certain orientation or location wrt another.

Parameters

- **name** : str

 The name of the new CoordSys3D instance.

- **transformation** : Lambda, Tuple, str

 Transformation defined by transformation equations or chosen from predefined ones.

- **location** : Vector

 The position vector of the new system’s origin wrt the parent instance.

- **rotation_matrix** : SymPy ImmutableMatrix

 The rotation matrix of the new coordinate system with respect to the parent. In other words, the output of new_system.rotation_matrix(parent).
parent : CoordSys3D
The coordinate system wrt which the orientation/location (or both) is being defined.

vector_names, variable_names : iterable(optional)
Iterables of 3 strings each, with custom names for base vectors and base scalars of the new system respectively. Used for simple str printing.

create_new(name, transformation, variable_names=None, vector_names=None)
Returns a CoordSys3D which is connected to self by transformation.

Parameters
name : str
The name of the new CoordSys3D instance.

transformation : Lambda, Tuple, str
Transformation defined by transformation equations or chosen from predefined ones.

vector_names, variable_names : iterable(optional)
Iterables of 3 strings each, with custom names for base vectors and base scalars of the new system respectively. Used for simple str printing.

Examples

```python
from sympy.vector import CoordSys3D
a = CoordSys3D('a')
b = a.create_new('b', transformation='spherical')
b.transformation_to_parent()
(b.r*sin(b.theta)*cos(b.phi), b.r*sin(b.phi)*sin(b.theta), b.r*cos(b.theta))
b.transformation_from_parent()
(sqrt(a.x**2 + a.y**2 + a.z**2), acos(a.z/sqrt(a.x**2 + a.y**2 + a.z**2)), atan2(a.y, a.x))
```

locate_new(name, position, vector_names=None, variable_names=None)
Returns a CoordSys3D with its origin located at the given position wrt this coordinate system’s origin.

Parameters

name : str
The name of the new CoordSys3D instance.

position : Vector
The position vector of the new system’s origin wrt this one.

vector_names, variable_names : iterable(optional)
Iterables of 3 strings each, with custom names for base vectors and base scalars of the new system respectively. Used for simple str printing.
Examples

```python
>>> from sympy.vector import CoordSys3D
>>> A = CoordSys3D('A')
>>> B = A.locate_new('B', 10 * A.i)
>>> B.origin.position_wrt(A.origin)
10*A.i
```

orient_new(*name*, *orienters*, *location=None*, *vector_names=None*, *variable_names=None*)

Creates a new CoordSys3D oriented in the user-specified way with respect to this system.

Please refer to the documentation of the orienter classes for more information about the orientation procedure.

Parameters

- **name** : str
 The name of the new CoordSys3D instance.

- **orienters** : iterable/Orienter
 An Orienter or an iterable of Orienters for orienting the new coordinate system. If an Orienter is provided, it is applied to get the new system. If an iterable is provided, the orienters will be applied in the order in which they appear in the iterable.

- **location** : Vector(optional)
 The location of the new coordinate system’s origin wrt this system’s origin. If not specified, the origins are taken to be coincident.

- **vector_names**, **variable_names** : iterable(optional)
 Iterables of 3 strings each, with custom names for base vectors and base scalars of the new system respectively. Used for simple str printing.

Examples

```python
>>> from sympy.vector import CoordSys3D
>>> from sympy import symbols

>>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3')

>>> N = CoordSys3D('N')

Using an AxisOrienter

```python
>>> from sympy.vector import AxisOrienter

>>> axis_orienter = AxisOrienter(q1, N.i + 2 * N.j)

>>> A = N.orient_new('A', (axis_orienter,))

Using a BodyOrienter
```
>>> from sympy.vector import BodyOrienter
>>> body_orienter = BodyOrienter(q1, q2, q3, '123')
>>> B = N.orient_new('B', (body_orienter, ))

Using a SpaceOrienter

>>> from sympy.vector import SpaceOrienter
>>> space_orienter = SpaceOrienter(q1, q2, q3, '312')
>>> C = N.orient_new('C', (space_orienter, ))

Using a QuaternionOrienter

>>> from sympy.vector import QuaternionOrienter
>>> q_orienter = QuaternionOrienter(q0, q1, q2, q3)
>>> D = N.orient_new('D', (q_orienter, ))

orient_new_axis(name, angle, axis, location=None, vector_names=None, variable_names=None)

Axis rotation is a rotation about an arbitrary axis by some angle. The angle is supplied as a SymPy expr scalar, and the axis is supplied as a Vector.

Parameters

name : string
    The name of the new coordinate system

angle : Expr
    The angle by which the new system is to be rotated

axis : Vector
    The axis around which the rotation has to be performed

location : Vector(optional)
    The location of the new coordinate system’s origin wrt this system’s origin. If not specified, the origins are taken to be coincident.

vector_names, variable_names : iterable(optional)
    Iterables of 3 strings each, with custom names for base vectors and base scalars of the new system respectively. Used for simple str printing.

Examples

>>> from sympy.vector import CoordSys3D
>>> from sympy import symbols
>>> q1 = symbols('q1')
>>> N = CoordSys3D('N')
>>> B = N.orient_new_axis('B', q1, N.i + 2 * N.j)

orient_new_body(name, angle1, angle2, angle3, rotation_order, location=None, vector_names=None, variable_names=None)

Body orientation takes this coordinate system through three successive simple rotations.
Body fixed rotations include both Euler Angles and Tait-Bryan Angles, see https://en.wikipedia.org/wiki/Euler_angles.

**Parameters**

- **name**: string
  - The name of the new coordinate system
- **angle1, angle2, angle3**: Expr
  - Three successive angles to rotate the coordinate system by
- **rotation_order**: string
  - String defining the order of axes for rotation
- **location**: Vector(optional)
  - The location of the new coordinate system’s origin wrt this system’s origin. If not specified, the origins are taken to be coincident.
- **vector_names, variable_names**: iterable(optional)
  - Iterables of 3 strings each, with custom names for base vectors and base scalars of the new system respectively. Used for simple str printing.

**Examples**

```python
>>> from sympy.vector import CoordSys3D
>>> from sympy import symbols
>>> q1, q2, q3 = symbols('q1 q2 q3')
>>> N = CoordSys3D('N')

A 'Body' fixed rotation is described by three angles and three body-fixed rotation axes. To orient a coordinate system D with respect to N, each sequential rotation is always about the orthogonal unit vectors fixed to D. For example, a ‘123’ rotation will specify rotations about N.i, then D.j, then D.k. (Initially, D.i is same as N.i) Therefore,

```python
>>> D = N.orient_new_body('D', q1, q2, q3, '123')
``` is same as

```python
>>> D = N.orient_new_axis('D', q1, N.i)
>>> D = D.orient_new_axis('D', q2, D.j)
>>> D = D.orient_new_axis('D', q3, D.k)
```

Acceptable rotation orders are of length 3, expressed in XYZ or 123, and cannot have a rotation about about an axis twice in a row.

```python
>>> B = N.orient_new_body('B', q1, q2, q3, '123')
>>> B = N.orient_new_body('B', q1, q2, 0, 'ZXZ')
>>> B = N.orient_new_body('B', 0, 0, 0, 'XYX')
```

orient_new_quaternion

- **name, q0, q1, q2, q3, location=None, vector_names=None, variable_names=None**

 Quaternion orientation orients the new CoordSys3D with Quaternions, defined as a finite rotation about lambda, a unit vector, by some amount theta.
This orientation is described by four parameters:

\[
\begin{align*}
q_0 &= \cos(\theta/2) \\
q_1 &= \lambda_x \sin(\theta/2) \\
q_2 &= \lambda_y \sin(\theta/2) \\
q_3 &= \lambda_z \sin(\theta/2)
\end{align*}
\]

Quaternion does not take in a rotation order.

Parameters

- **name** : string
 - The name of the new coordinate system
- **q0, q1, q2, q3** : Expr
 - The quaternions to rotate the coordinate system by
- **location** : Vector(optional)
 - The location of the new coordinate system’s origin wrt this system’s origin. If not specified, the origins are taken to be coincident.
- **vector_names, variable_names** : iterable(optional)
 - Iterables of 3 strings each, with custom names for base vectors and base scalars of the new system respectively. Used for simple str printing.

Examples

```python
>>> from sympy.vector import CoordSys3D
>>> from sympy import symbols
>>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3')
>>> N = CoordSys3D('N')
>>> B = N.orient_new_quaternion('B', q0, q1, q2, q3)
```

orient_new_space(*name*, *angle1*, *angle2*, *angle3*, *rotation_order*, *location=None*, *vector_names=None*, *variable_names=None*)

Space rotation is similar to Body rotation, but the rotations are applied in the opposite order.

Parameters

- **name** : string
 - The name of the new coordinate system
- **angle1, angle2, angle3** : Expr
 - Three successive angles to rotate the coordinate system by
- **rotation_order** : string
 - String defining the order of axes for rotation
- **location** : Vector(optional)
 - The location of the new coordinate system’s origin wrt this system’s origin. If not specified, the origins are taken to be coincident.
vector_names, variable_names : iterable(optional)

Iterables of 3 strings each, with custom names for base vectors and base scalars of the new system respectively. Used for simple str printing.

Examples

```python
>>> from sympy.vector import CoordSys3D
>>> q1, q2, q3 = symbols('q1 q2 q3')
>>> N = CoordSys3D('N')
```

To orient a coordinate system D with respect to N, each sequential rotation is always about N's orthogonal unit vectors. For example, a ‘123’ rotation will specify rotations about N.i, then N.j, then N.k. Therefore,

```python
>>> D = N.orient_new_space('D', q1, q2, q3, '312')
```

is same as

```python
>>> B = N.orient_new_axis('B', q1, N.i)
>>> C = B.orient_new_axis('C', q2, N.j)
>>> D = C.orient_new_axis('D', q3, N.k)
```

See also:

CoordSys3D.orient_new_body (page 1498) method to orient via Euler angles

position_wrt(other)

Returns the position vector of the origin of this coordinate system with respect to another Point/CoordSys3D.

Parameters

other : Point/CoordSys3D

If other is a Point, the position of this system’s origin wrt it is returned. If its an instance of CoordSyRect, the position wrt its origin is returned.

Examples

```python
>>> from sympy.vector import CoordSys3D
>>> N = CoordSys3D('N')
>>> N1 = N.locate_new('N1', 10 * N.i)
>>> N.position_wrt(N1)
```

rotation_matrix(other)

Returns the direction cosine matrix(DCM), also known as the ‘rotation matrix’ of this coordinate system with respect to another system.
If v_a is a vector defined in system 'A' (in matrix format) and v_b is the same vector defined in system 'B', then \(v_a = A.\text{rotation_matrix}(B) \cdot v_b \).

A SymPy Matrix is returned.

Parameters

- **other**: CoordSys3D

 The system which the DCM is generated to.

Examples

```python
class sympy.vector.vector.Vector(*args)
```

Super class for all Vector classes. Ideally, neither this class nor any of its subclasses should be instantiated by the user.

property components

Returns the components of this vector in the form of a Python dictionary mapping BaseVector instances to the corresponding measure numbers.
Examples

```python
from sympy.vector import CoordSys3D
C = CoordSys3D('C')
v = 3*C.i + 4*C.j + 5*C.k
v.components
{C.i: 3, C.j: 4, C.k: 5}
```

cross(other)

Returns the cross product of this Vector with another Vector or Dyadic instance. The cross product is a Vector, if 'other' is a Vector. If 'other' is a Dyadic, this returns a Dyadic instance.

Parameters

other: Vector/Dyadic

The Vector or Dyadic we are crossing with.

Examples

```python
from sympy.vector import CoordSys3D
C = CoordSys3D('C')
C.i.cross(C.j)
C.k
C.i ^ C.i
0
v = 3*C.i + 4*C.j + 5*C.k
v ^ C.i
5*C.j + (-4)*C.k
d = C.i.outer(C.i)
C.j.cross(d)
(-1)*(C.k|C.i)
```

dot(other)

Returns the dot product of this Vector, either with another Vector, or a Dyadic, or a Del operator. If 'other' is a Vector, returns the dot product scalar (SymPy expression). If 'other' is a Dyadic, the dot product is returned as a Vector. If 'other' is an instance of Del, returns the directional derivative operator as a Python function. If this function is applied to a scalar expression, it returns the directional derivative of the scalar field wrt this Vector.

Parameters

other: Vector/Dyadic/Del

The Vector or Dyadic we are dotting with, or a Del operator.
Examples

```python
>>> from sympy.vector import CoordSys3D, Del
>>> C = CoordSys3D('C')
>>> delop = Del()
>>> C.i.dot(C.j)
0
>>> C.i & C.i
1
>>> v = 3*C.i + 4*C.j + 5*C.k
>>> v.dot(C.k)
5
>>> (C.i & delop)(C.x*C.y*C.z)
C.y*C.z
>>> d = C.i.outer(C.i)
>>> C.i.dot(d)
C.i
```

magnitude()

Returns the magnitude of this vector.

normalize()

Returns the normalized version of this vector.

outer(other)

Returns the outer product of this vector with another, in the form of a Dyadic instance.

Parameters

other : Vector

The Vector with respect to which the outer product is to be computed.

Examples

```python
>>> from sympy.vector import CoordSys3D
>>> N = CoordSys3D('N')
>>> N.i.outer(N.j)
(N.i|N.j)
```

projection(other, scalar=False)

Returns the vector or scalar projection of the ‘other’ on ‘self’.
Examples

```python
>>> from sympy.vector.coordsysrect import CoordSys3D
>>> C = CoordSys3D('C')
>>> i, j, k = C.base_vectors()
>>> v1 = i + j + k
>>> v2 = 3*i + 4*j
>>> v1.projection(v2)
7/3*C.i + 7/3*C.j + 7/3*C.k
>>> v1.projection(v2, scalar=True)
7/3
```

`separate()`

The constituents of this vector in different coordinate systems, as per its definition. Returns a dict mapping each CoordSys3D to the corresponding constituent Vector.

Examples

```python
>>> from sympy.vector import CoordSys3D
>>> R1 = CoordSys3D('R1')
>>> R2 = CoordSys3D('R2')
>>> v = R1.i + R2.i
>>> v.separate() == {R1: R1.i, R2: R2.i}
True
```

`to_matrix(system)`

Returns the matrix form of this vector with respect to the specified coordinate system.

Parameters

system : CoordSys3D

The system wrt which the matrix form is to be computed

Examples

```python
>>> from sympy.vector import CoordSys3D
>>> C = CoordSys3D('C')
>>> from sympy.abc import a, b, c
>>> v = a*C.i + b*C.j + c*C.k
>>> v.to_matrix(C)
Matrix(
[  a],
[  b],
[  c])
```

class sympy.vector.dyadic.Dyadic(*args)

Super class for all Dyadic-classes.
property components
Returns the components of this dyadic in the form of a Python dictionary mapping BaseDyadic instances to the corresponding measure numbers.

cross(other)
Returns the cross product between this Dyadic, and a Vector, as a Vector instance.

Parameters
other : Vector
 The Vector that we are crossing this Dyadic with

Examples

```python
>>> from sympy.vector import CoordSys3D
>>> N = CoordSys3D('N')
>>> d = N.i.outer(N.i)
>>> d.cross(N.j)
(N.i|N.k)
```

dot(other)
Returns the dot product (also called inner product) of this Dyadic, with another Dyadic or Vector. If ‘other’ is a Dyadic, this returns a Dyadic. Else, it returns a Vector (unless an error is encountered).

Parameters
other : Dyadic/Vector
 The other Dyadic or Vector to take the inner product with

Examples

```python
>>> from sympy.vector import CoordSys3D
>>> N = CoordSys3D('N')
>>> D1 = N.i.outer(N.j)
>>> D2 = N.j.outer(N.j)
>>> D1.dot(D2)
(N.i|N.j)
>>> D1.dot(N.j)
N.i
```

to_matrix(system, second_system=None)
Returns the matrix form of the dyadic with respect to one or two coordinate systems.

Parameters
system : CoordSys3D
 The coordinate system that the rows and columns of the matrix correspond to. If a second system is provided, this only corresponds to the rows of the matrix.
second_system : CoordSys3D, optional, default=None

The coordinate system that the columns of the matrix correspond to.

Examples

```python
>>> from sympy.vector import CoordSys3D
>>> N = CoordSys3D('N')
>>> v = N.i + 2*N.j
>>> d = v.outer(N.i)
>>> d.to_matrix(N)
Matrix([[-1, 0, 0],
        [ 2, 0, 0],
        [ 0, 0, 0]])
```

class sympy.vector.deloperator.Del

Represents the vector differential operator, usually represented in mathematical expressions as the ‘nabla’ symbol.

cross(vect, doit=False)

Represents the cross product between this operator and a given vector - equal to the curl of the vector field.

Parameters

- **vect** : Vector

The vector whose curl is to be calculated.

- **doit** : bool

 If True, the result is returned after calling .doit() on each component. Else, the returned expression contains Derivative instances

Examples

```python
>>> from sympy.vector import CoordSys3D, Del
>>> C = CoordSys3D('C')
>>> delop = Del()
>>> v = C.x*C.y*C.z * (C.i + C.j + C.k)
>>> delop.cross(v, doit=True)
(-C.x*C.y + C.x*C.z)*C.i + (C.x*C.y - C.y*C.z)*C.j + (-C.x*C.z + C.y*C.z)*C.k
>>> (delop ^ C.i).doit()
0
```
dot(*vect*, *doit=False*)

Represents the dot product between this operator and a given vector - equal to the divergence of the vector field.

Parameters

- **vect**: Vector

The vector whose divergence is to be calculated.

- **doit**: bool

 If True, the result is returned after calling .doit() on each component. Else, the returned expression contains Derivative instances.

Examples

```python
>>> from sympy.vector import CoordSys3D, Del
>>> delop = Del()
>>> C = CoordSys3D('C')
>>> delop.dot(C.x*C.i)
Derivative(C.x, C.x)
>>> v = C.x*C.y*C.z * (C.i + C.j + C.k)
>>> (delop & v).doit()
C.x*C.y + C.x*C.z + C.y*C.z
```

gradient(*scalar_field*, *doit=False*)

Returns the gradient of the given scalar field, as a Vector instance.

Parameters

- **scalar_field**: SymPy expression

 The scalar field to calculate the gradient of.

- **doit**: bool

 If True, the result is returned after calling .doit() on each component. Else, the returned expression contains Derivative instances.

Examples

```python
>>> from sympy.vector import CoordSys3D, Del
>>> C = CoordSys3D('C')
>>> delop = Del()
>>> delop.gradient(9)
0
>>> delop(C.x*C.y*C.z).doit()
C.y*C.z*C.i + C.x*C.z*C.j + C.x*C.y*C.k
```

class sympy.vector.parametricregion.**ParametricRegion**(definition, *bounds)

Represents a parametric region in space.

Parameters

- **definition**: tuple to define base scalars in terms of parameters.

- **bounds**: Parameter or a tuple of length 3 to define parameter and corresponding lower and upper bound.
Examples

```python
>>> from sympy import cos, sin, pi
>>> from sympy.abc import r, theta, t, a, b, x, y
>>> from sympy.vector import ParametricRegion

>>> ParametricRegion((t, t**2), (t, -1, 2))
ParametricRegion((t, t**2), (t, -1, 2))
>>> ParametricRegion((x, y), (x, 3, 4), (y, 5, 6))
ParametricRegion((x, y), (x, 3, 4), (y, 5, 6))
>>> ParametricRegion((r*cos(theta), r*sin(theta)), (r, -2, 2), (theta, 0, pi))
ParametricRegion((r*cos(theta), r*sin(theta)), (r, -2, 2), (theta, 0, pi))
>>> ParametricRegion((a*cos(t), b*sin(t)), t)
ParametricRegion((a*cos(t), b*sin(t)), t)

>>> circle = ParametricRegion((r*cos(theta), r*sin(theta)), r, (theta, 0, pi))
>>> circle.parameters
(r, theta)
>>> circle.definition
(r*cos(theta), r*sin(theta))
>>> circle.limits
{theta: (0, pi)}
```

Dimension of a parametric region determines whether a region is a curve, surface or volume region. It does not represent its dimensions in space.

```python
>>> circle.dimensions
1
```

class sympy.vector.implicitregion.ImplicitRegion(variables, equation)**

Represents an implicit region in space.

Parameters

- **variables**: tuple to map variables in implicit equation to base scalars.
- **equation**: An expression or Eq denoting the implicit equation of the region.

Examples

```python
>>> from sympy import Eq
>>> from sympy.abc import x, y, z, t
>>> from sympy.vector import ImplicitRegion

>>> ImplicitRegion((x, y), x**2 + y**2 - 4)
ImplicitRegion((x, y), x**2 + y**2 - 4)
>>> ImplicitRegion((x, y), Eq(y*x, 1))
ImplicitRegion((x, y), x*y - 1)
```
>>> parabola = ImplicitRegion((x, y), y**2 - 4*x)
>>> parabola.degree
2
>>> parabola.equation
-4*x + y**2
>>> parabola.rational_parametrization(t)
(4/t**2, 4/t)

>>> r = ImplicitRegion((x, y, z), Eq(z, x**2 + y**2))
>>> r.variables
(x, y, z)
>>> r.singular_points()
EmptySet
>>> r.regular_point()
(-10, -10, 200)

multiplicity(point)
Returns the multiplicity of a singular point on the region.
A singular point (x,y) of region is said to be of multiplicity m if all the partial derivatives off to order m - 1 vanish there.

Examples

>>> from sympy.abc import x, y, z
>>> I = ImplicitRegion((x, y, z), x**2 + y**3 - z**4)
>>> I.singular_points()
{(0, 0, 0)}
>>> I.multiplicity((0, 0, 0))
2

rational_parametrization(parameters=('t', 's'), reg_point=None)
Returns the rational parametrization of implicit region.

Examples

>>> from sympy import Eq
>>> parabola = ImplicitRegion((x, y), y**2 - 4*x)
>>> parabola.rational_parametrization()
(4/t**2, 4/t)

>>> circle = ImplicitRegion((x, y), Eq(x**2 + y**2, 4))
>>> circle.rational_parametrization()
(4*t/(t**2 + 1), 4*t**2/(t**2 + 1) - 2)
>>> I = ImplicitRegion((x, y), x**3 + x**2 - y**2)
>>> I.rational_parametrization()
(t**2 - 1, t*(t**2 - 1))

>>> cubic_curve = ImplicitRegion((x, y), x**3 + x**2 - y**2)
>>> cubic_curve.rational_parametrization(parameters=(t))
(t**2 - 1, t*(t**2 - 1))

>>> sphere = ImplicitRegion((x, y, z), x**2 + y**2 + z**2 - 4)
>>> sphere.rational_parametrization(parameters=(t, s))
(-2 + 4/(s**2 + t**2 + 1), 4*s/(s**2 + t**2 + 1), 4*t/(s**2 + t**2 + 1))

For some conics, regular_points() is unable to find a point on curve. To calulate the parametric representation in such cases, user need to determine a point on the region and pass it using reg_point.

>>> c = ImplicitRegion((x, y), (x - 1/2)**2 + (y)**2 - (1/4)**2)
>>> c.rational_parametrization(reg_point=(3/4, 0))
(0.5 - 0.5/(t**2 + 1), -0.5*t/(t**2 + 1))

References

regular_point()
Returns a point on the implicit region.

Examples

>>> from sympy.abc import x, y, z
>>> from sympy.vector import ImplicitRegion
>>> circle = ImplicitRegion((x, y), (x + 2)**2 + (y - 3)**2 - 16)
>>> circle.regular_point()
(-2, -1)
>>> parabola = ImplicitRegion((x, y), x**2 - 4*y)
>>> parabola.regular_point()
(0, 0)
>>> r = ImplicitRegion((x, y, z), (x + y + z)**4)
>>> r.regular_point()
(-10, -10, 20)
References

singular_points()

Returns a set of singular points of the region.

The singular points are those points on the region where all partial derivatives vanish.

Examples

```python
>>> from sympy.abc import x, y
>>> from sympy.vector import ImplicitRegion
>>> I = ImplicitRegion((x, y), (y - 1)**2 - x**3 + 2*x**2 - x)
>>> I.singular_points()
{(1, 1)}
```

class sympy.vector.integrals.ParametricIntegral(field, parametricregion)

Represents integral of a scalar or vector field over a Parametric Region

Examples

```python
>>> from sympy import cos, sin, pi
>>> from sympy.vector import CoordSys3D, ParametricRegion, ParametricIntegral
>>> from sympy.abc import r, t, theta, phi

>>> C = CoordSys3D('C')
>>> curve = ParametricRegion((3*t - 2, t + 1), (t, 1, 2))
>>> ParametricIntegral(C.x, curve)
5*sqrt(10)/2
>>> length = ParametricIntegral(1, curve)
>>> length
sqrt(10)
>>> semisphere = ParametricRegion((2*sin(phi)*cos(theta), -2*sin(phi)*sin(theta), 2*cos(phi)), (theta, 0, 2*pi), (phi, 0, pi/2))
>>> ParametricIntegral(C.z, semisphere)
8*pi
```

```python
>>> ParametricIntegral(C.j + C.k, ParametricRegion((r*cos(theta), -r*sin(theta)), (r, theta))
0
```
Orienter classes (docstrings)

class sympy.vector.orienters.Orienter(*args)
 Super-class for all orienter classes.
 rotation_matrix()
 The rotation matrix corresponding to this orienter instance.

class sympy.vector.orienters.AxisOrienter(angle, axis)
 Class to denote an axis orienter.
 __init__(angle, axis)
 Axis rotation is a rotation about an arbitrary axis by some angle. The angle is supplied as a SymPy expr scalar, and the axis is supplied as a Vector.

 Parameters
 angle : Expr
 The angle by which the new system is to be rotated
 axis : Vector
 The axis around which the rotation has to be performed

Examples

>>> from sympy.vector import CoordSys3D
>>> from sympy import symbols
>>> q1 = symbols('q1')
>>> N = CoordSys3D('N')
>>> from sympy.vector import AxisOrienter
>>> orienter = AxisOrienter(q1, N.i + 2 * N.j)
>>> B = N.orient_new('B', (orienter,))

rotation_matrix(system)
 The rotation matrix corresponding to this orienter instance.

 Parameters
 system : CoordSys3D
 The coordinate system wrt which the rotation matrix is to be computed

class sympy.vector.orienters.BodyOrienter(angle1, angle2, angle3, rot_order)
 Class to denote a body-orienter.
 __init__(angle1, angle2, angle3, rot_order)
 Body orientation takes this coordinate system through three successive simple rotations.

 Body fixed rotations include both Euler Angles and Tait-Bryan Angles, see https://en.wikipedia.org/wiki/Euler_angles.

 Parameters
 angle1, angle2, angle3 : Expr
 Three successive angles to rotate the coordinate system by
rotation_order : string

String defining the order of axes for rotation

Examples

```python
>>> from sympy.vector import CoordSys3D, BodyOrienter
>>> from sympy import symbols
>>> q1, q2, q3 = symbols('q1 q2 q3')
>>> N = CoordSys3D('N')

A ‘Body’ fixed rotation is described by three angles and three body-fixed rotation axes. To orient a coordinate system D with respect to N, each sequential rotation is always about the orthogonal unit vectors fixed to D. For example, a ‘123’ rotation will specify rotations about N.i, then D.j, then D.k. (Initially, D.i is same as N.i) Therefore,

```python
>>> body_orienter = BodyOrienter(q1, q2, q3, '123')
>>> D = N.orient_new('D', (body_orienter,))
```

is same as

```python
>>> from sympy.vector import AxisOrienter
>>> axis_orienter1 = AxisOrienter(q1, N.i)
>>> D = N.orient_new('D', (axis_orienter1,))
>>> axis_orienter2 = AxisOrienter(q2, D.j)
>>> D = D.orient_new('D', (axis_orienter2,))
>>> axis_orienter3 = AxisOrienter(q3, D.k)
>>> D = D.orient_new('D', (axis_orienter3,))
```

Acceptable rotation orders are of length 3, expressed in XYZ or 123, and cannot have a rotation about about an axis twice in a row.

```python
>>> body_orienter1 = BodyOrienter(q1, q2, q3, '123')
>>> body_orienter2 = BodyOrienter(q1, q2, 0, 'ZXZ')
>>> body_orienter3 = BodyOrienter(0, 0, 0, 'XYX')
```

class sympy.vector.orienters.SpaceOrienter(angle1, angle2, angle3, rot_order)

Class to denote a space-orienter.

__init__(angle1, angle2, angle3, rot_order)

Space rotation is similar to Body rotation, but the rotations are applied in the opposite order.

Parameters

- **angle1, angle2, angle3** : Expr
  - Three successive angles to rotate the coordinate system by

- **rotation_order** : string
  - String defining the order of axes for rotation
Examples

```python
>>> from sympy.vector import CoordSys3D, SpaceOrienter
>>> from sympy import symbols
>>> q1, q2, q3 = symbols('q1 q2 q3')
>>> N = CoordSys3D('N')
```

To orient a coordinate system D with respect to N, each sequential rotation is always about N’s orthogonal unit vectors. For example, a ‘123’ rotation will specify rotations about N.i, then N.j, then N.k. Therefore,

```python
>>> space_orienter = SpaceOrienter(q1, q2, q3, '312')
>>> D = N.orient_new('D', (space_orienter,))
```

is same as

```python
>>> from sympy.vector import AxisOrienter
>>> axis_orienter1 = AxisOrienter(q1, N.i)
>>> B = N.orient_new('B', (axis_orienter1,))
>>> axis_orienter2 = AxisOrienter(q2, N.j)
>>> C = B.orient_new('C', (axis_orienter2,))
>>> axis_orienter3 = AxisOrienter(q3, N.k)
>>> D = C.orient_new('C', (axis_orienter3,))
```

See also:

*BodyOrienter* (page 1513)

Orienter to orient systems wrt Euler angles.

class sympy.vector.orienters.QuaternionOrienter(q0, q1, q2, q3)

Class to denote a quaternion-orienter.

__init__(angle1, angle2, angle3, rot_order)

Quaternion orientation orients the new CoordSys3D with Quaternions, defined as a finite rotation about lambda, a unit vector, by some amount theta.

This orientation is described by four parameters:

q0 = cos(theta/2)
q1 = lambda_x sin(theta/2)
q2 = lambda_y sin(theta/2)
q3 = lambda_z sin(theta/2)

Quaternion does not take in a rotation order.

Parameters

q0, q1, q2, q3 : Expr

The quaternions to rotate the coordinate system by
Examples

```python
>>> from sympy.vector import CoordSys3D
>>> from sympy import symbols
>>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3')
>>> N = CoordSys3D('N')
>>> from sympy.vector import QuaternionOrienter
>>> q_orienter = QuaternionOrienter(q0, q1, q2, q3)
>>> B = N.orient_new('B', (q_orienter,))
```

Essential Functions in sympy.vector (docstrings)

**sympy.vector.matrix_to_vector**(matrix, system)

Converts a vector in matrix form to a Vector instance.

It is assumed that the elements of the Matrix represent the measure numbers of the components of the vector along basis vectors of 'system'.

**Parameters**

- **matrix** : SymPy Matrix, Dimensions: (3, 1)
  
  The matrix to be converted to a vector

- **system** : CoordSys3D
  
  The coordinate system the vector is to be defined in

**Examples**

```python
>>> from sympy import ImmutableMatrix as Matrix
>>> m = Matrix([1, 2, 3])
>>> from sympy.vector import CoordSys3D, matrix_to_vector
>>> C = CoordSys3D('C')
>>> v = matrix_to_vector(m, C)
>>> v
C.i + 2*C.j + 3*C.k
>>> v.to_matrix(C) == m
True
```

**sympy.vector.express**(expr, system, system2=None, variables=False)

Global function for ‘express’ functionality.

Re-expresses a Vector, Dyadic or scalar(sympyfiable) in the given coordinate system.

If ‘variables’ is True, then the coordinate variables (base scalars) of other coordinate systems present in the vector/scalar field or dyadic are also substituted in terms of the base scalars of the given system.

**Parameters**

- **expr** : Vector/Dyadic/scalar(sympyfiable)
  
  The expression to re-express in CoordSys3D ‘system’

- **system** : CoordSys3D
The coordinate system the expr is to be expressed in

**system2: CoordSys3D**

The other coordinate system required for re-expression (only for a Dyadic Expr)

**variables**: boolean

Specifies whether to substitute the coordinate variables present in expr, in terms of those of parameter system

**Examples**

```python
>>> from sympy.vector import CoordSys3D
>>> from sympy import Symbol, cos, sin
>>> N = CoordSys3D('N')
>>> q = Symbol('q')
>>> B = N.orient_new_axis('B', q, N.k)
>>> from sympy.vector import express
>>> express(B.i, N)
(cos(q))*N.i + (sin(q))*N.j
>>> express(N.x, B, variables=True)
B.x*cos(q) - B.y*sin(q)
>>> d = N.i.outer(N.i)
>>> express(d, B, N)
(cos(q))*(B.i|N.i) + (-sin(q))*(B.j|N.i)
True
```

**sympy.vector.curl(vect, doit=True)**

Returns the curl of a vector field computed wrt the base scalars of the given coordinate system.

**Parameters**

- **vect**: Vector
  
  The vector operand

- **doit**: bool
  
  If True, the result is returned after calling .doit() on each component. Else, the returned expression contains Derivative instances

**Examples**

```python
>>> from sympy.vector import CoordSys3D, curl
>>> R = CoordSys3D('R')
>>> v1 = R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k
>>> curl(v1)
0
>>> v2 = R.x*R.y*R.z*R.i
>>> curl(v2)
R.x*R.y*R.j + (-R.x*R.z)*R.k
```
sympy.vector.divergence(vect, doit=True)
Returns the divergence of a vector field computed wrt the base scalars of the given coordinate system.

Parameters
vector : Vector
The vector operand
doit : bool
If True, the result is returned after calling .doit() on each component. Else, the returned expression contains Derivative instances

Examples

```python
>>> from sympy.vector import CoordSys3D, divergence
>>> R = CoordSys3D('R')
>>> v1 = R.x*R.y*R.z * (R.i+R.j+R.k)

>>> divergence(v1)
R.x*R.y + R.x*R.z + R.y*R.z
>>> v2 = 2*R.y*R.z*R.j
>>> divergence(v2)
2*R.z
```

sympy.vector.gradient(scalar_field, doit=True)
Returns the vector gradient of a scalar field computed wrt the base scalars of the given coordinate system.

Parameters
scalar_field : SymPy Expr
The scalar field to compute the gradient of
doit : bool
If True, the result is returned after calling .doit() on each component. Else, the returned expression contains Derivative instances

Examples

```python
>>> from sympy.vector import CoordSys3D, gradient
>>> R = CoordSys3D('R')
>>> s1 = R.x*R.y*R.z
>>> gradient(s1)
R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k
>>> s2 = 5*R.x**2*R.z
>>> gradient(s2)
10*R.x*R.z*R.i + 5*R.x**2*R.k
```

sympy.vector.is_conservative(field)
Checks if a field is conservative.
Parameters

field : Vector

The field to check for conservative property

Examples

```python
>>> from sympy.vector import CoordSys3D
>>> from sympy.vector import is_conservative
>>> R = CoordSys3D('R')
>>> is_conservative(R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k)
True
>>> is_conservative(R.z*R.j)
False
```

sympy.vector.is_solenoidal(field)

Checks if a field is solenoidal.

Parameters

field : Vector

The field to check for solenoidal property

Examples

```python
>>> from sympy.vector import CoordSys3D
>>> from sympy.vector import is_solenoidal
>>> R = CoordSys3D('R')
>>> is_solenoidal(R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k)
True
>>> is_solenoidal(R.y*R.j)
False
```

sympy.vector.scalar_potential(field, coord_sys)

Returns the scalar potential function of a field in a given coordinate system (without the added integration constant).

Parameters

field : Vector

The vector field whose scalar potential function is to be calculated

coord_sys : CoordSys3D

The coordinate system to do the calculation in
Examples

```python
>>> from sympy.vector import CoordSys3D
>>> R = CoordSys3D('R')
>>> scalar_potential(R.k, R) == R.z
True
>>> scalar_field = 2*R.x**2*R.y*R.z
>>> grad_field = gradient(scalar_field)
>>> scalar_potential_difference(grad_field, R)
2*R.x**2*R.y*R.z
```

**sympy.vector.scalar_potential_difference**(*field, coord_sys, point1, point2*)

Returns the scalar potential difference between two points in a certain coordinate system, wrt a given field.

If a scalar field is provided, its values at the two points are considered. If a conservative vector field is provided, the values of its scalar potential function at the two points are used.

Returns (potential at point2) - (potential at point1)

The position vectors of the two Points are calculated wrt the origin of the coordinate system provided.

**Parameters**

- **field**: Vector/Expr
  The field to calculate wrt
- **coord_sys**: CoordSys3D
  The coordinate system to do the calculations in
- **point1**: Point
  The initial Point in given coordinate system
- **position2**: Point
  The second Point in the given coordinate system

Examples

```python
>>> from sympy.vector import CoordSys3D
>>> R = CoordSys3D('R')
>>> P = R.origin.locate_new('P', R.x*R.i + R.y*R.j + R.z*R.k)
>>> vectfield = 4*R.x*R.y*R.i + 2*R.x**2*R.j
>>> scalar_potential_difference(vectfield, R, R.origin, P)
2*R.x**2*R.y
>>> Q = R.origin.locate_new('O', 3*R.i + R.j + 2*R.k)
>>> scalar_potential_difference(vectfield, R, P, Q)
-2*R.x**2*R.y + 18
```

**sympy.vector.integrals.vector_integrate**(*field, *region*)

Compute the integral of a vector/scalar field over a a region or a set of parameters.
Examples

```python
>>> from sympy.vector import CoordSys3D, ParametricRegion, vector_integrate
>>> from sympy import x, y, t
>>> C = CoordSys3D('C')

>>> region = ParametricRegion((t, t**2), (t, 1, 5))
>>> vector_integrate(C.x*C.i, region)
12

Integrals over some objects of geometry module can also be calculated.

```python
>>> from sympy.geometry import Point, Circle, Triangle
>>> c = Circle(Point(0, 2), 5)
>>> vector_integrate(C.x**2 + C.y**2, c)
290*pi

```python
>>> triangle = Triangle(Point(-2, 3), Point(2, 3), Point(0, 5))
>>> vector_integrate(3*C.x**2*C.y*C.i + C.j, triangle)
-8
```

Integrals over some simple implicit regions can be computed. But in most cases, it takes too long to compute over them. This is due to the expressions of parametric representation becoming large.

```python
>>> from sympy.vector import ImplicitRegion

```python
>>> c2 = ImplicitRegion((x, y), (x - 2)**2 + (y - 1)**2 - 9)
>>> vector_integrate(1, c2)
6*pi
```

Integral of fields with respect to base scalars:

```python
>>> vector_integrate(12*C.y**3, (C.y, 1, 3))
240
>>> vector_integrate(C.x**2*C.z, C.x)
C.x**3*C.z/3
>>> vector_integrate(C.x*C.i - C.y*C.k, C.x)
(Integral(C.x, C.x))*C.i + (Integral(-C.y, C.x))*C.k
>>> _.doit()
C.x**2/2*C.i + (-C.x*C.y)*C.k
```

References for Vector

5.8.5 Number Theory

Contents
Number Theory

Ntheory Class Reference

class sympy.ntheory.generate.Sieve
An infinite list of prime numbers, implemented as a dynamically growing sieve of Eratosthenes. When a lookup is requested involving an odd number that has not been sieved, the sieve is automatically extended up to that number.

Examples

>>> from sympy import sieve
>>> sieve._reset() # this line for doctest only
>>> 25 in sieve
False
>>> sieve._list
array('l', [2, 3, 5, 7, 11, 13, 17, 19, 23])

extend(n)
Grow the sieve to cover all primes <= n (a real number).

Examples

>>> from sympy import sieve
>>> sieve._reset() # this line for doctest only
>>> sieve.extend(30)
>>> sieve[10] == 29
True

extend_to_no(i)
Extend to include the ith prime number.

Parameters
 i: integer

Examples

>>> from sympy import sieve
>>> sieve._reset() # this line for doctest only
>>> sieve.extend_to_no(9)
>>> sieve._list
array('l', [2, 3, 5, 7, 11, 13, 17, 19, 23])
Notes

The list is extended by 50% if it is too short, so it is likely that it will be longer than requested.

mobiusrange(a, b)
Generate all mobius numbers for the range [a, b).

Parameters

a : integer
First number in range

b : integer
First number outside of range

Examples

```python
>>> from sympy import sieve
>>> print([i for i in sieve.mobiusrange(7, 18)])
[-1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1]
```

primerange(a, b=None)
Generate all prime numbers in the range [2, a) or [a, b).

Examples

```python
>>> from sympy import sieve, prime

All primes less than 19:
```print([i for i in sieve.primerange(19)])
[2, 3, 5, 7, 11, 13, 17]
```

All primes greater than or equal to 7 and less than 19:
```print([i for i in sieve.primerange(7, 19)])
[7, 11, 13, 17]
```

All primes through the 10th prime
```print(list(sieve.primerange(prime(10) + 1)))
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
```

search(n)
Return the indices i, j of the primes that bound n.

If n is prime then i == j.

Although n can be an expression, if ceiling cannot convert it to an integer then an n error will be raised.
Examples

```python
>>> from sympy import sieve
>>> sieve.search(25)
(9, 10)
>>> sieve.search(23)
(9, 9)
```

totientrange\((a, b)\)

Generate all totient numbers for the range \([a, b)\).

Examples

```python
>>> from sympy import sieve
>>> print([i for i in sieve.totientrange(7, 18)])
[6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16]
```

Ntheory Functions Reference

sympy.ntheory.generate.prime\((nth)\)

Return the \(n\)th prime, with the primes indexed as prime(1) = 2, prime(2) = 3, etc.... The \(n\)th prime is approximately \(n \log(n)\).

Logarithmic integral of \(x\) is a pretty nice approximation for number of primes \(\leq x\), i.e. \(\text{li}(x) \sim \pi(x)\) In fact, for the numbers we are concerned about( \(x<1e11\) ), \(\text{li}(x) - \pi(x) < 50000\)

Also, \(\text{li}(x) > \pi(x)\) can be safely assumed for the numbers which can be evaluated by this function.

Here, we find the least integer \(m\) such that \(\text{li}(m) > n\) using binary search. Now \(\pi(m-1) < \text{li}(m-1) \leq n\),

We find \(\pi(m - 1)\) using primepi function.

Starting from \(m\), we have to find \(n - \pi(m-1)\) more primes.

For the inputs this implementation can handle, we will have to test primality for at max about \(10^{**5}\) numbers, to get our answer.

Examples

```python
>>> from sympy import prime
>>> prime(10)
29
>>> prime(1)
2
>>> prime(100000)
1299709
```

See also:
**sympy.ntheory.primetest.isprime** *(page 1562)*
Test if n is prime

**primerange** *(page 1527)*
Generate all primes in a given range

**primepi** *(page 1525)*
Return the number of primes less than or equal to n

**References**

[R618], [R619], [R620]

sympy.ntheory.generate.primepi(n)

Represents the prime counting function $\pi(n) = \text{the number of prime numbers less than or equal to } n$.

**Algorithm Description:**

In sieve method, we remove all multiples of prime $p$ except $p$ itself.

Let $\phi(i,j)$ be the number of integers $2 \leq k \leq i$ which remain after sieving from primes less than or equal to $j$. Clearly, $\pi(n) = \phi(n, \sqrt{n})$

If $j$ is not a prime, $\phi(i,j) = \phi(i,j-1)$

if $j$ is a prime, We remove all numbers(except $j$) whose smallest prime factor is $j$.

Let $x = j \times a$ be such a number, where $2 \leq a \leq i/j$ Now, after sieving from primes $\leq j - 1$, $a$ must remain (because $x$, and hence $a$ has no prime factor $\leq j - 1$) Clearly, there are $\phi(i/j, j - 1)$ such $a$ which remain on sieving from primes $\leq j - 1$

Now, if $a$ is a prime less than equal to $j - 1$, $x = j \times a$ has smallest prime factor = $a$, and has already been removed(by sieving from $a$). So, we do not need to remove it again. (Note: there will be $\pi(j - 1)$ such $x$)

Thus, number of $x$, that will be removed are: $\phi(i/j, j - 1) - \phi(i - 1, j - 1)$ (Note that $\pi(j - 1) = \phi(j - 1, j - 1)$)

$\Rightarrow \phi(i,j) = \phi(i, j - 1) - \phi(i/j, j - 1) + \phi(j - 1, j - 1)$

So, following recursion is used and implemented as dp:

$\phi(a, b) = \phi(a, b - 1)$, if $b$ is not a prime $\phi(a, b) = \phi(a, b-1)-\phi(a/b, b-1) + \phi(b-1, b-1)$, if $b$ is prime

Clearly $a$ is always of the form floor($n/k$), which can take at most $2\sqrt{n}$ values. Two arrays arr1,arr2 are maintained $\text{arr1[i]} = \phi(i, j)$, $\text{arr2[i]} = \phi(n // i, j)$

Finally the answer is arr2[1]
Examples

```python
>>> from sympy import primepi, prime, prevprime, isprime

>>> primepi(25)
9

So there are 9 primes less than or equal to 25. Is 25 prime?

```python
>>> isprime(25)
False
```

It is not. So the first prime less than 25 must be the 9th prime:

```python
>>> prevprime(25) == prime(9)
True
```

See also:

- sympy.ntheory.primetest.isprime (page 1562)
 Test if n is prime

- primerange (page 1527)
 Generate all primes in a given range

- prime (page 1524)
 Return the nth prime

sympy.ntheory.generate.nextprime(n, ith=1)
Return the ith prime greater than n.
 i must be an integer.

Notes

Potential primes are located at $6j +/- 1$. This property is used during searching.

```python
>>> from sympy import nextprime

>>> [(i, nextprime(i)) for i in range(10, 15)]
[(10, 11), (11, 13), (12, 13), (13, 17), (14, 17)]

>>> nextprime(2, ith=2)  # the 2nd prime after 2
5
```

See also:

- prevprime (page 1526)
 Return the largest prime smaller than n

- primerange (page 1527)
 Generate all primes in a given range

sympy.ntheory.generate.prevprime(n)
Return the largest prime smaller than n.
Notes

Potential primes are located at 6*j +/- 1. This property is used during searching.

```python
>>> from sympy import prevprime
>>> [(i, prevprime(i)) for i in range(10, 15)]
[(10, 7), (11, 7), (12, 11), (13, 11), (14, 13)]
```

See also:

nextprime (page 1526)

Return the ith prime greater than n

primerange (page 1527)

Generates all primes in a given range

```python
sympy.ntheory.generate.primerange(a, b=None)
```

Generate a list of all prime numbers in the range [2, a), or [a, b).

If the range exists in the default sieve, the values will be returned from there; otherwise values will be returned but will not modify the sieve.

Examples

```python
>>> from sympy import primerange, prime

All primes less than 19:

```python
>>> list(primerange(19))
[2, 3, 5, 7, 11, 13, 17]
```

All primes greater than or equal to 7 and less than 19:

```python
>>> list(primerange(7, 19))
[7, 11, 13, 17]
```

All primes through the 10th prime

```python
>>> list(primerange(prime(10) + 1))
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
```

The Sieve method, primerange, is generally faster but it will occupy more memory as the sieve stores values. The default instance of Sieve, named sieve, can be used:

```python
>>> from sympy import sieve
>>> list(sieve.primerange(1, 30))
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
```
Notes

Some famous conjectures about the occurrence of primes in a given range are [1]:

- **Twin primes:** though often not, the following will give 2 primes
  an infinite number of times:
  \[ \text{primerange}(6n - 1, 6n + 2) \]

- **Legendre’s:** the following always yields at least one prime
  \[ \text{primerange}(n^2, (n+1)^2+1) \]

- **Bertrand’s (proven):** there is always a prime in the range
  \[ \text{primerange}(n, 2n) \]

- **Brocard’s:** there are at least four primes in the range
  \[ \text{primerange}(\text{prime}(n)^2, \text{prime}(n+1)^2) \]

The average gap between primes is \( \log(n) \) [2]; the gap between primes can be arbitrarily large since sequences of composite numbers are arbitrarily large, e.g. the numbers in the sequence \( n! + 2, n! + 3 \ldots n! + n \) are all composite.

See also:

- **`prime`** (page 1524)
  Return the nth prime

- **`nextprime`** (page 1526)
  Return the ith prime greater than n

- **`prevprime`** (page 1526)
  Return the largest prime smaller than n

- **`randprime`** (page 1528)
  Returns a random prime in a given range

- **`primorial`** (page 1529)
  Returns the product of primes based on condition

- **`sieve.primerange`** (page 1523)
  Return range from already computed primes or extend the sieve to contain the requested range.

References

[R621], [R622]

sympy.ntheory.generate.randprime\((a, b)\)

Return a random prime number in the range \( [a, b] \).

Bertrand’s postulate assures that randprime\((a, 2a)\) will always succeed for \( a > 1 \).
Examples

```python
>>> from sympy import randprime, isprime
>>> randprime(1, 30)
13
>>> isprime(randprime(1, 30))
True
```

See also:

`primerange` (page 1527)

Generate all primes in a given range

References

[R623]

`sympy.ntheory.generate.primorial(n, nth=True)`

Returns the product of the first n primes (default) or the primes less than or equal to n (when nth=False).

Examples

```python
>>> from sympy.ntheory.generate import primorial, primerange
>>> from sympy import factorint, Mul, primefactors, sqrt
>>> primorial(4) # the first 4 primes are 2, 3, 5, 7
210
>>> primorial(4, nth=False) # primes <= 4 are 2 and 3
6
>>> primorial(1)
2
>>> primorial(1, nth=False)
1
>>> primorial(sqrt(101), nth=False)
210
```

One can argue that the primes are infinite since if you take a set of primes and multiply them together (e.g. the primorial) and then add or subtract 1, the result cannot be divided by any of the original factors, hence either 1 or more new primes must divide this product of primes.

In this case, the number itself is a new prime:

```python
>>> factorint(primorial(4) + 1)
{211: 1}
```

In this case two new primes are the factors:

```python
>>> factorint(primorial(4) - 1)
{11: 1, 19: 1}
```

Here, some primes smaller and larger than the primes multiplied together are obtained:
>>> p = list(primerange(10, 20))
>>> sorted(set(primefactors(Mul(*p) + 1)).difference(set(p)))
[2, 5, 31, 149]

See also:

primerange (page 1527)
Generate all primes in a given range

sympy.ntheory.generate.cycle_length(f, x0, nmax=None, values=False)
For a given iterated sequence, return a generator that gives the length of the iterated
sequence (lambda) and the length of terms before the cycle begins (mu); if values is True
then the terms of the sequence will be returned instead. The sequence is started with
value x0.

Note: more than the first lambda + mu terms may be returned and this is the cost of
cycle detection with Brent’s method; there are, however, generally less terms calculated
than would have been calculated if the proper ending point were determined, e.g. by
using Floyd’s method.

>>> from sympy.ntheory.generate import cycle_length
This will yield successive values of i <- func(i):

>>> def iter(func, i):
...     while 1:
...         ii = func(i)
...         yield ii
...         i = ii

A function is defined:

>>> func = lambda i: (i**2 + 1) % 51

and given a seed of 4 and the mu and lambda terms calculated:

>>> next(cycle_length(func, 4))
(6, 2)

We can see what is meant by looking at the output:

>>> n = cycle_length(func, 4, values=True)
>>> list(n for ni in n)
[17, 35, 2, 5, 26, 14, 44, 50, 2, 5, 26, 14]

There are 6 repeating values after the first 2.

If a sequence is suspected of being longer than you might wish, nmax can be used to exit
early (and mu will be returned as None):

>>> next(cycle_length(func, 4, nmax = 4))
(4, None)
>>> [ni for ni in cycle_length(func, 4, nmax = 4, values=True)]
[17, 35, 2, 5]
SymPy Documentation, Release 1.12.1

Code modified from:

sympy.ntheory.generate.composite(nth)
Return the nth composite number, with the composite numbers indexed as composite(1) = 4, composite(2) = 6, etc....

Examples

```python
>>> from sympy import composite
>>> composite(36)
52
>>> composite(1)
4
>>> composite(17737)
20000
```

See also:

sympy.ntheory.primetest.isprime (page 1562)
Test if n is prime

primerange (page 1527)
Generate all primes in a given range

primepi (page 1525)
Return the number of primes less than or equal to n

prime (page 1524)
Return the nth prime

compositepi (page 1531)
Return the number of positive composite numbers less than or equal to n

sympy.ntheory.generate.compositepi(n)
Return the number of positive composite numbers less than or equal to n. The first positive composite is 4, i.e. compositepi(4) = 1.

Examples

```python
>>> from sympy import compositepi
>>> compositepi(25)
15
>>> compositepi(1000)
831
```

See also:

sympy.ntheory.primetest.isprime (page 1562)
Test if n is prime

primerange (page 1527)
Generate all primes in a given range

5.8. Topics 1531
**prime** *(page 1524)*
Return the nth prime

**primepi** *(page 1525)*
Return the number of primes less than or equal to n

**composite** *(page 1531)*
Return the nth composite number

**sympy.ntheory.factor_.smoothness** *(page 1529)*
Return the B-smooth and B-powersmooth values of n.
The smoothness of n is the largest prime factor of n; the power-smoothness is the largest divisor raised to its multiplicity.

**Examples**

```python
>>> from sympy.ntheory.factor_ import smoothness
>>> smoothness(2**7*3**2)
(3, 128)
>>> smoothness(2**4*13)
(13, 16)
>>> smoothness(2)
(2, 2)
```

**See also:**

**factorint** *(page 1539), smoothness_p** *(page 1532)*

**sympy.ntheory.factor_.smoothness_p** *(n, m=-1, power=0, visual=None)*
Return a list of \([m, \{p, (M, sm(p + m), psm(p + m))\}...]\) where:

1. \(p^M\) is the base-p divisor of n
2. \(sm(p + m)\) is the smoothness of \(p + m\) (\(m = -1\) by default)
3. \(psm(p + m)\) is the power smoothness of \(p + m\)
The list is sorted according to smoothness (default) or by power smoothness if power=1.
The smoothness of the numbers to the left (\(m = -1\)) or right (\(m = 1\)) of a factor govern the results that are obtained from the \(+/- 1\) type factoring methods.

```python
>>> from sympy.ntheory.factor_ import smoothness_p, factorint
>>> smoothness_p(10431, m=1)
(1, [(3, (2, 2, 2)), (19, (1, 3, 9)), (61, (1, 31, 31))])
>>> smoothness_p(10431)
(-1, [(3, (2, 2, 2)), (19, (1, 3, 9)), (61, (1, 5, 5))])
>>> smoothness_p(10431, power=1)
(-1, [(3, (2, 2, 2)), (61, (1, 5, 5)), (19, (1, 3, 9))])
```

If visual=True then an annotated string will be returned:

```python
>>> print(smoothness_p(21477639576571, visual=1))
p**i=4410317**1 has p-1 B=1787, B-pow=1787
p**i=4869863**1 has p-1 B=2434931, B-pow=2434931
```

This string can also be generated directly from a factorization dictionary and vice versa:
The table of the output logic is:

<table>
<thead>
<tr>
<th>Input</th>
<th>Visual</th>
<th>True</th>
<th>False</th>
<th>other</th>
</tr>
</thead>
<tbody>
<tr>
<td>dict</td>
<td>str</td>
<td>tuple</td>
<td>str</td>
<td></td>
</tr>
<tr>
<td>str</td>
<td>str</td>
<td>tuple</td>
<td>dict</td>
<td></td>
</tr>
<tr>
<td>tuple</td>
<td>str</td>
<td>tuple</td>
<td></td>
<td>tuple</td>
</tr>
<tr>
<td>n</td>
<td>str</td>
<td>tuple</td>
<td>str</td>
<td></td>
</tr>
<tr>
<td>mul</td>
<td>str</td>
<td>tuple</td>
<td>tuple</td>
<td></td>
</tr>
</tbody>
</table>

**See also:**

`factorint` (page 1539), `smoothness` (page 1532)

sympy.ntheory.factor_.trailing(n)

Count the number of trailing zero digits in the binary representation of n, i.e. determine the largest power of 2 that divides n.

**Examples**

```python
>>> from sympy import trailing
>>> trailing(128)
7
>>> trailing(63)
0
```

sympy.ntheory.factor_.multiplicity(p, n)

Find the greatest integer m such that p**m divides n.

**Examples**

```python
>>> from sympy import multiplicity, Rational
>>> [multiplicity(5, n) for n in [8, 5, 25, 125, 250]]
[0, 1, 2, 3, 3]
>>> multiplicity(3, Rational(1, 9))
-2
```

Note: when checking for the multiplicity of a number in a large factorial it is most efficient to send it as an unevaluated factorial or to call multiplicity_in_factorial directly:
```python
>>> from sympy.ntheory import multiplicity_in_factorial
>>> from sympy import factorial
>>> p = factorial(25)
>>> n = 2**100
>>> nfac = factorial(n, evaluate=False)
>>> multiplicity(p, nfac)
5281877500950955839569596887
>>> _ == multiplicity_in_factorial(p, n)
True
```

**sympy.ntheory.factor_.perfect_power(n, candidates=None, big=True, factor=True)**

Return \((b, e)\) such that \(n = b^e\) if \(n\) is a unique perfect power with \(e > 1\), else False (e.g. 1 is not a perfect power). A ValueError is raised if \(n\) is not Rational.

By default, the base is recursively decomposed and the exponents collected so the largest possible \(e\) is sought. If \(\text{big}=\text{False}\) then the smallest possible \(e\) (thus prime) will be chosen.

If \(\text{factor}=\text{True}\) then simultaneous factorization of \(n\) is attempted since finding a factor indicates the only possible root for \(n\). This is True by default since only a few small factors will be tested in the course of searching for the perfect power.

The use of \(\text{candidates}\) is primarily for internal use; if provided, False will be returned if \(n\) cannot be written as a power with one of the candidates as an exponent and factoring (beyond testing for a factor of 2) will not be attempted.

**Examples**

```python
>>> from sympy import perfect_power, Rational
>>> perfect_power(16)
(2, 4)
>>> perfect_power(16, big=False)
(4, 2)
```

Negative numbers can only have odd perfect powers:

```python
>>> perfect_power(-4)
False
>>> perfect_power(-8)
(-2, 3)
```

Rationals are also recognized:

```python
>>> perfect_power(Rational(1, 2)**3)
(1/2, 3)
>>> perfect_power(Rational(-3, 2)**3)
(-3/2, 3)
```
Notes

To know whether an integer is a perfect power of 2 use

```python
>>> is2pow = lambda n: bool(n and not n & (n - 1))
>>> [(i, is2pow(i)) for i in range(5)]
[(0, False), (1, True), (2, True), (3, False), (4, True)]
```

It is not necessary to provide candidates. When provided it will be assumed that they are ints. The first one that is larger than the computed maximum possible exponent will signal failure for the routine.

```python
>>> perfect_power(3**8, [9])
False
>>> perfect_power(3**8, [2, 4, 8])
(3, 8)
>>> perfect_power(3**8, [4, 8], big=False)
(9, 4)
```

See also:

- `sympy.core.power.integer_nthroot` (page 1057), `sympy.ntheory.primetest.is_square` (page 1559)

```python
import cycle_length
n = 16843009
F = lambda x: (2048*pow(x, 2, n) + 32767) % n
for s in range(5):
 print('loop length = %4i; leader length = %3i' %
 next(cycle_length(F, s)))
... loop length = 2489; leader length = 42
... loop length = 78; leader length = 120
... loop length = 1482; leader length = 99
... loop length = 1482; leader length = 285
... loop length = 1482; leader length = 100
```

Here is an explicit example where there is a two element leadup to a sequence of 3 numbers (11, 14, 4) that then repeat:
```python
>>> x=2
>>> for i in range(9):
... x=(x**2+12)%17
... print(x)
... 16
 13
 11
 14
 4
 11
 14
 4
 11
>>> next(cycle_length(lambda x: (x**2+12)%17, 2))
(3, 2)
>>> list(cycle_length(lambda x: (x**2+12)%17, 2, values=True))
[16, 13, 11, 14, 4]
```

Instead of checking the differences of all generated values for a gcd with n, only the kth and 2*kth numbers are checked, e.g. 1st and 2nd, 2nd and 4th, 3rd and 6th until it has been detected that the loop has been traversed. Loops may be many thousands of steps long before rho finds a factor or reports failure. If max_steps is specified, the iteration is cancelled with a failure after the specified number of steps.

**Examples**

```python
>>> from sympy import pollard_rho
>>> n=16843009
>>> F=lambda x: (2048* pow(x, 2, n) + 32767) % n
>>> pollard_rho(n, F=F)
257
```

Use the default setting with a bad value of a and no retries:

```python
>>> pollard_rho(n, a=n-2, retries=0)
```

If retries is > 0 then perhaps the problem will correct itself when new values are generated for a:

```python
>>> pollard_rho(n, a=n-2, retries=1)
257
```
Use Pollard’s p-1 method to try to extract a nontrivial factor of \( n \). Either a divisor (perhaps composite) or None is returned.

The value of \( a \) is the base that is used in the test \( \text{gcd}(a^{M}-1, n) \). The default is 2. If \( \text{retries} > 0 \) then if no factor is found after the first attempt, a new \( a \) will be generated randomly (using the seed) and the process repeated.

Note: the value of \( M \) is \( \text{lcm}(1..B) = \text{reduce}(\text{lcm}, \text{range}(2, B+1)) \).

A search is made for factors next to even numbers having a power smoothness less than \( B \). Choosing a larger \( B \) increases the likelihood of finding a larger factor but takes longer. Whether a factor of \( n \) is found or not depends on \( a \) and the power smoothness of the even number just less than the factor \( p \) (hence the name \( p-1 \)).

Although some discussion of what constitutes a good \( a \) some descriptions are hard to interpret. At the modular.math site referenced below it is stated that if \( \text{gcd}(a^{M}-1, n) = N \) then \( a^{M} \% q^{\ast} r \) is 1 for every prime power divisor of \( N \). But consider the following:

```
>>> from sympy.ntheory.factor_. import smoothness_p, pollard_pm1
>>> n=257*1009
>>> smoothness_p(n)
(-1, [(257, (1, 2, 256)), (1009, (1, 7, 16))])
```

So we should (and can) find a root with \( B=16 \):

```
>>> pollard_pm1(n, B=16, a=3)
1009
```

If we attempt to increase \( B \) to 256 we find that it does not work:

```
>>> pollard_pm1(n, B=256)
```

But if the value of \( a \) is changed we find that only multiples of 257 work, e.g.:

```
>>> pollard_pm1(n, B=256, a=257)
1009
```

Checking different \( a \) values shows that all the ones that did not work had a \( \text{gcd} \) value not equal to \( n \) but equal to one of the factors:

```
>>> from sympy import ilcm, igcd, factorint, Pow
>>> M = 1
>>> for i in range(2, 256):
... M = ilcm(M, i)
... ...
... for a in range(2, 256) if
... igcd(pow(a, M, n) - 1, n) != n)
... (1009)
```

But does \( aM \% d \) for every divisor of \( n \) give 1?
>>> aM = pow(255, M, n)
>>> [(d, aM % Pow(*d.args)) for d in factorint(n, visual=True).args]
[(257**1, 1), (1009**1, 1)]

No, only one of them. So perhaps the principle is that a root will be found for a given value of B provided that:

1) the power smoothness of the p - 1 value next to the root does not exceed B
2) a**M % p != 1 for any of the divisors of n.

By trying more than one a it is possible that one of them will yield a factor.

Examples

With the default smoothness bound, this number cannot be cracked:

```python
>>> from sympy.ntheory import pollard_pm1
>>> pollard_pm1(21477639576571)
```

Increasing the smoothness bound helps:

```python
>>> pollard_pm1(21477639576571, B=2000)
4410317
```

Looking at the smoothness of the factors of this number we find:

```python
>>> from sympy.ntheory.factor_ import smoothness_p, factorint
>>> print(smoothness_p(21477639576571, visual=1))
p**i=4410317**1 has p-1 B=1787, B-pow=1787
p**i=4869863**1 has p-1 B=2434931, B-pow=2434931
```

The B and B-pow are the same for the p - 1 factorizations of the divisors because those factorizations had a very large prime factor:

```python
>>> factorint(4410317 - 1)
{2: 2, 617: 1, 1787: 1}
>>> factorint(4869863-1)
{2: 1, 2434931: 1}
```

Note that until B reaches the B-pow value of 1787, the number is not cracked;

```python
>>> pollard_pm1(21477639576571, B=1786)
>>> pollard_pm1(21477639576571, B=1787)
4410317
```

The B value has to do with the factors of the number next to the divisor, not the divisors themselves. A worst case scenario is that the number next to the factor p has a large prime divisor or is a perfect power. If these conditions apply then the power-smoothness will be about p/2 or p. The more realistic is that there will be a large prime factor next to p requiring a B value on the order of p/2. Although primes may have been searched for up to this level, the p/2 is a factor of p - 1, something that we do not know. The modular.math reference below states that 15% of numbers in the range of 10**15 to 15**15 + 10**4 are 10**6 power smooth so a B of 10**6 will fail 85% of the time in
that range. From $10^8$ to $10^8 + 10^3$ the percentages are nearly reversed...but in that range the simple trial division is quite fast.

**References**

[R625], [R626], [R627]

sympy.ntheory.factorint\( \text{factorint}(n, \text{limit=None, use_trial=True, use_rho=True, use_pm1=True, use_ecm=True, verbose=False, visual=None, multiple=False}) \)

Given a positive integer \( n \), \text{factorint}(n) returns a dict containing the prime factors of \( n \) as keys and their respective multiplicities as values. For example:

```python
>>> from sympy.ntheory import factorint
>>> factorint(2000) # 2000 = (2**4) * (5**3)
{2: 4, 5: 3}
>>> factorint(65537) # This number is prime
{65537: 1}
```

For input less than 2, \text{factorint} behaves as follows:

- \text{factorint}(1) returns the empty factorization, {}
- \text{factorint}(0) returns {0: 1}
- \text{factorint}(-n) adds -1:1 to the factors and then factors \( n \)

**Partial Factorization:**

If \text{limit} (> 3) is specified, the search is stopped after performing trial division up to (and including) the limit (or taking a corresponding number of rho/p-1 steps). This is useful if one has a large number and only is interested in finding small factors (if any). Note that setting a limit does not prevent larger factors from being found early; it simply means that the largest factor may be composite. Since checking for perfect power is relatively cheap, it is done regardless of the limit setting.

This number, for example, has two small factors and a huge semi-prime factor that cannot be reduced easily:

```python
>>> from sympy.ntheory import isprime
>>> a = 140763371726233095743069721446883
>>> f = factorint(a, limit=10000)
>>> f == {991: 1, int(202916782076162456022877024859): 1, 7: 1}
True
>>> isprime(max(f))
False
```

This number has a small factor and a residual perfect power whose base is greater than the limit:

```python
>>> factorint(3*101**7, limit=5)
{3: 1, 101: 7}
```

**List of Factors:**

If \text{multiple} is set to \text{True} then a list containing the prime factors including multiplicities is returned.
>>> factorint(24, multiple=True)
[2, 2, 2, 3]

Visual Factorization:

If visual is set to True, then it will return a visual factorization of the integer. For example:

```python
>>> from sympy import pprint
>>> pprint(factorint(4200, visual=True))
3 1 2 1
2 *3 *5 *7
```

Note that this is achieved by using the evaluate=False flag in Mul and Pow. If you do other manipulations with an expression where evaluate=False, it may evaluate. Therefore, you should use the visual option only for visualization, and use the normal dictionary returned by visual=False if you want to perform operations on the factors.

You can easily switch between the two forms by sending them back to factorint:

```python
>>> from sympy import Mul
>>> regular = factorint(1764); regular
{2: 2, 3: 2, 7: 2}
>>> pprint(factorint(regular))
2 2
2 *3 *7
```

```python
>>> visual = factorint(1764, visual=True); pprint(visual)
2 2
2 *3 *7
>>> pprint(factorint(visual))
{2: 2, 3: 2, 7: 2}
```

If you want to send a number to be factored in a partially factored form you can do so with a dictionary or unevaluated expression:

```python
>>> factorint(factorint({4: 2, 12: 3})) # twice to toggle to dict form
{2: 10, 3: 3}
>>> factorint(Mul(4, 12, evaluate=False))
{2: 4, 3: 1}
```

The table of the output logic is:

<table>
<thead>
<tr>
<th>Input</th>
<th>True</th>
<th>False</th>
<th>other</th>
</tr>
</thead>
<tbody>
<tr>
<td>dict</td>
<td>mul</td>
<td>dict</td>
<td>mul</td>
</tr>
<tr>
<td>n</td>
<td>mul</td>
<td>dict</td>
<td>dict</td>
</tr>
<tr>
<td>mul</td>
<td>mul</td>
<td>dict</td>
<td>dict</td>
</tr>
</tbody>
</table>
Notes

Algorithm:

The function switches between multiple algorithms. Trial division quickly finds small factors (of the order 1-5 digits), and finds all large factors if given enough time. The Pollard rho and p-1 algorithms are used to find large factors ahead of time; they will often find factors of the order of 10 digits within a few seconds:

```python
>>> factors = factorint(1234567891011213141516)
>>> for base, exp in sorted(factors.items()):
... print('%s %s % (base, exp))
...
2 2
2507191691 1
1231026625769 1
```

Any of these methods can optionally be disabled with the following boolean parameters:

- `use_trial`: Toggle use of trial division
- `use_rho`: Toggle use of Pollard’s rho method
- `use_pm1`: Toggle use of Pollard’s p-1 method

`factorint` also periodically checks if the remaining part is a prime number or a perfect power, and in those cases stops.

For unevaluated factorial, it uses Legendre’s formula (theorem).

If `verbose` is set to True, detailed progress is printed.

See also:

- `smoothness` (page 1532), `smoothness_p` (page 1532), `divisors` (page 1542)
- `sympy.ntheory.factor_.factorrat(rat, limit=None, use_trial=True, use_rho=True, use_pm1=True, verbose=False, visual=None, multiple=False)`

Given a Rational `r`, `factorrat(r)` returns a dict containing the prime factors of `r` as keys and their respective multiplicities as values. For example:

```python
>>> from sympy import factorrat, S
>>> factorrat(S(8)/9) # 8/9 = (2**3) * (3**-2)
{2: 3, 3: -2}
>>> factorrat(S(-1)/987) # -1/789 = -1 * (3**-1) * (7**-1) * (47**-1)
{-1: 1, 3: -1, 7: -1, 47: -1}
```

Please see the docstring for `factorint` for detailed explanations and examples of the following keywords:

- `limit`: Integer limit up to which trial division is done
- `use_trial`: Toggle use of trial division
- `use_rho`: Toggle use of Pollard’s rho method
- `use_pm1`: Toggle use of Pollard’s p-1 method
- `verbose`: Toggle detailed printing of progress
- `multiple`: Toggle returning a list of factors or dict
• visual: Toggle product form of output

sympy.ntheory.factor_.primesfactors\( (n, \text{limit=None, } \text{verbose=False}) \)

Return a sorted list of n’s prime factors, ignoring multiplicity and any composite factor that remains if the limit was set too low for complete factorization. Unlike factorint(), primefactors() does not return -1 or 0.

**Examples**

```python
>>> from sympy.ntheory import primefactors, factorint, isprime
>>> primefactors(6)
[2, 3]
>>> primefactors(-5)
[5]

>>> sorted(factorint(123456).items())
[(2, 6), (3, 1), (643, 1)]
>>> primefactors(123456)
[2, 3, 643]

>>> sorted(factorint(10000000001, limit=200).items())
[(101, 1), (99009901, 1)]
>>> isprime(99009901)
False
>>> primefactors(10000000001, limit=300)
[101]
```

**See also:**
divisors (page 1542)

sympy.ntheory.factor_.divisors\( (n, \text{generator=False, proper=False}) \)

Return all divisors of n sorted from 1..n by default. If generator is True an unordered generator is returned.

The number of divisors of n can be quite large if there are many prime factors (counting repeated factors). If only the number of factors is desired use divisor_count(n).

**Examples**

```python
>>> from sympy import divisors, divisor_count
>>> divisors(24)
[1, 2, 3, 4, 6, 8, 12, 24]
>>> divisor_count(24)
8

>>> list(divisors(120, generator=True))
[1, 2, 4, 8, 3, 6, 12, 24, 5, 10, 20, 40, 15, 30, 60, 120]
```
Notes

This is a slightly modified version of Tim Peters referenced at: https://stackoverflow.com/questions/1010381/python-factorization

See also:

primefactors (page 1542), factorint (page 1539), divisor_count (page 1543)

sympy.ntheory.factor_.proper_divisors(n, generator=False)

Return all divisors of n except n, sorted by default. If generator is True an unordered generator is returned.

Examples

>>> from sympy import proper_divisors, proper_divisor_count
>>> proper_divisors(24)
[1, 2, 3, 4, 6, 8, 12]
>>> proper_divisor_count(24)
7
>>> list(proper_divisors(120, generator=True))
[1, 2, 4, 8, 3, 6, 12, 24, 5, 10, 20, 40, 15, 30, 60]

See also:

factorint (page 1539), divisors (page 1542), proper_divisor_count (page 1543)

sympy.ntheory.factor_.divisor_count(n, modulus=1, proper=False)

Return the number of divisors of n. If modulus is not 1 then only those that are divisible by modulus are counted. If proper is True then the divisor of n will not be counted.

Examples

>>> from sympy import divisor_count
>>> divisor_count(6)
4
>>> divisor_count(6, 2)
2
>>> divisor_count(6, proper=True)
3

See also:

factorint (page 1539), divisors (page 1542), totient (page 1546), proper_divisor_count (page 1543)

sympy.ntheory.factor_.proper_divisor_count(n, modulus=1)

Return the number of proper divisors of n.
Examples

```python
>>> from sympy import proper_divisor_count
>>> proper_divisor_count(6)
3
>>> proper_divisor_count(6, modulus=2)
1
```

See also:

- `divisors` (page 1542), `proper_divisors` (page 1543), `divisor_count` (page 1543)

```python
>>> from sympy.ntheory.factor_ import udivisors, udivisor_count
>>> udivisors(15)
[1, 3, 5, 15]
>>> udivisor_count(15)
4
```

```python
>>> sorted(udivisors(120, generator=True))
[1, 3, 5, 8, 15, 24, 40, 120]
```

See also:

- `primefactors` (page 1542), `factorint` (page 1539), `divisors` (page 1542),
  `divisor_count` (page 1543), `udivisor_count` (page 1544)

References

- [R628], [R629]

```python
sympy.ntheory.factor_.udivisor_count(n)
```

Return the number of unitary divisors of `n`.

Parameters

- `n` : integer
Examples

```python
>>> from sympy.ntheory.factor_ import udivisor_count
>>> udivisor_count(120)
8
```

See also:

`factorint` (page 1539), `divisors` (page 1542), `udivisors` (page 1544), `divisor_count` (page 1543), `totient` (page 1546)

References

[R630]
sympy.ntheory.factor_.antidivisors(n, generator=False)

Return all antidivisors of n sorted from 1..n by default.

Antidivisors [R631] of n are numbers that do not divide n by the largest possible margin. If generator is True an unordered generator is returned.

Examples

```python
>>> from sympy.ntheory.factor_ import antidivisors
>>> antidivisors(24)
[7, 16]
>>> sorted(antidivisors(128, generator=True))
[3, 5, 15, 17, 51, 85]
```

See also:

`primefactors` (page 1542), `factorint` (page 1539), `divisors` (page 1542), `divisor_count` (page 1543), `antidivisor_count` (page 1545)

References

[R631]
sympy.ntheory.factor_.antidivisor_count(n)

Return the number of antidivisors [R632] of n.

Parameters

- **n**: integer
SymPy Documentation, Release 1.12.1

Examples

```python
>>> from sympy.ntheory.factor_ import antidivisor_count
>>> antidivisor_count(13)
4
>>> antidivisor_count(27)
5
```

See also:

* `factorint` (page 1539), `divisors` (page 1542), `antidivisors` (page 1545),
  `divisor_count` (page 1543), `totient` (page 1546)

References

[R632]

```python
class sympy.ntheory.factor_.totient(n)
```

Calculate the Euler totient function $\phi(n)$

$\phi(n)$ or $\phi(n)$ is the number of positive integers $\leq n$ that are relatively prime to $n$.

Parameters

- **n**: integer

Examples

```python
>>> from sympy.ntheory import totient
>>> totient(1)
1
>>> totient(25)
20
>>> totient(45) == totient(5)*totient(9)
True
```

See also:

* `divisor_count` (page 1543)

References

[R633], [R634]

```python
class sympy.ntheory.factor_.reduced_totient(n)
```

Calculate the Carmichael reduced totient function $\lambda(n)$

$\lambda(n)$ or $\lambda(n)$ is the smallest $m > 0$ such that $k^m \equiv 1 \mod n$ for all $k$

relatively prime to $n$. 

```
Examples

```python
>>> from sympy.ntheory import reduced_totient
>>> reduced_totient(1)
1
>>> reduced_totient(8)
2
>>> reduced_totient(30)
4
```

See also:

totient (page 1546)

References

[R635], [R636]

```python
class sympy.ntheory.factor_.divisor_sigma(n, k=1)
```

Calculate the divisor function \(\sigma_k(n) \) for positive integer \(n \)

\[
\text{divisor}_\sigma(n, k) = \text{sum}([x**k for x in \text{divisors}(n)])
\]

If \(n \)'s prime factorization is:

\[
n = \prod_{i=1}^{\omega} p_i^{m_i},
\]

then

\[
\sigma_k(n) = \prod_{i=1}^{\omega} (1 + p_i^k + p_i^{2k} + \cdots + p_i^{m_i k}).
\]

Parameters

- **n**: integer
- **k**: integer, optional

 power of divisors in the sum

 for \(k = 0, 1 \): \(\text{divisor}_\sigma(n, 0) \) is equal to \(\text{divisor}_\text{count}(n) \)

 \(\text{divisor}_\sigma(n, 1) \) is equal to \(\text{sum}(\text{divisors}(n)) \)

 Default for \(k \) is 1.

Examples

```python
>>> from sympy.ntheory import divisor_sigma
>>> divisor_sigma(18, 0)
6
>>> divisor_sigma(39, 1)
56
>>> divisor_sigma(12, 2)
210
>>> divisor_sigma(37)
38
```
class sympy.ntheory.factor_.udivisor_sigma(n, k=1)

Calculate the unitary divisor function $\sigma_k^u(n)$ for positive integer n

$\text{udivisor}_\sigma(n, k)$ is equal to $\sum([x**k \text{ for } x \text{ in } udivisors(n)])$

If n's prime factorization is:

$$n = \prod_{i=1}^{\omega} p_i^{m_i},$$

then

$$\sigma_k^u(n) = \prod_{i=1}^{\omega} (1 + p_i^{m_i/k}).$$

Parameters

- **k**: power of divisors in the sum

 for $k = 0, 1$: $\text{udivisor}_\sigma(n, 0)$ is equal to $\text{udivisor}_\text{count}(n)$
 $\text{udivisor}_\sigma(n, 1)$ is equal to $\sum(\text{udivisors}(n))$

Default for k is 1.

Examples

```python
>>> from sympy.ntheory.factor_ import udivisor_sigma
>>> udivisor_sigma(18, 0)
4
>>> udivisor_sigma(74, 1)
114
>>> udivisor_sigma(36, 3)
47450
>>> udivisor_sigma(111)
152
```

See also:

- $\text{divisor}_\text{count}$ (page 1543), totient (page 1546), divisors (page 1542), factorint (page 1539)
References

[R638]
sympy.ntheory.factor_.core(n, t=2)
Calculate \(\text{core}(n, t) = \text{core}_t(n) \) of a positive integer \(n \)
core_2(n) is equal to the squarefree part of \(n \)
If \(n \)'s prime factorization is:
\[
n = \prod_{i=1}^{\omega} p_i^{m_i},
\]
then
\[
\text{core}_t(n) = \prod_{i=1}^{\omega} p_i^{m_i \mod t}.
\]

Parameters
- \(n \): integer
- \(t \): integer
 core\(n, t \) calculates the \(t \)-th power free part of \(n \)
 core\(n, 2 \) is the squarefree part of \(n \) core\(n, 3 \) is the cubefree part of \(n \)
 Default for \(t \) is 2.

Examples

```python
>>> from sympy.ntheory.factor_ import core
>>> core(24, 2)
6
>>> core(9424, 3)
1178
>>> core(379238)
379238
>>> core(15**11, 10)
15
```

See also:
- factorint (page 1539), sympy.solvers.diophantine.diophantine.square_factor (page 785)
References

[R639]
sympy.ntheory.factor_.digits(n, b=10, digits=None)
Return a list of the digits of n in base b. The first element in the list is b (or -b if n is negative).

Parameters
n: integer
 The number whose digits are returned.
b: integer
 The base in which digits are computed.
digits: integer (or None for all digits)
 The number of digits to be returned (padded with zeros, if necessary).

Examples

>>> from sympy.ntheory.digits import digits
>>> digits(35)
[10, 3, 5]
If the number is negative, the negative sign will be placed on the base (which is the first element in the returned list):

>>> digits(-35)
[-10, 3, 5]
Bases other than 10 (and greater than 1) can be selected with b:

>>> digits(27, b=2)
[2, 1, 1, 0, 1, 1]
Use the digits keyword if a certain number of digits is desired:

>>> digits(35, digits=4)
[10, 0, 0, 3, 5]

class sympy.ntheory.factor_.primenu(n)
Calculate the number of distinct prime factors for a positive integer n.
If n's prime factorization is:

\[n = \prod_{i=1}^{k} p_i^{m_i}, \]

then primenu(n) or \(\nu(n) \) is:

\[\nu(n) = k. \]
Examples

```python
>>> from sympy.ntheory.factor_ import primenu
>>> primenu(1)
0
>>> primenu(30)
3
```

See also:
`factorint` (page 1539)

References

[R640]

class sympy.ntheory.factor_.primeomega(n)

Calculate the number of prime factors counting multiplicities for a positive integer n.

If n’s prime factorization is:

\[n = \prod_{i=1}^{k} p_i^{m_i}, \]

then primeomega(n) or \(\Omega(n) \) is:

\[\Omega(n) = \sum_{i=1}^{k} m_i. \]

Examples

```python
>>> from sympy.ntheory.factor_ import primeomega
>>> primeomega(1)
0
>>> primeomega(20)
3
```

See also:
`factorint` (page 1539)

References

[R641]

sympy.ntheory.factor_.mersenne_prime_exponent(nth)

Returns the exponent i for the nth Mersenne prime (which has the form \(2^i - 1 \)).
Examples

```python
>>> from sympy.ntheory.factor_ import mersenne_prime_exponent
>>> mersenne_prime_exponent(1)
2
>>> mersenne_prime_exponent(20)
4423
```

sympy.ntheory.factor_.is_perfect(n)

Returns True if n is a perfect number, else False.

A perfect number is equal to the sum of its positive, proper divisors.

Examples

```python
>>> from sympy.ntheory.factor_ import is_perfect, divisors, divisor_sigma
>>> is_perfect(20)
False
>>> is_perfect(6)
True
>>> 6 == divisor_sigma(6) - 6 == sum(divisors(6)[:-1])
True
```

References

[R642], [R643]

sympy.ntheory.factor_.is_mersenne_prime(n)

Returns True if n is a Mersenne prime, else False.

A Mersenne prime is a prime number having the form $2^i - 1$.

Examples

```python
>>> from sympy.ntheory.factor_ import is_mersenne_prime
>>> is_mersenne_prime(6)
False
>>> is_mersenne_prime(127)
True
```
References

[R644]

sympy.ntheory.factor_.abundance\((n)\)

Returns the difference between the sum of the positive proper divisors of a number and the number.

Examples

```python
>>> from sympy.ntheory import abundance, is_perfect, is_abundant
>>> abundance(6)
0
>>> is_perfect(6)
True
>>> abundance(10)
-2
>>> is_abundant(10)
False
```

sympy.ntheory.factor_.is_abundant\((n)\)

Returns True if \(n\) is an abundant number, else False.

A abundant number is smaller than the sum of its positive proper divisors.

Examples

```python
>>> from sympy.ntheory.factor_ import is_abundant
>>> is_abundant(20)
True
>>> is_abundant(15)
False
```

References

[R645]

sympy.ntheory.factor_.is_deficient\((n)\)

Returns True if \(n\) is a deficient number, else False.

A deficient number is greater than the sum of its positive proper divisors.
SymPy Documentation, Release 1.12.1

Examples

```python
>>> from sympy.ntheory.factor_ import is_deficient
>>> is_deficient(20)
False
>>> is_deficient(15)
True
```

References

[R646]

sympy.ntheory.factor_.is_amicable(m, n)

Returns True if the numbers \(m \) and \(n \) are “amicable”, else False.

Amicable numbers are two different numbers so related that the sum of the proper divisors of each is equal to that of the other.

Examples

```python
>>> from sympy.ntheory.factor_ import is_amicable, divisor_sigma
>>> is_amicable(220, 284)
True
>>> divisor_sigma(220) == divisor_sigma(284)
True
```

References

[R647]

sympy.ntheory.modular.symmetric_residue(a, m)

Return the residual mod \(m \) such that it is within half of the modulus.

```python
>>> from sympy.ntheory.modular import symmetric_residue
>>> symmetric_residue(1, 6)
1
>>> symmetric_residue(4, 6)
-2
```

sympy.ntheory.modular.crt(m, v, symmetric=False, check=True)

Chinese Remainder Theorem.

The moduli in \(m \) are assumed to be pairwise coprime. The output is then an integer \(f \), such that \(f = v_i \mod m_i \) for each pair out of \(v \) and \(m \). If symmetric is False a positive integer will be returned, else \(|f|\) will be less than or equal to the LCM of the moduli, and thus \(f \) may be negative.

If the moduli are not co-prime the correct result will be returned if/when the test of the result is found to be incorrect. This result will be None if there is no solution.

The keyword check can be set to False if it is known that the moduli are coprime.
Examples

As an example consider a set of residues \(U = [49, 76, 65] \) and a set of moduli \(M = [99, 97, 95] \). Then we have:

```python
from sympy.ntheory.modular import crt

crt([99, 97, 95], [49, 76, 65])  # (639985, 912285)
```

This is the correct result because:

```python
[639985 % m for m in [99, 97, 95]]  # [49, 76, 65]
```

If the moduli are not co-prime, you may receive an incorrect result if you use `check=False`:

```python
crt([[12, 6, 17], [3, 4, 2]], check=False)  # (954, 1224)

crt([[12, 6, 17], [3, 4, 2]])  # is None
```

Note: the order of \(\text{gf} \cdot \text{crt} \)'s arguments is reversed relative to \(\text{crt} \), and that \(\text{solve} \cdot \text{congruence} \) takes residue, modulus pairs.

Programmer’s note: rather than checking that all pairs of moduli share no GCD (an \(O(n^2) \) test) and rather than factoring all moduli and seeing that there is no factor in common, a check that the result gives the indicated residuals is performed – an \(O(n) \) operation.

See also:

- solve_congruence (page 1556)
- sympy.polys.galoistools.gf_crt (page 2684)
 - low level \(\text{crt} \) routine used by this routine
- sympy.ntheory.modular.crt1 \((m) \)
 - First part of Chinese Remainder Theorem, for multiple application.

Examples

```python
from sympy.ntheory.modular import crt1
crt1([18, 42, 6])  # (4536, [252, 108, 756], [0, 2, 0])
```

sympy.ntheory.modular.crt2 \((m, v, mm, e, s, \text{symmetric=}False) \)
 - Second part of Chinese Remainder Theorem, for multiple application.
sympy.ntheory.modular.solve_congruence(*remainder_modulus_pairs, **hint)

Compute the integer \(n \) that has the residual \(a_i \) when it is divided by \(m_i \) where the \(a_i \) and \(m_i \) are given as pairs to this function: \(((a_1, m_1), (a_2, m_2), ...) \). If there is no solution, return None. Otherwise return \(n \) and its modulus.

The \(m_i \) values need not be co-prime. If it is known that the moduli are not co-prime then the hint check can be set to False (default=True) and the check for a quicker solution via \(\text{crt}() \) (valid when the moduli are co-prime) will be skipped.

If the hint symmetric is True (default is False), the value of \(n \) will be within 1/2 of the modulus, possibly negative.

Examples

```python
>>> from sympy.ntheory.modular import solve_congruence

What number is 2 mod 3, 3 mod 5 and 2 mod 7?

>>> solve_congruence((2, 3), (3, 5), (2, 7))
(23, 105)
>>> [23 % m for m in [3, 5, 7]]
[2, 3, 2]

If you prefer to work with all remainder in one list and all moduli in another, send the arguments like this:

>>> solve_congruence(*zip(((2, 3), (2, 7))))
(23, 105)

The modulie need not be co-prime; in this case there may or may not be a solution:

>>> solve_congruence((2, 3), (4, 6)) is None
True

>>> solve_congruence((2, 3), (5, 6))
(5, 6)

The symmetric flag will make the result be within 1/2 of the modulus:

>>> solve_congruence((2, 3), (5, 6), symmetric=True)
(-1, 6)
```

See also:

crt (page 1554)
high level routine implementing the Chinese Remainder Theorem
sympy.ntheory.multinomial.binomial_coefficients(n)
Return a dictionary containing pairs \((k_1, k_2) : C_{kn}\) where \(C_{kn}\) are binomial coefficients and \(n = k_1 + k_2\).

Examples

```python
>>> from sympy.ntheory import binomial_coefficients
>>> binomial_coefficients(9)
```

See also:
- `binomial_coefficients_list` (page 1557), `multinomial_coefficients_list` (page 1557)

sympy.ntheory.multinomial.binomial_coefficients_list(n)
Return a list of binomial coefficients as rows of the Pascal’s triangle.

Examples

```python
>>> from sympy.ntheory import binomial_coefficients_list
>>> binomial_coefficients_list(9)
[1, 9, 36, 84, 126, 126, 84, 36, 9, 1]
```

See also:
- `binomial_coefficients` (page 1556), `multinomial_coefficients` (page 1557)

sympy.ntheory.multinomial.multinomial_coefficients(m, n)
Return a dictionary containing pairs \(\{(k_1, k_2, \ldots, k_m) : C_{kn}\}\) where \(C_{kn}\) are multinomial coefficients such that \(n = k_1 + k_2 + \ldots + k_m\).

Examples

```python
>>> from sympy.ntheory import multinomial_coefficients
>>> multinomial_coefficients(2, 5) # indirect doctest
{(0, 5): 1, (1, 4): 5, (2, 3): 10, (3, 2): 10, (4, 1): 5, (5, 0): 1}
```

Notes
The algorithm is based on the following result:

\[
\binom{n}{k_1, \ldots, k_m} = \frac{k_1 + 1}{n - k_1} \sum_{i=2}^{m} \binom{n}{k_1 + 1, \ldots, k_i - 1, \ldots}
\]

Code contributed to Sage by Yann Laigle-Chapuy, copied with permission of the author.

See also:
- `binomial_coefficients_list` (page 1557), `binomial_coefficients` (page 1556)
SymPy Documentation, Release 1.12.1

`multinomial_coefficients_iterator(m, n, _tuple=<class 'tuple'>)`

This function takes an m-tuple of non-negative integers and returns an iterator over the multinomial coefficients for that tuple.

It has been optimized for large m with respect to n by taking advantage of the fact that when the monomial tuples t are stripped of zeros, their coefficient is the same as that of the monomial tuples from `multinomial_coefficients(n, n)`. Therefore, the latter coefficients are precomputed to save memory and time.

```python
>>> from sympy.ntheory.multinomial import multinomial_coefficients
>>> m53, m33 = multinomial_coefficients(5, 3), multinomial_coefficients(3, 3)
>>> m53[(0,0,0,1,2)] == m53[(0,0,1,0,2)] == m53[(1,0,2,0,0)] == m33[(0,1,2)]
True
```

Examples

```python
>>> from sympy.ntheory.multinomial import multinomial_coefficients_iterator
>>> it = multinomial_coefficients_iterator(20,3)
>>> next(it)
((3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), 1)
```

`npartitions(n, verbose=False)`

This function calculates the partition function P(n), i.e. the number of ways that n can be written as a sum of positive integers.

P(n) is computed using the Hardy-Ramanujan-Rademacher formula [R648]. The correctness of this implementation has been tested through 10^{10}.

Examples

```python
>>> from sympy.ntheory import npartitions
>>> npartitions(25)
1958
```

References

[R648]

`is_euler_pseudoprime(n, b)`

This function returns True if n is prime or an Euler pseudoprime to base b, else False.

Euler Pseudoprime: In arithmetic, an odd composite integer n is called an euler pseudoprime to base a, if a and n are coprime and satisfy the modular arithmetic congruence relation:

\[a^{(n-1)/2} = +1 \mod n \text{ or } a^{(n-1)/2} = -1 \mod n \]

(where mod refers to the modulo operation).
Examples

```python
>>> from sympy.ntheory.primeutil import is_euler_pseudoprime
>>> is_euler_pseudoprime(2, 5)
True
```

References

[R649] sympy.ntheory.primeutil.is_square(n, prep=True)
Return True if \(n = a \cdot a \) for some integer \(a \), else False. If \(n \) is suspected of not being a square then this is a quick method of confirming that it is not.

Examples

```python
>>> from sympy.ntheory.primeutil import is_square
>>> is_square(25)
True
>>> is_square(2)
False
```

See also:
sympy.core.power.integer_nthroot (page 1057)

References

[R650] sympy.ntheory.primeutil.mr(n, bases)
Perform a Miller-Rabin strong pseudoprime test on \(n \) using a given list of bases/witnesses.

Examples

```python
>>> from sympy.ntheory.primeutil import mr
>>> mr(1373651, [2, 3])
False
>>> mr(479001599, [31, 73])
True
```
References

A list of thresholds and the bases they require are here: https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test#Deterministic_variants

[R651]
sympy.ntheory.primetest.is_lucas_prp(n)

Standard Lucas compositeness test with Selfridge parameters. Returns False if n is definitely composite, and True if n is a Lucas probable prime.

This is typically used in combination with the Miller-Rabin test.

Examples

```python
>>> from sympy.ntheory.primetest import isprime, is_lucas_prp
>>> for i in range(10000):
...     if is_lucas_prp(i) and not isprime(i):
...         print(i)
323
377
1159
1829
3827
5459
5777
9071
9179
```

References

- OEIS A217120: Lucas Pseudoprimes https://oeis.org/A217120

sympy.ntheory.primetest.is_strong_lucas_prp(n)

Strong Lucas compositeness test with Selfridge parameters. Returns False if n is definitely composite, and True if n is a strong Lucas probable prime.

This is often used in combination with the Miller-Rabin test, and in particular, when combined with M-R base 2 creates the strong BPSW test.
Examples

```python
>>> from sympy.ntheory.primetest import isprime, is_strong_lucas_prp
>>> for i in range(20000):
...     if is_strong_lucas_prp(i) and not isprime(i):
...         print(i)
5459
5777
10877
16109
18971
```

References

- OEIS A217255: Strong Lucas Pseudoprimes https://oeis.org/A217255
- https://en.wikipedia.org/wiki/Baillie-PSW_primality_test

```python
sympy.ntheory.primetest.is_extra_strong_lucas_prp(n)
```

Extra Strong Lucas compositeness test. Returns False if n is definitely composite, and True if n is a “extra strong” Lucas probable prime.

The parameters are selected using P = 3, Q = 1, then incrementing P until (D|n) == -1. The test itself is as defined in Grantham 2000, from the Mo and Jones preprint. The parameter selection and test are the same as used in OEIS A217719, Perl's Math::Prime::Util, and the Lucas pseudoprime page on Wikipedia.

With these parameters, there are no counterexamples below 2^{64} nor any known above that range. It is 20-50% faster than the strong test.

Because of the different parameters selected, there is no relationship between the strong Lucas pseudoprimes and extra strong Lucas pseudoprimes. In particular, one is not a subset of the other.

Examples

```python
>>> from sympy.ntheory.primetest import isprime, is_extra_strong_lucas_prp
>>> for i in range(20000):
...     if is_extra_strong_lucas_prp(i) and not isprime(i):
...         print(i)
989
3239
5777
10877
```
References

- OEIS A217719: Extra Strong Lucas Pseudoprimes https://oeis.org/A217719

```python
>>> from sympy.ntheory import isprime
>>> isprime(13)
True
>>> isprime(13.0)  # limited precision
False
>>> isprime(15)
False
```

Examples

```
>>> from sympy.ntheory import isprime
>>> isprime(13)
True
>>> isprime(13.0)  # limited precision
False
>>> isprime(15)
False
```

Notes

This routine is intended only for integer input, not numerical expressions which may represent numbers. Floats are also rejected as input because they represent numbers of limited precision. While it is tempting to permit 7.0 to represent an integer there are errors that may “pass silently” if this is allowed:

```
>>> from sympy import Float, S
>>> int(1e3) == 1e3 == 10**3
True
>>> int(1e23) == 1e23
True
>>> int(1e23) == 10**23
False
```

```
>>> near_int = 1 + S(1)/10**19
>>> near_int == int(near_int)
False
>>> n = Float(near_int, 10)  # truncated by precision
>>> n == int(n)
```

(continues on next page)
True
>>> n = Float(near_int, 20)
>>> n == int(n)
False

See also:

sympy.ntheory.generate.primerange (page 1527)
Generates all primes in a given range

sympy.ntheory.generate.primepi (page 1525)
Return the number of primes less than or equal to n

sympy.ntheory.generate.prime (page 1524)
Return the nth prime

References

- https://en.wikipedia.org/wiki/Baillie-PSW_primality_test

sympy.ntheory.primetest.is_gaussian_prime*(num) Test if num is a Gaussian prime number.

References

[R652]

sympy.ntheory.residue_ntheory.n_order*(a, n)
Returns the order of a modulo n.
The order of a modulo n is the smallest integer k such that a**k leaves a remainder of 1 with n.

Parameters

- **a** : integer
- **n** : integer, n > 1. a and n should be relatively prime

Examples

```python
>>> from sympy.ntheory import n_order
>>> n_order(3, 7)
6
>>> n_order(4, 7)
3
```
sympy.ntheory.residue_ntheory.is_primitive_root(a, p)
 Returns True if a is a primitive root of p.
 a is said to be the primitive root of p if \(\gcd(a, p) = 1 \) and \(\text{totient}(p) \) is the smallest positive number s.t.
 \[a^{\text{totient}(p)} \equiv 1 \pmod{p} \]

 Parameters
 - a : integer
 - p : integer, \(p > 1 \). a and p should be relatively prime

 Examples

  ```
  >>> from sympy.ntheory import is_primitive_root, n_order, totient
  >>> is_primitive_root(3, 10)
  True
  >>> is_primitive_root(9, 10)
  False
  >>> n_order(3, 10) == totient(10)
  True
  >>> n_order(9, 10) == totient(10)
  False
  ```

sympy.ntheory.residue_ntheory.primitive_root(p)
 Returns the smallest primitive root or None.

 Parameters
 - p : positive integer

 Examples

  ```
  >>> from sympy.ntheory.residue_ntheory import primitive_root
  >>> primitive_root(19)
  2
  ```

 References

 [R653], [R654]

sympy.ntheory.residue_ntheory.sqrt_mod(a, p, all_roots=False)
 Find a root of \(x^2 = a \pmod{p} \).

 Parameters
 - a : integer
 - p : positive integer
 - all_roots : if True the list of roots is returned or None
Notes

If there is no root it is returned None; else the returned root is less or equal to \(p \div 2 \); in general is not the smallest one. It is returned \(p \div 2 \) only if it is the only root.

Use `all_roots` only when it is expected that all the roots fit in memory; otherwise use `sqrt_mod_iter`.

Examples

```python
>>> from sympy.ntheory import sqrt_mod
>>> sqrt_mod(11, 43)
21
>>> sqrt_mod(17, 32, True)
[7, 9, 23, 25]
```

```python
sympy.ntheory.residue_ntheory.sqrt_mod_iter(a, p, domain=<class 'int'>)
Iterate over solutions to \( x^2 = a \mod p \).
```

Parameters

- `a`: integer
- `p`: positive integer
- `domain`: integer domain, int, ZZ or Integer

Examples

```python
>>> from sympy.ntheory.residue_ntheory import sqrt_mod_iter
>>> list(sqrt_mod_iter(11, 43))
[21, 22]
```

```python
sympy.ntheory.residue_ntheory.quadratic_residues(p) \rightarrow \text{list[int]}
Returns the list of quadratic residues.
```

Examples

```python
>>> from sympy.ntheory.residue_ntheory import quadratic_residues
>>> quadratic_residues(7)
[0, 1, 2, 4]
```

```python
sympy.ntheory.residue_ntheory.nthroot_mod(a, n, p, all_roots=False)
Find the solutions to \( x^n = a \mod p \).
```

Parameters

- `a`: integer
- `n`: positive integer
- `p`: positive integer
- `all_roots`: if False returns the smallest root, else the list of roots
Examples

```python
>>> from sympy.ntheory.residue_ntheory import nthroot_mod
>>> nthroot_mod(11, 4, 19)
8
>>> nthroot_mod(11, 4, 19, True)
[8, 11]
>>> nthroot_mod(68, 3, 109)
23
```

eysympy.ntheory.residue_ntheory.is_nthpow_residue(a, n, m)

Returns True if \(x^n = a \pmod{m} \) has solutions.

References

[R655]

sympy.ntheory.residue_ntheory.is_quad_residue(a, p)

Returns True if \(a \pmod{p} \) is in the set of squares mod \(p \), i.e \(a \) is a quadratic residue modulo \(p \).

Examples

If \(p \) is an odd prime, an iterative method is used to make the determination:

```python
>>> from sympy.ntheory import is_quad_residue
>>> sorted(set([i**2 % 7 for i in range(7)]))
[0, 1, 2, 4]
>>> [j for j in range(7) if is_quad_residue(j, 7)]
[0, 1, 2, 4]
```

See also:

legendre_symbol (page 1566), jacobi_symbol (page 1567)

sympy.ntheory.residue_ntheory.legendre_symbol(a, p)

Returns the Legendre symbol \((a/p) \).

For an integer \(a \) and an odd prime \(p \), the Legendre symbol is defined as

\[
\left(\frac{a}{p} \right) = \begin{cases}
0 & \text{if } p \text{ divides } a \\
1 & \text{if } a \text{ is a quadratic residue modulo } p \\
-1 & \text{if } a \text{ is a quadratic nonresidue modulo } p
\end{cases}
\]

Parameters

- \(a \) : integer
- \(p \) : odd prime
Examples

```python
>>> from sympy.ntheory import legendre_symbol
>>> [legendre_symbol(i, 7) for i in range(7)]
[0, 1, 1, -1, 1, -1, -1]
>>> sorted(set([i**2 % 7 for i in range(7)]))
[0, 1, 2, 4]
```

See also:

- `is_quad_residue` (page 1566), `jacobi_symbol` (page 1567)

`sympy.ntheory.residue_ntheory.jacobi_symbol(m, n)`

Returns the Jacobi symbol \((m/n)\).

For any integer \(m\) and any positive odd integer \(n\) the Jacobi symbol is defined as the product of the Legendre symbols corresponding to the prime factors of \(n\):

\[
\left(\frac{m}{n}\right) = \left(\frac{m}{p_1}\right)^{\alpha_1} \left(\frac{m}{p_2}\right)^{\alpha_2} \cdots \left(\frac{m}{p_k}\right)^{\alpha_k}
\]

where \(n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}\).

Like the Legendre symbol, if the Jacobi symbol \((\frac{m}{n}) = -1\) then \(m\) is a quadratic nonresidue modulo \(n\).

But, unlike the Legendre symbol, if the Jacobi symbol \((\frac{m}{n}) = 1\) then \(m\) may or may not be a quadratic residue modulo \(n\).

Parameters

- \(m\) : integer
- \(n\) : odd positive integer

Examples

```python
>>> from sympy.ntheory import jacobi_symbol, legendre_symbol
>>> from sympy import S
>>> jacobi_symbol(45, 77)
-1
>>> jacobi_symbol(60, 121)
1
```

The relationship between the `jacobi_symbol` and `legendre_symbol` can be demonstrated as follows:

```python
>>> L = legendre_symbol
>>> S(45).factors()
{3: 2, 5: 1}
>>> jacobi_symbol(7, 45) == L(7, 3)**2 * L(7, 5)**1
True
```

See also:

- `is_quad_residue` (page 1566), `legendre_symbol` (page 1566)
sympy.ntheory.residue_ntheory.discrete_log(n, a, b, order=None, prime_order=None)
Compute the discrete logarithm of a to the base b modulo n.
This is a recursive function to reduce the discrete logarithm problem in cyclic groups of
composite order to the problem in cyclic groups of prime order.
It employs different algorithms depending on the problem (subgroup order size, prime
order or not):
• Trial multiplication
• Baby-step giant-step
• Pollard’s Rho
• Pohlig-Hellman

Examples

```python
>>> from sympy.ntheory import discrete_log
>>> discrete_log(41, 15, 7)
3
```

References

[R656], [R657]
sympy.ntheory.continued_fraction.continued_fraction(a) → list
Return the continued fraction representation of a Rational or quadratic irrational.

Examples

```python
>>> from sympy.ntheory.continued_fraction import continued_fraction
>>> from sympy import sqrt
>>> continued_fraction((1 + 2*sqrt(3))/5)
[0, 1, [8, 3, 34, 3]]
```

See also:

continued_fraction_periodic (page 1570), continued_fraction_reduce
(page 1571), continued_fraction_convergents (page 1568)
sympy.ntheory.continued_fraction.continued_fraction_convergents(cf)
Return an iterator over the convergents of a continued fraction (cf).
The parameter should be an iterable returning successive partial quotients of the con-
tinued fraction, such as might be returned by continued_fraction_iterator. In computing
the convergents, the continued fraction need not be strictly in canonical form (all integers,
all but the first positive). Rational and negative elements may be present in the expansion.
Examples

```python
>>> from sympy.core import pi
>>> from sympy import S
>>> from sympy.ntheory.continued_fraction import continued_fraction_convergents, continued_fraction_iterator

>>> list(continued_fraction_convergents([0, 2, 1, 2]))
[0, 1/2, 1/3, 3/8]

>>> list(continued_fraction_convergents([1, S('1/2'), -7, S('1/4')])))
[1, 3, 19/5, 7]

>>> it = continued_fraction_convergents(continued_fraction_iterator(pi))
>>> for n in range(7):
...     print(next(it))
3
22/7
333/106
355/113
103993/33102
104348/33215
208341/66317
```

See also:

continued_fraction_iterator (page 1569)

Sympy.ntheory.continued_fraction.continued_fraction_iterator(x)

Return continued fraction expansion of x as iterator.

Examples

```python
>>> from sympy import Rational, pi
>>> from sympy.ntheory.continued_fraction import continued_fraction_iterator

>>> list(continued_fraction_iterator(Rational(3, 8)))
[0, 2, 1, 2]

>>> list(continued_fraction_iterator(Rational(-3, 8)))
[-1, 1, 1, 2]

>>> for i, v in enumerate(continued_fraction_iterator(pi)):
...     if i > 7:
...         break
...     print(v)
3
7
15
1
292
(continues on next page)
```
References

[R658] sympy.ntheory.continued_fraction.continued_fraction_periodic(p, q, d=0, s=1) → list

Find the periodic continued fraction expansion of a quadratic irrational.
Compute the continued fraction expansion of a rational or a quadratic irrational number, i.e. \(\frac{p + s\sqrt{d}}{q} \), where \(p, q \neq 0 \) and \(d \geq 0 \) are integers.
Returns the continued fraction representation (canonical form) as a list of integers, optionally ending (for quadratic irrationals) with list of integers representing the repeating digits.

Parameters

- **p**: int
 - the rational part of the number’s numerator
- **q**: int
 - the denominator of the number
- **d**: int, optional
 - the irrational part (discriminator) of the number’s numerator
- **s**: int, optional
 - the coefficient of the irrational part

Examples

```python
>>> from sympy.ntheory.continued_fraction import continued_fraction_periodic
>>> continued_fraction_periodic(3, 2, 7)
[2, [1, 4, 1, 1]]
```
Golden ratio has the simplest continued fraction expansion:

```python
>>> continued_fraction_periodic(1, 2, 5)
[[1]]
```
If the discriminator is zero or a perfect square then the number will be a rational number:

```python
>>> continued_fraction_periodic(4, 3, 0)
[1, 3]
>>> continued_fraction_periodic(4, 3, 49)
[3, 1, 2]
```
See also:

`continued_fraction_iterator` (page 1569), `continued_fraction_reduce` (page 1571)

References

[R659], [R660]

```python
sympy.ntheory.continued_fraction.continued_fraction_reduce(cf)
```
Reduce a continued fraction to a rational or quadratic irrational.

Compute the rational or quadratic irrational number from its terminating or periodic continued fraction expansion. The continued fraction expansion (cf) should be supplied as a terminating iterator supplying the terms of the expansion. For terminating continued fractions, this is equivalent to `list(continued_fraction_convergents(cf))[-1]`, only a little more efficient. If the expansion has a repeating part, a list of the repeating terms should be returned as the last element from the iterator. This is the format returned by `continued_fraction_periodic`.

For quadratic irrationals, returns the largest solution found, which is generally the one sought, if the fraction is in canonical form (all terms positive except possibly the first).

Examples

```python
>>> from sympy.ntheory.continued_fraction import continued_fraction_reduce
>>> continued_fraction_reduce([1, 2, 3, 4, 5])
225/157
>>> continued_fraction_reduce([-2, 1, 9, 7, 1, 2])
-256/233
>>> continued_fraction_reduce([2, 1, 2, 1, 4, 1, 1, 6, 1, 1, 8]).n(10)
2.718281835
>>> continued_fraction_reduce([1, 4, 2, [3, 1]])
(\sqrt{21} + 287)/238
>>> continued_fraction_reduce([[1]])
(1 + \sqrt{5})/2
>>> from sympy.ntheory.continued_fraction import continued_fraction_periodic
>>> continued_fraction_reduce(continued_fraction_periodic(8, 5, 13))
(sqrt(13) + 8)/5
```

See also:

`continued_fraction_periodic` (page 1570)

```python
sympy.ntheory.digits.count_digits(n, b=10)
```
Return a dictionary whose keys are the digits of \(n \) in the given base, \(b \), with keys indicating the digits appearing in the number and values indicating how many times that digit appeared.
Examples

```python
from sympy.ntheory import count_digits

count_digits(1111339)
{1: 4, 3: 2, 9: 1}
```

The digits returned are always represented in base-10 but the number itself can be entered in any format that is understood by Python; the base of the number can also be given if it is different than 10:

```python
n = 0xFA; n
250
count_digits(_)
{0: 1, 2: 1, 5: 1}
count_digits(n, 16)
{10: 1, 15: 1}
```

The default dictionary will return a 0 for any digit that did not appear in the number. For example, which digits appear 7 times in 77!:

```python
from sympy import factorial

c77 = count_digits(factorial(77))
[i for i in range(10) if c77[i] == 7]
[1, 3, 7, 9]
```

sympy.ntheory.digits.digits(n, b=10, digits=None)

Return a list of the digits of n in base b. The first element in the list is b (or -b if n is negative).

Parameters

- **n**: integer

 The number whose digits are returned.

- **b**: integer

 The base in which digits are computed.

- **digits**: integer (or None for all digits)

 The number of digits to be returned (padded with zeros, if necessary).

Examples

```python
from sympy.ntheory.digits import digits
digits(35)
[10, 3, 5]
```

If the number is negative, the negative sign will be placed on the base (which is the first element in the returned list):

```python
digits(-35)
[-10, 3, 5]
```
Bases other than 10 (and greater than 1) can be selected with \(b \):

```python
>>> digits(27, b=2)
[2, 1, 1, 0, 1, 1]
```

Use the `digits` keyword if a certain number of digits is desired:

```python
>>> digits(35, digits=4)
[10, 0, 0, 3, 5]
```

`sympy.ntheory.digits.is_palindromic(n, b=10)`

Returns True if \(n \) is the same when read from left to right or right to left in the given base, \(b \).

Examples

```python
>>> from sympy.ntheory import is_palindromic

>>> all(is_palindromic(i) for i in (-11, 1, 22, 121))
True
```

The second argument allows you to test numbers in other bases. For example, 88 is palindromic in base-10 but not in base-8:

```python
>>> is_palindromic(88, 8)
False
```

On the other hand, a number can be palindromic in base-8 but not in base-10:

```python
>>> 0o121, is_palindromic(0o121)
(81, False)
```

Or it might be palindromic in both bases:

```python
>>> oct(121), is_palindromic(121, 8) and is_palindromic(121)
('0o171', True)
```

class sympy.ntheory.mobius(n)

Mobius function maps natural number to \{-1, 0, 1\}

It is defined as follows:

1) \(1 \) if \(n = 1 \).
2) \(0 \) if \(n \) has a squared prime factor.
3) \((-1)^k \) if \(n \) is a square-free positive integer with \(k \) number of prime factors.

It is an important multiplicative function in number theory and combinatorics. It has applications in mathematical series, algebraic number theory and also physics (Fermion operator has very concrete realization with Mobius Function model).

Parameters

- \(n \) : positive integer
Examples

```python
>>> from sympy.ntheory import mobius
>>> mobius(13*7)
1
>>> mobius(1)
1
>>> mobius(13*7*5)
-1
>>> mobius(13**2)
0
```

References

[R661], [R662]

sympy.ntheory.egyptian_fraction.egyptian_fraction(r, algorithm='Greedy')

Return the list of denominators of an Egyptian fraction expansion \[R663 \] of the said rational \(r \).

Parameters

- \(r \) : Rational or \((p, q)\)

 a positive rational number; \(p/q \).

- \(\text{algorithm} \) : \{“Greedy”, “Graham Jewett”, “Takenouchi”, “Golomb”\}, optional

 Denotes the algorithm to be used (the default is “Greedy”).

Examples

```python
>>> from sympy import Rational
>>> from sympy.ntheory.egyptian_fraction import egyptian_fraction
>>> egyptian_fraction(Rational(3, 7))
[3, 11, 231]
>>> egyptian_fraction((3, 7), "Graham Jewett")
[7, 8, 9, 56, 57, 72, 3192]
>>> egyptian_fraction((3, 7), "Takenouchi")
[4, 7, 28]
>>> egyptian_fraction((3, 7), "Golomb")
[3, 15, 35]
>>> egyptian_fraction((11, 5), "Golomb")
[1, 2, 3, 4, 9, 234, 1118, 2580]
```
Notes

Currently the following algorithms are supported:

1) Greedy Algorithm

Also called the Fibonacci-Sylvester algorithm [R664]. At each step, extract the largest unit fraction less than the target and replace the target with the remainder.

It has some distinct properties:

a) Given \(p/q \) in lowest terms, generates an expansion of maximum length \(p \). Even as the numerators get large, the number of terms is seldom more than a handful.

b) Uses minimal memory.

c) The terms can blow up (standard examples of this are 5/121 and 31/311). The denominator is at most squared at each step (doubly-exponential growth) and typically exhibits singly-exponential growth.

2) Graham Jewett Algorithm

The algorithm suggested by the result of Graham and Jewett. Note that this has a tendency to blow up: the length of the resulting expansion is always \(2^{**}\left(\frac{x}{\gcd(x, y)}\right) - 1 \). See [R665].

3) Takenouchi Algorithm

The algorithm suggested by Takenouchi (1921). Differs from the Graham-Jewett algorithm only in the handling of duplicates. See [R665].

4) Golomb’s Algorithm

A method given by Golumb (1962), using modular arithmetic and inverses. It yields the same results as a method using continued fractions proposed by Bleicher (1972). See [R666].

If the given rational is greater than or equal to 1, a greedy algorithm of summing the harmonic sequence \(1/1 + 1/2 + 1/3 + \ldots \) is used, taking all the unit fractions of this sequence until adding one more would be greater than the given number. This list of denominators is prefixed to the result from the requested algorithm used on the remainder. For example, if \(r \) is 8/3, using the Greedy algorithm, we get \([1, 2, 3, 4, 5, 6, 7, 14, 420]\), where the beginning of the sequence, \([1, 2, 3, 4, 5, 6, 7]\) is part of the harmonic sequence summing to 363/140, leaving a remainder of 31/420, which yields \([14, 420]\) by the Greedy algorithm. The result of \(\text{egyptian fraction}(\text{Rational}(8, 3), \text{"Golomb"}) \) is \([1, 2, 3, 4, 5, 6, 7, 14, 574, 2788, 6460, 11590, 33062, 113820]\), and so on.

See also:

`sympy.core.numbers.Rational` (page 1036)
sympy.ntheory.bbp_pi.pi_hex_digits(n, prec=14)

Returns a string containing prec (default 14) digits starting at the nth digit of pi in hex. Counting of digits starts at 0 and the decimal is not counted, so for n = 0 the returned value starts with 3; n = 1 corresponds to the first digit past the decimal point (which in hex is 2).

Examples

```python
>>> from sympy.ntheory.bbp_pi import pi_hex_digits
>>> pi_hex_digits(0)
'3243f6a8885a30'
>>> pi_hex_digits(0, 3)
'324'
```

References

[R667]

ECM function

The `ecm` function is a subexponential factoring algorithm capable of factoring numbers of around ~35 digits comfortably within few seconds. The time complexity of `ecm` is dependent on the smallest proper factor of the number. So even if the number is really large but its factors are comparatively smaller then `ecm` can easily factor them. For example we take N with 15 digit factors 15154262241479, 15423094826093, 799333555511111, 809709509409109, 88888877777777, 914148152112161. Now N is a 87 digit number. ECM takes under around 47s to factorise this.

```python
>>> from sympy.ntheory.ecm import ecm
```

This function repeatedly calls `ecm_nofactor` to compute the factors of n. First all the small factors are taken out using trial division. Then `ecm_nofactor` is used to compute one factor at a time.

Parameters

- `n` : Number to be Factored
- `B1` : Stage 1 Bound
- `B2` : Stage 2 Bound
- `max_curve` : Maximum number of curves generated
- `seed` : Initialize pseudorandom generator
Examples

```python
>>> from sympy.ntheory import ecm
>>> ecm(25645121643901801)
{5394769, 4753701529}
>>> ecm(9804659461513846513)
{4641991, 2112166839943}
```

Examples

```python
>>> from sympy.ntheory import ecm
>>> ecm(706000565815754299976961394452809, B1=100000, B2=1000000)
{698869966998001, 1010203040506070809}
>>> ecm(12292144854388396743090809142276189861834971360425638440320228256086473494959648313, B1=100000, B2=1000000)
{15154262241479, 15423094826093, 79933355511111, 80979959409109, 88888887777777, 914148152112161}
```

QS function

The `qs` function is a subexponential factoring algorithm, the fastest factoring algorithm for numbers within 100 digits. The time complexity of `qs` is dependent on the size of the number so it is used if the number contains large factors. Due to this while factoring numbers first `ecm` is used to get smaller factors of around ~15 digits then `qs` is used to get larger factors.

For factoring `2709077133180915240135586837960864768806330782747` which is a semi-prime number with two 25 digit factors. `qs` is able to factorize this in around 248s.

```python
sympy.ntheory.qs.qs(N, prime_bound, M, ERROR_TERM=25, seed=1234)
```

Performs factorization using Self-Initializing Quadratic Sieve. In SIQS, let N be a number to be factored, and this N should not be a perfect power. If we find two integers such that \(X**2 = Y**2 \mod N\) and \(X \neq \pm Y \mod N\), then \(\gcd(X + Y, N)\) will reveal a proper factor of N. In order to find these integers X and Y we try to find relations of form \(t**2 = u \mod N\) where u is a product of small primes. If we have enough of these relations then we can form \((t1*t2...ti)**2 = u1*u2...ui \mod N\) such that the right hand side is a square, thus we found a relation of \(X**2 = Y**2 \mod N\).

Here, several optimizations are done like using multiple polynomials for sieving, fast changing between polynomials and using partial relations. The use of partial relations can speed up the factoring by 2 times.

Parameters

- \(N\) : Number to be Factored
- \(prime_bound\) : upper bound for primes in the factor base
- \(M\) : Sieve Interval
ERROR_TERM: Error term for checking smoothness

threshold: Extra smooth relations for factorization

seed: Generate pseudo prime numbers

Examples

```python
>>> from sympy.ntheory import qs
>>> qs(25645121643901801, 2000, 10000)
{5394769, 4753701529}
>>> qs(9804659461513846513, 2000, 10000)
{4641991, 2112166839943}
```

References

[R668], [R669]

Examples

```python
>>> from sympy.ntheory import qs
>>> qs(5915587277*3267000013, 1000, 10000)
{3267000013, 5915587277}
```

5.8.6 Physics

A module that helps solving problems in physics.

Contents

Hydrogen Wavefunctions

sympy.physics.hydrogen.E_nl(n, Z=1)

Returns the energy of the state (n, l) in Hartree atomic units.

The energy does not depend on “l”.

Parameters

- **n**: integer

 Principal Quantum Number which is an integer with possible values as 1, 2, 3, 4,...

- **Z**: Atomic number (1 for Hydrogen, 2 for Helium, ...)
Examples

```python
>>> from sympy.physics.hydrogen import E_nl
>>> from sympy.abc import n, Z
>>> E_nl(n, Z)
-Z**2/(2*n**2)
>>> E_nl(1)
-1/2
>>> E_nl(2)
-1/8
>>> E_nl(3)
-1/18
>>> E_nl(3, 47)
-2209/18

sympy.physics.hydrogen.E_nl_dirac(n, l, spin_up=True, Z=1, c=137.035999037000)

Returns the relativistic energy of the state (n, l, spin) in Hartree atomic units.
The energy is calculated from the Dirac equation. The rest mass energy is not included.

Parameters

- **n**: integer
  Principal Quantum Number which is an integer with possible values as 1, 2, 3, 4, ...

- **l**: integer
  l is the Angular Momentum Quantum Number with values ranging from 0 to n-1.

- **spin_up**: True if the electron spin is up (default), otherwise down

- **Z**: Atomic number (1 for Hydrogen, 2 for Helium, ...)

- **c**: Speed of light in atomic units. Default value is 137.035999037, taken from https://arxiv.org/abs/1012.3627

Examples

```python
>>> from sympy.physics.hydrogen import E_nl_dirac
>>> E_nl_dirac(1, 0)
-0.500006656595360
>>> E_nl_dirac(2, 0)
-0.125002080189006
>>> E_nl_dirac(2, 1)
-0.125000416028342
>>> E_nl_dirac(2, 1, False)
-0.125002080189006
```
sympy.physics.hydrogen.Psi_nlm(n, l, m, r, phi, theta, Z=1)

Returns the Hydrogen wave function \( \psi_{nlm} \). It’s the product of the radial wavefunction \( R_{nl} \) and the spherical harmonic \( Y_{l}^{m} \).

**Parameters**

- **n**: integer
  - Principal Quantum Number which is an integer with possible values as 1, 2, 3, 4,...

- **l**: integer
  - \( l \) is the Angular Momentum Quantum Number with values ranging from 0 to \( n-1 \).

- **m**: integer
  - \( m \) is the Magnetic Quantum Number with values ranging from \( -l \) to \( l \).

- **r**: radial coordinate

- **phi**: azimuthal angle

- **theta**: polar angle

- **Z**: atomic number (1 for Hydrogen, 2 for Helium, ...)

**Everything is in Hartree atomic units.**

**Examples**

```python
>>> from sympy.physics.hydrogen import Psi_nlm
>>> from sympy import Symbol
>>> r=Symbol("r", positive=True)
>>> phi=Symbol("phi", real=True)
>>> theta=Symbol("theta", real=True)
>>> Z=Symbol("Z", positive=True, integer=True, nonzero=True)
>>> Psi_nlm(1,0,0,r,phi,theta,Z)
```
Z**(3/2)*exp(-Z*r)/sqrt(pi)

>>> Psi_nlm(2,1,1,r,phi,theta,Z)
-Z**(5/2)*r*exp(I*phi)*exp(-Z*r/2)*sin(theta)/(8*sqrt(pi))

Integrating the absolute square of a hydrogen wavefunction psi_{nlm} over the whole space leads 1.

The normalization of the hydrogen wavefunctions Psi_nlm is:

```python
from sympy import integrate, conjugate, pi, oo, sin
wf = Psi_nlm(2,1,1,r,phi,theta,Z)
abs_sqrd = wf*conjugate(wf)
jacobi = r*2*sin(theta)
integrate(abs_sqrd*jacobi, (r,0,oo), (phi,0,2*pi), (theta,0,pi))
```

```python
1
```

sympy.physics.hydrogen.R_nl(n,l,r,Z=1)

Returns the Hydrogen radial wavefunction R_{nl}.

Parameters

**n**: integer

Principal Quantum Number which is an integer with possible values as 1, 2, 3, 4, ...

**l**: integer

l is the Angular Momentum Quantum Number with values ranging from 0 to n-1.

**r**: Radial coordinate.

**Z**: Atomic number (1 for Hydrogen, 2 for Helium, ...)

Everything is in Hartree atomic units.

Examples

```python
>>> from sympy.physics.hydrogen import R_nl
>>> from sympy import r, Z
>>> R_nl(1, 0, r, Z)
2*sqrt(Z**3)*exp(-Z*r)
>>> R_nl(2, 0, r, Z)
sqrt(2)*(-Z*r + 2)*sqrt(Z**3)*exp(-Z*r/2)/4
>>> R_nl(2, 1, r, Z)
sqrt(6)*Z*r*sqrt(Z**3)*exp(-Z*r/2)/12
```

For Hydrogen atom, you can just use the default value of Z=1:

```python
>>> R_nl(1, 0, r)
2*exp(-r)
```

```python
>>> R_nl(2, 0, r)
```
sqrt(2)*(2 - r)*exp(-r/2)/4

```python
>>> R_nl(3, 0, r)
2*sqrt(3)*(2*r**2/9 - 2*r + 3)*exp(-r/3)/27
```

For Silver atom, you would use \( Z = 47 \):

```python
>>> R_nl(1, 0, r, Z=47)
94*sqrt(47)*exp(-47*r)

>>> R_nl(2, 0, r, Z=47)
47*sqrt(94)*(2 - 47*r)*exp(-47*r/2)/4

>>> R_nl(3, 0, r, Z=47)
94*sqrt(141)*(4418*r**2/9 - 94*r + 3)*exp(-47*r/3)/27
```

The normalization of the radial wavefunction is:

```python
>>> from sympy import integrate, oo
>>> integrate(R_nl(1, 0, r)**2 * r**2, (r, 0, oo))
1

>>> integrate(R_nl(2, 0, r)**2 * r**2, (r, 0, oo))
1

>>> integrate(R_nl(2, 1, r)**2 * r**2, (r, 0, oo))
1
```

It holds for any atomic number:

```python
>>> integrate(R_nl(1, 0, r, Z=2)**2 * r**2, (r, 0, oo))
1

>>> integrate(R_nl(2, 0, r, Z=3)**2 * r**2, (r, 0, oo))
1

>>> integrate(R_nl(2, 1, r, Z=4)**2 * r**2, (r, 0, oo))
1
```

**Matrices**

Known matrices related to physics

- `sympy.physics.matrices.mdft(n)`
  - Deprecated since version 1.9: Use DFT from `sympy.matrices.expressions.fourier` instead.
  - To get identical behavior to `mdft(n)`, use `DFT(n).as_explicit()`.

- `sympy.physics.matrices.mgamma(mu, lower=False)`
  - Returns a Dirac gamma matrix \( \gamma^\mu \) in the standard (Dirac) representation.
Explanation

If you want $\gamma_\mu$, use $\text{gamma}(\mu, \text{True})$.

We use a convention:

$\gamma^5 = i \cdot \gamma^0 \cdot \gamma^1 \cdot \gamma^2 \cdot \gamma^3$

$\gamma_5 = i \cdot \gamma_0 \cdot \gamma_1 \cdot \gamma_2 \cdot \gamma_3 = -\gamma^5$

Examples

```python
>>> from sympy.physics.matrices import mgamma
>>> mgamma(1)
Matrix([[0, 0, 0, 1],
 [0, 0, 1, 0],
 [0, -1, 0, 0],
 [-1, 0, 0, 0]])
```

References

[R677] sympy.physics.matrices.msigma(i)

Returns a Pauli matrix $\sigma_i$ with $i = 1, 2, 3$.

Examples

```python
>>> from sympy.physics.matrices import msigma
>>> msigma(1)
Matrix([[0, 1],
 [1, 0]])
```

References

[R678] sympy.physics.matrices.pat_matrix($m, dx, dy, dz$)

Returns the Parallel Axis Theorem matrix to translate the inertia matrix a distance of $(dx, dy, dz)$ for a body of mass $m$.  

5.8. Topics
Examples

To translate a body having a mass of 2 units a distance of 1 unit along the \( x \)-axis we get:

```python
>>> from sympy.physics.matrices import pat_matrix
>>> pat_matrix(2, 1, 0, 0)
Matrix([[0, 0, 0],
 [0, 2, 0],
 [0, 0, 2]])
```

Pauli Algebra

This module implements Pauli algebra by subclassing Symbol. Only algebraic properties of Pauli matrices are used (we do not use the Matrix class).

See the documentation to the class Pauli for examples.

References

`sympy.physics.paulialgebra.evaluate_pauli_product(arg)`

Help function to evaluate Pauli matrices product with symbolic objects.

Parameters

- **arg**: symbolic expression that contains Pauli matrices

Examples

```python
>>> from sympy.physics.paulialgebra import Pauli, evaluate_pauli_product
>>> from sympy import I
>>> evaluate_pauli_product(I*Pauli(1)*Pauli(2))
-sigma3
```

Quantum Harmonic Oscillator in 1-D

`sympy.physics.qho_1d.E_n(n, omega)`

Returns the Energy of the One-dimensional harmonic oscillator.

Parameters

- **n**: The “nodal” quantum number.
- **omega**: The harmonic oscillator angular frequency.
**Notes**

The unit of the returned value matches the unit of \(hw\), since the energy is calculated as:

\[
E_n = \hbar \omega (n + 1/2)
\]

**Examples**

```python
>>> from sympy.physics.qho_1d import E_n
>>> from sympy.abc import x, omega
>>> E_n(x, omega)
hbar*omega*(x + 1/2)
```

**sympy.physics.qho_1d.coherent_state\(n, \alpha\)**

Returns \(\langle n|\alpha\rangle\) for the coherent states of 1D harmonic oscillator. See [https://en.wikipedia.org/wiki/Coherent_states](https://en.wikipedia.org/wiki/Coherent_states)

**Parameters**

- \(n\):
  The “nodal” quantum number.
- \(\alpha\):
  The eigen value of annihilation operator.

**sympy.physics.qho_1d.psi\(n, x, m, \omega\)**

Returns the wavefunction \(\psi_n\) for the One-dimensional harmonic oscillator.

**Parameters**

- \(n\):
  the “nodal” quantum number. Corresponds to the number of nodes in the wavefunction. \(n \geq 0\)
- \(x\):
  \(x\) coordinate.
- \(m\):
  Mass of the particle.
- \(\omega\):
  Angular frequency of the oscillator.

**Examples**

```python
>>> from sympy.physics.qho_1d import psi_n
>>> from sympy.abc import m, x, omega
>>> psi_n(0, x, m, omega)
(m*omega)**(1/4)*exp(-m*omega*x**2/(2*hbar))/(hbar**(1/4)*pi**(1/4))
```
Quantum Harmonic Oscillator in 3-D

sympy.physics.sho.E_nl(n, l, hw)

Returns the Energy of an isotropic harmonic oscillator.

**Parameters**

- **n**: The “nodal” quantum number.
- **l**: The orbital angular momentum.
- **hw**: The harmonic oscillator parameter.

**Notes**

The unit of the returned value matches the unit of hw, since the energy is calculated as:

\[ E_{nl} = (2n + l + 3/2)*hw \]

**Examples**

```python
>>> from sympy.physics.sho import E_nl
>>> from sympy import symbols
>>> x, y, z = symbols('x, y, z')
>>> E_nl(x, y, z)
z*(2*x + y + 3/2)
```

sympy.physics.sho.R_nl(n, l, nu, r)

Returns the radial wavefunction \( R_{nl} \) for a 3D isotropic harmonic oscillator.

**Parameters**

- **n**: The “nodal” quantum number. Corresponds to the number of nodes in the wavefunction. \( n \geq 0 \)
- **l**: The quantum number for orbital angular momentum.
- **nu**: mass-scaled frequency: \( nu = m*\omega/(2*hbar) \) where \( m \) is the mass and \( \omega \) the frequency of the oscillator. (in atomic units \( nu == \omega/2 \))
- **r**: Radial coordinate.
Examples

```python
>>> from sympy.physics.sho import R_nl
>>> from sympy.abc import r, nu, l
>>> R_nl(0, 0, 1, r)
2*2**(3/4)*exp(-r**2)/pi**(1/4)
>>> R_nl(1, 0, 1, r)
4*2**(1/4)*sqrt(3)*(3/2 - 2*r**2)*exp(-r**2)/(3*pi**(1/4))
l, nu and r may be symbolic:
```  
```python
>>> R_nl(0, 0, nu, r)
2*2**(3/4)*sqrt(nu**(3/2))*exp(-nu*r**2)/pi**(1/4)
>>> R_nl(0, l, 1, r)
r**l*sqrt(2**(l + 3/2)*2**(l + 2)/factorial2(2*l + 1))*exp(-r**2)/pi**(1/4)
```  
The normalization of the radial wavefunction is:

```python
>>> from sympy import Integral, oo
>>> Integral(R_nl(0, 0, 1, r)**2*r, (r, 0, oo)).n()
1.0
>>> Integral(R_nl(1, 0, 1, r)**2*r, (r, 0, oo)).n()
1.0
>>> Integral(R_nl(1, 1, 1, r)**2*r, (r, 0, oo)).n()
1.0
```

Second Quantization

Second quantization operators and states for bosons.

This follow the formulation of Fetter and Walecka, “Quantum Theory of Many-Particle Systems.”

```python
class sympy.physics.secondquant.AnnihilateBoson(k)
 Bosonic annihilation operator.
```

Examples

```python
>>> from sympy.physics.secondquant import B
>>> from sympy.abc import x
>>> B(x)
AnnihilateBoson(x)
```

apply_operator(state)

Apply state to self if self is not symbolic and state is a FockStateKet, else multiply self by state.
Examples

```python
>>> from sympy.physics.secondquant import B, BKet
>>> from sympy import x, y, n
>>> B(x).apply_operator(y)
y*AnnihilateBoson(x)
>>> B(0).apply_operator(BKet((n,)))
sqrt(n)*FockStateBosonKet((n - 1,))
```

```
class sympy.physics.secondquant.AnnihilateFermion(k)
Fermionic annihilation operator.

apply_operator(state)
Apply state to self if self is not symbolic and state is a FockStateKet, else multiply
self by state.

Examples

```python
>>> from sympy.physics.secondquant import B, Dagger, BKet
>>> from sympy import x, y, n
>>> Dagger(B(x)).apply_operator(y)
y*CreateBoson(x)
>>> B(0).apply_operator(BKet((n,)))
sqrt(n)*FockStateBosonKet((n - 1,))
```

property is_only_q_annihilator
Always destroy a quasi-particle? (annihilate hole or annihilate particle)

Examples

```python
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
```

```python
>>> F(a).is_only_q_annihilator
True
>>> F(i).is_only_q_annihilator
False
>>> F(p).is_only_q_annihilator
False
```

property is_only_q_creator
Always create a quasi-particle? (create hole or create particle)
Examples

>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')

>>> F(a).is_only_q_creator
False
>>> F(i).is_only_q_creator
True
>>> F(p).is_only_q_creator
False

property is_q_annihilator
Can we destroy a quasi-particle? (annihilate hole or annihilate particle) If so, would that be above or below the fermi surface?

Examples

>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> a = Symbol('a', above_fermi=1)
>>> i = Symbol('i', below_fermi=1)
>>> p = Symbol('p')

>>> F(a).is_q_annihilator
1
>>> F(i).is_q_annihilator
0
>>> F(p).is_q_annihilator
1

property is_q_creator
Can we create a quasi-particle? (create hole or create particle) If so, would that be above or below the fermi surface?

Examples

>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')

>>> F(a).is_q_creator
0
>>> F(i).is_q_creator
(continues on next page)
class sympy.physics.secondquant.AntiSymmetricTensor(symbol, upper, lower)
Stores upper and lower indices in separate Tuple’s.
Each group of indices is assumed to be antisymmetric.

Examples

```python
>>> from sympy import symbols
>>> from sympy.physics.secondquant import AntiSymmetricTensor
>>> i, j = symbols('i,j', below_fermi=True)
>>> a, b = symbols('a,b', above_fermi=True)
>>> AntiSymmetricTensor('v', (a, i), (b, j))
AntiSymmetricTensor(v, (a, i), (b, j))
>>> AntiSymmetricTensor('v', (i, a), (b, j))
-AntiSymmetricTensor(v, (a, i), (b, j))
```

As you can see, the indices are automatically sorted to a canonical form.

property lower
Returns the lower indices.

Examples

```python
>>> from sympy import symbols
>>> from sympy.physics.secondquant import AntiSymmetricTensor
>>> i, j = symbols('i,j', below_fermi=True)
>>> a, b = symbols('a,b', above_fermi=True)
>>> AntiSymmetricTensor('v', (a, i), (b, j)).lower
(b, j)
```

property symbol
Returns the symbol of the tensor.

Examples

```python
>>> from sympy import symbols
>>> from sympy.physics.secondquant import AntiSymmetricTensor
>>> i, j = symbols('i,j', below_fermi=True)
>>> a, b = symbols('a,b', above_fermi=True)
>>> AntiSymmetricTensor('v', (a, i), (b, j))
AntiSymmetricTensor(v, (a, i), (b, j))
>>> AntiSymmetricTensor('v', (a, i), (b, j)).symbol
v
```
property upper

Returns the upper indices.

Examples

```python
>>> from sympy import symbols
>>> from sympy.physics.secondquant import AntiSymmetricTensor
>>> i, j = symbols('i,j', below_fermi=True)
>>> a, b = symbols('a,b', above_fermi=True)
>>> AntiSymmetricTensor('v', (a, i), (b, j))
AntiSymmetricTensor(v, (a, i), (b, j)).upper
(a, i)
```

`sympy.physics.secondquant.B`
alias of `AnnihilateBoson` (page 1587)

`sympy.physics.secondquant.BBra`
alias of `FockStateBosonBra` (page 1596)

`sympy.physics.secondquant.BKet`
alias of `FockStateBosonKet` (page 1597)

`sympy.physics.secondquant.Bd`
alias of `CreateBoson` (page 1592)

class `sympy.physics.secondquant.BosonicBasis`

Base class for a basis set of bosonic Fock states.

class `sympy.physics.secondquant.Commutator(a,b)`

The Commutator: \([A, B] = A*B - B*A\)

The arguments are ordered according to \._cmp_()\.

Examples

```python
>>> from sympy import symbols
>>> from sympy.physics.secondquant import Commutator
>>> A, B = symbols('A,B', commutative=False)
>>> Commutator(B, A)
-Commutator(A, B)
```

Evaluate the commutator with `doit()`

```python
>>> comm = Commutator(A,B); comm
Commutator(A, B)
>>> comm.doit()
A*B - B*A
```

For two second quantization operators the commutator is evaluated immediately:
>>> from sympy.physics.secondquant import Fd, F
>>> a = symbols('a', above_fermi=True)
>>> i = symbols('i', below_fermi=True)
>>> p, q = symbols('p,q')

>>> Commutator(Fd(a),Fd(i))
2*NO(CreateFermion(a)*CreateFermion(i))

But for more complicated expressions, the evaluation is triggered by a call to .doit()

>>> comm = Commutator(Fd(p)*Fd(q),F(i)); comm
Commutator(CreateFermion(p)*CreateFermion(q), AnnihilateFermion(i))

>>> comm.doit(wicks=True)
-KroneckerDelta(i, p)*CreateFermion(q) +
 KroneckerDelta(i, q)*CreateFermion(p)

doit(**hints)

 Enables the computation of complex expressions.

Examples

>>> from sympy.physics.secondquant import Commutator, F, Fd
>>> from sympy import symbols
>>> i, j = symbols('i,j', below_fermi=True)
>>> a, b = symbols('a,b', above_fermi=True)
>>> c = Commutator(Fd(a)*F(i),Fd(b)*F(j))

>>> c.doit(wicks=True)
0

classmethod eval(a, b)

 The Commutator [A,B] is on canonical form if A < B.

Examples

>>> from sympy.physics.secondquant import Commutator, F, Fd
>>> from sympy import symbols, x

>>> c1 = Commutator(F(x), Fd(x))
>>> c2 = Commutator(Fd(x), F(x))

>>> Commutator.eval(c1, c2)
0

class sympy.physics.secondquant.CreateBoson(k)

 Bosonic creation operator:

 apply_operator(state)

 Apply state to self if self is not symbolic and state is a FockStateKet, else multiply
 self by state.
Examples

```python
>>> from sympy.physics.secondquant import B, Dagger, BKet
>>> from sympy import x, y, n
>>> Dagger(B(x)).apply_operator(y)
y*CreateBoson(x)
>>> B(0).apply_operator(BKet((n,)))
sqrt(n)*FockStateBosonKet((n - 1,))
```

class sympy.physics.secondquant.CreateFermion(k)

Fermionic creation operator:

```python
apply_operator(state)
```

Apply state to self if self is not symbolic and state is a FockStateKet, else multiply self by state.

Examples

```python
>>> from sympy.physics.secondquant import B, Dagger, BKet
>>> from sympy import x, y, n
>>> Dagger(B(x)).apply_operator(y)
y*CreateBoson(x)
>>> B(0).apply_operator(BKet((n,)))
sqrt(n)*FockStateBosonKet((n - 1,))
```

property is_only_q_annihilator

Always destroy a quasi-particle? (annihilate hole or annihilate particle)

Examples

```python
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import Fd
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')

>>> Fd(a).is_only_q_annihilator
False
>>> Fd(i).is_only_q_annihilator
True
>>> Fd(p).is_only_q_annihilator
False
```

property is_only_q_creator

Always create a quasi-particle? (create hole or create particle)
Examples

```python
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import Fd
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')

>>> Fd(a).is_only_q_creator
True
>>> Fd(i).is_only_q_creator
False
>>> Fd(p).is_only_q_creator
False
```

property is_q_annihilator

Can we destroy a quasi-particle? (annihilate hole or annihilate particle) If so, would that be above or below the fermi surface?

Examples

```python
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import Fd
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')

>>> Fd(a).is_q_annihilator
0
>>> Fd(i).is_q_annihilator
-1
>>> Fd(p).is_q_annihilator
-1
```

property is_q_creator

Can we create a quasi-particle? (create hole or create particle) If so, would that be above or below the fermi surface?

Examples

```python
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import Fd
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')

>>> Fd(a).is_q_creator
1
>>> Fd(i).is_q_creator
```

(continues on next page)
class sympy.physics.secondquant.Dagger(arg)
Hermitian conjugate of creation/annihilation operators.

Examples

```python
>>> from sympy import I
>>> from sympy.physics.secondquant import Dagger, B, Bd
>>> Dagger(2*I)
-2*I
>>> Dagger(B(0))
CreateBoson(0)
>>> Dagger(Bd(0))
AnnihilateBoson(0)
```

classmethod eval(arg)
Evaluates the Dagger instance.

Examples

```python
>>> from sympy import I
>>> from sympy.physics.secondquant import Dagger, B, Bd
>>> Dagger(2*I)
-2*I
>>> Dagger(B(0))
CreateBoson(0)
>>> Dagger(Bd(0))
AnnihilateBoson(0)
```

The eval() method is called automatically.

sympy.physics.secondquant.F
alias of AnnihilateFermion (page 1588)
sympy.physics.secondquant.FBra
alias of FockStateFermionBra (page 1597)
sympy.physics.secondquant.FKet
alias of FockStateFermionKet (page 1597)
sympy.physics.secondquant.Fd
alias of CreateFermion (page 1593)
class sympy.physics.secondquant.FixedBosonicBasis(n_particles, n_levels)
Fixed particle number basis set.
Examples

```python
>>> from sympy.physics.secondquant import FixedBosonicBasis
>>> b = FixedBosonicBasis(2, 2)
>>> state = b.state(1)
>>> b
[|FockState((2, 0)), FockState((1, 1)), FockState((0, 2))|
>>> state
FockStateBosonKet((1, 1))
>>> b.index(state)
1
```

index(state)

Returns the index of state in basis.

Examples

```python
>>> from sympy.physics.secondquant import FixedBosonicBasis
>>> b = FixedBosonicBasis(2, 3)
>>> b.index(b.state(3))
3
```

state(i)

Returns the state that lies at index i of the basis

Examples

```python
>>> from sympy.physics.secondquant import FixedBosonicBasis
>>> b = FixedBosonicBasis(2, 3)
>>> b.state(3)
FockStateBosonKet((1, 0, 1))
```

class sympy.physics.secondquant.FockState(occupations)

Many particle Fock state with a sequence of occupation numbers.

Anywhere you can have a FockState, you can also have `S.Zero`. All code must check for this!

Base class to represent FockStates.

class sympy.physics.secondquant.FockStateBosonBra(occupations)

Describes a collection of BosonBra particles.
Examples

```python
>>> from sympy.physics.secondquant import BBra
>>> BBra([1, 2])
FockStateBosonBra((1, 2))
```

class sympy.physics.secondquant.FockStateBosonKet(occupations)

Many particle Fock state with a sequence of occupation numbers.
Occupation numbers can be any integer >= 0.

Examples

```python
>>> from sympy.physics.secondquant import BKet
>>> BKet([1, 2])
FockStateBosonKet((1, 2))
```

class sympy.physics.secondquant.FockStateBra(occupations)

Representation of a bra.

class sympy.physics.secondquant.FockStateFermionBra(occupations, fermi_level=0)

Examples

```python
>>> from sympy.physics.secondquant import FBra
>>> FBra([1, 2])
FockStateFermionBra((1, 2))
```

See also:

FockStateFermionKet (page 1597)

class sympy.physics.secondquant.FockStateFermionKet(occupations, fermi_level=0)

Many-particle Fock state with a sequence of occupied orbits.

Explanation

Each state can only have one particle, so we choose to store a list of occupied orbits rather than a tuple with occupation numbers (zeros and ones).
states below fermi level are holes, and are represented by negative labels in the occupation list.
For symbolic state labels, the fermi_level caps the number of allowed hole- states.
Examples

```python
>>> from sympy.physics.secondquant import FKet
>>> FKet([1, 2])
FockStateFermionKet((1, 2))
```

class sympy.physics.secondquant.FockStateKet(occupations)
Representation of a ket.

class sympy.physics.secondquant.InnerProduct(bra, ket)
An unevaluated inner product between a bra and ket.

Explanation

Currently this class just reduces things to a product of Kronecker Deltas. In the future, we could introduce abstract states like \(|a>\) and \(|b>\), and leave the inner product unevaluated as \(<a|b>\).

property bra
Returns the bra part of the state

property ket
Returns the ket part of the state

class sympy.physics.secondquant.KroneckerDelta(i, j, delta_range=None)
The discrete, or Kronecker, delta function.

Parameters

- i : Number, Symbol
 The first index of the delta function.
- j : Number, Symbol
 The second index of the delta function.

Explanation

A function that takes in two integers \(i\) and \(j\). It returns 0 if \(i\) and \(j\) are not equal, or it returns 1 if \(i\) and \(j\) are equal.

Examples

An example with integer indices:

```python
>>> from sympy import KroneckerDelta
>>> KroneckerDelta(1, 2)
0
>>> KroneckerDelta(3, 3)
1
```

Symbolic indices:
```python
>>> from sympy.abc import i, j, k
>>> KroneckerDelta(i, j)
KroneckerDelta(i, j)
>>> KroneckerDelta(i, i)
1
>>> KroneckerDelta(i, i + 1)
0
>>> KroneckerDelta(i, i + 1 + k)
KroneckerDelta(i, i + k + 1)
```

See also:

`eval` (page 1599), `DiracDelta` (page 506)

References

[R710]

classmethod `eval`(i, j, delta_range=None)

Evaluates the discrete delta function.

Examples

```python
>>> from sympy import KroneckerDelta
>>> from sympy.abc import i, j, k
```

```python
>>> KroneckerDelta(i, j)
KroneckerDelta(i, j)
>>> KroneckerDelta(i, i)
1
>>> KroneckerDelta(i, i + 1)
0
>>> KroneckerDelta(i, i + 1 + k)
KroneckerDelta(i, i + k + 1)
```

indirect doctest

property `indices_contain_equal_information`

Returns True if indices are either both above or below fermi.

Examples

```python
>>> from sympy import KroneckerDelta, Symbol
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> q = Symbol('q')
>>> KroneckerDelta(p, q).indices_contain_equal_information
True
>>> KroneckerDelta(p, q+1).indices_contain_equal_information
```

(continues on next page)
property is_above_fermi

True if Delta can be non-zero above fermi.

Examples

```python
>>> from sympy import KroneckerDelta, Symbol
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> q = Symbol('q')
>>> KroneckerDelta(p, a).is_above_fermi
True
>>> KroneckerDelta(p, i).is_above_fermi
False
>>> KroneckerDelta(p, q).is_above_fermi
True
```

See also:

`is_below_fermi` (page 1600), `is_only_below_fermi` (page 1601), `is_only_above_fermi` (page 1600)

property is_below_fermi

True if Delta can be non-zero below fermi.

Examples

```python
>>> from sympy import KroneckerDelta, Symbol
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> q = Symbol('q')
>>> KroneckerDelta(p, a).is_below_fermi
False
>>> KroneckerDelta(p, i).is_below_fermi
True
>>> KroneckerDelta(p, q).is_below_fermi
True
```

See also:

`is_above_fermi` (page 1600), `is_only_above_fermi` (page 1600), `is_only_below_fermi` (page 1600)

property is_only_above_fermi

True if Delta is restricted to above fermi.
Examples

```python
>>> from sympy import KroneckerDelta, Symbol
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> q = Symbol('q')
>>> KroneckerDelta(p, a).is_only_above_fermi
True
>>> KroneckerDelta(p, q).is_only_above_fermi
False
>>> KroneckerDelta(p, i).is_only_above_fermi
False
```

See also:

`is_above_fermi` (page 1600), `is_below_fermi` (page 1600), `is_only_below_fermi` (page 1601)

property is_only_below_fermi

True if Delta is restricted to below fermi.

Examples

```python
>>> from sympy import KroneckerDelta, Symbol
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> q = Symbol('q')
>>> KroneckerDelta(p, i).is_only_below_fermi
True
>>> KroneckerDelta(p, q).is_only_below_fermi
False
>>> KroneckerDelta(p, a).is_only_below_fermi
False
```

See also:

`is_above_fermi` (page 1600), `is_below_fermi` (page 1600), `is_only_above_fermi` (page 1600)

property killable_index

Returns the index which is preferred to substitute in the final expression.
Explanation

The index to substitute is the index with less information regarding fermi level. If indices contain the same information, ‘a’ is preferred before ‘b’.

Examples

```python
>>> from sympy import KroneckerDelta, Symbol
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> j = Symbol('j', below_fermi=True)
>>> p = Symbol('p')
>>> KroneckerDelta(p, i).killable_index
p
>>> KroneckerDelta(p, a).killable_index
p
>>> KroneckerDelta(i, j).killable_index
j
```

See also:

`preferred_index` (page 1602)

property preferred_index

Returns the index which is preferred to keep in the final expression.

Explanation

The preferred index is the index with more information regarding fermi level. If indices contain the same information, ‘a’ is preferred before ‘b’.

Examples

```python
>>> from sympy import KroneckerDelta, Symbol
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> j = Symbol('j', below_fermi=True)
>>> p = Symbol('p')
>>> KroneckerDelta(p, i).preferred_index
i
>>> KroneckerDelta(p, a).preferred_index
a
>>> KroneckerDelta(i, j).preferred_index
i
```

See also:

`killable_index` (page 1601)

class sympy.physics.secondquant.NO(arg)

This Object is used to represent normal ordering brackets.

i.e. {abcd} sometimes written :abcd:
Explanation

Applying the function `NO(arg)` to an argument means that all operators in the argument will be assumed to anticommute, and have vanishing contractions. This allows an immediate reordering to canonical form upon object creation.

Examples

```python
>>> from sympy import symbols
>>> from sympy.physics.secondquant import NO, F, Fd
>>> p, q = symbols('p, q')
>>> NO(Fd(p)*F(q))
NO(CreateFermion(p)*AnnihilateFermion(q))
>>> NO(F(q)*Fd(p))
-NO(CreateFermion(p)*AnnihilateFermion(q))
```

Note

If you want to generate a normal ordered equivalent of an expression, you should use the function `wicks()`. This class only indicates that all operators inside the brackets anticommute, and have vanishing contractions. Nothing more, nothing less.

`doit(**hints)`

Either removes the brackets or enables complex computations in its arguments.

Examples

```python
>>> from sympy.physics.secondquant import NO, Fd, F
>>> from textwrap import fill
>>> from sympy import symbols, Dummy
>>> p, q = symbols('p, q', cls=Dummy)
>>> print(fill(str(NO(Fd(p)*F(q)).doit())))
KroneckerDelta(_a, _p)*KroneckerDelta(_a, _q)*CreateFermion(_a)*AnnihilateFermion(_a) + KroneckerDelta(_a, _p)*KroneckerDelta(_i, _q)*CreateFermion(_a)*AnnihilateFermion(_i) - KroneckerDelta(_a, _q)*KroneckerDelta(_i, _p)*AnnihilateFermion(_a)*CreateFermion(_i) - KroneckerDelta(_i, _p)*KroneckerDelta(_i, _q)*AnnihilateFermion(_i)*CreateFermion(_i)
```

`get_subNO(i)`

Returns a `NO()` without FermionicOperator at index i.
Examples

```python
>>> from sympy import symbols
>>> from sympy.physics.secondquant import F, NO
>>> p, q, r = symbols('p, q, r')

>>> NO(F(p)*F(q)*F(r)).get_subNO(1)
NO(AnnihilateFermion(p)*AnnihilateFermion(r))
```

property has_q_annihilators

Return 0 if the rightmost argument of the first argument is a not a q_annihilator, else 1 if it is above fermi or -1 if it is below fermi.

Examples

```python
>>> a = symbols('a', above_fermi=True)
>>> i = symbols('i', below_fermi=True)
>>> NO(Fd(a)*Fd(i)).has_q_annihilators
-1
>>> NO(F(i)*F(a)).has_q_annihilators
1
>>> NO(Fd(a)*F(i)).has_q_annihilators
0
```

property has_q_creators

Return 0 if the leftmost argument of the first argument is a not a q_creator, else 1 if it is above fermi or -1 if it is below fermi.

Examples

```python
>>> a = symbols('a', above_fermi=True)
>>> i = symbols('i', below_fermi=True)
>>> NO(Fd(a)*Fd(i)).has_q_creators
1
>>> NO(F(i)*F(a)).has_q_creators
-1
>>> NO(Fd(i)*F(a)).has_q_creators
0
```

iter_q_annihilators()

Iterates over the annihilation operators.
Examples

```python
>>> from sympy import symbols
>>> i, j = symbols('i j', below_fermi=True)
>>> a, b = symbols('a b', above_fermi=True)
>>> from sympy.physics.secondquant import NO, F, Fd
>>> no = NO(Fd(a) * F(i) * F(b) * Fd(j))

>>> no.iter_q_creators()
<generator object... at 0x...>

>>> list(no.iter_q_creators())
[0, 1]

>>> list(no.iter_q_annihilators())
[3, 2]
```

```python
iter_q_creators() Iterates over the creation operators.
```

Examples

```python
>>> from sympy import symbols
>>> i, j = symbols('i j', below_fermi=True)
>>> a, b = symbols('a b', above_fermi=True)
>>> from sympy.physics.secondquant import NO, F, Fd
>>> no = NO(Fd(a) * F(i) * F(b) * Fd(j))

>>> no.iter_q_creators()
<generator object... at 0x...>

>>> list(no.iter_q_creators())
[0, 1]

>>> list(no.iter_q_annihilators())
[3, 2]
```

class sympy.physics.secondquant.PermutationOperator(i,j)

Represents the index permutation operator P(ij).

```
P(ij)*f(i)*g(j) = f(i)*g(j) - f(j)*g(i)
```

get_permuted(expr)

Returns -expr with permuted indices.

Explanation

```python
>>> from sympy import symbols, Function
>>> from sympy.physics.secondquant import PermutationOperator
>>> p, q = symbols('p,q')
>>> f = Function('f')
>>> PermutationOperator(p,q).get_permuted(f(p,q))
-f(q, p)
```
class sympy.physics.secondquant.VarBosonicBasis(n_max)
A single state, variable particle number basis set.

Examples

```python
>>> from sympy.physics.secondquant import VarBosonicBasis
>>> b = VarBosonicBasis(5)
>>> b
[FockState((0,)), FockState((1,)), FockState((2,)), FockState((3,)), FockState((4,))]
```

index(state)
Returns the index of state in basis.

Examples

```python
>>> from sympy.physics.secondquant import VarBosonicBasis
>>> b = VarBosonicBasis(3)
>>> state = b.state(1)
>>> b
[FockState((0,)), FockState((1,)), FockState((2,))]
>>> state
FockStateBosonKet((1,))
>>> b.index(state)
1
```

state(i)
The state of a single basis.

Examples

```python
>>> from sympy.physics.secondquant import VarBosonicBasis
>>> b = VarBosonicBasis(5)
>>> b.state(3)
FockStateBosonKet((3,))
```

sympy.physics.secondquant.apply_operators(e)
Take a SymPy expression with operators and states and apply the operators.
Examples

```python
>>> from sympy.physics.secondquant import apply_operators
>>> from sympy import sympify
>>> apply_operators(sympify(3) + 4)
7
```

`sympy.physics.secondquant.contraction(a, b)`

Calculates contraction of Fermionic operators a and b.

Examples

```python
>>> from sympy import symbols
>>> from sympy.physics.secondquant import F, Fd, contraction
>>> p, q = symbols('p,q')
>>> a, b = symbols('a,b', above_fermi=True)
>>> i, j = symbols('i,j', below_fermi=True)
```

A contraction is non-zero only if a quasi-creator is to the right of a quasi-annihilator:

```python
>>> contraction(F(a), Fd(b))
KroneckerDelta(a, b)
>>> contraction(Fd(i), F(j))
KroneckerDelta(i, j)
```

For general indices a non-zero result restricts the indices to below/above the fermi surface:

```python
>>> contraction(Fd(p), F(q))
KroneckerDelta(_i, q)*KroneckerDelta(p, q)
>>> contraction(F(p), Fd(q))
KroneckerDelta(_a, q)*KroneckerDelta(p, q)
```

Two creators or two annihilators always vanishes:

```python
>>> contraction(F(p), F(q))
0
>>> contraction(Fd(p), Fd(q))
0
```

`sympy.physics.secondquant.evaluate_deltas(e)`

We evaluate KroneckerDelta symbols in the expression assuming Einstein summation.
Explanation

If one index is repeated it is summed over and in effect substituted with the other one. If both indices are repeated we substitute according to what is the preferred index. This is determined by KroneckerDelta.preferred_index and KroneckerDelta.killable_index.

In case there are no possible substitutions or if a substitution would imply a loss of information, nothing is done.

In case an index appears in more than one KroneckerDelta, the resulting substitution depends on the order of the factors. Since the ordering is platform dependent, the literal expression resulting from this function may be hard to predict.

Examples

We assume the following:

```python
>>> from sympy import symbols, Function, Dummy, KroneckerDelta
>>> from sympy.physics.secondquant import evaluate_deltas
>>> i, j = symbols('i j', below_fermi=True, cls=Dummy)
>>> a, b = symbols('a b', above_fermi=True, cls=Dummy)
>>> p, q = symbols('p q', cls=Dummy)
>>> f = Function('f')
>>> t = Function('t')
```

The order of preference for these indices according to KroneckerDelta is (a, b, i, j, p, q).

Trivial cases:

```python
>>> evaluate_deltas(KroneckerDelta(i,j)*f(i)) # d_ij f(i) -> f(j)  
f(j)
>>> evaluate_deltas(KroneckerDelta(i,j)*f(j)) # d_ij f(j) -> f(i)  
f(i)
>>> evaluate_deltas(KroneckerDelta(i,p)*f(p)) # d_ip f(p) -> f(i)  
f(i)
>>> evaluate_deltas(KroneckerDelta(q,p)*f(p)) # d_qp f(p) -> f(q)  
f(q)
>>> evaluate_deltas(KroneckerDelta(q,p)*f(q)) # d_qp f(q) -> f(p)  
f(p)
```

More interesting cases:

```python
>>> evaluate_deltas(KroneckerDelta(i,p)*t(a,i)*f(p,q))  
f(_i) * t(_a, _i) * f(_p, _q)
```  

Finally, here are some cases where nothing is done, because that would imply a loss of information:

```python
>>> evaluate_deltas(KroneckerDelta(i,p)*f(q))  
f(_q) * KroneckerDelta(_i, _p)
```
sympy.physics.secondquant.matrix_rep(op, basis)
Find the representation of an operator in a basis.

Examples

```python
>>> from sympy.physics.secondquant import VarBosonicBasis, B, matrix_rep
>>> b = VarBosonicBasis(5)
>>> o = B(0)
>>> matrix_rep(o, b)
Matrix([[0, 1, 0, 0, 0],
       [0, 0, sqrt(2), 0, 0],
       [0, 0, 0, sqrt(3), 0],
       [0, 0, 0, 0, 2],
       [0, 0, 0, 0, 0]])
```

sympy.physics.secondquant.simplify_index_permutations(expr, permutation_operators)
Performs simplification by introducing PermutationOperators where appropriate.

Explanation

Schematically:

\[[abij] - [abji] - [baij] + [baji] \rightarrow P(ab)*P(ij)*[abij] \]

permutation_operators is a list of PermutationOperators to consider.

If permutation_operators=[P(ab),P(ij)] we will try to introduce the permutation operators P(ij) and P(ab) in the expression. If there are other possible simplifications, we ignore them.

```python
>>> from sympy import symbols, Function
>>> from sympy.physics.secondquant import simplify_index_permutations
>>> from sympy.physics.secondquant import PermutationOperator
>>> p, q, r, s = symbols('p,q,r,s')
>>> f = Function('f')
>>> g = Function('g')

>>> expr = f(p)*g(q) - f(q)*g(p); expr
f(p)*g(q) - f(q)*g(p)
>>> simplify_index_permutations(expr, [PermutationOperator(p, q)])
f(p)*g(q)*PermutationOperator(p, q)
```

```python
>>> PermutList = [PermutationOperator(p, q), PermutationOperator(r, s)]
>>> expr = f(p, r)*g(q, s) - f(q, r)*g(p, s) + f(q, s)*g(p, r) - f(p, s)*g(q, r)
>>> simplify_index_permutations(expr, PermutList)
f(p, r)*g(q, s)*PermutationOperator(p, q)*PermutationOperator(r, s)
```
sympy.physics.secondquant.substitute_dummies(expr, new_indices=False, pretty_indices={})

Collect terms by substitution of dummy variables.

Explanation

This routine allows simplification of Add expressions containing terms which differ only due to dummy variables.

The idea is to substitute all dummy variables consistently depending on the structure of the term. For each term, we obtain a sequence of all dummy variables, where the order is determined by the index range, what factors the index belongs to and its position in each factor. See _get_ordered_dummies() for more information about the sorting of dummies. The index sequence is then substituted consistently in each term.

Examples

```python
>>> from sympy import symbols, Function, Dummy
>>> from sympy.physics.secondquant import substitute_dummies
>>> a,b,c,d = symbols('a b c d', above_fermi=True, cls=Dummy)
>>> i,j = symbols('i j', below_fermi=True, cls=Dummy)
>>> f = Function('f')

>>> expr = f(a,b) + f(c,d); expr
f(_a, _b) + f(_c, _d)

Since a, b, c and d are equivalent summation indices, the expression can be simplified to a single term (for which the dummy indices are still summed over)

```python
>>> substitute_dummies(expr)
2*f(_a, _b)
```

Controlling output:

By default the dummy symbols that are already present in the expression will be reused in a different permutation. However, if new_indices=True, new dummies will be generated and inserted. The keyword ‘pretty_indices’ can be used to control this generation of new symbols.

By default the new dummies will be generated on the form i_1, i_2, a_1, etc. If you supply a dictionary with key:value pairs in the form:

```python
 { index_group: string_of_letters }
```

The letters will be used as labels for the new dummy symbols. The index_groups must be one of ‘above’, ‘below’ or ‘general’.

```python
>>> expr = f(a,b,i,j)
>>> my_dummies = { 'above': 'st', 'below': 'uv' }
>>> substitute_dummies(expr, new_indices=True, pretty_indices=my_dummies)
f(_s, _t, _u, _v)
```

If we run out of letters, or if there is no keyword for some index_group the default dummy generator will be used as a fallback:
```python
>>> p, q = symbols('p q', cls=Dummy) # general indices
>>> expr = f(p, q)
>>> substitute_dummies(expr, new_indices=True, pretty_indices=my_dummies)
f(_p_0, _p_1)
```

`sympy.physics.secondquant.wicks(e, **kw_args)`

Returns the normal ordered equivalent of an expression using Wicks Theorem.

**Examples**

```python
>>> from sympy import symbols, Dummy
>>> from sympy.physics.secondquant import wicks, F, Fd
>>> p, q, r = symbols('p, q, r')
>>> wicks(Fd(p) * F(q))
KroneckerDelta(_i, q) * KroneckerDelta(p, q) +
 NO(CreateFermion(p) * AnnihilateFermion(q))
```

By default, the expression is expanded:

```python
>>> wicks(F(p) * (F(q) + F(r)))
NO(AnnihilateFermion(p) * AnnihilateFermion(q)) +
 _NO(AnnihilateFermion(p) * AnnihilateFermion(r))
```

With the keyword `keep_only_fully_contracted=True`, only fully contracted terms are returned.

**By request, the result can be simplified in the following order:**
- KroneckerDelta functions are evaluated
- Dummy variables are substituted consistently across terms

```python
>>> p, q, r = symbols('p q r', cls=Dummy)
>>> wicks(Fd(p) * (F(q) + F(r)), keep_only_fully_contracted=True)
KroneckerDelta(_i, _q) * KroneckerDelta(_p, _q) +
 KroneckerDelta(_i, _r) * KroneckerDelta(_p, _r)
```

**Wigner Symbols**

Wigner, Clebsch-Gordan, Racah, and Gaunt coefficients

Collection of functions for calculating Wigner 3j, 6j, 9j, Clebsch-Gordan, Racah as well as Gaunt coefficients exactly, all evaluating to a rational number times the square root of a rational number [Rasch03].

Please see the description of the individual functions for further details and examples.
SymPy Documentation, Release 1.12.1

References

Credits and Copyright

This code was taken from Sage with the permission of all authors:
https://groups.google.com/forum/#!topic/sage-devel/M4NZdu-7O38

Authors

- Jens Rasch (2009-05-31): updated to sage-4.0
- Oscar Gerardo Lazo Arjona (2017-06-18): added Wigner D matrices
- Phil Adam LeMaitre (2022-09-19): added real Gaunt coefficient

Copyright (C) 2008 Jens Rasch <jyr2000@gmail.com>

sympy.physics.wigner.clebsch_gordan(j_1, j_2, j_3, m_1, m_2, m_3)
Calculates the Clebsch-Gordan coefficient. \( \langle j_1 m_1 j_2 m_2 | j_3 m_3 \rangle \).
The reference for this function is [Edmonds74].

Parameters

- \( j_1, j_2, j_3, m_1, m_2, m_3 \) :
  Integer or half integer.

Returns

Rational number times the square root of a rational number.

Examples

```python
>>> from sympy import S
>>> from sympy.physics.wigner import clebsch_gordan
>>> clebsch_gordan(S(3)/2, S(1)/2, 2, S(3)/2, S(1)/2, 2)
1
>>> clebsch_gordan(S(3)/2, S(1)/2, 1, S(3)/2, -S(1)/2, 1)
sqrt(3)/2
>>> clebsch_gordan(S(3)/2, S(1)/2, 1, -S(1)/2, S(1)/2, 0)
-sqrt(2)/2
```

Notes

The Clebsch-Gordan coefficient will be evaluated via its relation to Wigner 3j symbols:

\[
\langle j_1 m_1 j_2 m_2 | j_3 m_3 \rangle = (-1)^{j_1 - j_2 + m_3} \sqrt{2j_3 + 1} \text{Wigner3j}(j_1, j_2, j_3, m_1, m_2, -m_3)
\]

See also the documentation on Wigner 3j symbols which exhibit much higher symmetry relations than the Clebsch-Gordan coefficient.
Authors

- Jens Rasch (2009-03-24): initial version

sympy.physics.wigner.dot_rot_grad_Ynm(j, p, l, m, theta, phi)

Returns dot product of rotational gradients of spherical harmonics.

Explanation

This function returns the right hand side of the following expression:

$$\tilde{R}^p_j \cdot \tilde{R}^m_l = (-1)^{m+p} \sum_{k=|l-j|}^{l+j} Y^{m+p}_k \cdot \alpha_{l,m,j,p,k} \cdot \frac{1}{2} (k^2 - j^2 - l^2 + k - j - l)$$

Arguments

j, p, l, m .... indices in spherical harmonics (expressions or integers) theta, phi .... angle arguments in spherical harmonics

Example

```python
>>> from sympy import symbols
>>> from sympy.physics.wigner import dot_rot_grad_Ynm
>>> theta, phi = symbols("theta phi")
>>> dot_rot_grad_Ynm(3, 2, 2, 0, theta, phi).doit()
3*sqrt(55)*Ynm(5, 2, theta, phi)/(11*sqrt(pi))
```

sympy.physics.wigner.gaunt(l_1, l_2, l_3, m_1, m_2, m_3, prec=None)

Calculate the Gaunt coefficient.

Parameters

l_1, l_2, l_3, m_1, m_2, m_3 :

Integer.

prec - precision, default: ``None``.

Providing a precision can drastically speed up the calculation.

Returns

Rational number times the square root of a rational number
(if prec=None), or real number if a precision is given.
**Explanation**

The Gaunt coefficient is defined as the integral over three spherical harmonics:

\[
\text{Gaunt}(l_1, l_2, l_3, m_1, m_2, m_3) = \int Y_{l_1, m_1}(\Omega)Y_{l_2, m_2}(\Omega)Y_{l_3, m_3}(\Omega) \, d\Omega \\
= \sqrt{\frac{(2l_1 + 1)(2l_2 + 1)(2l_3 + 1)}{4\pi}} W_{3j}(l_1, l_2, l_3, 0, 0) W_{3j}(l_1, l_2, l_3, m_1, m_2, m_3)
\]

**Examples**

```python
>>> from sympy.physics.wigner import gaunt
>>> gaunt(1,0,1,1,0,-1)
-1/(2*sqrt(pi))
>>> gaunt(1000,1000,1200,9,3,-12).n(64)
0.00689500421922113448...
```

It is an error to use non-integer values for \(l\) and \(m\):

```python
sage: gaunt(1.2,0,1.2,0,0,0)
Traceback (most recent call last):
...
ValueError: l values must be integer
sage: gaunt(1,0,1,1,0,-1.1)
Traceback (most recent call last):
...
ValueError: m values must be integer
```

**Notes**

The Gaunt coefficient obeys the following symmetry rules:

- invariant under any permutation of the columns

\[
Y(l_1, l_2, l_3, m_1, m_2, m_3) = Y(l_3, l_1, l_2, m_1, m_2, m_3) \\
= Y(l_2, l_3, l_1, m_2, m_3, m_1) \\
= Y(l_3, l_2, l_1, m_3, m_1, m_2) \\
= Y(l_1, l_3, l_2, m_1, m_3, m_2) \\
= Y(l_2, l_1, l_3, m_2, m_1, m_3)
\]

- invariant under space inflection, i.e.

\[
Y(l_1, l_2, l_3, m_1, m_2, m_3) = Y(l_1, l_2, l_3, -m_1, -m_2, -m_3)
\]

- symmetric with respect to the 72 Regge symmetries as inherited for the \(3j\) symbols [Regge58]

- zero for \(l_1, l_2, l_3\) not fulfilling triangle relation

- zero for violating any one of the conditions: \(l_1 \geq |m_1|, l_2 \geq |m_2|, l_3 \geq |m_3|\)

- non-zero only for an even sum of the \(l_i\), i.e. \(L = l_1 + l_2 + l_3 = 2n\) for \(n \in \mathbb{N}\)
Algorithms

This function uses the algorithm of [Liberatodebrito82] to calculate the value of the Gaunt coefficient exactly. Note that the formula contains alternating sums over large factorials and is therefore unsuitable for finite precision arithmetic and only useful for a computer algebra system [Rasch03].

Authors


Authors


sympy.physics.wigner.racah(aa, bb, cc, dd, ee, ff, prec=None)

Calculate the Racah symbol \( W(a, b, c; d, e, f) \).

Parameters

- \( a, \ldots, f \): Integer or half integer.
- \( \text{prec} \): Precision, default: None. Providing a precision can drastically speed up the calculation.

Returns

Rational number times the square root of a rational number (if \( \text{prec}=\text{None} \)), or real number if a precision is given.

Examples

```python
>>> from sympy.physics.wigner import racah
>>> racah(3, 3, 3, 3, 3, 3)
-1/14
```

Notes

The Racah symbol is related to the Wigner 6j symbol:

\[
\text{Wigner6j}(j_1, j_2, j_3, j_4, j_5, j_6) = (-1)^{j_1 + j_2 + j_3 + j_4 + j_5 + j_6} W(j_1, j_2, j_3, j_4, j_5, j_6)
\]

Please see the 6j symbol for its much richer symmetries and for additional properties.

Algorithm

This function uses the algorithm of [Edmonds74] to calculate the value of the 6j symbol exactly. Note that the formula contains alternating sums over large factorials and is therefore unsuitable for finite precision arithmetic and only useful for a computer algebra system [Rasch03].
real_gaunt(l_1, l_2, l_3, m_1, m_2, m_3, prec=None)

Calculate the real Gaunt coefficient.

Parameters

- **l_1, l_2, l_3, m_1, m_2, m_3**: Integer.
- **prec** - precision, default: `None`

Providing a precision can drastically speed up the calculation.

Returns

Rational number times the square root of a rational number.

Explanation

The real Gaunt coefficient is defined as the integral over three real spherical harmonics:

$$\text{RealGaunt}(l_1, l_2, l_3, m_1, m_2, m_3) = \int Z_{l_1}^{m_1}(\Omega)Z_{l_2}^{m_2}(\Omega)Z_{l_3}^{m_3}(\Omega) \, d\Omega$$

Alternatively, it can be defined in terms of the standard Gaunt coefficient by relating the real spherical harmonics to the standard spherical harmonics via a unitary transformation $U$, i.e. $Z_l^m(\Omega) = \sum_{m'} U_{m'm} Y_l^{m'}(\Omega)$ [Homeier96]. The real Gaunt coefficient is then defined as

$$\text{RealGaunt}(l_1, l_2, l_3, m_1, m_2, m_3) = \sum_{m_1', m_2', m_3'} U_{m_1'm_1} U_{m_2'm_2} U_{m_3'm_3} \text{Gaunt}(l_1, l_2, l_3, m_1', m_2', m_3')$$

The unitary matrix $U$ has components

$$U_{m'm} = \delta_{|m||m'|} \times (\delta_{m0}\delta_{m0} + \frac{1}{2} [\Theta(m)(\delta_m m + (-1)^m \delta_m - m) + i\Theta(-m)((-1)^m \delta_{m-m} - \delta_{m'-m} * (-1)^{m'-m})])$$

where $\delta_{ij}$ is the Kronecker delta symbol and $\Theta$ is a step function defined as

$$\Theta(x) = \begin{cases} \text{1 for } x > 0 \\ \text{0 for } x \leq 0 \end{cases}$$

Examples

```python
>>> from sympy.physics.wigner import real_gaunt
>>> real_gaunt(2,2,4,-1,-1,0)
-2/(7*sqrt(pi))
>>> real_gaunt(10,10,20,-9,-9,0).n(64)
-0.00002480019791932209313156167...
```
It is an error to use non-integer values for \(l\) and \(m\):

real_gaunt(2.8,0.5,1.3,0,0,0)  Traceback (most recent call last): ...
ValueError: l values must be integer
real_gaunt(2,2,4,0.7,1,-3.4)  Traceback (most recent call last):
...
ValueError: m values must be integer

Notes

The real Gaunt coefficient inherits from the standard Gaunt coefficient, the invariance under any permutation of the pairs \((l_i, m_i)\) and the requirement that the sum of the \(l_i\) be even to yield a non-zero value. It also obeys the following symmetry rules:

- zero for \(l_1, l_2, l_3\) not fulfilling the condition \(l_1 \in \{l_{\text{max}}, l_{\text{max}} - 2, \ldots, l_{\text{min}}\}\), where \(l_{\text{max}} = l_2 + l_3\),

\[
l_{\text{min}} = \begin{cases} \kappa(l_2, l_3, m_2, m_3) & \text{if } \kappa(l_2, l_3, m_2, m_3) + l_{\text{max}} \text{ is even} \\ \kappa(l_2, l_3, m_2, m_3) + 1 & \text{if } \kappa(l_2, l_3, m_2, m_3) + l_{\text{max}} \text{ is odd} \end{cases}
\]

and \(\kappa(l_2, l_3, m_2, m_3) = \max(|l_2 - l_3|, \min(|m_2 + m_3|, |m_2 - m_3|))\)

- zero for an odd number of negative \(m_i\)

Algorithms

This function uses the algorithms of [Homeier96] and [Rasch03] to calculate the value of the real Gaunt coefficient exactly. Note that the formula used in [Rasch03] contains alternating sums over large factorials and is therefore unsuitable for finite precision arithmetic and only useful for a computer algebra system [Rasch03]. However, this function can in principle use any algorithm that computes the Gaunt coefficient, so it is suitable for finite precision arithmetic in so far as the algorithm which computes the Gaunt coefficient is.

```python
sympy.physics.wigner.wigner_3j(j_1, j_2, j_3, m_1, m_2, m_3)
```

Calculate the Wigner 3j symbol Wigner3j\((j_1, j_2, j_3, m_1, m_2, m_3)\).

Parameters

- \(j_1, j_2, j_3, m_1, m_2, m_3\):
  Integer or half integer.

Returns

Rational number times the square root of a rational number.

Examples

```python
>>> from sympy.physics.wigner import wigner_3j
>>> wigner_3j(2, 6, 4, 0, 0, 0)
sqrt(715)/143
>>> wigner_3j(2, 6, 4, 0, 0, 1)
0
```

It is an error to have arguments that are not integer or half integer values:
sage: wigner_3j(2.1, 6, 4, 0, 0, 0)
Traceback (most recent call last):
...
ValueError: j values must be integer or half integer
sage: wigner_3j(2, 6, 4, 1, 0, -1.1)
Traceback (most recent call last):
...
ValueError: m values must be integer or half integer

Notes

The Wigner 3j symbol obeys the following symmetry rules:

• invariant under any permutation of the columns (with the exception of a sign change where $J := j_1 + j_2 + j_3$):

\[
\text{Wigner3j}(j_1, j_2, j_3, m_1, m_2, m_3) = \text{Wigner3j}(j_3, j_1, j_2, m_3, m_1, m_2)
= \text{Wigner3j}(j_2, j_3, j_1, m_2, m_3, m_1)
= (-1)^J \text{Wigner3j}(j_3, j_2, j_1, m_3, m_2, m_1)
= (-1)^J \text{Wigner3j}(j_1, j_3, j_2, m_1, m_3, m_2)
= (-1)^J \text{Wigner3j}(j_2, j_1, j_3, m_2, m_1, m_3)
\]

• invariant under space inflection, i.e.

\[
\text{Wigner3j}(j_1, j_2, j_3, m_1, m_2, m_3) = (-1)^J \text{Wigner3j}(j_1, j_2, j_3, -m_1, -m_2, -m_3)
\]

• symmetric with respect to the 72 additional symmetries based on the work by [Regge58]

• zero for $j_1, j_2, j_3$ not fulfilling triangle relation

• zero for $m_1 + m_2 + m_3 \neq 0$

• zero for violating any one of the conditions $j_1 \geq |m_1|, j_2 \geq |m_2|, j_3 \geq |m_3|$

Algorithm

This function uses the algorithm of [Edmonds74] to calculate the value of the 3j symbol exactly. Note that the formula contains alternating sums over large factorials and is therefore unsuitable for finite precision arithmetic and only useful for a computer algebra system [Rasch03].
SymPy Documentation, Release 1.12.1

Authors

- Jens Rasch (2009-03-24): initial version

\texttt{sympy.physics.wigner.wigner\_6j}(j_1, j_2, j_3, j_4, j_5, j_6, \text{prec}=\text{None})

Calculate the Wigner 6j symbol \(W(j_1, j_2, j_3, j_4, j_5, j_6).\)

**Parameters**

- \(j_1, \ldots, j_6:\) Integer or half integer.
- \text{prec}: Precision, default: \text{None}. Providing a precision can drastically speed up the calculation.

**Returns**

Rational number times the square root of a rational number (if \text{prec}=\text{None}), or real number if a precision is given.

**Examples**

```python
>>> from sympy.physics.wigner import wigner_6j
>>> wigner_6j(3, 3, 3, 3, 3)
-1/14
>>> wigner_6j(5, 5, 5, 5, 5)
1/52
```

It is an error to have arguments that are not integer or half integer values or do not fulfill the triangle relation:

```python
sage: wigner_6j(2.5, 2.5, 2.5, 2.5, 2.5, 2.5)
Traceback (most recent call last):
...
ValueError: j values must be integer or half integer and fulfill the \(_\triangle \)triangle relation
```

**Notes**

The Wigner 6j symbol is related to the Racah symbol but exhibits more symmetries as detailed below.

\[
Wigner6j(j_1, j_2, j_3, j_4, j_5, j_6) = (-1)^{j_1+j_2+j_4+j_6} W(j_1, j_2, j_5, j_4, j_3, j_6)
\]

The Wigner 6j symbol obeys the following symmetry rules:
• Wigner 6j symbols are left invariant under any permutation of the columns:
  \[ \text{Wigner6j}(j_1, j_2, j_3, j_4, j_5, j_6) = \text{Wigner6j}(j_3, j_1, j_2, j_6, j_4, j_5) = \text{Wigner6j}(j_2, j_3, j_1, j_5, j_6, j_4) = \text{Wigner6j}(j_1, j_3, j_2, j_4, j_6, j_5) = \text{Wigner6j}(j_2, j_1, j_3, j_5, j_4, j_6) \]

• They are invariant under the exchange of the upper and lower arguments in each of any two columns, i.e.
  \[ \text{Wigner6j}(j_1, j_2, j_3, j_4, j_5, j_6) = \text{Wigner6j}(j_1, j_5, j_6, j_4, j_2, j_3) = \text{Wigner6j}(j_4, j_2, j_6, j_1, j_5, j_3) = \text{Wigner6j}(j_4, j_5, j_3, j_1, j_2, j_6) \]

• additional 6 symmetries [Regge59] giving rise to 144 symmetries in total
• only non-zero if any triple of j’s fulfill a triangle relation

Algorithm

This function uses the algorithm of [Edmonds74] to calculate the value of the 6j symbol exactly. Note that the formula contains alternating sums over large factorials and is therefore unsuitable for finite precision arithmetic and only useful for a computer algebra system [Rasch03].

`sympy.physics.wigner.wigner_9j(j_1, j_2, j_3, j_4, j_5, j_6, j_7, j_8, j_9, prec=None)`

Calculate the Wigner 9j symbol Wigner9j(j_1, j_2, j_3, j_4, j_5, j_6, j_7, j_8, j_9).

Parameters

  \( j_1, \ldots, j_9 \):
  
  Integer or half integer.

  \( \text{prec} \):
  
  Precision, default None. Providing a precision can drastically speed up the calculation.

Returns

  Rational number times the square root of a rational number
  (if prec=None), or real number if a precision is given.

Examples

```python
>>> from sympy.physics.wigner import wigner_9j
>>> wigner_9j(1,1,1, 1,1, 1,1,0, prec=64) # ==1/18
0.055555555...

>>> wigner_9j(1/2,1/2,0, 1/2,3/2,1, 0,1,1, prec=64) # ==1/6
0.16666666...
```

It is an error to have arguments that are not integer or half integer values or do not fulfill the triangle relation:
Algorithm

This function uses the algorithm of [Edmonds74] to calculate the value of the 3j symbol exactly. Note that the formula contains alternating sums over large factorials and is therefore unsuitable for finite precision arithmetic and only useful for a computer algebra system [Rasch03].

```
sage: wigner_9j(0.5,0.5,0.5, 0.5,0.5,0.5, 0.5,0.5,0.5,prec=64)
Traceback (most recent call last):
...
ValueError: j values must be integer or half integer and fulfill the _triangle relation
sage: wigner_9j(1,1,1, 0.5,1,1.5, 0.5,1,2.5,prec=64)
Traceback (most recent call last):
...
ValueError: j values must be integer or half integer and fulfill the _triangle relation
```

Explanation

**J:**
An integer, half-integer, or SymPy symbol for the total angular momentum of the angular momentum space being rotated.

**alpha, beta, gamma - Real numbers representing the Euler.**
Angles of rotation about the so-called vertical, line of nodes, and figure axes. See [Edmonds74].

Examples

The simplest possible example:
```python
>>> from sympy.physics.wigner import wigner_d
>>> from sympy import Integer, symbols, pprint
>>> half = 1/Integer(2)
>>> alpha, beta, gamma = symbols("alpha, beta, gamma", real=True)
>>> pprint(wigner_d(half, alpha, beta, gamma), use_unicode=True)
```
sympy.physics.wigner.wigner_d_small(J, beta)

Return the small Wigner d matrix for angular momentum J.

**Returns**
A matrix representing the corresponding Euler angle rotation (in the basis of eigenvectors of \( J_z \)).

\[
\exp \left( \frac{i\beta}{\hbar} J_y \right)
\]

The components are calculated using the general form [Edmonds74], equation 4.1.15.

**Explanation**

\( J \)
[An integer, half-integer, or SymPy symbol for the total angular momentum of the angular momentum space being rotated.]

\( \beta \)
[A real number representing the Euler angle of rotation about the so-called line of nodes. See [Edmonds74].]

**Examples**

```python
>>> from sympy import Integer, symbols, pi, pprint
>>> from sympy.physics.wigner import wigner_d_small
>>> half = 1/Integer(2)
>>> beta = symbols("beta", real=True)
>>> pprint(wigner_d_small(half, beta), use_unicode=True)
⎡ ⎛β⎞ ⎛β⎞⎤
⎢cos⎜─⎟ sin⎜─⎟⎥
⎢ ⎝2⎠ ⎝2⎠⎥
⎢ ⎥
⎢ ⎛β⎞ ⎛β⎞⎥
⎢-sin⎜─⎟ cos⎜─⎟⎥
⎣ ⎝2⎠ ⎝2⎠⎦
```
From table 4 in [Edmonds74]

```python
>>> pprint(wigner_d_small(2*half, beta), use_unicode=True)
[[cos(β/2), \sqrt{2} \cdot \sin(β/2) \cdot \cos(β/2), \sin(β/2)]
[-\sqrt{2} \cdot \sin(β/2) \cdot \cos(β/2), -\sin(β/2) + \cos(β/2), \sqrt{2} \cdot \sin(β/2) \cdot \cos(β/2)]
[\sin(β/2), -\sqrt{2} \cdot \sin(β/2) \cdot \cos(β/2), \cos(β/2)]]
```

```python
>>> pprint(wigner_d_small(half, beta).subs({beta:pi/2}), use_unicode=True)
[[\sqrt{2}/2, \sqrt{2}/2, -\sqrt{2}/2, \sqrt{2}/2]]
```

```python
>>> pprint(wigner_d_small(2*half, beta).subs({beta:pi/2}), use_unicode=True)
[[1/2, \sqrt{2}/2, 1/2, \sqrt{2}/2]
[-\sqrt{2}/2, 0, \sqrt{2}/2, -\sqrt{2}/2]
[1/2, 1/2, 1/2, 1/2]]
```

```python
>>> pprint(wigner_d_small(3*half, beta).subs({beta:pi/2}), use_unicode=True)
[[\sqrt{2}/4, \sqrt{6}/4, \sqrt{6}/4, \sqrt{2}/4]
[-\sqrt{6}/4, -\sqrt{2}/4, \sqrt{2}/4, -\sqrt{6}/4]
[4/4, 4/4, 4/4, 4/4]]
```

(continues on next page)
```python
>>> pprint(wigner_d_small(4*half, beta).subs({beta:pi/2})),
... use_unicode=True)
```

<table>
<thead>
<tr>
<th>\sqrt{6}</th>
<th>-\sqrt{2}</th>
<th>-\sqrt{2}</th>
<th>\sqrt{6}</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>-\sqrt{2}</td>
<td>\sqrt{6}</td>
<td>-\sqrt{6}</td>
<td>\sqrt{2}</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

**Unit systems**

This module integrates unit systems into SymPy, allowing a user choose which system to use when doing their computations and providing utilities to display and convert units.

Units (like meters, pounds, seconds) and constants (like light years, Boltzmann’s constant) are all considered quantities. A `Quantity` object defines both units and physical constants (though its subclass `PhysicalConstant` may be preferred for physical constants).

The relations between quantities are defined by their dimensions and the scale factor to at least another quantity of the same dimension. These two types of relations are usually defined inside `UnitSystem` objects, except for properties valid in every unit system. For example, 1 kilometer is equal to 1000 meters in all unit systems and its dimension is length in all dimension systems. On the other hand, the speed of light is equal to 299792458 meters per second in SI units, while it is equal to 1 (unitless) in natural units. In both SI and natural units the dimension of the speed of light in velocity, but in the dimension system of natural units velocity is dimensionless because length and time are equivalent. Similarly, there are discrepancies in the dimensions and scale factors of electromagnetic quantities between SI unit system and CGS and gaussian unit systems, as the last two ones do not consider the current to be a fundamental dimension.

The advantage of this implementation over the one found in other libraries is that it handles relations between units differently in different unit systems, without restrictions to the assumption of relations between units and physical constants provided by the SI unit system.
Examples

The most important function in the units module is `convert_to`, it allows the given quantity to be rewritten as the product of powers of some target quantities. For example, to represent the speed of light in terms of meters and seconds:

```python
>>> from sympy.physics.units import speed_of_light, meter, second
>>> from sympy.physics.units import convert_to
>>> convert_to(speed_of_light, [meter, second])
299792458*meter/second
```

If it is not possible to represent the given quantity in the target units, the given quantity will be returned unchanged:

```python
>>> convert_to(speed_of_light, [meter])
speed_of_light
```

The relations between quantities depend on the unit systems. So, `convert_to` accepts an optional third parameter representing the unit system, which is SI by default. The conversion may return different results depending on the chosen unit system, for example, in the cgs_gauss unit system the current is not a fundamental dimension, rather it can be represented as a combination of length, time and mass:

```python
>>> from sympy.physics.units.systems.si import SI
>>> from sympy.physics.units.systems.cgs import cgs_gauss
>>> from sympy.physics.units import ampere, gram, second
>>> convert_to(ampere, [meter, gram, second], SI)
ampere
>>> convert_to(ampere, [meter, gram, second], cgs_gauss)
149896229*sqrt(gram)*meter**(3/2)/(50*second**2)
```

Quantities of the same dimension do not get simplified automatically, for example if you divide meters by kilometers, you will get an object representing the division between the two units. In order to simplify this kind of expressions, you can either call the `.simplify()` method or import the `quantity_simplify()` function, the last one also accepting a unit system as optional parameter:

```python
>>> from sympy.physics.units.util import quantity_simplify
>>> from sympy.physics.units import kilometer
>>> meter/kilometer
meter/kilometer
>>> (meter/kilometer).simplify()
1/1000
>>> quantity_simplify(meter/kilometer)
1/1000
```
More

Ideas about future developments can be found on the Github wiki.

Philosophy behind unit systems

Dimensions

Introduction

At the root of unit systems are dimension systems, whose structure mainly determines the one of unit systems. Our definition could seem rough but they are largely sufficient for our purposes.

A dimension will be defined as a property which is measurable and assigned to a specific phenomenon. In this sense dimensions are different from pure numbers because they carry some extra-sense, and for this reason two different dimensions cannot be added. For example time or length are dimensions, but also any other things which has some sense for us, like angle, number of particles (moles...) or information (bits...).

From this point of view the only truly dimensionless quantity are pure numbers. The idea of being dimensionless is very system-dependent, as can be seen from the \((c, \hbar, G)\), in which all units appears to be dimensionless in the usual common sense. This is unavoidable for computability of generic unit systems (but at the end we can tell the program what is dimensionless).

Dimensions can be composed together by taking their product or their ratio (to be defined below). For example the velocity is defined as length divided by time, or we can see the length as velocity multiplied by time, depending of what we see as the more fundamental: in general we can select a set of base dimensions from which we can describe all the others.

Group structure

After this short introduction whose aim was to introduce the dimensions from an intuitive perspective, we describe the mathematical structure. A dimension system with \(n\) independent dimensions \(\{d_i\}_{i=1,\ldots,n}\) is described by a multiplicative group \(G\):

- there an identity element 1 corresponding to pure numbers;
- the product \(D_3 = D_1 D_2\) of two elements \(D_1, D_2 \in G\) is also in \(G\);
- any element \(D \in G\) has an inverse \(D^{-1} \in G\).

We denote

\[
D^n = D \times \cdots \times D, \quad \text{n times}
\]

and by definition \(D^0 = 1\). The \(\{d_i\}_{i=1,\ldots,n}\) are called generators of the group since any element \(D \in G\) can be expressed as the product of powers of the generators:

\[
D = \prod_{i=1}^{n} d_i^{a_i}, \quad a_i \in \mathbb{Z}.
\]

The identity is given for \(a_i = 0, \forall i\), while we recover the generator \(d_i\) for \(a_i = 1, a_j = 0, \forall j \neq i\). This group has the following properties:
1. abelian, since the generator commutes, \([d_i, d_j] = 0\);

2. countable (infinite but discrete) since the elements are indexed by the powers of the generators\(^1\).

One can change the dimension basis \(\{d'_i\}_{i=1,...,n}\) by taking some combination of the old generators:

\[
d'_i = \prod_{j=1}^{n} d'^{P_{ij}}.
\]

**Linear space representation**

It is possible to use the linear space \(\mathbb{Z}^n\) as a representation of the group since the power coefficients \(a_i\) carry all the information one needs (we do not distinguish between the element of the group and its representation):

\[
(d_i)_j = \delta_{ij}, \quad D = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}.
\]

The change of basis to \(d'_i\) follows the usual rule of change of basis for linear space, the matrix being given by the coefficients \(P_{ij}\), which are simply the coefficients of the new vectors in term of the old basis:

\[
d'_i = P_{ij}d_j.
\]

We will use this last solution in our algorithm.

**An example**

In order to illustrate all this formalism, we end this section with a specific example, the MKS system (m, kg, s) with dimensions (L: length, M: mass, T: time). They are represented as (we will always sort the vectors in alphabetic order)

\[
L = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad M = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad T = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.
\]

Other dimensions can be derived, for example velocity \(V\) or action \(A\)

\[
V = LT^{-1}, \quad A = ML^2T^{-2},
\]

\[
V = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \quad A = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}.
\]

We can change the basis to go to the natural system \((m, c, \hbar)\) with dimension (L: length, V: velocity, A: action)\(^2\). In this basis the generators are

\[
A = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad L = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad V = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.
\]

\(^1\) In general we will consider only dimensions with a maximum coefficient, so we can only a truncation of the group; but this is not useful for the algorithm.

\(^2\) We anticipate a little by considering \(c\) and \(\hbar\) as units and not as physical constants.
whereas the mass and time are given by

\[ T = L V^{-1}, \quad M = A V^{-2}, \]

\[ T = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \quad M = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}. \]

Finally the inverse change of basis matrix \( P^{-1} \) is obtained by gluing the vectors expressed in
the old basis:

\[ P^{-1} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 0 & 0 \\ -2 & 0 & -1 \end{pmatrix}. \]

To find the change of basis matrix we just have to take the inverse

\[ P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & -2 & -1 \end{pmatrix}. \]

**Quantities**

A quantity is defined by its name, dimension and factor to a canonical quantity of the same
dimension. The canonical quantities are an internal reference of the units module and should
not be relevant for end-users. Both units and physical constants are quantities.

**Units**

Units, such as meters, seconds and kilograms, are usually reference quantities chosen by men
to refer to other quantities.

After defining several units of different dimensions we can form a unit system, which is basi-
cally a dimension system with a notion of scale.

**Constants**

Physical constants are just quantities. They indicate that we used not to understand that two
dimensions are in fact the same. For example, we see a velocity for the light different from
1 because we do not think that time is the same as space (which is normal because of our
sense; but it is different at the fundamental level). For example, once there was the “heat
constant” which allowed to convert between joules and calories since people did not know
that heat was energy. As soon as they understood it they fixed this constant to 1 (this is a very
schematic story).

We can interpret the fact that now we fix the value of fundamental constants in the SI as
showing that they are units (and we use them to define the other usual units).
The need for a reference

It is not possible to define from scratch units and unit systems: one needs to define some references, and then build the rest over them. Said in another way, we need an origin for the scales of our units (i.e. a unit with factor 1), and to be sure that all units of a given dimension are defined consistently we need to use the same origin for all of them. This can happen if we want to use a derived unit as a base units in another system: we should not define it as having a scale 1, because, even if it is inconsistent inside the system, we could not convert to the first system since we have two different units (from our point of view) of same scale (which means they are equal for the computer).

We will say that the dimensions and scales defined outside systems are canonical, because we use them for all computations. On the other side the dimensions and scales obtained with reference to a system are called physical, because they ultimately carry a sense.

Let’s use a concrete (and important) example: the case of the mass units. We would like to define the gram as the origin. We would like to define the gram as the canonical origin for the mass, so we assign it a scale 1. Then we can define a system (e.g. in chemistry) that take it as a base unit. The MKS system prefers to use the kilogram; a naive choice would be to attribute it a scale if 1 since it is a base, but we see that we could not convert to the chemistry system because g and kg have both been given the same factor. So we need to define kg as 1000 g, and only then use it as a base in MKS. But as soon as we ask the question “what is the factor of kg in MKS?”, we get the answer 1, since it is a base unit.

Thus we will define all computations without referring to a system, and it is only at the end that we can plug the result into a system to give the context we are interested in.

Literature

More examples

In the following sections we give few examples of what can be done with this module.

Dimensional analysis

We will start from Newton’s second law

\[ ma = F \]

where \( m, a \) and \( F \) are the mass, the acceleration and the force respectively. Knowing the dimensions of \( m \) (\( M \)) and \( a \) (\( LT^{-2} \)), we will determine the dimension of \( F \); obviously we will find that it is a force: \( MLT^{-2} \).

From there we will use the expression of the gravitational force between the particle of mass \( m \) and the body of mass \( M \), at a distance \( r \)

\[ F = \frac{GmM}{r^2} \]

to determine the dimension of the Newton’s constant \( G \). The result should be \( L^3M^{-1}T^{-2} \).
>>> from sympy import symbols
>>> from sympy.physics.unitsystems import SI
>>> from sympy.physics.units import length, mass, acceleration, force
>>> from sympy.physics.units import gravitational_constant as G
>>> F = mass*acceleration

>>> F
Dimension(acceleration*mass)

>>> dimsys_SI.get_dimensional_dependencies(F)
{Dimension(length): 1, Dimension(mass, M): 1, Dimension(time): -2}

>>> dimsys_SI.get_dimensional_dependencies(force)
{Dimension(length): 1, Dimension(mass): 1, Dimension(time): -2}

Dimensions cannot compared directly, even if in the SI convention they are the same:

>>> F == force
False

Dimension system objects provide a way to test the equivalence of dimensions:

>>> dimsys_SI.equivalent_dims(F, force)
True

Note that one should first solve the equation, and then substitute with the dimensions.

Equation with quantities

Using Kepler’s third law

\[
\frac{T^2}{a^3} = \frac{4\pi^2}{GM}
\]

we can find the Venus orbital period using the known values for the other variables (taken from Wikipedia). The result should be 224.701 days.

>>> from sympy import solve, symbols, pi, Eq
>>> from sympy.physics.units import Quantity, length, mass
>>> from sympy.physics.units import day, gravitational_constant as G
>>> T = symbols("T")
>>> a = Quantity("venus_a")

Specify the dimension and scale in SI units:
Add the solar mass as quantity:

```python
>>> M = Quantity("solar_mass")
>>> SI.set_quantity_dimension(M, mass)
>>> SI.set_quantity_scale_factor(M, 1.9891e30*kilogram)
```

Now Kepler’s law:

```python
>>> eq = Eq(T**2 / a**3, 4*pi**2 / G / M)
>>> q = solve(eq, T)[1]
>>> q
2*pi*venus_a**(3/2)/(sqrt(gravitational_constant)*sqrt(solar_mass))
```

To convert to days, use the `convert_to` function (and possibly approximate the outcome result):

```python
>>> from sympy.physics.units import convert_to
>>> convert_to(q, day)
71.5112118495813*pi*day
>>> convert_to(q, day).n()
224.659097795948*day
```

We could also have the solar mass and the day as units coming from the astrophysical system, but we wanted to show how to create a unit that one needs.

We can see in this example that intermediate dimensions can be ill-defined, such as sqrt(G), but one should check that the final result - when all dimensions are combined - is well defined.

### Dimensions and dimension systems

Definition of physical dimensions.

Unit systems will be constructed on top of these dimensions.

Most of the examples in the doc use MKS system and are presented from the computer point of view: from a human point, adding length to time is not legal in MKS but it is in natural system; for a computer in natural system there is no time dimension (but a velocity dimension instead) - in the basis - so the question of adding time to length has no meaning.

```python
class sympy.physics.units.dimensions.Dimension(name, symbol=None)
```

This class represent the dimension of a physical quantities.

The `Dimension` constructor takes as parameters a name and an optional symbol.

For example, in classical mechanics we know that time is different from temperature and dimensions make this difference (but they do not provide any measure of these qualities.)
Dimensions can be composed using multiplication, division and exponentiation (by a number) to give new dimensions. Addition and subtraction is defined only when the two objects are the same dimension.

```
>>> velocity = length / time
>>> velocity
Dimension(length/time)
```

It is possible to use a dimension system object to get the dimensional dependencies of a dimension, for example the dimension system used by the SI units convention can be used:

```
>>> from sympy.physics.units.systems.si import dimsys_SI
>>> dimsyst_SI.get_dimensional_dependencies(velocity)
{Dimension(length, L): 1, Dimension(time, T): -1}
```

```
>>> length + length
Dimension(length)

>>> l2 = length**2
>>> l2
Dimension(length**2)
```

```
>>> dimsyst_SI.get_dimensional_dependencies(l2)
{Dimension(length, L): 2}
```

### has_integer_powers(dim_sys)

Check if the dimension object has only integer powers.

All the dimension powers should be integers, but rational powers may appear in intermediate steps. This method may be used to check that the final result is well-defined.

### class sympy.physics.units.dimensions.DimensionSystem

```
class sympy.physics.units.dimensions.DimensionSystem(base_dims, derived_dims=(),
 dimensional_dependencies={})
```

DimensionSystem represents a coherent set of dimensions.

The constructor takes three parameters:

- base dimensions;
- derived dimensions: these are defined in terms of the base dimensions (for example velocity is defined from the division of length by time);
- dependency of dimensions: how the derived dimensions depend on the base dimensions.

Optionally either the derived_dims or the dimensional_dependencies may be omitted.

### property can_transf_matrix

Useless method, kept for compatibility with previous versions.

DO NOT USE.
Return the canonical transformation matrix from the canonical to the base dimension basis.
It is the inverse of the matrix computed with inv_can_transf_matrix().

**property dim**
Useless method, kept for compatibility with previous versions.
DO NOT USE.
Give the dimension of the system.
That is return the number of dimensions forming the basis.

**dim_can_vector**(dim)
Useless method, kept for compatibility with previous versions.
DO NOT USE.
Dimensional representation in terms of the canonical base dimensions.

**dim_vector**(dim)
Useless method, kept for compatibility with previous versions.
DO NOT USE.
Vector representation in terms of the base dimensions.

**property inv_can_transf_matrix**
Useless method, kept for compatibility with previous versions.
DO NOT USE.
Compute the inverse transformation matrix from the base to the canonical dimension basis.
It corresponds to the matrix where columns are the vector of base dimensions in canonical basis.
This matrix will almost never be used because dimensions are always defined with respect to the canonical basis, so no work has to be done to get them in this basis. Nonetheless if this matrix is not square (or not invertible) it means that we have chosen a bad basis.

**property is_consistent**
Useless method, kept for compatibility with previous versions.
DO NOT USE.
Check if the system is well defined.

**is_dimensionless**(dimension)
Check if the dimension object really has a dimension.
A dimension should have at least one component with non-zero power.

**property list_can_dims**
Useless method, kept for compatibility with previous versions.
DO NOT USE.
List all canonical dimension names.

**print_dim_base**(dim)
Give the string expression of a dimension in term of the basis symbols.
Unit prefixes

Module defining unit prefix class and some constants.

Constant dict for SI and binary prefixes are defined as PREFIXES and BIN_PREFIXES.

class sympy.physics.units.prefixes.Prefix(name, abbrev, exponent, base=10, latex_repr=None)

This class represents prefixes, with their name, symbol and factor.

Prefixes are used to create derived units from a given unit. They should always be
capsulated into units.

The factor is constructed from a base (default is 10) to some power, and it gives the total
multiple or fraction. For example the kilometer km is constructed from the meter (factor 1)
and the kilo (10 to the power 3, i.e. 1000). The base can be changed to allow e.g.
binary prefixes.

A prefix multiplied by something will always return the product of this other object times
the factor, except if the other object:

• is a prefix and they can be combined into a new prefix;
• defines multiplication with prefixes (which is the case for the Unit class).

Units and unit systems

Unit system for physical quantities; include definition of constants.

class sympy.physics.units.unitsystem.UnitSystem(base_units, units=(), name='',
                                                  descr='', dimension_system=None,
                                                  derived_units: Dict[Dimension (page 1631), Quantity (page 1635)]={})

UnitSystem represents a coherent set of units.

A unit system is basically a dimension system with notions of scales. Many of the methods
are defined in the same way.

It is much better if all base units have a symbol.

property dim
    Give the dimension of the system.
    That is return the number of units forming the basis.

extend(base, units=(), name='', description='', dimension_system=None,
       derived_units: Dict[Dimension (page 1631), Quantity (page 1635)]={})

Extend the current system into a new one.

Take the base and normal units of the current system to merge them to the base
and normal units given in argument. If not provided, name and description are
overridden by empty strings.

get_units_non_prefixed() \rightarrow Set[Quantity (page 1635)]

Return the units of the system that do not have a prefix.

property is_consistent
    Check if the underlying dimension system is consistent.
Physical quantities

Physical quantities.

```python
class sympy.physics.units.quantities.Quantity(name, abbrev=None, latex_repr=None, pretty_unicode_repr=None, pretty_ascii_repr=None, mathml_presentation_repr=None, is_prefixed=False, **assumptions)
```

Physical quantity: can be a unit of measure, a constant or a generic quantity.

**property abbrev**
Symbol representing the unit name.

Prepend the abbreviation with the prefix symbol if it is defines.

**convert_to(other, unit_system='SI')**
Convert the quantity to another quantity of same dimensions.

**Examples**

```python
>>> from sympy.physics.units import speed_of_light, meter, second
>>> speed_of_light
speed_of_light
>>> speed_of_light.convert_to(meter/second)
299792458*meter/second

>>> from sympy.physics.units import liter
>>> liter.convert_to(meter**3)
liter**3/1000
```

**property free_symbols**
Return free symbols from quantity.

**property is_prefixed**
Whether or not the quantity is prefixed. Eg. `kilogram` is prefixed, but `gram` is not.

**property scale_factor**
Overall magnitude of the quantity as compared to the canonical units.

**set_global_relative_scale_factor(scale_factor, reference_quantity)**
Setting a scale factor that is valid across all unit system.
Conversion between quantities

Several methods to simplify expressions involving unit objects.

```
sympy.physics.units.util.convert_to(expr, target_units, unit_system='SI')
```

Convert `expr` to the same expression with all of its units and quantities represented as factors of `target_units`, whenever the dimension is compatible.

`target_units` may be a single unit/quantity, or a collection of units/quantities.

Examples

```
>>> from sympy.physics.units import speed_of_light, meter, gram, second, day
>>> from sympy.physics.units import mile, newton, kilogram, atomic_mass_constant
>>> from sympy.physics.units import kilometer, centimeter
>>> from sympy.physics.units import gravitational_constant, hbar
>>> from sympy.physics.units import convert_to

convert_to(mile, kilometer)
25146*kilometer/15625

convert_to(mile, kilometer).n()
1.609344*kilometer

convert_to(speed_of_light, meter/second)
299792458*meter/second

convert_to(day, second)
86400*second

3*newton
3*newton

convert_to(3*newton, kilogram*meter/second**2)
3*kilogram*meter/second**2

convert_to(atomic_mass_constant, gram)
1.660539060e-24*gram

Conversion to multiple units:

```
>>> convert_to(speed_of_light, [meter, second])
299792458*meter/second

>>> convert_to(3*newton, [centimeter, gram, second])
300000*centimeter*gram/second**2
```

Conversion to Planck units:

```
>>> convert_to(atomic_mass_constant, [gravitational_constant, speed_of_light, hbar]).n()
7.6296087839509e-20*hbar**0.5*speed_of_light**0.5/gravitational_constant**0.5
```
High energy physics

Abstract

Contains docstrings for methods in high energy physics.

Gamma matrices

Module to handle gamma matrices expressed as tensor objects.

Examples

```python
>>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G,
...    LorentzIndex
>>> from sympy.tensor.tensor import tensor_indices
>>> i = tensor_indices('i', LorentzIndex)
>>> G(i)
GammaMatrix(i)
```

Note that there is already an instance of GammaMatrixHead in four dimensions: GammaMatrix, which is simply declare as

```python
>>> from sympy.physics.hep.gamma_matrices import GammaMatrix
>>> from sympy.tensor.tensor import tensor_indices
>>> i = tensor_indices('i', LorentzIndex)
>>> GammaMatrix(i)
GammaMatrix(i)
```

To access the metric tensor

```python
>>> LorentzIndex.metric
metric(LorentzIndex, LorentzIndex)
```

sympy.physics.hep.gamma_matrices.extract_type_tens(expression, component)

Extract from a TensExpr all tensors with `component`.

Returns two tensor expressions:

- the first contains all Tensor of having `component`.
- the second contains all remaining.

sympy.physics.hep.gamma_matrices.gamma_trace(t)

trace of a single line of gamma matrices
Examples

```python
>>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G,
    gamma_trace, LorentzIndex
>>> from sympy.tensor.tensor import tensor_indices, tensor_heads

>>> p, q = tensor_heads('p, q', [LorentzIndex])
>>> i0,i1,i2,i3,i4,i5 = tensor_indices('i0:6', LorentzIndex)
>>> ps = p(i0)*G(-i0)
>>> qs = q(i0)*G(-i0)
>>> gamma_trace(G(i0)*G(i1))
4*metric(i0, i1)
>>> gamma_trace(ps*ps) - 4*p(i0)*p(-i0)
0
>>> gamma_trace(ps*qs + ps*ps) - 4*p(i0)*p(-i0) - 4*p(i0)*q(-i0)
0
```

`SymPy.physics.hep.gamma_matrices.kahane_simplify(expression)`

This function cancels contracted elements in a product of four dimensional gamma matrices, resulting in an expression equal to the given one, without the contracted gamma matrices.

Parameters

`expression` the tensor expression containing the gamma matrices to simplify.

Notes

If spinor indices are given, the matrices must be given in the order given in the product.

Algorithm

The idea behind the algorithm is to use some well-known identities, i.e., for contractions enclosing an even number of γ matrices

$$\gamma^\mu\gamma_{a_1} \cdots \gamma_{a_{2N}} \gamma_\mu = 2(\gamma_{a_{2N}} \gamma_{a_1} \cdots \gamma_{a_{2N-1}} + \gamma_{a_{2N-1}} \cdots \gamma_{a_1} \gamma_{a_{2N}})$$

for an odd number of γ matrices

$$\gamma^\mu\gamma_{a_1} \cdots \gamma_{a_{2N-1}} \gamma_\mu = -2\gamma_{a_{2N+1}} \gamma_{a_{2N}} \cdots \gamma_{a_1}$$

Instead of repeatedly applying these identities to cancel out all contracted indices, it is possible to recognize the links that would result from such an operation, the problem is thus reduced to a simple rearrangement of free gamma matrices.
Examples

When using, always remember that the original expression coefficient has to be handled separately

```python
from sympy.physics.hep.gamma_matrices import GammaMatrix as G,
LorentzIndex
from sympy.physics.hep.gamma_matrices import kahane_simplify
from sympy.tensor.tensor import tensor_indices
i0, i1, i2 = tensor_indices('i0:3', LorentzIndex)
ta = G(i0)*G(-i0)
kahane_simplify(ta)
Matrix([[4, 0, 0, 0],
[0, 4, 0, 0],
[0, 0, 4, 0],
[0, 0, 0, 4]])
tb = G(i0)*G(i1)*G(-i0)
kahane_simplify(tb)
-2*GammaMatrix(i1)
t = G(i0)*G(-i0)
kahane_simplify(t)
Matrix([[4, 0, 0, 0],
[0, 4, 0, 0],
[0, 0, 4, 0],
[0, 0, 0, 4]])
t = G(i0)*G(-i0)
kahane_simplify(t)
Matrix([[4, 0, 0, 0],
[0, 4, 0, 0],
[0, 0, 4, 0],
[0, 0, 0, 4]])
```

If there are no contractions, the same expression is returned

```python
tc = G(i0)*G(i1)
kahane_simplify(tc)
GammaMatrix(i0)*GammaMatrix(i1)
```

References


```python
sympy.physics.hep.gamma_matrices.simplify_gpgp(ex, sort=True)
simplify products \( G(i)*p(-i)*G(j)*p(-j) \) -> \( p(i)*p(-i) \)
Examples

```python
>>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G,
 LorentzIndex, simplify_gpgp
>>> from sympy.tensor.tensor import tensor_indices, tensor_heads
 p, q = tensor_heads('p, q', [LorentzIndex])
>>> i0,i1,i2,i3,i4,i5 = tensor_indices('i0:i5', LorentzIndex)
>>> ps = p(i0)*G(-i0)
>>> qs = q(i0)*G(-i0)
>>> simplify_gpgp(ps*qs*qs)
GammaMatrix(-L_0)*p(L_0)*q(L_1)*q(-L_1)
```

The Physics Vector Module

Abstract

In this documentation the components of the sympy.physics.vector module have been discussed. `sympy.physics.vector` (page 1640) has been written to facilitate the operations pertaining to 3-dimensional vectors, as functions of time or otherwise, in `sympy.physics` (page 1578).

References for Physics/Vector

Guide to Vector

Vector & ReferenceFrame

In `sympy.physics.vector` (page 1640), vectors and reference frames are the “building blocks” of dynamic systems. This document will describe these mathematically and describe how to use them with this module’s code.

Vector

A vector is a geometric object that has a magnitude (or length) and a direction. Vectors in 3-space are often represented on paper as:
Vector Algebra

Vector algebra is the first topic to be discussed.
Two vectors are said to be equal if and only if (iff) they have the same magnitude and orientation.

Vector Operations

Multiple algebraic operations can be done with vectors: addition between vectors, scalar multiplication, and vector multiplication.
Vector addition as based on the parallelogram law.

Vector addition is also commutative:
\[
a + b = b + a
\]
\[
(a + b) + c = a + (b + c)
\]

Scalar multiplication is the product of a vector and a scalar; the result is a vector with the same orientation but whose magnitude is scaled by the scalar. Note that multiplication by -1 is equivalent to rotating the vector by 180 degrees about an arbitrary axis in the plane perpendicular to the vector.

A unit vector is simply a vector whose magnitude is equal to 1. Given any vector \( \mathbf{v} \) we can define a unit vector as:
\[
\hat{n}_\mathbf{v} = \frac{\mathbf{v}}{||\mathbf{v}||}
\]
Note that every vector can be written as the product of a scalar and unit vector.
Three vector products are implemented in `sympy.physics.vector` (page 1640): the dot product, the cross product, and the outer product.

The dot product operation maps two vectors to a scalar. It is defined as:

\[ \mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos(\theta) \]

where \( \theta \) is the angle between \( \mathbf{a} \) and \( \mathbf{b} \).

The dot product of two unit vectors represent the magnitude of the common direction; for other vectors, it is the product of the magnitude of the common direction and the two vectors’ magnitudes. The dot product of two perpendicular is zero. The figure below shows some examples:

![Diagrams showing dot product calculations](image)

The dot product is commutative:

\[ \mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a} \]

The cross product vector multiplication operation of two vectors returns a vector:

\[ \mathbf{a} \times \mathbf{b} = \mathbf{c} \]

The vector \( \mathbf{c} \) has the following properties: it’s orientation is perpendicular to both \( \mathbf{a} \) and \( \mathbf{b} \), it’s magnitude is defined as \( \|\mathbf{c}\| = \|\mathbf{a}\| \|\mathbf{b}\| \sin(\theta) \) (where \( \theta \) is the angle between \( \mathbf{a} \) and \( \mathbf{b} \)), and has a sense defined by using the right hand rule between \( \|\mathbf{a}\| \|\mathbf{b}\| \). The figure below shows this:
The cross product has the following properties:

It is not commutative:

\[ \mathbf{a} \times \mathbf{b} \neq \mathbf{b} \times \mathbf{a} \]
\[ \mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a} \]

and not associative:

\[ (\mathbf{a} \times \mathbf{b}) \times \mathbf{c} \neq \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) \]

Two parallel vectors will have a zero cross product.

The outer product between two vectors will not be not be discussed here, but instead in the inertia section (that is where it is used). Other useful vector properties and relationships are:

\[ \alpha (\mathbf{a} + \mathbf{b}) = \alpha \mathbf{a} + \alpha \mathbf{b} \]
\[ \mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c} \]
\[ \mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{b} \]
\[ (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} \text{ gives the scalar triple product.} \]
\[ \mathbf{a} \times (\mathbf{b} \cdot \mathbf{c}) \text{ does not work, as you cannot cross a vector and a scalar.} \]
\[ (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \]
\[ (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = (\mathbf{b} \times \mathbf{c}) \cdot \mathbf{a} = (\mathbf{c} \times \mathbf{a}) \cdot \mathbf{b} \]
\[ (\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = \mathbf{b}(\mathbf{a} \cdot \mathbf{c}) - \mathbf{a}(\mathbf{b} \cdot \mathbf{c}) \]
\[ \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \mathbf{b}(\mathbf{a} \cdot \mathbf{c}) - \mathbf{c}(\mathbf{a} \cdot \mathbf{b}) \]
Alternative Representation

If we have three non-coplanar unit vectors $\mathbf{n}_x, \mathbf{n}_y, \mathbf{n}_z$, we can represent any vector $\mathbf{a}$ as $\mathbf{a} = a_x \mathbf{n}_x + a_y \mathbf{n}_y + a_z \mathbf{n}_z$. In this situation $\mathbf{n}_x, \mathbf{n}_y, \mathbf{n}_z$ are referred to as a basis. $a_x, a_y, a_z$ are called the measure numbers. Usually the unit vectors are mutually perpendicular, in which case we can refer to them as an orthonormal basis, and they are usually right-handed.

To test equality between two vectors, now we can do the following. With vectors:

$$\mathbf{a} = a_x \mathbf{n}_x + a_y \mathbf{n}_y + a_z \mathbf{n}_z$$
$$\mathbf{b} = b_x \mathbf{n}_x + b_y \mathbf{n}_y + b_z \mathbf{n}_z$$

We can claim equality if: $a_x = b_x, a_y = b_y, a_z = b_z$.

Vector addition is then represented, for the same two vectors, as:

$$\mathbf{a} + \mathbf{b} = (a_x + b_x)\mathbf{n}_x + (a_y + b_y)\mathbf{n}_y + (a_z + b_z)\mathbf{n}_z$$

Multiplication operations are now defined as:

$$\mathbf{a} \cdot \mathbf{b} = a_x b_x + a_y b_y + a_z b_z$$
$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{n}_x & \mathbf{n}_y & \mathbf{n}_z \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$

To write a vector in a given basis, we can do the follow:

$$\mathbf{a} = (\mathbf{a} \cdot \mathbf{n}_x)\mathbf{n}_x + (\mathbf{a} \cdot \mathbf{n}_y)\mathbf{n}_y + (\mathbf{a} \cdot \mathbf{n}_z)\mathbf{n}_z$$

Examples

Some numeric examples of these operations follow:

$$\mathbf{a} = \mathbf{n}_x + 5\mathbf{n}_y$$
$$\mathbf{b} = \mathbf{n}_y + \alpha \mathbf{n}_z$$
$$\mathbf{a} + \mathbf{b} = \mathbf{n}_x + 6\mathbf{n}_y + \alpha \mathbf{n}_z$$
$$\mathbf{a} \cdot \mathbf{b} = 5$$
$$\mathbf{a} \cdot \mathbf{n}_y = 5$$
$$\mathbf{a} \cdot \mathbf{n}_z = 0$$
$$\mathbf{a} \times \mathbf{b} = 5\alpha \mathbf{n}_x - \alpha \mathbf{n}_y + \mathbf{n}_z$$
$$\mathbf{b} \times \mathbf{a} = -5\alpha \mathbf{n}_x + \alpha \mathbf{n}_y - \mathbf{n}_z$$
Vector Calculus

To deal with the calculus of vectors with moving object, we have to introduce the concept of a reference frame. A classic example is a train moving along its tracks, with you and a friend inside. If both you and your friend are sitting, the relative velocity between the two of you is zero. From an observer outside the train, you will both have velocity though.

We will now apply more rigor to this definition. A reference frame is a virtual “platform” which we choose to observe vector quantities from. If we have a reference frame \( N \), vector \( \mathbf{a} \) is said to be fixed in the frame \( N \) if none of its properties ever change when observed from \( N \). We will typically assign a fixed orthonormal basis vector set with each reference frame; \( N \) will have \( \hat{\mathbf{n}}_x, \hat{\mathbf{n}}_y, \hat{\mathbf{n}}_z \) as its basis vectors.

Derivatives of Vectors

A vector which is not fixed in a reference frame therefore has changing properties when observed from that frame. Calculus is the study of change, and in order to deal with the peculiarities of vectors fixed and not fixed in different reference frames, we need to be more explicit in our definitions.

In the above figure, we have vectors \( \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f} \). If one were to take the derivative of \( \mathbf{e} \) with respect to \( \theta \):

\[
\frac{d\mathbf{e}}{d\theta}
\]

it is not clear what the derivative is. If you are observing from frame \( A \), it is clearly non-zero. If you are observing from frame \( B \), the derivative is zero. We will therefore introduce the
frame as part of the derivative notation:
\[
\frac{\mathbf{A} \mathbf{e}}{d\theta} \neq 0, \text{ the derivative of } \mathbf{e} \text{ with respect to } \theta \text{ in the reference frame } \mathbf{A}
\]
\[
\frac{\mathbf{B} \mathbf{e}}{d\theta} = 0, \text{ the derivative of } \mathbf{e} \text{ with respect to } \theta \text{ in the reference frame } \mathbf{B}
\]
\[
\frac{\mathbf{A} \mathbf{c}}{d\theta} = 0, \text{ the derivative of } \mathbf{c} \text{ with respect to } \theta \text{ in the reference frame } \mathbf{A}
\]
\[
\frac{\mathbf{B} \mathbf{c}}{d\theta} \neq 0, \text{ the derivative of } \mathbf{c} \text{ with respect to } \theta \text{ in the reference frame } \mathbf{B}
\]

Here are some additional properties of derivatives of vectors in specific frames:
\[
\frac{\mathbf{A}_d}{dt}(\mathbf{a} + \mathbf{b}) = \frac{\mathbf{A}_d \mathbf{a}}{dt} + \frac{\mathbf{A}_d \mathbf{b}}{dt}
\]
\[
\frac{\mathbf{A}_d}{dt}(\gamma \mathbf{a}) = \frac{d\gamma}{dt} \mathbf{a} + \gamma \frac{\mathbf{A}_d \mathbf{a}}{dt}
\]
\[
\frac{\mathbf{A}_d}{dt}(\mathbf{a} \times \mathbf{b}) = \frac{\mathbf{A}_d \mathbf{a}}{dt} \times \mathbf{b} + \mathbf{a} \times \frac{\mathbf{A}_d \mathbf{b}}{dt}
\]

**Relating Sets of Basis Vectors**

We need to now define the relationship between two different reference frames; or how to relate the basis vectors of one frame to another. We can do this using a direction cosine matrix (DCM). The direction cosine matrix relates the basis vectors of one frame to another, in the following fashion:

\[
\begin{bmatrix}
\hat{a}_x \\
\hat{a}_y \\
\hat{a}_z
\end{bmatrix} = [\mathbf{A} \mathbf{C} \mathbf{B}]
\begin{bmatrix}
\hat{b}_x \\
\hat{b}_y \\
\hat{b}_z
\end{bmatrix}
\]

When two frames (say, \( \mathbf{A} \) & \( \mathbf{B} \)) are initially aligned, then one frame has all of its basis vectors rotated around an axis which is aligned with a basis vector, we say the frames are related by a simple rotation. The figure below shows this:

The above rotation is a simple rotation about the Z axis by an angle \( \theta \). Note that after the rotation, the basis vectors \( \hat{a}_z \) and \( \hat{b}_z \) are still aligned.
This rotation can be characterized by the following direction cosine matrix:

\[ A^B_C = \begin{bmatrix}
\cos(\theta) & -\sin(\theta) & 0 \\
\sin(\theta) & \cos(\theta) & 0 \\
0 & 0 & 1
\end{bmatrix} \]

Simple rotations about the X and Y axes are defined by:

DCM for x-axis rotation:
\[ \begin{bmatrix} 1 & 0 & 0 \\
0 & \cos(\theta) & -\sin(\theta) \\
0 & \sin(\theta) & \cos(\theta) \end{bmatrix} \]

DCM for y-axis rotation:
\[ \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\
0 & 1 & 0 \\
-\sin(\theta) & 0 & \cos(\theta) \end{bmatrix} \]

Rotation in the positive direction here will be defined by using the right-hand rule.

The direction cosine matrix is also involved with the definition of the dot product between sets of basis vectors. If we have two reference frames with associated basis vectors, their direction cosine matrix can be defined as:

\[ \begin{bmatrix} C_{xx} & C_{xy} & C_{xz} \\
C_{yx} & C_{yy} & C_{yz} \\
C_{zx} & C_{zy} & C_{zz} \end{bmatrix} = \begin{bmatrix} \hat{a}_x \cdot \hat{b}_x & \hat{a}_x \cdot \hat{b}_y & \hat{a}_x \cdot \hat{b}_z \\
\hat{a}_y \cdot \hat{b}_x & \hat{a}_y \cdot \hat{b}_y & \hat{a}_y \cdot \hat{b}_z \\
\hat{a}_z \cdot \hat{b}_x & \hat{a}_z \cdot \hat{b}_y & \hat{a}_z \cdot \hat{b}_z \end{bmatrix} \]

Additionally, the direction cosine matrix is orthogonal, in that:

\[ A^B_C = (B^A_C)^{-1} = (B^A_C)^T \]

If we have reference frames \( A \) and \( B \), which in this example have undergone a simple z-axis rotation by an amount \( \theta \), we will have two sets of basis vectors. We can then define two vectors: \( \mathbf{a} = \hat{a}_x + \hat{a}_y + \hat{a}_z \) and \( \mathbf{b} = \hat{b}_x + \hat{b}_y + \hat{b}_z \). If we wish to express \( \mathbf{b} \) in the \( A \) frame, we do the following:

\[
\mathbf{b} = \mathbf{b}_x + \mathbf{b}_y + \mathbf{b}_z \\
\mathbf{b} = [\hat{a}_x \cdot (\hat{b}_x + \hat{b}_y + \hat{b}_z)] \hat{a}_x + [\hat{a}_y \cdot (\hat{b}_x + \hat{b}_y + \hat{b}_z)] \hat{a}_y + [\hat{a}_z \cdot (\hat{b}_x + \hat{b}_y + \hat{b}_z)] \hat{a}_z \\
\mathbf{b} = (\cos(\theta) - \sin(\theta)) \hat{a}_x + (\sin(\theta) + \cos(\theta)) \hat{a}_y + \hat{a}_z
\]

And if we wish to express \( \mathbf{a} \) in the \( B \) frame, we do:

\[
\mathbf{a} = \mathbf{a}_x + \mathbf{a}_y + \mathbf{a}_z \\
\mathbf{a} = [\hat{b}_x \cdot (\hat{a}_x + \hat{a}_y + \hat{a}_z)] \hat{b}_x + [\hat{b}_y \cdot (\hat{a}_x + \hat{a}_y + \hat{a}_z)] \hat{b}_y + [\hat{b}_z \cdot (\hat{a}_x + \hat{a}_y + \hat{a}_z)] \hat{b}_z \\
\mathbf{a} = (\cos(\theta) + \sin(\theta)) \hat{b}_x + (-\sin(\theta) + \cos(\theta)) \hat{b}_y + \hat{b}_z
\]

**Derivatives with Multiple Frames**

If we have reference frames \( A \) and \( B \) we will have two sets of basis vectors. We can then define two vectors: \( \mathbf{a} = a_x \hat{a}_x + a_y \hat{a}_y + a_z \hat{a}_z \) and \( \mathbf{b} = b_x \hat{b}_x + b_y \hat{b}_y + b_z \hat{b}_z \). If we want to take the derivative of \( \mathbf{b} \) in the reference frame \( A \), we must first express it in \( A \), and take the derivative of the measure numbers:

\[
\frac{\partial b}{\partial x} = \frac{d}{dx} (\mathbf{b} \cdot \hat{a}_x) \hat{a}_x + \frac{d}{dx} (\mathbf{b} \cdot \hat{a}_y) \hat{a}_y + \frac{d}{dx} (\mathbf{b} \cdot \hat{a}_z) \hat{a}_z
\]
Examples

An example of vector calculus:

In this example we have two bodies, each with an attached reference frame. We will say that $\theta$ and $x$ are functions of time. We wish to know the time derivative of vector $c$ in both the A and B frames.

First, we need to define $c$: $c = x\hat{b}_x + l\hat{b}_y$. This provides a definition in the B frame. We can now do the following:

\[
\frac{B}{dt} \frac{dc}{dt} = \frac{dx}{dt} \hat{b}_x + \frac{dl}{dt} \hat{b}_y
\]

To take the derivative in the A frame, we have to first relate the two frames:

\[
A^B C = \begin{bmatrix}
    \cos(\theta) & 0 & \sin(\theta) \\
    0 & 1 & 0 \\
    -\sin(\theta) & 0 & \cos(\theta)
\end{bmatrix}
\]
Now we can do the following:

\[ \frac{\mathbf{A} \cdot \mathbf{dC}}{dt} = \frac{d(c \cdot \mathbf{a}_x)}{dt} \mathbf{a}_x + \frac{d(c \cdot \mathbf{a}_y)}{dt} \mathbf{a}_y + \frac{d(c \cdot \mathbf{a}_z)}{dt} \mathbf{a}_z \]

\[ = \frac{d(\cos(\theta)x)}{dt} \mathbf{a}_x + \frac{d(l)}{dt} \mathbf{a}_y + \frac{d(-\sin(\theta)x)}{dt} \mathbf{a}_z \]

\[ = (-\dot{\theta} \sin(\theta)x + \cos(\theta)\dot{x})\mathbf{a}_x + (\dot{\theta} \cos(\theta)x + \sin(\theta)\dot{x})\mathbf{a}_z \]

Note that this is the time derivative of \( \mathbf{c} \) in \( \mathbf{A} \), and is expressed in the \( \mathbf{A} \) frame. We can express it in the \( \mathbf{B} \) frame however, and the expression will still be valid:

\[ \frac{\mathbf{A} \cdot \mathbf{dC}}{dt} = (-\dot{\theta} \sin(\theta)x + \cos(\theta)\dot{x})\mathbf{a}_x + (\dot{\theta} \cos(\theta)x + \sin(\theta)\dot{x})\mathbf{a}_z \]

\[ = \dot{\theta} \mathbf{a}_x - \dot{\theta} \mathbf{a}_x \]

Note the difference in expression complexity between the two forms. They are equivalent, but one is much simpler. This is an extremely important concept, as defining vectors in the more complex forms can vastly slow down formulation of the equations of motion and increase their length, sometimes to a point where they cannot be shown on screen.

### Using Vectors and Reference Frames

We have waited until after all of the relevant mathematical relationships have been defined for vectors and reference frames to introduce code. This is due to how vectors are formed. When starting any problem in `sympy.physics.vector` (page 1640), one of the first steps is defining a reference frame (remember to import `sympy.physics.vector` first):

```python
>>> from sympy.physics.vector import *
>>> N = ReferenceFrame('N')
```

Now we have created a reference frame, \( \mathbf{N} \). To have access to any basis vectors, first a reference frame needs to be created. Now that we have made and object representing \( \mathbf{N} \), we can access its basis vectors:

```python
>>> N.x
N.x
>>> N.y
N.y
>>> N.z
N.z
```

### Vector Algebra, in `physics.vector`

We can now do basic algebraic operations on these vectors:

```python
>>> N.x == N.x
True
>>> N.x == N.y
False
>>> N.x + N.y
N.x + N.y
>>> 2 * N.x + N.y
2*N.x + N.y
```
Remember, don’t add a scalar quantity to a vector \((N \cdot x + 5)\); this will raise an error. At this point, we’ll use SymPy’s Symbol in our vectors. Remember to refer to SymPy’s Gotchas and Pitfalls when dealing with symbols:

```python
>>> from sympy import Symbol, symbols
>>> x = Symbol('x')
>>> x * N.x
x*N.x
>>> x*(N.x + N.y)
x*N.x + x*N.y
```

In `sympy.physics.vector` multiple interfaces to vector multiplication have been implemented, at the operator level, method level, and function level. The vector dot product can work as follows:

```python
>>> N.x.dot(N.x)
1
>>> N.x.dot(N.y)
0
>>> dot(N.x, N.x)
1
>>> dot(N.x, N.y)
0
```

The “official” interface is the function interface; this is what will be used in all examples. This is to avoid confusion with the attribute and methods being next to each other, and in the case of the operator operation priority. The operators used in `sympy.physics.vector` for vector multiplication do not possess the correct order of operations; this can lead to errors. Care with parentheses is needed when using operators to represent vector multiplication.

The cross product is the other vector multiplication which will be discussed here. It offers similar interfaces to the dot product, and comes with the same warnings.

```python
>>> N.x.cross(N.x)
0
>>> N.x.cross(N.z)
- N.y
>>> cross(N.x, N.y)
N.z
>>> cross(N.x, (N.y + N.z))
- N.y + N.z
```

Two additional operations can be done with vectors: normalizing the vector to length 1, and getting its magnitude. These are done as follows:

```python
>>> (N.x + N.y).normalize()
sqrt(2)/2*N.x + sqrt(2)/2*N.y
>>> (N.x + N.y).magnitude()
sqrt(2)
```

Vectors are often expressed in a matrix form, especially for numerical purposes. Since the matrix form does not contain any information about the reference frame the vector is defined in, you must provide a reference frame to extract the measure numbers from the vector. There is a convenience function to do this:
Vector Calculus, in physics.vector

We have already introduced our first reference frame. We can take the derivative in that frame right now, if we desire:

```
>>> (x * N.x + 2 * x * N.y + 3 * x * N.z).diff(x, N)
N.x
```

SymPy has a `diff` function, but it does not currently work with `sympy.physics.vector` (page 1640) Vectors, so please use Vector's `diff` method. The reason for this is that when differentiating a Vector, the frame of reference must be specified in addition to what you are taking the derivative with respect to; SymPy's `diff` function doesn't fit this mold.

The more interesting case arise with multiple reference frames. If we introduce a second reference frame, A, we now have two frames. Note that at this point we can add components of N and A together, but cannot perform vector multiplication, as no relationship between the two frames has been defined.

```
>>> A = ReferenceFrame('A')
>>> A.x + N.x
N.x + A.x
```

If we want to do vector multiplication, first we have to define and orientation. The `orient` method of `ReferenceFrame` provides that functionality.

```
>>> A.orient(N, 'Axis', [x, N.y])
```

If we desire, we can view the DCM between these two frames at any time. This can be calculated with the `dcm` method. This code: N.dcm(A) gives the dcm $^A_N$.

This orients the A frame relative to the N frame by a simple rotation around the Y axis, by an amount x. Other, more complicated rotation types include Body rotations, Space rotations, quaternions, and arbitrary axis rotations. Body and space rotations are equivalent to doing 3 simple rotations in a row, each about a basis vector in the new frame. An example follows:

```
>>> N = ReferenceFrame('N')
>>> Bp = ReferenceFrame('Bp')
>>> Bpp = ReferenceFrame('Bpp')
>>> B = ReferenceFrame('B')
>>> q1,q2,q3 = symbols('q1 q2 q3')
>>> Bpp.orient(N, 'Axis', [q1, N.x])
>>> Bp.orient(Bpp, 'Axis', [q2, Bpp.y])
>>> B.orient(Bp, 'Axis', [q3, Bp.z])
>>> N.dcm(B)
Matrix([[-sin(q3)*cos(q2), sin(q2)*cos(q3), -cos(q2)],
 [cos(q2)*cos(q3), -sin(q2)*cos(q3), -sin(q2)],
 [sin(q3), cos(q3), 0]])
```
Space orientations are similar to body orientation, but applied from the frame to body. Body and space rotations can involve either two or three axes: ‘XYZ’ works, as does ‘YZX’, ‘ZXZ’, ‘XXY’, etc. What is key is that each simple rotation is about a different axis than the previous one; ‘ZZX’ does not completely orient a set of basis vectors in 3 space.

Sometimes it will be more convenient to create a new reference frame and orient relative to an existing one in one step. The orientnew method allows for this functionality, and essentially wraps the orient method. All of the things you can do in orient, you can do in orientnew.

```python
>>> C = N.orientnew('C', 'Axis', [q1, N.x])
```

Quaternions (or Euler Parameters) use 4 value to characterize the orientation of the frame. This and arbitrary axis rotations are described in the orient and orientnew method help, or in the references [Kane1983].

Finally, before starting multiframe calculus operations, we will introduce another sympy.physics.vector (page 1640) tool: dynamicsymbols. dynamicsymbols is a shortcut function to create undefined functions of time within SymPy. The derivative of such a ‘dynamicsymbol’ is shown below.

```python
>>> from sympy import diff
>>> q1, q2, q3 = dynamicsymbols('q1 q2 q3')
>>> diff(q1, Symbol('t'))
Derivative(q1(t), t)
```

The ‘dynamicsymbol’ printing is not very clear above; we will also introduce a few other tools here. We can use vprint instead of print for non-interactive sessions.

```python
>>> q1
q1(t)
>>> q1d = diff(q1, Symbol('t'))
>>> vprint(q1)
q1
>>> vprint(q1d)
q1'
```

For interactive sessions use init_vprinting. There also exist analogs for SymPy’s vprint, vpprint, and latex, vlatex.
A ‘dynamicsymbol’ should be used to represent any time varying quantity in `sympy.physics.vector` (page 1640), whether it is a coordinate, varying position, or force. The primary use of a ‘dynamicsymbol’ is for speeds and coordinates (of which there will be more discussion in the Kinematics Section of the documentation).

Now we will define the orientation of our new frames with a ‘dynamicsymbol’, and can take derivatives and time derivatives with ease. Some examples follow.

```python
>>> N = ReferenceFrame('N')
>>> B = N.orientnew('B', 'Axis', [q1, N.x])
>>> (B.y*q2 + B.z).diff(q2, N)
B.y
>>> (B.y*q2 + B.z).dt(N)
(-q1' + q2')*B.y + q2*q1'*B.z
```

Note that the output vectors are kept in the same frames that they were provided in. This remains true for vectors with components made of basis vectors from multiple frames:

```python
>>> (B.y*q2 + B.z + q2*N.x).diff(q2, N)
N.x + B.y
```

### How Vectors are Coded

What follows is a short description of how vectors are defined by the code in `sympy.physics.vector` (page 1640). It is provided for those who want to learn more about how this part of `sympy.physics.vector` (page 1640) works, and does not need to be read to use this module; don’t read it unless you want to learn how this module was implemented.

Every Vector’s main information is stored in the `args` attribute, which stores the three measure numbers for each basis vector in a frame, for every relevant frame. A vector does not exist in code until a ReferenceFrame is created. At this point, the x, y, and z attributes of the reference frame are immutable Vector’s which have measure numbers of [1,0,0], [0,1,0], and [0,0,1] associated with that ReferenceFrame. Once these vectors are accessible, new vectors can be created by doing algebraic operations with the basis vectors. A vector can have components from multiple frames though. That is why `args` is a list; it has as many elements in the list as there are unique ReferenceFrames in its components, i.e. if there are A and B frame basis vectors in our new vector, `args` is of length 2; if it has A, B, and C frame basis vector, `args` is of length three.

Each element in the `args` list is a 2-tuple; the first element is a SymPy Matrix (this is where the measure numbers for each set of basis vectors are stored) and the second element is a ReferenceFrame to associate those measure numbers with.

ReferenceFrame stores a few things. First, it stores the name you supply it on creation (name attribute). It also stores the direction cosine matrices, defined upon creation with the `orientnew` method, or calling the `orient` method after creation. The direction cosine matrices are represented by SymPy’s Matrix, and are part of a dictionary where the keys are the
ReferenceFrame and the value the Matrix; these are set bi-directionally; in that when you orient A to N you are setting A’s orientation dictionary to include N and its Matrix, but you are also setting N’s orientation dictionary to include A and its Matrix (that DCM being the transpose of the other).

**Vector: Kinematics**

This document will give some mathematical background to describing a system’s kinematics as well as how to represent the kinematics in `sympy.physics.vector` (page 1640).

**Introduction to Kinematics**

The first topic is rigid motion kinematics. A rigid body is an idealized representation of a physical object which has mass and rotational inertia. Rigid bodies are obviously not flexible. We can break down rigid body motion into translational motion, and rotational motion (when dealing with particles, we only have translational motion). Rotational motion can further be broken down into simple rotations and general rotations.

Translation of a rigid body is defined as a motion where the orientation of the body does not change during the motion; or during the motion any line segment would be parallel to itself at the start of the motion.

Simple rotations are rotations in which the orientation of the body may change, but there is always one line which remains parallel to itself at the start of the motion.

General rotations are rotations which there is not always one line parallel to itself at the start of the motion.

**Angular Velocity**

The angular velocity of a rigid body refers to the rate of change of its orientation. The angular velocity of a body is written down as: $\mathbf{N}_w^B$, or the angular velocity of $\mathbf{B}$ in $\mathbf{N}$, which is a vector. Note that here, the term rigid body was used, but reference frames can also have angular velocities. Further discussion of the distinction between a rigid body and a reference frame will occur later when describing the code representation.

Angular velocity is defined as being positive in the direction which causes the orientation angles to increase (for simple rotations, or series of simple rotations).
The angular velocity vector represents the time derivative of the orientation. As a time derivative vector quantity, like those covered in the Vector & ReferenceFrame documentation, this quantity (angular velocity) needs to be defined in a reference frame. That is what the \textbf{N} is in the above definition of angular velocity; the frame in which the angular velocity is defined in.

The angular velocity of \textbf{B} in \textbf{N} can also be defined by:

\[
N \omega^B = \left( \frac{N_d}{dt} \cdot \hat{b}_y \right) \hat{b}_x + \left( \frac{N_d}{dt} \cdot \hat{b}_x \right) \hat{b}_y + \left( \frac{N_d}{dt} \cdot \hat{b}_y \right) \hat{b}_z
\]

It is also common for a body’s angular velocity to be written as:

\[
N \omega^B = w_x \hat{b}_x + w_y \hat{b}_y + w_z \hat{b}_z
\]

There are a few additional important points relating to angular velocity. The first is the addition theorem for angular velocities, a way of relating the angular velocities of multiple bodies and frames. The theorem follows:

\[
N \omega^D = N \omega^A + A \omega^B + B \omega^C + C \omega^D
\]

This is also shown in the following example:
Note the signs used in the angular velocity definitions, which are related to how the displacement angle is defined in this case.

This theorem makes defining angular velocities of multibody systems much easier, as the angular velocity of a body in a chain needs to only be defined to the previous body in order to be fully defined (and the first body needs to be defined in the desired reference frame). The following figure shows an example of when using this theorem can make things easier.

Here we can easily write the angular velocity of the body \( D \) in the reference frame of the first body \( A \):

\[
A \omega^D = w_1 \hat{p}_1 + w_2 \hat{p}_2 + w_3 \hat{p}_3
\]
It is very important to remember to only use this with angular velocities; you cannot use this theorem with the velocities of points.

There is another theorem commonly used: the derivative theorem. It provides an alternative method (which can be easier) to calculate the time derivative of a vector in a reference frame:

\[
\frac{N_d\mathbf{v}}{dt} = \frac{B_d\mathbf{v}}{dt} + N \omega^B \times \mathbf{v}
\]

The vector \( \mathbf{v} \) can be any vector quantity: a position vector, a velocity vector, angular velocity vector, etc. Instead of taking the time derivative of the vector in \( N \), we take it in \( B \), where \( B \) can be any reference frame or body, usually one in which it is easy to take the derivative on \( \mathbf{v} \) in (\( \mathbf{v} \) is usually composed only of the basis vector set belonging to \( B \)). Then we add the cross product of the angular velocity of our newer frame, \( N \omega^B \) and our vector quantity \( \mathbf{v} \). Again, you can choose any alternative frame for this. Examples follow:

**Angular Acceleration**

Angular acceleration refers to the time rate of change of the angular velocity vector. Just as the angular velocity vector is for a body and is specified in a frame, the angular acceleration vector is for a body and is specified in a frame: \( N \omega^B \), or the angular acceleration of \( B \) in \( N \), which is a vector.

Calculating the angular acceleration is relatively straightforward:

\[
N_\alpha^B = \frac{N_d\omega^B}{dt}
\]

Note that this can be calculated with the derivative theorem, and when the angular velocity is defined in a body fixed frame, becomes quite simple:

\[
N_\alpha^B = \frac{B_d\omega^B}{dt} + N \omega^B \times \omega^B
\]

if \( \omega^B = w_x \mathbf{b}_x + w_y \mathbf{b}_y + w_z \mathbf{b}_z \)

then \( N_\alpha^B = \frac{B_d\omega^B}{dt} + \frac{\omega^B \times \omega^B}{dt} \)

this is 0 by definition

\[
N_\alpha^B = \frac{dw_x}{dt} \mathbf{b}_x + \frac{dw_y}{dt} \mathbf{b}_y + \frac{dw_z}{dt} \mathbf{b}_z
\]

\[
N_\alpha^B = w_x \mathbf{b}_x + w_y \mathbf{b}_y + w_z \mathbf{b}_z
\]

Again, this is only for the case in which the angular velocity of the body is defined in body fixed components.
Point Velocity & Acceleration

Consider a point, \( P \): we can define some characteristics of the point. First, we can define a position vector from some other point to \( P \). Second, we can define the velocity vector of \( P \) in a reference frame of our choice. Third, we can define the acceleration vector of \( P \) in a reference frame of our choice.

These three quantities are read as:

\[ \mathbf{r}^{OP}, \] the position vector from \( O \) to \( P \)

\[ \mathbf{Nv}^P, \] the velocity of \( P \) in the reference frame \( \mathbf{N} \)

\[ \mathbf{Na}^P, \] the acceleration of \( P \) in the reference frame \( \mathbf{N} \)

Note that the position vector does not have a frame associated with it; this is because there is no time derivative involved, unlike the velocity and acceleration vectors.

We can find these quantities for a simple example easily:

Let’s define: \( \mathbf{r}^{OP} = q_x \mathbf{n}_x + q_y \mathbf{n}_y \)

\[ \mathbf{Nv}^P = \frac{d\mathbf{r}^{OP}}{dt} \]

then we can calculate: \( \mathbf{Nv}^P = \dot{q}_x \mathbf{n}_x + \dot{q}_y \mathbf{n}_y \)

and: \( \mathbf{Na}^P = \frac{d\mathbf{Nv}^P}{dt} \)

\[ \mathbf{Na}^P = \ddot{q}_x \mathbf{n}_x + \ddot{q}_y \mathbf{n}_y \]

It is critical to understand in the above example that the point \( O \) is fixed in the reference frame \( \mathbf{N} \). There is no addition theorem for translational velocities; alternatives will be discussed later though. Also note that the position of every point might not always need to be defined to form the dynamic equations of motion. When you don’t want to define the position vector of a point, you can start by just defining the velocity vector. For the above example:

Let us instead define the velocity vector as: \( \mathbf{Nv}^P = u_x \mathbf{n}_x + u_y \mathbf{n}_y \)

then acceleration can be written as: \( \mathbf{Na}^P = \dot{u}_x \mathbf{n}_x + \dot{u}_y \mathbf{n}_y \)
There will often be cases when the velocity of a point is desired and a related point’s velocity is known. For the cases in which we have two points fixed on a rigid body, we use the 2-Point Theorem:

Let’s say we know the velocity of the point \( S \) and the angular velocity of the body \( B \), both defined in the reference frame \( N \). We can calculate the velocity and acceleration of the point \( P \) in \( N \) as follows:

\[
\begin{align*}
\mathbf{v}_P^N &= \mathbf{v}_S^N + \mathbf{\omega}_B^N \times \mathbf{r}_{SP}^N \\
\mathbf{a}_P^N &= \mathbf{a}_S^N + \mathbf{\omega}_B^N \times \mathbf{r}_{SP}^N + \mathbf{\alpha}_B^N \times (\mathbf{\omega}_B^N \times \mathbf{r}_{SP}^N)
\end{align*}
\]

When only one of the two points is fixed on a body, the 1 point theorem is used instead.
Here, the velocity of point $S$ is known in the frame $N$, the angular velocity of $B$ is known in $N$, and the velocity of the point $P$ is known in the frame associated with body $B$. We can then write the velocity and acceleration of $P$ in $N$ as:

$$
N\mathbf{v}^P = B\mathbf{v}^P + N\mathbf{v}^S + N\mathbf{B} \times \mathbf{r}^S_P
$$

$$
N\mathbf{a}^P = B\mathbf{a}^S + N\mathbf{a}^O + N\mathbf{B} \times \mathbf{r}^S_P + N\mathbf{B} \times (N\mathbf{B} \times \mathbf{r}^S_P) + 2N\mathbf{B} \times B\mathbf{v}^P
$$

Examples of applications of the 1 point and 2 point theorem follow.
This example has a disk translating and rotating in a plane. We can easily define the angular velocity of the body $B$ and velocity of the point $O$:

\[
\begin{align*}
\mathbf{N}_\omega^B &= u_3 \mathbf{n}_Z = u_3 \mathbf{b}_Z \\
\mathbf{N}_V^O &= u_1 \mathbf{n}_x + u_2 \mathbf{n}_y
\end{align*}
\]

and accelerations can be written as:

\[
\begin{align*}
\mathbf{N}_\alpha^B &= \dot{u}_3 \mathbf{n}_Z = \dot{u}_3 \mathbf{b}_Z \\
\mathbf{N}_a^O &= \dot{u}_1 \mathbf{n}_x + \dot{u}_2 \mathbf{n}_y
\end{align*}
\]

We can use the 2 point theorem to calculate the velocity and acceleration of point $P$ now.

\[
\begin{align*}
\mathbf{r}^{OP} &= \mathbf{R} \mathbf{b}_x \\
\mathbf{N}_V^P &= \mathbf{N}_V^O + \mathbf{N}_\omega^B \times \mathbf{r}^{OP} \\
\mathbf{N}_V^P &= u_1 \mathbf{n}_x + u_2 \mathbf{n}_y + u_3 \mathbf{b}_Z \times \mathbf{R} \mathbf{b}_x = u_1 \mathbf{n}_x + u_2 \mathbf{n}_y + u_3 \mathbf{R} \mathbf{b}_y \\
\mathbf{N}_a^P &= \mathbf{N}_a^O + \mathbf{N}_\alpha^B \times \mathbf{r}^{OP} + \mathbf{N}_\omega^B \times (\mathbf{N}_\omega^B \times \mathbf{r}^{OP}) \\
\mathbf{N}_a^P &= \dot{u}_1 \mathbf{n}_x + \dot{u}_2 \mathbf{n}_y + \dot{u}_3 \mathbf{b}_Z \times \mathbf{R} \mathbf{b}_x + u_3 \mathbf{b}_Z \times \mathbf{R} \mathbf{b}_y + \dot{u}_3 \mathbf{b}_Z \times \mathbf{R} \mathbf{b}_y \\
\mathbf{N}_a^P &= \dot{u}_1 \mathbf{n}_x + \dot{u}_2 \mathbf{n}_y + \mathbf{R} \dot{u}_3 \mathbf{b}_y - \mathbf{R} \dot{u}_3 \mathbf{b}_x
\end{align*}
\]
In this example we have a double pendulum. We can use the two point theorem twice here in order to find the velocity of points $Q$ and $P$; point $O$’s velocity is zero in $N$.

\[ \mathbf{r}^{OQ} = l \hat{\mathbf{b}}_x \]
\[ \mathbf{r}^{QP} = l \hat{\mathbf{c}}_x \]
\[ N \omega^B = u_1 \hat{\mathbf{b}}_z \]
\[ N \omega^C = u_2 \hat{\mathbf{c}}_z \]
\[ N \mathbf{v}^Q = N \mathbf{v}^O + N \omega^B \times \mathbf{r}^{OQ} \]
\[ N \mathbf{v}^P = N \mathbf{v}^Q + N \omega^C \times \mathbf{r}^{QP} \]
\[ N \mathbf{v}^Q = u_1 \hat{\mathbf{b}}_y \]
\[ N \mathbf{v}^P = u_1 \hat{\mathbf{b}}_y + u_2 \hat{\mathbf{c}}_z \times \hat{\mathbf{c}}_x \]
\[ N \mathbf{v}^Q = u_1 \hat{\mathbf{b}}_y + u_2 \hat{\mathbf{c}}_y \]

In this example we have a particle moving on a ring; the ring is supported by a rod which can rotate about the $\hat{\mathbf{n}}_x$ axis. First we use the two point theorem to find the velocity of the center point of the ring, $Q$, then use the 1 point theorem to find the velocity of the particle on the
A final topic in the description of velocities of points is that of rolling, or rather, rolling without slip. Two bodies are said to be rolling without slip if and only if the point of contact on each body has the same velocity in another frame. See the following figure:

This is commonly used to form the velocity of a point on one object rolling on another fixed object, such as in the following example:

**Kinematics in physics.vector**

It should be clear by now that the topic of kinematics here has been mostly describing the correct way to manipulate vectors into representing the velocities of points. Within *sympy.physics.vector* (page 1640) there are convenient methods for storing these velocities associated with frames and points. We'll now revisit the above examples and show how to represent them in sympy.

The topic of reference frame creation has already been covered. When a ReferenceFrame is created though, it automatically calculates the angular velocity of the frame using the time derivative of the DCM and the angular velocity definition.
Note that the angular velocity can be defined in an alternate way:

```
>>> B = ReferenceFrame('B')
>>> u1 = dynamicsymbols('u1')
>>> B.set_ang_vel(N, u1 * B.y)
>>> B.ang_vel_in(N)
u1*B.y
>>> N.ang_vel_in(B)
- u1*B.y
```

Both upon frame creation during orientnew and when calling set_ang_vel, the angular velocity is set in both frames involved, as seen above.

Here we have multiple bodies with angular velocities defined relative to each other. This is coded as:

```
>>> N = ReferenceFrame('N')
>>> A = ReferenceFrame('A')
>>> B = ReferenceFrame('B')
>>> C = ReferenceFrame('C')
>>> D = ReferenceFrame('D')
>>> u1, u2, u3 = dynamicsymbols('u1 u2 u3')
>>> A.set_ang_vel(N, 0)
>>> B.set_ang_vel(A, u1 * A.x)
>>> C.set_ang_vel(B, -u2 * B.z)
>>> D.set_ang_vel(C, u3 * C.y)
>>> D.ang_vel_in(N)
u1*A.x - u2*B.z + u3*C.y
```
In `sympy.physics.vector` the shortest path between two frames is used when finding the angular velocity. That would mean if we went back and set:

```python
>>> D.set_ang_vel(N, 0)
>>> D.ang_vel_in(N)
0
```

The path that was just defined is what is used. This can cause problems though, as now the angular velocity definitions are inconsistent. It is recommended that you avoid doing this.

Points are a translational analog to the rotational ReferenceFrame. Creating a Point can be done in two ways, like ReferenceFrame:

```python
>>> O = Point('O')
>>> P = O.locatenew('P', 3*N.x + N.y)
>>> P.pos_from(O)
3*N.x + N.y
>>> Q = Point('Q')
>>> Q.set_pos(P, N.z)
>>> Q.pos_from(P)
N.z
>>> Q.pos_from(O)
3*N.x + N.y + N.z
```

Similar to ReferenceFrame, the position vector between two points is found by the shortest path (number of intermediate points) between them. Unlike rotational motion, there is no addition theorem for the velocity of points. In order to have the velocity of a Point in a ReferenceFrame, you have to set the value.

```python
>>> O = Point('O')
>>> O.set_vel(N, u1*N.x)
>>> O.vel(N)
u1*N.x
```

For both translational and rotational accelerations, the value is computed by taking the time derivative of the appropriate velocity, unless the user sets it otherwise.

```python
>>> O.acc(N)
u1'*N.x
>>> O.set_acc(N, u2*u1*N.y)
>>> O.acc(N)
u1*u2*N.y
```

Next is a description of the 2 point and 1 point theorems, as used in sympy.
First is the translating, rotating disc.

```python
>>> N = ReferenceFrame('N')
>>> u1, u2, u3 = dynamicsymbols('u1 u2 u3')
>>> R = Symbol('R')
>>> B = ReferenceFrame('B')
>>> O = Point('O')
>>> O.set_vel(N, u1 * N.x + u2 * N.y)
>>> P = O.locatenew('P', R * B.x)
>>> B.set_ang_vel(N, u3 * B.z)
>>> P.v2pt_theory(O, N, B)
 u1*N.x + u2*N.y + R*u3*B.y
>>> P.a2pt_theory(O, N, B)
 u1'*N.x + u2'*N.y - R*u3**2*B.x + R*u3'*B.y
```

We will also cover implementation of the 1 point theorem.
This is the particle moving on a ring, again.

```python
>>> N = ReferenceFrame('N')
>>> u1, u2 = dynamicsymbols('u1 u2')
>>> q1, q2 = dynamicsymbols('q1 q2')
>>> l = Symbol('l')
>>> R = Symbol('R')
>>> C = N.orientnew('C', 'Axis', [q1, N.x])
>>> C.set_ang_vel(N, u1 * N.x)
>>> O = Point('O')
>>> O.set_vel(N, 0)
>>> Q = O.locatenew('Q', -l * C.z)
>>> P = Q.locatenew('P', R * (cos(q2) * C.x + sin(q2) * C.y))
>>> P.set_vel(C, R * u2 * (-sin(q2) * C.x + cos(q2) * C.y))
>>> Q.v2pt_theory(O, N, C)
- l*u1*C.y
>>> P.v1pt_theory(O, N, C)
- R*u2*sin(q2)*C.x + (R*u2*cos(q2) + l*u1)*C.y + R*u1*sin(q2)*C.z
```
This document will describe some of the more advanced functionality that this module offers but which is not part of the “official” interface. Here, some of the features that will be implemented in the future will also be covered, along with unanswered questions about proper functionality. Also, common problems will be discussed, along with some solutions.

**Inertia (Dyadics)**

A dyadic tensor is a second order tensor formed by the juxtaposition of a pair of vectors. There are various operations defined with respect to dyadics, which have been implemented in vector (page 1640) in the form of class `sympy.physics.vector.dyadic.Dyadic` (page 1696). To know more, refer to the `sympy.physics.vector.dyadic.Dyadic` (page 1696) and `sympy.physics.vector.vector.Vector` (page 1689) class APIs. Dyadics are used to define the inertia of bodies within `sympy.physics.mechanics` (page 1721). Inertia dyadics can be defined explicitly but the inertia function is typically much more convenient for the user:

```python
>>> from sympy.physics.mechanics import ReferenceFrame, inertia
>>> N = ReferenceFrame('N')

Supply a reference frame and the moments of inertia if the object is symmetrical:

```python
>>> inertia(N, 1, 2, 3)
(N.x|N.x) + 2*(N.y|N.y) + 3*(N.z|N.z)
```

Supply a reference frame along with the products and moments of inertia for a general object:

```python
>>> inertia(N, 1, 2, 3, 4, 5, 6)
(N.x|N.x) + 4*(N.x|N.y) + 6*(N.x|N.z) + 4*(N.y|N.x) + 2*(N.y|N.y) + 5*(N.y|N.z) + 6*(N.z|N.x) + 5*(N.z|N.y) + 3*(N.z|N.z)
```

Notice that the inertia function returns a dyadic with each component represented as two unit vectors separated by a |. Refer to the `sympy.physics.vector.dyadic.Dyadic` (page 1696) section for more information about dyadics.

Inertia is often expressed in a matrix, or tensor, form, especially for numerical purposes. Since the matrix form does not contain any information about the reference frame(s) the inertia dyadic is defined in, you must provide one or two reference frames to extract the measure numbers from the dyadic. There is a convenience function to do this:

```python
>>> inertia(N, 1, 2, 3, 4, 5, 6).to_matrix(N)
Matrix([[1, 4, 6],
        [4, 2, 5],
        [6, 5, 3]])
```
Common Issues

Here issues with numerically integrating code, choice of `dynamicsymbols` for coordinate and speed representation, printing, differentiating, and substitution will occur.

Printing

The default printing options are to use sorting for `Vector` and `Dyadic` measure numbers, and have unsorted output from the `vprint`, `vpprint`, and `vlatex` functions. If you are printing something large, please use one of those functions, as the sorting can increase printing time from seconds to minutes.

Substitution

Substitution into large expressions can be slow, and take a few minutes.

Acceleration of Points

At a minimum, points need to have their velocities defined, as the acceleration can be calculated by taking the time derivative of the velocity in the same frame. If the 1 point or 2 point theorems were used to compute the velocity, the time derivative of the velocity expression will most likely be more complex than if you were to use the acceleration level 1 point and 2 point theorems. Using the acceleration level methods can result in shorted expressions at this point, which will result in shorter expressions later (such as when forming Kane’s equations).

Advanced Interfaces

Here we will cover advanced options in: `ReferenceFrame`, `dynamicsymbols`, and some associated functionality.

ReferenceFrame

`ReferenceFrame` is shown as having a `.name` attribute and `.x`, `.y`, and `.z` attributes for accessing the basis vectors, as well as a fairly rigidly defined print output. If you wish to have a different set of indices defined, there is an option for this. This will also require a different interface for accessing the basis vectors.

```python
>>> from sympy.physics.vector import ReferenceFrame, vprint, vpprint, vlatex
>>> N = ReferenceFrame('N', indices=['i', 'j', 'k'])
>>> N['i']
N['i']
>>> N.x
N['i']
>>> vlatex(N.x)
'\mathbf{\hat{n}_{i}}'
```
Also, the latex output can have custom strings; rather than just indices though, the entirety of each basis vector can be specified. The custom latex strings can occur without custom indices, and also overwrites the latex string that would be used if there were custom indices.

```python
>>> from sympy.physics.vector import ReferenceFrame, vlatex
>>> N = ReferenceFrame('N', latexs=['n1', '\mathbf{n}_2', 'cat'])
>>> vlatex(N.x)
'n1'
>>> vlatex(N.y)
'\mathbf{n}_2'
>>> vlatex(N.z)
'cat'
```

dynamicsymbols

The dynamicsymbols function also has ‘hidden’ functionality; the variable which is associated with time can be changed, as well as the notation for printing derivatives.

```python
>>> from sympy import symbols
>>> from sympy.physics.vector import dynamicsymbols, vprint
>>> q1 = dynamicsymbols('q1')
>>> q1(t)
>>> dynamicsymbols._t = symbols('T')
>>> q2 = dynamicsymbols('q2')
>>> q2(T)
>>> q1
q1(t)
>>> q1d = dynamicsymbols('q1', 1)
>>> vprint(q1d)
q1'
>>> dynamicsymbols._str = 'd'
>>> vprint(q1d)
q1d
>>> dynamicsymbols._str = '\'
>>> dynamicsymbols._t = symbols('t')
```

Note that only dynamic symbols created after the change are different. The same is not true for the .str attribute; this affects the printing output only, so dynamic symbols created before or after will print the same way.

Also note that Vector’s .dt method uses the .t attribute of dynamicsymbols, along with a number of other important functions and methods. Don’t mix and match symbols representing time.
Scalar and Vector Field Functionality

Introduction

Vectors and Scalars

In physics, we deal with two kinds of quantities - scalars and vectors.

A scalar is an entity which only has a magnitude - no direction. Examples of scalar quantities include mass, electric charge, temperature, distance, etc.

A vector, on the other hand, is an entity that is characterized by a magnitude and a direction. Examples of vector quantities are displacement, velocity, magnetic field, etc.

A scalar can be depicted just by a number, for e.g. a temperature of 300 K. On the other hand, vectorial quantities like acceleration are usually denoted by a vector. Given a vector \mathbf{V}, the magnitude of the corresponding quantity can be calculated as the magnitude of the vector itself $||\mathbf{V}||$, while the direction would be specified by a unit vector in the direction of the original vector, $\hat{\mathbf{V}} = \frac{\mathbf{V}}{||\mathbf{V}||}$.

For example, consider a displacement of $(3\hat{i} + 4\hat{j} + 5\hat{k})$ m, where, as per standard convention, \hat{i}, \hat{j} and \hat{k} represent unit vectors in the X, Y and Z directions respectively. Therefore, it can be concluded that the distance traveled is $||3\hat{i} + 4\hat{j} + 5\hat{k}||$ m = $5\sqrt{2}$ m. The direction of travel is given by the unit vector $\frac{3}{5\sqrt{2}}\hat{i} + \frac{4}{5\sqrt{2}}\hat{j} + \frac{5}{5\sqrt{2}}\hat{k}$.

Fields

In general, a field is a vector or scalar quantity that can be specified everywhere in space as a function of position (Note that in general a field may also be dependent on time and other custom variables). In this module, we deal with 3-dimensional spaces only. Hence, a field is defined as a function of the x, y and z coordinates corresponding to a location in 3D space.

For example, temperate in 3 dimensional space (a temperature field) can be written as $T(x, y, z)$ - a scalar function of the position. An example of a scalar field in electromagnetism is the electric potential.

In a similar manner, a vector field can be defined as a vectorial function of the location (x, y, z) of any point in space.

For instance, every point on the earth may be considered to be in the gravitational force field of the earth. We may specify the field by the magnitude and the direction of acceleration due to gravity (i.e. force per unit mass) $g(x, y, z)$ at every point in space.

To give an example from electromagnetism, consider an electric potential of form $2x^2y$, a scalar field in 3D space. The corresponding conservative electric field can be computed as the gradient of the electric potential function, and expressed as $4xy\hat{i} + 2xy\hat{j}$. The magnitude of this electric field can in turn be expressed as a scalar field of the form $\sqrt{4x^4 + 16x^2y^2}$.

5.8. Topics 1671
Implementation of fields in sympy.physics.vector

In `sympy.physics.vector` (page 1640), every `ReferenceFrame` (page 1676) instance is assigned basis vectors corresponding to the X, Y and Z directions. These can be accessed using the attributes named x, y and z respectively. Hence, to define a vector v of the form $3\hat{i} + 4\hat{j} + 5\hat{k}$ with respect to a given frame \mathbf{R}, you would do

```python
>>> from sympy.physics.vector import ReferenceFrame
>>> R = ReferenceFrame('R')
>>> v = 3*R.x + 4*R.y + 5*R.z
```

Vector math and basic calculus operations with respect to vectors have already been elaborated upon in other sections of this module’s documentation.

On the other hand, base scalars (or coordinate variables) are implemented as special SymPy `Symbol` (page 1028)s assigned to every frame, one for each direction from X, Y and Z. For a frame \mathbf{R}, the X, Y and Z base scalar `Symbol` (page 1028)s can be accessed using the $\mathbf{R}[0]$, $\mathbf{R}[1]$ and $\mathbf{R}[2]$ expressions respectively.

Therefore, to generate the expression for the aforementioned electric potential field $2x^2y$, you would have to do

```python
>>> from sympy.physics.vector import ReferenceFrame
>>> R = ReferenceFrame('R')
>>> electric_potential = 2*R[0]**2*R[1]
>>> electric_potential
2*R_x**2*R_y
```

In string representation, R_x denotes the X base scalar assigned to `ReferenceFrame` (page 1676) \mathbf{R}. Essentially, R_x is the string representation of $\mathbf{R}[0]$.

Scalar fields can be treated just as any other SymPy expression, for any math/calculus functionality. Hence, to differentiate the above electric potential with respect to x (i.e. $\mathbf{R}[0]$), you would have to use the `diff` (page 1094) function.

```python
>>> from sympy.physics.vector import ReferenceFrame
>>> R = ReferenceFrame('R')
>>> electric_potential = 2*R[0]**2*R[1]
>>> from sympy import diff
>>> diff(electric_potential, R[0])
4*R_x*R_y
```

Like vectors (and vector fields), scalar fields can also be re-expressed in other frames of reference, apart from the one they were defined in - assuming that an orientation relationship exists between the concerned frames. This can be done using the `sympy.physics.vector.Vector.express` (page 1692) method, in a way similar to vectors - but with the variables parameter set to True.

```python
>>> from sympy.physics.vector import ReferenceFrame
dynamicsymbols, express
>>> q = dynamicsymbols('q')
>>> R1 = R.orientnew('R1', rot_type = 'Axis', amounts = [q, R.z])
>>> express(electric_potential, R1, variables=True)
2*(R1_x*sin(q(t)) + R1_y*cos(q(t)))*(R1_x*cos(q(t)) - R1_y*sin(q(t)))**2
```
Moreover, considering scalars can also be functions of time just as vectors, differentiation with respect to time is also possible. Depending on the Symbol1028s present in the expression and the frame with respect to which the time differentiation is being done, the output will change/remain the same.

\begin{verbatim}
>>> from sympy.physics.vector import ReferenceFrame
>>> R = ReferenceFrame('R')
>>> electric_potential = 2*R[0]**2*R[1]
>>> q = dynamicsymbols('q')
>>> R1 = R.orientnew('R1', rot_type = 'Axis', amounts = [q, R.z])
>>> from sympy.physics.vector import time_derivative
>>> time_derivative(electric_potential, R)
0
>>> time_derivative(electric_potential, R1).simplify()
2*(R1_x*cos(q(t)) - R1_y*sin(q(t)))*(3*R1_x**2*cos(2*q(t))/2 - R1_x**2/2 - 3*R1_x*R1_y*sin(2*q(t)) - 3*R1_y**2*cos(2*q(t))/2 - R1_y**2/2)*Derivative(q(t), t)
\end{verbatim}

Field operators and other related functions

Here we describe some basic field-related functionality implemented in sympy.physics.vector

Curl

A curl is a mathematical operator that describes an infinitesimal rotation of a vector in 3D space. The direction is determined by the right-hand rule (along the axis of rotation), and the magnitude is given by the magnitude of rotation.

In the 3D Cartesian system, the curl of a 3D vector \(\mathbf{F} \), denoted by \(\nabla \times \mathbf{F} \) is given by -

\[
\nabla \times \mathbf{F} = \left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \right) \mathbf{i} + \left(\frac{\partial F_z}{\partial x} - \frac{\partial F_x}{\partial z} \right) \mathbf{j} + \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right) \mathbf{k}
\]

where \(F_x \) denotes the \(X \) component of vector \(\mathbf{F} \).

To compute the curl of a vector field in \texttt{sympy.physics.vector} (page 1640), you would do

\begin{verbatim}
>>> from sympy.physics.vector import ReferenceFrame
>>> R = ReferenceFrame('R')
>>> from sympy.physics.vector import curl
>>> field = R[0]*R[1]*R[2]*R.x
>>> curl(field, R)
R_x*R_y*R.y - R_x*R_z*R.z
\end{verbatim}
Divergence

Divergence is a vector operator that measures the magnitude of a vector field’s source or sink at a given point, in terms of a signed scalar.

The divergence operator always returns a scalar after operating on a vector.

In the 3D Cartesian system, the divergence of a 3D vector \(\mathbf{F} \), denoted by \(\nabla \cdot \mathbf{F} \) is given by -
\[
\nabla \cdot \mathbf{F} = \frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} + \frac{\partial W}{\partial z}
\]

where \(U, V \) and \(W \) denote the \(X, Y \) and \(Z \) components of \(\mathbf{F} \) respectively.

To compute the divergence of a vector field in `sympy.physics.vector` (page 1640), you would do

```python
>>> from sympy.physics.vector import ReferenceFrame
>>> R = ReferenceFrame('R')
>>> from sympy.physics.vector import divergence
>>> field = R[0]*R[1]*R[2] * (R.x+R.y+R.z)
>>> divergence(field, R)
R_x*R_y + R_x*R_z + R_y*R_z
```

Gradient

Consider a scalar field \(f(x, y, z) \) in 3D space. The gradient of this field is defined as the vector of the 3 partial derivatives of \(f \) with respect to \(x, y \) and \(z \) in the \(X, Y \) and \(Z \) directions respectively.

In the 3D Cartesian system, the gradient of a scalar field \(f \), denoted by \(\nabla f \) is given by -
\[
\nabla f = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k}
\]

To compute the gradient of a scalar field in `sympy.physics.vector` (page 1640), you would do

```python
>>> from sympy.physics.vector import ReferenceFrame
>>> R = ReferenceFrame('R')
>>> from sympy.physics.vector import gradient
>>> scalar_field = R[0]*R[1]*R[2]
>>> gradient(scalar_field, R)
R_y*R_z*R.x + R_x*R_z*R.y + R_x*R_y*R.z
```

Conservative and Solenoidal fields

In vector calculus, a conservative field is a field that is the gradient of some scalar field. Conservative fields have the property that their line integral over any path depends only on the end-points, and is independent of the path between them. A conservative vector field is also said to be ‘irrotational’, since the curl of a conservative field is always zero.

In physics, conservative fields represent forces in physical systems where energy is conserved.

To check if a vector field is conservative in `sympy.physics.vector` (page 1640), use the `sympy.physics.vector.fieldfunctions.is_conservative` (page 1720) function.
A solenoidal field, on the other hand, is a vector field whose divergence is zero at all points in space.

To check if a vector field is solenoidal in `sympy.physics.vector` (page 1640), use the `sympy.physics.vector.fieldfunctions.is_solenoidal` function.

```python
>>> from sympy.physics.vector import ReferenceFrame, is_solenoidal
>>> R = ReferenceFrame('R')
>>> field = R[1]*R[2]*R.x + R[0]*R[2]*R.y + R[0]*R[1]*R.z
>>> is_solenoidal(field)
True
>>> divergence(field, R)
0
```

Scalar potential functions

We have previously mentioned that every conservative field can be defined as the gradient of some scalar field. This scalar field is also called the 'scalar potential field' corresponding to the aforementioned conservative field.

The `sympy.physics.vector.fieldfunctions.scalar_potential` function in `sympy.physics.vector` (page 1640) calculates the scalar potential field corresponding to a given conservative vector field in 3D space - minus the extra constant of integration, of course.

Example of usage -

```python
>>> from sympy.physics.vector import ReferenceFrame, scalar_potential
>>> R = ReferenceFrame('R')
>>> conservative_field = 4*R[0]*R[1]*R[2]*R.x + 2*R[0]**2*R[2]*R.y +
-2*R[0]**2*R[1]*R.z
>>> scalar_potential(conservative_field, R)
2*R_x**2*R_y*R_z
```

Providing a non-conservative vector field as an argument to `sympy.physics.vector.fieldfunctions.scalar_potential` (page 1719) raises a `ValueError`.

The scalar potential difference, or simply 'potential difference', corresponding to a conservative vector field can be defined as the difference between the values of its scalar potential function at two points in space. This is useful in calculating a line integral with respect to a conservative function, since it depends only on the endpoints of the path.

This computation is performed as follows in `sympy.physics.vector` (page 1640).

```python
>>> from sympy.physics.vector import ReferenceFrame, Point
>>> from sympy.physics.vector import scalar_potential_difference
```

(continues on next page)
>>> R = ReferenceFrame('R')
>>> O = Point('O')
>>> P = O.locatenew('P', 1*R.x + 2*R.y + 3*R.z)
>>> vectfield = 4*R[0]*R[1]*R.x + 2*R[0]**2*R.y
>>> scalar_potential_difference(vectfield, R, O, P, O)
4

If provided with a scalar expression instead of a vector field, `sympy.physics.vector.fieldfunctions.scalar_potential_difference` (page 1719) returns the difference between the values of that scalar field at the two given points in space.

Physics Vector API

Essential Classes

class sympy.physics.vector.frame.CoordinateSym(name, frame, index)

A coordinate symbol/base scalar associated wrt a Reference Frame.

Ideally, users should not instantiate this class. Instances of this class must only be accessed through the corresponding frame as `frame[index]`.

CoordinateSyms having the same frame and index parameters are equal (even though they may be instantiated separately).

Parameters
- **name**: string
 - The display name of the CoordinateSym
- **frame**: ReferenceFrame
 - The reference frame this base scalar belongs to
- **index**: 0, 1 or 2
 - The index of the dimension denoted by this coordinate variable

Examples

```python
>>> from sympy.physics.vector import ReferenceFrame, CoordinateSym
>>> A = ReferenceFrame('A')
>>> A[1]
A_y
>>> type(A[0])
<class 'sympy.physics.vector.frame.CoordinateSym'>
>>> a_y = CoordinateSym('a_y', A, 1)
>>> a_y == A[1]
True
```

class sympy.physics.vector.frame.ReferenceFrame(name, indices=None, latexs=None, variables=None)

A reference frame in classical mechanics.
ReferenceFrame is a class used to represent a reference frame in classical mechanics. It has a standard basis of three unit vectors in the frame’s x, y, and z directions.

It also can have a rotation relative to a parent frame; this rotation is defined by a direction cosine matrix relating this frame’s basis vectors to the parent frame’s basis vectors. It can also have an angular velocity vector, defined in another frame.

ang_acc_in(otherframe)

Returns the angular acceleration Vector of the ReferenceFrame.

Effectively returns the Vector:

\[\mathbf{N}_{\alpha_B} \]

which represent the angular acceleration of B in N, where B is self, and N is other-frame.

Parameters

- **otherframe** : ReferenceFrame

 The ReferenceFrame which the angular acceleration is returned in.

Examples

```python
>>> from sympy.physics.vector import ReferenceFrame
>>> N = ReferenceFrame('N')
>>> A = ReferenceFrame('A')
>>> V = 10 * N.x
>>> A.set_ang_acc(N, V)
>>> A.ang_acc_in(N)
10*N.x
```

ang_vel_in(otherframe)

Returns the angular velocity Vector of the ReferenceFrame.

Effectively returns the Vector:

\[\omega_B \]

which represent the angular velocity of B in N, where B is self, and N is otherframe.

Parameters

- **otherframe** : ReferenceFrame

 The ReferenceFrame which the angular velocity is returned in.

Examples

```python
>>> from sympy.physics.vector import ReferenceFrame
>>> N = ReferenceFrame('N')
>>> A = ReferenceFrame('A')
>>> V = 10 * N.x
>>> A.set_ang_vel(N, V)
>>> A.ang_vel_in(N)
10*N.x
```
dcm(otherframe)

Returns the direction cosine matrix of this reference frame relative to the provided reference frame.

The returned matrix can be used to express the orthogonal unit vectors of this frame in terms of the orthogonal unit vectors of **otherframe**.

Parameters

- **otherframe** : ReferenceFrame

 The reference frame which the direction cosine matrix of this frame is formed relative to.

Examples

The following example rotates the reference frame A relative to N by a simple rotation and then calculates the direction cosine matrix of N relative to A.

```python
>>> from sympy import symbols, sin, cos
>>> from sympy.physics.vector import ReferenceFrame
>>> q1 = symbols('q1')
>>> N = ReferenceFrame('N')
>>> A = ReferenceFrame('A')
>>> A.orient_axis(N, q1, N.x)
>>> N.dcm(A)
Matrix([1, 0, 0],
[0, cos(q1), -sin(q1)],
[0, sin(q1), cos(q1)])
```

The second row of the above direction cosine matrix represents the N.y unit vector in N expressed in A. Like so:

```python
>>> Nz = 0*A.x + cos(q1)*A.y - sin(q1)*A.z
```

Thus, expressing N.y in A should return the same result:

```python
>>> N.y.express(A)
cos(q1)*A.y - sin(q1)*A.z
```

Notes

It is important to know what form of the direction cosine matrix is returned. If B.
dcm(A) is called, it means the “direction cosine matrix of B rotated relative to A”.
This is the matrix **B**

$$
\begin{bmatrix}
\hat{b}_1 \\
\hat{b}_2 \\
\hat{b}_3
\end{bmatrix} = \begin{bmatrix}
\hat{a}_1 \\
\hat{a}_2 \\
\hat{a}_3
\end{bmatrix} B^A \quad \begin{bmatrix}
\hat{a}_1 \\
\hat{a}_2 \\
\hat{a}_3
\end{bmatrix}.
$$

B

$$
\begin{bmatrix}
\hat{b}_1 \\
\hat{b}_2 \\
\hat{b}_3
\end{bmatrix}
$$

is the matrix that expresses the B unit vectors in terms of the A unit vectors.
orient\(\text{(parent, rot_type, amounts, rot_order='')}\)

Sets the orientation of this reference frame relative to another (parent) reference frame.

Note: It is now recommended to use the .orient_axis, .orient_body_fixed, .orient_space_fixed, .orient_quaternion methods for the different rotation types.

Parameters

parent : ReferenceFrame

Reference frame that this reference frame will be rotated relative to.

rot_type : str

The method used to generate the direction cosine matrix. Supported methods are:

- 'Axis': simple rotations about a single common axis
- 'DCM': for setting the direction cosine matrix directly
- 'Body': three successive rotations about new intermediate axes, also called “Euler and Tait-Bryan angles”
- 'Space': three successive rotations about the parent frames’ unit vectors
- 'Quaternion': rotations defined by four parameters which result in a singularity free direction cosine matrix

amounts:

Expressions defining the rotation angles or direction cosine matrix. These must match the rot_type. See examples below for details. The input types are:

- 'Axis': 2-tuple (expr/sym/func, Vector)
- 'DCM': Matrix, shape(3,3)
- 'Body': 3-tuple of expressions, symbols, or functions
- 'Space': 3-tuple of expressions, symbols, or functions
- 'Quaternion': 4-tuple of expressions, symbols, or functions

rot_order : str or int, optional

If applicable, the order of the successive of rotations. The string '123' and integer 123 are equivalent, for example. Required for 'Body' and 'Space'.

Warns

UserWarning

If the orientation creates a kinematic loop.

orient_axis\(\text{(parent, axis, angle)}\)

Sets the orientation of this reference frame with respect to a parent reference frame by rotating through an angle about an axis fixed in the parent reference frame.
Parameters

parent : ReferenceFrame

Reference frame that this reference frame will be rotated relative to.

axis : Vector

Vector fixed in the parent frame about about which this frame is rotated. It need not be a unit vector and the rotation follows the right hand rule.

angle : sympifiable

Angle in radians by which it the frame is to be rotated.

Warns

UserWarning

If the orientation creates a kinematic loop.

Examples

Setup variables for the examples:

```python
>>> from sympy import symbols
>>> from sympy.physics.vector import ReferenceFrame
>>> q1 = symbols('q1')
>>> N = ReferenceFrame('N')
>>> B = ReferenceFrame('B')
>>> B.orient_axis(N, N.x, q1)
```

The `orient_axis()` method generates a direction cosine matrix and its transpose which defines the orientation of B relative to N and vice versa. Once orient is called, `dcm()` outputs the appropriate direction cosine matrix:

```python
>>> B.dcm(N)
Matrix([[1, 0, 0],
       [0, cos(q1), sin(q1)],
       [0, -sin(q1), cos(q1)]])
```

The following two lines show that the sense of the rotation can be defined by negating the vector direction or the angle. Both lines produce the same result.

```python
>>> B.orient_axis(N, -N.x, q1)
>>> B.orient_axis(N, N.x, -q1)
```

orient_body_fixed()

Rotates this reference frame relative to the parent reference frame by right hand rotating through three successive body fixed simple axis rotations. Each subsequent axis of rotation is about the “body fixed” unit vectors of a new intermediate reference
frame. This type of rotation is also referred to rotating through the Euler and Tait-Bryan Angles.

The computed angular velocity in this method is by default expressed in the child’s frame, so it is most preferable to use $u1 \ast \text{child.x} + u2 \ast \text{child.y} + u3 \ast \text{child.z}$ as generalized speeds.

Parameters

- **parent**: ReferenceFrame
 - Reference frame that this reference frame will be rotated relative to.
- **angles**: 3-tuple of sympifiable
 - Three angles in radians used for the successive rotations.
- **rotation_order**: 3 character string or 3 digit integer
 - Order of the rotations about each intermediate reference frames’ unit vectors. The Euler rotation about the X, Z’, X’’ axes can be specified by the strings 'XZX', '131', or the integer 131. There are 12 unique valid rotation orders (6 Euler and 6 Tait-Bryan): zxz, xyx, yzy, zyz, xzx, yxy, xyz, yzx, zxy, xzy, and yxz.

Warns

- **UserWarning**
 - If the orientation creates a kinematic loop.

Examples

Setup variables for the examples:

```python
>>> from sympy import symbols
>>> from sympy.physics.vector import ReferenceFrame
>>> q1, q2, q3 = symbols('q1, q2, q3')
>>> N = ReferenceFrame('N')
>>> B = ReferenceFrame('B')
>>> B1 = ReferenceFrame('B1')
>>> B2 = ReferenceFrame('B2')
>>> B3 = ReferenceFrame('B3')
```

For example, a classic Euler Angle rotation can be done by:

```python
>>> B.orient_body_fixed(N, (q1, q2, q3), 'XYX')
>>> B.dcm(N)
Matrix([[cos(q2), -sin(q2)*cos(q1)],
        [sin(q2)*sin(q3), -sin(q1)*sin(q3)*cos(q2) + cos(q1)*cos(q3)],
        [sin(q1)*cos(q3) + sin(q3)*cos(q1)*cos(q2)],
        [-sin(q3)*cos(q1), -sin(q1)*cos(q2)*cos(q3) - sin(q3)*cos(q1), -cos(q1)*cos(q2)*cos(q3)]])
```

This rotates reference frame B relative to reference frame N through q1 about N.x, then rotates B again through q2 about B.y, and finally through q3 about B.x. It is equivalent to three successive `orient_axis()` calls:
```python
>>> B1.orient_axis(N, N.x, q1)
>>> B2.orient_axis(B1, B1.y, q2)
>>> B3.orient_axis(B2, B2.x, q3)
>>> B3.dcm(N)
Matrix([cos(q2), sin(q1)*sin(q2), -sin(q2)*cos(q1)],
      [sin(q2)*sin(q3), -sin(q1)*sin(q3)*cos(q2) + cos(q1)*cos(q3), sin(q1)*cos(q3) + sin(q3)*cos(q1)*cos(q2)],
      [sin(q2)*cos(q3), -sin(q1)*cos(q2)*cos(q3) - sin(q3)*cos(q1), sin(q1)*sin(q3) + cos(q1)*cos(q2)*cos(q3)])
```

Acceptable rotation orders are of length 3, expressed in as a string 'XYZ' or '123' or integer 123. Rotations about an axis twice in a row are prohibited.

```python
>>> B.orient_body_fixed(N, (q1, q2, 0), 'ZXZ')
>>> B.orient_body_fixed(N, (q1, q2, 0), '121')
>>> B.orient_body_fixed(N, (q1, q2, q3), 123)
```

orient_explicit(parent, dcm)

Sets the orientation of this reference frame relative to a parent reference frame by explicitly setting the direction cosine matrix.

Parameters

- **parent** : ReferenceFrame
- **dcm** : Matrix, shape(3, 3)

Warns

- **UserWarning**

 If the orientation creates a kinematic loop.

Examples

Setup variables for the examples:

```python
>>> from sympy import symbols, Matrix, sin, cos
>>> from sympy.physics.vector import ReferenceFrame
>>> q1 = symbols('q1')
>>> A = ReferenceFrame('A')
>>> B = ReferenceFrame('B')
>>> N = ReferenceFrame('N')
```

A simple rotation of A relative to N about N.x is defined by the following direction cosine matrix:

```python
>>> dcm = Matrix([[1, 0, 0],
                 [0, cos(q1), -sin(q1)],
                 [0, sin(q1), cos(q1)]])
```
orient_explicit(N, dcm)

Matrix([1, 0, 0],
[0, cos(q1), sin(q1)],
[0, -sin(q1), cos(q1)])

This is equivalent to using orient_axis():

orient_axis(N, N.x, q1)

Matrix([1, 0, 0],
[0, cos(q1), sin(q1)],
[0, -sin(q1), cos(q1)])

Note carefully that N.dcm(B) (the transpose) would be passed into orient_explicit() for A.dcm(N) to match B.dcm(N):

orient_quaternion(parent, numbers)

Sets the orientation of this reference frame relative to a parent reference frame via an orientation quaternion. An orientation quaternion is defined as a finite rotation a unit vector, (lambda_x, lambda_y, lambda_z), by an angle theta. The orientation quaternion is described by four parameters:

- q0 = cos(theta/2)
- q1 = lambda_x*sin(theta/2)
- q2 = lambda_y*sin(theta/2)
- q3 = lambda_z*sin(theta/2)

See Quaternions and Spatial Rotation on Wikipedia for more information.

Parameters

- parent : ReferenceFrame
 Reference frame that this reference frame will be rotated relative to.

- numbers : 4-tuple of sympifiable
 The four quaternion scalar numbers as defined above: q0, q1, q2, q3.

Warns

- UserWarning
 If the orientation creates a kinematic loop.
Examples

Setup variables for the examples:

```python
>>> from sympy import symbols
>>> from sympy.physics.vector import ReferenceFrame
>>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3')
>>> N = ReferenceFrame('N')
>>> B = ReferenceFrame('B')
```

Set the orientation:

```python
>>> B.orient_quaternion(N, (q0, q1, q2, q3))
>>> B.dcm(N)
Matrix([q0**2 + q1**2 - q2**2 - q3**2, 2*q0*q3 + 2*q1*q2, 2*q0*q2 + 2*q1*q3],
      [-2*q0*q2 + 2*q1*q3, q0**2 - q1**2 + q2**2 - q3**2, -2*q0*q1 + 2*q2*q3],
      [2*q0*q1 + 2*q2*q3, 2*q0*q2 + 2*q1*q3, q0**2 - q2**2 + q3**2])
```

orient_space_fixed(parent, angles, rotation_order)

Rotates this reference frame relative to the parent reference frame by right hand rotating through three successive space fixed simple axis rotations. Each subsequent axis of rotation is about the “space fixed” unit vectors of the parent reference frame.

The computed angular velocity in this method is by default expressed in the child’s frame, so it is most preferable to use \(u_1 \cdot \text{child.x} + u_2 \cdot \text{child.y} + u_3 \cdot \text{child.z} \) as generalized speeds.

Parameters

- **parent** : ReferenceFrame

 Reference frame that this reference frame will be rotated relative to.

- **angles** : 3-tuple of sympifiable

 Three angles in radians used for the successive rotations.

- **rotation_order** : 3 character string or 3 digit integer

 Order of the rotations about the parent reference frame’s unit vectors. The order can be specified by the strings ‘XZX’, ‘131’, or the integer 131. There are 12 unique valid rotation orders.

Warns

- **UserWarning**

 If the orientation creates a kinematic loop.
Examples

Setup variables for the examples:

```python
>>> from sympy import symbols
>>> from sympy.physics.vector import ReferenceFrame
>>> q1, q2, q3 = symbols('q1, q2, q3')
>>> N = ReferenceFrame('N')
>>> B = ReferenceFrame('B')
>>> B1 = ReferenceFrame('B1')
>>> B2 = ReferenceFrame('B2')
>>> B3 = ReferenceFrame('B3')
```

```python
>>> B.orient_space_fixed(N, (q1, q2, q3), '312')
>>> B.dcm(N)
Matrix()
[ sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3), sin(q1)*cos(q2),
  sin(q1)*sin(q3) + sin(q2)*cos(q1)*cos(q3), -sin(q2),
  sin(q3)*cos(q2), cos(q2)*cos(q3)]]
```

is equivalent to:

```python
>>> B1.orient_axis(N, N.z, q1)
>>> B2.orient_axis(B1, N.x, q2)
>>> B3.orient_axis(B2, N.y, q3)
```

```python
>>> B3.dcm(N).simplify()
Matrix()
[ sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3), sin(q1)*cos(q2),
  sin(q1)*sin(q3) + sin(q2)*cos(q1)*cos(q3), -sin(q2),
  sin(q3)*cos(q2), cos(q2)*cos(q3)]]
```

It is worth noting that space-fixed and body-fixed rotations are related by the order of the rotations, i.e. the reverse order of body fixed will give space fixed and vice versa.

```python
>>> B.orient_space_fixed(N, (q1, q2, q3), '231')
>>> B.dcm(N)
Matrix()
[ cos(q1)*cos(q2), sin(q1)*sin(q3) + sin(q2)*cos(q1)*cos(q3), -sin(q2),
  -sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1), cos(q1)*cos(q3),
  sin(q1)*cos(q2)*sin(q3) + cos(q1)*cos(q3)]]
```

```python
>>> B.orient_body_fixed(N, (q3, q2, q1), '132')
>>> B.dcm(N)
```

(continues on next page)
Matrix([cos(q1)*cos(q2), sin(q1)*sin(q3) + sin(q2)*cos(q1)*cos(q3), -
 sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1)],
 [-sin(q2), cos(q2)*cos(q3), sin(q3)*cos(q2)],
 [sin(q1)*cos(q2), sin(q1)*sin(q2)*cos(q3) - sin(q3)*cos(q1),
 sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3)])

orientnew(newname, rot_type, amounts, rot_order='", variables=None, indices=None, latexs=None)

Returns a new reference frame oriented with respect to this reference frame.

See ReferenceFrame.orient() for detailed examples of how to orient reference frames.

Parameters

- **newname**: str
 Name for the new reference frame.

- **rot_type**: str
 The method used to generate the direction cosine matrix. Supported methods are:
 - 'Axis': simple rotations about a single common axis
 - 'DCM': for setting the direction cosine matrix directly
 - 'Body': three successive rotations about new intermediate axes, also called "Euler and Tait-Bryan angles"
 - 'Space': three successive rotations about the parent frames’ unit vectors
 - 'Quaternion': rotations defined by four parameters which result in a singularity free direction cosine matrix

- **amounts**:
 Expressions defining the rotation angles or direction cosine matrix. These must match the rot_type. See examples below for details. The input types are:
 - 'Axis': 2-tuple (expr/sym/func, Vector)
 - 'DCM': Matrix, shape(3,3)
 - 'Body': 3-tuple of expressions, symbols, or functions
 - 'Space': 3-tuple of expressions, symbols, or functions
 - 'Quaternion': 4-tuple of expressions, symbols, or functions

- **rot_order**: str or int, optional
 If applicable, the order of the successive of rotations. The string '123' and integer 123 are equivalent, for example. Required for 'Body' and 'Space'.

- **indices**: tuple of str
Enables the reference frame's basis unit vectors to be accessed by Python's square bracket indexing notation using the provided three indice strings and alters the printing of the unit vectors to reflect this choice.

latexs: tuple of str

Alters the LaTeX printing of the reference frame's basis unit vectors to the provided three valid LaTeX strings.

Examples

```python
>>> from sympy import symbols
>>> from sympy.physics.vector import ReferenceFrame, vlatex
>>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3')
>>> N = ReferenceFrame('N')
```

Create a new reference frame A rotated relative to N through a simple rotation.

```python
>>> A = N.orientnew('A', 'Axis', (q0, N.x))
```

Create a new reference frame B rotated relative to N through body-fixed rotations.

```python
>>> B = N.orientnew('B', 'Body', (q1, q2, q3), '123')
```

Create a new reference frame C rotated relative to N through a simple rotation with unique indices and LaTeX printing.

```python
>>> C = N.orientnew('C', 'Axis', (q0, N.x), indices=('1', '2', '3'),
... latexs=(r'\hat{\mathbf{c}}_1', r'\hat{\mathbf{c}}_2', r'\hat{\mathbf{c}}_3'))
>>> C[1]
C['1']
>>> print(vlatex(C[1]))
\hat{\mathbf{c}}_1
```

partial_velocity(frame, *gen_speeds)

Returns the partial angular velocities of this frame in the given frame with respect to one or more provided generalized speeds.

Parameters

- **frame** : ReferenceFrame
 - The frame with which the angular velocity is defined in.
- **gen_speeds** : functions of time
 - The generalized speeds.

Returns

- **partial_velocities** : tuple of Vector
 - The partial angular velocity vectors corresponding to the provided generalized speeds.
Examples

```
>>> from sympy.physics.vector import ReferenceFrame, dynamicsymbols
>>> N = ReferenceFrame('N')
>>> A = ReferenceFrame('A')
>>> u1, u2 = dynamicsymbols('u1, u2')
>>> A.set_ang_vel(N, u1 * A.x + u2 * N.y)
>>> A.particle_velocity(N, u1)
A.x
>>> A.particle_velocity(N, u1, u2)
(A.x, N.y)
```

set_ang_acc(otherframe, value)

Define the angular acceleration Vector in a ReferenceFrame.

Defines the angular acceleration of this ReferenceFrame, in another. Angular acceleration can be defined with respect to multiple different ReferenceFrames. Care must be taken to not create loops which are inconsistent.

Parameters

otherframe : ReferenceFrame
A ReferenceFrame to define the angular acceleration in

value : Vector
The Vector representing angular acceleration

Examples

```
>>> from sympy.physics.vector import ReferenceFrame
>>> N = ReferenceFrame('N')
>>> A = ReferenceFrame('A')
>>> V = 10 * N.x
>>> A.set_ang_acc(N, V)
>>> A.ang_acc_in(N)
10*N.x
```

set_ang_vel(otherframe, value)

Define the angular velocity vector in a ReferenceFrame.

Defines the angular velocity of this ReferenceFrame, in another. Angular velocity can be defined with respect to multiple different ReferenceFrames. Care must be taken to not create loops which are inconsistent.

Parameters

otherframe : ReferenceFrame
A ReferenceFrame to define the angular velocity in

value : Vector
The Vector representing angular velocity
Examples

```python
>>> from sympy.physics.vector import ReferenceFrame
>>> N = ReferenceFrame('N')
>>> A = ReferenceFrame('A')
>>> V = 10 * N.x
>>> A.set_ang_vel(N, V)
>>> A.ang_vel_in(N)
10*N.x
```

variable_map(otherframe)

Returns a dictionary which expresses the coordinate variables of this frame in terms of the variables of otherframe.

If Vector.simp is True, returns a simplified version of the mapped values. Else, returns them without simplification.

Simplification of the expressions may take time.

Parameters

otherframe: ReferenceFrame

The other frame to map the variables to

Examples

```python
>>> from sympy.physics.vector import ReferenceFrame, dynamicsymbols
>>> A = ReferenceFrame('A')
>>> q = dynamicsymbols('q')
>>> B = A.orientnew('B', 'Axis', [q, A.z])
>>> A.variable_map(B)
{A_x: B_x*cos(q(t)) - B_y*sin(q(t)), A_y: B_x*sin(q(t)) + B_y*cos(q(t)), A_z: B_z}
```

property x

The basis Vector for the ReferenceFrame, in the x direction.

property y

The basis Vector for the ReferenceFrame, in the y direction.

property z

The basis Vector for the ReferenceFrame, in the z direction.

class sympy.physics.vector.vector.Vector(inlist)

The class used to define vectors.

It along with ReferenceFrame are the building blocks of describing a classical mechanics system in PyDy and sympy.physics.vector.
Attributes

simp (Boolean) Let certain methods use trigsimp on their outputs

angle_between(vec)
Returns the smallest angle between Vector ‘vec’ and self.

Warning: Python ignores the leading negative sign so that might give wrong results. -A.x.angle_between() would be treated as -(A.x.angle_between()), instead of (-A.x).angle_between().

Parameter

vec [Vector] The Vector between which angle is needed.

Examples

```python
>>> from sympy.physics.vector import ReferenceFrame
>>> A = ReferenceFrame("A")
>>> v1 = A.x
>>> v2 = A.y
>>> v1.angle_between(v2)
pi/2

>>> v3 = A.x + A.y + A.z
>>> v1.angle_between(v3)
acos(sqrt(3)/3)
```

applyfunc(f)
Apply a function to each component of a vector.

cross(other)
The cross product operator for two Vectors.
Returns a Vector, expressed in the same ReferenceFrames as self.

Parameters

other : Vector
The Vector which we are crossing with
Examples

```python
>>> from sympy import symbols
>>> from sympy.physics.vector import ReferenceFrame, cross
>>> q1 = symbols('q1')
>>> N = ReferenceFrame('N')
>>> cross(N.x, N.y)
N.z
>>> A = ReferenceFrame('A')
>>> A.orient_axis(N, q1, N.x)
>>> cross(A.x, N.y)
N.z
>>> cross(N.y, A.x)
- sin(q1)*A.y - cos(q1)*A.z
```

`diff(var, frame, var_in_dcm=True)`

Returns the partial derivative of the vector with respect to a variable in the provided reference frame.

Parameters

- **var**: Symbol
 What the partial derivative is taken with respect to.

- **frame**: ReferenceFrame
 The reference frame that the partial derivative is taken in.

- **var_in_dcm**: boolean
 If true, the differentiation algorithm assumes that the variable may be present in any of the direction cosine matrices that relate the frame to the frames of any component of the vector. But if it is known that the variable is not present in the direction cosine matrices, false can be set to skip full reexpression in the desired frame.

Examples

```python
>>> from sympy import Symbol
>>> from sympy.physics.vector import dynamicsymbols, ReferenceFrame
>>> from sympy.physics.vector import Vector
>>> from sympy.physics.vector import init_vprinting
>>> init_vprinting(pretty_print=False)
>>> Vector.simp = True
>>> t = Symbol('t')
>>> q1 = dynamicsymbols('q1')
>>> N = ReferenceFrame('N')
>>> A = N.orientnew('A', 'Axis', [q1, N.y])
>>> A.x.diff(t, N)
- sin(q1)*q1'*N.x - cos(q1)*q1'*N.z
>>> A.x.diff(t, N).express(A)
- q1'*A.z
>>> B = ReferenceFrame('B')
>>> u1, u2 = dynamicsymbols('u1, u2')
```

(continues on next page)
>>> v = u1 * A.x + u2 * B.y
>>> v.diff(u2, N, var_in_dcm=False)
B.y
doit(**hints)
 Calls .doit() on each term in the Vector
dot(other)
 Dot product of two vectors.
 Returns a scalar, the dot product of the two Vectors

Parameters
 other : Vector
 The Vector which we are dotting with

Examples

```python
>>> from sympy.physics.vector import ReferenceFrame, dot
>>> from sympy import symbols
>>> q1 = symbols('q1')
>>> N = ReferenceFrame('N')
>>> dot(N.x, N.x)
1
>>> dot(N.x, N.y)
0
>>> A = N.orientnew('A', 'Axis', [q1, N.x])
>>> dot(N.y, A.y)
cos(q1)
dt(otherframe)
  Returns a Vector which is the time derivative of the self Vector, taken in frame otherframe.
  Calls the global time_derivative method

Parameters
  otherframe : ReferenceFrame
    The frame to calculate the time derivative in

express(otherframe, variables=False)
  Returns a Vector equivalent to this one, expressed in otherframe. Uses the global express method.

Parameters
  otherframe : ReferenceFrame
    The frame for this Vector to be described in
  variables : boolean
    If True, the coordinate symbols(if present) in this Vector are re-expressed in terms otherframe
Examples

```python
>>> from sympy.physics.vector import ReferenceFrame, dynamicsymbols
>>> from sympy.physics.vector import init_vprinting
>>> init_vprinting(pretty_print=False)
>>> q1 = dynamicsymbols('q1')
>>> N = ReferenceFrame('N')
>>> A = N.orientnew('A', 'Axis', [q1, N.y])
>>> A.x.express(N)
cos(q1)*N.x - sin(q1)*N.z
```

`free_dynamicsymbols(reference_frame)`

Returns the free dynamic symbols (functions of time \( t \)) in the measure numbers of the vector expressed in the given reference frame.

**Parameters**

- `reference_frame`: ReferenceFrame
  
The frame with respect to which the free dynamic symbols of the given vector is to be determined.

**Returns**

- `set`
  
  Set of functions of time \( t \), e.g. `Function('f')(me.dynamicsymbols._t)`.

`free_symbols(reference_frame)`

Returns the free symbols in the measure numbers of the vector expressed in the given reference frame.

**Parameters**

- `reference_frame`: ReferenceFrame
  
The frame with respect to which the free symbols of the given vector is to be determined.

**Returns**

- `set of Symbol`
  
  set of symbols present in the measure numbers of `reference_frame`.

`property func`

Returns the class `Vector`.

`magnitude()`

Returns the magnitude (Euclidean norm) of self.

**Warning:** Python ignores the leading negative sign so that might give wrong results. `-A.x.magnitude()` would be treated as `-(A.x.magnitude())`, instead of `(-A.x).magnitude()`.

`normalize()`

Returns a Vector of magnitude 1, codirectional with self.
outer\( (other) \)  
Outer product between two Vectors.  
A rank increasing operation, which returns a Dyadic from two Vectors

**Parameters**  
other : Vector  
The Vector to take the outer product with

**Examples**

```python
>>> from sympy.physics.vector import ReferenceFrame, outer
>>> N = ReferenceFrame('N')
>>> outer(N.x, N.x)
(N.x|N.x)
```

separate()  
The constituents of this vector in different reference frames, as per its definition.

Returns a dict mapping each ReferenceFrame to the corresponding constituent Vector.

**Examples**

```python
>>> from sympy.physics.vector import ReferenceFrame
>>> R1 = ReferenceFrame('R1')
>>> R2 = ReferenceFrame('R2')
>>> v = R1.x + R2.x
>>> v.separate() == {R1: R1.x, R2: R2.x}
True
```

simplify()  
Returns a simplified Vector.

subs\(*args, **kwargs\)  
Substitution on the Vector.

**Examples**

```python
>>> from sympy.physics.vector import ReferenceFrame
>>> from sympy import Symbol
>>> N = ReferenceFrame('N')
>>> s = Symbol('s')
>>> a = N.x * s
>>> a.subs({s: 2})
2*N.x
```

to_matrix\( (reference\_frame) \)  
Returns the matrix form of the vector with respect to the given frame.
Parameters

reference_frame : ReferenceFrame

The reference frame that the rows of the matrix correspond to.

Returns

matrix : ImmutableMatrix, shape(3,1)

The matrix that gives the 1D vector.

Examples

```python
>>> from sympy import symbols
>>> from sympy.physics.vector import ReferenceFrame
>>> a, b, c = symbols('a, b, c')
>>> N = ReferenceFrame('N')
>>> vector = a * N.x + b * N.y + c * N.z
>>> vector.to_matrix(N)
Matrix([[a], [b], [c]])
```

xreplace(rule)

Replace occurrences of objects within the measure numbers of the vector.

Parameters

rule : dict-like

Expresses a replacement rule.

Returns

Vector

Result of the replacement.

Examples

```python
>>> from sympy import symbols, pi
>>> from sympy.physics.vector import ReferenceFrame
>>> A = ReferenceFrame('A')
>>> x, y, z = symbols('x y z')
>>> ((1 + x*y) * A.x).xreplace({x: pi})
(pi*y + 1)*A.x
>>> ((1 + x*y) * A.x).xreplace({x: pi, y: 2})
(1 + 2*pi)*A.x
```

Replacements occur only if an entire node in the expression tree is matched:
class sympy.physics.vector.dyadic.Dyadic(inlist)
A Dyadic object.


A more powerful way to represent a rigid body’s inertia. While it is more complex, by choosing Dyadic components to be in body fixed basis vectors, the resulting matrix is equivalent to the inertia tensor.

applyfunc(f)
Apply a function to each component of a Dyadic.

cross(other)
For a cross product in the form: Dyadic x Vector.

Parameters
other : Vector

The Vector that we are crossing this Dyadic with

Examples

```python
>>> from sympy.physics.vector import ReferenceFrame, outer, cross
>>> N = ReferenceFrame('N')
>>> d = outer(N.x, N.x)
>>> cross(d, N.y)
(N.x|N.z)
```

doit(**hints)
Calls .doit() on each term in the Dyadic

dot(other)
The inner product operator for a Dyadic and a Dyadic or Vector.

Parameters
other : Dyadic or Vector

The other Dyadic or Vector to take the inner product with
Examples

```python
>>> from sympy.physics.vector import ReferenceFrame, outer
>>> N = ReferenceFrame('N')
>>> D1 = outer(N.x, N.y)
>>> D2 = outer(N.y, N.y)
>>> D1.dot(D2)
(N.x|N.y)
>>> D1.dot(N.y)
N.x
```

dt(frame)

Take the time derivative of this Dyadic in a frame.

This function calls the global time_derivative method

**Parameters**

- **frame** : ReferenceFrame
  
  The frame to take the time derivative in

Examples

```python
>>> from sympy.physics.vector import ReferenceFrame, outer,
>>> from sympy.physics.vector import init_vprinting
>>> init_vprinting(pretty_print=False)
>>> N = ReferenceFrame('N')
>>> q = dynamicsymbols('q')
>>> B = N.orientnew('B', 'Axis', [q, N.z])
>>> d = outer(N.x, N.x)
>>> d.dt(B)
- q'*(N.y|N.x) - q'*N.y
```

express(frame1, frame2=None)

Expressions this Dyadic in alternate frame(s)

The first frame is the list side expression, the second frame is the right side; if Dyadic is in form A.x|B.y, you can express it in two different frames. If no second frame is given, the Dyadic is expressed in only one frame.

Calls the global express function

**Parameters**

- **frame1** : ReferenceFrame
  
  The frame to express the left side of the Dyadic in

- **frame2** : ReferenceFrame
  
  If provided, the frame to express the right side of the Dyadic in
Examples

```python
>>> from sympy.physics.vector import ReferenceFrame, outer,
 dynamicsymbols
>>> from sympy.physics.vector import init_vprinting
>>> init_vprinting(pretty_print=False)
>>> N = ReferenceFrame('N')
>>> q = dynamicsymbols('q')
>>> B = N.orientnew('B', 'Axis', [q, N.z])
>>> d = outer(N.x, N.x)
>>> d.express(B, N)
\cos(q)*(B.x|N.x) - \sin(q)*(B.y|N.x)
```

property func

Returns the class Dyadic.

simplify()

Returns a simplified Dyadic.

subs(*args, **kwargs)

Substitution on the Dyadic.

Examples

```python
>>> from sympy.physics.vector import ReferenceFrame
>>> from sympy import Symbol
>>> N = ReferenceFrame('N')
>>> s = Symbol('s')
>>> a = s*(N.x|N.x)
>>> a.subs({s: 2})
2*(N.x|N.x)
```

to_matrix(reference_frame, second_reference_frame=None)

Returns the matrix form of the dyadic with respect to one or two reference frames.

Parameters

- **reference_frame** : ReferenceFrame
  The reference frame that the rows and columns of the matrix correspond to. If a second reference frame is provided, this only corresponds to the rows of the matrix.

- **second_reference_frame** : ReferenceFrame, optional, default=None
  The reference frame that the columns of the matrix correspond to.

Returns

- **matrix** : ImmutableMatrix, shape(3,3)
  The matrix that gives the 2D tensor form.
Examples

```python
>>> from sympy import symbols
>>> from sympy.physics.vector import ReferenceFrame, Vector
>>> Vector.simp = True
>>> from sympy.physics.mechanics import inertia
>>> Ixx, Iyy, Izz, Ixy, Iyz, Ixz = symbols('Ixx, Iyy, Izz, Ixy, Iyz, Ixz')
>>> N = ReferenceFrame('N')
>>> inertia_dyadic = inertia(N, Ixx, Iyy, Izz, Ixy, Iyz, Ixz)
>>> inertia_dyadic.to_matrix(N)
Matrix([[Ixx, Ixy, Ixz],
 [Ixy, Iyy, Iyz],
 [Ixz, Iyz, Izz]])
```

```python
>>> beta = symbols('beta')
>>> A = N.orientnew('A', 'Axis', (beta, N.x))
>>> inertia_dyadic.to_matrix(A)
Matrix([[(Ixx - Ixy*sin(beta)) + Ixz*cos(beta), Ixy*cos(beta) + Ixz*sin(beta), Ixz*cos(2*beta)/2 + Izz/2 + Iyz*sin(2*beta)/2 - Iyy*cos(2*beta)/2 + Iyy/2 - Izz*sin(2*beta)/2 + Izz/2],
 [Ixy*cos(beta) + Ixz*sin(beta), Iyy*cos(2*beta)/2 + Iyy/2 + Izz*cos(2*beta)/2 - Iyz*sin(2*beta) + Izz/2, -Iyy*sin(2*beta)/2 + Iyz*cos(2*beta) + Izz*sin(2*beta)/2],
 [-Ixy*sin(beta) + Ixz*cos(beta), -Iyy*sin(2*beta)/2 - Iyz*cos(2*beta) + Izz*sin(2*beta)/2, -Iyy*cos(2*beta)/2 + Iyy/2 - Izz*sin(2*beta)/2 + Izz/2]])
```

`xreplace(rule)`

Replace occurrences of objects within the measure numbers of the Dyadic.

**Parameters**

- `rule`: dict-like

  Expresses a replacement rule.

**Returns**

Dyadic

Result of the replacement.

Examples

```python
>>> from sympy import symbols, pi
>>> from sympy.physics.vector import ReferenceFrame, outer
>>> N = ReferenceFrame('N')
>>> D = outer(N.x, N.x)
>>> x, y, z = symbols('x y z')
>>> ((1 + x*y) * D).xreplace({x: pi})
(pi*y + 1)*(N.x|N.x)
>>> ((1 + x*y) * D).xreplace({x: pi, y: 2})
(1 + 2*pi)*(N.x|N.x)
```
Replacements occur only if an entire node in the expression tree is matched:

```python
>>> ((x*y + z) * D).xreplace({x*y: pi})
(z + pi)*(N.x|N.x)
```

```python
>>> ((x*y*z) * D).xreplace({x*y: pi})
x*y*z*(N.x|N.x)
```

### Kinematics (Docstrings)

`class sympy.physics.vector.point.Point(name)`

This object represents a point in a dynamic system.

It stores the: position, velocity, and acceleration of a point. The position is a vector defined as the vector distance from a parent point to this point.

**Parameters**

- `name`: string
  - The display name of the Point

**Examples**

```python
>>> from sympy.physics.vector import Point, ReferenceFrame, dynamicsymbols
>>> from sympy.physics.vector import init_vprinting
>>> init_vprinting(pretty_print=False)
>>> N = ReferenceFrame('N')
>>> O = Point('O')
>>> P = Point('P')
>>> u1, u2, u3 = dynamicsymbols('u1 u2 u3')
>>> O.set_vel(N, u1 * N.x + u2 * N.y + u3 * N.z)
>>> O.acc(N)
```

```python
u1'*N.x + u2'*N.y + u3'*N.z
```

Symbols() can be used to create multiple Points in a single step, for example:

```python
>>> from sympy.physics.vector import Point, ReferenceFrame, dynamicsymbols
>>> from sympy.physics.vector import init_vprinting
>>> init_vprinting(pretty_print=False)
>>> from sympy import symbols
>>> N = ReferenceFrame('N')
>>> u1, u2 = dynamicsymbols('u1 u2')
>>> A, B = symbols('A B', cls=Point)
>>> type(A)
<class 'sympy.physics.vector.point.Point'>
>>> A.set_vel(N, u1 * N.x + u2 * N.y)
>>> B.set_vel(N, u2 * N.x + u1 * N.y)
>>> A.acc(N) - B.acc(N)
```

```python
(u1' - u2')*N.x + (-u1' + u2')*N.y
```
a1pt_theory\( (\text{otherpoint}, \text{outframe}, \text{interframe}) \)

Sets the acceleration of this point with the 1-point theory.

The 1-point theory for point acceleration looks like this:

\[ ^N a^P = ^N a^O + ^N \alpha^B x r^OP + ^N \omega^B x (^N \omega^B x r^OP) + 2 ^N \omega^B x ^B v^P \]

where \( O \) is a point fixed in \( B \), \( P \) is a point moving in \( B \), and \( B \) is rotating in frame \( N \).

**Parameters**

- **otherpoint**: Point
  - The first point of the 1-point theory (\( O \))

- **outframe**: ReferenceFrame
  - The frame we want this point’s acceleration defined in (\( N \))

- **fixedframe**: ReferenceFrame
  - The intermediate frame in this calculation (\( B \))

**Examples**

```python
>>> from sympy.physics.vector import Point, ReferenceFrame
>>> from sympy.physics.vector import dynamicsymbols
>>> from sympy.physics.vector import init_vprinting
>>> init_vprinting(pretty_print=False)
>>> q = dynamicsymbols('q')
>>> q2 = dynamicsymbols('q2')
>>> qd = dynamicsymbols('q', 1)
>>> q2d = dynamicsymbols('q2', 1)
>>> N = ReferenceFrame('N')
>>> B = ReferenceFrame('B')
>>> B.set_ang_vel(N, 5 * B.y)
>>> O = Point('O')
>>> P = O.locatenew('P', q * B.x)
>>> P.set_vel(B, qd * B.x + q2d * B.y)
>>> O.set_vel(N, 0)
>>> P.a1pt_theory(O, N, B)
(-25*q + q'')*B.x + q2''*B.y - 10*q'*B.z
```

a2pt_theory\( (\text{otherpoint}, \text{outframe}, \text{fixedframe}) \)

Sets the acceleration of this point with the 2-point theory.

The 2-point theory for point acceleration looks like this:

\[ ^N a^P = ^N a^O + ^N \alpha^B x r^OP + ^N \omega^B x (^N \omega^B x r^OP) \]

where \( O \) and \( P \) are both points fixed in frame \( B \), which is rotating in frame \( N \).

**Parameters**

- **otherpoint**: Point
  - The first point of the 2-point theory (\( O \))

- **outframe**: ReferenceFrame
  - The frame we want this point’s acceleration defined in (\( N \))
**fixedframe** : ReferenceFrame

The frame in which both points are fixed (B)

**Examples**

```python
>>> from sympy.physics.vector import Point, ReferenceFrame
>>> dynamicsymbols
>>> from sympy.physics.vector import init_vprinting
>>> init_vprinting(pretty_print=False)
>>> q = dynamicsymbols('q')
>>> qd = dynamicsymbols('q', 1)
>>> N = ReferenceFrame('N')
>>> B = N.orientnew('B', 'Axis', [q, N.z])
>>> O = Point('O')
>>> P = O.locatenew('P', 10 * B.x)
>>> O.set_vel(N, 5 * N.x)
>>> P.a2pt_theory(O, N, B)
-10*q'*2*B.x + 10*q''*B.y
```

**acc(frame)**

The acceleration Vector of this Point in a ReferenceFrame.

**Parameters**

- **frame** : ReferenceFrame
  
The frame in which the returned acceleration vector will be defined in.

**Examples**

```python
>>> from sympy.physics.vector import Point, ReferenceFrame
>>> N = ReferenceFrame('N')
>>> p1 = Point('p1')
>>> p1.set_acc(N, 10 * N.x)
>>> p1.acc(N)
10*N.x
```

**locatenew(name, value)**

Creates a new point with a position defined from this point.

**Parameters**

- **name** : str
  
The name for the new point

- **value** : Vector
  
The position of the new point relative to this point
Examples

```python
>>> from sympy.physics.vector import ReferenceFrame, Point
>>> N = ReferenceFrame('N')
>>> P1 = Point('P1')
>>> P2 = P1.locatenew('P2', 10 * N.x)
```

`partial_velocity(frame, *gen_speeds)`

Returns the partial velocities of the linear velocity vector of this point in the given frame with respect to one or more provided generalized speeds.

**Parameters**

- `frame`: ReferenceFrame
  The frame with which the velocity is defined in.
- `gen_speeds`: functions of time
  The generalized speeds.

**Returns**

- `partial_velocities`: tuple of Vector
  The partial velocity vectors corresponding to the provided generalized speeds.

Examples

```python
>>> from sympy.physics.vector import ReferenceFrame, Point
>>> from sympy.physics.vector import dynamicsymbols
>>> N = ReferenceFrame('N')
>>> A = ReferenceFrame('A')
>>> p = Point('p')
>>> u1, u2 = dynamicsymbols('u1, u2')
>>> p.set_vel(N, u1 * N.x + u2 * A.y)
>>> p.partial_velocity(N, u1)
N.x
>>> p.partial_velocity(N, u1, u2)
(N.x, A.y)
```

`pos_from(otherpoint)`

Returns a Vector distance between this Point and the other Point.

**Parameters**

- `otherpoint`: Point
  The otherpoint we are locating this one relative to
Examples

```python
generate_output_for_examples
```

**set_acc(frame, value)**

Used to set the acceleration of this Point in a ReferenceFrame.

**Parameters**

- **frame** : ReferenceFrame
  
  The frame in which this point’s acceleration is defined

- **value** : Vector
  
  The vector value of this point’s acceleration in the frame

Examples

```python
generate_output_for_examples
```

**set_pos(otherpoint, value)**

Used to set the position of this point w.r.t. another point.

**Parameters**

- **otherpoint** : Point
  
  The other point which this point’s location is defined relative to

- **value** : Vector
  
  The vector which defines the location of this point

Examples

```python
generate_output_for_examples
```
**set_vel**(*frame*, *value*)

Sets the velocity Vector of this Point in a ReferenceFrame.

**Parameters**

- **frame**: ReferenceFrame
  - The frame in which this point’s velocity is defined
- **value**: Vector
  - The vector value of this point’s velocity in the frame

**Examples**

```python
>>> from sympy.physics.vector import Point, ReferenceFrame
>>> N = ReferenceFrame('N')
>>> p1 = Point('p1')
>>> p1.set_vel(N, 10 * N.x)
>>> p1.vel(N)
10*N.x
```

**vlpt_theory**(*otherpoint*, *outframe*, *interframe*)

Sets the velocity of this point with the 1-point theory.

The 1-point theory for point velocity looks like this:

\[ ^N v^P = ^B v^P + ^N v^O + ^N \omega^B x r^OP \]

where O is a point fixed in B, P is a point moving in B, and B is rotating in frame N.

**Parameters**

- **otherpoint**: Point
  - The first point of the 1-point theory (O)
- **outframe**: ReferenceFrame
  - The frame we want this point’s velocity defined in (N)
- **interframe**: ReferenceFrame
  - The intermediate frame in this calculation (B)

**Examples**

```python
>>> from sympy.physics.vector import Point, ReferenceFrame
>>> from sympy.physics.vector import dynamicsymbols
>>> from sympy.physics.vector import init_vprinting
>>> init_vprinting(pretty_print=False)
>>> q = dynamicsymbols('q')
>>> q2 = dynamicsymbols('q2')
>>> qd = dynamicsymbols('q', 1)
>>> q2d = dynamicsymbols('q2', 1)
>>> N = ReferenceFrame('N')
>>> B = ReferenceFrame('B')
>>> B.set_ang_vel(N, 5 * B.y)
```
v2pt_theory(otherpoint, outframe, fixedframe)
Sets the velocity of this point with the 2-point theory.
The 2-point theory for point velocity looks like this:
\[ ^N \mathbf{v}^P = ^N \mathbf{v}^O + ^N \omega^B \times r^OP \]
where O and P are both points fixed in frame B, which is rotating in frame N.

Parameters
otherpoint : Point
    The first point of the 2-point theory (O)
outframe : ReferenceFrame
    The frame we want this point’s velocity defined in (N)
fixedframe : ReferenceFrame
    The frame in which both points are fixed (B)

Examples

>>> from sympy.physics.vector import Point, ReferenceFrame,
    dynamicsymbols
>>> from sympy.physics.vector import init_vprinting
>>> init_vprinting(pretty_print=False)
>>> q = dynamicsymbols('q')
>>> qd = dynamicsymbols('q', 1)
>>> N = ReferenceFrame('N')
>>> B = N.orientnew('B', 'Axis', [q, N.z])
>>> O = Point('O')
>>> P = O.locatenew('P', 10 * B.x)
>>> P.set_vel(B, qd * B.x + q2d * B.y)
>>> P.v2pt_theory(O, N, B)
q'x + q2'B.y - 5*q'B.z

vel(frame)
The velocity Vector of this Point in the ReferenceFrame.

Parameters
frame : ReferenceFrame
    The frame in which the returned velocity vector will be defined in
Examples

```
>>> from sympy.physics.vector import Point, ReferenceFrame,
\ dynamicsymbols
>>> N = ReferenceFrame('N')
>>> p1 = Point('p1')
>>> p1.set_vel(N, 10 * N.x)
>>> p1.vel(N)
10*N.x
```

Velocities will be automatically calculated if possible, otherwise a ValueError will be returned. If it is possible to calculate multiple different velocities from the relative points, the points defined most directly relative to this point will be used. In the case of inconsistent relative positions of points, incorrect velocities may be returned. It is up to the user to define prior relative positions and velocities of points in a self-consistent way.

```
>>> p = Point('p')
>>> q = dynamicsymbols('q')
>>> p.set_vel(N, 10 * N.x)
>>> p2 = Point('p2')
>>> p2.set_pos(p, q*N.x)
>>> p2.vel(N)
(derivative(q(t), t) + 10)*N.x
```

kinematic_equations

`sympy.physics.vector.functions.get_motion_params(frame, **kwargs)`

Returns the three motion parameters - (acceleration, velocity, and position) as vectorial functions of time in the given frame.

If a higher order differential function is provided, the lower order functions are used as boundary conditions. For example, given the acceleration, the velocity and position parameters are taken as boundary conditions.

The values of time at which the boundary conditions are specified are taken from timevalue1 (for position boundary condition) and timevalue2 (for velocity boundary condition).

If any of the boundary conditions are not provided, they are taken to be zero by default (zero vectors, in case of vectorial inputs). If the boundary conditions are also functions of time, they are converted to constants by substituting the time values in the dynamicsymbols._t time Symbol.

This function can also be used for calculating rotational motion parameters. Have a look at the Parameters and Examples for more clarity.

**Parameters**

- `frame` : ReferenceFrame
  - The frame to express the motion parameters in
- `acceleration` : Vector
  - Acceleration of the object/frame as a function of time
velocity: Vector
Velocity as function of time or as boundary condition of velocity at
time = timevalue1

position: Vector
Velocity as function of time or as boundary condition of velocity at
time = timevalue1

timevalue1: sympyfiable
Value of time for position boundary condition

timevalue2: sympyfiable
Value of time for velocity boundary condition

Examples

```python
>>> from sympy.physics.vector import ReferenceFrame, get_motion_params,
<dynamic_symbols
>>> from sympy.physics.vector import init_vprinting
>>> init_vprinting(pretty_print=False)
>>> from sympy import symbols

R = ReferenceFrame('R')
>>> v1, v2, v3 = dynamicsymbols('v1 v2 v3')
>>> v = v1*R.x + v2*R.y + v3*R.z
>>> get_motion_params(R, position=v)
(v1''*R.x + v2''*R.y + v3''*R.z, v1'*R.x + v2'*R.y + v3'*R.z, v1*R.x +
v2*R.y + v3*R.z)
>>> a, b, c = symbols('a b c')
>>> v = a*R.x + b*R.y + c*R.z
>>> get_motion_params(R, velocity=v)
(0, a*R.x + b*R.y + c*R.z, a*t*R.x + b*t*R.y + c*t*R.z)
>>> parameters = get_motion_params(R, acceleration=v)

parameters[1]
a*t*R.x + b*t*R.y + c*t*R.z
>>> parameters[2]
a*t**2/2*R.x + b*t**2/2*R.y + c*t**2/2*R.z
```

sympy.physics.vector.functions.kinematic_equations(speeds, coords, rot_type, rot_order='')

Gives equations relating the qdot's to u's for a rotation type.

Supply rotation type and order as in orient. Speeds are assumed to be body-fixed; if we
are defining the orientation of B in A using by rot_type, the angular velocity of B in A is
assumed to be in the form: speed[0]*B.x + speed[1]*B.y + speed[2]*B.z

Parameters

- **speeds**: list of length 3
  The body fixed angular velocity measure numbers.

- **coords**: list of length 3 or 4
  The coordinates used to define the orientation of the two frames.

- **rot_type**: str
The type of rotation used to create the equations. Body, Space, or Quaternion only

**rot_order**: str or int

If applicable, the order of a series of rotations.

Examples

```python
>>> from sympy.physics.vector import dynamicsymbols
>>> from sympy.physics.vector import kinematic_equations, vprint
>>> u1, u2, u3 = dynamicsymbols('u1 u2 u3')
>>> q1, q2, q3 = dynamicsymbols('q1 q2 q3')
>>> vprint(kinematic_equations([u1,u2,u3], [q1,q2,q3], 'body', '313'),
... order=None)
[-(u1*sin(q3) + u2*cos(q3))/sin(q2) + q1', -u1*cos(q3) + u2*sin(q3) + q2 →', (u1*sin(q3) + u2*cos(q3))*cos(q2)/sin(q2) - u3 + q3']
```

```python
sympy.physics.vector.functions.partial_velocity(vel_vecs, gen_speeds, frame)
```

Returns a list of partial velocities with respect to the provided generalized speeds in the given reference frame for each of the supplied velocity vectors.

The output is a list of lists. The outer list has a number of elements equal to the number of supplied velocity vectors. The inner lists are, for each velocity vector, the partial derivatives of that velocity vector with respect to the generalized speeds supplied.

**Parameters**

- **vel_vecs**: iterable
  An iterable of velocity vectors (angular or linear).

- **gen_speeds**: iterable
  An iterable of generalized speeds.

- **frame**: ReferenceFrame
  The reference frame that the partial derivatives are going to be taken in.

Examples

```python
>>> from sympy.physics.vector import Point, ReferenceFrame
>>> from sympy.physics.vector import dynamicsymbols
>>> from sympy.physics.vector import partial_velocity
>>> u = dynamicsymbols('u')
>>> N = ReferenceFrame('N')
>>> P = Point('P')
>>> P.set_vel(N, u * N.x)
>>> vel_vecs = [P.vel(N)]
>>> gen_speeds = [u]
>>> partial_velocity(vel_vecs, gen_speeds, N)
[[[N.x]]]
```
Printing (Docstrings)

```
init_vprinting(**kwargs)
```

Initializes time derivative printing for all SymPy objects, i.e. any functions of time will be displayed in a more compact notation. The main benefit of this is for printing of time derivatives; instead of displaying as `Derivative(f(t), t)`, it will display `f'`. This is only actually needed for when derivatives are present and are not in a physics.vector.Vector or physics.vector.Dyadic object. This function is a light wrapper to `init_printing()` (page 2192). Any keyword arguments for it are valid here.

Initializes pretty-printer depending on the environment.

**Parameters**

- **pretty_print**: bool, default=True
  - If True, use `pretty_print()` (page 2212) to stringify or the provided pretty printer; if False, use `sstrrepr()` (page 2253) to stringify or the provided string printer.

- **order**: string or None, default='lex'
  - There are a few different settings for this parameter: 'lex' (default), which is lexicographic order; 'grlex', which is graded lexicographic order; 'grevlex', which is reversed graded lexicographic order; 'old', which is used for compatibility reasons and for long expressions; None, which sets it to lex.

- **use_unicode**: bool or None, default=None
  - If True, use unicode characters; if False, do not use unicode characters; if None, make a guess based on the environment.

- **use_latex**: string, bool, or None, default=None
  - If True, use default LaTeX rendering in GUI interfaces (png and mathjax); if False, do not use LaTeX rendering; if None, make a guess based on the environment; if 'png', enable LaTeX rendering with an external LaTeX compiler, falling back to matplotlib if external compilation fails; if 'matplotlib', enable LaTeX rendering with matplotlib; if 'mathjax', enable LaTeX text generation, for example MathJax rendering in IPython notebook or text rendering in LaTeX documents; if 'svg', enable LaTeX rendering with an external latex compiler, no fallback

- **wrap_line**: bool
  - If True, lines will wrap at the end; if False, they will not wrap but continue as one line. This is only relevant if pretty_print is True.

- **num_columns**: int or None, default=None
  - If int, number of columns before wrapping is set to num_columns; if None, number of columns before wrapping is set to terminal width. This is only relevant if pretty_print is True.

- **no_global**: bool, default=False
  - If True, the settings become system wide; if False, use just for this console/session.

- **ip**: An interactive console
This can either be an instance of IPython, or a class that derives from code.InteractiveConsole.

**euler** : bool, optional, default=False

Loads the euler package in the LaTeX preamble for handwritten style fonts ([https://www.ctan.org/pkg/euler](https://www.ctan.org/pkg/euler)).

**forecolor** : string or None, optional, default=None

DVI setting for foreground color. None means that either 'Black', 'White', or 'Gray' will be selected based on a guess of the IPython terminal color setting. See notes.

**backcolor** : string, optional, default='Transparent'

DVI setting for background color. See notes.

**fontsize** : string or int, optional, default='10pt'

A font size to pass to the LaTeX documentclass function in the preamble. Note that the options are limited by the documentclass. Consider using scale instead.

**latex_mode** : string, optional, default='plain'

The mode used in the LaTeX printer. Can be one of: {'inline'|'plain'|'equation'|'equation*'}.

**print_builtin** : boolean, optional, default=True

If True then floats and integers will be printed. If False the printer will only print SymPy types.

**str_printer** : function, optional, default=None

A custom string printer function. This should mimic `sstrrepr()` (page 2253).

**pretty_printer** : function, optional, default=None

A custom pretty printer. This should mimic `pretty()` (page 2212).

**latex_printer** : function, optional, default=None

A custom LaTeX printer. This should mimic `latex()` (page 2245).

**scale** : float, optional, default=1.0

Scale the LaTeX output when using the 'png' or 'svg' backends. Useful for high dpi screens.

**settings** :

Any additional settings for the `latex` and `pretty` commands can be used to fine-tune the output.
Examples

```python
>>> from sympy import Function, symbols
t, x = symbols('t, x')
>>> omega = Function('omega')
>>> omega(x).diff()
Derivative(omega(x), x)
>>> omega(t).diff()
Derivative(omega(t), t)
```

Now use the string printer:

```python
>>> from sympy.physics.vector import init_vprinting
>>> init_vprinting(pretty_print=False)
>>> omega(x).diff()
Derivative(omega(x), x)
>>> omega(t).diff()
omega'
```

**sympy.physics.vector.printing.vprint(expr, **settings)**

Function for printing of expressions generated in the sympy.physics vector package.

Extends SymPy’s StrPrinter, takes the same setting accepted by SymPy’s `sstr()` (page 2253), and is equivalent to `print(sstr(foo))`.

**Parameters**

- `expr` : valid SymPy object
  
  SymPy expression to print.

- `settings` : args
  
  Same as the settings accepted by SymPy’s `sstr()`.

**Examples**

```python
>>> from sympy.physics.vector import vprint, dynamicsymbols
>>> u1 = dynamicsymbols('u1')
>>> print(u1)
u1(t)
>>> vprint(u1)
u1
```

**sympy.physics.vector.printing.vpprint(expr, **settings)**

Function for pretty printing of expressions generated in the sympy.physics vector package.

Mainly used for expressions not inside a vector; the output of running scripts and generating equations of motion. Takes the same options as SymPy’s `pretty_print()` (page 2212); see that function for more information.

**Parameters**

- `expr` : valid SymPy object
  
  SymPy expression to pretty print
settings : args

    Same as those accepted by SymPy’s pretty_print.

sympy.physics.vector.printing.vlatex(expr, **settings)

    Function for printing latex representation of sympy.physics.vector objects.

    For latex representation of Vectors, Dyadics, and dynamicsymbols. Takes the same options
    as SymPy’s latex() (page 2245); see that function for more information;

    Parameters
    expr : valid SymPy object

        SymPy expression to represent in LaTeX form

    settings : args

        Same as latex()

Examples

>>> from sympy.physics.vector import vlatex, ReferenceFrame,
    dynamicsymbols
>>> N = ReferenceFrame('N')
>>> q1, q2 = dynamicsymbols('q1 q2')
>>> q1d, q2d = dynamicsymbols('q1 q2', 1)
>>> q1dd, q2dd = dynamicsymbols('q1 q2', 2)
>>> vlatex(N.x + N.y)
'\mathbf{\hat{n}_x} + \mathbf{\hat{n}_y}'
>>> vlatex(q1 + q2)
'q_{1} + q_{2}'
>>> vlatex(q1d)
'\dot{q}_{1}'
>>> vlatex(q1 * q2d)
'q_{1} \dot{q}_{2}'
>>> vlatex(q1dd * q1 / q1d)
'\frac{q_{1} \ddot{q}_{1}}{\dot{q}_{1}}'

Essential Functions (Docstrings)

sympy.physics.vector.dynamicsymbols(names, level=0, **assumptions)

    Uses symbols and Function for functions of time.

    Creates a SymPy UndefinedFunction, which is then initialized as a function of a variable,
    the default being Symbol('t').

    Parameters
    names : str

        Names of the dynamic symbols you want to create; works the same way as inputs to symbols

    level : int

        Level of differentiation of the returned function; d/dt once of t, twice of t, etc.
assumptions:

- **real**(bool)
  [This is used to set the dynamicsymbol as real,] by default is False.

- **positive**(bool)
  [This is used to set the dynamicsymbol as positive,] by default is False.

- **commutative**(bool)
  [This is used to set the commutative property of] a dynamicsymbol, by default is True.

- **integer**(bool)
  [This is used to set the dynamicsymbol as integer,] by default is False.

Examples

```python
>>> from sympy.physics.vector import dynamicsymbols
>>> from sympy import diff, Symbol

>>> q1 = dynamicsymbols('q1')
>>> q1
q1(t)

>>> q2 = dynamicsymbols('q2', real=True)
>>> q2.is_real
True

>>> q3 = dynamicsymbols('q3', positive=True)
>>> q3.is_positive
True

>>> q4, q5 = dynamicsymbols('q4,q5', commutative=False)

>>> bool(q4*q5 != q5*q4)
True

>>> q6 = dynamicsymbols('q6', integer=True)
>>> q6.is_integer
True

>>> diff(q1, Symbol('t'))
Derivative(q1(t), t)
```

**sympy.physics.vector.functions.dot(vec1, vec2)**

Dot product convenience wrapper for Vector.dot(): Dot product of two vectors.

Returns a scalar, the dot product of the two Vectors

**Parameters**

- **other**: Vector

  The Vector which we are dotting with
Examples

```python
>>> from sympy.physics.vector import ReferenceFrame, dot
>>> from sympy import symbols
>>> q1 = symbols('q1')
>>> N = ReferenceFrame('N')
>>> dot(N.x, N.x)
1
>>> dot(N.x, N.y)
0
>>> A = N.orientnew('A', 'Axis', [q1, N.x])
>>> dot(N.y, A.y)
cos(q1)
```

sympy.physics.vector.functions.cross(vec1, vec2)

Cross product convenience wrapper for Vector.cross(): The cross product operator for two Vectors.

Returns a Vector, expressed in the same ReferenceFrames as self.

**Parameters**

other : Vector

The Vector which we are crossing with

Examples

```python
>>> from sympy import symbols
>>> from sympy.physics.vector import ReferenceFrame, cross
>>> q1 = symbols('q1')
>>> N = ReferenceFrame('N')
>>> cross(N.x, N.y)
N.z
>>> A = ReferenceFrame('A')
>>> A.orient_axis(N, q1, N.x)
>>> cross(A.x, N.y)
N.z
>>> cross(N.y, A.x)
-sin(q1)*A.y - cos(q1)*A.z
```

sympy.physics.vector.functions.outer(vec1, vec2)

Outer product convenience wrapper for Vector.outer(): Outer product between two Vectors.

A rank increasing operation, which returns a Dyadic from two Vectors.

**Parameters**

other : Vector

The Vector to take the outer product with
Examples

```python
>>> from sympy.physics.vector import ReferenceFrame, outer
>>> N = ReferenceFrame('N')
>>> outer(N.x, N.x)
(N.x|N.x)
```

```python
sympy.physics.vector.functions.express(expr, frame, frame2=None, variables=False)
Global function for ‘express’ functionality.
Re-expresses a Vector, scalar(sympyfiable) or Dyadic in given frame.
Refer to the local methods of Vector and Dyadic for details. If ‘variables’ is True, then
the coordinate variables (CoordinateSym instances) of other frames present in the vec-
tor/scalar field or dyadic expression are also substituted in terms of the base scalars of
this frame.

Parameters
expr : Vector/Dyadic/scalar(sympyfiable)
The expression to re-express in ReferenceFrame ‘frame’
frame: ReferenceFrame
The reference frame to express expr in
frame2 : ReferenceFrame
The other frame required for re-expression(only for Dyadic expr)
variables : boolean
Specifies whether to substitute the coordinate variables present in
eq, in terms of those of frame

Examples

```python
>>> from sympy.physics.vector import ReferenceFrame, outer,
... dynamicsymbols
>>> from sympy.physics.vector import init_vprinting
>>> init_vprinting(pretty_print=False)
>>> N = ReferenceFrame('N')
>>> q = dynamicsymbols('q')
>>> B = N.orientnew('B', 'Axis', [q, N.z])
>>> d = outer(N.x, N.x)
>>> from sympy.physics.vector import express
>>> express(d, B, N)
>>> express(B.x, N, order=1)
cos(q)*B.x - sin(q)*B.y
B_x*cos(q) - B_y*sin(q)
```
Parameters

- **expr** : Vector/Dyadic/sympifyable
 The expression whose time derivative is to be calculated
- **frame** : ReferenceFrame
 The reference frame to calculate the time derivative in
- **order** : integer
 The order of the derivative to be calculated

Examples

```python
>>> from sympy.physics.vector import ReferenceFrame, dynamicsymbols
>>> from sympy.physics.vector import init_vprinting
>>> init_vprinting(pretty_print=False)
>>> from sympy import Symbol
>>> q1 = Symbol('q1')
>>> u1 = dynamicsymbols('u1')
>>> N = ReferenceFrame('N')
>>> A = N.orientnew('A', 'Axis', [q1, N.x])
>>> v = u1 * N.x
>>> A.set_ang_vel(N, 10*A.x)
>>> from sympy.physics.vector import time_derivative
>>> time_derivative(v, N)
u1'*N.x
>>> time_derivative(u1*A[0], N)
N_x*u1'
>>> B = N.orientnew('B', 'Axis', [u1, N.z])
>>> from sympy.physics.vector import outer
>>> d = outer(N.x, N.x)
>>> time_derivative(d, B)
- u1'*(N.y|N.x) - u1'*(N.x|N.y)
```

References

https://en.wikipedia.org/wiki/Rotating_reference_frame#Time_derivatives_in_the_two_frames

Docstrings for basic field functions

Field operation functions

These functions implement some basic operations pertaining to fields in general.

```python
sympy.physics.vector.fieldfunctions.curl(vect, frame)
```

Returns the curl of a vector field computed wrt the coordinate symbols of the given frame.

- **vect** : Vector
The vector operand

frame: ReferenceFrame

The reference frame to calculate the curl in

Examples

```python
>>> from sympy.physics.vector import ReferenceFrame
>>> from sympy.physics.vector import curl
>>> R = ReferenceFrame('R')
>>> v1 = R[1]*R[2]*R.x + R[0]*R[2]*R.y + R[0]*R[1]*R.z
>>> curl(v1, R)
0
>>> v2 = R[0]*R[1]*R[2]*R.x
>>> curl(v2, R)
R_x*R_y*R.y - R_x*R_z*R.z
```

sympy.physics.vector.fieldfunctions.divergence(vect, frame)

Returns the divergence of a vector field computed wrt the coordinate symbols of the given frame.

Parameters

- **vect**: Vector
 - The vector operand
- **frame**: ReferenceFrame
 - The reference frame to calculate the divergence in

Examples

```python
>>> from sympy.physics.vector import ReferenceFrame
>>> from sympy.physics.vector import divergence
>>> R = ReferenceFrame('R')
>>> v1 = R[0]*R[1]*R[2] * (R.x+R.y+R.z)
>>> divergence(v1, R)
R.x*R_y + R_x*R_z + R_y*R_z
>>> v2 = 2*R[1]*R[2]*R.y
>>> divergence(v2, R)
2*R_z
```

sympy.physics.vector.fieldfunctions.gradient(scalar, frame)

Returns the vector gradient of a scalar field computed wrt the coordinate symbols of the given frame.

Parameters

- **scalar**: sympifiable
 - The scalar field to take the gradient of
- **frame**: ReferenceFrame
 - The frame to calculate the gradient in
Examples

```python
>>> from sympy.physics.vector import ReferenceFrame
>>> from sympy.physics.vector import gradient
>>> R = ReferenceFrame('R')
>>> s1 = R[0]*R[1]*R[2]
>>> gradient(s1, R)
R_y*R_z*R.x + R_x*R_z*R.y + R_x*R_y*R.z
>>> s2 = 5*R[0]**2*R[2]
>>> gradient(s2, R)
10*R_x*R_z*R.x + 5*R_x**2*R.z
```

`sympy.physics.vector.fieldfunctions.scalar_potential(field, frame)`

Returns the scalar potential function of a field in a given frame (without the added integration constant).

Parameters

- **field**: Vector

The vector field whose scalar potential function is to be calculated

- **frame**: ReferenceFrame

The frame to do the calculation in

Examples

```python
>>> from sympy.physics.vector import ReferenceFrame
>>> from sympy.physics.vector import scalar_potential, gradient
>>> R = ReferenceFrame('R')
>>> scalar_potential(R.z, R) == R[2]
True
>>> scalar_field = 2*R[0]**2*R[1]*R[2]
>>> grad_field = gradient(scalar_field, R)
>>> scalar_potential(grad_field, R)
2*R_x**2*R_y*R_z
```

`sympy.physics.vector.fieldfunctions.scalar_potential_difference(field, frame, point1, point2, origin)`

Returns the scalar potential difference between two points in a certain frame, wrt a given field.

If a scalar field is provided, its values at the two points are considered. If a conservative vector field is provided, the values of its scalar potential function at the two points are used.

Returns (potential at position 2) - (potential at position 1)

Parameters

- **field**: Vector/sympyfiable

The field to calculate wrt

- **frame**: ReferenceFrame

The frame to do the calculations in
point1: Point

The initial Point in given frame

position2: Point

The second Point in the given frame

origin: Point

The Point to use as reference point for position vector calculation

Examples

```python
>>> from sympy.physics.vector import ReferenceFrame, Point
>>> from sympy.physics.vector import scalar_potential_difference
>>> R = ReferenceFrame('R')
>>> O = Point('O')
>>> P = O.locatenew('P', R[0]*R.x + R[1]*R.y + R[2]*R.z)
>>> vectfield = 4*R[0]*R[1]*R.x + 2*R[0]**2*R.y
>>> scalar_potential_difference(vectfield, R, O, P, O)
2*R_x**2*R_y
```

Checking the type of vector field

sympy.physics.vector.fieldfunctions.is_conservative(field)

Checks if a field is conservative.

Parameters

- **field**: Vector

 The field to check for conservative property

Examples

```python
>>> from sympy.physics.vector import ReferenceFrame
>>> from sympy.physics.vector import is_conservative
>>> R = ReferenceFrame('R')
>>> is_conservative(R[1]*R[2]*R.x + R[0]*R[2]*R.y + R[0]*R[1]*R.z)
True
>>> is_conservative(R[2] * R.y)
False
```

sympy.physics.vector.fieldfunctions.is_solenoidal(field)

Checks if a field is solenoidal.

Parameters

- **field**: Vector

 The field to check for solenoidal property
Examples

```python
>>> from sympy.physics.vector import ReferenceFrame
>>> from sympy.physics.vector import is_solenoidal
>>> R = ReferenceFrame('R')
True
>>> is_solenoidal(R[1] * R.y)
False
```

Classical Mechanics

Abstract

In this documentation many components of the physics/mechanics module will be discussed. `sympy.physics.mechanics` (page 1721) has been written to allow for creation of symbolic equations of motion for complicated multibody systems.

Vector

This module derives the vector-related abilities and related functionalities from `sympy.physics.vector` (page 1640). Please have a look at the documentation of `sympy.physics.vector` (page 1640) and its necessary API to understand the vector capabilities of `sympy.physics.mechanics` (page 1721).

Mechanics

In physics, mechanics describes conditions of rest (statics) or motion (dynamics). There are a few common steps to all mechanics problems. First, an idealized representation of a system is described. Next, we use physical laws to generate equations that define the system’s behavior. Then, we solve these equations, sometimes analytically but usually numerically. Finally, we extract information from these equations and solutions. The current scope of the module is multi-body dynamics: the motion of systems of multiple particles and/or rigid bodies. For example, this module could be used to understand the motion of a double pendulum, planets, robotic manipulators, bicycles, and any other system of rigid bodies that may fascinate us.

Often, the objective in multi-body dynamics is to obtain the trajectory of a system of rigid bodies through time. The challenge for this task is to first formulate the equations of motion of the system. Once they are formulated, they must be solved, that is, integrated forward in time. When digital computers came around, solving became the easy part of the problem. Now, we can tackle more complicated problems, which leaves the challenge of formulating the equations.

The term “equations of motion” is used to describe the application of Newton’s second law to multi-body systems. The form of the equations of motion depends on the method used to generate them. This package implements two of these methods: Kane’s method and Lagrange’s method. This module facilitates the formulation of equations of motion, which can then be solved (integrated) using generic ordinary differential equation (ODE) solvers.
The approach to a particular class of dynamics problems, that of forward dynamics, has the following steps:

1. describing the system’s geometry and configuration,
2. specifying the way the system can move, including constraints on its motion
3. describing the external forces and moments on the system,
4. combining the above information according to Newton’s second law ($F = ma$), and
5. organizing the resulting equations so that they can be integrated to obtain the system’s trajectory through time.

Together with the rest of SymPy, this module performs steps 4 and 5, provided that the user can perform 1 through 3 for the module. That is to say, the user must provide a complete representation of the free body diagrams that themselves represent the system, with which this code can provide equations of motion in a form amenable to numerical integration. Step 5 above amounts to arduous algebra for even fairly simple multi-body systems. Thus, it is desirable to use a symbolic math package, such as SymPy, to perform this step. It is for this reason that this module is a part of SymPy. Step 4 amounts to this specific module, `sympy.physics.mechanics`.

Guide to Mechanics

Masses, Inertias, Particles and Rigid Bodies in Physics/Mechanics

This document will describe how to represent masses and inertias in `sympy.physics.mechanics` (page 1721) and use of the RigidBody and Particle classes.

It is assumed that the reader is familiar with the basics of these topics, such as finding the center of mass for a system of particles, how to manipulate an inertia tensor, and the definition of a particle and rigid body. Any advanced dynamics text can provide a reference for these details.

Mass

The only requirement for a mass is that it needs to be a `sympify`-able expression. Keep in mind that masses can be time varying.

Particle

Particles are created with the class `Particle` in `sympy.physics.mechanics` (page 1721). A `Particle` object has an associated point and an associated mass which are the only two attributes of the object.

```python
>>> from sympy.physics.mechanics import Particle, Point
>>> from sympy import Symbol
>>> m = Symbol('m')
>>> po = Point('po')
>>> # create a particle container
>>> pa = Particle('pa', po, m)
```
The associated point contains the position, velocity and acceleration of the particle. *sympy.physics.mechanics* (page 1721) allows one to perform kinematic analysis of points separate from their association with masses.

Inertia

See the Inertia (Dyadics) section in ‘Advanced Topics’ part of *sympy.physics.vector* (page 1640) docs.

Rigid Body

Rigid bodies are created in a similar fashion as particles. The `RigidBody` class generates objects with four attributes: mass, center of mass, a reference frame, and an inertia tuple:

```python
>>> from sympy import Symbol
>>> from sympy.physics.mechanics import ReferenceFrame, Point, RigidBody
>>> m = Symbol('m')
>>> A = ReferenceFrame('A')
>>> P = Point('P')
>>> I = A.outer(A.x, A.x)
>>> # create a rigid body
>>> B = RigidBody('B', P, A, m, (I, P))
```

The mass is specified exactly as is in a particle. Similar to the Particle’s `.point`, the RigidBody’s center of mass, `.masscenter` must be specified. The reference frame is stored in an analogous fashion and holds information about the body’s orientation and angular velocity. Finally, the inertia for a rigid body needs to be specified about a point. In *sympy.physics.mechanics* (page 1721), you are allowed to specify any point for this. The most common is the center of mass, as shown in the above code. If a point is selected which is not the center of mass, ensure that the position between the point and the center of mass has been defined. The inertia is specified as a tuple of length two with the first entry being a Dyadic and the second entry being a Point of which the inertia dyadic is defined about.

Dyadic

In *sympy.physics.mechanics* (page 1721), dyadics are used to represent inertia ([Kane1985], [WikiDyadics], [WikiDyadicProducts]). A dyadic is a linear polynomial of component unit dyadics, similar to a vector being a linear polynomial of component unit vectors. A dyadic is the outer product between two vectors which returns a new quantity representing the juxtaposition of these two vectors. For example:

\[
\mathbf{a}_x \otimes \mathbf{a}_x = \mathbf{a}_x \mathbf{a}_x \\
\mathbf{a}_x \otimes \mathbf{a}_y = \mathbf{a}_x \mathbf{a}_y
\]

Where \(\mathbf{a}_x \mathbf{a}_x\) and \(\mathbf{a}_x \mathbf{a}_y\) are the outer products obtained by multiplying the left side as a column vector by the right side as a row vector. Note that the order is significant.
Some additional properties of a dyadic are:

\[
(xv) \otimes w = v \otimes (xw) = x(v \otimes w)
\]

\[
v \otimes (w + u) = v \otimes w + v \otimes u
\]

\[
(v + w) \otimes u = v \otimes u + w \otimes u
\]

A vector in a reference frame can be represented as \[\begin{bmatrix} a \\ b \\ c \end{bmatrix}\] or \[a \hat{\mathbf{i}} + b \hat{\mathbf{j}} + c \hat{\mathbf{k}}\]. Similarly, a dyadic can be represented in tensor form:

\[
\begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{bmatrix}
\]

or in dyadic form:

\[a_{11} \hat{\mathbf{a}}_x \hat{\mathbf{a}}_x + a_{12} \hat{\mathbf{a}}_x \hat{\mathbf{a}}_y + a_{13} \hat{\mathbf{a}}_x \hat{\mathbf{a}}_z + a_{21} \hat{\mathbf{a}}_y \hat{\mathbf{a}}_x + a_{22} \hat{\mathbf{a}}_y \hat{\mathbf{a}}_y + a_{23} \hat{\mathbf{a}}_y \hat{\mathbf{a}}_z + a_{31} \hat{\mathbf{a}}_z \hat{\mathbf{a}}_x + a_{32} \hat{\mathbf{a}}_z \hat{\mathbf{a}}_y + a_{33} \hat{\mathbf{a}}_z \hat{\mathbf{a}}_z\]

Just as with vectors, the later representation makes it possible to keep track of which frames the dyadic is defined with respect to. Also, the two components of each term in the dyadic need not be in the same frame. The following is valid:

\[\hat{\mathbf{a}}_x \otimes \hat{\mathbf{b}}_y = \hat{\mathbf{a}}_x \hat{\mathbf{b}}_y\]

Dyadics can also be crossed and dotted with vectors; again, order matters:

\[\hat{\mathbf{a}}_x \hat{\mathbf{a}}_x \cdot \hat{\mathbf{a}}_x = \hat{\mathbf{a}}_x\]

\[\hat{\mathbf{a}}_y \hat{\mathbf{a}}_x \cdot \hat{\mathbf{a}}_x = \hat{\mathbf{a}}_y\]

\[\hat{\mathbf{a}}_x \hat{\mathbf{a}}_y \cdot \hat{\mathbf{a}}_x = 0\]

\[\hat{\mathbf{a}}_x \cdot \hat{\mathbf{a}}_x \hat{\mathbf{a}}_x = \hat{\mathbf{a}}_x\]

\[\hat{\mathbf{a}}_x \cdot \hat{\mathbf{a}}_x \hat{\mathbf{a}}_y = \hat{\mathbf{a}}_y\]

\[\hat{\mathbf{a}}_x \cdot \hat{\mathbf{a}}_y \hat{\mathbf{a}}_x = 0\]

\[\hat{\mathbf{a}}_x \times \hat{\mathbf{a}}_y \hat{\mathbf{a}}_x = \hat{\mathbf{a}}_z \hat{\mathbf{a}}_x\]

\[\hat{\mathbf{a}}_x \times \hat{\mathbf{a}}_x \hat{\mathbf{a}}_x = 0\]

\[\hat{\mathbf{a}}_x \hat{\mathbf{a}}_x \times \hat{\mathbf{a}}_x = -\hat{\mathbf{a}}_y \hat{\mathbf{a}}_y\]

One can also take the time derivative of dyadics or express them in different frames, just like with vectors.

Linear Momentum

The linear momentum of a particle \(P\) is defined as:

\[L_P = mv\]

where \(m\) is the mass of the particle \(P\) and \(v\) is the velocity of the particle in the inertial frame.[Likins1973].

Similarly the linear momentum of a rigid body is defined as:

\[L_B = m\nu^*\]

where \(m\) is the mass of the rigid body, \(B\), and \(\nu^*\) is the velocity of the mass center of \(B\) in the inertial frame.
Angular Momentum

The angular momentum of a particle P about an arbitrary point O in an inertial frame N is defined as:

\[N \mathbf{H}^{P/O} = \mathbf{r} \times m \mathbf{v} \]

where \(\mathbf{r} \) is a position vector from point O to the particle of mass \(m \) and \(\mathbf{v} \) is the velocity of the particle in the inertial frame.

Similarly the angular momentum of a rigid body B about a point O in an inertial frame N is defined as:

\[N \mathbf{H}^{B/O} = N \mathbf{H}^{B/B^*} + N \mathbf{H}^{B^*/O} \]

where the angular momentum of the body about it’s mass center is:

\[N \mathbf{H}^{B/B^*} = \mathbf{I}^* \cdot \omega \]

and the angular momentum of the mass center about O is:

\[N \mathbf{H}^{B^*/O} = \mathbf{r}^* \times m \mathbf{v}^* \]

where \(\mathbf{I}^* \) is the central inertia dyadic of rigid body B, \(\omega \) is the inertial angular velocity of B, \(\mathbf{r}^* \) is a position vector from point O to the mass center of B, \(m \) is the mass of B and \(\mathbf{v}^* \) is the velocity of the mass center in the inertial frame.

Using momenta functions in Mechanics

The following example shows how to use the momenta functions in sympy.physics.mechanics (page 1721).

One begins by creating the requisite symbols to describe the system. Then the reference frame is created and the kinematics are done.

```python
>>> from sympy import symbols
>>> from sympy.physics.mechanics import dynamicsymbols, ReferenceFrame
>>> from sympy.physics.mechanics import RigidBody, Particle, Point, outer
>>> from sympy.physics.mechanics import linear_momentum, angular_momentum
>>> from sympy.physics.vector import init_vprinting
>>> init_vprinting(pretty_print=False)
>>> m, M, l1 = symbols('m M l1')
>>> qld = dynamicsymbols('qld')
>>> N = ReferenceFrame('N')
>>> O = Point('O')
>>> O.set_vel(N, 0 * N.x)
>>> Ac = O.locatenew('Ac', l1 * N.x)
>>> P = Ac.locatenew('P', l1 * N.x)
>>> a = ReferenceFrame('a')
>>> a.set_ang_vel(N, qld * N.z)
>>> Ac.v2pt_theory(O, N, a)
ll1*qld*N.y
>>> P.v2pt_theory(O, N, a)
2*ll1*qld*N.y
```
Finally, the bodies that make up the system are created. In this case the system consists of a particle Pa and a RigidBody A.

```python
>>> Pa = Particle('Pa', P, m)
>>> I = outer(N.z, N.z)
>>> A = RigidBody('A', Ac, a, M, (I, Ac))
```

Then one can either choose to evaluate the momenta of individual components of the system or of the entire system itself.

```python
>>> linear_momentum(N, A)
M*l1*q1d*N.y
>>> angular_momentum(O, N, Pa)
4*l1**2*m*q1d*N.z
>>> linear_momentum(N, A, Pa)
(M*l1*q1d + 2*l1*m*q1d)*N.y
>>> angular_momentum(O, N, A, Pa)
(M*l1**2*q1d + 4*l1**2*m*q1d + q1d)*N.z
```

It should be noted that the user can determine either momenta in any frame in `sympy.physics.mechanics` (page 1721) as the user is allowed to specify the reference frame when calling the function. In other words the user is not limited to determining just inertial linear and angular momenta. Please refer to the docstrings on each function to learn more about how each function works precisely.

Kinetic Energy

The kinetic energy of a particle P is defined as

\[T_P = \frac{1}{2}m\mathbf{v}^2 \]

where \(m \) is the mass of the particle P and \(\mathbf{v} \) is the velocity of the particle in the inertial frame.

Similarly the kinetic energy of a rigid body B is defined as

\[T_B = T_t + T_r \]

where the translational kinetic energy is given by:

\[T_t = \frac{1}{2}m\mathbf{v}^* \cdot \mathbf{v}^* \]

and the rotational kinetic energy is given by:

\[T_r = \frac{1}{2}\omega \cdot \mathbf{I}^* \cdot \omega \]

where \(m \) is the mass of the rigid body, \(\mathbf{v}^* \) is the velocity of the mass center in the inertial frame, \(\omega \) is the inertial angular velocity of the body and \(\mathbf{I}^* \) is the central inertia dyadic.
Potential Energy

Potential energy is defined as the energy possessed by a body or system by virtue of its position or arrangement.

Since there are a variety of definitions for potential energy, this is not discussed further here. One can learn more about this in any elementary text book on dynamics.

Lagrangian

The Lagrangian of a body or a system of bodies is defined as:

\[\mathcal{L} = T - V \]

where \(T \) and \(V \) are the kinetic and potential energies respectively.

Using energy functions in Mechanics

The following example shows how to use the energy functions in `sympy.physics.mechanics` (page 1721).

As was discussed above in the momenta functions, one first creates the system by going through an identical procedure.

```python
>>> from sympy import symbols
>>> from sympy.physics.mechanics import dynamicsymbols, ReferenceFrame, outer
>>> from sympy.physics.mechanics import RigidBody, Particle
>>> m, M, l1, g, h, H = symbols('m M l1 g h H')
>>> omega = dynamicsymbols('omega')
>>> N = ReferenceFrame('N')
>>> O = Point('O')
>>> O.set_vel(N, 0 * N.x)
>>> Ac = O.locatenew('Ac', l1 * N.x)
>>> P = Ac.locatenew('P', l1 * N.x)
>>> a = ReferenceFrame('a')
>>> a.set_ang_vel(N, omega * N.z)
>>> Pa = Particle('Pa', P, m)
>>> I = outer(N.z, N.z)
>>> A = RigidBody('A', Ac, a, M, (I, Ac))
```

The user can then determine the kinetic energy of any number of entities of the system:

```python
>>> kinetic_energy(N, Pa)
2*l1**2*m*omega**2
```
It should be noted that the user can determine either kinetic energy relative to any frame in `sympy.physics.mechanics` as the user is allowed to specify the reference frame when calling the function. In other words the user is not limited to determining just inertial kinetic energy.

For potential energies, the user must first specify the potential energy of every entity of the system using the `sympy.physics.mechanics.rigidbody.RigidBody.potential_energy` property. The potential energy of any number of entities comprising the system can then be determined:

```python
>>> Pa.potential_energy = m * g * h
>>> A.potential_energy = M * g * H
>>> potential_energy(A, Pa)
H*M*g + g*h*m
```

One can also determine the Lagrangian for this system:

```python
>>> from sympy.physics.mechanics import Lagrangian
>>> from sympy.physics.vector import init_vprinting
>>> init_vprinting(pretty_print=False)
>>> Lagrangian(N, Pa, A)
-H*M*g + M*l1**2*omega**2/2 - g*h*m + 2*l1**2*m*omega**2 + omega**2/2
```

Please refer to the docstrings to learn more about each function.

Kane’s Method in Physics/Mechanics

`sympy.physics.mechanics` provides functionality for deriving equations of motion using Kane’s method [Kane1985]. This document will describe Kane’s method as used in this module, but not how the equations are actually derived.

Structure of Equations

In `sympy.physics.mechanics` we are assuming there are 5 basic sets of equations needed to describe a system. They are: holonomic constraints, non-holonomic constraints, kinematic differential equations, dynamic equations, and differentiated non-holonomic equations.

\[
\begin{align*}
 f_h(q, t) &= 0 \\
 k_{nh}(q, t)u + f_{nh}(q, t) &= 0 \\
 k_{kq}(q, t)\dot{q} + k_{ku}(q, t)u + f_k(q, t) &= 0 \\
 k_{d}(q, t)\ddot{u} + f_{d}(q, \dot{q}, u, t) &= 0 \\
 k_{dnh}(q, t)\ddot{u} + f_{dnh}(q, \dot{q}, u, t) &= 0
\end{align*}
\]

In `sympy.physics.mechanics` holonomic constraints are only used for the linearization process; it is assumed that they will be too complicated to solve for the dependent coordinate(s). If you are able to easily solve a holonomic constraint, you should consider
redefining your problem in terms of a smaller set of coordinates. Alternatively, the timedifferentiated holonomic constraints can be supplied.

Kane’s method forms two expressions, F_r and F^*_r, whose sum is zero. In this module, these expressions are rearranged into the following form:

$$M(q, t)\dot{u} = f(q, \dot{q}, u, t)$$

For a non-holonomic system with o total speeds and m motion constraints, we will get $o - m$ equations. The mass-matrix/forcing equations are then augmented in the following fashion:

$$M(q, t) = \begin{bmatrix}
kd(q, t) \\
K_{dnh}(q, t)
\end{bmatrix}$$

$$(forcing)(q, \dot{q}, u, t) = \begin{bmatrix}
-f_d(q, \dot{q}, u, t) \\
-f_{dnh}(q, \dot{q}, u, t)
\end{bmatrix}$$

Kane’s Method in Physics/Mechanics

The formulation of the equations of motion in sympy.physics.mechanics (page 1721) starts with creation of a KanesMethod object. Upon initialization of the KanesMethod object, an inertial reference frame needs to be supplied. along with some basic system information, such as coordinates and speeds

```python
>>> from sympy.physics.mechanics import *
>>> N = ReferenceFrame('N')
>>> q1, q2, u1, u2 = dynamicsymbols('q1 q2 u1 u2')
>>> q1d, q2d, u1d, u2d = dynamicsymbols('q1 q2 u1 u2', 1)
>>> KM = KanesMethod(N, [q1, q2], [u1, u2])
```

It is also important to supply the order of coordinates and speeds properly if there are dependent coordinates and speeds. They must be supplied after independent coordinates and speeds or as a keyword argument; this is shown later.

```python
>>> q1, q2, q3, q4 = dynamicsymbols('q1 q2 q3 q4')
>>> u1, u2, u3, u4 = dynamicsymbols('u1 u2 u3 u4')
>>> # Here we will assume q2 is dependent, and u2 and u3 are dependent
>>> # We need the constraint equations to enter them though
>>> KM = KanesMethod(N, [q1, q3, q4], [u1, u4])
```

Additionally, if there are auxiliary speeds, they need to be identified here. See the examples for more information on this. In this example u4 is the auxiliary speed.

```python
>>> KM = KanesMethod(N, [q1, q3, q4], [u1, u2, u3], u_auxiliary=[u4])
```

Kinematic differential equations must also be supplied; there are to be provided as a list of expressions which are each equal to zero. A trivial example follows:

```python
>>> kd = [q1d - u1, q2d - u2]
```

Turning on mechanics_printing() makes the expressions significantly shorter and is recommended. Alternatively, the mprint and mpprint commands can be used.

If there are non-holonomic constraints, dependent speeds need to be specified (and so do dependent coordinates, but they only come into play when linearizing the system). The constraints need to be supplied in a list of expressions which are equal to zero, trivial motion and configuration constraints are shown below:
SymPy Documentation, Release 1.12.1

>>> N = ReferenceFrame('N')
>>> q1, q2, q3, q4 = dynamicsymbols('q1 q2 q3 q4')
>>> q1d, q2d, q3d, q4d = dynamicsymbols('q1 q2 q3 q4', 1)
>>> u1, u2, u3, u4 = dynamicsymbols('u1 u2 u3 u4')
>>> # Here we will assume q2 is dependent, and u2 and u3 are dependent
>>> speed_cons = [u2 - u1, u3 - u1 - u4]
>>> coord_cons = [q2 - q1]
>>> q_ind = [q1, q3, q4]
>>> q_dep = [q2]
>>> u_ind = [u1, u4]
>>> u_dep = [u2, u3]
>>> kd = [q1d - u1, q2d - u2, q3d - u3, q4d - u4]
>>> KM = KanesMethod(N, q_ind, u_ind, kd,
... q_dependent=q_dep,
... configuration_constraints=coord_cons,
... u_dependent=u_dep,
... velocity_constraints=speed_cons)

A dictionary returning the solved \(\dot{q} \)'s can also be solved for:

>>> mechanics_printing(pretty_print=False)
>>> KM.kindiffdict()
{q1': u1, q2': u2, q3': u3, q4': u4}

The final step in forming the equations of motion is supplying a list of bodies and particles, and a list of 2-tuples of the form (Point, Vector) or (ReferenceFrame, Vector) to represent applied forces and torques.

>>> N = ReferenceFrame('N')
>>> q, u = dynamicsymbols('q u')
>>> qd, ud = dynamicsymbols('q u', 1)
>>> P = Point('P')
>>> P.set_vel(N, u * N.x)
>>> Pa = Particle('Pa', P, 5)
>>> BL = [Pa]
>>> FL = [(P, 7 * N.x)]
>>> KM = KanesMethod(N, [q], [u], [qd - u])
>>> (fr, frstar) = KM.kanes_equations(BL, FL)
>>> KM.mass_matrix
Matrix([[5]])
>>> KM.forcing
Matrix([[7]])

When there are motion constraints, the mass matrix is augmented by the \(k_{dnh}(q,t) \) matrix, and the forcing vector by the \(f_{dnh}(q,\dot{q},u,t) \) vector.

There are also the “full” mass matrix and “full” forcing vector terms, these include the kinematic differential equations; the mass matrix is of size \((n + o) \times (n + o)\), or square and the size of all coordinates and speeds.

>>> KM.mass_matrix_full
Matrix([[(1, 0),
 [0, 5]]])

(continues on next page)
Exploration of the provided examples is encouraged in order to gain more understanding of the KanesMethod object.

Lagrange’s Method in Physics/Mechanics

`sympy.physics.mechanics` (page 1721) provides functionality for deriving equations of motion using Lagrange’s method. This document will describe Lagrange’s method as used in this module, but not how the equations are actually derived.

Structure of Equations

In `sympy.physics.mechanics` (page 1721) we are assuming there are 3 basic sets of equations needed to describe a system; the constraint equations, the time differentiated constraint equations and the dynamic equations.

\[
\begin{align*}
 m_c(q,t)\ddot{q} + f_c(q,t) &= 0 \\
 m_{dc}(\dot{q},q,t)\dddot{q} + f_{dc}(\dot{q},q,t) &= 0 \\
 m_d(\dot{q},q,t)\dddot{q} + \nabla_c(q,t)\lambda + f_d(\dot{q},q,t) &= 0
\end{align*}
\]

In this module, the expressions formed by using Lagrange’s equations of the second kind are rearranged into the following form:

\[
M(q,t)x = f(q,\dot{q},t)
\]

where in the case of a system without constraints:

\[
x = \dot{q}
\]

For a constrained system with \(n \) generalized speeds and \(m \) constraints, we will get \(n - m \) equations. The mass-matrix/forcing equations are then augmented in the following fashion:

\[
x = \begin{bmatrix} \dot{q} \\ \lambda \end{bmatrix}
\]

\[
M(q,t) = \begin{bmatrix} m_d(q,t) & \nabla_c(q,t) \end{bmatrix}
\]

\[
F(\dot{q},q,t) = \begin{bmatrix} f_d(\dot{q},q,t) \end{bmatrix}
\]

Lagrange’s Method in Physics/Mechanics

The formulation of the equations of motion in `sympy.physics.mechanics` (page 1721) using Lagrange’s Method starts with the creation of generalized coordinates and a Lagrangian. The Lagrangian can either be created with the Lagrangian function or can be a user supplied function. In this case we will supply the Lagrangian.
To formulate the equations of motion we create a LagrangesMethod object. The Lagrangian and generalized coordinates need to be supplied upon initialization.

```python
>>> from sympy.physics.mechanics import *
>>> q1, q2 = dynamicsymbols('q1 q2')
>>> q1d, q2d = dynamicsymbols('q1 q2', 1)
>>> L = q1d**2 + q2d**2
```

With that the equations of motion can be formed.

```python
>>> mechanics_printing(pretty_print=False)
>>> LM = LagrangesMethod(L, [q1, q2])
```

It is possible to obtain the mass matrix and the forcing vector.

```python
>>> LM.mass_matrix
Matrix([ [2, 0], [0, 2]])
```

If there are any holonomic or non-holonomic constraints, they must be supplied as keyword arguments (hol_coneqs and nonhol_coneqs respectively) in a list of expressions which are equal to zero. Modifying the example above, the equations of motion can then be generated:

```python
>>> LM = LagrangesMethod(L, [q1, q2], hol_coneqs=[q1 - q2])
```

When the equations of motion are generated in this case, the Lagrange multipliers are introduced; they are represented by lam1 in this case. In general, there will be as many multipliers as there are constraint equations.

```
>>> LM.form_lagranges_equations()
Matrix([ [lam1 + 2*q1''], [-lam1 + 2*q2'']])
```

Also in the case of systems with constraints, the ‘full’ mass matrix is augmented by the $k_{qc}(q,t)$ matrix, and the forcing vector by the $f_{qc}(q,q,t)$ vector. The ‘full’ mass matrix is of size $(2n + o) \times (2n + o)$, i.e. it’s a square matrix.

```
>>> LM.mass_matrix_full
Matrix([ [1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 2, 0, -1], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]])
```
If there are any non-conservative forces or moments acting on the system, they must also be supplied as keyword arguments in a list of 2-tuples of the form (Point, Vector) or (ReferenceFrame, Vector) where the Vector represents the non-conservative forces and torques. Along with this 2-tuple, the inertial frame must also be specified as a keyword argument. This is shown below by modifying the example above:

```python
>>> N = ReferenceFrame('N')
>>> P = Point('P')
>>> P.set_vel(N, q1d * N.x)
>>> FL = [(P, 7 * N.x)]
>>> LM = LagrangesMethod(L, [q1, q2], forcelist=FL, frame=N)
>>> LM.form_lagranges_equations()
Matrix([2*q1'' - 7],
[ 2*q2''])
```

Exploration of the provided examples is encouraged in order to gain more understanding of the LagrangesMethod object.

Joints Framework in Physics/Mechanics

`sympy.physics.mechanics` (page 1721) provides a joints framework. This system consists of two parts. The first are the joints (page 1818) themselves, which are used to create connections between bodies (page 1802). The second part is the JointsMethod (page 1849), which is used to form the equations of motion. Both of these parts are doing what we can call “book-keeping”: keeping track of the relationships between bodies (page 1802).
Joints in Physics/Mechanics

The general task of the joints (page 1818) is creating kinematic relationships between bodies (page 1802). A joint is generally described as shown in the image below.

As can be seen in this image, each joint needs several objects in order to define the relationships. First off it needs two bodies: the parent body (shown in green) and the child body (shown in blue). The transformation made by the joint is defined between the joint attachments of both bodies. A joint attachment of a body consists of a point and a body-fixed frame. In the parent body the point is called parent_point and the frame parent_interframe. For the child body these are called child_point and child_interframe. For most joints it is the case that when the generalized coordinates are zero, that there is no rotation or translation between the parent and child joint attachments. So the child_point is at the same location as the parent_point and the child_interframe is in the same orientation as the parent_interframe.

For describing the joint transformation the joint generally needs `dynamicsymbols()` (page 1713) for the generalized coordinates and speeds. Some joints like the PinJoint (page 1820), PrismaticJoint (page 1825) also require a joint_axis, which consists of the same components in the parent_interframe and child_interframe. This means that if for example the joint axis is defined in the parent_interframe as $2\hat{p}_x + 4\hat{p}_y + 3\hat{p}_z$, then this will also be $2\hat{c}_x + 4\hat{c}_y + 3\hat{c}_z$ in the child_interframe. Practically this means that in the case of the PinJoint (page 1820), also shown below, the joint_axis is the axis of rotation, with the generalized coordinate q as the angle of rotation and the generalized speed u as the angular velocity.
With the information listed above, the joint defines the following relationships. It first defines the kinematic differential equations, which relate the generalized coordinates to the generalized speeds. Next, it orients the parent and child body with respect to each other. After which it also defines their velocity relationships.

The code below shows the creation of a PinJoint (page 1820) as shown above with arbitrary linked position vectors. In this code the attachment points are set using vectors, which define the attachment point with respect to the body’s mass center. The intermediate frames are not set, so those are the same as the body’s frame.

```python
>>> from sympy.physics.mechanics import *
>>> mechanics_printing(pretty_print=False)
>>> q, u = dynamicsymbols('q, u')
>>> parent = Body('parent')
>>> child = Body('child')
>>> joint = PinJoint(...
...     'hinge', parent, child, coordinates=q, speeds=u,
...     parent_point=3 * parent.frame.x,
...     child_point=-3 * child.frame.x,
...     joint_axis=parent.frame.z)
>>> joint.kdes
Matrix([[u - q']])
>>> joint.parent_point.pos_from(parent.masscenter)
3*parent.frame.x
>>> joint.parent_interframe
parent_frame
>>> joint.joint_axis.express(child.frame)
```
child_frame.z

```python
>>> child.masscenter.pos_from(parent.masscenter)
3*parent_frame.x + 3*child_frame.x
```

```python
>>> child.masscenter.vel(parent.frame)
3*u*child_frame.y
```

JointsMethod in Physics/Mechanics

After defining the entire system you can use the `JointsMethod` (page 1849) to parse the system and form the equations of motion. In this process the `JointsMethod` (page 1849) only does the “book-keeping” of the joints. It uses another method, like the `KanesMethod` (page 1810), as its backend for forming the equations of motion.

In the code below we form the equations of motion of the single `PinJoint` (page 1820) shown previously.

```python
>>> method = JointsMethod(parent, joint)
>>> method.form_eoms()
Matrix([[-(child_izz + 9*child_mass)*u']])
>>> type(method.method)  # The method working in the backend
<class 'sympy.physics.mechanics.kane.KanesMethod'>
```

Symbolic Systems in Physics/Mechanics

The `SymbolicSystem` class in physics/mechanics is a location for the pertinent information of a multibody dynamic system. In its most basic form it contains the equations of motion for the dynamic system, however, it can also contain information regarding the loads that the system is subject to, the bodies that the system is comprised of and any additional equations the user feels is important for the system. The goal of this class is to provide a unified output format for the equations of motion that numerical analysis code can be designed around.

SymbolicSystem Example Usage

This code will go over the manual input of the equations of motion for the simple pendulum that uses the Cartesian location of the mass as the generalized coordinates into `SymbolicSystem`.

The equations of motion are formed in the physics/mechanics/examples. In that spot the variables q1 and q2 are used in place of x and y and the reference frame is rotated 90 degrees.

```python
>>> from sympy import atan, symbols, Matrix
>>> from sympy.physics.mechanics import (dynamicsymbols, ReferenceFrame,
...                                        Particle, Point)
>>> import sympy.physics.mechanics.system as system
>>> from sympy.physics.vector import init_vprinting
>>> init_vprinting(pretty_print=False)
```

The first step will be to initialize all of the dynamic and constant symbols.
Next step is to define the equations of motion in multiple forms:

1. **Explicit form where the kinematics and dynamics are combined**
 \[x' = F_1(x, t, r, p) \]

2. **Implicit form where the kinematics and dynamics are combined**
 \[M_2(x, p)x' = F_2(x, t, r, p) \]

3. **Implicit form where the kinematics and dynamics are separate**
 \[M_3(q, p)u' = F_3(q, u, t, r, p)q' = G(q, u, t, r, p) \]

where

- \(x \): states, e.g. \([q, u]\)
- \(t \): time
- \(r \): specified (exogenous) inputs
- \(p \): constants
- \(q \): generalized coordinates
- \(u \): generalized speeds
- \(F_1 \): right hand side of the combined equations in explicit form
- \(F_2 \): right hand side of the combined equations in implicit form
- \(F_3 \): right hand side of the dynamical equations in implicit form
- \(M_2 \): mass matrix of the combined equations in implicit form
- \(M_3 \): mass matrix of the dynamical equations in implicit form
- \(G \): right hand side of the kinematical differential equations

Now the reference frames, points and particles will be set up so this information can be passed into `system.SymbolicSystem` in the form of a bodies and loads iterable.
The equations of motion are in the form of a differential algebraic equation (DAE) and DAE solvers need to know which of the equations are the algebraic expressions. This information is passed into SymbolicSystem as a list specifying which rows are the algebraic equations. In this example it is a different row based on the chosen equations of motion format. The row index should always correspond to the mass matrix that is being input to the SymbolicSystem class but will always correspond to the row index of the combined dynamics and kinematics when being accessed from the SymbolicSystem class.

```
>>> alg_con = [2]
>>> alg_con_full = [4]
```

An iterable containing the states now needs to be created for the system. The SymbolicSystem class can determine which of the states are considered coordinates or speeds by passing in the indexes of the coordinates and speeds. If these indexes are not passed in the object will not be able to differentiate between coordinates and speeds.

```
>>> states = (x, y, u, v, lam)
>>> coord_idxs = (0, 1)
>>> speed_idxs = (2, 3)
```

Now the equations of motion instances can be created using the above mentioned equations of motion formats.

```
>>> symsystem1 = system.SymbolicSystem(states, comb_explicit_rhs, ...
... alg_con=alg_con_full, bodies=bodies, ...
... loads=loads)
>>> symsystem2 = system.SymbolicSystem(states, comb_implicit_rhs, ...
... mass_matrix=comb_implicit_mat, ...
... alg_con=alg_con_full, ...
... coord_idxs=coord_idxs)
>>> symsystem3 = system.SymbolicSystem(states, dyn_implicit_rhs, ...
... mass_matrix=dyn_implicit_mat, ...
... coordinate_derivatives=kin_explicit_, ...
... rhs, ...
... alg_con=alg_con, ...
... coord_idxs=coord_idxs, ...
... speed_idxs=speed_idxs)
```

Like coordinates and speeds, the bodies and loads attributes can only be accessed if they are specified during initialization of the SymbolicSystem class. Lastly here are some attributes accessible from the SymbolicSystem class.

```
>>> symsystem1.states
Matrix([[x],
        [y],
        [u],
        [v],
        [lambda]])
>>> symsystem2.coordinates
Matrix([[x],
        [y]])
>>> symsystem3.speeds
```

(continues on next page)
Matrix([u],
[v]))

>>> sysystem1.comb_explicit_rhs
Matrix([u],
[v],
[(-g*y + u**2 + v**2)*x/l**2],
[(-g*y + u**2 + v**2)*y/l**2],
[m*(-g*y + u**2 + v**2)/l**2])

>>> sysystem2.comb_implicit_rhs
Matrix([u],
v],
[0],
[0],
[-g*y + u**2 + v**2]])

>>> sysystem2.comb_implicit_mat
Matrix([1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 1, 0, -x/m],
[0, 0, 0, 1, -y/m],
[0, 0, 0, 0, l**2/m])

>>> sysystem3.dyn_implicit_rhs
Matrix([0],
[0],
[-g*y + u**2 + v**2]])

>>> sysystem3.dyn_implicit_mat
Matrix([1, 0, -x/m],
[0, 1, -y/m],
[0, 0, l**2/m])

>>> sysystem3.kin_explicit_rhs
Matrix([u],
[v]])

>>> sysystem1.alg_con
[4]

>>> sysystem1.bodies
(Pa,)

>>> sysystem1.loads
((P, g*m*N.x),)
Linearization in Physics/Mechanics

`sympy.physics.mechanics` (page 1721) includes methods for linearizing the generated equations of motion (EOM) about an operating point (also known as the trim condition). Note that this operating point doesn’t have to be an equilibrium position, it just needs to satisfy the equations of motion.

Linearization is accomplished by taking the first order Taylor expansion of the EOM about the operating point. When there are no dependent coordinates or speeds this is simply the jacobian of the right hand side about q and u. However, in the presence of constraints more care needs to be taken. The linearization methods provided here handle these constraints correctly.

Background

In `sympy.physics.mechanics` (page 1721) we assume all systems can be represented in the following general form:

\[
\begin{align*}
 f_c(q, t) &= 0_{l \times 1} \\
 f_v(q, u, t) &= 0_{m \times 1} \\
 f_a(q, \dot{q}, u, \dot{u}, t) &= 0_{m \times 1} \\
 f_0(q, \dot{q}, t) + f_1(q, u, t) &= 0_{n \times 1} \\
 f_2(q, u, \dot{u}, t) + f_3(q, \dot{q}, u, r, t) + f_4(q, \lambda, t) &= 0_{(o-m+k) \times 1}
\end{align*}
\]

where

\[
\begin{align*}
 q, \dot{q} &\in \mathbb{R}^n \\
 u, \dot{u} &\in \mathbb{R}^o \\
 r &\in \mathbb{R}^s \\
 \lambda &\in \mathbb{R}^k
\end{align*}
\]

In this form,

- f_c represents the configuration constraint equations
- f_v represents the velocity constraint equations
- f_a represents the acceleration constraint equations
- f_0 and f_1 form the kinematic differential equations
- f_2, f_3, and f_4 form the dynamic differential equations
- q and \dot{q} are the generalized coordinates and their derivatives
- u and \dot{u} are the generalized speeds and their derivatives
- r is the system inputs
- λ is the Lagrange multipliers

This generalized form is held inside the Linearizer class, which performs the actual linearization. Both KanesMethod and LagrangesMethod objects have methods for forming the linearizer using the to_linearizer class method.
A Note on Dependent Coordinates and Speeds

If the system being linearized contains constraint equations, this results in not all generalized coordinates being independent (i.e. q_1 may depend on q_2). With l configuration constraints, and m velocity constraints, there are l dependent coordinates and m dependent speeds.

In general, you may pick any of the coordinates and speeds to be dependent, but in practice some choices may result in undesirable singularities. Methods for deciding which coordinates/speeds to make dependent is behind the scope of this guide. For more information, please see [Blajer1994].

Once the system is coerced into the generalized form, the linearized EOM can be solved for. The methods provided in `sympy.physics.mechanics` (page 1721) allow for two different forms of the linearized EOM:

M, A, and B

In this form, the forcing matrix is linearized into two separate matrices A and B. This is the default form of the linearized EOM. The resulting equations are:

$$
M \begin{bmatrix}
\delta \dot{q} \\
\delta \dot{u} \\
\delta \lambda
\end{bmatrix} = A \begin{bmatrix}
\delta q_i \\
\delta u_i
\end{bmatrix} + B \begin{bmatrix}
\delta r
\end{bmatrix}
$$

where

$$
M \in \mathbb{R}^{(n+o+k) \times (n+o+k)}
$$

$$
A \in \mathbb{R}^{(n+o+k) \times (n-l+o-m)}
$$

$$
B \in \mathbb{R}^{(n+o+k) \times s}
$$

Note that q_i and u_i are just the independent coordinates and speeds, while q and u contains both the independent and dependent coordinates and speeds.

A and B

In this form, the linearized EOM are brought into explicit first order form, in terms of just the independent coordinates and speeds. This form is often used in stability analysis or control theory. The resulting equations are:

$$
\begin{bmatrix}
\delta q_i \\
\delta u_i
\end{bmatrix} = A \begin{bmatrix}
\delta q_i \\
\delta u_i
\end{bmatrix} + B \begin{bmatrix}
\delta r
\end{bmatrix}
$$

where

$$
A \in \mathbb{R}^{(n-l+o-m) \times (n-l+o-m)}
$$

$$
B \in \mathbb{R}^{(n-l+o-m) \times s}
$$

To use this form set `A_and_B=True` in the `linearize` class method.
Linearizing Kane’s Equations

After initializing the KanesMethod object and forming F_r and F^*_r using the kanes_equations class method, linearization can be accomplished in a couple ways. The different methods will be demonstrated with a simple pendulum system:

```python
from sympy import symbols, Matrix
from sympy.physics.mechanics import *

q1 = dynamicsymbols('q1')  # Angle of pendulum
u1 = dynamicsymbols('u1')  # Angular velocity
q1d = dynamicsymbols('q1', 1)
L, m, t, g = symbols('L, m, t, g')

# Compose world frame
N = ReferenceFrame('N')
pN = Point('N*')
pN.set_vel(N, 0)

# A.x is along the pendulum
A = N.orientnew('A', 'axis', [q1, N.z])
A.set_ang_vel(N, u1*N.z)

# Locate point P relative to the origin N*
P = pN.locatenew('P', L*A.x)
vel_P = P.v2pt_theory(pN, N, A)
pP = Particle('pP', P, m)

# Create Kinematic Differential Equations
kde = Matrix([q1d - u1])

# Input the force resultant at P
R = m*g*N.x

# Solve for eom with kanes method
KM = KanesMethod(N, q_ind=[q1], u_ind=[u1], kd_eqs=kde)
fr, frstar = KM.kanes_equations([pP], [(P, R)])
```

1. Using the Linearizer class directly:

A linearizer object can be created using the to_linearizer class method. This coerces the representation found in the KanesMethod object into the generalized form described above. As the independent and dependent coordinates and speeds are specified upon creation of the KanesMethod object, there is no need to specify them here.

```python
linearizer = KM.to_linearizer()
```

The linearized EOM can then be formed with the linearize method of the Linearizer object:

```python
M, A, B = linearizer.linearize()
```
Alternatively, the A and B form can be generated instead by specifying `A_and_B=True`:

```python
>>> A, B = linearizer.linearize(A_and_B=True)
>>> A
Matrix([[-g*cos(q1(t))/L, 0]])
>>> B
Matrix(0, 0, [])
```

An operating point can also be specified as a dictionary or an iterable of dictionaries. This will evaluate the linearized form at the specified point before returning the matrices:

```python
>>> op_point = {q1: 0, u1: 0}
>>> A_op, B_op = linearizer.linearize(A_and_B=True, op_point=op_point)
>>> A_op
Matrix([[-g/L, 0]])
```

Note that the same effect can be had by applying `msubs` to the matrices generated without the `op_point` kwarg:

```python
>>> assert msubs(A, op_point) == A_op
```

Sometimes the returned matrices may not be in the most simplified form. Simplification can be performed after the fact, or the `Linearizer` object can be made to perform simplification internally by setting the `simplify` kwarg to `True`.

2. Using the `linearize` class method:

The `linearize` method of the `KanesMethod` class is provided as a nice wrapper that calls `to_linearizer` internally, performs the linearization, and returns the result. Note that all the kwargs available in the `linearize` method described above are also available here:

```python
>>> A, B, inp_vec = KM.linearize(A_and_B=True, op_point=op_point, new_...method=True)
>>> A
Matrix([[0, 1], [-g/L, 0]])
```

The additional output `inp_vec` is a vector containing all found dynamicsymbols not included in the generalized coordinate or speed vectors. These are assumed to be inputs to the system,
forming the r vector described in the background above. In this example there are no inputs, so the vector is empty:

```python
>>> inp_vec
Matrix(0, 0, [])
```

What’s with the `new_method` kwarg?

Previous releases of SymPy contained a linearization method for `KanesMethod` objects. This method is deprecated, and will be removed from future releases. Until then, you must set `new_method=True` in all calls to `KanesMethod.linearize`. After the old method is removed, this kwarg will no longer be needed.

Linearizing Lagrange’s Equations

Linearization of Lagrange’s equations proceeds much the same as that of Kane’s equations. As before, the process will be demonstrated with a simple pendulum system:

```python
>>> # Redefine A and P in terms of q1d, not u1
>>> A = N.orientnew('A', 'axis', [q1, N.z])
>>> A.set_ang_vel(N, q1d*N.z)
>>> P = pN.locatenew('P', L*A.x)
>>> vel_P = P.v2pt_theory(pN, N, A)
>>> pP = Particle('pP', P, m)

>>> # Solve for eom with Lagrange's method
>>> Lag = Lagrangian(N, pP)
>>> LM = LagrangesMethod(Lag, [q1], forcelist=[(P, R)], frame=N)
>>> lag_eqs = LM.form_lagranges_equations()
```

1. **Using the Linearizer class directly:**

A `Linearizer` object can be formed from a `LagrangesMethod` object using the `to_linearizer` class method. The only difference between this process and that of the `KanesMethod` class is that the `LagrangesMethod` object doesn’t already have its independent and dependent coordinates and speeds specified internally. These must be specified in the call to `to_linearizer`. In this example there are no dependent coordinates and speeds, but if there were they would be included in the `q_dep` and `qd_dep` kwargs:

```python
>>> linearizer = LM.to_linearizer(q_ind=[q1], qd_ind=[q1d])
```

Once in this form, everything is the same as it was before with the `KanesMethod` example:

```python
>>> A, B = linearizer.linearize(A_and_B=True, op_point=op_point)
>>> A
Matrix([[ 0, 1],
        [-g/L, 0]])
```
2. Using the `linearize` class method:

Similar to KanesMethod, the LagrangesMethod class also provides a `linearize` method as a nice wrapper that calls to `linearizer` internally, performs the linearization, and returns the result. As before, the only difference is that the independent and dependent coordinates and speeds must be specified in the call as well:

```python
>>> A, B, inp_vec = LM.linearize(q_ind=[q1], qd_ind=[q1d], A_and_B=True, op_point=op_point)
```

Potential Issues

While the `Linearizer` class should be able to linearize all systems, there are some potential issues that could occur. These are discussed below, along with some troubleshooting tips for solving them.

1. **Symbolic linearization with A_and_B=True is slow**

This could be due to a number of things, but the most likely one is that solving a large linear system symbolically is an expensive operation. Specifying an operating point will reduce the expression size and speed this up. If a purely symbolic solution is desired though (for application of many operating points at a later period, for example) a way to get around this is to evaluate with A_and_B=False, and then solve manually after applying the operating point:

```python
>>> M, A, B = linearizer.linearize()
>>> M_op = msubs(M, op_point)
>>> A_op = msubs(A, op_point)
>>> perm_mat = linearizer.perm_mat
>>> A_lin = perm_mat.T * M_op.LUsolve(A_op)
```

The fewer symbols in A and M before solving, the faster this solution will be. Thus, for large expressions, it may be to your benefit to delay conversion to the A and B form until most symbols are subbed in for their numeric values.
2. The linearized form has \texttt{nan}, \texttt{zoo}, or \texttt{oo} as matrix elements

There are two potential causes for this. The first (and the one you should check first) is that some choices of dependent coordinates will result in singularities at certain operating points. Coordinate partitioning in a systemic manner to avoid this is beyond the scope of this guide; see [Blajer1994] for more information.

The other potential cause for this is that the matrices may not have been in the most reduced form before the operating point was substituted in. A simple example of this behavior is:

```python
>>> from sympy import sin, tan
>>> expr = sin(q1)/tan(q1)
>>> op_point = {q1: 0}
>>> expr.subs(op_point)
nan
```

Note that if this expression was simplified before substitution, the correct value results:

```python
>>> expr.simplify().subs(op_point)
1
```

A good way of avoiding this hasn’t been found yet. For expressions of reasonable size, using \texttt{msubs} with \texttt{smart=True} will apply an algorithm that tries to avoid these conditions. For large expressions though this is extremely time consuming.

```python
>>> msubs(expr, op_point, smart=True)
1
```

Further Examples

The pendulum example used above was simple, but didn’t include any dependent coordinates or speeds. For a more thorough example, the same pendulum was linearized with dependent coordinates using both Kane’s and Lagrange’s methods:

Nonminimal Coordinates Pendulum

In this example we demonstrate the use of the functionality provided in \texttt{sympy.physics.mechanics} (page 1721) for deriving the equations of motion (EOM) for a pendulum with a nonminimal set of coordinates. As the pendulum is a one degree of freedom system, it can be described using one coordinate and one speed (the pendulum angle, and the angular velocity respectively). Choosing instead to describe the system using the \texttt{x} and \texttt{y} coordinates of the mass results in a need for constraints. The system is shown below:
The system will be modeled using both Kane’s and Lagrange’s methods, and the resulting EOM linearized. While this is a simple problem, it should illustrate the use of the linearization methods in the presence of constraints.

Kane’s Method

First we need to create the `dynamicsymbols` needed to describe the system as shown in the above diagram. In this case, the generalized coordinates \(q_1 \) and \(q_2 \) represent the mass \(x \) and \(y \) coordinates in the inertial \(N \) frame. Likewise, the generalized speeds \(u_1 \) and \(u_2 \) represent the velocities in these directions. We also create some symbols to represent the length and mass of the pendulum, as well as gravity and time.

```python
>>> from sympy.physics.mechanics import *
>>> from sympy import symbols, atan, Matrix, solve
>>> # Create generalized coordinates and speeds for this non-minimal realization
>>> # q1, q2 = N.x and N.y coordinates of pendulum
>>> # u1, u2 = N.x and N.y velocities of pendulum
>>> q1, q2 = dynamicsymbols('q1:3')
>>> q1d, q2d = dynamicsymbols('q1:3', level=1)
>>> u1, u2 = dynamicsymbols('u1:3')
>>> u1d, u2d = dynamicsymbols('u1:3', level=1)
>>> L, m, g, t = symbols('L, m, g, t')
```
Next, we create a world coordinate frame \(N \), and its origin point \(N^* \). The velocity of the origin is set to 0. A second coordinate frame \(A \) is oriented such that its x-axis is along the pendulum (as shown in the diagram above).

```python
>>> # Compose world frame
>>> N = ReferenceFrame('N')
>>> pN = Point('N*')
>>> pN.set_vel(N, 0)

>>> # A.x is along the pendulum
>>> theta1 = atan(q2/q1)
>>> A = N.orientnew('A', 'axis', [theta1, N.z])
```

Locating the pendulum mass is then as easy as specifying its location with in terms of its x and y coordinates in the world frame. A \texttt{Particle} object is then created to represent the mass at this location.

```python
>>> # Locate the pendulum mass
>>> P = pN.locatenew('P1', q1*N.x + q2*N.y)
>>> pP = Particle('pP', P, m)
```

The kinematic differential equations (KDEs) relate the derivatives of the generalized coordinates to the generalized speeds. In this case the speeds are the derivatives, so these are simple. A dictionary is also created to map \(\dot{q} \) to \(u \):

```python
>>> # Calculate the kinematic differential equations
>>> kde = Matrix([q1d - u1,
...                q2d - u2])
>>> dq_dict = solve(kde, [q1d, q2d])
```

The velocity of the mass is then the time derivative of the position from the origin \(N^* \):

```python
>>> # Set velocity of point P
>>> P.set_vel(N, P.pos_from(pN).dt(N).subs(dq_dict))
```

As this system has more coordinates than degrees of freedom, constraints are needed. The configuration constraints relate the coordinates to each other. In this case the constraint is that the distance from the origin to the mass is always the length \(L \) (the pendulum doesn’t get longer). Likewise, the velocity constraint is that the mass velocity in the \(A.x \) direction is always 0 (no radial velocity).

```python
>>> f_c = Matrix([P.pos_from(pN).magnitude() - L])
>>> f_v = Matrix([P.vel(N).express(A).dot(A.x)])
>>> f_v.simplify()
```

The force on the system is just gravity, at point \(P \).

```python
>>> # Input the force resultant at P
>>> R = m*g*N.x
```

With the problem setup, the equations of motion can be generated using the \texttt{KanesMethod} class. As there are constraints, dependent and independent coordinates need to be provided to the class. In this case we’ll use \(q_2 \) and \(u_2 \) as the independent coordinates and speeds:
Derive the equations of motion using the KanesMethod class.

```python
KM = KanesMethod(N, q_ind=[q2], u_ind=[u2], q_dependent=[q1],
...  u_dependent=[u1], configuration_constraints=f_c,
...  velocity_constraints=f_v, kd_eqs=kde)
```

```python
(fr, frstar) = KM.kanes_equations([pP], [(P, R)])
```

For linearization, operating points can be specified on the call, or be substituted in afterwards. In this case we’ll provide them in the call, supplied in a list. The `A_and_B=True` kwarg indicates to solve invert the M matrix and solve for just the explicit linearized A and B matrices. The `simplify=True` kwarg indicates to simplify inside the linearize call, and return the presimplified matrices. The cost of doing this is small for simple systems, but for larger systems this can be a costly operation, and should be avoided.

```python
q_op = {q1: L, q2: 0}
u_op = {u1: 0, u2: 0}
ud_op = {u1d: 0, u2d: 0}
```

```python
A, B, inp_vec = KM.linearize(op_point=[q_op, u_op, ud_op], A_and_B=True,
...  new_method=True, simplify=True)
```

```python
A
Matrix([0, 1], [-g/L, 0])
```

```python
B
Matrix(0, 0, [])
```

The resulting A matrix has dimensions 2 x 2, while the number of total states is $\text{len}(q) + \text{len}(u) = 2 + 2 = 4$. This is because for constrained systems the resulting A and B form has a partitioned state vector only containing the independent coordinates and speeds. Written out mathematically, the system linearized about this point would be written as:

\[
\begin{bmatrix}
q_2 \\
u_2
\end{bmatrix} =
\begin{bmatrix}
0 & 1 \\
-\frac{g}{L} & 0
\end{bmatrix}
\begin{bmatrix}
q_2 \\
u_2
\end{bmatrix}
\]

Lagrange’s Method

The derivation using Lagrange’s method is very similar to the approach using Kane’s method described above. As before, we first create the dynamicsymbols needed to describe the system. In this case, the generalized coordinates q_1 and q_2 represent the mass x and y coordinates in the inertial N frame. This results in the time derivatives \dot{q}_1 and \dot{q}_2 representing the velocities in these directions. We also create some symbols to represent the length and mass of the pendulum, as well as gravity and time.

```python
from sympy.physics.mechanics import *
from sympy import symbols, atan, Matrix
```

```python
q1, q2 = dynamicsymbols('q1:3')
q1d, q2d = dynamicsymbols('q1:3', level=1)
```

Next, we create a world coordinate frame N, and its origin point N^*. The velocity of the origin is set to 0. A second coordinate frame A is oriented such that its x-axis is along the pendulum (as shown in the diagram above).

5.8. Topics

1749
Locating the pendulum mass is then as easy as specifying its location with in terms of its x and y coordinates in the world frame. A `Particle` object is then created to represent the mass at this location.

As this system has more coordinates than degrees of freedom, constraints are needed. In this case only a single holonomic constraints is needed: the distance from the origin to the mass is always the length L (the pendulum doesn’t get longer).

The force on the system is just gravity, at point P.

With the problem setup, the Lagrangian can be calculated, and the equations of motion formed. Note that the call to `LagrangesMethod` includes the Lagrangian, the generalized coordinates, the constraints (specified by `hol_coneqs` or `nonhol_coneqs`), the list of (body, force) pairs, and the inertial frame. In contrast to the `KanesMethod` initializer, independent and dependent coordinates are not partitioned inside the `LagrangesMethod` object. Such a partition is supplied later.

Next, we compose the operating point dictionary, set in the hanging at rest position:

As there are constraints in the formulation, there will be corresponding Lagrange Multipliers. These may appear inside the linearized form as well, and thus should also be included inside the operating point dictionary. Fortunately, the `LagrangesMethod` class provides an easy way of solving for the multipliers at a given operating point using the `solve_multipliers` method.
With this solution, linearization can be completed. Note that in contrast to the `KanesMethod` approach, the `LagrangesMethod.linearize` method also requires the partitioning of the generalized coordinates and their time derivatives into independent and dependent vectors. This is the same as what was passed into the `KanesMethod` constructor above:

```python
>>> op_point.update(lam_op)
>>> # Perform the Linearization
>>> A, B, inp_vec = LM.linearize([q2], [q2d], [q1], [q1d],
...                            op_point=op_point, A_and_B=True)
>>> A
Matrix([[0, 1],
        [-g/L, 0]])
>>> B
Matrix(0, 0, [])
```

The resulting A matrix has dimensions 2 x 2, while the number of total states is $2 \times \text{len}(q) = 4$. This is because for constrained systems the resulting A and B form has a partitioned state vector only containing the independent coordinates and their derivatives. Written out mathematically, the system linearized about this point would be written as:

$$
\begin{bmatrix}
\dot{q}_2 \\
\ddot{q}_2
\end{bmatrix} =
\begin{bmatrix}
0 & 1 \\
\frac{-g}{L} & 0
\end{bmatrix}
\begin{bmatrix}
q_2 \\
\dot{q}_2
\end{bmatrix}
$$

Examples for Physics/Mechanics

Here are some examples that illustrate how one typically uses this module. We have ordered the examples roughly according to increasing difficulty. If you have used this module to do something others might find useful or interesting, consider adding it here!

A rolling disc

The disc is assumed to be infinitely thin, in contact with the ground at only 1 point, and it is rolling without slip on the ground. See the image below.
We model the rolling disc in three different ways, to show more of the functionality of this module.

A rolling disc, with Kane’s method

Here the definition of the rolling disc’s kinematics is formed from the contact point up, removing the need to introduce generalized speeds. Only 3 configuration and three speed variables are need to describe this system, along with the disc’s mass and radius, and the local gravity (note that mass will drop out).

```python
from sympy import symbols, sin, cos, tan
from sympy.physics.mechanics import *
q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3')
q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1)
r, m, g = symbols('r m g')
mechanics_printing(pretty_print=False)
```

The kinematics are formed by a series of simple rotations. Each simple rotation creates a new frame, and the next rotation is defined by the new frame’s basis vectors. This example uses a 3-1-2 series of rotations, or Z, X, Y series of rotations. Angular velocity for this is defined using the second frame’s basis (the lean frame); it is for this reason that we defined intermediate frames, rather than using a body-three orientation.

```python
N = ReferenceFrame('N')
Y = N.orientnew('Y', 'Axis', [q1, N.z])
L = Y.orientnew('L', 'Axis', [q2, Y.x])
R = L.orientnew('R', 'Axis', [q3, L.y])
w_R_N_qd = R.ang_vel_in(N)
R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)
```
This is the translational kinematics. We create a point with no velocity in N; this is the contact point between the disc and ground. Next we form the position vector from the contact point to the disc’s center of mass. Finally we form the velocity and acceleration of the disc.

```python
>>> C = Point('C')
>>> C.set_vel(N, 0)
>>> Dmc = C.locatenew('Dmc', r * L.z)
>>> Dmc.v2pt_theory(C, N, R)
r*u2*L.x - r*u1*L.y
```

This is a simple way to form the inertia dyadic. The inertia of the disc does not change within the lean frame as the disc rolls; this will make for simpler equations in the end.

```python
>>> I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)
>>> mprint(I)
m*r**2/4*(L.x|L.x) + m*r**2/2*(L.y|L.y) + m*r**2/4*(L.z|L.z)
```

Kinematic differential equations; how the generalized coordinate time derivatives relate to generalized speeds.

```python
>>> kd = [dot(R.ang_vel_in(N) - w_R.N_qd, uv) for uv in L]
```

Creation of the force list; it is the gravitational force at the center of mass of the disc. Then we create the disc by assigning a Point to the center of mass attribute, a ReferenceFrame to the frame attribute, and mass and inertia. Then we form the body list.

```python
>>> ForceList = [(Dmc, - m * g * Y.z)]
>>> BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc))
>>> BodyList = [BodyD]
```

Finally we form the equations of motion, using the same steps we did before. Specify inertial frame, supply generalized coordinates and speeds, supply kinematic differential equation dictionary, compute Fr from the force list and Fr* from the body list, compute the mass matrix and forcing terms, then solve for the u dots (time derivatives of the generalized speeds).

```python
>>> KM = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3], kd_eqs=kd)
>>> (fr, frstar) = KM.kanes_equations(BodyList, ForceList)
>>> MM = KM.mass_matrix
>>> forcing = KM.forcing
>>> rhs = MM.inv() * forcing
>>> kdd = KM.kindiffdict()
>>> rhs = rhs.subs(kdd)
>>> rhs.simplify()
>>> mprint(rhs)
Matrix([[(4*g*sin(q2) + 6*r*u2*u3 - r*u3**2*tan(q2))/(5*r)],
       [-2*u1*u3/3],
       [-2*u2 + u3*tan(q2)*u1]])
```
A rolling disc, with Kane’s method and constraint forces

We will now revisit the rolling disc example, except this time we are bringing the non-contributing (constraint) forces into evidence. See [Kane1985] for a more thorough explanation of this. Here, we will turn on the automatic simplification done when doing vector operations. It makes the outputs nicer for small problems, but can cause larger vector operations to hang.

```python
>>> from sympy import symbols, sin, cos, tan
>>> from sympy.physics.mechanics import *
>>> mechanics_printing(pretty_print=False)
>>> q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3')
>>> q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1)
>>> r, m, g = symbols('r m g')
```

These two lines introduce the extra quantities needed to find the constraint forces.

```python
>>> u4, u5, u6, f1, f2, f3 = dynamicsymbols('u4 u5 u6 f1 f2 f3')
```

Most of the main code is the same as before.

```python
>>> N = ReferenceFrame('N')
>>> Y = N.orientnew('Y', 'Axis', [q1, N.z])
>>> L = Y.orientnew('L', 'Axis', [q2, Y.x])
>>> R = L.orientnew('R', 'Axis', [q3, L.y])
>>> w_R_N_qd = R.ang_vel_in(N)
>>> R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)
```

The definition of rolling without slip necessitates that the velocity of the contact point is zero; as part of bringing the constraint forces into evidence, we have to introduce speeds at this point, which will by definition always be zero. They are normal to the ground, along the path which the disc is rolling, and along the ground in a perpendicular direction.

```python
>>> C = Point('C')
>>> C.set_vel(N, u4 * L.x + u5 * cross(Y.z, L.x) + u6 * Y.z)
>>> Dmc = C.locatenew('Dmc', r * L.z)
>>> vel = Dmc.v2pt_theory(C, N, R)
>>> I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)
>>> kd = [dot(R.ang_vel_in(N) - w_R_N_qd, uv) for uv in L]
```

Just as we previously introduced three speeds as part of this process, we also introduce three forces; they are in the same direction as the speeds, and represent the constraint forces in those directions.

```python
>>> ForceList = [(Dmc, - m * g * Y.z), (C, f1 * L.x + f2 * cross(Y.z, L.x) + u1 * f3 * Y.z)]
>>> BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc))
>>> BodyList = [BodyD]
>>> KM = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3], kd_eqs=kd, ...
       u_auxiliary=[u4, u5, u6])
>>> (fr, frstar) = KM.kanes_equations(BodyList, ForceList)
>>> MM = KM.mass_matrix
>>> forcing = KM.forcing
```
\[\text{rhs} = \text{MM}.\text{inv()} \times \text{forcing}\]
\[\text{kdd} = \text{KM}.\text{kindiffdict()}
\[\text{rhs} = \text{rhs}.\text{subs(kdd)}
\[\text{rhs}.\text{simplify()}
\[\text{mprint(rhs)}
\begin{bmatrix}
(4g \sin(q2) + 6r u2 u3 - r u3^2 \tan(q2))/(5r)],
\[-2u1 u3/3],
\[-(2u2 + u3 \tan(q2)) u1]]
\end{bmatrix}
\]

from sympy import trigsimp, signsimp, collect, factor_terms

def simplify_auxiliary_eqs(w):
... return signsimp(trigsimp(collect(collect(factor_terms(w), f2), m*r)))

mprint(KM.auxiliary_eqs.applyfunc(simplify_auxiliary_eqs))
\begin{bmatrix}
-mr(u1 u3 + u2') + f1,
-mr u1 u2 u3/cos(q2) + m r cos(q2) u1' + f2,
-g m + m r(u1 u2 u3/cos(q2) + sin(q2) u1') + f3]
\end{bmatrix}

A rolling disc using Lagrange’s Method

Here the rolling disc is formed from the contact point up, removing the need to introduce
generalized speeds. Only 3 configuration and 3 speed variables are needed to describe this
system, along with the disc’s mass and radius, and the local gravity.

from sympy import symbols, cos, sin
from sympy.physics.mechanics import *
m Mechanics_printing(pretty_print=False)
q1, q2, q3 = dynamicsymbols('q1 q2 q3')
q1d, q2d, q3d = dynamicsymbols('q1 q2 q3', 1)
r, m, g = symbols('r m g')

The kinematics are formed by a series of simple rotations. Each simple rotation creates a new
frame, and the next rotation is defined by the new frame’s basis vectors. This example uses
a 3-1-2 series of rotations, or Z, X, Y series of rotations. Angular velocity for this is defined
using the second frame’s basis (the lean frame).

N = ReferenceFrame('N')
Y = N.orientnew('Y', 'Axis', [q1, N.z])
L = Y.orientnew('L', 'Axis', [q2, Y.x])
R = L.orientnew('R', 'Axis', [q3, L.y])

This is the translational kinematics. We create a point with no velocity in N; this is the contact
point between the disc and ground. Next we form the position vector from the contact point
to the disc’s center of mass. Finally we form the velocity and acceleration of the disc.

C = Point('C')
C.set_vel(N, 0)
Dmc = C.locatenew('Dmc', r * L.z)
Dmc.v2pt_theory(C, N, R)
r*(sin(q2)*q1' + q3')*L.x - r*q2'*L.y

Forming the inertia dyadic.

5.8. Topics 1755
We then set the potential energy and determine the Lagrangian of the rolling disc.

```python
>>> BodyD.potential_energy = - m * g * r * cos(q2)
>>> Lag = Lagrangian(N, BodyD)
```

Then the equations of motion are generated by initializing the LagrangesMethod object. Finally we solve for the generalized accelerations (q double dots) with the rhs method.

```python
>>> q = [q1, q2, q3]
>>> l = LagrangesMethod(Lag, q)
>>> le = l.form_lagranges_equations()
>>> le.simplify(); le
Matrix([m*r**2*(6*sin(q2)*q3'' + 5*sin(2*q2)*q1'*q2' + 6*cos(q2)*q2'*q3' + 5*cos(2*q2)*q1''/2 + 7*q1''/2)/4], [m*r*(4*g*sin(q2) - 5*r*sin(2*q2)*q1''/2 - 6*r*cos(q2)*q1'*q3' + 5*r*q2'')/4], [3*m*r**2*(sin(q2)*q1'' + cos(q2)*q1'*q2' + q3'')/2])
>>> lrhs = l.rhs(); lrhs.simplify(); lrhs
Matrix([q1'], [q2'], [q3'], [-2*(2*tan(q2)*q1' + 3*q3'/cos(q2))*q2'], [-4*g*sin(q2)/(5*r) + sin(2*q2)*q1''*2/2 + 6*cos(q2)*q1'*q3'/5], [(-5*cos(q2)*q1'*6*tan(q2)*q3' + 4*q1'/cos(q2))*q2'])
```

A bicycle

The bicycle is an interesting system in that it has multiple rigid bodies, non-holonomic constraints, and a holonomic constraint. The linearized equations of motion are presented in [Meijaard2007]. This example will go through construction of the equations of motion in `sympy.physics.mechanics` (page 1721).

```python
>>> from sympy import *
>>> from sympy.physics.mechanics import *
>>> print('Calculation of Linearized Bicycle "A" Matrix, 
... 'with States: Roll, Steer, Roll Rate, Steer Rate')
Calculation of Linearized Bicycle "A" Matrix, with States: Roll, Steer, Roll Rate, Steer Rate
```

Note that this code has been crudely ported from Autolev, which is the reason for some of the unusual naming conventions. It was purposefully as similar as possible in order to aid initial porting & debugging. We set Vector.simp to False (in case it has been set True elsewhere), since it slows down the computations:
宣誓 Declaration of Coordinates & Speeds: A simple definition for qdots, \(q_d = u \), is used in this code. Speeds are: yaw frame ang. rate, roll frame ang. rate, rear wheel frame ang. rate (spinning motion), frame ang. rate (pitching motion), steering frame ang. rate, and front wheel ang. rate (spinning motion). Wheel positions are ignorable coordinates, so they are not introduced.

```python
>>> q1, q2, q3, q4, q5 = dynamicsymbols('q1 q2 q3 q4 q5')
>>> q1d, q2d, q4d, q5d = dynamicsymbols('q1 q2 q4 q5', 1)
```

Declaration of System’s Parameters: The below symbols should be fairly self-explanatory.

```python
>>> WRad, WRrad, htangle, forkoffset = symbols('WRad WRrad htangle _forkoffset')
>>> forklength, framelength, forkcg1 = symbols('forklength framelength forkcg1 _Iwr11')
>>> forkcg3, framecg1, framecg3, Iwr11 = symbols('forkcg3 framecg1 framecg3 _Iwr11')
>>> Iwr22, Iwf11, Iwf22, Iframe11 = symbols('Iwr22 Iwf11 Iwf22 Iframe11')
>>> Ifork22, Ifork33, Ifork31, g = symbols('Ifork22 Ifork33 Ifork31 g')
>>> mframe, mfork, mwf, mwr = symbols('mframe mfork mwf mwr')
```

Set up reference frames for the system: N - inertial Y - yaw R - roll WR - rear wheel, rotation angle is ignorable coordinate so not oriented Frame - bicycle frame TempFrame - statically rotated frame for easier reference inertia definition Fork - bicycle fork TempFork - statically rotated frame for easier reference inertia definition WF - front wheel, again posses an ignorable coordinate.

```python
>>> N = ReferenceFrame('N')
>>> Y = N.orientnew('Y', 'Axis', [q1, N.z])
>>> R = Y.orientnew('R', 'Axis', [q2, Y.x])
>>> Frame = R.orientnew('Frame', 'Axis', [q4 + htangle, R.y])
>>> WR = ReferenceFrame('WR')
>>> TempFrame = Frame.orientnew('TempFrame', 'Axis', [-htangle, Frame.y])
>>> Fork = Frame.orientnew('Fork', 'Axis', [q5, Frame.x])
>>> TempFork = Fork.orientnew('TempFork', 'Axis', [-htangle, Fork.y])
>>> WF = ReferenceFrame('WF')
```

Kinematics of the Bicycle: First block of code is forming the positions of the relevant points rear wheel contact -> rear wheel's center of mass -> frame’s center of mass + frame/fork connection -> fork’s center of mass + front wheel’s center of mass -> front wheel contact point.

```python
>>> WR_cont = Point('WR_cont')
>>> WR_mc = WR_cont.locatenew('WR_mc', WRrad * R.z)
>>> Steer = WR_mc.locatenew('Steer', framelength * Frame.z)
>>> Frame_mc = WR_mc.locatenew('Frame_mc', -framecg1 * Frame.x + framecg3 * 
```

(continues on next page)
Set the angular velocity of each frame: Angular accelerations end up being calculated automatically by differentiating the angular velocities when first needed.

```
>>> Y.set_ang_vel(N, u1 * Y.z)
>>> R.set_ang_vel(Y, u2 * R.x)
>>> Frame.set_ang_vel(R, u3 * Frame.y)
>>> Fork.set_ang_vel(Frame, u4 * Fork.x)
>>> WF.set_ang_vel(Fork, u6 * Fork.y)
```

Form the velocities of the points, using the 2-point theorem. Accelerations again are calculated automatically when first needed.

```
>>> WR_cont.set_vel(N, 0)
>>> WR_mc.v2pt_theory(WR_cont, N, WR)
>>> Steer.v2pt_theory(WR_mc, N, Frame)
>>> Frame_mc.v2pt_theory(WR_mc, N, Frame)
>>> Fork_mc.v2pt_theory(Steer, N, Fork)
>>> WF_mc.v2pt_theory(Steer, N, Fork)
```
Sets the inertias of each body. Uses the inertia frame to construct the inertia dyadics. Wheel inertias are only defined by principal moments of inertia, and are in fact constant in the frame and fork reference frames; it is for this reason that the orientations of the wheels does not need to be defined. The frame and fork inertias are defined in the 'Temp' frames which are fixed to the appropriate body frames; this is to allow easier input of the reference values of the benchmark paper. Note that due to slightly different orientations, the products of inertia need to have their signs flipped; this is done later when entering the numerical value.

>>> Frame_I = (inertia(TempFrame, Iframe11, Iframe22, Iframe33, 0, 0, ... Frame_I))
>>> Fork_I = (inertia(TempFork, Ifork11, Ifork22, Ifork33, 0, 0, Fork_I))
>>> WR_I = (inertia(Frame, Iwr11, Iwr22, Iwr11), WR_mc)
>>> WF_I = (inertia(Fork, Iwf11, Iwf22, Iwf11, WF_mc)

Declaration of the RigidBody containers.

>>> BodyFrame = RigidBody('BodyFrame', Frame_mc, Frame, mframe, Frame_I)
>>> BodyFork = RigidBody('BodyFork', Fork_mc, Fork, mfork, Fork_I)
>>> BodyWR = RigidBody('BodyWR', WR_mc, WR, mwr, WR_I)
>>> BodyWF = RigidBody('BodyWF', WF_mc, WF, mwf, WF_I)

>>> print('Before Forming the List of Nonholonomic Constraints. ')

Before Forming the List of Nonholonomic Constraints.

The kinematic differential equations; they are defined quite simply. Each entry in this list is equal to zero.
>>> \(\mathbf{\dot{kd}} = [q1d - u1, q2d - u2, q4d - u4, q5d - u5] \)

The nonholonomic constraints are the velocity of the front wheel contact point dotted into the X, Y, and Z directions; the yaw frame is used as it is “closer” to the front wheel (1 less DCM connecting them). These constraints force the velocity of the front wheel contact point to be 0 in the inertial frame; the X and Y direction constraints enforce a “no-slip” condition, and the Z direction constraint forces the front wheel contact point to not move away from the ground frame, essentially replicating the holonomic constraint which does not allow the frame pitch to change in an invalid fashion.

>>> conlist_speed = [dot(WF_cont.vel(N), Y.x),
 ... dot(WF_cont.vel(N), Y.y),
 ... dot(WF_cont.vel(N), Y.z)]

The holonomic constraint is that the position from the rear wheel contact point to the front wheel contact point when dotted into the normal-to-ground plane direction must be zero; effectively that the front and rear wheel contact points are always touching the ground plane. This is actually not part of the dynamic equations, but instead is necessary for the linearization process.

>>> conlist_coord = [dot(WF_cont.pos_from(WR_cont), Y.z)]

The force list; each body has the appropriate gravitational force applied at its center of mass.

>>> FL = [(Frame_mc, -mframe*g*Y.z),
 ... (Fork_mc, -mfork*g*Y.z),
 ... (WF_mc, -mwf*g*Y.z),
 ... (WR_mc, -mwr*g*Y.z)]

>>> BL = [BodyFrame, BodyFork, BodyWR, BodyWF]

The N frame is the inertial frame, coordinates are supplied in the order of independent, dependent coordinates. The kinematic differential equations are also entered here. Here the independent speeds are specified, followed by the dependent speeds, along with the nonholonomic constraints. The dependent coordinate is also provided, with the holonomic constraint. Again, this is only comes into play in the linearization process, but is necessary for the linearization to correctly work.

>>> KM = KanesMethod(N, q_ind=[q1, q2, q5],
 ... q_dependent=[q4],
 ... configuration_constraints=conlist_coord,
 ... u_ind=[u2, u3, u5],
 ... u_dependent=[u1, u4, u6],
 ... velocity_constraints=conlist_speed,
 ... kd_eqs=kd)

>>> print('Before Forming Generalized Active and Inertia Forces, Fr and Fr*')
Before Forming Generalized Active and Inertia Forces, Fr and Fr*

>>> (fr, frstar) = KM.kanes_equations(BL, FL)

>>> print('Base Equations of Motion Computed')
Base Equations of Motion Computed

This is the start of entering in the numerical values from the benchmark paper to validate the eigenvalues of the linearized equations from this model to the reference eigenvalues. Look at the aforementioned paper for more information. Some of these are intermediate values, used to transform values from the paper into the coordinate systems used in this model.

>>> PaperRadRear = 0.3
>>> PaperRadFront = 0.35
>>> HTA = evalf.N(pi/2 - pi/10)
Here is the final assembly of the numerical values. The symbol ‘v’ is the forward speed of the bicycle (a concept which only makes sense in the upright, static equilibrium case?). These are in a dictionary which will later be substituted in. Again the sign on the product of inertia values is flipped here, due to different orientations of coordinate systems.

```python
>>> v = Symbol('v')
>>> val_dict = {
...     'WFrad': PaperRadFront,
...     'WRrad': PaperRadRear,
...     'htangle': HTA,
...     'forkoffset': rake,
...     'forklength': PaperForkL,
...     'frameLength': FrameLength,
...     'forkcg1': ForkCGPar,
...     'forkcg3': ForkCGNorm,
...     'framecg1': FrameCGNorm,
...     'framecg3': FrameCGPar,
...     'Iwr11': 0.0603,
...     'Iwr22': 0.12,
...     'Iwf11': 0.1405,
...     'Iwf22': 0.28,
...     'Ifork11': 0.05892,
...     'Ifork22': 0.06,
...     'Ifork33': 0.00708,
...     'Iframe11': 9.2,
...     'Iframe22': 11,
...}
```

(continues on next page)
Linearizes the forcing vector; the equations are set up as MM udot = forcing, where MM is the mass matrix, udot is the vector representing the time derivatives of the generalized speeds, and forcing is a vector which contains both external forcing terms and internal forcing terms, such as centripetal or Coriolis forces. This actually returns a matrix with as many rows as total coordinates and speeds, but only as many columns as independent coordinates and speeds. (Note that below this is commented out, as it takes a few minutes to run, which is not good when performing the doctests)

As mentioned above, the size of the linearized forcing terms is expanded to include both q’s and u’s, so the mass matrix must have this done as well. This will likely be changed to be part of the linearized process, for future reference.

Finally, we construct an “A” matrix for the form xdot = A x (x being the state vector, although in this case, the sizes are a little off). The following line extracts only the minimum entries
required for eigenvalue analysis, which correspond to rows and columns for lean, steer, lean
rate, and steer rate. (this is all commented out due to being dependent on the above code,
which is also commented out):

```python
# Amat = MM_full.inv() * forcing_lin
# A = Amat.extract([1,2,4,6],[1,2,3,5])
# print(A)
# print('v = 1')
# print(A.subs(v, 1).eigenvals())
# print('v = 2')
# print(A.subs(v, 2).eigenvals())
# print('v = 3')
# print(A.subs(v, 3).eigenvals())
# print('v = 4')
# print(A.subs(v, 4).eigenvals())
# print('v = 5')
# print(A.subs(v, 5).eigenvals())
```

Upon running the above code yourself, enabling the commented out lines, compare the com-
puted eigenvalues to those is the referenced paper. This concludes the bicycle example.

Multi Degree of Freedom Holonomic System

In this example we demonstrate the use of the functionality provided in `sympy.physics.
mechanics` (page 1721) for deriving the equations of motion (EOM) of a holonomic system
that includes both particles and rigid bodies with contributing forces and torques, some of
which are specified forces and torques. The system is shown below:
The system will be modeled using JointsMethod. First we need to create the dynamicsymbols needed to describe the system as shown in the above diagram. In this case, the generalized coordinates \(q_1 \) represent lateral distance of block from wall, \(q_2 \) represents angle of the compound pendulum from vertical, \(q_3 \) represents angle of the simple pendulum from the compound pendulum. The generalized speeds \(u_1 \) represents lateral speed of block, \(u_2 \) represents lateral speed of compound pendulum and \(u_3 \) represents angular speed of C relative to B.

We also create some symbols to represent the length and mass of the pendulum, as well as gravity and others.

```python
>>> from sympy import zeros, symbols
>>> from sympy.physics.mechanics import Body, PinJoint, PrismaticJoint,
    JointsMethod, inertia
>>> from sympy.physics.mechanics import dynamicsymbols
>>> q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1, q2, q3, u1, u2, u3')
```
Next, we create the bodies and connect them using joints to establish the kinematics.

```python
>>> wall = Body('N')
>>> block = Body('A', mass=ma)
>>> IB = inertia(block.frame, 0, 0, IBzz)
>>> compound_pend = Body('B', mass=mb, central_inertia=IB)
>>> simple_pend = Body('C', mass=mc)
```

Now we can apply loads (forces and torques) to the bodies, gravity acts on all bodies, a linear spring and damper act on block and wall, a rotational linear spring acts on C relative to B specified torque T acts on compound_pend and block, specified force F acts on block.

```python
>>> F, T = dynamicsymbols('F, T')
>>> block.apply_force(F*block.x)
>>> block.apply_force(-k*q1*block.x, reaction_body=wall)
>>> block.apply_force(-c*u1*block.x, reaction_body=wall)
>>> compound_pend.apply_torque(T*compound_pend.z, reaction_body=block)
>>> simple_pend.apply_torque(-kT*q3*simple_pend.z, reaction_body=compound_pend)
>>> block.apply_force(-wall.y*block.mass*g)
>>> compound_pend.apply_force(-wall.y*compound_pend.mass*g)
>>> simple_pend.apply_force(-wall.y*simple_pend.mass*g)
```

With the problem setup, the equations of motion can be generated using the JointsMethod class with KanesMethod in backend.

```python
>>> method = JointsMethod(wall, slider, rev1, rev2)
>>> method.form_eoms()
```

(continues on next page)
\[\begin{align*}
&\sin(q_3(t))\cos(q_2(t)) - g*l*mc*\sin(q_2(t)) + l**2*mc*(u_2(t) + \\
&u_3(t))**2*\sin(q_3(t)) - l**2*mc*u_2(t)**2*\sin(q_3(t)) - mc*(l**2*\cos(q_3(t)) + \\
&l**2)*\text{Derivative}(u_3(t), t) - (2*l*mb*\cos(q_2(t))/3 + mc*(l*(- \\
&\sin(q_2(t)))*\sin(q_3(t)) + \cos(q_2(t)))*\cos(q_3(t)))*\text{Derivative}(u_1(t), t) - \\
&-l*\cos(q_2(t)))*\text{Derivative}(u_1(t), t) - (IBzz + 4*l**2*mb/9 + \\
&mc*(2*l**2*\cos(q_3(t)) + 2*l**2)))*\text{Derivative}(u_2(t), t) + T(t),
\end{align*}\]

\[
[\begin{array}{c}
-kT*q_3(t) - l**2*mc*(\sin(q_2(t))*\cos(q_3(t)) + \sin(q_3(t))*\cos(q_2(t))) - \\
-l*mc*(-\sin(q_2(t))*\sin(q_3(t)) + \cos(q_2(t))*\cos(q_3(t)))*\text{Derivative}(u_1(t), t) - \\
mc*(l**2*\cos(q_3(t)) + l**2)*\text{Derivative}(u_2(t), t)]]
\]

```python
>>> method.mass_matrix_full
Matrix([  
[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, ma + mb + mc, 2*l*mb*\cos(q_2(t))/3 + mc*(l*(- 
\sin(q_2(t)))*\sin(q_3(t)) + \cos(q_2(t)))*\cos(q_3(t)) + l*\cos(q_2(t))]),
[0, 0, 0, 2*l*mb*\cos(q_2(t))/3 + mc*(l*(-\sin(q_2(t)))*\sin(q_3(t)) + 
\cos(q_2(t)))*\cos(q_3(t)))]
\]

>>> method.forcing_full
Matrix([  
[u_1(t),
[u_2(t),
[u_3(t),
-c*u_1(t) - k*q_1(t) + 2*l*mb*u_2(t)**2*\sin(q_2(t))/3 - l*mc*(- 
\sin(q_2(t)))*\sin(q_3(t)) + l**2*mc*(l**2*\cos(q_3(t)) + l**2)],
(continues on next page)
A four bar linkage

The four bar linkage is a common example used in mechanics, which can be formulated with only two holonomic constraints. This example will make use of joints functionality provided in `sympy.physics.mechanics` (page 1721). In summary we will use bodies and joints to define the open loop system. Next, we define the configuration constraints to close the loop. The `JointsMethod` will be used to do the “book-keeping” of the open-loop system. From this we will get the input used in combination with the constraints to manually setup the `KanesMethod` (page 1810) as the backend.

First we need to create the `dynamicsymbols()` (page 1713) needed to describe the system as shown in the above diagram. In this case, the generalized coordinates \( q_1, q_2 \) and \( q_3 \) represent the angles between the links. Likewise, the generalized speeds \( u_1, u_2 \) and \( u_3 \) represent the angular velocities between the links. We also create some `symbols()` (page 1030) to represent the lengths and density of the links.

```
>>> from sympy import symbols, Matrix, solve, simplify
>>> from sympy.physics.mechanics import *
>>> mechanics_printing(pretty_print=False)
>>> q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1:4, u1:4')
>>> l1, l2, l3, l4, rho = symbols(['l1:5, rho'])
```

With all symbols defined, we can now define the bodies.

```
>>> N = ReferenceFrame('N')
>>> inertias = [inertia(N, 0, 0, rho * l ** 2 / 12) for l in (l1, l2, l3, l4)]
```
Next, we also define the first three joints.

```python
>>> joint1 = PinJoint('J1', link1, link2, coordinates=q1, speeds=u1,
... parent_point=l1/2 * link1.x,
... child_point=-l2/2 * link2.x, joint_axis=link1.z)
>>> joint2 = PinJoint('J2', link2, link3, coordinates=q2, speeds=u2,
... parent_point=l2/2 * link2.x,
... child_point=-l3/2 * link3.x, joint_axis=link2.z)
>>> joint3 = PinJoint('J3', link3, link4, coordinates=q3, speeds=u3,
... parent_point=l3/2 * link3.x,
... child_point=-l4/2 * link4.x, joint_axis=link3.z)
```

Now we can formulate the holonomic constraint that will close the kinematic loop.

```python
>>> loop = link4.masscenter.pos_from(link1.masscenter) + l1/2 * link1.x + l4/2 * link4.x
>>> fh = Matrix([[loop.dot(link1.x), loop.dot(link1.y)])
```

In order to generate the equations of motions, we will use the JointsMethod as our fronted. Before setting up the KanesMethod (page 1810) as its backend we need to calculate the velocity constraints.

```python
>>> method = JointsMethod(link1, joint1, joint2, joint3)
>>> t = dynamicsymbols._t
>>> qdots = solve(method.kdes, [q1.diff(t), q2.diff(t), q3.diff(t)])
>>> fhd = fh.diff(t).subs(qdots)
```

Now we can setup the KanesMethod (page 1810) as the backend and compute the equations of motion.

```python
>>> method._method = KanesMethod(
... method.frame, q_ind=[q1], u_ind=[u1], q_dependent=[q2, q3],
... u_dependent=[u2, u3], kd_eqs=method.kdes,
... configuration_constraints=fh, velocity_constraints=fhd,
... forcelist=method.loads, bodies=method.bodies)
>>> simplify(method._method._form_eoms())
Matrix([[l2*rho*(-2*l2**2*sin(q3)*u1' + 3*l2*l3*u1**2*sin(q2 + q3)*sin(q2) +
... 3*l2*l3*sin(q2)*cos(q2 + q3)*u1' - 3*l2*l3*sin(q3)*u1' +
... 3*l2*l4*u1**2*sin(q2 + q3)*sin(q2) + 3*l2*l4*sin(q2)*cos(q2 + q3)*u1' +
... 3*l3**2*u1**2*sin(q2)*sin(q3) + 6*l3**2*u1*u2*sin(q2)*sin(q3) +
... 3*l3**2*u2**2*sin(q2)*sin(q3) + 2*l3**2*sin(q2)*cos(q3)*u1' +
... 2*l3**2*sin(q2)*cos(q3)*u2' - l3**2*sin(q3)*cos(q2)*u1' -
... l3**2*sin(q3)*cos(q2)*u2' + 3*l3*l4*u1**2*sin(q2)*sin(q3) +
... 6*l3*l4*u1*u2*sin(q2)*sin(q3) + 3*l3*l4*u2**2*sin(q2)*sin(q3) +
... 3*l3*l4*sin(q2)*cos(q3)*u2' + l4**2*sin(q2)*u1' + l4**2*sin(q2)*u2' +
... l4**2*sin(q2)*u3'/(6*sin(q3))])])
```
Potential Issues/Advanced Topics/Future Features in Physics/Mechanics

This document will describe some of the more advanced functionality that this module offers but which is not part of the “official” interface. Here, some of the features that will be implemented in the future will also be covered, along with unanswered questions about proper functionality. Also, common problems will be discussed, along with some solutions.

Common Issues

Here issues with numerically integrating code, choice of dynamicsymbols for coordinate and speed representation, printing, differentiating, and substitution will occur.

Numerically Integrating Code

See Future Features: Code Output

Differentiating

Differentiation of very large expressions can take some time in SymPy; it is possible for large expressions to take minutes for the derivative to be evaluated. This will most commonly come up in linearization.

Choice of Coordinates and Speeds

The Kane object is set up with the assumption that the generalized speeds are not the same symbol as the time derivatives of the generalized coordinates. This isn’t to say that they can’t be the same, just that they have to have a different symbol. If you did this:

```python
>> KM.coords([q1, q2, q3])
>> KM.speeds([q1d, q2d, q3d])
```

Your code would not work. Currently, kinematic differential equations are required to be provided. It is at this point that we hope the user will discover they should not attempt the behavior shown in the code above.

This behavior might not be true for other methods of forming the equations of motion though.

Printing

The default printing options are to use sorting for Vector and Dyad measure numbers, and have unsorted output from the mprint, mprint, and mlatex functions. If you are printing something large, please use one of those functions, as the sorting can increase printing time from seconds to minutes.
Substitution

There are two common issues with substitution in mechanics:

- When subbing in expressions for dynamicsymbols, sympy’s normal subs will substitute in for derivatives of the dynamic symbol as well:

  ```python
 >>> from sympy.physics.mechanics import dynamicsymbols
 >>> x = dynamicsymbols('x')
 >>> expr = x.diff() + x
 >>> sub_dict = {x: 1}
 >>> expr.subs(sub_dict)
 Derivative(1, t) + 1
  ```

  In this case, x was replaced with 1 inside the Derivative as well, which is undesired.

- Substitution into large expressions can be slow.

  If your substitution is simple (direct replacement of expressions with other expressions, such as when evaluating at an operating point) it is recommended to use the provided msubs function, as it is significantly faster, and handles the derivative issue appropriately:

  ```python
 >>> from sympy.physics.mechanics import msubs
 >>> msubs(expr, sub_dict)
 Derivative(x(t), t) + 1
  ```

Linearization

Currently, the linearization methods don’t support cases where there are non-coordinate, non-speed dynamic symbols outside of the “dynamic equations”. It also does not support cases where time derivatives of these types of dynamic symbols show up. This means if you have kinematic differential equations which have a non-coordinate, non-speed dynamic symbol, it will not work. It also means if you have defined a system parameter (say a length or distance or mass) as a dynamic symbol, its time derivative is likely to show up in the dynamic equations, and this will prevent linearization.

Acceleration of Points

At a minimum, points need to have their velocities defined, as the acceleration can be calculated by taking the time derivative of the velocity in the same frame. If the 1 point or 2 point theorems were used to compute the velocity, the time derivative of the velocity expression will most likely be more complex than if you were to use the acceleration level 1 point and 2 point theorems. Using the acceleration level methods can result in shorted expressions at this point, which will result in shorter expressions later (such as when forming Kane’s equations).
Advanced Interfaces

Advanced Functionality

Remember that the Kane object supports bodies which have time-varying masses and inertias, although this functionality isn’t completely compatible with the linearization method.

Operators were discussed earlier as a potential way to do mathematical operations on Vector and Dyad objects. The majority of the code in this module is actually coded with them, as it can (subjectively) result in cleaner, shorter, more readable code. If using this interface in your code, remember to take care and use parentheses; the default order of operations in Python results in addition occurring before some of the vector products, so use parentheses liberally.

Future Features

This will cover the planned features to be added to this submodule.

Code Output

A function for generating code output for numerical integration is the highest priority feature to implement next. There are a number of considerations here.

Code output for C (using the GSL libraries), Fortran 90 (using LSODA), MATLAB, and SciPy is the goal. Things to be considered include: use of cse on large expressions for MATLAB and SciPy, which are interpretive. It is currently unclear whether compiled languages will benefit from common subexpression elimination, especially considering that it is a common part of compiler optimization, and there can be a significant time penalty when calling cse.

Care needs to be taken when constructing the strings for these expressions, as well as handling of input parameters, and other dynamic symbols. How to deal with output quantities when integrating also needs to be decided, with the potential for multiple options being considered.

References for Physics/Mechanics

Autolev Parser

Introduction

Autolev (now superseded by MotionGenesis) is a domain specific language used for symbolic multibody dynamics. The SymPy mechanics module now has enough power and functionality to be a fully featured symbolic dynamics module. This parser parses Autolev (version 4.1) code to SymPy code by making use of SymPy’s math libraries and the mechanics module.

The parser has been built using the ANTLR framework and its main purpose is to help former users of Autolev to get familiarized with multibody dynamics in SymPy.

The sections below shall discuss details of the parser like usage, gotchas, issues and future improvements. For a detailed comparison of Autolev and SymPy Mechanics you might want to look at the SymPy Mechanics for Autolev Users guide (page 1781).
Usage

We first start with an Autolev code file.

Let us take this example (Comments % have been included to show the Autolev responses):

```autolev
% double_pendulum.al
%-------------------
MOTIONVARIABLES' Q{2}', U{2}'
CONSTANTS L,M,G
NEWTONIAN N
FRAMES A,B
SIMPROT(N, A, 3, Q1)
% -> N_A = [COS(Q1), -SIN(Q1), 0; SIN(Q1), COS(Q1), 0; 0, 0, 1]
SIMPROT(N, B, 3, Q2)
% -> N_B = [COS(Q2), -SIN(Q2), 0; SIN(Q2), COS(Q2), 0; 0, 0, 1]
W_A_N>=U1*N3>
% -> W_A_N> = U1*N3>
W_B_N>=U2*N3>
% -> W_B_N> = U2*N3>
POINT O
PARTICLES P,R
P_O_P> = L*A1>
% -> P_O_P> = L*A1>
P_P_R> = L*B1>
% -> P_P_R> = L*B1>
V_O_N> = 0>
% -> V_O_N> = 0>
V2PTS(N, A, O, P)
% -> V_P_N> = L*U1*A2>
V2PTS(N, B, P, R)
% -> V_R_N> = L*U1*A2> + L*U2*B2>
MASS P=M, R=M
Q1' = U1
Q2' = U2
GRAVITY(G*N1>)
% -> FORCE_P> = G*M*N1>
% -> FORCE_R> = G*M*N1>
ZERO = FR() + FRSTAR()
% -> ZERO[1] = -L*M*(2*G*SIN(Q1)+L*(U2^2*SIN(Q1-Q2)+2*U1'+COS(Q1-Q2)*U2'))
% -> ZERO[2] = -L*M*(G*SIN(Q2)-L*(U1^2*SIN(Q1-Q2)-U2'-COS(Q1-Q2)*U1'))
KANE()
INPUT M=1,G=9.81,L=1
INPUT Q1=.1,Q2=.2,U1=0,U2=0
INPUT TFINAL=10, INTEGSTP=.01
CODE DYNAMICS() some_filename.c
```

The parser can be used as follows:

```python
>>> from sympy.parsing.autolev import parse_autolev
>>> sympy_code = parse_autolev(open('double_pendulum.al'), include_
... numeric=True)
```

# The include_pydy flag is False by default. Setting it to True will
# enable PyDy simulation code to be outputted if applicable.

```python
>>> print(sympy_code)
import sympy.physics.mechanics as me
import sympy as sm
import math as m
import numpy as np

q1, q2, u1, u2 = me.dynamicsymbols('q1 q2 u1 u2')
l, m, g=sm.symbols('l m g', real=True)
frame_n=me.ReferenceFrame('n')
frame_a=me.ReferenceFrame('a')
frame_b=me.ReferenceFrame('b')
frame_a.orient(frame_n, 'Axis', [q1, frame_n.z])
frame_b.orient(frame_n, 'Axis', [q2, frame_n.z])
frame_a.set_ang_vel(frame_n, u1*frame_n.z)
frame_b.set_ang_vel(frame_n, u2*frame_n.z)
point_o=me.Point('o')
particle_p=me.Particle('p', me.Point('p_pt'), sm.Symbol('m'))
particle_r=me.Particle('r', me.Point('r_pt'), sm.Symbol('m'))
particle_p.point.set_pos(point_o, l*frame_a.x)
particle_r.point.set_pos(particle_p.point, l*frame_b.x)
point_o.set_vel(frame_n, 0)
particle_p.mass = m
particle_r.mass = m
force_p = particle_p.mass*(g*frame_n.x)
force_r = particle_r.mass*(g*frame_n.x)
kane = me.KanesMethod(frame_n, q_ind=[q1,q2], u_ind=[u1, u2], kd_eqs = kd_eqs)
fr, frstar = kane.kanes_equations([particle_p, particle_r], forceList)
zero = fr+frstar

---PyDy code for integration---
from pydy.system import System
sys = System(kane, constants = {l:1, m:1, g:9.81}, specifieds={})
```

(continues on next page)
The commented code is not part of the output code. The print statements demonstrate how to get responses similar to the ones in the Autolev file. Note that we need to use SymPy functions like `.ang_vel_in()`, `.dcm()` etc in many cases unlike directly printing out the variables like zero. If you are completely new to SymPy mechanics, the *SymPy Mechanics for Autolev Users guide* (page 1781) guide should help. You might also have to use basic SymPy simplifications and manipulations like `trigsimp()`, `expand()`, `evalf()` etc for getting outputs similar to Autolev. Refer to the *SymPy Tutorial* to know more about these.

### Gotchas

- Don’t use variable names that conflict with Python’s reserved words. This is one example where this is violated:

```autolev
%Autolev Code
%------------------
LAMBDA = EIG(M)
```

```python
#SymPy Code
#------------------
lambda = sm.Matrix([i.evalf() for i in m.eigenvals().keys()])
```

- Make sure that the names of vectors and scalars are different. Autolev treats these differently but these will get overwritten in Python. The parser currently allows the names of bodies and scalars/vectors to coincide but doesn’t do this between scalars and vectors. This should probably be changed in the future.

```autolev
%Autolev Code
%------------------
VARIABLES X,Y
FRAMES A
A> = X*A1> + Y*A2>
A = X+Y
```

```python
#SymPy Code
#------------------
x, y = me.dynamicsymbols('x y')
frame_a = me.ReferenceFrame('a')
a = x*frame_a.x + y*frame_a.y
a = x + y
Note how `frame_a` is named differently so it doesn't cause a problem.
On the other hand, 'a' gets rewritten from a scalar to a vector.
This should be changed in the future.
```
When dealing with Matrices returned by functions, one must check the order of the values as they may not be the same as in Autolev. This is especially the case for eigenvalues and eigenvectors.

```autolev
%Autolev Code
%------------
EIG(M, E1, E2)
% -> [5; 14; 13]
E2ROW = ROWS(E2, 1)
EIGVEC> = VECTOR(A, E2ROW)
```

```sympy
#SymPy Code
#----------
e1 = sm.Matrix([i.evalf() for i in m.eigenvals().keys()])
sm.Matrix([5;13;14]) different order
e2 = sm.Matrix([i[2][0].evalf() for i in m.eigenvects()]).reshape(m.
 -shape[0], m.shape[1])
e2row = e2.row(0)
This result depends on the order of the vectors in the eigenvecs.
eigenvec = e2row[0]*a.x + e2row[1]*a.y + e2row[2]*a.y
```

When using EVALUATE, use something like 90*UNITS(deg,rad) for angle substitutions as radians are the default in SymPy. You could also add np.deg2rad() directly in the SymPy code.

This need not be done for the output code (generated on parsing the CODE commands) as the parser takes care of this when deg units are given in the INPUT declarations.

The DEGREES setting, on the other hand, works only in some cases like in SIMPROT where an angle is expected.

```autolev
%Autolev Code
%------------
A> = Q1*A1> + Q2*A2>
B> = EVALUATE(A>, Q1:30*UNITS(DEG,RAD))
```

```sympy
#SymPy Code
#----------
a = q1*a.frame_a.x + q2*frame_a.y
b = a.subs({q1:30*0.0174533})
b = a.subs({q1:np.deg2rad(30)})
```

Most of the Autolev settings have not been parsed and have no effect on the parser. The only ones that work somewhat are COMPLEX and DEGREES. It is advised to look into alternatives to these in SymPy and Python.

The REPRESENT command is not supported. Use the MATRIX, VECTOR or DYADIC commands instead. Autolev 4.1 suggests these over REPRESENT as well while still allowing it but the parser doesn’t parse it.
• Do not use variables declarations of the type \texttt{\textsc{wo}3\textsc{rd}2,4}. The parser can only handle one variable name followed by one pair of curly braces and any number of ‘s. You would have to declare all the cases manually if you want to achieve something like \texttt{\textsc{wo}3\textsc{rd}2,4}.

• The parser can handle normal versions of most commands but it may not parse functions with Matrix arguments properly in most cases. Eg:

\[ M=\text{COEF}([E1;E2],[U1,U2,U3]) \]

This would compute the coefficients of U1, U2 and U3 in E1 and E2. It is preferable to manually construct a Matrix using the regular versions of these commands.

```plaintext
%Autolev Code
%-------------------
% COEF([E1;E2],[U1,U2,U3])
M = [COEF(E1,U1),COEF(E1,U2),COEF(E1,U3) & ;COEF(E2,U1),COEF(E2,U2),COEF(E2,U3)]
```

• \textsc{motionvariable} declarations must be used for the generalized coordinates and speeds and all other variables must be declared in regular \texttt{variable} declarations. The parser requires this to distinguish between them to pass the correct parameters to the Kane’s method object.

It is also preferred to always declare the speeds corresponding to the coordinates and to pass in the kinematic differential equations. The parser is able to handle some cases where this isn’t the case by introducing some dummy variables of its own but SymPy on its own does require them.

Also note that older Autolev declarations like \texttt{\textsc{variables} \textsc{u}{3}'} are not supported either.

```plaintext
%Autolev Code
%-------------------
MOTIONVARIABLES' Q{2}', U{2}'
% ---- OTHER LINES ----
Q1' = U1
Q2' = U2
% ---- OTHER LINES ----
ZERO = FR() + FRSTAR()
```

```plaintext
#SymPy Code
#-------------------
q1, q2, u1, u2 = me.dynamicsymbols('q1 q2 u1 u2')
q1d, q2d, u1d, u2d = me.dynamicsymbols('q1 q2 u1 u2', 1)

---- other lines ----
kd_eqs = [q1d - u1, q2d - u2]
kane = me.KanesMethod(frame_n, q_ind=[q1,q2], u_ind=[u1, u2], kd_eqs = kd_eqs)
fr, frstar = kane.kanes_equations([particle_p, particle_r], forceList)
zero = fr+frstar
```
• Need to change `me.dynamicsymbols._t` to `me.dynamicsymbols('t')` for all occurrences of it in the Kane’s equations. For example have a look at line 10 of this spring damper example. This equation is used in forming the Kane’s equations so we need to change `me.dynamicsymbols._t` to `me.dynamicsymbols('t')` in this case.

The main reason that this needs to be done is because PyDy requires time dependent specifieds to be explicitly laid out while Autolev simply takes care of the stray time variables in the equations by itself.

The problem is that PyDy’s System class does not accept `dynamicsymbols._t` as a specified. Refer to issue #396. This change is not actually ideal so a better solution should be figured out in the future.

• The parser creates SymPy symbols and `dynamicsymbols` by parsing variable declarations in the Autolev Code.

For intermediate expressions which are directly initialized the parser does not create SymPy symbols. It just assigns them to the expression.

On the other hand, when a declared variable is assigned to an expression, the parser stores the expression against the variable in a dictionary so as to not reassign it to a completely different entity. This constraint is due to the inherent nature of Python and how it differs from a language like Autolev.

Also, Autolev seems to be able to assume whether to use a variable or the rhs expression that variable has been assigned to in equations even without an explicit `RHS()` call in some cases. For the parser to work correctly however, it is better to use `RHS()` wherever a variable’s rhs expression is meant to be used.

```autolev
%Autolev Code
%----------------
VARIABLES X, Y
E = X + Y
X = 2*Y

RHS_X = RHS(X)
I1 = X
I2 = Y
I3 = X + Y

INERTIA B,I1,I2,I3
% -> I_B_BO>> = I1*B1>*B1> + I2*B2>*B2> + I3*B3>*B3>
```

```sympy
#SymPy Code
#-------
x,y = me.dynamicsymbols('x y')
e = x + y # No symbol is made out of 'e'

an entry like {x:2*y} is stored in an rhs dictionary
rhs_x = 2*y
```

(continues on next page)
```
i1 = x # again these are not made into SymPy symbols
i2 = y
i3 = x + y

body_b.inertia = (me.inertia(body_b_f, i1, i2, i3), b_cm)
This prints as:
x*b_f.x*b_f.x + y*b_f.y*b_f.y + (x+y)*b_f.z*b_f.z
while Autolev's output has I1,I2 and I3 in it.
Autolev however seems to know when to use the RHS of I1,I2 and I3
based on the context.
```

- This is how the SOLVE command is parsed:

```
%Solve Code
%--------------
SOLVE(ZERO,X,Y)
A = RHS(X)*2 + RHS(Y)
```

```
#SymPy Code
#-------------
print(sm.solve(zero,x,y))
Behind the scenes the rhs of x
is set to sm.solve(zero,x,y)[x].
a = sm.solve(zero,x,y)[x]*2 + sm.solve(zero,x,y)[y]
```

The indexing like [x] and [y] doesn't always work so you might want to look at the underlying dictionary that solve returns and index it correctly.

- Inertia declarations and Inertia functions work somewhat differently in the context of the parser. This might be hard to understand at first but this had to be done to bridge the gap due to the differences in SymPy and Autolev. Here are some points about them:

1. Inertia declarations (INERTIA B,I1,I2,I3) set the inertias of rigid bodies.

2. Inertia setters of the form I_C_D>> = expr however; set the inertias only when C is a body. If C is a particle then I_C_D>> = expr simply parses to i_c_d = expr and i_c_d acts like a regular variable.

3. When it comes to inertia getters (I_C_D>> used in an expression or INERTIA commands), these MUST be used with the EXPRESS command to specify the frame as SymPy needs this information to compute the inertia dyadic.

```
%Solve Code
%-------------------
INERTIA B,I1,I2,I3
I_B_BO>> = X*A1>*A1> + Y*A2>*A2> % Parser will set the inertia of B
I_P_Q>> = X*A1>*A1> + Y^2*A2>*A2> % Parser just parses it as i_p_q = expr
E1 = 2*EXPRESS(I_B_O>>,A)
E2 = I_P_Q>>
```

(continues on next page)
\[ E3 = \text{EXPRESS}(I_P_O>>, A) \]
\[ E4 = \text{EXPRESS}(	ext{INERTIA}(O), A) \]

% In E1 we are using the EXPRESS command with I_B_O>> which makes
% the parser and SymPy compute the inertia of Body B about point O.

% In E2 we are just using the dyadic object I_P_Q>> (as I_P_Q>> = expr
% doesn't act as a setter) defined above and not asking the parser
% or SymPy to compute anything.

% E3 asks the parser to compute the inertia of P about point O.

% E4 asks the parser to compute the inertias of all bodies wrt about O.

• In an inertia declaration of a body, if the inertia is being set about a point other than the
center of mass, one needs to make sure that the position vector setter for that point and
the center of mass appears before the inertia declaration as SymPy will throw an error
otherwise.

% Autolev Code
%-----------------
\[ P_SO_O> = X*A1> \]
\[ \text{INERTIA } S_(O) I1,I2,I3 \]

• Note that all Autolev commands have not been implemented. The parser now covers the
important ones in their basic forms. If you are doubtful whether a command is included
or not, please have a look at this file in the source code. Search for “<command>” to
verify this. Looking at the code for the specific command will also give an idea about
what form it is expected to work in.

Limitations and Issues

• A lot of the issues have already been discussed in the Gotchas section. Some of these
are:
  - Vector names coinciding with scalar names are overwritten in Python.
  - Some convenient variable declarations aren’t parsed.
  - Some convenient forms of functions to return matrices aren’t parsed.
  - Settings aren’t parsed.
  - symbols and rhs expressions work very differently in Python which might cause un-
desirable results.
  - Dictionary indexing for the parsed code of the SOLVE command is not proper in many
cases.
  - Need to change dynamicsymbols._t to dynamicsymbols('t') for the PyDy simula-
tion code to work properly.

Here are some other ones:
• Eigenvectors do not seem to work as expected. The values in Autolev and SymPy are not
the same in many cases.

• Block matrices aren’t parsed by the parser. It would actually be easier to make a change
in SymPy to allow matrices to accept other matrices for arguments.

• The SymPy equivalent of the TAYLOR command .series() does not work with
dynamicsymbols().

• Only DEPENDENT constraints are currently parsed. Need to parse AUXILIARY constraints
as well. This should be done soon as it isn’t very difficult.

• None of the energy and momentum functions are parsed right now. It would be nice
to get these working as well. Some changes should probably be made to SymPy. For
instance, SymPy doesn’t have a function equivalent to NICHECK().

• The numerical integration parts work properly only in the case of the KANE command
with no arguments. Things like KANE(F1, F2) do not currently work.

• Also, the PyDy numerical simulation code works only for cases where the matrix say ZERO
= FR() + FRSTAR() is solved for. It doesn’t work well when the matrix has some other
equations plugged in as well. One hurdle faced in achieving this was that PyDy’s System
class automatically takes in the forcing_full and mass_matrix_full and solves them
without giving the user the flexibility to specify the equations. It would be nice to add
this functionality to the System class.

Future Improvements

1. Completing Dynamics Online

The parser has been built by referring to and parsing codes from the Autolev Tutorial and
the book Dynamics Online: Theory and Implementation Using Autolev. Basically, the process
involved going through each of these codes, validating the parser results and improving the
rules if required to make sure the codes parsed well.

The parsed codes of these are available on GitLab here. The repo is private so access needs
to be requested. As of now, most codes till Chapter 4 of Dynamics Online have been parsed.
Completing all the remaining codes of the book (namely, 2-10, 2-11, rest of Ch4, Ch5 and Ch6
(less important) ) would make the parser more complete.

2. Fixing Issues

The second thing to do would be to go about fixing the problems described above in the
Gotchas (page 1774) and Limitations and Issues (page 1779) sections in order of priority and
ease. Many of these require changes in the parser code while some of these are better fixed
by adding some functionality to SymPy.
3. Switching to an AST

The parser is currently built using a kind of Concrete Syntax Tree (CST) using the ANTLR framework. It would be ideal to switch from a CST to an Abstract Syntax Tree (AST). This way, the parser code will be independent of the ANTLR grammar which makes it a lot more flexible. It would also be easier to make changes to the grammar and the rules of the parser.

SymPy Mechanics for Autolev Users

Introduction

Autolev (now superseded by MotionGenesis) is a domain specific programming language which is used for symbolic multibody dynamics. The SymPy mechanics module now has enough power and functionality to be a fully featured symbolic dynamics module. The PyDy package extends the SymPy output to the numerical domain for simulation, analyses and visualization. Autolev and SymPy Mechanics have a lot in common but there are also many differences between them. This page shall expand upon their differences. It is meant to be a go-to reference for Autolev users who want to transition to SymPy Mechanics.

It would be nice to have a basic understanding of SymPy and SymPy Mechanics before going over this page. If you are completely new to Python, you can check out the official Python Tutorial. Check out the SymPy Documentation (page ??), especially the tutorial to get a feel for SymPy. For an introduction to Multibody dynamics in Python, this lecture is very helpful.

You might also find the Autolev Parser (page 1771) which is a part of SymPy to be helpful.
### Some Key Differences

<table>
<thead>
<tr>
<th>Autolev</th>
<th>SymPy Mechanics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autolev is a domain specific programming language designed to perform multibody dynamics. Since it is a language of its own, it has a very rigid language specification. It predefines, assumes and computes many things based on the input code. Its code is a lot cleaner and concise as a result of this.</td>
<td>SymPy is a library written in the general purpose language Python. Although Autolev’s code is more compact, SymPy (by virtue of being an add on to Python) is more flexible. The users have more control over what they can do. For example, one can create a class in their code for let’s say a type of rigibodies with common properties. The wide array of scientific Python libraries available is also a big plus.</td>
</tr>
<tr>
<td>Autolev generates Matlab, C, or Fortran code from a small set of symbolic mathematics.</td>
<td>SymPy generates numerical Python, C or Octave/Matlab code from a large set of symbolic mathematics created with SymPy. It also builds on the popular scientific Python stack such as NumPy, SciPy, IPython, matplotlib, Cython and Theano.</td>
</tr>
<tr>
<td>Autolev uses 1 (one) based indexing. The initial element of a sequence is found using a[1].</td>
<td>Python uses 0 (zero) based indexing. The initial element of a sequence is found using a[0].</td>
</tr>
<tr>
<td>Autolev is case insensitive.</td>
<td>SymPy code being Python code is case sensitive.</td>
</tr>
<tr>
<td>One can define their own commands in Autolev by making .R and .A files which can be used in their programs.</td>
<td>SymPy code is Python code, so one can define functions in their code. This is a lot more convenient.</td>
</tr>
<tr>
<td>Autolev is proprietary.</td>
<td>SymPy is open source.</td>
</tr>
</tbody>
</table>
Rough Autolev-SymPy Equivalents

The tables below give rough equivalents for some common Autolev expressions. These are not exact equivalents, but rather should be taken as hints to get you going in the right direction. For more detail read the built-in documentation on SymPy vectors (page 1640), SymPy mechanics (page 1721) and PyDy.

In the tables below, it is assumed that you have executed the following commands in Python:

```
import sympy.physics.mechanics as me
import sympy as sm
```
### Mathematical Equivalents

<table>
<thead>
<tr>
<th>Autolev</th>
<th>SymPy</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constants A, B</td>
<td><code>a, b = sm.symbols('a b', real=True)</code></td>
<td>Note that the names of the symbols can be different from the names of the variables they are assigned to. We can define <code>a, b = symbols('b a')</code> but its good practice to follow the convention.</td>
</tr>
<tr>
<td>Constants C+</td>
<td><code>c = sm.symbols('c', real=True, nonnegative=True)</code></td>
<td>Refer to SymPy assumptions (page 244) for more information.</td>
</tr>
<tr>
<td>Constants D-</td>
<td><code>d = sm.symbols('d', real=True, nonpositive=True)</code></td>
<td></td>
</tr>
<tr>
<td>Constants K{4}</td>
<td><code>k1, k2, k3, k4 = sm.symbols('k1 k2 k3 k4', real=True)</code></td>
<td></td>
</tr>
<tr>
<td>Constants a{2:4}</td>
<td><code>a2, a3, a4 = sm.symbols('a2 a3 a4', real=True)</code></td>
<td></td>
</tr>
<tr>
<td>Constants b{1:2, 1:2}</td>
<td><code>b11, b12, b21, b22 = sm.symbols('b11 b12 b21 b22', real=True)</code></td>
<td></td>
</tr>
<tr>
<td>Specified Phi</td>
<td><code>phi = me.dynamicsymbols('phi')</code></td>
<td></td>
</tr>
<tr>
<td>Variables q, s</td>
<td><code>q, s = me.dynamicsymbols(q, s)</code></td>
<td></td>
</tr>
<tr>
<td>Variables x''</td>
<td><code>x = me.dynamicsymbols('x')</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>xd = me.dynamicsymbols('x', 1)</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>xd2 = me.dynamicsymbols('x', 2)</code></td>
<td></td>
</tr>
</tbody>
</table>

**Examples**

- **SymPy**
  - `sm.diag(1,1,1,1)`
  - `A.T`
  - `M**-1`
  - `M[2, 3]`
  - `M.det()`
  - `A.row(0)`
  - `A.rows`
  - `A.col(0)`
  - `A.cols`
  - `A + B*C`
- **Autolev**
  - `ColMatrix = [1; 2; 3; 4]`
  - `RowMatrix = [1, 2, 3, 4]`
  - `MO[1, 1] = d`
  - `MO = sm.Matrix([[a, b], [c, 0]])`

**Notes**

- SymPy Documentation, Release 1.12.1
## Physical Equivalents

<table>
<thead>
<tr>
<th></th>
<th>Autolev</th>
<th>SymPy</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Bodies A</strong></td>
<td>Declares A, its masscenter Ao, and orthonormal vectors A1, A2, A3 fixed in A.</td>
<td>m = sm.symbols('m')</td>
<td>The 4th and 5th arguments are for the mass and inertia. These are specified after the declaration in Autolev.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ao = sm.symbols('Ao')</td>
<td>One can pass a dummy for the parameters and use setters A.mass = _ and A.inertia = _ to set them later.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Af = me. ReferenceFrame('Af')</td>
<td>For more information refer to mechanics/masses. (page 1722)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I = me.outer(Af.x, Af.x)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P = me.Point('P')</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A = me.RigidBody('A', Ao, Af, m, (I, P))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Af.x, Af.y and Af.z are equivalent to A1, A2, and A3.</td>
<td></td>
</tr>
<tr>
<td><strong>Frames A</strong></td>
<td>V1 = X1<em>A1 + X2</em>A2</td>
<td>A = me. ReferenceFrame('A')</td>
<td>For more information refer to physics/vectors. (page 51)</td>
</tr>
<tr>
<td></td>
<td>V1&gt; = X1<em>A1&gt; + X2</em>A2&gt;</td>
<td>v1 = x1<em>A.x + x2</em>A.y</td>
<td></td>
</tr>
<tr>
<td><strong>Newtonian N</strong></td>
<td></td>
<td>N = me. ReferenceFrame('N')</td>
<td>SymPy doesn’t specify that a frame is inertial during declaration. Many functions such as set_ang_vel() take the inertial reference frame as a parameter.</td>
</tr>
<tr>
<td><strong>Particles C</strong></td>
<td></td>
<td>m = sm.symbols('m')</td>
<td>The 2nd and 3rd arguments are for the point and mass. In Autolev, these are specified after the declaration.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Po = me.Point('Po')</td>
<td>One can pass a dummy and use setters (A.point = _ and A.mass = _) to set them later.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C = me.Particle('C', Po, m)</td>
<td></td>
</tr>
<tr>
<td><strong>Points P, Q</strong></td>
<td></td>
<td>P = me.Point('P')</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q = me.Point('Q')</td>
<td></td>
</tr>
<tr>
<td><strong>Mass B=mB</strong></td>
<td></td>
<td>mB = symbols('mB')</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B.mass = mB</td>
<td></td>
</tr>
<tr>
<td><strong>Inertia B, I1, I2, I3, I12, I23, I31</strong></td>
<td></td>
<td>I = me.inertia(Bf, i1, i2, i3, i12, i23, i31)</td>
<td>For more information refer to the mechanics api. (page 1790)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B.inertia = (I, P) where</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B is a rigidbody, Bf is the related frame and P is the center of mass of B.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inertia dyadics can also be formed using vector outer products.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I = me.outer(N.x, N.x)</td>
<td></td>
</tr>
</tbody>
</table>

continues on next page
Table 1 – continued from previous page

<table>
<thead>
<tr>
<th>Autolev</th>
<th>SymPy</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>vec&gt; = P.O.Q&gt;/L</td>
<td>vec = (Q.o.pos_from(O))/L</td>
<td>For more information refer to physics/vectors. (page 1640)</td>
</tr>
<tr>
<td>vec&gt; = u1<em>N1&gt; + u2</em>N2&gt;</td>
<td>vec = u1<em>N.x + u2</em>N.y</td>
<td></td>
</tr>
<tr>
<td>Cross(a&gt;, b&gt;)</td>
<td>cross(a, b)</td>
<td></td>
</tr>
<tr>
<td>Dot(a&gt;, b&gt;)</td>
<td>dot(a, b)</td>
<td></td>
</tr>
<tr>
<td>Mag(v&gt;)</td>
<td>v.magnitude()</td>
<td></td>
</tr>
<tr>
<td>Unitvec(v&gt;)</td>
<td>v.normalize()</td>
<td></td>
</tr>
<tr>
<td>DYAD&gt;&gt; = 3*A1&gt;*A1&gt; + A2&gt;<em>A2&gt; + 2</em>A3&gt;*A3&gt;</td>
<td>dyad = 3<em>me.outer(a.x, a.x) + me.outer(a.y, a.y) + 2</em>me.outer(a.z, a.z)</td>
<td></td>
</tr>
<tr>
<td>P.O.Q&gt; = LA*A1&gt;</td>
<td>Q.point = 0. locatenew('Qo', LA<em>A.x) where A is a reference frame. Q.point = P.point. locatenew('Qo ', LA</em>A.x)</td>
<td>For more information refer to the kinematics api. (page 1700) All these vector and kinematic functions are to be used on Point objects and not Particle objects so use point must be used for particles.</td>
</tr>
<tr>
<td>P_P.Q&gt; = LA*A1&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V.O.N&gt; = u3<em>N.1&gt; + u4</em>N.2&gt;</td>
<td>O.set_vel(N, u1<em>N.x + u2</em>N.y)</td>
<td>The getter would be O.vel(N).</td>
</tr>
<tr>
<td>Partials(V.O.N&gt;, u3)</td>
<td>O.partial_velocity(N, u3)</td>
<td></td>
</tr>
<tr>
<td>A_O.N&gt; = θ&gt;</td>
<td>O.set_acc(N, θ)</td>
<td>The getter would be O.acc(N).</td>
</tr>
<tr>
<td>Acceleration of point O in reference frame N.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_B.N&gt; = qB'3&gt;B3&gt;</td>
<td>B.set_ang_vel(N, qBd*Bf.z) where Bf is the frame associated with the body B.</td>
<td>The getter would be B.ang_vel_in(N).</td>
</tr>
<tr>
<td>Angular velocity of body B in reference frame F.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angular acceleration of body B in reference frame N.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Force.O&gt; = F1<em>N1&gt; + F2</em>N2&gt;</td>
<td>In SymPy one should have a list which contains all the forces and torques. fl.append((0, f1<em>N.x + f2</em>N.y)) where fl is the force list. fl.append((A, -c<em>qAd</em>A.z))</td>
<td></td>
</tr>
<tr>
<td>Torque_A&gt; = -c*qA'*A3&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_B = M where M is a matrix and A, B are frames.</td>
<td>B.orient(A, 'DCM', M) where M is a SymPy Matrix. D = A.dcm(B)*2 + 1</td>
<td></td>
</tr>
<tr>
<td>D = A_B*2 + 1</td>
<td>D = A.dcm(B)*2 + 1</td>
<td></td>
</tr>
<tr>
<td>CM(B)</td>
<td>B.masscenter</td>
<td></td>
</tr>
<tr>
<td>Mass(A,B,C)</td>
<td>A.mass + B.mass + C.mass</td>
<td>P and Q are assumed to be Point objects here. Remember to use .point for particles.</td>
</tr>
<tr>
<td>V1pt(A,B,P,Q)</td>
<td>Q.v1pt_theory(P, A, B)</td>
<td></td>
</tr>
<tr>
<td>Autolev</td>
<td>SymPy</td>
<td>Notes</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------------</td>
<td>----------------------------------------------------------------------</td>
</tr>
<tr>
<td>V2pts(A,B,P,Q)</td>
<td>Q.v2pt_theory(P, A, B)</td>
<td></td>
</tr>
<tr>
<td>A1pt(A,B,P,Q)</td>
<td>Q.a1pt_theory(P, A, B)</td>
<td></td>
</tr>
<tr>
<td>A2pts(A,B,P,Q)</td>
<td>Q.a2pt_theory(P, A, B)</td>
<td></td>
</tr>
<tr>
<td>Angvel(A,B)</td>
<td>B.ang_vel_in(A)</td>
<td></td>
</tr>
<tr>
<td>Simprot(A, B, 1, qA)</td>
<td>B.orient(A, ‘Axis’, qA, A.x)</td>
<td></td>
</tr>
<tr>
<td>Gravity(G*N1&gt;)</td>
<td>fL.extend(gravity( g*N. x, P1, P2, ...))</td>
<td>In SymPy we must use a forceList (here fL) which contains tuples of the form (point, force_vector). This is passed to the kanes_equations() method of the KanesMethod object.</td>
</tr>
<tr>
<td>CM(O,P1,R)</td>
<td>me.functions. center_of_mass(o, p1, r)</td>
<td></td>
</tr>
<tr>
<td>Force(P/Q, v&gt;)</td>
<td>fL.append((P, -1*v), (Q, v))</td>
<td></td>
</tr>
<tr>
<td>Torque(A/B, v&gt;)</td>
<td>fL.append((A, -1*v), (B, v))</td>
<td></td>
</tr>
<tr>
<td>Kindiffs(A, B ...)</td>
<td>KM.kindiffdict()</td>
<td></td>
</tr>
<tr>
<td>Momentum(option)</td>
<td>linear_momentum(N, B1, B2 ...)</td>
<td>reference frame followed by one or more bodies</td>
</tr>
<tr>
<td>KE()</td>
<td>kinetic_energy(N, B1, B2 ...)</td>
<td>reference frame followed by one or more bodies</td>
</tr>
<tr>
<td>Constrain(...)</td>
<td>velocity_constraints = [...]</td>
<td>For more details refer to mechanics/kane (page 1728) and the kane api. (page 1810)</td>
</tr>
</tbody>
</table>

continues on next page
Table 1 – continued from previous page

<table>
<thead>
<tr>
<th>Autolev</th>
<th>SymPy</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fr() FrStar()</td>
<td>KM = KanesMethod(f, q_ind, u_ind, kd_eqs, q_dependent, configuration_constraints, u_dependent, velocity_constraints, acceleration_constraints, u_auxiliary)</td>
<td>For more details refer to mechanics/kane (page 1728) and the kane api. (page 1810)</td>
</tr>
<tr>
<td></td>
<td>The KanesMethod object takes a reference frame followed by multiple lists as arguments.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(fr, frstar) = KM. kanes_equations(fL, bL) where fL and bL are lists of forces and bodies respectively.</td>
<td></td>
</tr>
</tbody>
</table>

### Numerical Evaluation and Visualization

Autolev’s CODE Option() command allows one to generate Matlab, C, or Fortran code for numerical evaluation and visualization. Option can be Dynamics, ODE, Nonlinear or Algebraic.

Numerical evaluation for dynamics can be achieved using PyDy. One can pass in the KanesMethod object to the System class along with the values for the constants, specifieds, initial conditions and time steps. The equations of motion can then be integrated. The plotting is achieved using matplotlib. Here is an example from the PyDy Documentation on how it is done:

```python
from numpy import array, linspace, sin
from pydy.system import System

sys = System(kane,
 constants = {mass: 1.0, stiffness: 1.0,
 damping: 0.2, gravity: 9.8},
 specifieds = {force: lambda x, t: sin(t)},
 initial_conditions = {position: 0.1, speed: -1.0},
 times = linspace(0.0, 10.0, 1000))

y = sys.integrate()

import matplotlib.pyplot as plt
plt.plot(sys.times, y)
plt.legend((str(position), str(speed)))
plt.show()
```

For information on all the things PyDy can accomplish refer to the PyDy Documentation.

The tools in the PyDy workflow are:

- **SymPy**: SymPy is a Python library for
symbolic computation. It provides computer algebra capabilities either as a standalone application, as a library to other applications, or live on the web as SymPy Live or SymPy Gamma.

- **NumPy**: NumPy is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays.

- **SciPy**: SciPy is an open source Python library used for scientific computing and technical computing. SciPy contains modules for optimization, linear algebra, integration, interpolation, special functions, FFT, signal and image processing, ODE solvers and other tasks common in science and engineering.

- **IPython**: IPython is a command shell for interactive computing in multiple programming languages, originally developed for the Python programming language, that offers introspection, rich media, shell syntax, tab completion, and history.

- **Aesara**: Aesara is a numerical computation library for Python. In Aesara, computations are expressed using a NumPy-esque syntax and compiled to run efficiently on either CPU or GPU architectures.

- **Cython**: Cython is a superset of the Python programming language, designed to give C-like performance with code that is mostly written in Python. Cython is a compiled language that generates CPython extension modules.

- **matplotlib**: matplotlib is a plotting library for the Python programming language and its numerical mathematics extension NumPy.

One will be able to write code equivalent to the Matlab, C or Fortran code generated by Autolev using these scientific computing tools. It is recommended to go over these modules to gain an understanding of scientific computing with Python.

**Links**

SymPy Introductory Tutorial (page 5)
SymPy Documentation (page ??)
SymPy Physics Vector Documentation (page 1640)
SymPy Mechanics Documentation (page 1721)
PyDy Documentation
MultiBody Dynamics with Python
**Mechanics API Reference**

**Masses, Inertias & Particles, RigidBodys (Docstrings)**

```python
class sympy.physics.mechanics.particle.Particle(name, point, mass)
A particle.

Parameters

- **name**: str
 Name of particle

- **point**: Point
 A physics/mechanics Point which represents the position, velocity, and acceleration of this Particle

- **mass**: sympifyable
 A SymPy expression representing the Particle's mass

Explanation

Particles have a non-zero mass and lack spatial extension; they take up no space. Values need to be supplied on initialization, but can be changed later.

Examples

```python
>>> from sympy.physics.mechanics import Particle, Point
>>> po = Point('po')
>>> m = Symbol('m')
>>> pa = Particle('pa', po, m)
>>> # Or you could change these later
>>> pa.mass = m
>>> pa.point = po
```

```python
def angular_momentum(point, frame)
Angular momentum of the particle about the point.

Parameters

- **point**: Point
  The point about which angular momentum of the particle is desired.

- **frame**: ReferenceFrame
  The frame in which angular momentum is desired.
```
Explanation

The angular momentum H, about some point O of a particle, P, is given by:

$$H = \text{cross}(r, m \times v)$$

where r is the position vector from point O to the particle P, m is the mass of the particle, and v is the velocity of the particle in the inertial frame, N.

Examples

```python
>>> from sympy.physics.mechanics import Particle, Point,
    ReferenceFrame
>>> from sympy.physics.mechanics import dynamicsymbols
>>> from sympy.physics.vector import init_vprinting
>>> init_vprinting(pretty_print=False)
>>> m, v, r = dynamicsymbols('m v r')
>>> N = ReferenceFrame('N')
>>> O = Point('O')
>>> A = O.locatenew('A', r * N.x)
>>> P = Particle('P', A, m)
>>> P.point.set_vel(N, v * N.y)
>>> P.angular_momentum(O, N)
m*r*v*N.z
```

kinetic_energy(*frame*)

Kinetic energy of the particle.

Parameters

- **frame** : ReferenceFrame

 The Particle’s velocity is typically defined with respect to an inertial frame but any relevant frame in which the velocity is known can be supplied.

Explanation

The kinetic energy, T, of a particle, P, is given by:

$$T = \frac{1}{2} (\text{dot}(m \times v, v))$$

where m is the mass of particle P, and v is the velocity of the particle in the supplied ReferenceFrame.
Examples

```python
>>> from sympy.physics.mechanics import Particle, Point,
>>> from sympy import symbols

m, v, r = symbols('m v r')
N = ReferenceFrame('N')
O = Point('O')
P = Particle('P', O, m)
P.point.set_vel(N, v * N.y)
P.kinetic_energy(N)
m*v**2/2
```

`linear_momentum(frame)`

Linear momentum of the particle.

Parameters

- `frame` : ReferenceFrame
 The frame in which linear momentum is desired.

Explanation

The linear momentum L, of a particle P, with respect to frame N is given by:

$$L = m \cdot v$$

where m is the mass of the particle, and v is the velocity of the particle in the frame N.

Examples

```python
>>> from sympy.physics.mechanics import Particle, Point,
>>> from sympy.physics.mechanics import dynamicsymbols
>>> from sympy.physics.vector import init_vprinting

init_vprinting(pretty_print=False)
m, v = dynamicsymbols('m v')
N = ReferenceFrame('N')
P = Point('P')
A = Particle('A', P, m)
P.set_vel(N, v * N.x)
A.linear_momentum(N)
m*v*N.x
```

`property mass`

Mass of the particle.

`parallel_axis(point, frame)`

Returns an inertia dyadic of the particle with respect to another point and frame.

Parameters

- `point` : sympy.physics.vector.Point
The point to express the inertia dyadic about.

frame : sympy.physics.vector.ReferenceFrame

The reference frame used to construct the dyadic.

Returns

<table>
<thead>
<tr>
<th>inertia</th>
<th>sympy.physics.vector.Dyadic</th>
</tr>
</thead>
</table>

The inertia dyadic of the particle expressed about the provided point and frame.

property point

Point of the particle.

property potential_energy

The potential energy of the Particle.

Examples

```python
>>> from sympy.physics.mechanics import Particle, Point
>>> from sympy import symbols
>>> m, g, h = symbols('m g h')
>>> O = Point('O')
>>> P = Particle('P', O, m)
>>> P.potential_energy = m * g * h
>>> P.potential_energy
```

```python
5.8. Topics
```

class sympy.physics.mechanics.rigidbody.RigidBody(name, masscenter, frame, mass, inertia)

An idealized rigid body.

Explanation

This is essentially a container which holds the various components which describe a rigid body: a name, mass, center of mass, reference frame, and inertia.

All of these need to be supplied on creation, but can be changed afterwards.

Examples

```python
>>> from sympy import Symbol
>>> from sympy.physics.mechanics import ReferenceFrame, Point, RigidBody
>>> from sympy.physics.mechanics import outer
>>> m = Symbol('m')
>>> A = ReferenceFrame('A')
>>> P = Point('P')
>>> I = outer(A.x, A.x)
>>> inertia_tuple = (I, P)
>>> B = RigidBody('B', P, A, m, inertia_tuple)
>>> # Or you could change them afterwards
```
>>> m2 = Symbol('m2')
>>> B.mass = m2

Attributes

<table>
<thead>
<tr>
<th>name</th>
<th>(string) The body’s name.</th>
</tr>
</thead>
<tbody>
<tr>
<td>masscenter</td>
<td>(Point) The point which represents the center of mass of the rigid body.</td>
</tr>
<tr>
<td>frame</td>
<td>(ReferenceFrame) The ReferenceFrame which the rigid body is fixed in.</td>
</tr>
<tr>
<td>mass</td>
<td>(Sympifyable) The body’s mass.</td>
</tr>
<tr>
<td>inertia</td>
<td>((Dyadic, Point)) The body’s inertia about a point; stored in a tuple as shown above.</td>
</tr>
</tbody>
</table>

angular_momentum(point, frame)

Returns the angular momentum of the rigid body about a point in the given frame.

Parameters

- **point** : Point
 The point about which angular momentum is desired.

- **frame** : ReferenceFrame
 The frame in which angular momentum is desired.

Explanation

The angular momentum \(H \) of a rigid body \(B \) about some point \(O \) in a frame \(N \) is given by:

\[
H = \text{dot}(I, w) + \text{cross}(r, M \times v)
\]

where \(I \) is the central inertia dyadic of \(B \), \(w \) is the angular velocity of body \(B \) in the frame, \(N \), \(r \) is the position vector from point \(O \) to the mass center of \(B \), and \(v \) is the velocity of the mass center in the frame, \(N \).

Examples

```python
>>> from sympy.physics.mechanics import Point, ReferenceFrame, outer
>>> from sympy.physics.mechanics import RigidBody, dynamicsymbols
>>> from sympy.physics.vector import init_vprinting
>>> init_vprinting(pretty_print=False)
>>> M, v, r, omega = dynamicsymbols('M v r omega')
>>> N = ReferenceFrame('N')
>>> b = ReferenceFrame('b')
>>> b.set_ang_vel(N, omega * b.x)
>>> P = Point('P')
>>> P.set_vel(N, 1 * N.x)
>>> I = outer(b.x, b.x)
```
property central_inertia
The body's central inertia dyadic.

property frame
The ReferenceFrame fixed to the body.

property inertia
The body’s inertia about a point; stored as (Dyadic, Point).

kinetic_energy(frame)
Kinetic energy of the rigid body.

Parameters
frame : ReferenceFrame
The RigidBody’s angular velocity and the velocity of it’s mass center are typically defined with respect to an inertial frame but any relevant frame in which the velocities are known can be supplied.

Explanation
The kinetic energy, T, of a rigid body, B, is given by:

$$T = \frac{1}{2} \left(\dot{\text{dot}}(\text{dot}(I, w), w) + \dot{\text{dot}}(m * v, v) \right)$$

where I and m are the central inertia dyadic and mass of rigid body B, respectively, ω is the body’s angular velocity and v is the velocity of the body’s mass center in the supplied ReferenceFrame.

Examples

```python
>>> from sympy.physics.mechanics import Point, ReferenceFrame, outer
>>> from sympy.physics.mechanics import RigidBody
>>> from sympy import symbols
>>> M, v, r, omega = symbols('M v r omega')
>>> N = ReferenceFrame('N')
>>> b = ReferenceFrame('b')
>>> b.set_ang_vel(N, omega * b.x)
>>> P = Point('P')
>>> P.set_vel(N, v * N.x)
>>> I = outer (b.x, b.x)
>>> inertia_tuple = (I, P)
>>> B = RigidBody('B', P, b, M, inertia_tuple)
>>> B.kinetic_energy(N)
M*v**2/2 + omega**2/2
```

linear_momentum(frame)
Linear momentum of the rigid body.
Parameters

frame : ReferenceFrame

The frame in which linear momentum is desired.

Explanation

The linear momentum L, of a rigid body B, with respect to frame N is given by:

$$L = M \cdot v^*$$

where M is the mass of the rigid body and v^* is the velocity of the mass center of B in the frame, N.

Examples

```python
>>> from sympy.physics.mechanics import Point, ReferenceFrame, outer
>>> from sympy.physics.mechanics import RigidBody, dynamicsymbols
>>> init_vprinting(pretty_print=False)
>>> M, v = dynamicsymbols('M v')
>>> N = ReferenceFrame('N')
>>> P = Point('P')
>>> P.set_vel(N, v * N.x)
>>> I = outer(N.x, N.x)
>>> Inertia_tuple = (I, P)
>>> B = RigidBody('B', P, N, M, Inertia_tuple)
>>> B.linear_momentum(N)
M*v*N.x
```

property mass

The body’s mass.

property masscenter

The body’s center of mass.

parallel_axis(point, frame=None)

Returns the inertia dyadic of the body with respect to another point.

Parameters

point : sympy.physics.vector.Point

The point to express the inertia dyadic about.

frame : sympy.physics.vector.ReferenceFrame

The reference frame used to construct the dyadic.

Returns

inertia : sympy.physics.vector.Dyadic

The inertia dyadic of the rigid body expressed about the provided point.

property potential_energy

The potential energy of the RigidBody.
Examples

```python
>>> from sympy.physics.mechanics import RigidBody, Point, outer,
   ReferenceFrame
>>> from sympy import symbols

>>> M, g, h = symbols('M g h')
>>> b = ReferenceFrame('b')
>>> P = Point('P')
>>> I = outer(b.x, b.x)
>>> Inertia_tuple = (I, P)
>>> B = RigidBody('B', P, b, M, Inertia_tuple)
>>> B.potential_energy = M * g * h
```

```
sympy.physics.mechanics.functions.inertia(frame, ixx, iyy, izz, ixy=0, iyz=0, izx=0)
```

Simple way to create inertia Dyadic object.

Parameters

- `frame`: ReferenceFrame

The frame the inertia is defined in

- `ixx`: Sympifyable

 the xx element in the inertia dyadic

- `iyy`: Sympifyable

 the yy element in the inertia dyadic

- `izz`: Sympifyable

 the zz element in the inertia dyadic

- `ixy`: Sympifyable

 the xy element in the inertia dyadic

- `iyz`: Sympifyable

 the yz element in the inertia dyadic

- `izx`: Sympifyable

 the zx element in the inertia dyadic

Explanation

If you do not know what a Dyadic is, just treat this like the inertia tensor. Then, do the easy thing and define it in a body-fixed frame.
Examples

```python
>>> from sympy.physics.mechanics import ReferenceFrame, inertia
>>> N = ReferenceFrame('N')
>>> inertia(N, 1, 2, 3)
(N.x|N.x) + 2*(N.y|N.y) + 3*(N.z|N.z)
```

sympy.physics.mechanics.functions.inertia_of_point_mass(mass, pos_vec, frame)
Inertia dyadic of a point mass relative to point O.

Parameters

- **mass** : Sympyfiable
 Mass of the point mass
- **pos_vec** : Vector
 Position from point O to point mass
- **frame** : ReferenceFrame
 Reference frame to express the dyadic in

Examples

```python
>>> from sympy import symbols
>>> from sympy.physics.mechanics import ReferenceFrame, inertia_of_point_mass
>>> N = ReferenceFrame('N')
>>> r, m = symbols('r m')
>>> px = r * N.x
>>> inertia_of_point_mass(m, px, N)
m*r**2*(N.y|N.y) + m*r**2*(N.z|N.z)
```

sympy.physics.mechanics.functions.linear_momentum(frame, *body)
Linear momentum of the system.

Parameters

- **frame** : ReferenceFrame
 The frame in which linear momentum is desired.
- **body1, body2, body3...** : Particle and/or RigidBody
 The body (or bodies) whose linear momentum is required.

Explanation

This function returns the linear momentum of a system of Particle’s and/or RigidBody’s. The linear momentum of a system is equal to the vector sum of the linear momentum of its constituents. Consider a system, S, comprised of a rigid body, A, and a particle, P. The linear momentum of the system, L, is equal to the vector sum of the linear momentum of the particle, L1, and the linear momentum of the rigid body, L2, i.e.

\[L = L1 + L2 \]
Examples

```python
from sympy.physics.mechanics import Point, Particle, ReferenceFrame
N = ReferenceFrame('N')
P = Point('P')
P.set_vel(N, 10 * N.x)
Pa = Particle('Pa', P, 1)
Ac = Point('Ac')
Ac.set_vel(N, 25 * N.y)
I = outer(N.x, N.x)
A = RigidBody('A', Ac, N, 20, (I, Ac))
linear_momentum(N, A, Pa)
10*N.x + 500*N.y
```

sympy.physics.mechanics.functions.angular_momentum(point, frame, *body)
Angular momentum of a system.

Parameters

point : Point
 The point about which angular momentum of the system is desired.
frame : ReferenceFrame
 The frame in which angular momentum is desired.
body1, body2, body3... : Particle and/or RigidBody
 The body (or bodies) whose angular momentum is required.

Explanation

This function returns the angular momentum of a system of Particle’s and/or RigidBody’s. The angular momentum of such a system is equal to the vector sum of the angular momentum of its constituents. Consider a system, S, comprised of a rigid body, A, and a particle, P. The angular momentum of the system, H, is equal to the vector sum of the angular momentum of the particle, H1, and the angular momentum of the rigid body, H2, i.e.

\[H = H_1 + H_2 \]

Examples

```python
from sympy.physics.mechanics import Point, Particle, ReferenceFrame
from sympy.physics.mechanics import RigidBody, outer, angular_momentum
N = ReferenceFrame('N')
O = Point('O')
O.set_vel(N, 0 * N.x)
P = O.locatenew('P', 1 * N.x)
P.set_vel(N, 10 * N.x)
Pa = Particle('Pa', P, 1)
P.set_vel(N, 10 * N.x)
Ac = O.locatenew('Ac', 2 * N.y)
```
sympy.physics.mechanics.functions.kinetic_energy(frame, *body)
Kinetic energy of a multibody system.

Parameters

- **frame**: ReferenceFrame
 The frame in which the velocity or angular velocity of the body is defined.

- **body1, body2, body3...**: Particle and/or RigidBody
 The body (or bodies) whose kinetic energy is required.

Explanation

This function returns the kinetic energy of a system of Particle’s and/or RigidBody’s. The kinetic energy of such a system is equal to the sum of the kinetic energies of its constituents. Consider a system, S, comprising a rigid body, A, and a particle, P. The kinetic energy of the system, T, is equal to the vector sum of the kinetic energy of the particle, T1, and the kinetic energy of the rigid body, T2, i.e.

\[
T = T_1 + T_2
\]

Kinetic energy is a scalar.

Examples

```python
>>> from sympy.physics.mechanics import Point, Particle, ReferenceFrame
>>> from sympy.physics.mechanics import RigidBody, outer, kinetic_energy
>>> N = ReferenceFrame('N')
>>> O = Point('O')
>>> O.set_vel(N, 0 * N.x)
>>> P = O.locatenew('P', 1 * N.x)
>>> P.set_vel(N, 10 * N.x)
>>> Pa = Particle('Pa', P, 1)
>>> Ac = O.locatenew('Ac', 2 * N.y)
>>> Ac.set_vel(N, 5 * N.y)
>>> a = ReferenceFrame('a')
>>> a.set_ang_vel(N, 10 * N.z)
>>> I = outer(N.z, N.z)
>>> A = RigidBody('A', Ac, a, 20, (I, Ac))
>>> angular_momentum(O, N, Pa, A)
10*N.z

>>> kinetic_energy(N, Pa, A)
350
```
Potential energy of a multibody system.

Parameters

body1, body2, body3... : Particle and/or RigidBody

The body (or bodies) whose potential energy is required.

Explanation

This function returns the potential energy of a system of Particle’s and/or RigidBody’s. The potential energy of such a system is equal to the sum of the potential energy of its constituents. Consider a system, S, comprising a rigid body, A, and a particle, P. The potential energy of the system, V, is equal to the vector sum of the potential energy of the particle, V1, and the potential energy of the rigid body, V2, i.e.

\[V = V_1 + V_2 \]

Potential energy is a scalar.

Examples

```python
>>> from sympy.physics.mechanics import Point, Particle, ReferenceFrame
>>> from sympy.physics.mechanics import RigidBody, outer, potential_energy
>>> from sympy import symbols

M, m, g, h = symbols('M m g h')
N = ReferenceFrame('N')
O = Point('O')
O.set_vel(N, 0 * N.x)
P = O.locatenew('P', 1 * N.x)
Pa = Particle('Pa', P, m)
Ac = O.locatenew('Ac', 2 * N.y)
a = ReferenceFrame('a')
I = outer(N.z, N.z)
A = RigidBody('A', Ac, a, M, (I, Ac))
Pa.potential_energy = m * g * h
A.potential_energy = M * g * h
potential_energy(Pa, A)
M*g*h + g*h*m
```

Lagrangian of a multibody system.

Parameters

frame : ReferenceFrame

The frame in which the velocity or angular velocity of the body is defined to determine the kinetic energy.

body1, body2, body3... : Particle and/or RigidBody

The body (or bodies) whose Lagrangian is required.
Explanation

This function returns the Lagrangian of a system of Particle’s and/or RigidBody’s. The Lagrangian of such a system is equal to the difference between the kinetic energies and potential energies of its constituents. If T and V are the kinetic and potential energies of a system then it’s Lagrangian, L, is defined as

\[L = T - V \]

The Lagrangian is a scalar.

Examples

```python
>>> from sympy.physics.mechanics import Point, Particle, ReferenceFrame
>>> from sympy.physics.mechanics import RigidBody, outer, Lagrangian
>>> from sympy import symbols

>>> M, m, g, h = symbols('M m g h')
>>> N = ReferenceFrame('N')
>>> O = Point('O')
>>> O.set_vel(N, 0 * N.x)
>>> P = O.locatenew('P', 1 * N.x)
>>> P.set_vel(N, 10 * N.x)
>>> Pa = Particle('Pa', P, 1)
>>> Ac = O.locatenew('Ac', 2 * N.y)
>>> Ac.set_vel(N, 5 * N.y)
>>> a = ReferenceFrame('a')
>>> a.set_ang_vel(N, 10 * N.z)
>>> I = outer(N.z, N.z)
>>> A = RigidBody('A', Ac, a, 20, (I, Ac))
>>> Pa.potential_energy = m * g * h
>>> A.potential_energy = M * g * h
>>> Lagrangian(N, Pa, A)
-M*g*h - g*h*m + 350
```

Body (Docstrings)

class sympy.physics.mechanics.body.Body(name, masscenter=None, mass=None, frame=None, central_inertia=None)

Body is a common representation of either a RigidBody or a Particle SymPy object depending on what is passed in during initialization. If a mass is passed in and central_inertia is left as None, the Particle object is created. Otherwise a RigidBody object will be created.

Parameters

- **name** : String

 Defines the name of the body. It is used as the base for defining body specific properties.

- **masscenter** : Point, optional

 A point that represents the center of mass of the body or particle. If no point is given, a point is generated.
mass : Sympifyable, optional

A Sympifyable object which represents the mass of the body. If no mass is passed, one is generated.

frame : ReferenceFrame, optional

The ReferenceFrame that represents the reference frame of the body. If no frame is given, a frame is generated.

central_inertia : Dyadic, optional

Central inertia dyadic of the body. If none is passed while creating RigidBody, a default inertia is generated.

Explanation

The attributes that Body possesses will be the same as a Particle instance or a Rigid Body instance depending on which was created. Additional attributes are listed below.

Examples

Default behaviour. This results in the creation of a RigidBody object for which the mass, mass center, frame and inertia attributes are given default values.

```python
>>> from sympy.physics.mechanics import Body
>>> body = Body('name_of_body')
```

This next example demonstrates the code required to specify all of the values of the Body object. Note this will also create a RigidBody version of the Body object.

```python
>>> from sympy import Symbol
>>> from sympy.physics.mechanics import ReferenceFrame, Point, inertia
>>> from sympy.physics.mechanics import Body
>>> mass = Symbol('mass')
>>> masscenter = Point('masscenter')
>>> frame = ReferenceFrame('frame')
>>> ixx = Symbol('ixx')
>>> body_inertia = inertia(frame, ixx, 0, 0)
>>> body = Body('name_of_body', masscenter, mass, frame, body_inertia)
```

The minimal code required to create a Particle version of the Body object involves simply passing in a name and a mass.

```python
>>> from sympy import Symbol
>>> from sympy.physics.mechanics import Body
>>> mass = Symbol('mass')
>>> body = Body('name_of_body', mass=mass)
```

The Particle version of the Body object can also receive a masscenter point and a reference frame, just not an inertia.
Attributes

<table>
<thead>
<tr>
<th>name</th>
<th>(string) The body’s name</th>
</tr>
</thead>
<tbody>
<tr>
<td>mass-center</td>
<td>(Point) The point which represents the center of mass of the rigid body</td>
</tr>
<tr>
<td>frame</td>
<td>(ReferenceFrame) The reference frame which the body is fixed in</td>
</tr>
<tr>
<td>mass</td>
<td>(Sympifiable) The body’s mass</td>
</tr>
<tr>
<td>inertia</td>
<td>((Dyadic, Point) The body’s inertia around its center of mass. This attribute is specific to the rigid body form of Body and is left undefined for the Particle form</td>
</tr>
<tr>
<td>loads</td>
<td>(iterable) This list contains information on the different loads acting on the Body. Forces are listed as a (point, vector) tuple and torques are listed as (reference frame, vector) tuples</td>
</tr>
</tbody>
</table>

```
ang_vel_in(body)
Returns this body’s angular velocity with respect to the provided rigid body or reference frame.

Parameters

body: Body or ReferenceFrame
The rigid body or reference frame to calculate the angular velocity in.

Example
```
```python
>>> from sympy.physics.mechanics import Body, ReferenceFrame
>>> A = Body('A')
>>> N = ReferenceFrame('N')
>>> B = Body('B', frame=N)
>>> A.frame.set_ang_vel(N, 5*N.x)
>>> A.ang_vel_in(B)
5*N.x
>>> A.ang_vel_in(N)
5*N.x
```

apply_force(force, point=None, reaction_body=None, reaction_point=None)
Add force to the body(s).

Parameters

force: Vector
The force to be applied.

point: Point, optional
The point on self on which force is applied. By default self’s masscenter.

reaction_body: Body, optional
Second body on which equal and opposite force is to be applied.

reaction_point : Point, optional
The point on other body on which equal and opposite force is applied. By default masscenter of other body.

Explanation

Applies the force on self or equal and oppposite forces on self and other body if both are given on the desired point on the bodies. The force applied on other body is taken opposite of self, i.e, -force.

Example

```python
>>> from sympy import symbols
>>> from sympy.physics.mechanics import Body, Point, dynamicsymbols
>>> m, g = symbols('m g')
>>> B = Body('B')
>>> force1 = m*g*B.z
>>> B.apply_force(force1)  #Applying force on B's masscenter
>>> B.loads
[[(B_masscenter, g*m*B_frame.z)]]
```

We can also remove some part of force from any point on the body by adding the opposite force to the body on that point.

```python
>>> f1, f2 = dynamicsymbols('f1 f2')
>>> P = Point('P')  #Considering point P on body B
>>> B.apply_force(f1*B.x + f2*B.y, P)
>>> B.loads
[[(B_masscenter, g*m*B_frame.z), (P, f1(t)*B_frame.x + f2(t)*B_frame.y)]]
```

Let's remove f1 from point P on body B.

```python
>>> B.apply_force(-f1*B.x, P)
>>> B.loads
[[(B_masscenter, g*m*B_frame.z), (P, f2(t)*B_frame.y)]]
```

To further demonstrate the use of apply_force attribute, consider two bodies connected through a spring.

```python
>>> from sympy.physics.mechanics import Body, dynamicsymbols
>>> N = Body('N')  #Newtonian Frame
>>> x = dynamicsymbols('x')
>>> B1 = Body('B1')
>>> B2 = Body('B2')
>>> spring_force = x*N.x
```

Now let’s apply equal and opposite spring force to the bodies.

```python
>>> P1 = Point('P1')
>>> P2 = Point('P2')
>>> B1.apply_force(spring_force, point=P1, reaction_body=B2, reaction_point=P2)
```
We can check the loads(forces) applied to bodies now.

```python
>>> B1.loads
[(P1, x(t)*N_frame.x)]
>>> B2.loads
[(P2, -x(t)*N_frame.x)]
```

Notes

If a new force is applied to a body on a point which already has some force applied on it, then the new force is added to the already applied force on that point.

`apply_torque(torque, reaction_body=None)`

Add torque to the body(s).

Parameters

- **torque**: Vector
 - The torque to be applied.

- **reaction_body**: Body, optional
 - Second body on which equal and opposite torque is to be applied.

Explanation

Applies the torque on self or equal and opposite torquess on self and other body if both are given. The torque applied on other body is taken opposite of self, i.e, -torque.

Example

```python
>>> from sympy import symbols
>>> from sympy.physics.mechanics import Body, dynamicsymbols
>>> t = symbols('t')
>>> B = Body('B')
>>> torque1 = t*B.z
>>> B.apply_torque(torque1)
>>> B.loads
[(B_frame, t*B_frame.z)]
```

We can also remove some part of torque from the body by adding the opposite torque to the body.

```python
>>> t1, t2 = dynamicsymbols('t1 t2')
>>> B.apply_torque(t1*B.x + t2*B.y)
>>> B.loads
[(B_frame, t1(t)*B_frame.x + t2(t)*B_frame.y + t*B_frame.z)]
```

Let’s remove t1 from Body B.
To further demonstrate the use, let us consider two bodies such that a torque T is acting on one body, and $-T$ on the other.

```python
from sympy.physics.mechanics import Body, dynamicsymbols
N = Body('N') #Newtonion frame
B1 = Body('B1')
B2 = Body('B2')
v = dynamicsymbols('v')
T = v*N.y #Torque

Now let's apply equal and opposite torque to the bodies.

```python
B1.apply_torque(T, B2)
```

We can check the loads (torques) applied to bodies now.

```python
B1.loads
[(B1_frame, v(t)*N_frame.y)]
B2.loads
[(B2_frame, - v(t)*N_frame.y)]
```

**Notes**

If a new torque is applied on body which already has some torque applied on it, then the new torque is added to the previous torque about the body’s frame.

**clear_loads()**

Clears the Body’s loads list.

**Example**

```python
from sympy.physics.mechanics import Body
B = Body('B')
force = B.x + B.y
B.apply_force(force)
B.loads
[(B_masscenter, B_frame.x + B_frame.y)]
B.clear_loads()
B.loads
[]
```

**dcm(body)**

Returns the direction cosine matrix of this body relative to the provided rigid body or reference frame.

**Parameters**

- **body**: Body or ReferenceFrame
The rigid body or reference frame to calculate the dcm.

**Example**

```python
>>> from sympy.physics.mechanics import Body
>>> A = Body('A')
>>> B = Body('B')
>>> A.frame.orient_axis(B.frame, B.frame.x, 5)
>>> A.dcm(B)
Matrix([[1, 0, 0], [0, cos(5), sin(5)], [0, -sin(5), cos(5)]])
>>> A.dcm(B.frame)
Matrix([[1, 0, 0], [0, cos(5), sin(5)], [0, -sin(5), cos(5)]])
```

**property inertia**

The body’s inertia about a point; stored as (Dyadic, Point).

**kinetic_energy**(frame)

Kinetic energy of the body.

**Parameters**

- **frame**: ReferenceFrame or Body

  The Body’s angular velocity and the velocity of it’s mass center are typically defined with respect to an inertial frame but any relevant frame in which the velocities are known can be supplied.

**Examples**

```python
>>> from sympy.physics.mechanics import Body, ReferenceFrame, Point
>>> from sympy import symbols
>>> m, v, r, omega = symbols('m v r omega')
>>> N = ReferenceFrame('N')
>>> O = Point('O')
>>> P = Body('P', masscenter=O, mass=m)
>>> P.masscenter.set_vel(N, v * N.y)
>>> P.kinetic_energy(N)
m*v**2/2

>>> N = ReferenceFrame('N')
>>> b = ReferenceFrame('b')
>>> b.set_ang_vel(N, omega * b.x)
>>> P = Point('P')
>>> P.set_vel(N, v * N.x)
>>> B = Body('B', masscenter=P, frame=b)
>>> B.kinetic_energy(N)
B.ixx*omega**2/2 + B.mass*v**2/2
```
masscenter_vel(body)

Returns the velocity of the mass center with respect to the provided rigid body or reference frame.

Parameters

body: Body or ReferenceFrame

The rigid body or reference frame to calculate the velocity in.

Example

```python
>>> from sympy.physics.mechanics import Body
>>> A = Body('A')
>>> B = Body('B')
>>> A.masscenter.set_vel(B.frame, 5*B.frame.x)
>>> A.masscenter_vel(B)
5*B_frame.x
>>> A.masscenter_vel(B.frame)
5*B_frame.x
```

parallel_axis(point, frame=None)

Returns the inertia dyadic of the body with respect to another point.

Parameters

point : sympy.physics.vector.Point

The point to express the inertia dyadic about.

frame : sympy.physics.vector.ReferenceFrame

The reference frame used to construct the dyadic.

Returns

inertia : sympy.physics.vector.Dyadic

The inertia dyadic of the rigid body expressed about the provided point.

Example

```python
>>> from sympy.physics.mechanics import Body
>>> A = Body('A')
>>> P = A.masscenter.locatenew('point', 3 * A.x + 5 * A.y)
>>> A.parallel_axis(P).to_matrix(A.frame)
Matrix([[A_ixx + 25*A_mass, A_iyx - 15*A_mass, A_izx],
 [A_iyx - 15*A_mass, A_iyy + 9*A_mass, A_iyz],
 [A_izx, A_iyz, A_izz + 34*A_mass]])
```
remove_load(about=None)

Remove load about a point or frame.

Parameters

about : Point or ReferenceFrame, optional

The point about which force is applied, and is to be removed. If about
is None, then the torque about self’s frame is removed.

Example

```python
>>> from sympy.physics.mechanics import Body, Point
>>> B = Body('B')
>>> P = Point('P')
>>> f1 = B.x
>>> f2 = B.y
>>> B.apply_force(f1)
>>> B.apply_force(f2, P)
>>> B.loads
[(B_masscenter, B_frame.x), (P, B_frame.y)]

>>> B.remove_load(P)
>>> B.loads
[(B_masscenter, B_frame.x)]
```

property x

The basis Vector for the Body, in the x direction.

property y

The basis Vector for the Body, in the y direction.

property z

The basis Vector for the Body, in the z direction.

Kane’s Method & Lagrange’s Method (Docstrings)

class sympy.physics.mechanics.kane.KanesMethod(frame, q_ind, u_ind, kd_eqs=None, q_dependent=None, configuration_constraints=None, u_dependent=None, velocity_constraints=None, acceleration_constraints=None, u_auxiliary=None, bodies=None, forcelist=None, explicit_kinematics=True)

Kane’s method object.
Explanation

This object is used to do the "book-keeping" as you go through and form equations of motion in the way Kane presents in: Kane, T., Levinson, D. Dynamics Theory and Applications. 1985 McGraw-Hill

The attributes are for equations in the form [M] udot = forcing.

Notes

The mass matrices and forcing vectors related to kinematic equations are given in the explicit form by default. In other words, the kinematic mass matrix is \( k_{kq} = I \). In order to get the implicit form of those matrices/vectors, you can set the `explicit_kinematics` attribute to `False`. So \( k_{kq} \) is not necessarily an identity matrix. This can provide more compact equations for non-simple kinematics (see #22626).

Examples

This is a simple example for a one degree of freedom translational spring-mass-damper. In this example, we first need to do the kinematics. This involves creating generalized speeds and coordinates and their derivatives. Then we create a point and set its velocity in a frame.

```python
>>> from sympy import symbols
>>> from sympy.physics.mechanics import dynamicsymbols, ReferenceFrame
>>> from sympy.physics.mechanics import Point, Particle, KanesMethod
>>> q, u = dynamicsymbols('q u')
>>> qd, ud = dynamicsymbols('q u', 1)
>>> m, c, k = symbols('m c k')
>>> N = ReferenceFrame('N')
>>> P = Point('P')
>>> P.set_vel(N, u * N.x)
```

Next we need to arrange/store information in the way that KanesMethod requires. The kinematic differential equations need to be stored in a dict. A list of forces/torques must be constructed, where each entry in the list is a (Point, Vector) or (ReferenceFrame, Vector) tuple, where the Vectors represent the Force or Torque. Next a particle needs to be created, and it needs to have a point and mass assigned to it. Finally, a list of all bodies and particles needs to be created.

```python
>>> kd = [qd - u]
>>> FL = [(P, (-k * q - c * u) * N.x)]
>>> pa = Particle('pa', P, m)
>>> BL = [pa]
```

Finally we can generate the equations of motion. First we create the KanesMethod object and supply an inertial frame, coordinates, generalized speeds, and the kinematic differential equations. Additional quantities such as configuration and motion constraints, dependent coordinates and speeds, and auxiliary speeds are also supplied here (see the online documentation). Next we form \( FR^* \) and \( FR \) to complete: \( Fr + Fr^* = 0 \). We have the equations of motion at this point. It makes sense to rearrange them though, so we calculate the mass matrix and the forcing terms, for E.o.M. in the form: \([MM]\) udot =
forcing, where MM is the mass matrix, udot is a vector of the time derivatives of the generalized speeds, and forcing is a vector representing “forcing” terms.

```python
>>> KM = KanesMethod(N, q_ind=[q], u_ind=[u], kd_eqs=kd)
>>> (fr, frstar) = KM.kanes_equations(BL, FL)
>>> forcing = KM.forcing
>>> rhs = MM.inv() * forcing
>>> rhs
Matrix([[(-c*u(t) - k*q(t))/m]])
>>> KM.linearize(A_and_B=True)[0]
Matrix([0, 1],
[-k/m, -c/m]])
```

Please look at the documentation pages for more information on how to perform linearization and how to deal with dependent coordinates & speeds, and how do deal with bringing non-contributing forces into evidence.

**Attributes**

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>q, u</td>
<td>(Matrix) Matrices of the generalized coordinates and speeds</td>
</tr>
<tr>
<td>bodies</td>
<td>(iterable) Iterable of Point and RigidBody objects in the system.</td>
</tr>
<tr>
<td>loads</td>
<td>(iterable) Iterable of (Point, vector) or (ReferenceFrame, vector) tuples describing the forces on the system.</td>
</tr>
<tr>
<td>auxiliary_eqs</td>
<td>(Matrix) If applicable, the set of auxiliary Kane’s equations used to solve for non-contributing forces.</td>
</tr>
<tr>
<td>mass_mat</td>
<td>(Matrix) The system’s dynamics mass matrix: ([k_d; k_{dh}])</td>
</tr>
<tr>
<td>forcing</td>
<td>(Matrix) The system’s dynamics forcing vector: ([-f_d; f_{dh}])</td>
</tr>
<tr>
<td>mass_mat</td>
<td>(Matrix) The “mass matrix” for kinematic differential equations: (k_{kq})</td>
</tr>
<tr>
<td>forcing_kin</td>
<td>(Matrix) The forcing vector for kinematic differential equations: (-(k_{ku}u + f_k))</td>
</tr>
<tr>
<td>mass_mat</td>
<td>(Matrix) The “mass matrix” for the u’s and q’s with dynamics and kinematics</td>
</tr>
<tr>
<td>forcing_full</td>
<td>(Matrix) The “forcing vector” for the u’s and q’s with dynamics and kinematics</td>
</tr>
<tr>
<td>explicit_kin</td>
<td>(bool) Boolean whether the mass matrices and forcing vectors should use the explicit form (default) or implicit form for kinematics. See the notes for more details.</td>
</tr>
</tbody>
</table>

**property auxiliary_eqs**

A matrix containing the auxiliary equations.

**property forcing**

The forcing vector of the system.

**property forcing_full**

The forcing vector of the system, augmented by the kinematic differential equations in explicit or implicit form.

**property forcing_kin**

The kinematic “forcing vector” of the system.
**kanes_equations** *(bodies=None, loads=None)*

Method to form Kane’s equations, \( Fr + Fr^* = 0 \).

**Parameters**

**bodies** : iterable

An iterable of all RigidBody’s and Particle’s in the system. A system must have at least one body.

**loads** : iterable

Takes in an iterable of (Particle, Vector) or (ReferenceFrame, Vector) tuples which represent the force at a point or torque on a frame. Must be either a non-empty iterable of tuples or None which corresponds to a system with no constraints.

**Explanation**

Returns \((Fr, Fr^*)\). In the case where auxiliary generalized speeds are present (say, \( s \) auxiliary speeds, \( o \) generalized speeds, and \( m \) motion constraints) the length of the returned vectors will be \( o - m + s \) in length. The first \( o - m \) equations will be the constrained Kane’s equations, then the \( s \) auxiliary Kane’s equations. These auxiliary equations can be accessed with the auxiliary_eqs property.

**kindiffdict()**

Returns a dictionary mapping \( q' \) to \( u \).

**linearize**, *(new_method=None, **kwargs)*

Linearize the equations of motion about a symbolic operating point.

**Explanation**

If kwarg \( A_and_B \) is False (default), returns \( M, A, B, r \) for the linearized form, \( M*[q', u']^T = A*[q_ind, u_ind]^T + B*r \).

If kwarg \( A_and_B \) is True, returns \( A, B, r \) for the linearized form \( dx = A*x + B*r \), where \( x = [q_ind, u_ind]^T \). Note that this is computationally intensive if there are many symbolic parameters. For this reason, it may be more desirable to use the default \( A_and_B=False \), returning \( M, A, \) and \( B \). Values may then be substituted in to these matrices, and the state space form found as \( A = P^T*M.inv()*A, B = P^T*M.inv()*B, \) where \( P = \text{Linearizer.perm_mat} \).

In both cases, \( r \) is found as all dynamicsymbols in the equations of motion that are not part of \( q, u, q' \), or \( u' \). They are sorted in canonical form.

The operating points may be also entered using the \( \text{op_point} \) kwarg. This takes a dictionary of \{symbol: value\}, or a an iterable of such dictionaries. The values may be numeric or symbolic. The more values you can specify beforehand, the faster this computation will run.

For more documentation, please see the Linearizer class.

**property mass_matrix**

The mass matrix of the system.
property mass_matrix_full

The mass matrix of the system, augmented by the kinematic differential equations in explicit or implicit form.

property mass_matrix_kin

The kinematic “mass matrix” $k_{kq}$ of the system.

rhs(inv_method=None)

Returns the system’s equations of motion in first order form. The output is the right hand side of:

$$
\begin{align*}
\dot{x} &= \begin{bmatrix} \dot{q} \\ \dot{u} \end{bmatrix} := f(q, u, r, p, t) \\
\end{align*}
$$

The right hand side is what is needed by most numerical ODE integrators.

Parameters

inv_method : str

The specific sympy inverse matrix calculation method to use. For a list of valid methods, see inv() (page 1340)

to_linearizer()

Returns an instance of the Linearizer class, initiated from the data in the Kane's Method class. This may be more desirable than using the linearize class method, as the Linearizer object will allow more efficient recalculation (i.e. about varying operating points).

class sympy.physics.mechanics.lagrange.LagrangesMethod(Lagrangian, qs, forcelist=None, bodies=None, frame=None, hol_coneqs=None, nonhol_coneqs=None)

Lagrange’s method object.

Explanation

This object generates the equations of motion in a two step procedure. The first step involves the initialization of LagrangesMethod by supplying the Lagrangian and the generalized coordinates, at the bare minimum. If there are any constraint equations, they can be supplied as keyword arguments. The Lagrange multipliers are automatically generated and are equal in number to the constraint equations. Similarly any non-conservative forces can be supplied in an iterable (as described below and also shown in the example) along with a ReferenceFrame. This is also discussed further in the __init__ method.
Examples

This is a simple example for a one degree of freedom translational spring-mass-damper. In this example, we first need to do the kinematics. This involves creating generalized coordinates and their derivatives. Then we create a point and set its velocity in a frame.

```python
>>> from sympy.physics.mechanics import LagrangesMethod, Lagrangian
>>> from sympy.physics.mechanics import ReferenceFrame, Particle, Point
>>> from sympy.physics.mechanics import dynamicsymbols
>>> from sympy import symbols

>>> q = dynamicsymbols('q')
>>> qd = dynamicsymbols('q', 1)
>>> m, k, b = symbols('m k b')
>>> N = ReferenceFrame('N')
>>> P = Point('P')
>>> P.set_vel(N, qd * N.x)
```

We need to then prepare the information as required by LagrangesMethod to generate equations of motion. First we create the Particle, which has a point attached to it. Following this the lagrangian is created from the kinetic and potential energies. Then, an iterable of nonconservative forces/torques must be constructed, where each item is a (Point, Vector) or (ReferenceFrame, Vector) tuple, with the Vectors representing the nonconservative forces or torques.

```python
>>> Pa = Particle('Pa', P, m)
>>> Pa.potential_energy = k * q**2 / 2.0
>>> L = Lagrangian(N, Pa)
>>> fl = [(P, -b * qd * N.x)]
```

Finally we can generate the equations of motion. First we create the LagrangesMethod object. To do this one must supply the Lagrangian, and the generalized coordinates. The constraint equations, the force list, and the inertial frame may also be provided, if relevant. Next we generate Lagrange’s equations of motion, such that: Lagrange’s equations of motion = 0. We have the equations of motion at this point.

```python
>>> l = LagrangesMethod(L, [q], forcelist = fl, frame = N)
>>> print(l.form_lagranges_equations())
Matrix([[b*Derivative(q(t), t) + 1.0*k*q(t) + m*Derivative(q(t), (t, 2))]])
```

We can also solve for the states using the ‘rhs’ method.

```python
>>> print(l.rhs())
Matrix([[Derivative(q(t), t)], [(-b*Derivative(q(t), t) - 1.0*k*q(t))/m]])
```

Please refer to the docstrings on each method for more details.
Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>q, u</td>
<td>(Matrix) Matrices of the generalized coordinates and speeds</td>
</tr>
<tr>
<td>loads</td>
<td>(iterable) Iterable of (Point, vector) or (ReferenceFrame, vector) tuples</td>
</tr>
<tr>
<td>describing the forces on the system.</td>
<td></td>
</tr>
<tr>
<td>bodies</td>
<td>(iterable) Iterable containing the rigid bodies and particles of the system.</td>
</tr>
<tr>
<td>mass_matrix</td>
<td>(Matrix) The system’s mass matrix</td>
</tr>
<tr>
<td>forcing</td>
<td>(Matrix) The system’s forcing vector</td>
</tr>
<tr>
<td>mass_matrix_full</td>
<td>(Matrix) The &quot;mass matrix&quot; for the qdot’s, qdoubledot’s, and the lagrange multipliers (lam)</td>
</tr>
<tr>
<td>forcing_full</td>
<td>(Matrix) The forcing vector for the qdot’s, qdoubledot’s and lagrange multipliers (lam)</td>
</tr>
</tbody>
</table>

property forcing

Returns the forcing vector from ‘lagranges_equations’ method.

property forcing_full

Augments qdots to the forcing vector above.

form_lagranges_equations()

Method to form Lagrange’s equations of motion.

Returns a vector of equations of motion using Lagrange’s equations of the second kind.

linearize(q_ind=None, qd_ind=None, q_dep=None, qd_dep=None, **kwargs)

Linearize the equations of motion about a symbolic operating point.

Explanation

If kwarg A and B is False (default), returns M, A, B, r for the linearized form, M*[q’, u’]^T = A*[q_ind, u_ind]^T + B*r.

If kwarg A and B is True, returns A, B, r for the linearized form dx = A*x + B*r, where x = [q_ind, u_ind]^T. Note that this is computationally intensive if there are many symbolic parameters. For this reason, it may be more desirable to use the default A and B=False, returning M, A, and B. Values may then be substituted in to these matrices, and the state space form found as A = P*T*M.inv()*A, B = P*T*M.inv()*B, where P = Linearizer:perm_mat.

In both cases, r is found as all dynamicsymbols in the equations of motion that are not part of q, u, q’, or u’. They are sorted in canonical form.

The operating points may be also entered using the op_point kwarg. This takes a dictionary of {symbol: value}, or a an iterable of such dictionaries. The values may be numeric or symbolic. The more values you can specify beforehand, the faster this computation will run.

For more documentation, please see the Linearizer class.

property mass_matrix

Returns the mass matrix, which is augmented by the Lagrange multipliers, if necessary.
**Explanation**

If the system is described by ‘n’ generalized coordinates and there are no constraint equations then an n X n matrix is returned.

If there are ‘n’ generalized coordinates and ‘m’ constraint equations have been supplied during initialization then an n X (n+m) matrix is returned. The (n + m - 1)th and (n + m)th columns contain the coefficients of the Lagrange multipliers.

**property mass_matrix_full**

Augments the coefficients of qdots to the mass_matrix.

**rhs**(inv_method=None, **kwargs)

Returns equations that can be solved numerically.

**Parameters**

inv_method : str

The specific sympy inverse matrix calculation method to use. For a list of valid methods, see inv() (page 1340)

**solve_multipliers**(op_point=None, sol_type='dict')

Solves for the values of the lagrange multipliers symbolically at the specified operating point.

**Parameters**

op_point : dict or iterable of dicts, optional

Point at which to solve at. The operating point is specified as a dictionary or iterable of dictionaries of {symbol: value}. The value may be numeric or symbolic itself.

sol_type : str, optional

Solution return type. Valid options are: - ‘dict’: A dict of {symbol : value} (default) - 'Matrix': An ordered column matrix of the solution

**to_linearizer**(q_ind=None, qd_ind=None, q_dep=None, qd_dep=None)

Returns an instance of the Linearizer class, initiated from the data in the Lagranges-Method class. This may be more desirable than using the linearize class method, as the Linearizer object will allow more efficient recalculation (i.e. about varying operating points).

**Parameters**

q_ind, qd_ind : array_like, optional

The independent generalized coordinates and speeds.

q_dep, qd_dep : array_like, optional

The dependent generalized coordinates and speeds.
class sympy.physics.mechanics.joint.Joint(name, parent, child, coordinates=None, speeds=None, parent_point=None, child_point=None, parent_axis=None, child_axis=None, parent_interframe=None, child_interframe=None, parent_joint_pos=None, child_joint_pos=None)

Abstract base class for all specific joints.

**Parameters**

- **name** : string
  A unique name for the joint.

- **parent** : Body
  The parent body of joint.

- **child** : Body
  The child body of joint.

- **coordinates** : iterable of dynamicsymbols, optional
  Generalized coordinates of the joint.

- **speeds** : iterable of dynamicsymbols, optional
  Generalized speeds of joint.

- **parent_point** : Point or Vector, optional
  Attachment point where the joint is fixed to the parent body. If a vector is provided, then the attachment point is computed by adding the vector to the body’s mass center. The default value is the parent’s mass center.

- **child_point** : Point or Vector, optional
  Attachment point where the joint is fixed to the child body. If a vector is provided, then the attachment point is computed by adding the vector to the body’s mass center. The default value is the child’s mass center.

- **parent_axis** : Vector, optional
  Deprecated since version 1.12: Axis fixed in the parent body which aligns with an axis fixed in the child body. The default is the x axis of parent’s reference frame. For more information on this deprecation, see *New Joint intermediate frames* (page 215).

- **child_axis** : Vector, optional
  Deprecated since version 1.12: Axis fixed in the child body which aligns with an axis fixed in the parent body. The default is the x axis of child’s reference frame. For more information on this deprecation, see *New Joint intermediate frames* (page 215).
**parent_interframe** : ReferenceFrame, optional

Intermediate frame of the parent body with respect to which the joint transformation is formulated. If a Vector is provided then an inter-frame is created which aligns its X axis with the given vector. The default value is the parent’s own frame.

**child_interframe** : ReferenceFrame, optional

Intermediate frame of the child body with respect to which the joint transformation is formulated. If a Vector is provided then an inter-frame is created which aligns its X axis with the given vector. The default value is the child’s own frame.

**parent_joint_pos** : Point or Vector, optional

Deprecated since version 1.12: This argument is replaced by parent point and will be removed in a future version. See Change in joint attachment point argument (page 216) for more information.

**child_joint_pos** : Point or Vector, optional

Deprecated since version 1.12: This argument is replaced by child_point and will be removed in a future version. See Change in joint attachment point argument (page 216) for more information.

**Explanation**

A joint subtracts degrees of freedom from a body. This is the base class for all specific joints and holds all common methods acting as an interface for all joints. Custom joint can be created by inheriting Joint class and defining all abstract functions.

The abstract methods are:

- `_generate_coordinates`
- `_generate_speeds`
- `_orient_frames`
- `_set_angular_velocity`
- `_set_linear_velocity`

**Notes**

When providing a vector as the intermediate frame, a new intermediate frame is created which aligns its X axis with the provided vector. This is done with a single fixed rotation about a rotation axis. This rotation axis is determined by taking the cross product of the body.x axis with the provided vector. In the case where the provided vector is in the -body.x direction, the rotation is done about the body.y axis.
## Attributes

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>(string) The joint’s name.</td>
</tr>
<tr>
<td>parent</td>
<td>(Body) The joint’s parent body.</td>
</tr>
<tr>
<td>child</td>
<td>(Body) The joint’s child body.</td>
</tr>
<tr>
<td>coordinates</td>
<td>(Matrix) Matrix of the joint’s generalized coordinates.</td>
</tr>
<tr>
<td>speeds</td>
<td>(Matrix) Matrix of the joint’s generalized speeds.</td>
</tr>
<tr>
<td>parent_point</td>
<td>(Point) Attachment point where the joint is fixed to the parent body.</td>
</tr>
<tr>
<td>child_point</td>
<td>(Point) Attachment point where the joint is fixed to the child body.</td>
</tr>
<tr>
<td>parent_axis</td>
<td>(Vector) The axis fixed in the parent frame that represents the joint.</td>
</tr>
<tr>
<td>child_axis</td>
<td>(Vector) The axis fixed in the child frame that represents the joint.</td>
</tr>
<tr>
<td>parent_interframe</td>
<td>(ReferenceFrame) Intermediate frame of the parent body with respect to which the joint transformation is formulated.</td>
</tr>
<tr>
<td>child_interframe</td>
<td>(ReferenceFrame) Intermediate frame of the child body with respect to which the joint transformation is formulated.</td>
</tr>
<tr>
<td>kdes</td>
<td>(Matrix) Kinematical differential equations of the joint.</td>
</tr>
</tbody>
</table>

**property child**
- Child body of Joint.

**property child_axis**
- The axis of child frame.

**property child_point**
- Attachment point where the joint is fixed to the child body.

**property coordinates**
- Matrix of the joint’s generalized coordinates.

**property kdes**
- Kinematical differential equations of the joint.

**property name**
- Name of the joint.

**property parent**
- Parent body of Joint.

**property parent_axis**
- The axis of parent frame.

**property parent_point**
- Attachment point where the joint is fixed to the parent body.

**property speeds**
- Matrix of the joint’s generalized speeds.
class sympy.physics.mechanics.joint.PinJoint(name, parent, child, 
coordinates=None, speeds=None, 
parent_point=None, parent_axis=None, 
child_point=None, child_axis=None, 
parent_interframe=None, child_interframe=None, 
joint_axis=None, 
parent_joint_pos=None, child_joint_pos=None)

Pin (Revolute) Joint.

**Parameters**

- **name**: string
  A unique name for the joint.

- **parent**: Body
  The parent body of joint.

- **child**: Body
  The child body of joint.

- **coordinates**: dynamicsymbol, optional
  Generalized coordinates of the joint.

- **speeds**: dynamicsymbol, optional
  Generalized speeds of joint.
**parent_point** : Point or Vector, optional
Attachment point where the joint is fixed to the parent body. If a vector is provided, then the attachment point is computed by adding the vector to the body’s mass center. The default value is the parent’s mass center.

**child_point** : Point or Vector, optional
Attachment point where the joint is fixed to the child body. If a vector is provided, then the attachment point is computed by adding the vector to the body’s mass center. The default value is the child’s mass center.

**parent_axis** : Vector, optional
Deprecated since version 1.12: Axis fixed in the parent body which aligns with an axis fixed in the child body. The default is the x axis of parent’s reference frame. For more information on this deprecation, see *New Joint intermediate frames* (page 215).

**child_axis** : Vector, optional
Deprecated since version 1.12: Axis fixed in the child body which aligns with an axis fixed in the parent body. The default is the x axis of child’s reference frame. For more information on this deprecation, see *New Joint intermediate frames* (page 215).

**parent_interframe** : ReferenceFrame, optional
Intermediate frame of the parent body with respect to which the joint transformation is formulated. If a Vector is provided then an interframe is created which aligns its X axis with the given vector. The default value is the parent’s own frame.

**child_interframe** : ReferenceFrame, optional
Intermediate frame of the child body with respect to which the joint transformation is formulated. If a Vector is provided then an interframe is created which aligns its X axis with the given vector. The default value is the child’s own frame.

**joint_axis** : Vector
The axis about which the rotation occurs. Note that the components of this axis are the same in the parent_interframe and child_interframe.

**parent_joint_pos** : Point or Vector, optional
Deprecated since version 1.12: This argument is replaced by parent_point and will be removed in a future version. See *Change in joint attachment point argument* (page 216) for more information.

**child_joint_pos** : Point or Vector, optional
Deprecated since version 1.12: This argument is replaced by child_point and will be removed in a future version. See *Change in joint attachment point argument* (page 216) for more information.
**Explanation**

A pin joint is defined such that the joint rotation axis is fixed in both the child and parent and the location of the joint is relative to the mass center of each body. The child rotates an angle, $\theta$, from the parent about the rotation axis and has a simple angular speed, $\omega$, relative to the parent. The direction cosine matrix between the child interframe and parent interframe is formed using a simple rotation about the joint axis. The page on the joints framework gives a more detailed explanation of the intermediate frames.

**Examples**

A single pin joint is created from two bodies and has the following basic attributes:

```python
>>> from sympy.physics.mechanics import Body, PinJoint
>>> parent = Body('P')
>>> child = Body('C')
>>> joint = PinJoint('PC', parent, child)
```

To further demonstrate the use of the pin joint, the kinematics of simple double pendulum that rotates about the Z axis of each connected body can be created as follows.
First create bodies to represent the fixed ceiling and one to represent each pendulum bob.

```python
>>> ceiling = Body('C')
>>> upper_bob = Body('U')
>>> lower_bob = Body('L')
```

The first joint will connect the upper bob to the ceiling by a distance of \(l_1\) and the joint axis will be about the Z axis for each body.

```python
>>> ceiling_joint = PinJoint('P1', ceiling, upper_bob,
... child_point=-l1*upper_bob.frame.x,
... joint_axis=ceiling.frame.z)
```

The second joint will connect the lower bob to the upper bob by a distance of \(l_2\) and the joint axis will also be about the Z axis for each body.

```python
>>> pendulum_joint = PinJoint('P2', upper_bob, lower_bob,
... child_point=-l2*lower_bob.frame.x,
... joint_axis=upper_bob.frame.z)
```

Once the joints are established the kinematics of the connected bodies can be accessed. First the direction cosine matrices of pendulum link relative to the ceiling are found:

```python
>>> upper_bob.frame.dcm(ceiling.frame)
Matrix([%
[cos(q_P1(t)), sin(q_P1(t)), 0],
[-sin(q_P1(t)), cos(q_P1(t)), 0],
[0, 0, 1]])
```

```python
>>> trigsimp(lower_bob.frame.dcm(ceiling.frame))
Matrix([%
[cos(q_P1(t) + q_P2(t)), sin(q_P1(t) + q_P2(t)), 0],
[-sin(q_P1(t) + q_P2(t)), cos(q_P1(t) + q_P2(t)), 0],
[0, 0, 1]])
```

The position of the lower bob’s masscenter is found with:

```python
>>> lower_bob.masscenter.pos_from(ceiling.masscenter)
l1*U_frame.x + l2*L_frame.x
```

The angular velocities of the two pendulum links can be computed with respect to the ceiling.

```python
>>> upper_bob.frame.ang_vel_in(ceiling.frame)
u_P1(t)*C_frame.z
```

```python
>>> lower_bob.frame.ang_vel_in(ceiling.frame)
u_P1(t)*C_frame.z + u_P2(t)*U_frame.z
```

And finally, the linear velocities of the two pendulum bobs can be computed with respect to the ceiling.
>>> upper_bob.masscenter.vel(ceiling.frame)
l1*u_P1(t)*U_frame.y
>>> lower_bob.masscenter.vel(ceiling.frame)
l1*u_P1(t)*U_frame.y + l2*(u_P1(t) + u_P2(t))*L_frame.y

Attributes

<table>
<thead>
<tr>
<th>name</th>
<th>(string) The joint’s name.</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent</td>
<td>(Body) The joint’s parent body.</td>
</tr>
<tr>
<td>child</td>
<td>(Body) The joint’s child body.</td>
</tr>
<tr>
<td>coordinates</td>
<td>(Matrix) Matrix of the joint’s generalized coordinates. The default value is dynamicsymbols(f'q_{joint.name}').</td>
</tr>
<tr>
<td>speeds</td>
<td>(Matrix) Matrix of the joint’s generalized speeds. The default value is dynamicsymbols(f'u_{joint.name}').</td>
</tr>
<tr>
<td>parent_point</td>
<td>(Point) Attachment point where the joint is fixed to the parent body.</td>
</tr>
<tr>
<td>child_point</td>
<td>(Point) Attachment point where the joint is fixed to the child body.</td>
</tr>
<tr>
<td>parent_axis</td>
<td>(Vector) The axis fixed in the parent frame that represents the joint.</td>
</tr>
<tr>
<td>child_axis</td>
<td>(Vector) The axis fixed in the child frame that represents the joint.</td>
</tr>
<tr>
<td>parent_interframe</td>
<td>(ReferenceFrame) Intermediate frame of the parent body with respect to which the joint transformation is formulated.</td>
</tr>
<tr>
<td>child_interframe</td>
<td>(ReferenceFrame) Intermediate frame of the child body with respect to which the joint transformation is formulated.</td>
</tr>
<tr>
<td>joint_axis</td>
<td>(Vector) The axis about which the rotation occurs. Note that the components of this axis are the same in the parent_interframe and child_interframe.</td>
</tr>
<tr>
<td>kdes</td>
<td>(Matrix) Kinematical differential equations of the joint.</td>
</tr>
</tbody>
</table>

property joint_axis

Axis about which the child rotates with respect to the parent.

class sympy.physics.mechanics.joint.PrismaticJoint(name, parent, child, coordinates=None, speeds=None, parent_point=None, child_point=None, parent_axis=None, child_axis=None, parent_interframe=None, child_interframe=None, joint_axis=None, parent_joint_pos=None, child_joint_pos=None)

Prismatic (Sliding) Joint.
Parameters

name : string
A unique name for the joint.

parent : Body
The parent body of joint.

child : Body
The child body of joint.

coordinates : dynamicsymbol, optional
Generalized coordinates of the joint. The default value is
dynamicsymbols(f'q_{joint.name}').

speeds : dynamicsymbol, optional
Generalized speeds of joint. The default value is
dynamicsymbols(f'u_{joint.name}').

parent_point : Point or Vector, optional
Attachment point where the joint is fixed to the parent body. If a
vector is provided, then the attachment point is computed by adding
the vector to the body’s mass center. The default value is the parent’s
mass center.

child_point : Point or Vector, optional
Attachment point where the joint is fixed to the child body. If a vector
is provided, then the attachment point is computed by adding the
vector to the body’s mass center. The default value is the child’s mass center.

**parent_axis** : Vector, optional

Deprecated since version 1.12: Axis fixed in the parent body which aligns with an axis fixed in the child body. The default is the x axis of parent’s reference frame. For more information on this deprecation, see *New Joint intermediate frames* (page 215).

**child_axis** : Vector, optional

Deprecated since version 1.12: Axis fixed in the child body which aligns with an axis fixed in the parent body. The default is the x axis of child’s reference frame. For more information on this deprecation, see *New Joint intermediate frames* (page 215).

**parent_interframe** : ReferenceFrame, optional

Intermediate frame of the parent body with respect to which the joint transformation is formulated. If a Vector is provided then an inter-frame is created which aligns its X axis with the given vector. The default value is the parent’s own frame.

**child_interframe** : ReferenceFrame, optional

Intermediate frame of the child body with respect to which the joint transformation is formulated. If a Vector is provided then an inter-frame is created which aligns its X axis with the given vector. The default value is the child’s own frame.

**joint_axis** : Vector

The axis along which the translation occurs. Note that the components of this axis are the same in the parent_interframe and child_interframe.

**parent_joint_pos** : Point or Vector, optional

Deprecated since version 1.12: This argument is replaced by parent_point and will be removed in a future version. See *Change in joint attachment point argument* (page 216) for more information.

**child_joint_pos** : Point or Vector, optional

Deprecated since version 1.12: This argument is replaced by child_point and will be removed in a future version. See *Change in joint attachment point argument* (page 216) for more information.

**Explanation**

It is defined such that the child body translates with respect to the parent body along the body-fixed joint axis. The location of the joint is defined by two points, one in each body, which coincide when the generalized coordinate is zero. The direction cosine matrix between the parent_interframe and child_interframe is the identity matrix. Therefore, the direction cosine matrix between the parent and child frames is fully defined by the definition of the intermediate frames. The page on the joints framework gives a more detailed explanation of the intermediate frames.
Examples

A single prismatic joint is created from two bodies and has the following basic attributes:

```python
>>> from sympy.physics.mechanics import Body, PrismaticJoint
>>> parent = Body('P')
>>> parent
P
>>> child = Body('C')
>>> child
C
>>> joint = PrismaticJoint('PC', parent, child)
>>> joint
PrismaticJoint: PC parent: P child: C
>>> joint.name
'PC'
>>> joint.parent
P
>>> joint.child
C
>>> joint.parent_point
P_masscenter
>>> joint.child_point
C_masscenter
>>> joint.parent_axis
P_frame.x
>>> joint.child_axis
C_frame.x
>>> joint.coordinates
Matrix([[q_PC(t)])
>>> joint.speeds
Matrix([[u_PC(t)])
>>> joint.child.frame.ang_vel_in(joint.parent.frame)
0
>>> joint.child.frame.dcm(joint.parent.frame)
Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
>>> joint.child_point.pos_from(joint.parent_point)
q_PC(t)*P_frame.x
```

To further demonstrate the use of the prismatic joint, the kinematics of two masses sliding, one moving relative to a fixed body and the other relative to the moving body about the X axis of each connected body can be created as follows.

```python
>>> from sympy.physics.mechanics import PrismaticJoint, Body
```

First create bodies to represent the fixed ceiling and one to represent a particle.

```python
>>> wall = Body('W')
>>> Part1 = Body('P1')
>>> Part2 = Body('P2')
```
The first joint will connect the particle to the ceiling and the joint axis will be about the X axis for each body.

\[
\text{>>> } J1 = \text{PrismaticJoint('J1', wall, Part1)}
\]

The second joint will connect the second particle to the first particle and the joint axis will also be about the X axis for each body.

\[
\text{>>> } J2 = \text{PrismaticJoint('J2', Part1, Part2)}
\]

Once the joint is established the kinematics of the connected bodies can be accessed. First the direction cosine matrices of Part relative to the ceiling are found:

\[
\text{>>> Part1.dcm(wall)}
\text{Matrix(}
\begin{bmatrix}
1, 0, 0, \\
0, 1, 0, \\
0, 0, 1
\end{bmatrix}
\]

\[
\text{>>> Part2.dcm(wall)}
\text{Matrix(}
\begin{bmatrix}
1, 0, 0, \\
0, 1, 0, \\
0, 0, 1
\end{bmatrix}
\]

The position of the particles' mass center is found with:

\[
\text{>>> Part1.masscenter.pos_from(wall.masscenter)}
q_{J1(t)}*W_{frame}.x
\]

\[
\text{>>> Part2.masscenter.pos_from(wall.masscenter)}
q_{J1(t)}*W_{frame}.x + q_{J2(t)}*P1_{frame}.x
\]

The angular velocities of the two particle links can be computed with respect to the ceiling.

\[
\text{>>> Part1.ang_vel_in(wall)}
0
\]

\[
\text{>>> Part2.ang_vel_in(wall)}
0
\]

And finally, the linear velocities of the two particles can be computed with respect to the ceiling.

\[
\text{>>> Part1.masscenter_vel(wall)}
u_{J1(t)}*W_{frame}.x
\]

\[
\text{>>> Part2.masscenter.vel(wall.frame)}
u_{J1(t)}*W_{frame}.x + \text{Derivative}(q_{J2(t)}, t)*P1_{frame}.x
\]
Attributes

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>(string) The joint’s name.</td>
</tr>
<tr>
<td>parent</td>
<td>(Body) The joint’s parent body.</td>
</tr>
<tr>
<td>child</td>
<td>(Body) The joint’s child body.</td>
</tr>
<tr>
<td>coordinates</td>
<td>(Matrix) Matrix of the joint’s generalized coordinates.</td>
</tr>
<tr>
<td>speeds</td>
<td>(Matrix) Matrix of the joint’s generalized speeds.</td>
</tr>
<tr>
<td>parent_point</td>
<td>(Point) Attachment point where the joint is fixed to the parent body.</td>
</tr>
<tr>
<td>child_point</td>
<td>(Point) Attachment point where the joint is fixed to the child body.</td>
</tr>
<tr>
<td>parent_axis</td>
<td>(Vector) The axis fixed in the parent frame that represents the joint.</td>
</tr>
<tr>
<td>child_axis</td>
<td>(Vector) The axis fixed in the child frame that represents the joint.</td>
</tr>
<tr>
<td>parent_interframe</td>
<td>(ReferenceFrame) Intermediate frame of the parent body with respect to which the joint transformation is formulated.</td>
</tr>
<tr>
<td>child_interframe</td>
<td>(ReferenceFrame) Intermediate frame of the child body with respect to which the joint transformation is formulated.</td>
</tr>
<tr>
<td>kdes</td>
<td>(Matrix) Kinematical differential equations of the joint.</td>
</tr>
</tbody>
</table>

**property joint_axis**

Axis along which the child translates with respect to the parent.

```python
class sympy.physics.mechanics.joint.CylindricalJoint(name, parent, child,
rotation_coordinate=None, translation_coordinate=None, rotation_speed=None, translation_speed=None,
parent_point=None, child_point=None, parent_interframe=None, child_interframe=None, joint_axis=None)
```

Cylindrical Joint.
Parameters

**name** : string

A unique name for the joint.

**parent** : Body

The parent body of joint.

**child** : Body

The child body of joint.

**rotation_coordinate** : dynamicsymbol, optional

Generalized coordinate corresponding to the rotation angle. The default value is `dynamicsymbols(f'q0_{joint.name}')`.

**translation_coordinate** : dynamicsymbol, optional

Generalized coordinate corresponding to the translation distance. The default value is `dynamicsymbols(f'q1_{joint.name}')`.

**rotation_speed** : dynamicsymbol, optional

Generalized speed corresponding to the angular velocity. The default value is `dynamicsymbols(f'u0_{joint.name}')`.

**translation_speed** : dynamicsymbol, optional

Generalized speed corresponding to the translation velocity. The default value is `dynamicsymbols(f'u1_{joint.name}')`.

**parent_point** : Point or Vector, optional

Attachment point where the joint is fixed to the parent body. If a vector is provided, then the attachment point is computed by adding the vector to the body’s mass center. The default value is the parent’s mass center.

**child_point** : Point or Vector, optional
Attachment point where the joint is fixed to the child body. If a vector is provided, then the attachment point is computed by adding the vector to the body’s mass center. The default value is the child’s mass center.

**parent_interframe**: ReferenceFrame, optional

Intermediate frame of the parent body with respect to which the joint transformation is formulated. If a Vector is provided then an interframe is created which aligns its X axis with the given vector. The default value is the parent’s own frame.

**child_interframe**: ReferenceFrame, optional

Intermediate frame of the child body with respect to which the joint transformation is formulated. If a Vector is provided then an interframe is created which aligns its X axis with the given vector. The default value is the child’s own frame.

**joint_axis**: Vector, optional

The rotation as well as translation axis. Note that the components of this axis are the same in the parent_interframe and child_interframe.

**Explanation**

A cylindrical joint is defined such that the child body both rotates about and translates along the body-fixed joint axis with respect to the parent body. The joint axis is both the rotation axis and translation axis. The location of the joint is defined by two points, one in each body, which coincide when the generalized coordinate corresponding to the translation is zero. The direction cosine matrix between the child interframe and parent interframe is formed using a simple rotation about the joint axis. The page on the joints framework gives a more detailed explanation of the intermediate frames.

**Examples**

A single cylindrical joint is created between two bodies and has the following basic attributes:

```python
>>> from sympy.physics.mechanics import Body, CylindricalJoint
>>> parent = Body('P')
>>> parent
P
>>> child = Body('C')
>>> child
C
>>> joint = CylindricalJoint('PC', parent, child)
>>> joint
CylindricalJoint: PC parent: P child: C
>>> joint.name
'PC'
>>> joint.parent
P
>>> joint.child
```
C
>>> joint.parent_point
P_masscenter
>>> joint.child_point
C_masscenter
>>> joint.parent_axis
P_frame.x
>>> joint.child_axis
C_frame.x
>>> joint.coordinates
Matrix([[q0_PC(t)],
        [q1_PC(t)]])
>>> joint.speeds
Matrix([[u0_PC(t)],
        [u1_PC(t)]])
>>> joint.child.frame.ang_vel_in(joint.parent.frame)
u0_PC(t)*P_frame.x
>>> joint.child.frame.dcm(joint.parent.frame)
Matrix([[1, 0, 0],
        [0, cos(q0_PC(t)), sin(q0_PC(t))],
        [0, -sin(q0_PC(t)), cos(q0_PC(t))]])
>>> joint.child_point.pos_from(joint.parent_point)
q1_PC(t)*P_frame.x
>>> child.masscenter.vel(parent.frame)
u1_PC(t)*P_frame.x

To further demonstrate the use of the cylindrical joint, the kinematics of two cylindrical joints perpendicular to each other can be created as follows.

```python
>>> from sympy import symbols
>>> from sympy.physics.mechanics import Body, CylindricalJoint
>>> r, l, w = symbols('r l w')
```

First create bodies to represent the fixed floor with a fixed pole on it. The second body represents a freely moving tube around that pole. The third body represents a solid flag freely translating along and rotating around the Y axis of the tube.

```python
>>> floor = Body('floor')
>>> tube = Body('tube')
>>> flag = Body('flag')
```

The first joint will connect the first tube to the floor with it translating along and rotating around the Z axis of both bodies.

```python
>>> floor_joint = CylindricalJoint('C1', floor, tube, joint_axis=floor.z)
```

The second joint will connect the tube perpendicular to the flag along the Y axis of both the tube and the flag, with the joint located at a distance $r$ from the tube’s center of mass and a combination of the distances $l$ and $w$ from the flag’s center of mass.
\begin{verbatim}
>>> flag_joint = CylindricalJoint('C2', tube, flag,
...                                 parent_point=r * tube.y,
...                                 child_point=-w * flag.y + l * flag.z,
...                                 joint_axis=tube.y)

Once the joints are established the kinematics of the connected bodies can be accessed. First the direction cosine matrices of both the body and the flag relative to the floor are found:

```python
>>> tube.dcm(floor)
Matrix([[cos(q0_C1(t)), sin(q0_C1(t)), 0],
 [-sin(q0_C1(t)), cos(q0_C1(t)), 0],
 [0, 0, 1]])

>>> flag.dcm(floor)
Matrix([[cos(q0_C1(t))*cos(q0_C2(t)), sin(q0_C1(t))*cos(q0_C2(t)), -sin(q0_→C2(t))],
 [-sin(q0_C1(t)), cos(q0_C1(t)), 0],
 [sin(q0_C2(t))*cos(q0_C1(t)), sin(q0_C1(t))*sin(q0_C2(t)), cos(q0_→C2(t))]])
```

The position of the flag's center of mass is found with:

```python
>>> flag.masscenter.pos_from(floor.masscenter)
q1_C1(t)*floor_frame.z + (r + q1_C2(t))*tube_frame.y + w*flag_frame.y - l*flag_frame.z
```

The angular velocities of the two tubes can be computed with respect to the floor.

```python
>>> tube.ang_vel_in(floor)
u0_C1(t)*floor_frame.z

>>> flag.ang_vel_in(floor)
u0_C1(t)*floor_frame.z + u0_C2(t)*tube_frame.y
```

Finally, the linear velocities of the two tube centers of mass can be computed with respect to the floor, while expressed in the tube’s frame.

```python
>>> tube.masscenter.vel(floor.frame).to_matrix(tube.frame)
Matrix([[0],
 [0],
 [u1_C1(t)]])

>>> flag.masscenter.vel(floor.frame).to_matrix(tube.frame).simplify()
Matrix([[-l*u0_C2(t)*cos(q0_C2(t)) - r*u0_C1(t) - w*u0_C1(t) - q1_C2(t)*u0_→C1(t)],
 [-l*u0_C1(t)*sin(q0_C2(t)) + Derivative(q1_C2(t), t)],
 [l*u0_C2(t)*sin(q0_C2(t)) + u1_→C1(t)]])
```
\end{verbatim}
Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>(string) The joint’s name.</td>
</tr>
<tr>
<td>parent</td>
<td>(Body) The joint’s parent body.</td>
</tr>
<tr>
<td>child</td>
<td>(Body) The joint’s child body.</td>
</tr>
<tr>
<td>rotation_coordinate</td>
<td>(dynamicsymbol) Generalized coordinate corresponding to the rotation angle.</td>
</tr>
<tr>
<td>translation_coordinate</td>
<td>(dynamicsymbol) Generalized coordinate corresponding to the translation distance.</td>
</tr>
<tr>
<td>rotation_speed</td>
<td>(dynamicsymbol) Generalized speed corresponding to the angular velocity.</td>
</tr>
<tr>
<td>translation_speed</td>
<td>(dynamicsymbol) Generalized speed corresponding to the translation velocity.</td>
</tr>
<tr>
<td>coordinates</td>
<td>(Matrix) Matrix of the joint’s generalized coordinates.</td>
</tr>
<tr>
<td>speeds</td>
<td>(Matrix) Matrix of the joint’s generalized speeds.</td>
</tr>
<tr>
<td>parent_point</td>
<td>(Point) Attachment point where the joint is fixed to the parent body.</td>
</tr>
<tr>
<td>child_point</td>
<td>(Point) Attachment point where the joint is fixed to the child body.</td>
</tr>
<tr>
<td>parent_interframe</td>
<td>(ReferenceFrame) Intermediate frame of the parent body with respect to which the joint transformation is formulated.</td>
</tr>
<tr>
<td>child_interframe</td>
<td>(ReferenceFrame) Intermediate frame of the child body with respect to which the joint transformation is formulated.</td>
</tr>
<tr>
<td>kdes</td>
<td>(Matrix) Kinematical differential equations of the joint.</td>
</tr>
<tr>
<td>joint_axis</td>
<td>(Vector) The axis of rotation and translation.</td>
</tr>
</tbody>
</table>

**property joint_axis**
Axis about and along which the rotation and translation occurs.

**property rotation_coordinate**
Generalized coordinate corresponding to the rotation angle.

**property rotation_speed**
Generalized speed corresponding to the angular velocity.

**property translation_coordinate**
Generalized coordinate corresponding to the translation distance.

**property translation_speed**
Generalized speed corresponding to the translation velocity.

```python
class sympy.physics.mechanics.joint.PlanarJoint(name, parent, child,
rotation_coordinate=None, planar_coordinates=None,
rotation_speed=None, planar_speeds=None,
parent_point=None, child_point=None,
parent_interframe=None, child_interframe=None)
```

Planar Joint.
Parameters

**name** : string
A unique name for the joint.

**parent** : Body
The parent body of joint.

**child** : Body
The child body of joint.

**rotation_coordinate** : dynamicsymbol, optional
Generalized coordinate corresponding to the rotation angle. The default value is `dynamicsymbols(f'q0_{joint.name}')`.

**planar_coordinates** : iterable of dynamicsymbols, optional
Two generalized coordinates used for the planar translation. The default value is `dynamicsymbols(f'q1_{joint.name} q2_{joint.name}')`.

**rotation_speed** : dynamicsymbol, optional
Generalized speed corresponding to the angular velocity. The default value is `dynamicsymbols(f'u0_{joint.name}')`.

**planar_speeds** : dynamicsymbols, optional
Two generalized speeds used for the planar translation velocity. The default value is `dynamicsymbols(f'u1_{joint.name} u2_{joint.name}')`.

**parent_point** : Point or Vector, optional
Attachment point where the joint is fixed to the parent body. If a vector is provided, then the attachment point is computed by adding the vector to the body’s mass center. The default value is the parent’s mass center.
child_point : Point or Vector, optional

Attachment point where the joint is fixed to the child body. If a vector is provided, then the attachment point is computed by adding the vector to the body's mass center. The default value is the child's mass center.

parent_interframe : ReferenceFrame, optional

Intermediate frame of the parent body with respect to which the joint transformation is formulated. If a Vector is provided then an inter-frame is created which aligns its X axis with the given vector. The default value is the parent's own frame.

child_interframe : ReferenceFrame, optional

Intermediate frame of the child body with respect to which the joint transformation is formulated. If a Vector is provided then an inter-frame is created which aligns its X axis with the given vector. The default value is the child's own frame.

Explanation

A planar joint is defined such that the child body translates over a fixed plane of the parent body as well as rotate about the rotation axis, which is perpendicular to that plane. The origin of this plane is the parent_point and the plane is spanned by two nonparallel planar vectors. The location of the child_point is based on the planar vectors ($\vec{v}_1, \vec{v}_2$) and generalized coordinates ($q_1, q_2$), i.e. $\vec{r} = q_1\vec{v}_1 + q_2\vec{v}_2$. The direction cosine matrix between the child_interframe and parent_interframe is formed using a simple rotation ($q_0$) about the rotation axis.

In order to simplify the definition of the PlanarJoint, the rotation_axis and planar_vectors are set to be the unit vectors of the parent_interframe according to the table below. This ensures that you can only define these vectors by creating a separate frame and supplying that as the interframe. If you however would only like to supply the normals of the plane with respect to the parent and child bodies, then you can also supply those to the parent_interframe and child_interframe arguments. An example of both of these cases is in the examples section below and the page on the joints framework provides a more detailed explanation of the intermediate frames.

<table>
<thead>
<tr>
<th>rotation_axis</th>
<th>parent_interframe.x</th>
</tr>
</thead>
<tbody>
<tr>
<td>planar_vectors[0]</td>
<td>parent_interframe.y</td>
</tr>
<tr>
<td>planar_vectors[1]</td>
<td>parent_interframe.z</td>
</tr>
</tbody>
</table>

Examples

A single planar joint is created between two bodies and has the following basic attributes:

```python
>>> from sympy.physics.mechanics import Body, PlanarJoint
>>> parent = Body('P')
>>> parent
P
>>> child = Body('C')
```
```python
>>> child
C
>>> joint = PlanarJoint('PC', parent, child)
>>> joint
PlanarJoint: PC parent: P child: C
>>> joint.name
'PC'
>>> joint.parent
P
>>> joint.child
C
>>> joint.parent_point
P_masscenter
>>> joint.child_point
C_masscenter
>>> joint.rotation_axis
P_frame.x
>>> joint.planar_vectors
[P_frame.y, P_frame.z]
>>> joint.rotation_coordinate
q0_PC(t)
>>> joint.planar_coordinates
Matrix([[q1_PC(t)],
 [q2_PC(t)]])
>>> joint.coordinates
Matrix([[q0_PC(t)],
 [q1_PC(t)],
 [q2_PC(t)]])
>>> joint.rotation_speed
u0_PC(t)
>>> joint.planar_speeds
Matrix([[u1_PC(t)],
 [u2_PC(t)]])
>>> joint.speeds
Matrix([[u0_PC(t)],
 [u1_PC(t)],
 [u2_PC(t)]]))
>>> joint.child.frame.ang_vel_in(joint.parent.frame)
u0_PC(t)*P_frame.x
>>> joint.child.frame.dcm(joint.parent.frame)
Matrix([[1, 0, 0],
 [0, cos(q0_PC(t)), sin(q0_PC(t))],
 [0, -sin(q0_PC(t)), cos(q0_PC(t))]])
>>> joint.child_point.pos_from(joint.parent_point)
q1_PC(t)*P_frame.y + q2_PC(t)*P_frame.z
>>> child.masscenter.vel(parent.frame)
u1_PC(t)*P_frame.y + u2_PC(t)*P_frame.z
```
To further demonstrate the use of the planar joint, the kinematics of a block sliding on a slope, can be created as follows.

```python
>>> from sympy import symbols
>>> from sympy.physics.mechanics import PlanarJoint, Body, ReferenceFrame
>>> a, d, h = symbols('a d h')
```

First create bodies to represent the slope and the block.

```python
>>> ground = Body('G')
>>> block = Body('B')
```

To define the slope you can either define the plane by specifying the `planar_vectors` or/and the `rotation_axis`. However it is advisable to create a rotated intermediate frame, so that the `parent_vectors` and `rotation_axis` will be the unit vectors of this intermediate frame.

```python
>>> slope = ReferenceFrame('A')
>>> slope.orient_axis(ground.frame, ground.y, a)
```

The planar joint can be created using these bodies and intermediate frame. We can specify the origin of the slope to be d above the slope’s center of mass and the block’s center of mass to be a distance h above the slope’s surface. Note that we can specify the normal of the plane using the rotation axis argument.

```python
>>> joint = PlanarJoint('PC', ground, block, parent_point=d * ground.x,
... child_point=-h * block.x, parent_...
... child_frame=slope)
```

Once the joint is established the kinematics of the bodies can be accessed. First the `rotation_axis`, which is normal to the plane and the `plane_vectors`, can be found.

```python
>>> joint.rotation_axis
A.x
>>> joint.planar_vectors
[A.y, A.z]
```

The direction cosine matrix of the block with respect to the ground can be found with:

```python
>>> block.dcm(ground)
Matrix([[cos(a), 0, -sin(a)],
[sin(a)*sin(q0_PC(t)), cos(q0_PC(t)), sin(q0_PC(t))*cos(a)],
[sin(a)*cos(q0_PC(t)), -sin(q0_PC(t)), cos(a)*cos(q0_PC(t))]])
```

The angular velocity of the block can be computed with respect to the ground.

```python
>>> block.ang_vel_in(ground)
u0_PC(t)*A.x
```

The position of the block’s center of mass can be found with:

```python
>>> block.masscenter.pos_from(ground.masscenter)
d*G_frame.x + h*B_frame.x + q1_PC(t)*A.y + q2_PC(t)*A.z
```
Finally, the linear velocity of the block’s center of mass can be computed with respect to the ground.

```
>>> block.masscenter.vel(ground.frame)
ul_PC(t)*A.y + u2_PC(t)*A.z
```

In some cases it could be your preference to only define the normals of the plane with respect to both bodies. This can most easily be done by supplying vectors to the interframe arguments. What will happen in this case is that an interframe will be created with its x axis aligned with the provided vector. For a further explanation of how this is done see the notes of the Joint class. In the code below, the above example (with the block on the slope) is recreated by supplying vectors to the interframe arguments. Note that the previously described option is however more computationally efficient, because the algorithm now has to compute the rotation angle between the provided vector and the 'x' axis.

```
>>> from sympy import symbols, cos, sin
>>> from sympy.physics.mechanics import PlanarJoint, Body
>>> a, d, h = symbols('a d h')
>>> ground = Body('G')
>>> block = Body('B')
>>> joint = PlanarJoint(
... 'PC', ground, block, parent_point=d * ground.x,
... child_point=-h * block.x, child_interframe=block.x,
... parent_interframe=cos(a) * ground.x + sin(a) * ground.z)
>>> block.dcm(ground).simplify()
Matrix([
 [cos(a), 0, sin(a)],
 [-sin(a)*sin(q0_PC(t)), cos(q0_PC(t)), sin(q0_PC(t))*cos(a)],
 [-sin(a)*cos(q0_PC(t)), -sin(q0_PC(t)), cos(a)*cos(q0_PC(t))]])
```
## Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>(string) The joint’s name.</td>
</tr>
<tr>
<td>parent</td>
<td>(Body) The joint’s parent body.</td>
</tr>
<tr>
<td>child</td>
<td>(Body) The joint’s child body.</td>
</tr>
<tr>
<td>rotation_coordinate</td>
<td>(dynamicsymbol) Generalized coordinate corresponding to the rotation angle.</td>
</tr>
<tr>
<td>planar_coordinates</td>
<td>(Matrix) Two generalized coordinates used for the planar translation.</td>
</tr>
<tr>
<td>rotation_speed</td>
<td>(dynamicsymbol) Generalized speed corresponding to the angular velocity.</td>
</tr>
<tr>
<td>planar_speeds</td>
<td>(Matrix) Two generalized speeds used for the planar translation velocity.</td>
</tr>
<tr>
<td>coordinates</td>
<td>(Matrix) Matrix of the joint’s generalized coordinates.</td>
</tr>
<tr>
<td>speeds</td>
<td>(Matrix) Matrix of the joint’s generalized speeds.</td>
</tr>
<tr>
<td>parent_point</td>
<td>(Point) Attachment point where the joint is fixed to the parent body.</td>
</tr>
<tr>
<td>child_point</td>
<td>(Point) Attachment point where the joint is fixed to the child body.</td>
</tr>
<tr>
<td>parent_interframe</td>
<td>(ReferenceFrame) Intermediate frame of the parent body with respect to which the joint transformation is formulated.</td>
</tr>
<tr>
<td>child_interframe</td>
<td>(ReferenceFrame) Intermediate frame of the child body with respect to which the joint transformation is formulated.</td>
</tr>
<tr>
<td>kdes</td>
<td>(Matrix) Kinematical differential equations of the joint.</td>
</tr>
<tr>
<td>rotation_axis</td>
<td>(Vector) The axis about which the rotation occurs.</td>
</tr>
<tr>
<td>planar_vectors</td>
<td>(list) The vectors that describe the planar translation directions.</td>
</tr>
</tbody>
</table>

### property planar_coordinates
Two generalized coordinates used for the planar translation.

### property planar_speeds
Two generalized speeds used for the planar translation velocity.

### property planar_vectors
The vectors that describe the planar translation directions.

### property rotation_axis
The axis about which the rotation occurs.

### property rotation_coordinate
Generalized coordinate corresponding to the rotation angle.

### property rotation_speed
Generalized speed corresponding to the angular velocity.
class sympy.physics.mechanics.joint.SphericalJoint(name, parent, child, coordinates=None, speeds=None, parent_point=None, child_point=None, parent_interframe=None, child_interframe=None, rot_type='BODY', amounts=None, rot_order=123)

Spherical (Ball-and-Socket) Joint.

Parameters

- **name**: string
  A unique name for the joint.
- **parent**: Body
  The parent body of joint.
- **child**: Body
  The child body of joint.
- **coordinates**: iterable of dynamicsymbols, optional
Generalized coordinates of the joint.

**speeds**: iterable of dynamicsymbols, optional

Generalized speeds of joint.

**parent_point**: Point or Vector, optional

Attachment point where the joint is fixed to the parent body. If a vector is provided, then the attachment point is computed by adding the vector to the body’s mass center. The default value is the parent’s mass center.

**child_point**: Point or Vector, optional

Attachment point where the joint is fixed to the child body. If a vector is provided, then the attachment point is computed by adding the vector to the body’s mass center. The default value is the child’s mass center.

**parent_interframe**: ReferenceFrame, optional

Intermediate frame of the parent body with respect to which the joint transformation is formulated. If a Vector is provided then an inter-frame is created which aligns its X axis with the given vector. The default value is the parent’s own frame.

**child_interframe**: ReferenceFrame, optional

Intermediate frame of the child body with respect to which the joint transformation is formulated. If a Vector is provided then an inter-frame is created which aligns its X axis with the given vector. The default value is the child’s own frame.

**rot_type**: str, optional

The method used to generate the direction cosine matrix. Supported methods are:

- 'Body': three successive rotations about new intermediate axes, also called “Euler and Tait-Bryan angles”
- 'Space': three successive rotations about the parent frames’ unit vectors

The default method is 'Body'.

**amounts**: Expressions defining the rotation angles or direction cosine matrix. These must match the rot_type. See examples below for details. The input types are:

- 'Body': 3-tuple of expressions, symbols, or functions
- 'Space': 3-tuple of expressions, symbols, or functions

The default amounts are the given coordinates.

**rot_order**: str or int, optional

If applicable, the order of the successive of rotations. The string ‘123’ and integer 123 are equivalent, for example. Required for ‘Body’ and ‘Space’. The default value is 123.
**Explanation**

A spherical joint is defined such that the child body is free to rotate in any direction, without allowing a translation of the child_point. As can also be seen in the image, the parent_point and child_point are fixed on top of each other, i.e. the joint_point. This rotation is defined using the `parent_interframe.orient(child_interframe, rot_type, amounts, rot_order)` (page 1678) method. The default rotation consists of three relative rotations, i.e. body-fixed rotations. Based on the direction cosine matrix following from these rotations, the angular velocity is computed based on the generalized coordinates and generalized speeds.

**Examples**

A single spherical joint is created from two bodies and has the following basic attributes:

```python
code
>>> from sympy.physics.mechanics import Body, SphericalJoint
>>> parent = Body('P')
>>> parent
P
>>> child = Body('C')
>>> child
C
>>> joint = SphericalJoint('PC', parent, child)
>>> joint
SphericalJoint: PC parent: P child: C
>>> joint.name
'PC'
>>> joint.parent
P
>>> joint.child
C
>>> joint.parent_point
P_masscenter
>>> joint.child_point
C_masscenter
>>> joint.parent_interframe
P_frame
>>> joint.child_interframe
C_frame
>>> joint.coordinates
Matrix([[q0_PC(t)],
 [q1_PC(t)],
 [q2_PC(t)]])
>>> joint.speeds
Matrix([[u0_PC(t)],
 [u1_PC(t)],
 [u2_PC(t)]]))
>>> child.frame.ang_vel_in(parent.frame).to_matrix(child.frame)
Matrix([[u0_PC(t)*cos(q1_PC(t))*cos(q2_PC(t)) + u1_PC(t)*sin(q2_PC(t))]],
(continues on next page)
```
[
[-u0_PC(t)*sin(q2_PC(t))*cos(q1_PC(t)) + u1_PC(t)*cos(q2_PC(t))],
[u0_PC(t)*sin(q1_PC(t)) + u2_PC(t)]
]

>> child.frame.x.to_matrix(parent.frame)
Matrix([[cos(q1_PC(t))*cos(q2_PC(t))],
[sin(q0_PC(t))*sin(q1_PC(t))*cos(q2_PC(t)) + sin(q2_PC(t))*cos(q0_PC(t))],
[sin(q0_PC(t))*sin(q2_PC(t)) - sin(q1_PC(t))*cos(q0_PC(t))*cos(q2_PC(t))]])

>> joint.child_point.pos_from(joint.parent_point)

To further demonstrate the use of the spherical joint, the kinematics of a spherical joint with a ZXZ rotation can be created as follows.

```
>>> from sympy import symbols
>>> from sympy.physics.mechanics import Body, SphericalJoint
>>> l1 = symbols('l1')
```

First create bodies to represent the fixed floor and a pendulum bob.

```
>>> floor = Body('F')
>>> bob = Body('B')
```

The joint will connect the bob to the floor, with the joint located at a distance of \( l1 \) from the child’s center of mass and the rotation set to a body-fixed ZXZ rotation.

```
>>> joint = SphericalJoint('S', floor, bob, child_point=l1 * bob.y, ...
... rot_type='body', rot_order='ZXZ')
```

Now that the joint is established, the kinematics of the connected body can be accessed.

The position of the bob’s mass center is found with:

```
>>> bob.masscenter.pos_from(floor.masscenter)
- l1*B_frame.y
```

The angular velocities of the pendulum link can be computed with respect to the floor.

```
>>> bob.frame.ang_vel_in(floor.frame).to_matrix(...
... floor.frame).simplify()
Matrix([[u1_S(t)*cos(q0_S(t)) + u2_S(t)*sin(q0_S(t))*sin(q1_S(t))],
[u1_S(t)*sin(q0_S(t)) - u2_S(t)*sin(q1_S(t))*cos(q0_S(t))],
[u0_S(t) + u2_S(t)*cos(q1_S(t))]])
```

Finally, the linear velocity of the bob’s center of mass can be computed.

```
>>> bob.masscenter.vel(floor.frame).to_matrix(bob.frame)
Matrix([[l1*(u0_S(t)*cos(q1_S(t)) + u2_S(t))],
[0],
[-l1*(u0_S(t)*sin(q1_S(t))*sin(q2_S(t)) + u1_S(t)*cos(q2_S(t)))]])
```
Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>(string) The joint’s name.</td>
</tr>
<tr>
<td>parent</td>
<td>(Body) The joint’s parent body.</td>
</tr>
<tr>
<td>child</td>
<td>(Body) The joint’s child body.</td>
</tr>
<tr>
<td>coordinates</td>
<td>(Matrix) Matrix of the joint’s generalized coordinates.</td>
</tr>
<tr>
<td>speeds</td>
<td>(Matrix) Matrix of the joint’s generalized speeds.</td>
</tr>
<tr>
<td>parent_point</td>
<td>(Point) Attachment point where the joint is fixed to the parent body.</td>
</tr>
<tr>
<td>child_point</td>
<td>(Point) Attachment point where the joint is fixed to the child body.</td>
</tr>
<tr>
<td>parent_interframe</td>
<td>(ReferenceFrame) Intermediate frame of the parent body with respect to which the joint transformation is formulated.</td>
</tr>
<tr>
<td>child_interframe</td>
<td>(ReferenceFrame) Intermediate frame of the child body with respect to which the joint transformation is formulated.</td>
</tr>
<tr>
<td>kdes</td>
<td>(Matrix) Kinematical differential equations of the joint.</td>
</tr>
</tbody>
</table>

```python
class sympy.physics.mechanics.joint.WeldJoint(name, parent, child,
parent_point=None,
child_point=None,
parent_interframe=None,
child_interframe=None)
```

Weld Joint.

**Parameters**

- **name**: string
  - A unique name for the joint.

- **parent**: Body
The parent body of joint.

**child** : Body

The child body of joint.

**parent_point** : Point or Vector, optional

Attachment point where the joint is fixed to the parent body. If a vector is provided, then the attachment point is computed by adding the vector to the body’s mass center. The default value is the parent’s mass center.

**child_point** : Point or Vector, optional

Attachment point where the joint is fixed to the child body. If a vector is provided, then the attachment point is computed by adding the vector to the body’s mass center. The default value is the child’s mass center.

**parent_interframe** : ReferenceFrame, optional

Intermediate frame of the parent body with respect to which the joint transformation is formulated. If a Vector is provided then an inter-frame is created which aligns its X axis with the given vector. The default value is the parent’s own frame.

**child_interframe** : ReferenceFrame, optional

Intermediate frame of the child body with respect to which the joint transformation is formulated. If a Vector is provided then an inter-frame is created which aligns its X axis with the given vector. The default value is the child’s own frame.

**Explanation**

A weld joint is defined such that there is no relative motion between the child and parent bodies. The direction cosine matrix between the attachment frame (parent_interframe and child_interframe) is the identity matrix and the attachment points (parent_point and child_point) are coincident. The page on the joints framework gives a more detailed explanation of the intermediate frames.

**Examples**

A single weld joint is created from two bodies and has the following basic attributes:

```python
code
>>> from sympy.physics.mechanics import Body, WeldJoint
>>> parent = Body('P')
>>> child = Body('C')
>>> joint = WeldJoint('PC', parent, child)
>>> joint
WeldJoint: PC parent: P child: C
```
To further demonstrate the use of the weld joint, two relatively-fixed bodies rotated by a quarter turn about the Y axis can be created as follows:

```python
from sympy import symbols, pi
from sympy.physics.mechanics import ReferenceFrame, Body, WeldJoint
l1, l2 = symbols('l1 l2')
```

First create the bodies to represent the parent and rotated child body.

```python
>>> parent = Body('P')
>>> child = Body('C')
```

Next the intermediate frame specifying the fixed rotation with respect to the parent can be created.

```python
>>> rotated_frame = ReferenceFrame('Pr')
>>> rotated_frame.orient_axis(parent.frame, parent.y, pi / 2)
```

The weld between the parent body and child body is located at a distance $l_1$ from the parent’s center of mass in the X direction and $l_2$ from the child’s center of mass in the child’s negative X direction.

```python
>>> weld = WeldJoint('weld', parent, child, parent_point=parent_masscenter, child_point=parent_masscenter + [l1 * parent.x, -l2 * child.x, 0], parent_interframe=rotated_frame)
```

Now that the joint has been established, the kinematics of the bodies can be accessed. The direction cosine matrix of the child body with respect to the parent can be found:
As can also been seen from the direction cosine matrix, the parent X axis is aligned with the child’s Z axis: >>> parent.x == child.z True

The position of the child’s center of mass with respect to the parent’s center of mass can be found with:

>>> child.masscenter.pos_from(parent.masscenter)
l1*P_frame.x + l2*C_frame.x

The angular velocity of the child with respect to the parent is 0 as one would expect.

>>> child.ang_vel_in(parent)
0

**Attributes**

<table>
<thead>
<tr>
<th>name</th>
<th>(string) The joint’s name.</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent</td>
<td>(Body) The joint’s parent body.</td>
</tr>
<tr>
<td>child</td>
<td>(Body) The joint’s child body.</td>
</tr>
<tr>
<td>coordinates</td>
<td>(Matrix) Matrix of the joint’s generalized coordinates. The default value is <code>dynamicsymbols(f\'{q_{joint.name}}')</code>.</td>
</tr>
<tr>
<td>speeds</td>
<td>(Matrix) Matrix of the joint’s generalized speeds. The default value is <code>dynamicsymbols(f\'{u_{joint.name}}')</code>.</td>
</tr>
<tr>
<td>parent_point</td>
<td>(Point) Attachment point where the joint is fixed to the parent body.</td>
</tr>
<tr>
<td>child_point</td>
<td>(Point) Attachment point where the joint is fixed to the child body.</td>
</tr>
<tr>
<td>parent_interframe</td>
<td>(ReferenceFrame) Intermediate frame of the parent body with respect to which the joint transformation is formulated.</td>
</tr>
<tr>
<td>child_interframe</td>
<td>(ReferenceFrame) Intermediate frame of the child body with respect to which the joint transformation is formulated.</td>
</tr>
<tr>
<td>kdes</td>
<td>(Matrix) Kinematical differential equations of the joint.</td>
</tr>
</tbody>
</table>

**class** sympy.physics.mechanics.jointsmethod.JointsMethod(newtonion, *joints)

Method for formulating the equations of motion using a set of interconnected bodies with joints.

**Parameters**

- **newtonion**: Body or ReferenceFrame
  - The newtonion(inertial) frame.

- ***joints**: Joint
  - The joints in the system
Examples

This is a simple example for a one degree of freedom translational spring-mass-damper.

```python
>>> from sympy import symbols
>>> from sympy.physics.mechanics import Body, JointsMethod, PrismaticJoint
>>> from sympy.physics.vector import dynamicsymbols
>>> c, k = symbols('c k')
>>> x, v = dynamicsymbols('x v')
>>> wall = Body('W')
>>> body = Body('B')
>>> J = PrismaticJoint('J', wall, body, coordinates=x, speeds=v)
>>> wall.apply_force(c*v*wall.x, reaction_body=body)
>>> wall.apply_force(k*x*wall.x, reaction_body=body)
>>> method = JointsMethod(wall, J)
>>> method.form_eoms()
Matrix([[B_mass*Derivative(v(t), t) - c*v(t) - k*x(t)]])
>>> M = method.mass_matrix_full
>>> F = method.forcing_full
>>> rhs = M.LUsolve(F)
>>> rhs
Matrix([[v(t)],
 [(-c*v(t) - k*x(t))/B_mass]])
```

Notes

JointsMethod currently only works with systems that do not have any configuration or motion constraints.

Attributes

q, u	(iterable) Iterable of the generalized coordinates and speeds
bodies	(iterable) Iterable of Body objects in the system.
loads	(iterable) Iterable of (Point, vector) or (ReferenceFrame, vector) tuples describing the forces on the system.
mass_matrix	(Matrix, shape(n, n)) The system’s mass matrix
forcing	(Matrix, shape(n, 1)) The system’s forcing vector
mass_matrix_full	(Matrix, shape(2*n, 2*n)) The “mass matrix” for the u’s and q’s
forcing_full	(Matrix, shape(2*n, 1)) The “forcing vector” for the u’s and q’s
method	(KanesMethod or Lagrange’s method) Method’s object.
kdes	(iterable) Iterable of kde in they system.

**property bodies**

List of bodies in they system.

**property forcing**

The system’s forcing vector.
property forcing_full
The “forcing vector” for the u’s and q’s.

form_eoms(method=<class 'sympy.physics.mechanics.kane.KanesMethod'>)
Method to form system’s equation of motions.

Parameters
method : Class
Class name of method.

Returns
Matrix
Vector of equations of motions.

Examples

This is a simple example for a one degree of freedom translational spring-mass-damper.

```python
>>> from sympy import S, symbols
>>> from sympy.physics.mechanics import LagrangesMethod,
 dynamicsymbols, Body
>>> from sympy.physics.mechanics import PrismaticJoint, JointsMethod
>>> q = dynamicsymbols('q')
>>> qd = dynamicsymbols('q', 1)
>>> m, k, b = symbols('m k b')
>>> wall = Body('W')
>>> part = Body('P', mass=m)
>>> part.potential_energy = k * q**2 / S(2)
>>> J = PrismaticJoint('J', wall, part, coordinates=q, speeds=qd)
>>> wall.apply_force(b * qd * wall.x, reaction_body=part)
>>> method = JointsMethod(wall, J)
>>> method.form_eoms(LagrangesMethod)
Matrix([[b*Derivative(q(t), t) + k*q(t) + m*Derivative(q(t), (t,) 2))]])

We can also solve for the states using the ‘rhs’ method.

```python
>>> method.rhs()
Matrix([[Derivative(q(t), t)],
        [(-b*Derivative(q(t), t) - k*q(t))/m]])
```

property kdes
List of the generalized coordinates.

property loads
List of loads on the system.

property mass_matrix
The system’s mass matrix.

property mass_matrix_full
The “mass matrix” for the u’s and q’s.
property method
Object of method used to form equations of systems.

property q
List of the generalized coordinates.

rhs(inv_method=None)
Returns equations that can be solved numerically.

Parameters
inv_method : str
 The specific sympy inverse matrix calculation method to use. For a
 list of valid methods, see inv() (page 1340)

Returns
Matrix
 Numerically solvable equations.

See also:
sympy.physics.mechanics.kane.KanesMethod.rhs (page 1814)
KanesMethod's rhs function.
sympy.physics.mechanics.lagrange.LagrangesMethod.rhs (page 1817)
LagrangesMethod's rhs function.

property u
List of the generalized speeds.

SymbolicSystem (Docstrings)

class sympy.physics.mechanics.system.SymbolicSystem(coord_states, right_hand_side, speeds=None, mass_matrix=None, coordinate_derivatives=None, alg_con=None, output_eqns={}, coord_idxs=None, speed_idxs=None, bodies=None, loads=None)

SymbolicSystem is a class that contains all the information about a system in a symbolic
format such as the equations of motions and the bodies and loads in the system.

There are three ways that the equations of motion can be described for Symbolic System:

[1] Explicit form where the kinematics and dynamics are combined
 \[x' = F_1(x, t, r, p) \]

[2] Implicit form where the kinematics and dynamics are combined
 \[M_2(x, p) x' = F_2(x, t, r, p) \]

[3] Implicit form where the kinematics and dynamics are separate
 \[M_3(q, p) u' = F_3(q, u, t, r, p) q' = G(q, u, t, r, p) \]
where

\(x\) : states, e.g. \([q, u]t\) : time \(r\) : specified (exogenous) inputs \(p\) : constants \(q\) : generalized coordinates \(u\) : generalized speeds \(F_1\) : right hand side of the combined equations in explicit form \(F_2\) : right hand side of the combined equations in implicit form \(F_3\) : right hand side of the dynamical equations in implicit form \(M_2\) : mass matrix of the combined equations in implicit form \(M_3\) : mass matrix of the dynamical equations in implicit form \(G\) : right hand side of the kinematical differential equations

Parameters

coord_states : ordered iterable of functions of time

This input will either be a collection of the coordinates or states of the system depending on whether or not the speeds are also given. If speeds are specified this input will be assumed to be the coordinates otherwise this input will be assumed to be the states.

right_hand_side

([Matrix]) This variable is the right hand side of the equations of motion in any of the forms. The specific form will be assumed depending on whether a mass matrix or coordinate derivatives are given.

speeds

([ordered iterable of functions of time, optional]) This is a collection of the generalized speeds of the system. If given it will be assumed that the first argument (coord_states) will represent the generalized coordinates of the system.

mass_matrix

([Matrix, optional]) The matrix of the implicit forms of the equations of motion (forms [2] and [3]). The distinction between the forms is determined by whether or not the coordinate derivatives are passed in. If they are given form [3] will be assumed otherwise form [2] is assumed.

coordinate_derivatives

([Matrix, optional]) The right hand side of the kinematical equations in explicit form. If given it will be assumed that the equations of motion are being entered in form [3].

alg_con

([Iterable, optional]) The indexes of the rows in the equations of motion that contain algebraic constraints instead of differential equations. If the equations are input in form [3], it will be assumed the indexes are referencing the mass_matrix/right_hand_side combination and not the coordinate_derivatives.

output_eqns

([Dictionary, optional]) Any output equations that are desired to be tracked are stored in a dictionary where the key corresponds to the name given for the specific equation and the value is the equation itself in symbolic form

coord_idxs

([Iterable, optional]) If coord_states corresponds to the states rather than the coordinates this variable will tell SymbolicSystem which indexes of the states correspond to generalized coordinates.
speed_idxs
[Iterable, optional] If coord_states corresponds to the states rather than the coordinates this variable will tell SymbolicSystem which indexes of the states correspond to generalized speeds.

bodies
[iterable of Body/Rigidbody objects, optional] Iterable containing the bodies of the system

loads
[iterable of load instances (described below), optional] Iterable containing the loads of the system where forces are given by (point of application, force vector) and torques are given by (reference frame acting upon, torque vector). Ex [(point, force), (ref_frame, torque)]

Example
As a simple example, the dynamics of a simple pendulum will be input into a SymbolicSystem object manually. First some imports will be needed and then symbols will be set up for the length of the pendulum (l), mass at the end of the pendulum (m), and a constant for gravity (g).

```python
>>> from sympy import Matrix, sin, symbols
>>> from sympy.physics.mechanics import dynamicsymbols, SymbolicSystem
>>> l, m, g = symbols('l m g')
```

The system will be defined by an angle of theta from the vertical and a generalized speed of omega will be used where omega = theta_dot.

```python
>>> theta, omega = dynamicsymbols('theta omega')
```

Now the equations of motion are ready to be formed and passed to the SymbolicSystem object.

```python
>>> kin_explicit_rhs = Matrix([omega])
>>> dyn_implicit_mat = Matrix([l**2 * m])
>>> dyn_implicit_rhs = Matrix([-g * l * m * sin(theta)])
>>> symsystem = SymbolicSystem([theta], dyn_implicit_rhs, [omega], ...
                               dyn_implicit_mat)
```

Notes
m : number of generalized speeds n : number of generalized coordinates o : number of states
Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>coor_ordinates</td>
<td>(Matrix, shape(n, 1)) This is a matrix containing the generalized coordinates of the system</td>
</tr>
<tr>
<td>speeds</td>
<td>(Matrix, shape(m, 1)) This is a matrix containing the generalized speeds of the system</td>
</tr>
<tr>
<td>state</td>
<td>(Matrix, shape(o, 1)) This is a matrix containing the state variables of the system</td>
</tr>
<tr>
<td>alg_con</td>
<td>(List) This list contains the indices of the algebraic constraints in the combined equations of motion. The presence of these constraints requires that a DAE solver be used instead of an ODE solver. If the system is given in form [3] the alg_con variable will be adjusted such that it is a representation of the combined kinematics and dynamics thus make sure it always matches the mass matrix entered.</td>
</tr>
<tr>
<td>dyn_i</td>
<td>(Matrix, shape(m, m)) This is the M matrix in form [3] of the equations of motion (the mass matrix or generalized inertia matrix of the dynamical equations of motion in implicit form).</td>
</tr>
<tr>
<td>dyn_j</td>
<td>(Matrix, shape(m, 1)) This is the F vector in form [3] of the equations of motion (the right hand side of the dynamical equations of motion in implicit form).</td>
</tr>
<tr>
<td>comb_k</td>
<td>(Matrix, shape(o, o)) This is the M matrix in form [2] of the equations of motion. This matrix contains a block diagonal structure where the top left block (the first rows) represent the matrix in the implicit form of the kinematical equations and the bottom right block (the last rows) represent the matrix in the implicit form of the dynamical equations.</td>
</tr>
<tr>
<td>comb_l</td>
<td>(Matrix, shape(o, 1)) This is the F vector in form [2] of the equations of motion. The top part of the vector represents the right hand side of the implicit form of the kinematical equations and the bottom of the vector represents the right hand side of the implicit form of the dynamical equations of motion.</td>
</tr>
<tr>
<td>comb_r</td>
<td>(Matrix, shape(o, 1)) This vector represents the right hand side of the combined equations of motion in explicit form (form [1] from above).</td>
</tr>
<tr>
<td>kin_e</td>
<td>(Matrix, shape(m, 1)) This is the right hand side of the explicit form of the kinematical equations of motion as can be seen in form [3] (the G matrix).</td>
</tr>
<tr>
<td>output_eqns</td>
<td>(Dictionary) If output equations were given they are stored in a dictionary where the key corresponds to the name given for the specific equation and the value is the equation itself in symbolic form</td>
</tr>
<tr>
<td>bodies</td>
<td>(Tuple) If the bodies in the system were given they are stored in a tuple for future access</td>
</tr>
<tr>
<td>loads</td>
<td>(Tuple) If the loads in the system were given they are stored in a tuple for future access. This includes forces and torques where forces are given by (point of application, force vector) and torques are given by (reference frame acted upon, torque vector).</td>
</tr>
</tbody>
</table>

property alg_con

Returns a list with the indices of the rows containing algebraic constraints in the combined form of the equations of motion

property bodies

Returns the bodies in the system

property comb_explicit_rhs

Returns the right hand side of the equations of motion in explicit form, \(x' = F \), where the kinematical equations are included
property comb_implicit_mat
Returns the matrix, M, corresponding to the equations of motion in implicit form
(form [2]), $M \mathbf{x}' = \mathbf{F}$, where the kinematical equations are included

property comb_implicit_rhs
Returns the column matrix, \mathbf{F}, corresponding to the equations of motion in implicit
form (form [2]), $M \mathbf{x}' = \mathbf{F}$, where the kinematical equations are included

compute_explicit_form()
If the explicit right hand side of the combined equations of motion is to provided
upon initialization, this method will calculate it. This calculation can potentially
take awhile to compute.

constant_symbols()
Returns a column matrix containing all of the symbols in the system that do not
depend on time

property coordinates
Returns the column matrix of the generalized coordinates

property dyn_implicit_mat
Returns the matrix, M, corresponding to the dynamic equations in implicit form, M
$\mathbf{x}' = \mathbf{F}$, where the kinematical equations are not included

property dyn_implicit_rhs
Returns the column matrix, \mathbf{F}, corresponding to the dynamic equations in implicit
form, $M \mathbf{x}' = \mathbf{F}$, where the kinematical equations are not included

dynamic_symbols()
Returns a column matrix containing all of the symbols in the system that depend on
time

property kin_explicit_rhs
Returns the right hand side of the kinematical equations in explicit form, $q' = \mathbf{G}$

property loads
Returns the loads in the system

property speeds
Returns the column matrix of generalized speeds

property states
Returns the column matrix of the state variables

Linearization (Docstrings)

class sympy.physics.mechanics.linearize.Linearizer(f_0, f_1, f_2, f_3, f_4, f_c, f_v,
f_a, q, u, q_i=None, q_d=None, u_i=None, u_d=None, r=None, lams=None)

This object holds the general model form for a dynamic system. This model is used for
computing the linearized form of the system, while properly dealing with constraints
leading to dependent coordinates and speeds.
Attributes

<table>
<thead>
<tr>
<th>f_0, f_1, f_2, f_3, f_4, f_c, f_v, f_a</th>
<th>(Matrix) Matrices holding the general system form.</th>
</tr>
</thead>
<tbody>
<tr>
<td>q, u, r</td>
<td>(Matrix) Matrices holding the generalized coordinates, speeds, and input vectors.</td>
</tr>
<tr>
<td>q_i, u_i</td>
<td>(Matrix) Matrices of the independent generalized coordinates and speeds.</td>
</tr>
<tr>
<td>q_d, u_d</td>
<td>(Matrix) Matrices of the dependent generalized coordinates and speeds.</td>
</tr>
<tr>
<td>perm_mat</td>
<td>(Matrix) Permutation matrix such that [q_ind, u_ind]^T = perm_mat*[q, u]^T</td>
</tr>
</tbody>
</table>

linearize(*op_point=None, A_and_B=False, simplify=False*)

Linearize the system about the operating point. Note that q_op, u_op, qd_op, ud_op must satisfy the equations of motion. These may be either symbolic or numeric.

Parameters

- **op_point**: dict or iterable of dicts, optional

 Dictionary or iterable of dictionaries containing the operating point conditions. These will be substituted into the linearized system before the linearization is complete. Leave blank if you want a completely symbolic form. Note that any reduction in symbols (whether substituted for numbers or expressions with a common parameter) will result in faster runtime.

- **A_and_B**: bool, optional

 If A_and_B=False (default), (M, A, B) is returned for forming [M]*[q, u]^T = [A]*[q_ind, u_ind]^T + [B]*r. If A_and_B=True, (A, B) is returned for forming dx = [A]*x + [B]*r; where x = [q_ind, u_ind]^T.

- **simplify**: bool, optional

 Determines if returned values are simplified before return. For large expressions this may be time consuming. Default is False.

Potential Issues

Note that the process of solving with A_and_B=True is computationally intensive if there are many symbolic parameters. For this reason, it may be more desirable to use the default A_and_B=False, returning M, A, and B. More values may then be substituted in to these matrices later on. The state space form can then be found as A = P^T*M.LUsolve(A), B = P^T*M.LUsolve(B), where P = Linearizer.perm_mat.
Expression Manipulation (Docstrings)

`sympy.physics.mechanics.msubs(expr, *sub_dicts, smart=False, **kwargs)`

A custom subs for use on expressions derived in physics.mechanics. Traverses the expression tree once, performing the subs found in sub_dicts. Terms inside Derivative expressions are ignored:

Examples

```python
>>> from sympy.physics.mechanics import dynamicsymbols, msubs
>>> x = dynamicsymbols('x')
>>> msubs(x.diff() + x, {x: 1})
Derivative(x(t), t) + 1
```

Note that sub_dicts can be a single dictionary, or several dictionaries:

```python
>>> x, y, z = dynamicsymbols('x, y, z')
>>> sub1 = {x: 1, y: 2}
>>> sub2 = {z: 3, x.diff(): 4}
>>> msubs(x.diff() + x + y + z, sub1, sub2)
10
```

If smart=True (default False), also checks for conditions that may result in nan, but if simplified would yield a valid expression. For example:

```python
>>> from sympy import sin, tan
>>> (sin(x)/tan(x)).subs(x, 0)
nan
>>> msubs(sin(x)/tan(x), {x: 0}, smart=True)
1
```

It does this by first replacing all tan with sin/cos. Then each node is traversed. If the node is a fraction, subs is first evaluated on the denominator. If this results in 0, simplification of the entire fraction is attempted. Using this selective simplification, only subexpressions that result in 1/0 are targeted, resulting in faster performance.

`sympy.physics.mechanics.find_dynamicsymbols(expression, exclude=None, reference_frame=None)`

Find all dynamicsymbols in expression.

Parameters

- **expression**: SymPy expression
- **exclude**: iterable of dynamicsymbols, optional
- **reference_frame**: ReferenceFrame, optional

 The frame with respect to which the dynamic symbols of the given vector is to be determined.
Explanation

If the optional exclude kwarg is used, only dynamicsymbols not in the iterable exclude are returned. If we intend to apply this function on a vector, the optional reference_frame is also used to inform about the corresponding frame with respect to which the dynamic symbols of the given vector is to be determined.

Examples

```python
>>> from sympy.physics.mechanics import dynamicsymbols, find_dynamicsymbols
>>> from sympy.physics.mechanics import ReferenceFrame

>>> x, y = dynamicsymbols('x, y')
>>> expr = x + x.diff()*y
>>> find_dynamicsymbols(expr)
{x(t), y(t), Derivative(x(t), t)}
>>> find_dynamicsymbols(expr, exclude=[x, y])
{Derivative(x(t), t)}

>>> a, b, c = dynamicsymbols('a, b, c')
>>> A = ReferenceFrame('A')
>>> v = a*A.x + b*A.y + c*A.z
>>> find_dynamicsymbols(v, reference_frame=A)
{a(t), b(t), c(t)}
```

Printing (Docstrings)

mechanics_printing

This function is the same as `sympy.physics.vector.printing.init_vprinting` (page 1710).

mprint

This function is the same as `sympy.physics.vector.printing.vprint` (page 1712).

mpprint

This function is the same as `sympy.physics.vector.printing.vpprint` (page 1712).
Quantum Mechanics

Abstract
Contains Docstrings of Physics-Quantum module

Quantum Functions

Anticommutator

The anti-commutator: \(\{A, B\} = A*B + B*A \).

```python
class sympy.physics.quantum.anticommutator.AntiCommutator(A, B)
```

The standard anticommutator, in an unevaluated state.

Parameters
- **A**: Expr
 - The first argument of the anticommutator \(\{A, B\} \).
- **B**: Expr
 - The second argument of the anticommutator \(\{A, B\} \).

Explanation

Evaluating an anticommutator is defined [R688] as: \(\{A, B\} = A*B + B*A \). This class returns the anticommutator in an unevaluated form. To evaluate the anticommutator, use the `.doit()` method.

Canonical ordering of an anticommutator is \(\{A, B\} \) for \(A < B \). The arguments of the anticommutator are put into canonical order using `__cmp__`. If \(B < A \), then \(\{A, B\} \) is returned as \(\{B, A\} \).

Examples

```python
>>> from sympy import symbols
>>> from sympy.physics.quantum import AntiCommutator
>>> from sympy.physics.quantum import Operator, Dagger
>>> x, y = symbols('x,y')
>>> A = Operator('A')
>>> B = Operator('B')
```

Create an anticommutator and use `doit()` to multiply them out.
>>> ac = AntiCommutator(A,B); ac
{A,B}
>>> ac.doit()
A*B + B*A

The commutator orders it arguments in canonical order:

>>> ac = AntiCommutator(B,A); ac
{A,B}

Commutative constants are factored out:

>>> AntiCommutator(3*x*A,x*y*B)
3*x**2*y*{A,B}

Adjoint operations applied to the anticommutator are properly applied to the arguments:

>>> Dagger(AntiCommutator(A,B))
{Dagger(A),Dagger(B)}

References

[R688]

doit(**hints)
 Evaluate anticommutator

Clebsch-Gordan Coefficients

Clebsch-Gordon Coefficients.

class sympy.physics.quantum.cg.CG(j1, m1, j2, m2, j3, m3)
 Class for Clebsch-Gordan coefficient.

 Parameters
 j1, m1, j2, m2 : Number, Symbol
 Angular momenta of states 1 and 2.
 j3, m3 : Number, Symbol
 Total angular momentum of the coupled system.

Explanation

Clebsch-Gordan coefficients describe the angular momentum coupling between two systems. The coefficients give the expansion of a coupled total angular momentum state and an uncoupled tensor product state. The Clebsch-Gordan coefficients are defined as [R689]:

\[C^{j_3,m_3}_{j_1,m_1,j_2,m_2} = \langle j_1,m_1;j_2,m_2|j_3,m_3 \rangle \]
Examples

Define a Clebsch-Gordan coefficient and evaluate its value

```python
>>> from sympy.physics.quantum.cg import CG
>>> from sympy import S

>>> cg = CG(S(3)/2, S(3)/2, S(1)/2, -S(1)/2, 1, 1)
>>> cg
CG(3/2, 3/2, 1/2, -1/2, 1, 1)
>>> cg.doit()
sqrt(3)/2
```

Compare [R690].

See also:

Wigner3j (page 1862)

Wigner-3j symbols

References

[R689], [R690]

```python
class sympy.physics.quantum.cg.Wigner3j(j1, m1, j2, m2, j3, m3)
```

Class for the Wigner-3j symbols.

Parameters

- **j1, m1, j2, m2, j3, m3** : Number, Symbol
 - Terms determining the angular momentum of coupled angular momentum systems.

Explanation

Wigner 3j-symbols are coefficients determined by the coupling of two angular momenta. When created, they are expressed as symbolic quantities that, for numerical parameters, can be evaluated using the .doit() method [R691].

Examples

Declare a Wigner-3j coefficient and calculate its value

```python
>>> from sympy.physics.quantum.cg import Wigner3j
>>> w3j = Wigner3j(6, 0, 4, 0, 2, 0)
>>> w3j
Wigner3j(6, 0, 4, 0, 2, 0)
>>> w3j.doit()
sqrt(715)/143
```
Clebsch-Gordan coefficients

References

[R691]

Class for the Wigner-6j symbols

See also:

Wigner-3j symbols

Class for the Wigner-9j symbols

See also:

Wigner-3j symbols

Simplify and combine CG coefficients.

Explanation

This function uses various symmetry and properties of sums and products of Clebsch-Gordan coefficients to simplify statements involving these terms [R692].

Examples

Simplify the sum over CG(a, alpha, 0, 0, a, alpha) for all alpha to 2*a+1

```
>>> from sympy.physics.quantum.cg import CG, cg_simp
>>> a = CG(1,1,0,0,1,1)
>>> b = CG(1,0,0,0,1,0)
>>> c = CG(1,-1,0,0,1,-1)
>>> cg_simp(a+b+c)
3
```

See also:

Clebsch-Gordan coefficients
References

[R692]

Commutator

The commutator: \([A,B] = A*B - B*A\).

```python
class sympy.physics.quantum.commutator.Commutator(A, B)
    The standard commutator, in an unevaluated state.

Parameters
    A : Expr
        The first argument of the commutator [A,B].
    B : Expr
        The second argument of the commutator [A,B].
```

Explanation

Evaluating a commutator is defined [R693] as: \([A, B] = A*B - B*A\). This class returns the commutator in an unevaluated form. To evaluate the commutator, use the `.doit()` method.

Canonical ordering of a commutator is \([A, B]\) for \(A < B\). The arguments of the commutator are put into canonical order using `__cmp__`. If \(B < A\), then \([B, A]\) is returned as \(-[A, B]\).

Examples

```python
>>> from sympy.physics.quantum import Commutator, Dagger, Operator
>>> from sympy.abc import x, y
>>> A = Operator('A')
>>> B = Operator('B')
>>> C = Operator('C')

Create a commutator and use `.doit()` to evaluate it:

```python
>>> comm = Commutator(A, B)
>>> comm
[A,B]
>>> comm.doit()
A*B - B*A
```

The commutator orders its arguments in canonical order:

```python
>>> comm = Commutator(B, A); comm
-[A,B]
```

Commutative constants are factored out:
Using `.expand(commutator=True)`, the standard commutator expansion rules can be applied:

```python
>>> Commutator(A+B, C).expand(commutator=True)
[A,C] + [B,C]
```

```python
>>> Commutator(A, B+C).expand(commutator=True)
[A,B] + [A,C]
```

```python
>>> Commutator(A*B, C).expand(commutator=True)
[A,C]*B + A*[B,C]
```

```python
>>> Commutator(A, B*C).expand(commutator=True)
[A,B]*C + B*[A,C]
```

Adjoint operations applied to the commutator are properly applied to the arguments:

```python
>>> Dagger(Commutator(A, B))
-[Dagger(A),Dagger(B)]
```

```
References

[R693]

`doit(**hints)`

Evaluate commutator

Constants

Constants (like hbar) related to quantum mechanics.

```python
class sympy.physics.quantum.constants.HBar
Reduced Plank's constant in numerical and symbolic form [R694].
```

Examples

```python
>>> from sympy.physics.quantum.constants import hbar
>>> hbar.evalf()
1.05457162000000e-34
```
Dagger

Hermitian conjugation.

class sympy.physics.quantum.dagger.Dagger(arg)

General Hermitian conjugate operation.

Parameters

| arg : Expr |
|
| The SymPy expression that we want to take the dagger of. |

Explanation

Take the Hermetian conjugate of an argument [R695]. For matrices this operation is equivalent to transpose and complex conjugate [R696].

Examples

Daggering various quantum objects:

```python
>>> from sympy.physics.quantum.dagger import Dagger
>>> from sympy.physics.quantum.state import Ket, Bra
>>> from sympy.physics.quantum.operator import Operator

>>> Dagger(Ket('psi'))
<psi|

>>> Dagger(Bra('phi'))
|phi>

>>> Dagger(Operator('A'))
Dagger(A)
```

Inner and outer products:

```python
>>> from sympy.physics.quantum import InnerProduct, OuterProduct

>>> Dagger(InnerProduct(Bra('a'), Ket('b')))
<b|a>

>>> Dagger(OuterProduct(Ket('a'), Bra('b')))
|b><a|
```

Powers, sums and products:

```python
>>> A = Operator('A')
>>> B = Operator('B')

>>> Dagger(A*B)
Dagger(B)*Dagger(A)

>>> Dagger(A+B)
Dagger(A) + Dagger(B)
```

(continues on next page)
Dagger also seamlessly handles complex numbers and matrices:

```python
>>> from sympy import Matrix, I
>>> m = Matrix([[1, I], [2, I]])
>>> m
Matrix([[1, I], [2, I]])
>>> Dagger(m)
Matrix([[1, 2], [-I, -I]])
```

References

[R695], [R696]

Inner Product

Symbolic inner product.

```python
class sympy.physics.quantum.innerproduct.InnerProduct(bra, ket)
```

An unevaluated inner product between a Bra and a Ket [1].

Parameters

- `bra`: BraBase or subclass
 The bra on the left side of the inner product.
- `ket`: KetBase or subclass
 The ket on the right side of the inner product.

Examples

Create an InnerProduct and check its properties:

```python
>>> from sympy.physics.quantum import Bra, Ket
>>> b = Bra('b')
>>> k = Ket('k')
>>> ip = b*conj(k)
>>> ip
<b|k>
>>> ip.bra
<b|
>>> ip.ket
|k>
```
In simple products of kets and bras inner products will be automatically identified and created:

```python
>>> b*k
<b|k>
```

But in more complex expressions, there is ambiguity in whether inner or outer products should be created:

```python
>>> k*b*k*b
|k><b| * |k>*<b|
```

A user can force the creation of an inner products in a complex expression by using parentheses to group the bra and ket:

```python
>>> k*(b*k)*b
<b|k>*|k>*<b|
```

Notice how the inner product <b|k> moved to the left of the expression because inner products are commutative complex numbers.

References

[R702]

Tensor Product

Abstract tensor product.

```python
class sympy.physics.quantum.tensorproduct.TensorProduct(*args)
```

The tensor product of two or more arguments.

For matrices, this uses `matrix_tensor_product` to compute the Kronecker or tensor product matrix. For other objects a symbolic `TensorProduct` instance is returned. The tensor product is a non-commutative multiplication that is used primarily with operators and states in quantum mechanics.

Currently, the tensor product distinguishes between commutative and non-commutative arguments. Commutative arguments are assumed to be scalars and are pulled out in front of the `TensorProduct`. Non-commutative arguments remain in the resulting `TensorProduct`.

Parameters

- **args** : tuple

 A sequence of the objects to take the tensor product of.
Examples

Start with a simple tensor product of SymPy matrices:

```python
>>> from sympy import Matrix
>>> from sympy.physics.quantum import TensorProduct

>>> m1 = Matrix([[1, 2], [3, 4]])
>>> m2 = Matrix([[1, 0], [0, 1]])
>>> TensorProduct(m1, m2)
Matrix([[1, 0, 2, 0],
       [0, 1, 0, 2],
       [3, 0, 4, 0],
       [0, 3, 0, 4]])

>>> TensorProduct(m2, m1)
Matrix([[1, 2, 0, 0],
       [3, 4, 0, 0],
       [0, 0, 1, 2],
       [0, 0, 3, 4]])
```

We can also construct tensor products of non-commutative symbols:

```python
>>> from sympy import Symbol

>>> A = Symbol('A', commutative=False)
>>> B = Symbol('B', commutative=False)
>>> tp = TensorProduct(A, B)
>>> tp
AxB
```

We can take the dagger of a tensor product (note the order does NOT reverse like the dagger of a normal product):

```python
>>> from sympy.physics.quantum import Dagger

>>> Dagger(tp)
Dagger(A)xDagger(B)
```

Expand can be used to distribute a tensor product across addition:

```python
>>> C = Symbol('C', commutative=False)
>>> tp = TensorProduct(A+B, C)
>>> tp
(A + B)xC
>>> tp.expand(tensorproduct=True)
AxC + BxC
```

```
5.8. Topics

symy.physics.quantum.tensorproduct.tensor_product_simp(e, **hints)
Try to simplify and combine TensorProducts.
In general this will try to pull expressions inside of TensorProducts. It currently only works for relatively simple cases where the products have only scalars, raw TensorProducts, not Add, Pow, Commutators of TensorProducts. It is best to see what it does by showing examples.
```
Examples

```python
>>> from sympy.physics.quantum import tensor_product_simp
>>> from sympy.physics.quantum import TensorProduct
>>> from sympy import Symbol

>>> A = Symbol('A', commutative=False)
>>> B = Symbol('B', commutative=False)
>>> C = Symbol('C', commutative=False)
>>> D = Symbol('D', commutative=False)

First see what happens to products of tensor products:

```python
>>> e = TensorProduct(A, B) * TensorProduct(C, D)
>>> e
```

```
AxB*CxD
```

```python
>>> tensor_product_simp(e)
```

```
(A*C)x(B*D)
```

This is the core logic of this function, and it works inside, powers, sums, commutators and anticommutators as well:

```python
>>> tensor_product_simp(e**2)
```

```
(A*C)x(B*D)**2
```

States and Operators

Cartesian Operators and States

Operators and states for 1D cartesian position and momentum.

TODO:
- Add 3D classes to mappings in operatorset.py

```python
class sympy.physics.quantum.cartesian.PositionBra3D(*args, **kwargs)
3D cartesian position eigenbra

class sympy.physics.quantum.cartesian.PositionKet3D(*args, **kwargs)
3D cartesian position eigenket

class sympy.physics.quantum.cartesian.PositionState3D(*args, **kwargs)
Base class for 3D cartesian position eigenstates

 property position_x
 The x coordinate of the state

 property position_y
 The y coordinate of the state

 property position_z
 The z coordinate of the state

```python
class sympy.physics.quantum.cartesian.PxBra(*args, **kwargs)
1D cartesian momentum eigenbra.
```
property momentum
 The momentum of the state.

class sympy.physics.quantum.cartesian.PxKet(*args, **kwargs)
 1D cartesian momentum eigenket.

property momentum
 The momentum of the state.

class sympy.physics.quantum.cartesian.PxOp(*args, **kwargs)
 1D cartesian momentum operator.

class sympy.physics.quantum.cartesian.XBra(*args, **kwargs)
 1D cartesian position eigenbra.

property position
 The position of the state.

class sympy.physics.quantum.cartesian.XKet(*args, **kwargs)
 1D cartesian position eigenket.

property position
 The position of the state.

class sympy.physics.quantum.cartesian.XOp(*args, **kwargs)
 1D cartesian position operator.

class sympy.physics.quantum.cartesian.YOp(*args, **kwargs)
 Y cartesian coordinate operator (for 2D or 3D systems)

class sympy.physics.quantum.cartesian.ZOp(*args, **kwargs)
 Z cartesian coordinate operator (for 3D systems)

Hilbert Space

Hilbert spaces for quantum mechanics.
Authors: * Brian Granger * Matt Curry

class sympy.physics.quantum.hilbert.ComplexSpace(dimension)
 Finite dimensional Hilbert space of complex vectors.

 The elements of this Hilbert space are n-dimensional complex valued vectors with the usual inner product that takes the complex conjugate of the vector on the right.

 A classic example of this type of Hilbert space is spin-1/2, which is ComplexSpace(2). Generalizing to spin-s, the space is ComplexSpace(2*s+1). Quantum computing with N qubits is done with the direct product space ComplexSpace(2)**N.
```
>>> from sympy import symbols
>>> from sympy.physics.quantum.hilbert import ComplexSpace

>>> c1 = ComplexSpace(2)
C(2)
>>> c1.dimension
2

>>> n = symbols('n')
>>> c2 = ComplexSpace(n)
C(n)
>>> c2.dimension
n
class sympy.physics.quantum.hilbert.DirectSumHilbertSpace(*args)
A direct sum of Hilbert spaces [R697].
This class uses the + operator to represent direct sums between different Hilbert spaces.
A DirectSumHilbertSpace object takes an arbitrary number of HilbertSpace objects
as its arguments. Also, addition of HilbertSpace objects will automatically return a
direct sum object.

Examples
```
```
>>> from sympy.physics.quantum.hilbert import ComplexSpace, FockSpace

>>> c = ComplexSpace(2)
>>> f = FockSpace()
>>> hs = c+f
>>> hs
C(2)+F
>>> hs.dimension
oo
>>> list(hs.spaces)
[C(2), F]
```

References

[R697]

classmethod eval(args)
 Evaluates the direct product.

property spaces
 A tuple of the Hilbert spaces in this direct sum.
class sympy.physics.quantum.hilbert.FockSpace

The Hilbert space for second quantization.

Technically, this Hilbert space is a infinite direct sum of direct products of single particle Hilbert spaces [R698]. This is a mess, so we have a class to represent it directly.

Examples

```python
>>> from sympy.physics.quantum.hilbert import FockSpace
>>> hs = FockSpace()
>>> hs
F
>>> hs.dimension
oo
```

References

[R698]

class sympy.physics.quantum.hilbert.HilbertSpace

An abstract Hilbert space for quantum mechanics.

In short, a Hilbert space is an abstract vector space that is complete with inner products defined [R699].

Examples

```python
>>> from sympy.physics.quantum.hilbert import HilbertSpace
>>> hs = HilbertSpace()
>>> hs
H
```

References

[R699]

property dimension

Return the Hilbert dimension of the space.

class sympy.physics.quantum.hilbert.L2(interval)

The Hilbert space of square integrable functions on an interval.

An L2 object takes in a single SymPy Interval argument which represents the interval its functions (vectors) are defined on.
Examples

```python
>>> from sympy import Interval, oo
>>> from sympy.physics.quantum.hilbert import L2
>>> hs = L2(Interval(0, oo))
>>> hs
L2(Interval(0, oo))
>>> hs.dimension
oo
>>> hs.interval
Interval(0, oo)
```

class sympy.physics.quantum.hilbert.TensorPowerHilbertSpace(*args)

An exponentiated Hilbert space [R700].

Tensor powers (repeated tensor products) are represented by the operator ** Identical Hilbert spaces that are multiplied together will be automatically combined into a single tensor power object.

Any Hilbert space, product, or sum may be raised to a tensor power. The TensorPowerHilbertSpace takes two arguments: the Hilbert space; and the tensor power (number).

Examples

```python
>>> from sympy.physics.quantum.hilbert import ComplexSpace, FockSpace
>>> from sympy import symbols

>>> n = symbols('n')
>>> c = ComplexSpace(2)
>>> hs = c**n
>>> hs
C(2)**n
>>> hs.dimension
2**n

>>> c = ComplexSpace(2)
>>> c*c
C(2)**2
>>> f = FockSpace()
>>> c*f*f
C(2)*F**2
```
References

[R700]

class sympy.physics.quantum.hilbert.TensorProductHilbertSpace(*args)

A tensor product of Hilbert spaces [R701].

The tensor product between Hilbert spaces is represented by the operator * Products of the same Hilbert space will be combined into tensor powers.

A TensorProductHilbertSpace object takes in an arbitrary number of HilbertSpace objects as its arguments. In addition, multiplication of HilbertSpace objects will automatically return this tensor product object.

Examples

```python
>>> from sympy.physics.quantum.hilbert import ComplexSpace, FockSpace
>>> from sympy import symbols

>>> c = ComplexSpace(2)
>>> f = FockSpace()
>>> hs = c*f
>>> hs
C(2)*F
>>> hs.dimension
oo
>>> hs.spaces
(C(2), F)

>>> c1 = ComplexSpace(2)
>>> n = symbols('n')
>>> c2 = ComplexSpace(n)
>>> hs = c1*c2
>>> hs
C(2)*C(n)
>>> hs.dimension
2*n
```

References

[R701]

classmethod eval(args)

Evaluates the direct product.

property spaces

A tuple of the Hilbert spaces in this tensor product.
Operator

Quantum mechanical operators.

TODO:

• Fix early 0 in apply_operators.
• Debug and test apply_operators.
• Get cse working with classes in this file.
• Doctests and documentation of special methods for InnerProduct, Commutator, Anti-
 Commutator, represent, apply_operators.

```python
class sympy.physics.quantum.operator.DifferentialOperator(*args, **kwargs)
    An operator for representing the differential operator, i.e. d/dx
```

It is initialized by passing two arguments. The first is an arbitrary expression that
involves a function, such as Derivative(f(x), x). The second is the function (e.g. f(x))
which we are to replace with the Wavefunction that this DifferentialOperator is ap-
plied to.

Parameters

* expr : Expr
 The arbitrary expression which the appropriate Wavefunction is to be
 substituted into

* func : Expr
 A function (e.g. f(x)) which is to be replaced with the appropriate
 Wavefunction when this DifferentialOperator is applied

Examples

You can define a completely arbitrary expression and specify where the Wavefunction is
to be substituted

```python
>>> from sympy import Derivative, Function, Symbol
>>> from sympy.physics.quantum.operator import DifferentialOperator
>>> from sympy.physics.quantum.state import Wavefunction
>>> from sympy.physics.quantum.qapply import qapply

>>> f = Function('f')
>>> x = Symbol('x')
>>> d = DifferentialOperator(1/x*Derivative(f(x), x), f(x))
>>> w = Wavefunction(x**2, x)

>>> d.function
f(x)
>>> d.variables
(x,)
>>> qapply(d*w)
Wavefunction(2, x)
```

property expr

Returns the arbitrary expression which is to have the Wavefunction substituted into
it
Examples

```python
>>> from sympy.physics.quantum.operator import DifferentialOperator
>>> from sympy import Function, Symbol, Derivative

>>> x = Symbol('x')
>>> f = Function('f')
>>> d = DifferentialOperator(Derivative(f(x), x), f(x))
>>> d.expr
Derivative(f(x), x)

>>> y = Symbol('y')
>>> d = DifferentialOperator(Derivative(f(x, y), x) + ...
                             Derivative(f(x, y), y), f(x, y))
>>> d.expr
Derivative(f(x, y), x) + Derivative(f(x, y), y)
```

property `free_symbols`

Return the free symbols of the expression.

property `function`

Returns the function which is to be replaced with the Wavefunction.

Examples

```python
>>> from sympy.physics.quantum.operator import DifferentialOperator
>>> from sympy import Symbol, Function, Derivative

>>> x = Symbol('x')
>>> f = Function('f')
>>> d = DifferentialOperator(Derivative(f(x), x), f(x))

>>> d.function
f(x)

>>> y = Symbol('y')
>>> d = DifferentialOperator(Derivative(f(x, y), x) + ...
                             Derivative(f(x, y), y), f(x, y))

>>> d.function
f(x, y)
```

property `variables`

Returns the variables with which the function in the specified arbitrary expression is evaluated.

Examples

```python
>>> from sympy.physics.quantum.operator import DifferentialOperator
>>> from sympy import Symbol, Function, Derivative

>>> x = Symbol('x')
>>> f = Function('f')
>>> d = DifferentialOperator(1/x*Derivative(f(x), x), f(x))
>>> d.variables
(x,)

>>> y = Symbol('y')
```

(continues on next page)
>>> d = DifferentialOperator(Derivative(f(x, y), x) + Derivative(f(x, y), y), f(x, y))
>>> d.variables
(x, y)

class sympy.physics.quantum.operator.HermitianOperator(*args, **kwargs)
A Hermitian operator that satisfies $H = \text{Dagger}(H)$.

Parameters
 args : tuple
 The list of numbers or parameters that uniquely specify the operator.
 For time-dependent operators, this will include the time.

Examples

>>> from sympy.physics.quantum import Dagger, HermitianOperator
>>> H = HermitianOperator('H')
>>> Dagger(H)

class sympy.physics.quantum.operator.IdentityOperator(*args, **kwargs)
An identity operator I that satisfies $op * I = I * op = op$ for any operator op.

Parameters
 N : Integer
 Optional parameter that specifies the dimension of the Hilbert space
 of operator. This is used when generating a matrix representation.

Examples

>>> from sympy.physics.quantum import IdentityOperator
>>> IdentityOperator()

class sympy.physics.quantum.operator.Operator(*args, **kwargs)
Base class for non-commuting quantum operators.

An operator maps between quantum states [R703]. In quantum mechanics, observables
(including, but not limited to, measured physical values) are represented as Hermitian
operators [R704].

Parameters
 args : tuple
 The list of numbers or parameters that uniquely specify the operator.
 For time-dependent operators, this will include the time.
Examples

Create an operator and examine its attributes:

```python
>>> from sympy.physics.quantum import Operator
>>> from sympy import I

>>> A = Operator('A')
>>> A
A
>>> A.hilbert_space
H
>>> A.label
(A,)
>>> A.is_commutative
False
```

Create another operator and do some arithmetic operations:

```python
>>> B = Operator('B')

>>> C = 2*A*A + I*B
>>> C
2*A**2 + I*B

Operators do not commute:

```python
>>> A.is_commutative
False
>>> B.is_commutative
False
>>> A*B == B*A
False
```

Polynomials of operators respect the commutation properties:

```python
>>> e = (A+B)**3
>>> e.expand()
```

Operator inverses are handled symbolically:

```python
>>> A.inv()
A**(-1)
>>> A*A.inv()
1
```
**SymPy Documentation, Release 1.12.1**

**References**

[R703], [R704]

class sympy.physics.quantum.operator.OuterProduct(*args, **old_assumptions)

An unevaluated outer product between a ket and bra.

This constructs an outer product between any subclass of KetBase and BraBase as $|a><b|$. An OuterProduct inherits from Operator as they act as operators in quantum expressions. For reference see [R705].

**Parameters**

- **ket**: KetBase
  - The ket on the left side of the outer product.

- **bar**: BraBase
  - The bra on the right side of the outer product.

**Examples**

Create a simple outer product by hand and take its dagger:

```python
>>> from sympy.physics.quantum import Ket, Bra, OuterProduct, Dagger
>>> from sympy.physics.quantum import Operator

>>> k = Ket('k')
>>> b = Bra('b')
>>> op = OuterProduct(k, b)
>>> op
|k><b|
>>> op.hilbert_space
H
>>> op.ket
|k>
>>> op.bra
<b|
>>> Dagger(op)
|b><k|
```

In simple products of kets and bras outer products will be automatically identified and created:

```python
>>> k*b
|k><b|
```

But in more complex expressions, outer products are not automatically created:

```python
>>> A = Operator('A')
>>> A*k*b
A*|k><b|
```

A user can force the creation of an outer product in a complex expression by using parentheses to group the ket and bra:
A \cdot (k \cdot b)
A^* |k><b|

References

[R705]

property bra
Return the bra on the right side of the outer product.

property ket
Return the ket on the left side of the outer product.

class sympy.physics.quantum.operator.UnitaryOperator(*args, **kwargs)
A unitary operator that satisfies U*Dagger(U) == 1.

Parameters
args : tuple
The list of numbers or parameters that uniquely specify the operator.
For time-dependent operators, this will include the time.

Examples

>>> from sympy.physics.quantum import Dagger, UnitaryOperator
>>> U = UnitaryOperator('U')
>>> U*Dagger(U)
1

Operator/State Helper Functions

A module for mapping operators to their corresponding eigenstates and vice versa

It contains a global dictionary with eigenstate-operator pairings. If a new state-operator pair is created, this dictionary should be updated as well.

It also contains functions operators_to_state and state_to_operators for mapping between the two. These can handle both classes and instances of operators and states. See the individual function descriptions for details.

TODO List: - Update the dictionary with a complete list of state-operator pairs

sympy.physics.quantum.operatorset.operators_to_state(operators, **options)
Returns the eigenstate of the given operator or set of operators

A global function for mapping operator classes to their associated states. It takes either an Operator or a set of operators and returns the state associated with these.

This function can handle both instances of a given operator or just the class itself (i.e. both XOp() and XOp)

There are multiple use cases to consider:
1) A class or a set of classes is passed: First, we try to instantiate default instances for these operators. If this fails, then the class is simply returned. If we succeed in instantiating default instances, then we try to call state._operators_to_state on the operator instances. If this fails, the class is returned. Otherwise, the instance returned by _operators_to_state is returned.

2) An instance or a set of instances is passed: In this case, state._operators_to_state is called on the instances passed. If this fails, a state class is returned. If the method returns an instance, that instance is returned.

In both cases, if the operator class or set does not exist in the state_mapping dictionary, None is returned.

Parameters
arg: Operator or set
The class or instance of the operator or set of operators to be mapped to a state

Examples

```python
>>> from sympy.physics.quantum.cartesian import XOp, PxOp
>>> from sympy.physics.quantum.operatorset import operators_to_state
>>> from sympy.physics.quantum.operator import Operator

>>> operators_to_state(XOp)
|x>
>>> operators_to_state(XOp())
|x>
>>> operators_to_state(PxOp)
|px>
>>> operators_to_state(PxOp())
|px>
>>> operators_to_state(Operator)
|psi>
>>> operators_to_state(Operator())
|psi>
```

sympy.physics.quantum.operatorset.state_to_operators(state, **options)
Returns the operator or a set of operators corresponding to the given eigenstate

A global function for mapping state classes to their associated operators or sets of operators. It takes either a state class or instance.

This function can handle both instances of a given state or just the class itself (i.e. both XKet() and XKet)

There are multiple use cases to consider:

1) A state class is passed: In this case, we first try instantiating a default instance of the class. If this succeeds, then we try to call state._state_to_operators on that instance. If the creation of the default instance or if the calling of _state_to_operators fails, then either an operator class or a set of operator classes is returned. Otherwise, the appropriate operator instances are returned.

2) A state instance is returned: Here, state._state_to_operators is called for the instance. If this fails, then a class or a set of operator classes is returned. Otherwise, the instances are returned.
In either case, if the state’s class does not exist in state_mapping, None is returned.

**Parameters**

arg: StateBase class or instance (or subclasses)

The class or instance of the state to be mapped to an operator or set of operators

**Examples**

```python
>>> from sympy.physics.quantum.cartesian import XKet, PxKet, XBra, PxBra
>>> from sympy.physics.quantum.operatorset import state_to_operators
>>> from sympy.physics.quantum.state import Ket, Bra

>>> state_to_operators(XKet)
X

>>> state_to_operators(XKet())
X

>>> state_to_operators(PxKet)
Px

>>> state_to_operators(PxKet())
Px

>>> state_to_operators(PxBra)
Px

>>> state_to_operators(PxBra)
Px

>>> state_to_operators(XBra)
X

>>> state_to_operators(Ket)
O

>>> state_to_operators(Bra)
O
```

**Qapply**

Logic for applying operators to states.

Todo: * Sometimes the final result needs to be expanded, we should do this by hand.

sympy.physics.quantum.qapply.qapply(e, **options)

Apply operators to states in a quantum expression.

**Parameters**

- e : Expr
  
The expression containing operators and states. This expression tree will be walked to find operators acting on states symbolically.

- options : dict
  
  A dict of key/value pairs that determine how the operator actions are carried out.

  The following options are valid:

  - dagger: try to apply Dagger operators to the left (default: False).
  - ip_doit: call .doit() in inner products when they are encountered (default: True).
Returns
e : Expr
The original expression, but with the operators applied to states.

Examples

```python
>>> from sympy.physics.quantum import qapply, Ket, Bra
>>> b = Bra('b')
>>> k = Ket('k')
>>> A = k * b
>>> A
|k><b|
>>> qapply(A * b.dual / (b * b.dual))
|k>
>>> qapply(k.dual * A / (k.dual * k), dagger=True)
<b|
>>> qapply(k.dual * A / (k.dual * k))
<k*|k><b|/<k|k>
```

Represent

Logic for representing operators in state in various bases.

TODO:
- Get represent working with continuous hilbert spaces.
- Document default basis functionality.

```python
sympy.physics.quantum.represent.enumerate_states(*args, **options)
```

Returns instances of the given state with dummy indices appended

Operates in two different modes:

1. Two arguments are passed to it. The first is the base state which is to be indexed, and the second argument is a list of indices to append.

2. Three arguments are passed. The first is again the base state to be indexed. The second is the start index for counting. The final argument is the number of kets you wish to receive.

Tries to call state._enumerate_state. If this fails, returns an empty list

Parameters

- `args` : list
  See list of operation modes above for explanation
Examples

```python
>>> from sympy.physics.quantum.cartesian import XBra, XKet
>>> from sympy.physics.quantum.represent import enumerate_states
>>> test = XKet('foo')
>>> enumerate_states(test, 1, 3)
[|foo_1>, |foo_2>, |foo_3>]
>>> test2 = XBra('bar')
>>> enumerate_states(test2, [4, 5, 10])
[<bar_4|, <bar_5|, <bar_10|]
```

```
sympy.physics.quantum.represent.get_basis(expr, *, basis=None, replace_none=True, **options)
```

Returns a basis state instance corresponding to the basis specified in options=s. If no basis is specified, the function tries to form a default basis state of the given expression.

There are three behaviors:

1. The basis specified in options is already an instance of StateBase. If this is the case, it is simply returned. If the class is specified but not an instance, a default instance is returned.

2. The basis specified is an operator or set of operators. If this is the case, the operator_to_state mapping method is used.

3. No basis is specified. If expr is a state, then a default instance of its class is returned. If expr is an operator, then it is mapped to the corresponding state. If it is neither, then we cannot obtain the basis state.

If the basis cannot be mapped, then it is not changed.

This will be called from within represent, and represent will only pass QExpr’s.

TODO (?): Support for Muls and other types of expressions?

**Parameters**

- `expr`: Operator or StateBase
  - Expression whose basis is sought

**Examples**

```python
>>> from sympy.physics.quantum.represent import get_basis
>>> from sympy.physics.quantum.cartesian import XOp, XKet, PxOp, PxKet
>>> x = XKet()
>>> X = XOp()
>>> get_basis(x)
|x>
>>> get_basis(X)
|x>
>>> get_basis(x, basis=PxOp())
|px>
>>> get_basis(x, basis=PxKet)
|px>
```
sympy.physics.quantum.represent.integrate_result(orig_expr, result, **options)

Returns the result of integrating over any unities (\(|x><x|\)) in the given expression. Intended for integrating over the result of representations in continuous bases.

This function integrates over any unities that may have been inserted into the quantum expression and returns the result. It uses the interval of the Hilbert space of the basis state passed to it in order to figure out the limits of integration. The unities option must be specified for this to work.

Note: This is mostly used internally by represent(). Examples are given merely to show the use cases.

**Parameters**

*orig_expr*: quantum expression

The original expression which was to be represented

*result*: Expr

The resulting representation that we wish to integrate over

**Examples**

```python
>>> from sympy import symbols, DiracDelta
>>> from sympy.physics.quantum.represent import integrate_result
>>> from sympy.physics.quantum.cartesian import XOp, XKet
>>> x_ket = XKet()
>>> X_op = XOp()
>>> x, x_1, x_2 = symbols('x, x_1, x_2')
>>> integrate_result(X_op*x_ket, x*DiracDelta(x-x_1)*DiracDelta(x_1-x_2))
 x*DiracDelta(x - x_1)*DiracDelta(x_1 - x_2)
>>> integrate_result(X_op*x_ket, x*DiracDelta(x-x_1)*DiracDelta(x_1-x_2),
 ... unities=[1])
 x*DiracDelta(x - x_2)
```

sympy.physics.quantum.represent.rep_expectation(expr, **options)

Returns an \(<x'|A|x>\) type representation for the given operator.

**Parameters**

*expr*: Operator

Operator to be represented in the specified basis

**Examples**

```python
>>> from sympy.physics.quantum.cartesian import XOp, PxOp, PxKet
>>> from sympy.physics.quantum.represent import rep_expectation
>>> rep_expectation(XOp())
 x_1*DiracDelta(x_1 - x_2)
>>> rep_expectation(XOp(), basis=PxOp())
 <px_2|*X*|px_1>
>>> rep_expectation(XOp(), basis=PxKet())
 <px_2|*X*|px_1>
```
The `rep_innerproduct` function returns an inner product like representation (e.g. \(<x'|x>\)) for the given state. It attempts to calculate inner product with a bra from the specified basis. Should only be passed an instance of KetBase or BraBase.

**Parameters**
- **expr**: KetBase or BraBase
  - The expression to be represented

**Examples**

```python
>>> from sympy.physics.quantum.represent import rep_innerproduct
>>> from sympy.physics.quantum.cartesian import XOp, XKet, PxOp, PxKet
>>> rep_innerproduct(XKet())
DiracDelta(x - x_1)
>>> rep_innerproduct(XKet(), basis=PxOp())
sqrt(2)*exp(-I*px_1*x/hbar)/(2*sqrt(hbar)*sqrt(pi))
>>> rep_innerproduct(PxKet(), basis=XOp())
sqrt(2)*exp(I*px*x_1/hbar)/(2*sqrt(hbar)*sqrt(pi))
```

The `represent` function represents the quantum expression in the given basis.

In quantum mechanics abstract states and operators can be represented in various basis sets. Under this operation the follow transforms happen:

- Ket -> column vector or function
- Bra -> row vector of function
- Operator -> matrix or differential operator

This function is the top-level interface for this action.

This function walks the SymPy expression tree looking for QExpr instances that have a `_represent` method. This method is then called and the object is replaced by the representation returned by this method. By default, the `_represent` method will dispatch to other methods that handle the representation logic for a particular basis set. The naming convention for these methods is the following:

```python
def _represent_FooBasis(self, e, basis, **options)
```

This function will have the logic for representing instances of its class in the basis set having a class named FooBasis.

**Parameters**
- **expr**: Expr
  - The expression to represent.
- **basis**: Operator, basis set
  - An object that contains the information about the basis set. If an operator is used, the basis is assumed to be the orthonormal eigenvectors of that operator. In general though, the basis argument can be any object that contains the basis set information.
**options** : dict

Key/value pairs of options that are passed to the underlying method that finds the representation. These options can be used to control how the representation is done. For example, this is where the size of the basis set would be set.

**Returns**

e : Expr

The SymPy expression of the represented quantum expression.

**Examples**

Here we subclass Operator and Ket to create the z-spin operator and its spin 1/2 up eigenstate. By defining the _represent_SzOp method, the ket can be represented in the z-spin basis.

```python
>>> from sympy.physics.quantum import Operator, represent, Ket
>>> from sympy import Matrix

>>> class SzUpKet(Ket):
... def _represent_SzOp(self, basis, **options):
... return Matrix([1, 0])

>>> class SzOp(Operator):
... pass

>>> sz = SzOp('Sz')
>>> up = SzUpKet('up')
>>> represent(up, basis=sz)
Matrix([[1], [0]])
```

Here we see an example of representations in a continuous basis. We see that the result of representing various combinations of cartesian position operators and kets give us continuous expressions involving DiracDelta functions.

```python
>>> from sympy.physics.quantum.cartesian import XOp, XKet, XBra

>>> X = XOp()
>>> x = XKet()
>>> y = XBra('y')
>>> represent(X*x)
x*DiracDelta(x - x_2)
>>> represent(X*x*y)
x*DiracDelta(x - x_3)*DiracDelta(x_1 - y)
```
Spin

Quantum mechanical angular momentum.

class sympy.physics.quantum.spin.J2Op(*args, **kwargs)
The J^2 operator.

class sympy.physics.quantum.spin.JxBra(j, m)
Eigenbra of Jx.
See JzKet for the usage of spin eigenstates.

See also:

JzKet (page 1890)
Usage of spin states

class sympy.physics.quantum.spin.JxBraCoupled(j, m, jn, *jcoulping)
Coupled eigenbra of Jx.
See JzKetCoupled for the usage of coupled spin eigenstates.

See also:

JzKetCoupled (page 1892)
Usage of coupled spin states

class sympy.physics.quantum.spin.JxKet(j, m)
Eigenket of Jx.
See JzKet for the usage of spin eigenstates.

See also:

JzKet (page 1890)
Usage of spin states

class sympy.physics.quantum.spin.JxKetCoupled(j, m, jn, *jcoulping)
Coupled eigenket of Jx.
See JzKetCoupled for the usage of coupled spin eigenstates.

See also:

JzKetCoupled (page 1892)
Usage of coupled spin states

class sympy.physics.quantum.spin.JyBra(j, m)
Eigenbra of Jy.
See JzKet for the usage of spin eigenstates.

See also:

JzKet (page 1890)
Usage of spin states

5.8. Topics
class sympy.physics.quantum.spin.JyBraCoupled(j, m, jn, *jcoupling)
Coupled eigenbra of Jy.

See JzKetCoupled for the usage of coupled spin eigenstates.

See also:

JzKetCoupled (page 1892)
Usage of coupled spin states

class sympy.physics.quantum.spin.JyKet(j, m)
Eigenket of Jy.

See JzKet for the usage of spin eigenstates.

See also:

JzKet (page 1890)
Usage of spin states

class sympy.physics.quantum.spin.JyKetCoupled(j, m, jn, *jcoupling)
Coupled eigenket of Jy.

See JzKetCoupled for the usage of coupled spin eigenstates.

See also:

JzKetCoupled (page 1892)
Usage of coupled spin states

class sympy.physics.quantum.spin.JzBra(j, m)
Eigenbra of Jz.

See the JzKet for the usage of spin eigenstates.

See also:

JzKet (page 1890)
Usage of spin states

class sympy.physics.quantum.spin.JzBraCoupled(j, m, jn, *jcoupling)
Coupled eigenbra of Jz.

See the JzKetCoupled for the usage of coupled spin eigenstates.

See also:

JzKetCoupled (page 1892)
Usage of coupled spin states

class sympy.physics.quantum.spin.JzKet(j, m)
Eigenket of Jz.

Spin state which is an eigenstate of the Jz operator. Uncoupled states, that is states representing the interaction of multiple separate spin states, are defined as a tensor product of states.

Parameters
  j : Number, Symbol
Total spin angular momentum

\[ m, \text{ Number, Symbol} \]

Eigenvalue of the Jz spin operator

**Examples**

**Normal States:**

Defining simple spin states, both numerical and symbolic:

```python
>>> from sympy.physics.quantum.spin import JzKet, JxKet
>>> from sympy import symbols

>>> JzKet(1, 0)
|1,0>

>>> j, m = symbols('j m')

>>> JzKet(j, m)
|j,m>
```

Rewriting the JzKet in terms of eigenkets of the Jx operator: Note: that the resulting eigenstates are JxKet's

```python
>>> JzKet(1,1).rewrite("Jx")
|1,-1>/2 - sqrt(2)*|1,0>/2 + |1,1>/2
```

Get the vector representation of a state in terms of the basis elements of the Jx operator:

```python
>>> from sympy.physics.quantum.represent import represent

>>> represent(JzKet(1,-1), basis=Jx)
Matrix([[1/2], [sqrt(2)/2], [1/2]])
```

Apply innerproducts between states:

```python
>>> from sympy.physics.quantum.innerproduct import InnerProduct

>>> i = InnerProduct(JxBra(1,1), JzKet(1,1))

>>> i
<i,1|1,1>

>>> i.doit()
1/2
```

**Uncoupled States:**

Define an uncoupled state as a TensorProduct between two Jz eigenkets:

```python
>>> from sympy.physics.quantum.tensorproduct import TensorProduct

>>> j1,m1,j2,m2 = symbols('j1 m1 j2 m2')

>>> TensorProduct(JzKet(1,0), JzKet(1,1))
|1,0>x|1,1>

>>> TensorProduct(JzKet(j1,m1), JzKet(j2,m2))
|j1,m1>x|j2,m2>
```
A TensorProduct can be rewritten, in which case the eigenstates that make up the tensor product is rewritten to the new basis:

\[
\text{TensorProduct(JzKet(1,1),JxKet(1,1)).rewrite('Jz')} = |1,1\rangle_x|1,-1\rangle/2 + \sqrt{2}(|1,1\rangle_x|1,0\rangle/2 + |1,1\rangle_x|1,1\rangle/2
\]

The represent method for TensorProduct’s gives the vector representation of the state. Note that the state in the product basis is the equivalent of the tensor product of the vector representation of the component eigenstates:

\[
\text{represent(TensorProduct(JzKet(1,0),JzKet(1,1)))} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}
\]

\[
\text{represent(TensorProduct(JzKet(1,1),JxKet(1,1)), basis=Jz)} = \begin{bmatrix} 1/2 \\ \sqrt{2}/2 \\ 1/2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}
\]

See also:

- **JzKetCoupled (page 1892)**
  Coupled eigenstates

- **sympy.physics.quantum.tensorproduct.TensorProduct (page 1868)**
  Used to specify uncoupled states

- **uncouple (page 1899)**
  Uncouples states given coupling parameters

- **couple (page 1898)**
  Couples uncoupled states

**class sympy.physics.quantum.spin.JzKetCoupled(j, m, jn, *jcoupling)**

Coupled eigenket of Jz

Spin state that is an eigenket of Jz which represents the coupling of separate spin spaces. The arguments for creating instances of JzKetCoupled are j, m, jn and an optional jcoupling argument. The j and m options are the total angular momentum quantum numbers, as used for normal states (e.g. JzKet).
The other required parameter in \( \mathbf{j}_n \), which is a tuple defining the \( j_n \) angular momentum quantum numbers of the product spaces. So for example, if a state represented the coupling of the product basis state \( |j_1, m_1\rangle \times |j_2, m_2\rangle \), the \( j_n \) for this state would be \((j_1, j_2)\).

The final option is \( j_c \) coupling, which is used to define how the spaces specified by \( j_n \) are coupled, which includes both the order these spaces are coupled together and the quantum numbers that arise from these couplings. The \( j_c \) coupling parameter itself is a list of lists, such that each of the sublists defines a single coupling between the spin spaces. If there are \( N \) coupled angular momentum spaces, that is \( j_n \) has \( N \) elements, then there must be \( N-1 \) sublists. Each of these sublists making up the \( j_c \) coupling parameter have length 3. The first two elements are the indices of the product spaces that are considered to be coupled together. For example, if we want to couple \( j_1 \) and \( j_4 \), the indices would be 1 and 4. If a state has already been coupled, it is referenced by the smallest index that is coupled, so if \( j_2 \) and \( j_4 \) has already been coupled to some \( j_{24} \), then this value can be coupled by referencing it with index 2. The final element of the sublist is the quantum number of the coupled state. So putting everything together, into a valid sublist for \( j_c \) coupling, if \( j_1 \) and \( j_2 \) are coupled to an angular momentum space with quantum number \( j_{12} \) with the value \( j_{12} \), the sublist would be \((1, 2, j_{12})\). \( N-1 \) of these sublists are used in the list for \( j_c \) coupling.

Note the \( j_c \) coupling parameter is optional, if it is not specified, the default coupling is taken. This default value is to coupled the spaces in order and take the quantum number of the coupling to be the maximum value. For example, if the spin spaces are \( j_1, j_2, j_3, j_4 \), then the default coupling couples \( j_1 \) and \( j_2 \) to \( j_{12} = j_1 + j_2 \), then, \( j_{12} \) and \( j_3 \) are coupled to \( j_{123} = j_{12} + j_3 \), and finally \( j_{123} \) and \( j_4 \) to \( j = j_{123} + j_4 \). The \( j_c \) coupling value that would correspond to this is:

\[
((1,2,j_{12}),(1,3,j_{12}+j_3))
\]

**Parameters**

- **args** : tuple
  
The arguments that must be passed are \( j, m, j_n \), and \( j_c \) coupling. The \( j \) value is the total angular momentum. The \( m \) value is the eigenvalue of the \( J_z \) spin operator. The \( j_n \) list are the \( j \) values of angular momentum spaces coupled together. The \( j_c \) coupling parameter is an optional parameter defining how the spaces are coupled together. See the above description for how these coupling parameters are defined.

**Examples**

Defining simple spin states, both numerical and symbolic:

```python
>>> from sympy.physics.quantum.spin import JzKetCoupled
>>> from sympy import symbols

>>> JzKetCoupled(1, 0, (1, 1))
|1,0,j1=1,j2=1>

>>> j, m, j1, j2 = symbols('j m j1 j2')

>>> JzKetCoupled(j, m, (j1, j2))
|j,m,j1=1,j2=2>
```

Defining coupled spin states for more than 2 coupled spaces with various coupling parameters:
Rewriting the JzKetCoupled in terms of eigenkets of the Jx operator: Note: that the resulting eigenstates are JxKetCoupled

\[
JzKetCoupled(1, 1, (1, 1))
\]

\[
\frac{1}{\sqrt{2}} |1,-1,j1=1,j2=1>/2 - \sqrt{2} |1,0,j1=1,j2=1>/2 + |1,1,j1=1,j2=1>/2
\]

The rewrite method can be used to convert a coupled state to an uncoupled state. This is done by passing coupled=False to the rewrite function:

\[
JzKetCoupled(1, 0, (1, 1)).rewrite('Jz', coupled=False)
\]

\[
-\sqrt{2} |1,-1>x|1,1>/2 + \sqrt{2} |1,1>x|1,-1>/2
\]

Get the vector representation of a state in terms of the basis elements of the Jx operator:

\[
represent(JzKetCoupled(1,-1,(S(1)/2,S(1)/2)), basis=Jx)
\]

\[
Matrix([ [ 0 ], [ 1/2 ], [ sqrt(2)/2 ], [ 1/2 ]])
\]

See also:

**JzKet (page 1890)**
Normal spin eigenstates

**uncouple (page 1899)**
Uncoupling of coupling spin states

**couple (page 1898)**
Coupling of uncoupled spin states

**class sympy.physics.quantum.spin.JzOp(*args, **kwargs)**
The Jz operator.

**class sympy.physics.quantum.spin.Rotation(*args, **kwargs)**
Wigner D operator in terms of Euler angles.

Defines the rotation operator in terms of the Euler angles defined by the z-y-z convention for a passive transformation. That is the coordinate axes are rotated first about the z-axis, giving the new x’-y’-z’ axes. Then this new coordinate system is rotated about the new y’-axis, giving new x’’-y’’-z’’ axes. Then this new coordinate system is rotated about the z’’-axis. Conventions follow those laid out in [R706].

**Parameters**

- **alpha** : Number, Symbol
First Euler Angle

**beta** : Number, Symbol
Second Euler angle

**gamma** : Number, Symbol
Third Euler angle

### Examples

A simple example rotation operator:

```python
>>> from sympy import pi
>>> from sympy.physics.quantum.spin import Rotation
>>> Rotation(pi, 0, pi/2)
R(pi,0,pi/2)
```

With symbolic Euler angles and calculating the inverse rotation operator:

```python
>>> from sympy import symbols
>>> a, b, c = symbols('a b c')
>>> Rotation(a, b, c)
R(a,b,c)
>>> Rotation(a, b, c).inverse()
R(-c,-b,-a)
```

See also:

- **WignerD** *(page 1897)*
  Symbolic Wigner-D function

- **D** *(page 1895)*
  Wigner-D function

- **d** *(page 1896)*
  Wigner small-d function

### References

[R706]

classmethod **D**(j, m, mp, alpha, beta, gamma)
Wigner D-function.

Returns an instance of the WignerD class corresponding to the Wigner-D function specified by the parameters.

**Parameters**

- **j** : Number
  Total angular momentum
- **m** : Number
  Eigenvalue of angular momentum along axis after rotation
- **mp** : Number

5.8. Topics 1895
Eigenvalue of angular momentum along rotated axis

**alpha** : Number, Symbol
  First Euler angle of rotation

**beta** : Number, Symbol
  Second Euler angle of rotation

**gamma** : Number, Symbol
  Third Euler angle of rotation

### Examples

Return the Wigner-D matrix element for a defined rotation, both numerical and symbolic:

```python
>>> from sympy.physics.quantum.spin import Rotation
>>> from sympy import pi, symbols
>>> alpha, beta, gamma = symbols('alpha beta gamma')
>>> Rotation.D(1, 1, 0, pi, pi/2, -pi)
WignerD(1, 1, 0, pi, pi/2, -pi)
```

See also:

**WignerD (page 1897)**
Symbolic Wigner-D function

**classmethod** d(j, m, mp, beta)
Wigner small-d function.

Returns an instance of the WignerD class corresponding to the Wigner-D function specified by the parameters with the alpha and gamma angles given as 0.

**Parameters**

- **j** : Number
  Total angular momentum
- **m** : Number
  Eigenvalue of angular momentum along axis after rotation
- **mp** : Number
  Eigenvalue of angular momentum along rotated axis
- **beta** : Number, Symbol
  Second Euler angle of rotation
Examples

Return the Wigner-D matrix element for a defined rotation, both numerical and sym-

bolic:

```python
>>> from sympy.physics.quantum.spin import Rotation
>>> from sympy import pi, symbols
>>> beta = symbols('beta')
>>> Rotation.d(1, 1, 0, pi/2)
WignerD(1, 1, 0, 0, pi/2, 0)
```

See also:

`WignerD` (page 1897)

Symbolic Wigner-D function

class sympy.physics.quantum.spin.WignerD(*args, **hints)

Wigner-D function

The Wigner D-function gives the matrix elements of the rotation operator in the jm-

representation. For the Euler angles $\alpha, \beta, \gamma$, the D-function is defined such that:

$$< j, m | R(\alpha, \beta, \gamma) | j', m' > = \delta_{jj'} D(j, m, m', \alpha, \beta, \gamma)$$

Where the rotation operator is as defined by the Rotation class [R707]. The Wigner D-function defined in this way gives:

$$D(j, m, m', \alpha, \beta, \gamma) = e^{-im\alpha} d(j, m, m', \beta) e^{-im'\gamma}$$

Where $d$ is the Wigner small-d function, which is given by Rotation.d.

The Wigner small-d function gives the component of the Wigner D-function that is deter-

mined by the second Euler angle. That is the Wigner D-function is:

$$D(j, m, m', \alpha, \beta, \gamma) = e^{-im\alpha} d(j, m, m', \beta) e^{-im'\gamma}$$

Where $d$ is the small-d function. The Wigner D-function is given by Rotation.D.

Note that to evaluate the D-function, the $j, m$ and $mp$ parameters must be integer or half integer numbers.

Parameters

- **j** : Number
  Total angular momentum
- **m** : Number
  Eigenvalue of angular momentum along axis after rotation
- **mp** : Number
  Eigenvalue of angular momentum along rotated axis
- **alpha** : Number, Symbol
  First Euler angle of rotation
- **beta** : Number, Symbol
  Second Euler angle of rotation
**gamma** : Number, Symbol

Third Euler angle of rotation

**Examples**

Evaluate the Wigner-D matrix elements of a simple rotation:

```python
>>> from sympy.physics.quantum.spin import Rotation

```n
```python
>>> from sympy import pi

```n
```python
>>> rot = Rotation.D(1, 1, 0, pi, pi/2, 0)
```

```python
>>> rot
WignerD(1, 1, 0, pi, pi/2, 0)
```

```python
>>> rot.doit()
```

```python
sqrt(2)/2
```

Evaluate the Wigner-d matrix elements of a simple rotation

```python
>>> rot = Rotation.d(1, 1, 0, pi/2)
```

```python
>>> rot
WignerD(1, 1, 0, 0, pi/2, 0)
```

```python
>>> rot.doit()
```

```python
-sqrt(2)/2
```

**See also:**

*Rotation* (page 1894)

Rotation operator

**References**

[R707]

sympy.physics.quantum.spin.couple(expr, jcoupling_list=None)

Couple a tensor product of spin states

This function can be used to couple an uncoupled tensor product of spin states. All of the eigenstates to be coupled must be of the same class. It will return a linear combination of eigenstates that are subclasses of CoupledSpinState determined by Clebsch-Gordan angular momentum coupling coefficients.

**Parameters**

expr : Expr

An expression involving TensorProducts of spin states to be coupled. Each state must be a subclass of SpinState and they all must be the same class.

jcoupling_list : list or tuple

Elements of this list are sub-lists of length 2 specifying the order of the coupling of the spin spaces. The length of this must be N-1, where N is the number of states in the tensor product to be coupled. The elements of this sub-list are the same as the first two elements of each sublist in the jcoupling parameter defined for JzKetCoupled. If this
parameter is not specified, the default value is taken, which couples the first and second product basis spaces, then couples this new coupled space to the third product space, etc

Examples

Couple a tensor product of numerical states for two spaces:

```python
>>> from sympy.physics.quantum.spin import JzKet, couple
>>> from sympy.physics.quantum.tensorproduct import TensorProduct
>>> couple(TensorProduct(JzKet(1, 0), JzKet(1, 1)))
-sqrt(2)*|1,1,j1=1,j2=1>/2 + sqrt(2)*|2,1,j1=1,j2=1>/2
```

Numerical coupling of three spaces using the default coupling method, i.e. first and second spaces couple, then this couples to the third space:

```python
>>> couple(TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, 0)))
sqrt(6)*|2,2,j1=1,j2=1,j3=1,j(1,2)=2>/3 + sqrt(3)*|3,2,j1=1,j2=1,j3=1,
 -j(1,2)=2>/3
```

Perform this same coupling, but we define the coupling to first couple the first and third spaces:

```python
>>> couple(TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, 0)), ((1, 3), (1, -2)))
sqrt(2)*|2,2,j1=1,j2=1,j3=1,j(1,3)=1>/2 - sqrt(6)*|2,2,j1=1,j2=1,j3=1,
 -j(1,3)=2>/6 + sqrt(3)*|3,2,j1=1,j2=1,j3=1,j(1,3)=2>/3
```

Couple a tensor product of symbolic states:

```python
>>> from sympy import symbols
>>> j1,m1,j2,m2 = symbols('j1 m1 j2 m2')
>>> couple(TensorProduct(JzKet(j1,m1), JzKet(j2,m2)))
Sum(CG(j1, m1, j2, m2, j, m1 + m2)*|j,m1 + m2,j1=j1,j2=j2>, (j, m1 + m2,
 -j1 + j2))
```

sympy.physics.quantum.spin.uncouple(expr, jn=None, jcoupling_list=None)
Uncouple a coupled spin state

Gives the uncoupled representation of a coupled spin state. Arguments must be either a spin state that is a subclass of CoupledSpinState or a spin state that is a subclass of SpinState and an array giving the j values of the spaces that are to be coupled

Parameters
expr : Expr
    The expression containing states that are to be coupled. If the states are a subclass of SpinState, the jn and jcoupling parameters must be defined. If the states are a subclass of CoupledSpinState, jn and jcoupling will be taken from the state.

jn : list or tuple
    The list of the j-values that are coupled. If state is a CoupledSpinState, this parameter is ignored. This must be defined if state is not
a subclass of CoupledSpinState. The syntax of this parameter is the same as the \texttt{jn} parameter of \texttt{JzKetCoupled}.

\textbf{jcoupling_list} : list or tuple

The list defining how the j-values are coupled together. If state is a CoupledSpinState, this parameter is ignored. This must be defined if state is not a subclass of CoupledSpinState. The syntax of this parameter is the same as the \texttt{jcoupling} parameter of \texttt{JzKetCoupled}.

\section*{Examples}

Uncouple a numerical state using a CoupledSpinState state:

```python
>>> from sympy.physics.quantum.spin import JzKetCoupled, uncouple
>>> sqrt(2)*|1/2,-1/2>x|1/2,1/2>/2 + sqrt(2)*|1/2,1/2>x|1/2,-1/2>/2
```

Perform the same calculation using a SpinState state:

```python
>>> from sympy.physics.quantum.spin import JzKet
>>> sqrt(2)*|1/2,-1/2>x|1/2,1/2>/2 + sqrt(2)*|1/2,1/2>x|1/2,-1/2>/2
```

Uncouple a numerical state of three coupled spaces using a CoupledSpinState state:

```python
>>> uncouple(JzKetCoupled(1, 1, 1, 1), ((1,3,1),(1,2,1)))
|1,-1>x|1,1>x|1,1>/2 - |1,0>x|1,0>x|1,0>/2 - |1,1>→x|1,1>x|1,-1>/2
```

Perform the same calculation using a SpinState state:

```python
>>> uncouple(JzKet(1, 1), (1, 1, 1), ((1,3,1),(1,2,1)))
|1,-1>x|1,1>x|1,1>/2 - |1,0>x|1,0>x|1,0>/2 - |1,1>→x|1,1>x|1,-1>/2
```

Uncouple a symbolic state using a CoupledSpinState state:

```python
>>> from sympy import symbols
>>> j,m,j1,j2 = symbols('j m j1 j2')
>>> Sum(CG(j1, m1, j2, m2, j, m)*|j1,m1>x|j2,m2>, (m1, -j1, j1), (m2, -j2, j2))
```

Perform the same calculation using a SpinState state

```python
>>> uncouple(JzKet(j, m), (j1, j2))
Sum(CG(j1, m1, j2, m2, j, m)*|j1,m1>x|j2,m2>, (m1, -j1, j1), (m2, -j2, j2))
```
State

Dirac notation for states.

```python
class sympy.physics.quantum.state.Bra(*args, **kwargs)
```
A general time-independent Bra in quantum mechanics.

Inherits from State and BraBase. A Bra is the dual of a Ket [R708]. This class and its subclasses will be the main classes that users will use for expressing Bras in Dirac notation.

**Parameters**

- `args`: tuple
  The list of numbers or parameters that uniquely specify the ket. This will usually be its symbol or its quantum numbers. For time-dependent state, this will include the time.

**Examples**

Create a simple Bra and look at its properties:

```python
>>> from sympy.physics.quantum import Bra
>>> from sympy import symbols, I

>>> b = Bra('psi')
>>> b
<psi|
>>> b.hilbert_space
H
>>> b.is_commutative
False
```

Bra’s know about their dual Ket’s:

```python
>>> b.dual
|psi>
>>> b.dual_class()
<class 'sympy.physics.quantum.state.Ket'>
```

Like Kets, Bras can have compound labels and be manipulated in a similar manner:

```python
>>> n, m = symbols('n,m')
>>> b = Bra(n, m) - I*Bra(m, n)
>>> b
-I<mn| + <nm|
```

Symbols in a Bra can be substituted using `.subs`:

```python
>>> b.subs(n, m)
<mm| - I*<mm|
```
class sympy.physics.quantum.state.BraBase(*args, **kwargs)

Base class for Bras.

This class defines the dual property and the brackets for printing. This is an abstract base class and you should not instantiate it directly, instead use Bra.

class sympy.physics.quantum.state.Ket(*args, **kwargs)

A general time-independent Ket in quantum mechanics.

Inherits from State and KetBase. This class should be used as the base class for all physical, time-independent Kets in a system. This class and its subclasses will be the main classes that users will use for expressing Kets in Dirac notation [R709].

**Parameters**

*args : tuple

The list of numbers or parameters that uniquely specify the ket. This will usually be its symbol or its quantum numbers. For time-dependent state, this will include the time.

**Examples**

Create a simple Ket and looking at its properties:

```python
>>> from sympy.physics.quantum import Ket
>>> from sympy import symbols, I

>>> k = Ket('psi')
>>> k
|psi>
>>> k.hilbert_space
H
>>> k.is_commutative
False
>>> k.label
{'psi'}
```

Ket's know about their associated bra:

```python
>>> k.dual
<psi|
>>> k.dual_class()
<class 'sympy.physics.quantum.state.Bra'>
```

Take a linear combination of two kets:

```python
>>> k0 = Ket(0)
>>> k1 = Ket(1)
>>> 2*I*k0 - 4*k1
2*I*|0> - 4*|1>
```

Compound labels are passed as tuples:
```python
>>> n, m = symbols('n,m')
>>> k = Ket(n,m)
>>> k
|nm>
```

### References

[R709]

class sympy.physics.quantum.state.KetBase(*args, **kwargs)
Base class for Kets.

This class defines the dual property and the brackets for printing. This is an abstract base class and you should not instantiate it directly, instead use Ket.

class sympy.physics.quantum.state.OrthogonalBra(*args, **kwargs)
Orthogonal Bra in quantum mechanics.

class sympy.physics.quantum.state.OrthogonalKet(*args, **kwargs)
Orthogonal Ket in quantum mechanics.

The inner product of two states with different labels will give zero, states with the same label will give one.

```python
>>> from sympy.physics.quantum import OrthogonalBra, OrthogonalKet
>>> from sympy.abc import m, n
>>> (OrthogonalBra(n)*OrthogonalKet(n)).doit()
1
>>> (OrthogonalBra(n)*OrthogonalKet(n+1)).doit()
0
>>> (OrthogonalBra(n)*OrthogonalKet(m)).doit()
<n|m>
```

class sympy.physics.quantum.state.OrthogonalState(*args, **kwargs)
General abstract quantum state used as a base class for Ket and Bra.

class sympy.physics.quantum.state.State(*args, **kwargs)
General abstract quantum state used as a base class for Ket and Bra.

class sympy.physics.quantum.state.StateBase(*args, **kwargs)
Abstract base class for general abstract states in quantum mechanics.

All other state classes defined will need to inherit from this class. It carries the basic structure for all other states such as dual, _eval_adjoint and label.

This is an abstract base class and you should not instantiate it directly, instead use State.

**property dual**
Return the dual state of this one.

**classmethod dual_class()**
Return the class used to construct the dual.

**property operators**
Return the operator(s) that this state is an eigenstate of
class sympy.physics.quantum.state.TimeDepBra(*args, **kwargs)
General time-dependent Bra in quantum mechanics.
This inherits from TimeDepState and BraBase and is the main class that should be used for Bras that vary with time. Its dual is a TimeDepBra.

**Parameters**
*args : tuple
The list of numbers or parameters that uniquely specify the ket.
This will usually be its symbol or its quantum numbers. For time-dependent state, this will include the time as the final argument.

**Examples**
```
>>> from sympy.physics.quantum import TimeDepBra
>>> b = TimeDepBra('psi', 't')
>>> b
<psi;t|
>>> b.time
(t,
>>> b.label
(psi,)
>>> b.hilbert_space
H
>>> b.dual
|psi;t>
```

class sympy.physics.quantum.state.TimeDepKet(*args, **kwargs)
General time-dependent Ket in quantum mechanics.
This inherits from TimeDepState and KetBase and is the main class that should be used for Kets that vary with time. Its dual is a TimeDepBra.

**Parameters**
*args : tuple
The list of numbers or parameters that uniquely specify the ket.
This will usually be its symbol or its quantum numbers. For time-dependent state, this will include the time as the final argument.

**Examples**
Create a TimeDepKet and look at its attributes:
```
>>> from sympy.physics.quantum import TimeDepKet
>>> k = TimeDepKet('psi', 't')
>>> k
|psi;t>
>>> k.time
(t,
>>> k.label
(psi,)
```
TimeDepKets know about their dual bra:

```python
>>> k.dual
<psi;t|
>>> k.dual_class()
<class 'sympy.physics.quantum.state.TimeDepBra'>
```

class sympy.physics.quantum.state.TimeDepState(*args, **kwargs)
Base class for a general time-dependent quantum state.

This class is used as a base class for any time-dependent state. The main difference
between this class and the time-independent state is that this class takes a second argument
that is the time in addition to the usual label argument.

Parameters
  **args** : tuple
      The list of numbers or parameters that uniquely specify the ket.
      This will usually be its symbol or its quantum numbers. For time-
      dependent state, this will include the time as the final argument.

  **property label**
      The label of the state.

  **property time**
      The time of the state.

class sympy.physics.quantum.state.Wavefunction(*args)
Class for representations in continuous bases

This class takes an expression and coordinates in its constructor. It can be used to easily
calculate normalizations and probabilities.

Parameters
  **expr** : Expr
      The expression representing the functional form of the w.f.

  **coords** : Symbol or tuple
      The coordinates to be integrated over, and their bounds

Examples

Particle in a box, specifying bounds in the more primitive way of using Piecewise:

```python
>>> from sympy import Symbol, Piecewise, pi, N
>>> from sympy.functions import sqrt, sin
>>> from sympy.physics.quantum.state import Wavefunction
>>> x = Symbol('x', real=True)
>>> n = 1
>>> L = 1
>>> g = Piecewise((0, x < 0), (0, x > L), (sqrt(2/L)*sin(n*pi*x/L),
```

(continues on next page)
Additionally, you can specify the bounds of the function and the indices in a more compact way:

\[
\begin{align*}
\text{from sympy import symbols, pi, diff} \\
\text{from sympy.functions import sqrt, sin} \\
\text{from sympy.physics.quantum.state import Wavefunction} \\
\text{x, L = symbols('x, L', positive=True)} \\
n = symbols('n', integer=True, positive=True) \\
g = sqrt(2/L)*sin(n*pi*x/L) \\
f = Wavefunction(g, (x, 0, L)) \\
f.norm \\
1 \\
f(L+1) \\
0 \\
f(L-1) \\
sqrt(2)*sin(pi*n*(L - 1)/L)/sqrt(L) \\
f(-1) \\
0 \\
f(0.85) \\
sqrt(2)*sin(0.85*pi*n/L)/sqrt(L) \\
f(0.85, n=1, L=1) \\
sqrt(2)*sin(0.85*pi) \\
f.is_commutative \\
False
\end{align*}
\]

All arguments are automatically sympified, so you can define the variables as strings rather than symbols:

\[
\begin{align*}
\text{expr = x**2} \\
f = Wavefunction(expr, 'x') \\
type(f.variables[0]) \\
<\text{class 'sympy.core.symbol.Symbol'>}
\end{align*}
\]

Derivatives of Wavefunctions will return Wavefunctions:
>>> diff(f, x)
Wavefunction(2*x, x)

**property expr**
Return the expression which is the functional form of the Wavefunction

**Examples**

```python
>>> from sympy.physics.quantum.state import Wavefunction
>>> from sympy import symbols
>>> x, y = symbols('x, y')
>>> f = Wavefunction(x**2, x)
>>> f.expr
x**2
```

**property is_commutative**
Override Function's is_commutative so that order is preserved in represented expressions

**property is_normalized**
Returns true if the Wavefunction is properly normalized

**Examples**

```python
>>> from sympy import symbols, pi
>>> from sympy.functions import sqrt, sin
>>> from sympy.physics.quantum.state import Wavefunction
>>> x, L = symbols('x,L', positive=True)
>>> n = symbols('n', integer=True, positive=True)
>>> g = sqrt(2/L)*sin(n*pi*x/L)
>>> f = Wavefunction(g, (x, 0, L))
>>> f.is_normalized
True
```

**property limits**
Return the limits of the coordinates which the w.f. depends on If no limits are specified, defaults to (-oo, oo).

**Examples**

```python
>>> from sympy.physics.quantum.state import Wavefunction
>>> from sympy import symbols
>>> x, y = symbols('x, y')
>>> f = Wavefunction(x**2, (x, 0, 1))
>>> f.limits
{x: (0, 1)}
>>> f = Wavefunction(x**2, x)
>>> f.limits
```

(continues on next page)
property norm

Return the normalization of the specified functional form.
This function integrates over the coordinates of the Wavefunction, with the bounds specified.

Examples

```python
>>> from sympy import symbols, pi
>>> from sympy.functions import sqrt, sin
>>> from sympy.physics.quantum.state import Wavefunction
>>> x, L = symbols('x,L', positive=True)
>>> n = symbols('n', integer=True, positive=True)
>>> g = sqrt(2/L)*sin(n*pi*x/L)
>>> f = Wavefunction(g, (x, 0, L))
>>> f.norm
1
>>> g = sin(n*pi*x/L)
>>> f = Wavefunction(g, (x, 0, L))
>>> f.norm
sqrt(2)*sqrt(L)/2
```

normalize()

Return a normalized version of the Wavefunction

Examples

```python
>>> from sympy import symbols, pi
>>> from sympy.functions import sin
>>> from sympy.physics.quantum.state import Wavefunction
>>> x = symbols('x', real=True)
>>> L = symbols('L', positive=True)
>>> n = symbols('n', integer=True, positive=True)
>>> g = sin(n*pi*x/L)
>>> f = Wavefunction(g, (x, 0, L))
>>> f.normalize()
Wavefunction(sqrt(2)*sin(pi*n*x/L)/sqrt(L), (x, 0, L))
```

prob()

Return the absolute magnitude of the w.f., $|\psi(x)|^2$

```python
>>> f = Wavefunction(x**2 + y**2, x, (y, -1, 2))
>>> f.limits
{x: (-oo, oo), y: (-1, 2)}
```
Examples

```python
>>> from sympy import symbols, pi
>>> from sympy.functions import sin
>>> from sympy.physics.quantum.state import Wavefunction
>>> x, L = symbols('x, L', real=True)
>>> n = symbols('n', integer=True)
>>> g = sin(n*pi*x/L)
>>> f = Wavefunction(g, (x, 0, L))
>>> f.prob()
Wavefunction(sin(pi*n*x/L)**2, x)
```

**property variables**

Return the coordinates which the wavefunction depends on

Examples

```python
>>> from sympy.physics.quantum.state import Wavefunction
>>> from sympy import symbols

>>> x, y = symbols('x, y')
>>> f = Wavefunction(x*y, x, y)
>>> f.variables
(x, y)

>>> g = Wavefunction(x*y, x)
>>> g.variables
(x,)
```

Quantum Computation

Circuit Plot

Matplotlib based plotting of quantum circuits.

Todo:

- Optimize printing of large circuits.
- Get this to work with single gates.
- Do a better job checking the form of circuits to make sure it is a Mul of Gates.
- Get multi-target gates plotting.
- Get initial and final states to plot.
- Get measurements to plot. Might need to rethink measurement as a gate issue.
- Get scale and figsize to be handled in a better way.
- Write some tests/examples!

```python
class sympy.physics.quantum.circuitplot.CircuitPlot(c, nqubits, **kwargs)
A class for managing a circuit plot.
```
control_line(gate_idx, min_wire, max_wire)
    Draw a vertical control line.

control_point(gate_idx, wire_idx)
    Draw a control point.

not_point(gate_idx, wire_idx)
    Draw a NOT gates as the circle with plus in the middle.

one_qubit_box(t, gate_idx, wire_idx)
    Draw a box for a single qubit gate.

swap_point(gate_idx, wire_idx)
    Draw a swap point as a cross.

two_qubit_box(t, gate_idx, wire_idx)
    Draw a box for a two qubit gate. Does not work yet.

update(kwvars)
    Load the kwars into the instance dict.

sympy.physics.quantum.circuitplot.CreateCGate(name, latexname=None)
    Use a lexical closure to make a controlled gate.

class sympy.physics.quantum.circuitplot.Mx(*args, **kwvars)
    Mock-up of an x measurement gate.
    This is in circuitplot rather than gate.py because it's not a real gate, it just draws one.

class sympy.physics.quantum.circuitplot.Mz(*args, **kwvars)
    Mock-up of a z measurement gate.
    This is in circuitplot rather than gate.py because it’s not a real gate, it just draws one.

sympy.physics.quantum.circuitplot.circuit_plot(c, nqubits, **kwvars)
    Draw the circuit diagram for the circuit with nqubits.

Parameters
  c: circuit
    The circuit to plot. Should be a product of Gate instances.
  nqubits: int
    The number of qubits to include in the circuit. Must be at least as big
    as the largest min_qubits of the gates.

sympy.physics.quantum.circuitplot.labeller(n, symbol='q')
    Autogenerate labels for wires of quantum circuits.

Parameters
  n: int
    number of qubits in the circuit.
  symbol: string
    A character string to precede all gate labels. E.g. ‘q_0’, ‘q_1’, etc.

>>> from sympy.physics.quantum.circuitplot import labeller
>>> labeller(2)
['q_1', 'q_0']

>>> labeller(3,'j')
['j_2', 'j_1', 'j_0']

**Gates**

An implementation of gates that act on qubits.

Gates are unitary operators that act on the space of qubits.

**Medium Term Todo:**

- Optimize Gate._apply_operators_Qubit to remove the creation of many intermediate Qubit objects.
- Add commutation relationships to all operators and use this in gate_sort.
- Fix gate_sort and gate_simp.
- Get multi-target UGates plotting properly.
- Get UGate to work with either sympy/numpy matrices and output either format. This should also use the matrix slots.

```python
class sympy.physics.quantum.gate.CGate(*args, **kwargs)
 A general unitary gate with control qubits.
 A general control gate applies a target gate to a set of targets if all of the control qubits have a particular values (set by CGate.control_value).

 Parameters
 label: tuple
 The label in this case has the form (controls, gate), where controls is a tuple/list of control qubits (as ints) and gate is a Gate instance that is the target operator.

 property controls
 A tuple of control qubits.

 decompose(**options)
 Decompose the controlled gate into CNOT and single qubits gates.

 eval_controls(qubit)
 Return True/False to indicate if the controls are satisfied.

 property gate
 The non-controlled gate that will be applied to the targets.

 property min_qubits
 The minimum number of qubits this gate needs to act on.

 property nqubits
 The total number of qubits this gate acts on.
```

For controlled gate subclasses this includes both target and control qubits, so that, for examples the CNOT gate acts on 2 qubits.
plot_gate(
circ_plot, gate_idx)

Plot the controlled gate. If simplify_cgate is true, simplify C-X and C-Z gates into their more familiar forms.

property targets

A tuple of target qubits.

class sympy.physics.quantum.gate.CGateS(*args, **kwargs)

Version of CGate that allows gate simplifications. I.e. cnot looks like an oplus, cphase has dots, etc.

sympy.physics.quantum.gate.CNOT

alias of CNotGate (page 1912)

class sympy.physics.quantum.gate.CNotGate(*args, **kwargs)

Two qubit controlled-NOT.

This gate performs the NOT or X gate on the target qubit if the control qubits all have the value 1.

Parameters

label : tuple

A tuple of the form (control, target).

Examples

```python
>>> from sympy.physics.quantum.gate import CNOT
>>> from sympy.physics.quantum.qapply import qapply
>>> from sympy.physics.quantum.qubit import Qubit

>>> c = CNOT(1,0)
>>> qapply(c*Qubit('10')) # note that qubits are indexed from right to left
|11>
```

property controls

A tuple of control qubits.

property gate

The non-controlled gate that will be applied to the targets.

property min_qubits

The minimum number of qubits this gate needs to act on.

property targets

A tuple of target qubits.

class sympy.physics.quantum.gate.Gate(*args, **kwargs)

Non-controlled unitary gate operator that acts on qubits.

This is a general abstract gate that needs to be subclassed to do anything useful.

Parameters

label : tuple, int

A list of the target qubits (as ints) that the gate will apply to.
`get_target_matrix` *(format='sympy')*

The matrix representation of the target part of the gate.

**Parameters**

- `format`: str
  The format string ('sympy', 'numpy', etc.)

**property min_qubits**

The minimum number of qubits this gate needs to act on.

**property nqubits**

The total number of qubits this gate acts on.

For controlled gate subclasses this includes both target and control qubits, so that, for examples the CNOT gate acts on 2 qubits.

**property targets**

A tuple of target qubits.

`sympy.physics.quantum.gate.H`  
alias of `HadamardGate` *(page 1913)*

**class sympy.physics.quantum.gate.HadamardGate(*args, **kwargs)*

The single qubit Hadamard gate.

**Parameters**

- `target`: int
  The target qubit this gate will apply to.

**Examples**

```python
>>> from sympy import sqrt
>>> from sympy.physics.quantum.qubit import Qubit
>>> from sympy.physics.quantum.gate import HadamardGate
>>> from sympy.physics.quantum.qapply import qapply

>>> qapply(HadamardGate(0)*Qubit('1'))
sqrt(2)*|0>/2 - sqrt(2)*|1>/2
```

```
Hadamard on bell state, applied on 2 qubits.
>>> psi = 1/sqrt(2)*(Qubit('00')+Qubit('11'))
>>> qapply(HadamardGate(0)*HadamardGate(1)*psi)
sqrt(2)*|00>/2 + sqrt(2)*|11>/2
```

**class sympy.physics.quantum.gate.IdentityGate(*args, **kwargs)*

The single qubit identity gate.

**Parameters**

- `target`: int
  The target qubit this gate will apply to.

**class sympy.physics.quantum.gate.OneQubitGate(*args, **kwargs)*

A single qubit unitary gate base class.

`sympy.physics.quantum.gate.Phase`  
alias of `PhaseGate` *(page 1913)*
class sympy.physics.quantum.gate.PhaseGate(*args, **kwargs)

The single qubit phase, or S, gate.
This gate rotates the phase of the state by pi/2 if the state is \( |1\rangle \) and does nothing if the state is \( |0\rangle \).

Parameters
   target : int
      The target qubit this gate will apply to.

sympy.physics.quantum.gate.S
alias of PhaseGate (page 1913)

sympy.physics.quantum.gate.SWAP
alias of SwapGate (page 1914)

class sympy.physics.quantum.gate.SwapGate(*args, **kwargs)

Two qubit SWAP gate.
This gate swap the values of the two qubits.

Parameters
   label : tuple
      A tuple of the form (target1, target2).

   decompose(**options)
      Decompose the SWAP gate into CNOT gates.

sympy.physics.quantum.gate.T
alias of TGate (page 1914)

class sympy.physics.quantum.gate.TGate(*args, **kwargs)

The single qubit \( \pi/8 \) gate.
This gate rotates the phase of the state by pi/4 if the state is \( |1\rangle \) and does nothing if the state is \( |0\rangle \).

Parameters
   target : int
      The target qubit this gate will apply to.

class sympy.physics.quantum.gate.TwoQubitGate(*args, **kwargs)

A two qubit unitary gate base class.

class sympy.physics.quantum.gate.UGate(*args, **kwargs)

General gate specified by a set of targets and a target matrix.

Parameters
   label : tuple
      A tuple of the form (targets, U), where targets is a tuple of the target qubits and U is a unitary matrix with dimension of len(targets).

   get_target_matrix(format='sympy')
      The matrix rep. of the target part of the gate.

      Parameters
         format : str
            The format string ('sympy', 'numpy', etc.)
property targets
A tuple of target qubits.
sympy.physics.quantum.gate.X
alias of XGate (page 1915)
class sympy.physics.quantum.gate.XGate(*args, **kwargs)
The single qubit X, or NOT, gate.
    Parameters
    target : int
        The target qubit this gate will apply to.
sympy.physics.quantum.gate.Y
alias of YGate (page 1915)
class sympy.physics.quantum.gate.YGate(*args, **kwargs)
The single qubit Y gate.
    Parameters
    target : int
        The target qubit this gate will apply to.
sympy.physics.quantum.gate.Z
alias of ZGate (page 1915)
class sympy.physics.quantum.gate.ZGate(*args, **kwargs)
The single qubit Z gate.
    Parameters
    target : int
        The target qubit this gate will apply to.
sympy.physics.quantum.gate.gate_simp(circuit)
Simplifies gates symbolically
    It first sorts gates using gate_sort. It then applies basic simplification rules to the circuit, e.g., XGate**2 = Identity
sympy.physics.quantum.gate.gate_sort(circuit)
Sorts the gates while keeping track of commutation relations
    This function uses a bubble sort to rearrange the order of gate application. Keeps track of Quantum computations special commutation relations (e.g. things that apply to the same Qubit do not commute with each other)
circuit is the Mul of gates that are to be sorted.
sympy.physics.quantum.gate.normalized(normalize)
Set flag controlling normalization of Hadamard gates by 1/√2.
    This is a global setting that can be used to simplify the look of various expressions, by leaving off the leading 1/√2 of the Hadamard gate.
    Parameters
    normalize : bool

5.8. Topics 1915
Should the Hadamard gate include the $1/\sqrt{2}$ normalization factor? When True, the Hadamard gate will have the $1/\sqrt{2}$. When False, the Hadamard gate will not have this factor.

```python
sympy.physics.quantum.gate.random_circuit(ngates, nqubits, gate_space=(
 'sympy.physics.quantum.gate.XGate',
 'sympy.physics.quantum.gate.YGate',
 'sympy.physics.quantum.gate.ZGate',
 'sympy.physics.quantum.gate.PhaseGate',
 'sympy.physics.quantum.gate.TGate',
 'sympy.physics.quantum.gate.HadamardGate',
 'sympy.physics.quantum.gate.CNotGate',
 'sympy.physics.quantum.gate.SwapGate'))
```

Return a random circuit of ngates and nqubits. This uses an equally weighted sample of (X, Y, Z, S, T, H, CNOT, SWAP) gates.

**Parameters**
- **ngates**: int
  The number of gates in the circuit.
- **nqubits**: int
  The number of qubits in the circuit.
- **gate_space**: tuple
  A tuple of the gate classes that will be used in the circuit. Repeating gate classes multiple times in this tuple will increase the frequency they appear in the random circuit.

**Grover’s Algorithm**

Grover’s algorithm and helper functions.

Todo:
- W gate construction (or perhaps -W gate based on Mermin’s book)
- Generalize the algorithm for an unknown function that returns 1 on multiple qubit states, not just one.
- Implement _represent_ZGate in OracleGate

```python
class sympy.physics.quantum.grover.OracleGate(*args, **kwargs)
```

A black box gate.

The gate marks the desired qubits of an unknown function by flipping the sign of the qubits. The unknown function returns true when it finds its desired qubits and false otherwise.
**Parameters**

- **qubits** : int
  
  Number of qubits.

- **oracle** : callable
  
  A callable function that returns a boolean on a computational basis.

**Examples**

Apply an Oracle gate that flips the sign of $|2\rangle$ on different qubits:

```python
>>> from sympy.physics.quantum.qubit import IntQubit
>>> from sympy.physics.quantum.qapply import qapply
>>> from sympy.physics.quantum.grover import OracleGate
>>> f = lambda qubits: qubits == IntQubit(2)
>>> v = OracleGate(2, f)
>>> qapply(v*IntQubit(2))
-|2\rangle
>>> qapply(v*IntQubit(3))
|3\rangle
```

**property search_function**

The unknown function that helps find the sought after qubits.

**property targets**

A tuple of target qubits.

**class** sympy.physics.quantum.grover.WGate(*args, **kwargs)

General n qubit W Gate in Grover's algorithm.

The gate performs the operation $2|\phi\rangle\langle\phi|-1$ on some qubits. $|\phi\rangle = \text{(tensor product of n Hadamards)}*|0\rangle$ with n qubits

**Parameters**

- **nqubits** : int
  
  The number of qubits to operate on

**sympy.physics.quantum.grover.apply_grover**(oracle, nqubits, iterations=None)

Applies grover's algorithm.

**Parameters**

- **oracle** : callable
  
  The unknown callable function that returns true when applied to the desired qubits and false otherwise.

**Returns**

- **state** : Expr
  
  The resulting state after Grover's algorithm has been iterated.
Examples

Apply grover’s algorithm to an even superposition of 2 qubits:

```python
>>> from sympy.physics.quantum.qapply import qapply
>>> from sympy.physics.quantum.qubit import IntQubit
>>> from sympy.physics.quantum.grover import apply_grover
>>> f = lambda qubits: qubits == IntQubit(2)
>>> qapply(apply_grover(f, 2))
|2>
```

`sympy.physics.quantum.grover.grover_iteration(qstate, oracle)`
Applies one application of the Oracle and W Gate, WV.

**Parameters**
- `qstate` : Qubit
  A superposition of qubits.
- `oracle` : OracleGate
  The black box operator that flips the sign of the desired basis qubits.

**Returns**
- `Qubit` : The qubits after applying the Oracle and W gate.

Examples

Perform one iteration of grover’s algorithm to see a phase change:

```python
>>> from sympy.physics.quantum.qapply import qapply
>>> from sympy.physics.quantum.qubit import IntQubit
>>> from sympy.physics.quantum.grover import OracleGate
>>> from sympy.physics.quantum.grover import superposition_basis
>>> from sympy.physics.quantum.grover import grover_iteration
>>> numqubits = 2
>>> basis_states = superposition_basis(numqubits)
>>> f = lambda qubits: qubits == IntQubit(2)
>>> v = OracleGate(numqubits, f)
>>> qapply(grover_iteration(basis_states, v))
|2>
```

`sympy.physics.quantum.grover.superposition_basis(nqubits)`
Creates an equal superposition of the computational basis.

**Parameters**
- `nqubits` : int
  The number of qubits.

**Returns**
- `state` : Qubit
  An equal superposition of the computational basis with nqubits.
Examples

Create an equal superposition of 2 qubits:

```python
>>> from sympy.physics.quantum.grover import superposition_basis
>>> superposition_basis(2)
|0>/2 + |1>/2 + |2>/2 + |3>/2
```

QFT

An implementation of qubits and gates acting on them.

todo:

- Update docstrings.
- Update tests.
- Implement apply using decompose.
- Implement represent using decompose or something smarter. For this to work we first have to implement represent for SWAP.
- Decide if we want upper index to be inclusive in the constructor.
- Fix the printing of Rk gates in plotting.

```python
class sympy.physics.quantum.qft.IQFT(*args, **kwargs)
 The inverse quantum Fourier transform.
 decompose()
 Decomposes IQFT into elementary gates.

class sympy.physics.quantum.qft.QFT(*args, **kwargs)
 The forward quantum Fourier transform.
 decompose()
 Decomposes QFT into elementary gates.
```

```python
sympy.physics.quantum.qft.Rk
 alias of RkGate (page 1919)

class sympy.physics.quantum.qft.RkGate(*args)
 This is the R_k gate of the QTF.
```

Qubit

Qubits for quantum computing.

todo: * Finish implementing measurement logic. This should include POVM. * Update docstrings. * Update tests.

```python
class sympy.physics.quantum.qubit.IntQubit(*args, **kwargs)
 A qubit ket that store integers as binary numbers in qubit values.
 The differences between this class and Qubit are:
 • The form of the constructor.
```
The qubit values are printed as their corresponding integer, rather than the raw qubit values. The internal storage format of the qubit values in the same as Qubit.

**Parameters**

```values : int, tuple```

If a single argument, the integer we want to represent in the qubit values. This integer will be represented using the fewest possible number of qubits. If a pair of integers and the second value is more than one, the first integer gives the integer to represent in binary form and the second integer gives the number of qubits to use. List of zeros and ones is also accepted to generate qubit by bit pattern.

```nqubits : int```

The integer that represents the number of qubits. This number should be passed with keyword `nqubits=N`. You can use this in order to avoid ambiguity of Qubit-style tuple of bits. Please see the example below for more details.

**Examples**

Create a qubit for the integer 5:

```python
>>> from sympy.physics.quantum.qubit import IntQubit
>>> from sympy.physics.quantum.qubit import Qubit
>>> q = IntQubit(5)
>>> q
|5>
```

We can also create an IntQubit by passing a Qubit instance.

```python
>>> q = IntQubit(Qubit('101'))
>>> q
|5>
>>> q.as_int()
5
>>> q.nqubits
3
>>> q.qubit_values
(1, 0, 1)
```

We can go back to the regular qubit form.

```python
>>> Qubit(q)
|101>
```

Please note that IntQubit also accepts a Qubit-style list of bits. So, the code below yields qubits 3, not a single bit 1.

```python
>>> IntQubit([1, 1])
|3>
```

To avoid ambiguity, use `nqubits` parameter. Use of this keyword is recommended especially when you provide the values by variables.
```python
>>> IntQubit(1, nqubits=1)
|1>
>>> a = 1
>>> IntQubit(a, nqubits=1)
|1>
```

class sympy.physics.quantum.qubit.IntQubitBra(*args, **kwargs)
A qubit bra that store integers as binary numbers in qubit values.

class sympy.physics.quantum.qubit.Qubit(*args, **kwargs)
A multi-qubit ket in the computational (z) basis.

We use the normal convention that the least significant qubit is on the right, so \(|0001>\) has a 1 in the least significant qubit.

**Parameters**

values : list, str
The qubit values as a list of ints ([0,0,1,1,]) or a string ('011').

**Examples**

Create a qubit in a couple of different ways and look at their attributes:

```python
>>> from sympy.physics.quantum.qubit import Qubit
>>> Qubit(0,0,0)
|000>
>>> q = Qubit('0101')
>>> q
|0101>
>>> q.nqubits
4
>>> len(q)
4
>>> q.dimension
4
>>> q.qubit_values
(0, 1, 0, 1)
```

We can flip the value of an individual qubit:

```python
>>> q.flip(1)
|0111>
```

We can take the dagger of a Qubit to get a bra:

```python
>>> from sympy.physics.quantum.dagger import Dagger
>>> Dagger(q)
<0101|
>>> type(Dagger(q))
<class 'sympy.physics.quantum.qubit.QubitBra'>
```

Inner products work as expected:
```python
>>> ip = Dagger(q)*q
>>> ip
<0101|0101>
>>> ip.doit()
1
```

class sympy.physics.quantum.qubit.QubitBra(*args, **kwargs)

A multi-qubit bra in the computational (z) basis.

We use the normal convention that the least significant qubit is on the right, so |00001> has a 1 in the least significant qubit.

Parameters:
values : list, str
The qubit values as a list of ints ([0,0,1,1,1]) or a string ('011').

See also:

Qubit (page 1921)
Examples using qubits

sympy.physics.quantum.qubit.matrix_to_density(mat)

Works by finding the eigenvectors and eigenvalues of the matrix. We know we can decompose rho by doing: \sum(EigenVal*|Eigenvect><Eigenvect|)

sympy.physics.quantum.qubit.matrix_to_qubit(matrix)

Convert from the matrix repr. to a sum of Qubit objects.

Parameters:
matrix : Matrix, numpy.matrix, scipy.sparse
The matrix to build the Qubit representation of. This works with SymPy matrices, numpy matrices and scipy.sparse sparse matrices.

Examples

Represent a state and then go back to its qubit form:

```python
>>> from sympy.physics.quantum.qubit import matrix_to_qubit, Qubit
>>> from sympy.physics.quantum.represent import represent
>>> q = Qubit('01')
>>> matrix_to_qubit(represent(q))
|01>
```
sympy.physics.quantum.qubit.measure_all(qubit, format='sympy', normalize=True)

Perform an ensemble measurement of all qubits.

Parameters:
qubit : Qubit, Add
The qubit to measure. This can be any Qubit or a linear combination of them.

format : str
The format of the intermediate matrices to use. Possible values are ('sympy', 'numpy', 'scipy.sparse'). Currently only 'sympy' is implemented.

**Returns**

**result** : list

A list that consists of primitive states and their probabilities.

**Examples**

```python
>>> from sympy.physics.quantum.qubit import Qubit, measure_all
>>> from sympy.physics.quantum.gate import H
>>> from sympy.physics.quantum.qapply import qapply

>>> c = H(0)*H(1)*Qubit('00')
>>> c
H(0)*H(1)*|00>
>>> q = qapply(c)
>>> measure_all(q)
[(|00>, 1/4), (|01>, 1/4), (|10>, 1/4), (|11>, 1/4)]
```

**sympy.physics.quantum.qubit.measure_all_oneshot(qubit, format='sympy')**

Perform a oneshot ensemble measurement on all qubits.

A oneshot measurement is equivalent to performing a measurement on a quantum system. This type of measurement does not return the probabilities like an ensemble measurement does, but rather returns one of the possible resulting states. The exact state that is returned is determined by picking a state randomly according to the ensemble probabilities.

**Parameters**

**qubits** : Qubit

The qubit to measure. This can be any Qubit or a linear combination of them.

**format** : str

The format of the intermediate matrices to use. Possible values are ('sympy', 'numpy', 'scipy.sparse'). Currently only 'sympy' is implemented.

**Returns**

**result** : Qubit

The qubit that the system collapsed to upon measurement.

**sympy.physics.quantum.qubit.measure_partial(qubit, bits, format='sympy', normalize=True)**

Perform a partial ensemble measure on the specified qubits.

**Parameters**

**qubits** : Qubit

The qubit to measure. This can be any Qubit or a linear combination of them.
**bits** : tuple

The qubits to measure.

**format** : str

The format of the intermediate matrices to use. Possible values are ('sympy', 'numpy', 'scipy.sparse'). Currently only 'sympy' is implemented.

**Returns**

**result** : list

A list that consists of primitive states and their probabilities.

**Examples**

```python
>>> from sympy.physics.quantum.qubit import Qubit, measure_partial
>>> from sympy.physics.quantum.gate import H
>>> from sympy.physics.quantum.qapply import qapply

>>> c = H(0)*H(1)*Qubit('00')
>>> c
H(0)*H(1)*|00>
>>> q = qapply(c)
>>> measure_partial(q, (0,))
[(sqrt(2)*|00>/2 + sqrt(2)*|10>/2, 1/2), (sqrt(2)*|01>/2 + sqrt(2)*|11>/2, 1/2)]
```

**sympy.physics.quantum.qubit.measure_partial_oneshot(qubit, bits, format='sympy')**

Perform a partial oneshot measurement on the specified qubits.

A oneshot measurement is equivalent to performing a measurement on a quantum system. This type of measurement does not return the probabilities like an ensemble measurement does, but rather returns one of the possible resulting states. The exact state that is returned is determined by picking a state randomly according to the ensemble probabilities.

**Parameters**

qubits : Qubit

The qubit to measure. This can be any Qubit or a linear combination of them.

**bits** : tuple

The qubits to measure.

**format** : str

The format of the intermediate matrices to use. Possible values are ('sympy', 'numpy', 'scipy.sparse'). Currently only 'sympy' is implemented.

**Returns**

**result** : Qubit

The qubit that the system collapsed to upon measurement.
sympy.physics.quantum.qubit.qubit_to_matrix(qubit, format='sympy')
Converts an Add/Mul of Qubit objects into it's matrix representation
This function is the inverse of matrix_to_qubit and is a shorthand for
represent(qubit).

Shor’s Algorithm

Shor’s algorithm and helper functions.
Todo:
• Get the CMod gate working again using the new Gate API.
• Fix everything.
• Update docstrings and reformat.
class sympy.physics.quantum.shor.CMod(*args, **kwargs)
A controlled mod gate.
This is black box controlled Mod function for use by shor’s algorithm. TODO: implement
a decompose property that returns how to do this in terms of elementary gates
property N
N is the type of modular arithmetic we are doing.
property a
Base of the controlled mod function.
property t
Size of 1/2 input register. First 1/2 holds output.
sympy.physics.quantum.shor.period_find(a, N)
Finds the period of a in modulo N arithmetic
This is quantum part of Shor’s algorithm. It takes two registers, puts first in superposition
of states with Hadamards so: |k>|0> with k being all possible choices. It then does
a controlled mod and a QFT to determine the order of a.
sympy.physics.quantum.shor.shor(N)
This function implements Shor’s factoring algorithm on the Integer N
The algorithm starts by picking a random number (a) and seeing if it is coprime with N.
If it is not, then the gcd of the two numbers is a factor and we are done. Otherwise, it
begins the period finding subroutine which finds the period of a in modulo N arithmetic.
This period, if even, can be used to calculate factors by taking a**(r/2)-1 and a**(r/2)+1.
These values are returned.
Analytic Solutions

Particle in a Box

1D quantum particle in a box.

class sympy.physics.quantum.piab.PIABBra(*args, **kwargs)
    Particle in a box eigenbra.

class sympy.physics.quantum.piab.PIABHamiltonian(*args, **kwargs)
    Particle in a box Hamiltonian operator.

class sympy.physics.quantum.piab.PIABKet(*args, **kwargs)
    Particle in a box eigenket.

Optics Module

Abstract

Contains docstrings of Physics-Optics module

Gaussian Optics

Gaussian optics.
The module implements:

- Ray transfer matrices for geometrical and gaussian optics.
  See RayTransferMatrix, GeometricRay and BeamParameter
- Conjugation relations for geometrical and gaussian optics.
  See geometric_conj*, gauss_conj and conjugate_gauss_beams

The conventions for the distances are as follows:

class sympy.physics.optics.gaussoptBeamParameter(waven, z, z_r=None, w=None, n=1)

Representation for a gaussian ray in the Ray Transfer Matrix formalism.

Parameters

- waven: the wavelength,
- z: the distance to waist, and
- w: the waist, or
\(z_r\): the rayleigh range.
\(n\): the refractive index of medium.

Examples

```python
>>> from sympy.physics.optics import BeamParameter
>>> p = BeamParameter(530e-9, 1, w=1e-3)
>>> p.q
1 + 1.88679245283019*I*pi
```

```python
>>> p.q.n()
1.0 + 5.92753330865999*I
>>> p.w_0.n()
0.00100000000000000
>>> p.z_r.n()
5.92753330865999
```

```python
>>> from sympy.physics.optics import FreeSpace
>>> fs = FreeSpace(10)
>>> p1 = fs*p
>>> p1.w.n()
0.00101413072159615
>>> p1.w.n()
0.00210803120913829
```

See also:

RayTransferMatrix (page 1932)

References

[R679], [R680]

property divergence
Half of the total angular spread.

Examples

```python
>>> from sympy.physics.optics import BeamParameter
>>> p = BeamParameter(530e-9, 1, w=1e-3)
>>> p.divergence
0.00053/pi
```

property gouy
The Gouy phase.
Examples

```python
>>> from sympy.physics.optics import BeamParameter
>>> p = BeamParameter(530e-9, 1, w=1e-3)
>>> p.gouy
atan(0.53/pi)
```

**property q**

The complex parameter representing the beam.

Examples

```python
>>> from sympy.physics.optics import BeamParameter
>>> p = BeamParameter(530e-9, 1, w=1e-3)
>>> p.q
1 + 1.88679245283019*I*pi
```

**property radius**

The radius of curvature of the phase front.

Examples

```python
>>> from sympy.physics.optics import BeamParameter
>>> p = BeamParameter(530e-9, 1, w=1e-3)
>>> p.radius
1 + 3.55998576005696*pi**2
```

**property w**

The radius of the beam w(z), at any position z along the beam. The beam radius at 1/e^2 intensity (axial value).

Examples

```python
>>> from sympy.physics.optics import BeamParameter
>>> p = BeamParameter(530e-9, 1, w=1e-3)
>>> p.w
0.001*sqrt(0.2809/pi**2 + 1)
```

See also:

- `w_0 (page 1928)`
  The minimal radius of beam.

**property w_0**

The minimal radius of beam at 1/e^2 intensity (peak value).
Examples

```python
>>> from sympy.physics.optics import BeamParameter
>>> p = BeamParameter(530e-9, 1, w=1e-3)
>>> p.w_0
0.00100000000000000
```

**See also:**

`w` *(page 1928)*

the beam radius at $1/e^2$ intensity (axial value).

**property waist_approximation_limit**

The minimal waist for which the gauss beam approximation is valid.

**Explanation**

The gauss beam is a solution to the paraxial equation. For curvatures that are too great it is not a valid approximation.

Examples

```python
>>> from sympy.physics.optics import BeamParameter
>>> p = BeamParameter(530e-9, 1, w=1e-3)
>>> p.waist_approximation_limit
1.06e-6/pi
```

class sympy.physics.optics.gaussopt.CurvedMirror(R)

Ray Transfer Matrix for reflection from curved surface.

**Parameters**

- `R` : radius of curvature (positive for concave)

Examples

```python
>>> from sympy.physics.optics import CurvedMirror
>>> from sympy import symbols
>>> R = symbols('R')
>>> CurvedMirror(R)
Matrix([[1, 0],
 [-2/R, 1]])
```

**See also:**

`RayTransferMatrix` *(page 1932)*

class sympy.physics.optics.gaussopt.CurvedRefraction(R, n1, n2)

Ray Transfer Matrix for refraction on curved interface.
Parameters

R :
    Radius of curvature (positive for concave).

n1 :
    Refractive index of one medium.

n2 :
    Refractive index of other medium.

Examples

```py
>>> from sympy.physics.optics import CurvedRefraction
>>> from sympy import symbols
>>> R, n1, n2 = symbols('R n1 n2')
>>> CurvedRefraction(R, n1, n2)
Matrix([[1, 0],
 [(n1 - n2)/(R*n2), n1/n2]])
```

See also:

`RayTransferMatrix` (page 1932)

**class** sympy.physics.optics.gaussopt.FlatMirror

Ray Transfer Matrix for reflection.

Examples

```py
>>> from sympy.physics.optics import FlatMirror
>>> FlatMirror()
Matrix([[1, 0],
 [0, 1]])
```

See also:

`RayTransferMatrix` (page 1932)

**class** sympy.physics.optics.gaussopt.FlatRefraction(n1, n2)

Ray Transfer Matrix for refraction.

Parameters

n1 :
    Refractive index of one medium.

n2 :
    Refractive index of other medium.
### Examples

```python
>>> from sympy.physics.optics import FlatRefraction
>>> from sympy import symbols
>>> n1, n2 = symbols('n1 n2')
>>> FlatRefraction(n1, n2)
Matrix([[1, 0],
 [0, n1/n2]])
```

See also:
RayTransferMatrix (page 1932)

```python
class sympy.physics.optics.gaussopt.FreeSpace(d)
 Ray Transfer Matrix for free space.

 Parameters
 distance
```

### Examples

```python
>>> from sympy.physics.optics import FreeSpace
>>> from sympy import symbols, Matrix
>>> d, h, angle = symbols('d, h, angle')
>>> FreeSpace(d)
Matrix([[1, d],
 [0, 1]])
```

See also:
RayTransferMatrix (page 1932)

```python
class sympy.physics.optics.gaussopt.GeometricRay(*args)
 Representation for a geometric ray in the Ray Transfer Matrix formalism.

 Parameters
 h : height, and
 angle : angle, or
 matrix : a 2x1 matrix (Matrix(2, 1, [height, angle]))
```

### Examples

```python
>>> from sympy.physics.optics import GeometricRay, FreeSpace
>>> from sympy import symbols, Matrix
>>> d, h, angle = symbols('d, h, angle')
>>> GeometricRay(h, angle)
Matrix([[h],
 [angle]])
```
>>> FreeSpace(d)*GeometricRay(h, angle)
Matrix([angle*d + h],
       [ angle])

>>> GeometricRay( Matrix( ((h,), (angle,)) ) )
Matrix([ h],
       [angle])

See also:
RayTransferMatrix (page 1932)

property angle
The angle with the optical axis.

Examples

```python
>>> from sympy.physics.optics import GeometricRay
>>> from sympy import symbols
>>> h, angle = symbols('h, angle')
>>> gRay = GeometricRay(h, angle)
>>> gRay.angle
angle
```

property height
The distance from the optical axis.

Examples

```python
>>> from sympy.physics.optics import GeometricRay
>>> from sympy import symbols
>>> h, angle = symbols('h, angle')
>>> gRay = GeometricRay(h, angle)
>>> gRay.height
h
```

class sympy.physics.optics.gaussopt.RayTransferMatrix(*args)
Base class for a Ray Transfer Matrix.

It should be used if there is not already a more specific subclass mentioned in See Also.

Parameters
parameters :
A, B, C and D or 2x2 matrix (Matrix(2, 2, [A, B, C, D]))
Examples

```python
>>> from sympy.physics.optics import RayTransferMatrix, ThinLens
>>> from sympy import Symbol, Matrix

>>> mat = RayTransferMatrix(1, 2, 3, 4)
>>> mat
Matrix([[1, 2],
 [3, 4]])

>>> RayTransferMatrix(Matrix([[1, 2], [3, 4]]))
Matrix([[1, 2],
 [3, 4]])

>>> mat.A
1

>>> f = Symbol('f')
>>> lens = ThinLens(f)
>>> lens
Matrix([[1, 0],
 [-1/f, 1]])

>>> lens.C
-1/f
```

See also:

- GeometricRay (page 1931), BeamParameter (page 1926), FreeSpace (page 1931), FlatRefraction (page 1930), CurvedRefraction (page 1929), FlatMirror (page 1930), CurvedMirror (page 1929), ThinLens (page 1934)

References

[R681]

property A

The A parameter of the Matrix.
```python
>>> from sympy.physics.optics import RayTransferMatrix
>>> mat = RayTransferMatrix(1, 2, 3, 4)
```

**Examples**

```
>>> from sympy.physics.optics import RayTransferMatrix
>>> mat = RayTransferMatrix(1, 2, 3, 4)
>>> mat.A
```

**property B**
The B parameter of the Matrix.

```
>>> from sympy.physics.optics import RayTransferMatrix
>>> mat = RayTransferMatrix(1, 2, 3, 4)
>>> mat.B
```

**property C**
The C parameter of the Matrix.

```
>>> from sympy.physics.optics import RayTransferMatrix
>>> mat = RayTransferMatrix(1, 2, 3, 4)
>>> mat.C
```

**property D**
The D parameter of the Matrix.

```
>>> from sympy.physics.optics import RayTransferMatrix
>>> mat = RayTransferMatrix(1, 2, 3, 4)
>>> mat.D
```

```python
class sympy.physics.optics.gaussopt.ThinLens(f)
Ray Transfer Matrix for a thin lens.

Parameters
f:
The focal distance.
```
Examples

```python
>>> from sympy.physics.optics import ThinLens
>>> from sympy import symbols
>>> f = symbols('f')
>>> ThinLens(f)
Matrix([[-1/f, 1],
 [1, 0]])
```

See also:

- `RayTransferMatrix` (page 1932)

`sympy.physics.optics.gaussopt.conjugate_gauss_beams(wavelen, waist_in, waist_out, **kwargs)`

Find the optical setup conjugating the object/image waists.

Parameters

- **wavelen**
  The wavelength of the beam.

- **waist_in and waist_out**
  The waists to be conjugated.

- **f**
  The focal distance of the element used in the conjugation.

Returns

A tuple containing `(s_in, s_out, f)`

- **s_in**
  The distance before the optical element.

- **s_out**
  The distance after the optical element.

- **f**
  The focal distance of the optical element.

Examples

```python
>>> from sympy.physics.optics import conjugate_gauss_beams
>>> from sympy import symbols, factor
>>> l, w_i, w_o, f = symbols('l w_i w_o f')

>>> conjugate_gauss_beams(l, w_i, w_o, f=f)[0]
f*(1 - sqrt(w_i**2/w_o**2 - pi**2*w_i**4/(f**2*l**2)))

>>> factor(conjugate_gauss_beams(l, w_i, w_o, f=f)[1])
f*w_o**2*(w_i**2/w_o**2 - sqrt(w_i**2/w_o**2 - pi**2*w_i**4/(f**2*l**2)))/w_i**2
```
Conjugation relation for gaussian beams.

**Parameters**

- **s_in**:
  
The distance to optical element from the waist.

- **z_r_in**:
  
The rayleigh range of the incident beam.

- **f**:
  
The focal length of the optical element.

**Returns**

- a tuple containing (s_out, z_r_out, m)

  - **s_out**:
    
The distance between the new waist and the optical element.

  - **z_r_out**:
    
The rayleigh range of the emergent beam.

  - **m**:
    
The ration between the new and the old waists.

**Examples**

```python
from sympy.physics.optics import gaussian_conj
from sympy import symbols

s_in, z_r_in, f = symbols('s_in z_r_in f')

gaussian_conj(s_in, z_r_in, f)[0]
1/(-1/(s_in + z_r_in**2/(-f + s_in)) + 1/f)

gaussian_conj(s_in, z_r_in, f)[1]
z_r_in/(1 - s_in**2/f**2 + z_r_in**2/f**2)

gaussian_conj(s_in, z_r_in, f)[2]
1/sqrt(1 - s_in**2/f**2 + z_r_in**2/f**2)
```

Conjugation relation for geometrical beams under paraxial conditions.
**Explanation**

Takes the distances to the optical element and returns the needed focal distance.

**Examples**

```
>>> from sympy.physics.optics import geometric_conj_ab
>>> from sympy import symbols
>>> a, b = symbols('a b')
>>> geometric_conj_ab(a, b)
a*b/(a + b)
```

**See also:**

`geometric_conj_ab` (page 1936), `geometric_conj_bf` (page 1937)

**Explanation**

Takes the object distance (for geometric_conj_af) or the image distance (for geometric_conj_bf) to the optical element and the focal distance. Then it returns the other distance needed for conjugation.

**Examples**

```
>>> from sympy.physics.optics.gaussopt import geometric_conj_af, geometric_conj_bf
>>> from sympy import symbols
>>> a, b, f = symbols('a b f')
>>> geometric_conj_af(a, f)
a*f/(a - f)
>>> geometric_conj_bf(b, f)
b*f/(b - f)
```

**See also:**

`geometric_conj_ab` (page 1936)

sympy.physics.optics.gaussopt.geometric_conj_bf(a, f)

Conjugation relation for geometrical beams under paraxial conditions.
Explanation

Takes the object distance (for geometric_conj_af) or the image distance (for geometric_conj_bf) to the optical element and the focal distance. Then it returns the other distance needed for conjugation.

Examples

```python
>>> from sympy.physics.optics.gaussopt import geometric_conj_af,
 geometric_conj_bf
>>> from sympy import symbols
>>> a, b, f = symbols('a b f')
>>> geometric_conj_af(a, f)
a*f/(a - f)
>>> geometric_conj_bf(b, f)
b*f/(b - f)
```

See also:

`geometric_conj_ab` (page 1936)

sympy.physics.optics.gaussopt.**rayleigh2waist**(*z_r*, *wavelen*)

Calculate the waist from the rayleigh range of a gaussian beam.

Examples

```python
>>> from sympy.physics.optics import rayleigh2waist
>>> from sympy import symbols
>>> z_r, wavelen = symbols('z_r wavelen')
>>> rayleigh2waist(z_r, wavelen)
sqrt(wavelen*z_r)/sqrt(pi)
```

See also:

`waist2rayleigh` (page 1938), **BeamParameter** (page 1926)

sympy.physics.optics.gaussopt.**waist2rayleigh**(*w*, *wavelen*, *n*=1)

Calculate the rayleigh range from the waist of a gaussian beam.

Examples

```python
>>> from sympy.physics.optics import waist2rayleigh
>>> from sympy import symbols
>>> w, wavelen = symbols('w wavelen')
>>> waist2rayleigh(w, wavelen)
pi*w**2/wavelen
```

See also:

`rayleigh2waist` (page 1938), **BeamParameter** (page 1926)
Medium

Contains

- Medium

class sympy.physics.optics.medium.Medium(name, permittivity=None, permeability=None, n=None)

This class represents an optical medium. The prime reason to implement this is to facilitate refraction, Fermat’s principle, etc.

Parameters

- name: string
  The display name of the Medium.

- permittivity: Sympifyable
  Electric permittivity of the space.

- permeability: Sympifyable
  Magnetic permeability of the space.

- n: Sympifyable
  Index of refraction of the medium.

Explanation

An optical medium is a material through which electromagnetic waves propagate. The permittivity and permeability of the medium define how electromagnetic waves propagate in it.

Examples

>>> from sympy.abc import epsilon, mu
>>> from sympy.physics.optics import Medium
>>> m1 = Medium('m1')
>>> m2 = Medium('m2', epsilon, mu)
>>> m1.intrinsic_impedance
149896229*pi*kilogram*meter**2/(1250000*ampere**2*second**3)
>>> m2.refractive_index
299792458*meter*sqrt(epsilon*mu)/second
property refractive_index
Returns refractive index of the medium.

Examples

```python
>>> from sympy.physics.optics import Medium
>>> m = Medium('m')
>>> m.refractive_index
1
```

property speed
Returns speed of the electromagnetic wave travelling in the medium.

Examples

```python
>>> from sympy.physics.optics import Medium
>>> m = Medium('m')
>>> m.speed
299792458*meter/second
>>> m2 = Medium('m2', n=1)
>>> m.speed == m2.speed
True
```

Polarization

The module implements routines to model the polarization of optical fields and can be used to calculate the effects of polarization optical elements on the fields.

- Jones vectors.
- Stokes vectors.
- Jones matrices.
- Mueller matrices.

Examples

We calculate a generic Jones vector:

```python
>>> from sympy import symbols, pprint, zeros, simplify
>>> from sympy.physics.optics.polarization import (jones_vector, stokes_vector, half_wave_retarder, polarizing_beam_splitter, jones_2_stokes)
```
>>> psi, chi, p, I0 = symbols("psi, chi, p, I0", real=True)
>>> x0 = jones_vector(psi, chi)
>>> pprint(x0, use_unicode=True)
\[
\begin{bmatrix}
-i \sin(\chi) \sin(\psi) + \cos(\chi) \cos(\psi) \\
i \sin(\chi) \cos(\psi) + \sin(\psi) \cos(\chi)
\end{bmatrix}
\]

And the more general Stokes vector:

>>> s0 = stokes_vector(psi, chi, p, I0)
>>> pprint(s0, use_unicode=True)
\[
\begin{bmatrix}
I_0 \\
I_0 \cdot p \cdot \cos(2 \cdot \chi) \cdot \cos(2 \cdot \psi) \\
I_0 \cdot p \cdot \sin(2 \cdot \psi) \cdot \cos(2 \cdot \chi) \\
I_0 \cdot p \cdot \sin(2 \cdot \chi)
\end{bmatrix}
\]

We calculate how the Jones vector is modified by a half-wave plate:

>>> alpha = symbols("alpha", real=True)
>>> HWP = half_wave_retarder(alpha)
>>> x1 = simplify(HWP*x0)

We calculate the very common operation of passing a beam through a half-wave plate and then through a polarizing beam-splitter. We do this by putting this Jones vector as the first entry of a two-Jones-vector state that is transformed by a 4x4 Jones matrix modelling the polarizing beam-splitter to get the transmitted and reflected Jones vectors:

>>> PBS = polarizing_beam_splitter()
>>> X1 = zeros(4, 1)
>>> X1[2, :] = x1
>>> X2 = PBS*X1
>>> transmitted_port = X2[2, :]
>>> reflected_port = X2[2:, :]

This allows us to calculate how the power in both ports depends on the initial polarization:

>>> transmitted_power = jones_2_stokes(transmitted_port)[0]
>>> reflected_power = jones_2_stokes(reflected_port)[0]
>>> print(transmitted_power)
\[
\cos(-2 \cdot \alpha + \chi + \psi)^2/2 + \cos(2 \cdot \alpha + \chi - \psi)^2/2
\]

>>> print(reflected_power)
\[
\sin(-2 \cdot \alpha + \chi + \psi)^2/2 + \sin(2 \cdot \alpha + \chi - \psi)^2/2
\]

Please see the description of the individual functions for further details and examples.
References

sympy.physics.optics.polarization.half_wave_retarder(theta)
A half-wave retarder Jones matrix at angle theta.

Parameters
theta : numeric type or SymPy Symbol
The angle of the fast axis relative to the horizontal plane.

Returns
SymPy Matrix
A Jones matrix representing the retarder.

Examples

A generic half-wave plate.

>>> from sympy import pprint, symbols
>>> from sympy.physics.optics.polarization import half_wave_retarder
>>> theta = symbols("theta", real=True)
>>> HWP = half_wave_retarder(theta)
>>> pprint(HWP, use_unicode=True)
\[
\begin{pmatrix}
2 & 2 \\
-i \cdot (-\sin(\theta) + \cos(\theta)) & -2 \cdot i \cdot \sin(\theta) \cdot \cos(\theta) \\
-2 \cdot i \cdot \sin(\theta) \cdot \cos(\theta) & -i \cdot (\sin(\theta) - \cos(\theta))
\end{pmatrix}
\]

sympy.physics.optics.polarization.jones_2_stokes(e)
Return the Stokes vector for a Jones vector e.

Parameters
e : SymPy Matrix
A Jones vector.

Returns
SymPy Matrix
A Jones vector.

Examples

The axes on the Poincaré sphere.

>>> from sympy import pprint, pi
>>> from sympy.physics.optics.polarization import jones_vector
>>> from sympy.physics.optics.polarization import jones_2_stokes
>>> H = jones_vector(0, 0)
>>> V = jones_vector(pi/2, 0)
>>> D = jones_vector(pi/4, 0)
>>> A = jones_vector(-pi/4, 0)
sympy.physics.optics.polarization.jones_vector(psi, chi)
A Jones vector corresponding to a polarization ellipse with psi tilt, and chi circularity.

**Parameters**
- **psi**: numeric type or SymPy Symbol
  - The tilt of the polarization relative to the x axis.
- **chi**: numeric type or SymPy Symbol
  - The angle adjacent to the major axis of the polarization ellipse.

**Returns**
- **Matrix**: A Jones vector.

**Examples**

The axes on the Poincaré sphere.

```python
>>> from sympy import pprint, symbols, pi
>>> from sympy.physics.optics.polarization import jones_vector
>>> psi, chi = symbols("psi, chi", real=True)
```

A general Jones vector.

```python
>>> pprint(jones_vector(psi, chi), use_unicode=True)
[-i⋅sin(χ)⋅sin(ψ) + cos(χ)⋅cos(ψ)]
[i⋅sin(χ)⋅cos(ψ) + sin(ψ)⋅cos(χ)]
```

Horizontal polarization.

```python
>>> pprint(jones_vector(0, 0), use_unicode=True)
[1]
[0]
```

Vertical polarization.
>>> pprint(jones_vector(pi/2, 0), use_unicode=True)

\[
\begin{bmatrix}
0 \\
1 
\end{bmatrix}
\]

Diagonal polarization.

>>> pprint(jones_vector(pi/4, 0), use_unicode=True)

\[
\begin{bmatrix}
\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} \\
\frac{-\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} \\
\end{bmatrix}
\]

Anti-diagonal polarization.

>>> pprint(jones_vector(-pi/4, 0), use_unicode=True)

\[
\begin{bmatrix}
\frac{\sqrt{2}}{2} \\
\frac{-\sqrt{2}}{2} \\
\frac{\sqrt{2} \cdot i}{2} \\
\frac{-\sqrt{2} \cdot i}{2} \\
\end{bmatrix}
\]

Right-hand circular polarization.

>>> pprint(jones_vector(0, pi/4), use_unicode=True)

\[
\begin{bmatrix}
\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2} \cdot i}{2} \\
\frac{\sqrt{2}}{2} \\
\frac{-\sqrt{2}}{2} \\
\end{bmatrix}
\]

Left-hand circular polarization.

```python
sympy.physics.optics.polarization.linear_polarizer(theta=0)
```

A linear polarizer Jones matrix with transmission axis at an angle theta.
**Parameters**

**theta**: numeric type or SymPy Symbol

The angle of the transmission axis relative to the horizontal plane.

**Returns**

SymPy Matrix

A Jones matrix representing the polarizer.

**Examples**

A generic polarizer.

```python
>>> from sympy import pprint, symbols

>>> from sympy.physics.optics.polarization import linear_polarizer

>>> theta = symbols("theta", real=True)

>>> J = linear_polarizer(theta)

>>> pprint(J, use_unicode=True)

\[
\begin{bmatrix}
2 & \cos(\theta) \cdot \sin(\theta) \\
\sin(\theta) \cdot \cos(\theta) & 2
\end{bmatrix}
\]

```

**sympy.physics.optics.polarization.mueller_matrix(J)**

The Mueller matrix corresponding to Jones matrix J.

**Parameters**

**J**: SymPy Matrix

A Jones matrix.

**Returns**

SymPy Matrix

The corresponding Mueller matrix.

**Examples**

Generic optical components.

```python
>>> from sympy import pprint, symbols

>>> from sympy.physics.optics.polarization import (mueller_matrix,
... linear_polarizer, half_wave_retarder, quarter_wave_retarder)

>>> theta = symbols("theta", real=True)

```

A linear_polarizer

```python
>>> pprint(mueller_matrix(linear_polarizer(theta)), use_unicode=True)

\[
\begin{bmatrix}
1/2 & \cos(2\cdot \theta) & \sin(2\cdot \theta) \\
2 & 2 & 0
\end{bmatrix}
\]
```

(continues on next page)
A half-wave plate

```python
>>> pprint(mueller_matrix(half_wave_retarder(theta)), use_unicode=True)
```

A quarter-wave plate

```python
>>> pprint(mueller_matrix(quarter_wave_retarder(theta)), use_unicode=True)
```

`sympy.physics.optics.polarization.phase_retarder(theta=0, delta=0)`

A phase retarder Jones matrix with retardance `delta` at angle `theta`.

**Parameters**

- `theta` : numeric type or SymPy Symbol
  
  The angle of the fast axis relative to the horizontal plane.

- `delta` : numeric type or SymPy Symbol
  
  The phase difference between the fast and slow axes of the transmitted light.
Returns
SymPy Matrix:
A Jones matrix representing the retarder.

Examples
A generic retarder.

```python
from sympy import pprint, symbols
from sympy.physics.optics.polarization import phase_retarder
theta, delta = symbols("theta, delta", real=True)
R = phase_retarder(theta, delta)
pprint(R, use_unicode=True)
```

```
⎡ -i⋅δ -i⋅δ ⎤
⎢ ───── ─────⎥
⎢⎛ i⋅δ 2 2 ⎞ 2 ⎛ i⋅δ⎞ 2 ⎥
⎢⎝e ⋅sin (θ) + cos (θ)⎠⋅e ⎝1 - e ⎠⋅e ⋅sin(θ)⋅cos(θ)⎥
⎢ ⎥
⎢ -i⋅δ -i⋅δ ⎥
⎢ ───── ─────⎥
⎢⎛ i⋅δ⎞ 2 ⎛ i⋅δ 2 2 ⎞ 2 ⎥
⎢⎝1 - e ⎠⋅e ⋅sin(θ)⋅cos(θ) ⎝e ⋅cos (θ) + sin (θ)⎠⋅e ⎦
```

```
sympy.physics.optics.polarization.polarizing_beam_splitter(Tp=1, Rs=1, Ts=0, Rp=0, phia=0, phib=0)
```

A polarizing beam splitter Jones matrix at angle \( \theta \).

Parameters

- **J**: SymPy Matrix
  A Jones matrix.

- **Tp** : numeric type or SymPy Symbol
  The transmissivity of the P-polarized component.

- **Rs** : numeric type or SymPy Symbol
  The reflectivity of the S-polarized component.

- **Ts** : numeric type or SymPy Symbol
  The transmissivity of the S-polarized component.

- **Rp** : numeric type or SymPy Symbol
  The reflectivity of the P-polarized component.

- **phia** : numeric type or SymPy Symbol
  The phase difference between transmitted and reflected component for output mode a.

- **phib** : numeric type or SymPy Symbol
  The phase difference between transmitted and reflected component for output mode b.
Returns

SymPy Matrix

A 4x4 matrix representing the PBS. This matrix acts on a 4x1 vector whose first two entries are the Jones vector on one of the PBS ports, and the last two entries the Jones vector on the other port.

Examples

Generic polarizing beam-splitter.

```python
>>> from sympy import pprint, symbols
>>> from sympy.physics.optics.polarization import polarizing_beam_splitter
>>> Ts, Rs, Tp, Rp = symbols("Ts, Rs, Tp, Rp", positive=True)
>>> phia, phib = symbols("phi_a, phi_b", real=True)
>>> PBS = polarizing_beam_splitter(Tp, Rs, Ts, Rp, phia, phib)
>>> pprint(PBS, use_unicode=False)
[____ ____]
[\ / Tp \ / 0 \ / I*\ / Rp \ / 0 \]
[[]
[]
[0 \ / Ts \ / 0 \ / -I*\ / Rs \ / e \]
[]
[]
[[]
[I*\ / Rp \ / 0 \ / \ / Tp \ / 0 \]
[]
[]
[0 -I*\ / Rs \ / e \ / 0 \ / \ / Ts \]
```

sympy.physics.optics.polarization.quarter_wave_retarder(theta)

A quarter-wave retarder Jones matrix at angle theta.

Parameters

theta : numeric type or SymPy Symbol

The angle of the fast axis relative to the horizontal plane.

Returns

SymPy Matrix

A Jones matrix representing the retarder.

Examples

A generic quarter-wave plate.

```python
>>> from sympy import pprint, symbols
>>> from sympy.physics.optics.polarization import quarter_wave_retarder
>>> theta= symbols("theta", real=True)
>>> QWP = quarter_wave_retarder(theta)
>>> pprint(QWP, use_unicode=True)
⎡ -i⋅π -i⋅π ⎤
⎢ ───── ───── ⎥
1948 Chapter5. APIReference (continues on next page)
SymPy.physics.optics.polarization.reflective_filter(R)
A reflective filter Jones matrix with reflectance R.

Parameters
- **R**: numeric type or SymPy Symbol
 The reflectance of the filter.

Returns
- SymPy Matrix
 A Jones matrix representing the filter.

Examples

A generic filter.

```python
>>> from sympy import pprint, symbols
>>> from sympy.physics.optics.polarization import reflective_filter
>>> R = symbols("R", real=True)
>>> pprint(reflective_filter(R), use_unicode=True)
⎡√R 0 ⎤
⎢     ⎥
⎣0 -√R⎦
```

SymPy.physics.optics.polarization.stokes_vector(psi, chi, p=1, I=1)
A Stokes vector corresponding to a polarization ellipse with psi tilt, and chi circularity.

Parameters
- **psi**: numeric type or SymPy Symbol
 The tilt of the polarization relative to the x axis.
- **chi**: numeric type or SymPy Symbol
 The angle adjacent to the mayor axis of the polarization ellipse.
- **p**: numeric type or SymPy Symbol
 The degree of polarization.
- **I**: numeric type or SymPy Symbol
 The intensity of the field.

Returns
- Matrix
 A Stokes vector.
Examples

The axes on the Poincaré sphere.

```python
>>> from sympy import pprint, symbols, pi
>>> from sympy.physics.optics.polarization import stokes_vector
>>> psi, chi, p, I = symbols("psi, chi, p, I", real=True)
>>> pprint(stokes_vector(psi, chi, p, I), use_unicode=True)
```

```
[   I  ]
| I\cdot p\cdot \cos(2\cdot \chi)\cdot \cos(2\cdot \psi) |
| I\cdot p\cdot \sin(2\cdot \psi)\cdot \cos(2\cdot \chi) |
|     I\cdot p\cdot \sin(2\cdot \chi)  |
```

Horizontal polarization

```python
>>> pprint(stokes_vector(0, 0), use_unicode=True)
```

```
[1  |
 | 1 |
 | 0 |
 | 0 |
```

Vertical polarization

```python
>>> pprint(stokes_vector(pi/2, 0), use_unicode=True)
```

```
[1  |
 | -1|
 | 0 |
 | 0 |
```

Diagonal polarization

```python
>>> pprint(stokes_vector(pi/4, 0), use_unicode=True)
```

```
[1  |
 | 0 |
 | 1 |
 | 0 |
```

Anti-diagonal polarization
Right-hand circular polarization

$$\begin{bmatrix}
1 \\
0 \\
-1 \\
0
\end{bmatrix}$$

Left-hand circular polarization

$$\begin{bmatrix}
1 \\
0 \\
0 \\
-1
\end{bmatrix}$$

Unpolarized light

$$\begin{bmatrix}
1 \\
0 \\
0 \\
0
\end{bmatrix}$$

sympy.physics.optics.polarization.transmissive_filter(T)

An attenuator Jones matrix with transmittance T.

Parameters

- **T**: numeric type or SymPy Symbol

 The transmittance of the attenuator.

Returns

SymPy Matrix

A Jones matrix representing the filter.
Examples

A generic filter.

```python
>>> from sympy import pprint, symbols
>>> from sympy.physics.optics.polarization import transmissive_filter
>>> T = symbols("T", real=True)
>>> NDF = transmissive_filter(T)
>>> pprint(NDF, use_unicode=True)
⎡√T  0⎤
⎢     ⎥
⎣0   √T⎦
```

Utilities

Contains

- `refraction_angle`
- `fresnel_coefficients`
- `deviation`
- `brewster_angle`
- `critical_angle`
- `lens_makers_formula`
- `mirror_formula`
- `lens_formula`
- `hyperfocal_distance`
- `transverse_magnification`

```python
sympy.physics.optics.utils.brewster_angle(medium1, medium2)
```

This function calculates the Brewster’s angle of incidence to Medium 2 from Medium 1 in radians.

Parameters

- `medium 1` : Medium or sympifiable
 - Refractive index of Medium 1
- `medium 2` : Medium or sympifiable
 - Refractive index of Medium 1
Examples

```python
>>> from sympy.physics.optics import brewster_angle
>>> brewster_angle(1, 1.33)
0.926093295503462
```

```
sympy.physics.optics.utils.critical_angle(medium1, medium2)

This function calculates the critical angle of incidence (marking the onset of total internal) to Medium 2 from Medium 1 in radians.

**Parameters**

- medium 1 : Medium or sympifiable
  - Refractive index of Medium 1.
- medium 2 : Medium or sympifiable
  - Refractive index of Medium 1.

**Examples**

```python
>>> from sympy.physics.optics import critical_angle
>>> critical_angle(1.33, 1)
0.850908514477849
```

```
sympy.physics.optics.utils.deviation(incident, medium1, medium2, normal=None, plane=None)

This function calculates the angle of deviation of a ray due to refraction at planar surface.

Parameters

- incident : Matrix, Ray3D, sequence or float
 - Incident vector or angle of incidence
- medium1 : sympy.physics.optics.medium.Medium or sympifiable
 - Medium 1 or its refractive index
- medium2 : sympy.physics.optics.medium.Medium or sympifiable
 - Medium 2 or its refractive index
- normal : Matrix, Ray3D, or sequence
 - Normal vector
- plane : Plane
 - Plane of separation of the two media.

Returns

angular deviation between incident and refracted rays
Examples

```python
>>> from sympy.physics.optics import deviation
>>> from sympy.geometry import Point3D, Ray3D, Plane
>>> from sympy.matrices import Matrix
>>> from sympy import symbols

>>> n1, n2 = symbols('n1, n2')

>>> n = Matrix([0, 0, 1])
>>> P = Plane(Point3D(0, 0, 0), normal_vector=[0, 0, 1])
>>> r1 = Ray3D(Point3D(-1, -1, 1), Point3D(0, 0, 0))

>>> deviation(r1, 1, 1, n)
0

>>> deviation(r1, n1, n2, plane=P)
-acos(-sqrt(-2*n1**2/(3*n2**2) + 1)) + acos(-sqrt(3)/3)

>>> round(deviation(0.1, 1.2, 1.5), 5)
-0.02005
```

sympy.physics.optics.utils.fresnel_coefficients(angle_of_incidence, medium1, medium2)

This function uses Fresnel equations to calculate reflection and transmission coefficients. Those are obtained for both polarisations when the electric field vector is in the plane of incidence (labelled 'p') and when the electric field vector is perpendicular to the plane of incidence (labelled 's'). There are four real coefficients unless the incident ray reflects in total internal in which case there are two complex ones. Angle of incidence is the angle between the incident ray and the surface normal. medium1 and medium2 can be Medium or any sympifiable object.

Parameters

- `angle_of_incidence` : sympifiable
- `medium1` : Medium or sympifiable
 - Medium 1 or its refractive index
- `medium2` : Medium or sympifiable
 - Medium 2 or its refractive index

Returns

Returns a list with four real Fresnel coefficients:

- [reflection p (TM), reflection s (TE),
 transmission p (TM), transmission s (TE)]

If the ray is undergoes total internal reflection then returns a list of two complex Fresnel coefficients:

- [reflection p (TM), reflection s (TE)]
Examples

```python
>>> from sympy.physics.optics import fresnel_coefficients
>>> fresnel_coefficients(0.3, 1, 2)
[0.317843553417859, -0.348645229818821, 0.658921776708929, 0.651354770181179]
>>> fresnel_coefficients(0.6, 2, 1)
[-0.235625382192159 - 0.971843958291041*I, 0.816477005968898 - 0.577377951366403*I]
```

References

[R686] sympy.physics.optics.utils.hyperfocal_distance(f, N, c)

Parameters

- **f**: sympifiable
 - Focal length of a given lens.
- **N**: sympifiable
 - F-number of a given lens.
- **c**: sympifiable
 - Circle of Confusion (CoC) of a given image format.

Example

```python
>>> from sympy.physics.optics import hyperfocal_distance
>>> round(hyperfocal_distance(f = 0.5, N = 8, c = 0.0033), 2)
9.47
```

sympy.physics.optics.utils.lens_formula($focal_length=None, u=None, v=None$)

This function provides one of the three parameters when two of them are supplied. This is valid only for paraxial rays.

Parameters

- **focal_length**: sympifiable
 - Focal length of the mirror.
- **u**: sympifiable
 - Distance of object from the optical center on the principal axis.
- **v**: sympifiable
 - Distance of the image from the optical center on the principal axis.
Examples

```python
def from sympy.physics.optics import lens_formula
def from sympy.abs import f, u, v
def lens_formula(focal_length=f, u=u)
def lens_formula(focal_length=f, v=v)
def lens_formula(u=u, v=v)
```

`sympy.physics.optics.utils.lens_makers_formula(n_lens, n_surr, r1, r2, d=0)`

This function calculates focal length of a lens. It follows cartesian sign convention.

Parameters
- **n_lens**: Medium or sympifiable
 Index of refraction of lens.
- **n_surr**: Medium or sympifiable
 Index of reflection of surrounding.
- **r1**: sympifiable
 Radius of curvature of first surface.
- **r2**: sympifiable
 Radius of curvature of second surface.
- **d**: sympifiable, optional
 Thickness of lens, default value is 0.

Examples

```python
def from sympy.physics.optics import lens_makers_formula
def from sympy import S
def lens_makers_formula(1.33, 1, 10, -10)
def lens_makers_formula(1.2, 1, 10, S.Infinity)
def lens_makers_formula(1.33, 1, 10, -10, d=1)
```

`sympy.physics.optics.utils.mirror_formula(focal_length=None, u=None, v=None)`

This function provides one of the three parameters when two of them are supplied. This is valid only for paraxial rays.

Parameters
- **focal_length**: sympifiable
 Focal length of the mirror.
- **u**: sympifiable
 Distance of object from the pole on the principal axis.
v : sympifiable

Distance of the image from the pole on the principal axis.

Examples

```python
>>> from sympy.physics.optics import mirror_formula
>>> from sympy.abc import f, u, v
>>> mirror_formula(focal_length=f, u=u)
f*u/(-f + u)
>>> mirror_formula(focal_length=f, v=v)
f*v/(-f + v)
>>> mirror_formula(u=u, v=v)
u*v/(u + v)
```

sympy.physics.optics.utils.refraction_angle(incident, medium1, medium2,
normal=None, plane=None)

This function calculates transmitted vector after refraction at planar surface. medium1 and medium2 can be Medium or any sympifiable object. If incident is a number then treated as angle of incidence (in radians) in which case refraction angle is returned.

If incident is an object of Ray3D, normal also has to be an instance of Ray3D in order to get the output as a Ray3D. Please note that if plane of separation is not provided and normal is an instance of Ray3D, normal will be assumed to be intersecting incident ray at the plane of separation. This will not be the case when normal is a Matrix or any other sequence. If incident is an instance of Ray3D and plane has not been provided and normal is not Ray3D, output will be a Matrix.

Parameters

- incident : Matrix, Ray3D, sequence or a number
 Incident vector or angle of incidence
- medium1 : sympy.physics.optics.medium.Medium or sympifiable
 Medium 1 or its refractive index
- medium2 : sympy.physics.optics.medium.Medium or sympifiable
 Medium 2 or its refractive index
- normal : Matrix, Ray3D, or sequence
 Normal vector
- plane : Plane
 Plane of separation of the two media.

Returns

Returns an angle of refraction or a refracted ray depending on inputs.
Examples

```python
>>> from sympy.physics.optics import refraction_angle
>>> from sympy.geometry import Point3D, Ray3D, Plane
>>> from sympy.matrices import Matrix
>>> from sympy import symbols, pi

>>> n = Matrix([0, 0, 1])
>>> P = Plane(Point3D(0, 0, 0), normal_vector=[0, 0, 1])
>>> r1 = Ray3D(Point3D(-1, -1, 1), Point3D(0, 0, 0))
>>> refraction_angle(r1, 1, 1, n)
Matrix([[1], [1], [-1]])

>>> refraction_angle(r1, 1, 1, plane=P)
Ray3D(Point3D(0, 0, 0), Point3D(1/3, 1/3, -sqrt(3)/3))
```

With different index of refraction of the two media

```python
>>> n1, n2 = symbols('n1, n2')

>>> refraction_angle(r1, n1, n2, n)
Matrix([[n1/n2], [n1/n2], [-sqrt(3)*sqrt(-2*n1**2/(3*n2**2) + 1)]]),

>>> refraction_angle(r1, n1, n2, plane=P)
Ray3D(Point3D(0, 0, 0), Point3D(n1/n2, n1/n2, -sqrt(3)*sqrt(-2*n1**2/(3*n2**2) + 1)))

>>> round(refraction_angle(pi/6, 1.2, 1.5), 5)
0.41152
```

`sympy.physics.optics.utils.transverse_magnification(si, so)`

Calculates the transverse magnification, which is the ratio of the image size to the object size.

Parameters

- **so**: sympifiable
 - Lens-object distance.

- **si**: sympifiable
 - Lens-image distance.

Example

```python
>>> from sympy.physics.optics import transverse_magnification

>>> transverse_magnification(30, 15)
-2
```
Waves

This module has all the classes and functions related to waves in optics.

Contains
- TWave

class sympy.physics.optics.waves.TWave(amplitude, frequency=None, phase=0, time_period=None, n=n)

This is a simple transverse sine wave travelling in a one-dimensional space. Basic properties are required at the time of creation of the object, but they can be changed later with respective methods provided.

Raises
- ValueError: When neither frequency nor time period is provided or they are not consistent.
- TypeError: When anything other than TWave objects is added.

Explanation

It is represented as $A \times \cos(k \times x - \omega \times t + \phi)$, where A is the amplitude, ω is the angular frequency, k is the wavenumber (spatial frequency), x is a spatial variable to represent the position on the dimension on which the wave propagates, and ϕ is the phase angle of the wave.

Arguments

amplitude
 [Sympifyable] Amplitude of the wave.

frequency
 [Sympifyable] Frequency of the wave.

phase
 [Sympifyable] Phase angle of the wave.

time_period
 [Sympifyable] Time period of the wave.

n
 [Sympifyable] Refractive index of the medium.

Examples

```python
>>> from sympy import symbols
>>> from sympy.physics.optics import TWave
>>> A1, phi1, A2, phi2, f = symbols('A1, phi1, A2, phi2, f')
>>> w1 = TWave(A1, f, phi1)
>>> w2 = TWave(A2, f, phi2)
>>> w3 = w1 + w2  # Superposition of two waves
>>> w3
```
(continues on next page)
property amplitude

Returns the amplitude of the wave.

Examples

```python
>>> from sympy import symbols
>>> from sympy.physics.optics import TWave
>>> A, phi, f = symbols('A, phi, f')
>>> w = TWave(A, f, phi)
>>> w.amplitude
A
```

property angular_velocity

Returns the angular velocity of the wave, in radians per second.

Examples

```python
>>> from sympy import symbols
>>> from sympy.physics.optics import TWave
>>> A, phi, f = symbols('A, phi, f')
>>> w = TWave(A, f, phi)
>>> w.angular_velocity
2*pi*f
```

property frequency

Returns the frequency of the wave, in cycles per second.
Examples

```python
>>> from sympy import symbols
>>> from sympy.physics.optics import TWave
>>> A, phi, f = symbols('A, phi, f')
>>> w = TWave(A, f, phi)
>>> w.frequency
f
```

property n

Returns the refractive index of the medium

property phase

Returns the phase angle of the wave, in radians.

Examples

```python
>>> from sympy import symbols
>>> from sympy.physics.optics import TWave
>>> A, phi, f = symbols('A, phi, f')
>>> w = TWave(A, f, phi)
>>> w.phase
phi
```

property speed

Returns the propagation speed of the wave, in meters per second. It is dependent on the propagation medium.

Examples

```python
>>> from sympy import symbols
>>> from sympy.physics.optics import TWave
>>> A, phi, f = symbols('A, phi, f')
>>> w = TWave(A, f, phi)
>>> w.speed
299792458*meter/(second*n)
```

property time_period

Returns the temporal period of the wave, in seconds per cycle.

Examples

```python
>>> from sympy import symbols
>>> from sympy.physics.optics import TWave
>>> A, phi, f = symbols('A, phi, f')
>>> w = TWave(A, f, phi)
>>> w.time_period
1/f
```
property wavelength

Returns the wavelength (spatial period) of the wave, in meters per cycle. It depends on the medium of the wave.

Examples

```python
>>> from sympy import symbols
>>> from sympy.physics.optics import TWave
>>> A, phi, f = symbols('A, phi, f')
>>> w = TWave(A, f, phi)
>>> w.wavelength
299792458*meter/(second*f*n)
```

property wavenumber

Returns the wavenumber of the wave, in radians per meter.

Examples

```python
>>> from sympy import symbols
>>> from sympy.physics.optics import TWave
>>> A, phi, f = symbols('A, phi, f')
>>> w = TWave(A, f, phi)
>>> w.wavenumber
pi*second*f*n/(149896229*meter)
```

Control Module

Abstract

Contains docstrings of Physics-Control module

Control

Currently, `sympy.physics.control` (page 1962) is able to deal with LTI (Linear, time-invariant) systems. The TransferFunction class is used to represent Continuous-time Transfer functions in the Laplace domain; where Transfer functions are input to output representations of dynamic systems. The additive property is used for transfer functions in the Parallel class, and the multiplicative property is used for transfer functions in the Series class. Also, there is a Feedback class which is used to represent negative feedback interconnection between two input/output systems. MIMO systems are also supported with TransferFunctionMatrix as the base class for representing one. MIMO Series, MIMO Parallel and MIMO Feedback are MIMO equivalent of Series, Parallel and Feedback classes.

The advantage of this symbolic Control system package is that the solutions obtained from it are highly accurate and do not rely on numerical methods to approximate the solutions. Symbolic solutions obtained are also in a compact form that can be used for further analysis.
Control API

lti

class sympy.physics.control.lti.TransferFunction(num, den, var)
A class for representing LTI (Linear, time-invariant) systems that can be strictly described by ratio of polynomials in the Laplace transform complex variable. The arguments are num, den, and var, where num and den are numerator and denominator polynomials of the TransferFunction respectively, and the third argument is a complex variable of the Laplace transform used by these polynomials of the transfer function. num and den can be either polynomials or numbers, whereas var has to be a Symbol (page 1028).

Parameters
num : Expr, Number
 The numerator polynomial of the transfer function.

den : Expr, Number
 The denominator polynomial of the transfer function.

var : Symbol
 Complex variable of the Laplace transform used by the polynomials of the transfer function.

Raises
TypeError
 When var is not a Symbol or when num or den is not a number or a polynomial.

ValueError
 When den is zero.

Explanation

Generally, a dynamical system representing a physical model can be described in terms of Linear Ordinary Differential Equations like -

\[b_m y^{(m)} + b_{m-1} y^{(m-1)} + \cdots + b_1 y^{(1)} + b_0 y = a_n x^{(n)} + a_{n-1} x^{(n-1)} + \cdots + a_1 x^{(1)} + a_0 x \]

Here, \(x \) is the input signal and \(y \) is the output signal and superscript on both is the order of derivative (not exponent). Derivative is taken with respect to the independent variable, \(t \). Also, generally \(m \) is greater than \(n \).

It is not feasible to analyse the properties of such systems in their native form therefore, we use mathematical tools like Laplace transform to get a better perspective. Taking the Laplace transform of both the sides in the equation (at zero initial conditions), we get -

\[L[b_m y^{(m)} + b_{m-1} y^{(m-1)} + \cdots + b_1 y^{(1)} + b_0 y] = L[a_n x^{(n)} + a_{n-1} x^{(n-1)} + \cdots + a_1 x^{(1)} + a_0 x] \]

Using the linearity property of Laplace transform and also considering zero initial conditions (i.e. \(y(0^-) = 0, y'(0^-) = 0 \) and so on), the equation above gets translated to -

\[b_m L[y^{(m)}] + \cdots + b_1 L[y^{(1)}] + b_0 L[y] = a_n L[x^{(n)}] + \cdots + a_1 L[x^{(1)}] + a_0 L[x] \]

Now, applying Derivative property of Laplace transform,
Here, the superscript on s is **exponent**. Note that the zero initial conditions assumption, mentioned above, is very important and cannot be ignored otherwise the dynamical system cannot be considered time-independent and the simplified equation above cannot be reached.

Collecting $L[y]$ and $L[x]$ terms from both the sides and taking the ratio $\frac{L[y]}{L[x]}$, we get the typical rational form of transfer function.

The numerator of the transfer function is, therefore, the Laplace transform of the output signal (the signals are represented as functions of time) and similarly, the denominator of the transfer function is the Laplace transform of the input signal. It is also a convention to denote the input and output signal’s Laplace transform with capital alphabets like shown below.

$$H(s) = \frac{Y(s)}{X(s)} = \frac{L\{y(t)\}}{L\{x(t)\}}$$

s, also known as complex frequency, is a complex variable in the Laplace domain. It corresponds to the equivalent variable t, in the time domain. Transfer functions are sometimes also referred to as the Laplace transform of the system’s impulse response. Transfer function, H, is represented as a rational function in s like,

$$H(s) = \frac{a_n s^n + a_{n-1} s^{n-1} + \ldots + a_1 s + a_0}{b_m s^m + b_{m-1} s^{m-1} + \ldots + b_1 s + b_0}$$

Examples

```python
>>> from sympy.abc import s, p, a
>>> from sympy.physics.control.lti import TransferFunction
>>> tf1 = TransferFunction(s + a, s**2 + s + 1, s)
>>> tf1
TransferFunction(a + s, s**2 + s + 1, s)
>>> tf1.num
a + s
>>> tf1.den
s**2 + s + 1
>>> tf1.var
s
>>> tf1.args
(a + s, s**2 + s + 1, s)
```

Any complex variable can be used for var.

```python
>>> tf2 = TransferFunction(a*p**3 - a*p**2 + p*s, p + a**2, p)
>>> tf2
TransferFunction(a*p**3 - a*p**2 + p*s, a**2 + p, p)
>>> tf3 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p)
>>> tf3
TransferFunction((p - 1)*(p + 3), (p - 1)*(p + 5), p)
```

To negate a transfer function the `-` operator can be prepended:

```python
>>> tf4 = TransferFunction(-a + s, p**2 + s, p)
>>> -tf4
```

(continues on next page)
You can use a float or an integer (or other constants) as numerator and denominator:

```python
>>> tf6 = TransferFunction(1/2, 4, s)
>>> tf6.num
0.5
>>> tf6.den
4
>>> tf6.var
s
>>> tf6.args
(0.5, 4, s)
```

You can take the integer power of a transfer function using the ** operator:

```python
>>> tf7 = TransferFunction(s + a, s - a, s)
>>> tf7**3
TransferFunction((a + s)**3, (-a + s)**3, s)
>>> tf7**0
TransferFunction(1, 1, s)
>>> tf8 = TransferFunction(p + 4, p - 3, p)
>>> tf8**-1
TransferFunction(p - 3, p + 4, p)
```

Addition, subtraction, and multiplication of transfer functions can form unevaluated Series or Parallel objects.

```python
>>> tf9 = TransferFunction(s + 1, s**2 + s + 1, s)
>>> tf10 = TransferFunction(s - p, s + 3, s)
>>> tf11 = TransferFunction(4*s**2 + 2*s - 4, s - 1, s)
>>> tf12 = TransferFunction(1 - s, s**2 + 4, s)
>>> tf9 + tf10
Parallel(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(-p + s, s + 3, s))
>>> tf10 - tf11
Parallel(TransferFunction(-p + s, s + 3, s), TransferFunction(-4*s**2 - 2*s + 4, s - 1, s))
>>> tf9 * tf10
Series(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(-p + s, s + 3, s))
>>> tf10 - (tf9 + tf12)
Parallel(TransferFunction(-p + s, s + 3, s), TransferFunction(-s - 1, -s**2 + s + 1, s), TransferFunction(s - 1, s**2 + 4, s))
>>> tf10 - (tf9 * tf12)
Parallel(TransferFunction(-p + s, s + 3, s), Series(TransferFunction(-1, -1, s), TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(1 - s, s**2 + 4, s)))
>>> tf11 * tf10 * tf9
Series(TransferFunction(4*s**2 + 2*s - 4, s - 1, s), TransferFunction(-p, p, s))
```

(continues on next page)
These unevaluated Series or Parallel objects can convert into the resultant transfer function using .doit() method or by .rewrite(TransferFunction).

See also:

Feedback (page 1978), Series (page 1971), Parallel (page 1975)

References

[R675], [R676]

dc_gain()

Computes the gain of the response as the frequency approaches zero.

The DC gain is infinite for systems with pure integrators.

Examples

```python
>>> from sympy.abc import s, p, a, b
>>> from sympy.physics.control.lti import TransferFunction
>>> tf1 = TransferFunction(s + 3, s**2 - 9, s)
>>> tf1.dc_gain()
-1/3
>>> tf2 = TransferFunction(p**2, p - 3 + p**3, p)
>>> tf2.dc_gain()
0
>>> tf3 = TransferFunction(a*p**2 - b, s + b, s)
>>> tf3.dc_gain()
(a*p**2 - b)/b
>>> tf4 = TransferFunction(1, s, s)
>>> tf4.dc_gain()
oo
```
property den

Returns the denominator polynomial of the transfer function.

Examples

```python
>>> from sympy import s, p
>>> from sympy.physics.control.lti import TransferFunction
>>> G1 = TransferFunction(s + 4, p**3 - 2*p + 4, s)
>>> G1.den
p**3 - 2*p + 4
>>> G2 = TransferFunction(3, 4, s)
>>> G2.den
4
```

expand()

Returns the transfer function with numerator and denominator in expanded form.

Examples

```python
>>> from sympy import s, p, a, b
>>> from sympy.physics.control.lti import TransferFunction
>>> G1 = TransferFunction((a - s)**2, (s**2 + a)**2, s)
>>> G1.expand()
TransferFunction(a**2 - 2*a*s + s**2, a**2 + 2*a*s**2 + s**4, s)
>>> G2 = TransferFunction((p + 3*b)*(p - b), (p - b)*(p + 2*b), p)
>>> G2.expand()
TransferFunction(-3*b**2 + 2*b*p + p**2, -2*b**2 + b*p + p**2, p)
```

classmethod from_rational_expression(expr, var=None)

Creates a new TransferFunction efficiently from a rational expression.

Parameters

expr : Expr, Number
 The rational expression representing the TransferFunction.

var : Symbol, optional
 Complex variable of the Laplace transform used by the polynomials of the transfer function.

Raises

ValueError
 When expr is of type Number and optional parameter var is not passed.
 When expr has more than one variables and an optional parameter var is not passed.

ZeroDivisionError
 When denominator of expr is zero or it has ComplexInfinity in its numerator.
Examples

```python
>>> from sympy import s, p, a
>>> expr1 = (s + 5)/(3*s**2 + 2*s + 1)
>>> tf1 = TransferFunction.from_rational_expression(expr1)
>>> tf1
TransferFunction(s + 5, 3*s**2 + 2*s + 1, s)

>>> expr2 = (a*p**3 - a*p**2 + p*s)/(p + a**2)  # Expr with more than one variables
>>> tf2 = TransferFunction.from_rational_expression(expr2, p)
>>> tf2
TransferFunction(a*p**3 - a*p**2 + p*s, a**2 + p, p)
```

In case of conflict between two or more variables in an expression, SymPy will raise a `ValueError`, if var is not passed by the user.

```python
>>> tf = TransferFunction.from_rational_expression((a + a*s)/(s**2 + s + 1))
Traceback (most recent call last):
  ... ValueError: Conflicting values found for positional argument `var` (\{a, s\}). Specify it manually.

This can be corrected by specifying the var parameter manually.

```python
>>> tf = TransferFunction.from_rational_expression((a + a*s)/(s**2 + s + 1), s)
>>> tf
TransferFunction(a*s + a, s**2 + s + 1, s)
```

`var` also need to be specified when `expr` is a `Number`

```python
>>> tf3 = TransferFunction.from_rational_expression(10, s)
>>> tf3
TransferFunction(10, 1, s)
```

**property is_biproper**

Returns True if degree of the numerator polynomial is equal to degree of the denominator polynomial, else False.

Examples

```python
>>> from sympy import s, p, a, b
>>> tf1 = TransferFunction(a*p**2 + b*s, s + p, s)
>>> tf1.is_biproper
True
>>> tf2 = TransferFunction(p**2, p + a, p)
>>> tf2.is_biproper
False
```
property is_proper
Returns True if degree of the numerator polynomial is less than or equal to degree of the denominator polynomial, else False.

Examples

```python
>>> from sympy import s, p, a, b
>>> from sympy.physics.control.lti import TransferFunction
>>> tf1 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s)
>>> tf1.is_proper
False
>>> tf2 = TransferFunction(p**2 - 4*p, p**3 + 3*p + 2, p)
>>> tf2.is_proper
True
```

is_stable()
Returns True if the transfer function is asymptotically stable; else False.
This would not check the marginal or conditional stability of the system.

Examples

```python
>>> from sympy import s, p, a
>>> from sympy import symbols
>>> from sympy.physics.control.lti import TransferFunction
>>> q, r = symbols('q, r', negative=True)
>>> tf1 = TransferFunction((1 - s)**2, (s + 1)**2, s)
>>> tf1.is_stable()
True
>>> tf2 = TransferFunction((1 - p)**2, (s**2 + 1)**2, s)
>>> tf2.is_stable()
False
>>> tf3 = TransferFunction(4, q*s - r, s)
>>> tf3.is_stable()
False
>>> tf4 = TransferFunction(p + 1, a*p - s**2, p)
>>> tf4.is_stable() is None # Not enough info about the symbols to determine stability
True
```

property is_strictly_proper
Returns True if degree of the numerator polynomial is strictly less than degree of the denominator polynomial, else False.
Examples

```python
>>> from sympy.abc import s, p, a, b
>>> from sympy.physics.control.lti import TransferFunction
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
>>> tf1.is_strictly_proper
False
>>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)
>>> tf2.is_strictly_proper
True
```

**property num**

Returns the numerator polynomial of the transfer function.

Examples

```python
>>> from sympy.abc import s, p
>>> from sympy.physics.control.lti import TransferFunction
>>> G1 = TransferFunction(s**2 + p*s + 3, s - 4, s)
>>> G1.num
p*s + s**2 + 3
>>> G2 = TransferFunction((p + 5)*(p - 3), (p - 3)*(p + 1), p)
>>> G2.num
(p - 3)*(p + 5)
```

**poles()**

Returns the poles of a transfer function.

Examples

```python
>>> from sympy.abc import s, p, a
>>> from sympy.physics.control.lti import TransferFunction
>>> tf1 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p)
>>> tf1.poles()
[-5, 1]
>>> tf2 = TransferFunction((1 - s)**2, (s**2 + 1)**2, s)
>>> tf2.poles()
[I, I, -I, -I]
>>> tf3 = TransferFunction(s**2, a*s + p, s)
>>> tf3.poles()
[-p/a]
```

**to_expr()**

Converts a TransferFunction object to SymPy Expr.
Examples

```python
>>> from sympy import s, p, a, b
>>> from sympy.physics.control.lti import TransferFunction
>>> from sympy import Expr

>>> tf1 = TransferFunction(s, a*s**2 + 1, s)
>>> tf1.to_expr()
s/(a*s**2 + 1)

>>> isinstance(_, Expr)
True

>>> tf2 = TransferFunction(1, (p + 3*b)*(b - p), p)
>>> tf2.to_expr()
1/((b - p)*3*b + p))

>>> tf3 = TransferFunction((s - 2)*(s - 3), (s - 1)*(s - 2)*(s - 3), s)
>>> tf3.to_expr()
((s - 3)*(s - 2))/(((s - 3)*(s - 2)*(s - 1)))
```

**property var**

Returns the complex variable of the Laplace transform used by the polynomials of the transfer function.

Examples

```python
>>> from sympy import s, p, a
>>> from sympy.physics.control.lti import TransferFunction

>>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p)
>>> G1.var
p

>>> G2 = TransferFunction(0, s - 5, s)
>>> G2.var
s
```

**zeros()**

Returns the zeros of a transfer function.

Examples

```python
>>> from sympy import s, p, a
>>> from sympy.physics.control.lti import TransferFunction

>>> tf1 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p)
>>> tf1.zeros()
[-3, 1]

>>> tf2 = TransferFunction((1 - s)**2, (s**2 + 1)**2, s)
>>> tf2.zeros()
[1, 1]

>>> tf3 = TransferFunction(s**2, a*s + p, s)
>>> tf3.zeros()
[0, 0]
```
class sympy.physics.control.lti.Series(*args, evaluate=False)

A class for representing a series configuration of SISO systems.

Parameters

- **args**: SISOLinearTimeInvariant
  
  SISO systems in a series configuration.

- **evaluate**: Boolean, Keyword
  
  When passed True, returns the equivalent Series(*args).doit().
  Set to False by default.

Raises

- **ValueError**
  
  When no argument is passed.

- **TypeError**
  
  Any of the passed *args has unsupported type

A combination of SISO and MIMO systems is passed. There should be homogeneity in the type of systems passed, SISO in this case.

Examples

```python
>>> from sympy.abc import s, p, a, b
>>> from sympy.physics.control.lti import TransferFunction, Series,
 Parallel
>>> tf1 = TransferFunction(a*p**2 + b*s, -p + s, s)
>>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)
>>> tf3 = TransferFunction(p**2, p + s, s)
>>> S1 = Series(tf1, tf2)
>>> S1
Series(TransferFunction(a*p**2 + b*s, -p + s, s), TransferFunction(s**3 - 2, s**4 + 5*s + 6, s))
>>> S1.var
s
>>> S2 = Series(tf2, Parallel(tf3, -tf1))
>>> S2
Series(TransferFunction(s**3 - 2, s**4 + 5*s + 6, s),
 Parallel(TransferFunction(p**2, p + s, s), TransferFunction(-a*p**2 -
 -b*s, -p + s, s)))
>>> S2.var
s
>>> S3 = Series(Parallel(tf1, tf2), Parallel(tf2, tf3))
>>> S3
Series(Parallel(TransferFunction(a*p**2 + b*s, -p + s, s),
 TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)),
 Parallel(TransferFunction(s**3 - 2, s**4 + 5*s + 6, s),
 TransferFunction(p**2, p + s, s)))
>>> S3.var
s
```
You can get the resultant transfer function by using `.doit()` method:

```python
>>> S3 = Series(tf1, tf2, -tf3)
>>> S3.doit()
TransferFunction(-p**2*(s**3 - 2)*(a*p**2 + b*s), (-p + s)*(p + s)*(s**4 + 5*s + 6), s)

>>> S4 = Series(tf2, Parallel(tf1, -tf3))
>>> S4.doit()
TransferFunction(((s**3 - 2)*(-p**2*(-p + s) + (p + s)*(a*p**2 + b*s)), (-p + s)*(p + s)*(s**4 + 5*s + 6), s)
```

**Notes**

All the transfer functions should use the same complex variable `var` of the Laplace transform.

**See also:**


**doit(**hints**)**

Returns the resultant transfer function obtained after evaluating the transfer functions in series configuration.

**Examples**

```python
>>> from sympy.abc import s, p, a, b
>>> from sympy.physics.control.lti import TransferFunction, Series
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
>>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)
>>> Series(tf2, tf1).doit()
TransferFunction((s**3 - 2)*(a*p**2 + b*s), (-p + s)*(s**4 + 5*s + 6), s)

>>> Series(-tf1, -tf2).doit()
TransferFunction((2 - s**3)*(-a*p**2 - b*s), (-p + s)*(s**4 + 5*s + 6), s)
```

**property is_biproper**

Returns True if degree of the numerator polynomial of the resultant transfer function is equal to degree of the denominator polynomial of the same, else False.
Examples

```python
>>> from sympy.abc import s, p, a, b
>>> from sympy.physics.control.lti import TransferFunction, Series
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
>>> tf2 = TransferFunction(p, s**2, s)
>>> tf3 = TransferFunction(s**2, 1, s)
>>> S1 = Series(tf1, -tf2)
>>> S1.is_biproper
False
>>> S2 = Series(tf2, tf3)
>>> S2.is_biproper
True
```

**property is_proper**

Returns True if degree of the numerator polynomial of the resultant transfer function is less than or equal to degree of the denominator polynomial of the same, else False.

Examples

```python
>>> from sympy.abc import s, p, a, b
>>> from sympy.physics.control.lti import TransferFunction, Series
>>> tf1 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s)
>>> tf2 = TransferFunction(p**2 - 4*p, p**3 + 3*s + 2, s)
>>> tf3 = TransferFunction(s, s**2 + s + 1, s)
>>> S1 = Series(-tf2, tf1)
>>> S1.is_proper
False
>>> S2 = Series(tf1, tf2, tf3)
>>> S2.is_proper
True
```

**property is_strictly_proper**

Returns True if degree of the numerator polynomial of the resultant transfer function is strictly less than degree of the denominator polynomial of the same, else False.

Examples

```python
>>> from sympy.abc import s, p, a, b
>>> from sympy.physics.control.lti import TransferFunction, Series
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
>>> tf2 = TransferFunction(s**2 - 2, s**2 + 5*s + 6, s)
>>> tf3 = TransferFunction(1, s**2 + s + 1, s)
>>> S1 = Series(tf1, tf2)
>>> S1.is_strictly_proper
False
>>> S2 = Series(tf1, tf2, tf3)
>>> S2.is_strictly_proper
True
```
to_expr()
Returns the equivalent Expr object.

property var
Returns the complex variable used by all the transfer functions.

Examples

```python
>>> from sympy.abc import p
>>> from sympy.physics.control.lti import TransferFunction, Series,
 Parallel
>>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p)
>>> G2 = TransferFunction(p, 4 - p, p)
>>> G3 = TransferFunction(0, p**4 - 1, p)
>>> Series(G1, G2).var
p
>>> Series(-G3, Parallel(G1, G2)).var
p
```

class sympy.physics.control.lti.Parallel(*args, evaluate=False)
A class for representing a parallel configuration of SISO systems.

Parameters
- **args**: SISOLinearTimeInvariant
  SISO systems in a parallel arrangement.
- **evaluate**: Boolean, Keyword
  When passed True, returns the equivalent Parallel(*args).doit().
  Set to False by default.

Raises
- **ValueError**
  When no argument is passed.
  var attribute is not same for every system.
- **TypeError**
  Any of the passed *args has unsupported type
  A combination of SISO and MIMO systems is passed. There should be homogeneity in the type of systems passed.

Examples

```python
>>> from sympy.abc import s, p, a, b
>>> from sympy.physics.control.lti import TransferFunction, Parallel,
 Series
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
>>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)
>>> tf3 = TransferFunction(p**2, p + s, s)
>>> P1 = Parallel(tf1, tf2)
```
You can get the resultant transfer function by using .doit() method:

```python
>>> Parallel(tf1, tf2, -tf3).doit()
TransferFunction(-p**2*(-p + s)*(s**4 + 5*s + 6) + (-p + s)*(p +
 s)*(s**3 - 2) + (p + s)*(a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(p +
 s)*(s**4 + 5*s + 6), s)
```

**Notes**

All the transfer functions should use the same complex variable \( \text{var} \) of the Laplace transform.

**See also:**


**doit(****hints**

Returns the resultant transfer function obtained after evaluating the transfer functions in parallel configuration.
Examples

```python
>>> from sympy import s, p, a, b
>>> from sympy.physics.control.lti import TransferFunction, Parallel
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
>>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)
>>> Parallel(tf2, tf1).doit()
TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s)
```

property is_biproper

Returns True if degree of the numerator polynomial of the resultant transfer function is equal to degree of the denominator polynomial of the same, else False.

Examples

```python
>>> from sympy import s, p, a, b
>>> from sympy.physics.control.lti import TransferFunction, Parallel
>>> tf1 = TransferFunction(b*s**2 + p**2 + a*p + s, b - p**2, s)
>>> tf2 = TransferFunction(p**2 + 4*p, p**3 + 3*s + 2, s)
>>> tf3 = TransferFunction(s, s**2 + s + 1, s)
>>> P1 = Parallel(-tf2, tf1)
>>> P1.is_biproper
True
>>> P2 = Parallel(tf2, tf3)
>>> P2.is_biproper
False
```

property is_proper

Returns True if degree of the numerator polynomial of the resultant transfer function is less than or equal to degree of the denominator polynomial of the same, else False.

Examples

```python
>>> from sympy import s, p, a, b
>>> from sympy.physics.control.lti import TransferFunction, Parallel
>>> tf1 = TransferFunction(b*s**2 + p**2 + a*p + s, b - p**2, s)
>>> tf2 = TransferFunction(p**2 + 4*p, p**3 + 3*s + 2, s)
>>> tf3 = TransferFunction(s, s**2 + s + 1, s)
>>> P1 = Parallel(-tf2, tf1)
>>> P1.is_proper
False
>>> P2 = Parallel(tf2, tf3)
>>> P2.is_proper
True
```
property is_strictly_proper
Returns True if degree of the numerator polynomial of the resultant transfer function
is strictly less than degree of the denominator polynomial of the same, else False.

Examples
```python
>>> from sympy.abc import s, p, a, b
>>> from sympy.physics.control.lti import TransferFunction, Parallel
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
>>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)
>>> tf3 = TransferFunction(s, s**2 + s + 1, s)
>>> P1 = Parallel(tf1, tf2)
>>> P1.is_strictly_proper
False
>>> P2 = Parallel(tf2, tf3)
>>> P2.is_strictly_proper
True
```

to_expr()
Returns the equivalent Expr object.

property var
Returns the complex variable used by all the transfer functions.

Examples
```python
>>> from sympy.abc import p
>>> from sympy.physics.control.lti import TransferFunction, Parallel,
... Series
>>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p)
>>> G2 = TransferFunction(p, 4 - p, p)
>>> G3 = TransferFunction(0, p**4 - 1, p)
>>> Parallel(G1, G2).var
p
>>> Parallel(-G3, Series(G1, G2)).var
p
```

class sympy.physics.control.lti.Feedback(sys1, sys2=None, sign=-1)
A class for representing closed-loop feedback interconnection between two SISO input/output systems.

The first argument, sys1, is the feedforward part of the closed-loop system or in simple words, the dynamical model representing the process to be controlled. The second argument, sys2, is the feedback system and controls the feedback signal to sys1. Both sys1 and sys2 can either be Series or TransferFunction objects.

Parameters
- **sys1** : Series, TransferFunction
  - The feedforward path system.
- **sys2** : Series, TransferFunction, optional
The feedback path system (often a feedback controller). It is the
model sitting on the feedback path.
If not specified explicitly, the sys2 is assumed to be unit (1.0) transfer
function.

**sign** : int, optional

The sign of feedback. Can either be 1 (for positive feedback) or -1
(for negative feedback). Default value is 1.

**Raises**

**ValueError**

When sys1 and sys2 are not using the same complex variable of the
Laplace transform.
When a combination of sys1 and sys2 yields zero denominator.

**TypeError**

When either sys1 or sys2 is not a Series or a TransferFunction
object.

**Examples**

```
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunction, Feedback
>>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s)
>>> controller = TransferFunction(5*s - 10, s + 7, s)
>>> F1 = Feedback(plant, controller)
>>> F1
Feedback(TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s),
 →TransferFunction(5*s - 10, s + 7, s), -1)
```

You can get the feedforward and feedback path systems by using .sys1 and .sys2 re-
spectively.

```
>>> F1.sys1
TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s)
>>> F1.sys2
TransferFunction(5*s - 10, s + 7, s)
```

You can get the resultant closed loop transfer function obtained by negative feedback
interconnection using .doit() method.

```
>>> F1.doit()
TransferFunction((s + 7)*(s**2 - 4*s + 2)*(3*s**2 + 7*s - 3), ((s +
 →7)*(s**2 - 4*s + 2) + (5*s - 10)*(3*s**2 + 7*s - 3))*(s**2 - 4*s + 2),
 →s)
>>> G = TransferFunction(2*s**2 + 5*s + 1, s**2 + 2*s + 3, s)
```

(continues on next page)
```
>>> C = TransferFunction(5*s + 10, s + 10, s)
>>> F2 = Feedback(G*C, TransferFunction(1, 1, s))
>>> F2.doit()
TransferFunction((s + 10)*(5*s + 10)*(s**2 + 2*s + 3)*(2*s**2 + 5*s + 1),
 (s + 10)*(s + 10)*(s**2 + 2*s + 3) + (5*s + 10)*(2*s**2 + 5*s + 1),
 (s**2 + 2*s + 3), s)
```

To negate a Feedback object, the - operator can be prepended:

```
>>> -F1
Feedback(TransferFunction(-3*s**2 - 7*s + 3, s**2 - 4*s + 2, s),
 TransferFunction(10 - 5*s, s + 7, s), -1)
>>> -F2
Feedback(Series(TransferFunction(-1, 1, s), TransferFunction(2*s**2 + 5*s + 1, s**2 + 2*s + 3, s), TransferFunction(5*s + 10, s + 10, s)),
 TransferFunction(-1, 1, s), -1)
```

See also:

- `MIMOFeedback` (page 1999), `Series` (page 1971), `Parallel` (page 1975)

`doit(cancel=False, expand=False, **hints)`

Returns the resultant transfer function obtained by the feedback interconnection.

**Examples**

```
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunction, Feedback
>>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s)
>>> controller = TransferFunction(5*s - 10, s + 7, s)
>>> F1 = Feedback(plant, controller)
>>> F1.doit()
TransferFunction((s + 7)*(s**2 - 4*s + 2)*(3*s**2 + 7*s - 3), ((s + 7)*(s**2 - 4*s + 2) + (5*s - 10)*(3*s**2 + 7*s - 3))*(s**2 - 4*s + 2), s)
>>> G = TransferFunction(2*s**2 + 5*s + 1, s**2 + 2*s + 3, s)
>>> F2 = Feedback(G, TransferFunction(1, 1, s))
>>> F2.doit()
TransferFunction((s**2 + 2*s + 3)*(2*s**2 + 5*s + 1), (s**2 + 2*s +
 3)*(3*s**2 + 7*s + 4), s)
```

Use kwarg `expand=True` to expand the resultant transfer function. Use `cancel=True` to cancel out the common terms in numerator and denominator.

```
>>> F2.doit(cancel=True, expand=True)
TransferFunction(2*s**2 + 5*s + 1, 3*s**2 + 7*s + 4, s)
>>> F2.doit(expand=True)
TransferFunction(2*s**4 + 9*s**3 + 17*s**2 + 17*s + 3, 3*s**4 +
 13*s**3 + 27*s**2 + 29*s + 12, s)
```

**property sensitivity**

Returns the sensitivity function of the feedback loop.
Sensitivity of a Feedback system is the ratio of change in the open loop gain to the change in the closed loop gain.

**Note:** This method would not return the complementary sensitivity function.

### Examples

```python
>>> from sympy.abc import p
>>> from sympy.physics.control.lti import TransferFunction, Feedback
>>> C = TransferFunction(5*p + 10, p + 10, p)
>>> P = TransferFunction(1 - p, p + 2, p)
>>> F_1 = Feedback(P, C)
>>> F_1.sensitivity
1/((1 - p)*(5*p + 10)/((p + 2)*(p + 10)) + 1)
```

**property sign**

Returns the type of MIMO Feedback model. 1 for Positive and -1 for Negative.

**property sys1**

Returns the feedforward system of the feedback interconnection.

### Examples

```python
>>> from sympy.abc import s, p
>>> from sympy.physics.control.lti import TransferFunction, Feedback
>>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s)
>>> controller = TransferFunction(5*s - 10, s + 7, s)
>>> F1 = Feedback(plant, controller)
>>> F1.sys1
TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s)
>>> G = TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p)
>>> C = TransferFunction(5*p + 10, p + 10, p)
>>> P = TransferFunction(1 - s, p + 2, p)
>>> F2 = Feedback(TransferFunction(1, 1, p), G*C*P)
>>> F2.sys1
TransferFunction(1, 1, p)
```

**property sys2**

Returns the feedback controller of the feedback interconnection.
Examples

```python
>>> from sympy import s, p
>>> from sympy.physics.control.lti import TransferFunction, Feedback
>>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s)
>>> controller = TransferFunction(5*s - 10, s + 7, s)
>>> F1 = Feedback(plant, controller)
>>> F1
TransferFunction(5*s - 10, s + 7, s)

>>> G = TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p)
>>> C = TransferFunction(5*p + 10, p + 10, p)
>>> P = TransferFunction(1 - s, p + 2, p)
>>> F2 = Feedback(TransferFunction(1, 1, p), G*C*P)
>>> F2
Series(TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p),
 TransferFunction(5*p + 10, p + 10, p), TransferFunction(1 - s, p + 2, p))
```

**property var**

Returns the complex variable of the Laplace transform used by all the transfer functions involved in the feedback interconnection.

Examples

```python
>>> from sympy import s, p
>>> from sympy.physics.control.lti import TransferFunction, Feedback
>>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s)
>>> controller = TransferFunction(5*s - 10, s + 7, s)
>>> F1 = Feedback(plant, controller)
>>> F1.var
s

>>> G = TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p)
>>> C = TransferFunction(5*p + 10, p + 10, p)
>>> P = TransferFunction(1 - s, p + 2, p)
>>> F2 = Feedback(TransferFunction(1, 1, p), G*C*P)
>>> F2.var
p
```

**class sympy.physics.control.lti.TransferFunctionMatrix(arg)**

A class for representing the MIMO (multiple-input and multiple-output) generalization of the SISO (single-input and single-output) transfer function.

It is a matrix of transfer functions (TransferFunction, SISO-Series or SISO-Parallel). There is only one argument, arg which is also the compulsory argument. arg is expected to be strictly of the type list of lists which holds the transfer functions or reducible to transfer functions.

**Parameters**

- **arg**: Nested List (strictly).

Users are expected to input a nested list of TransferFunction, Series and/or Parallel objects.
Examples

Note: `pprint()` can be used for better visualization of `TransferFunctionMatrix` objects.

```python
>>> from sympy.abc import s, p, a
>>> from sympy import pprint
>>> from sympy.physics.control.lti import TransferFunction,
 TransferFunctionMatrix, Series, Parallel
>>> tf_1 = TransferFunction(s + a, s**2 + s + 1, s)
>>> tf_2 = TransferFunction(p**4 - 3*p + 2, s + p, s)
>>> tf_3 = TransferFunction(3, s + 2, s)
>>> tf_4 = TransferFunction(-a + p, 9*s - 9, s)
>>> tfm_1 = TransferFunctionMatrix([[tf_1], [tf_2], [tf_3]])
>>> tfm_1
TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(3, s + 2, s),)))
>>> tfm_1.var
s
>>> tfm_1.num_inputs
1
>>> tfm_1.num_outputs
3
>>> tfm_1.shape
(3, 1)
>>> tfm_1.args
(((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(3, s + 2, s),)),)
>>> tfm_2 = TransferFunctionMatrix([[tf_1, -tf_3], [tf_2, -tf_1], [tf_3, -tf_2]])
>>> tfm_2
TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(3, s + 2, s),)),)
>>> pprint(tfm_2, use_unicode=False) # pretty-printing for better visualization
\[
\begin{bmatrix}
 a + s & -3 \\
 2 & s + 2 \\
 s + s + 1 & \\
 4 & \\
 p - 3*p + 2 & -a - s \\
 p + s & 2 \\
 s + s + 1 & \\
 4 & \\
 3 & - p + 3*p - 2
\end{bmatrix}
\]
(continues on next page)
TransferFunctionMatrix can be transposed, if user wants to switch the input and output transfer functions

```python
>>> tfm_2.transpose()
TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s), TransferFunction(p**4 - 3*p + 2, p + s, s), TransferFunction(3, s + 2, s)), (TransferFunction(-3, s + 2, s), TransferFunction(-a - s, s**2 + s + 1, s), TransferFunction(-p**4 + 3*p - 2, p + s, s))))
```
To access the `TransferFunction` at any index in the `TransferFunctionMatrix`, use the index notation.

```python
tfm_3[1, 0]  # gives the TransferFunction present at 2nd Row and 1st Col. Similar to that in Matrix classes
```

```python
TransferFunction(5, s*(s**2 + 2), s)
```

```python
tfm_3[0, 0]  # gives the TransferFunction present at 1st Row and 1st Col.
```

```python
TransferFunction(5, s, s)
```

```python
tfm_3[:, 0]  # gives the first column
```

```python
(TransferFunction(5, s, s), TransferFunction(5*s, s*(s**2 + 2), s)),)
```

```python
>>> pprint(_, use_unicode=False)
[ 5
 [ - ]
 [ s ]
 [ 5]
[--------]
[ / 2 \]
[5*\s + 2]/{t}
```

```python
tfm_3[0, :]  # gives the first row
```

```python
TransferFunctionMatrix(((TransferFunction(5, s, s),), TransferFunction(5*s, s*(s**2 + 2), s)),))
```

```python
>>> pprint(_, use_unicode=False)
[5 5*s ]
[- -------]
[ s 2 ]
[ s + 2]{t}
```

To negate a transfer function matrix, - operator can be prepended:

```python
tfm_4 = TransferFunctionMatrix([[tf_2], [-tf_1], [tf_3]])
```

```python
TransferFunctionMatrix(((TransferFunction(-p**4 + 3*p - 2, p + s, s),), TransferFunction(a + s, s**2 + s + 1, s), TransferFunction(-3, s + 2, s),))
```

```python
tfm_5 = TransferFunctionMatrix([[tf_1, tf_2], [tf_3, -tf_1]])
```

```python
TransferFunctionMatrix(((TransferFunction(-a - s, s**2 + s + 1, s), TransferFunction(-p**4 + 3*p - 2, p + s, s), TransferFunction(-3, s + 2, s), TransferFunction(a + s, s**2 + s + 1, s))),)
```

`subs()` returns the `TransferFunctionMatrix` object with the value substituted in the expression. This will not mutate your original `TransferFunctionMatrix`.

```python
tfm_2.subs(p, 2)  # substituting p everywhere in tfm_2 with 2.
```

```python
TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s), TransferFunction(-3, s + 2, s), TransferFunction(12, s + 2, s), TransferFunction(3, s + 2, s)),)
```

(continues on next page)
```
>>> pprint(_, use_unicode=False)
[ a + s  -3 ]
[--- ----- ]
[ 2 s + 2 ]
[ s + s + 1 ]
[s + s + 1]
[ 12 -a - s]
[ ----- --------- ]
[ s + 2 2 ]
[ s + s + 1 ]
[ 3 -12 ]
[ ----- ----- ]
[ 12 -a - s]
[ ------- ---------- ]
[ s + 2 2 ]
[s + s + 1]
```

```
>>> pprint(_, use_unicode=False)
[ a + s  -3 ]
[--- ----- ]
[ 2 s + 2 ]
[ s + s + 1 ]
[s + s + 1]
[ 4 -3*p + 2 -a - s]
[--------- --------- ]
[ p+s 2 ]
[ s + s + 1 ]
[ 4 ]
[ 3 -p + 3*p - 2]
[ ----- --------- ]
[ s + 2 p + s ]
```

```
>>> print(subs()) also supports multiple substitutions.
```

```
>>> tfm_2.subs({p: 2, a: 1})
TransferFunctionMatrix([(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(-3, s + 2, s)), (TransferFunction(12, s + 2, s), TransferFunction(-s - 1, s**2 + s + 1, s)), (TransferFunction(3, s + 2, s), TransferFunction(-12, s + 2, s))])
```

```
>>> pprint(_, use_unicode=False)
[ s + 1  -3 ]
[--------- ----- ]
[ 2 s + 2 ]
[s + s + 1 ]
[ 12 -s - 1 ]
[ ------- --------- ]
[ s + 2 2 ]
[ s + s + 1 ]
[ 3 -12 ]
```

(continues on next page)
Users can reduce the Series and Parallel elements of the matrix to TransferFunction by using \texttt{doit()}.

\begin{verbatim}
>>> tfm_6 = TransferFunctionMatrix([[Series(tf_3, tf_4), Parallel(tf_3, tf_4)]])
>>> tfm_6
TransferFunctionMatrix(((Series(TransferFunction(3, s + 2, s), #
 TransferFunction(-a + p, 9*s - 9, s)), Parallel(TransferFunction(3, s, #
 + 2, s), TransferFunction(-a + p, 9*s - 9, s))),))
>>> pprint(tfm_6, use_unicode=False)
[-a + p 3]
[-------*----- ------- + ------]
[9*s - 9 s + 2 9*s - 9 s + 2]{t}

>>> tfm_6.doit()
TransferFunctionMatrix(((TransferFunction(-3*a + 3*p, (s + 2)*(9*s - 9), #
 s), TransferFunction(27*s + (-a + p)*(s + 2) - 27, (s + 2)*(9*s - 9), #
 s)),))
>>> pprint(_, use_unicode=False)
[-3*a + 3*p 27*s + (-a + p)*(s + 2) - 27]
[----------------- ----------------------------]
[(s + 2)*(9*s - 9) (s + 2)*(9*s - 9)]{t}

>>> tf_9 = TransferFunction(1, s, s)
>>> tf_10 = TransferFunction(1, s**2, s)
>>> tfm_7 = TransferFunctionMatrix([[Series(tf_9, tf_10), tf_9], [tf_10, #
 Parallel(tf_9, tf_10)]]))
>>> tfm_7
TransferFunctionMatrix(((Series(TransferFunction(1, s, s), #
 TransferFunction(1, s**2, s)), TransferFunction(1, s, s)), #
 (TransferFunction(1, s**2, s), Parallel(TransferFunction(1, s, s), #
 TransferFunction(1, s**2, s))))))
>>> pprint(tfm_7, use_unicode=False)
[1 1]
[---- -]
[2 s]
[s*s]

[1 1 1]
[-- -- + -]
[2 2 s]
[s s s]{t}

>>> tfm_7.doit()
TransferFunctionMatrix(((TransferFunction(1, s**3, s), #
 TransferFunction(1, s, s)), (TransferFunction(1, s**2, s), #
 TransferFunction(s**2 + s, s**3, s))))
>>> pprint(_, use_unicode=False)
[1 1]
[- - -]
[3 s]
[s s]
\end{verbatim}
Addition, subtraction, and multiplication of transfer function matrices can form unevaluated Series or Parallel objects.

- For addition and subtraction: All the transfer function matrices must have the same shape.

- For multiplication (C = A * B): The number of inputs of the first transfer function matrix (A) must be equal to the number of outputs of the second transfer function matrix (B).

Also, use pretty-printing (pprint) to analyse better.

```python
>>> tfm_8 = TransferFunctionMatrix([[tf_3], [tf_2], [-tf_1]])
>>> tfm_9 = TransferFunctionMatrix([[tf_3]])
>>> tfm_10 = TransferFunctionMatrix([[tf_1], [tf_2], [tf_4]])
>>> tfm_11 = TransferFunctionMatrix([[tf_4], [-tf_1]])
>>> tfm_12 = TransferFunctionMatrix([[tf_4, -tf_1, tf_3], [-tf_2, -tf_4, -tf_3]])
>>> tfm_8 + tfm_10
MIMOParallel(TransferFunctionMatrix(((TransferFunction(3, s + 2, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a - s, s**2 + s + 1, s),)), TransferFunctionMatrix(((TransferFunction(a + s),), (TransferFunction(-a + p, 9*s - 9, s),), (TransferFunction(-3, s + 2, s),)))), TransferFunctionMatrix(((TransferFunction(-a - s, s**2 + s + 1, s),), (TransferFunction(-p**4 + 3*p - 2, p + s, s),), (TransferFunction(-3, s + 2, s),)))))
```

```python
>>> pprint(_, use_unicode=False)
[ 3 ] [ a + s ]
[ ---- ] [ --------- ]
[ s + 2 ] [ 2 ]
[ 4 ]
[ p - 3*p + 2 ] [ 4 ]
[ ------------ ] + [ p - 3*p + 2 ]
[ p + s ] [ --------- ]
[ ] [ p + s ]
[ -a - s ] [ ]
[ ---------- ] [ -a + p ]
[ 2 ] [ ------- ]
[ s + s + 1 ]{t} [ 9*s - 9 ]{t}
```

```python
>>> -tfm_10 - tfm_8
MIMOParallel(TransferFunctionMatrix(((TransferFunction(-a - s, s**2 + s + 1, s),), (TransferFunction(-p**4 + 3*p - 2, p + s, s),), (TransferFunction(-a - s, s**2 + s + 1, s),)), TransferFunctionMatrix(((TransferFunction(p + s),), (TransferFunction(-a + p, 9*s - 9, s),), (TransferFunction(-3, s + 2, s),)))), TransferFunctionMatrix(((TransferFunction(-a - s, s**2 + s + 1, s),), (TransferFunction(-p**4 + 3*p - 2, p + s, s),), (TransferFunction(-3, s + 2, s),)))))
```

```python
>>> pprint(_, use_unicode=False)
[ -a - s ] [ -3 ]
```

(continues on next page)
\[
\begin{bmatrix}
\frac{-3}{s + 2} & \frac{3}{s + s + 1} & \frac{4}{s + 2} \\
\frac{4}{p + 3p - 2} & \frac{a - p}{s + s + 1} & \frac{-3}{s + 2}
\end{bmatrix}
\times
\begin{bmatrix}
\frac{-p^4 + 3p - 2}{p + s} & \frac{a - p}{9s - 9} & \frac{-3}{s + 2} \\
\frac{-a - s}{s^2 + s + 1} & \frac{-a + p}{9s - 9} & \frac{3}{s + 2}
\end{bmatrix}
\times
\begin{bmatrix}
\frac{p + 3p - 2}{s + 2} & \frac{a - p}{s + s + 1} & \frac{-3}{s + 2}
\end{bmatrix}
\]
These unevaluated Series or Parallel objects can convert into the resultant transfer function matrix using .doit() method or by .rewrite(TransferFunctionMatrix).

See also:

TransferFunction (page 1963), MIMOSeries (page 1994), MIMOParallel (page 1997), Feedback (page 1978)

elem_poles()
Returns the poles of each element of the TransferFunctionMatrix.

Note: Actual poles of a MIMO system are NOT the poles of individual elements.

Examples

```python
>>> from sympy import s
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix
>>> tf_1 = TransferFunction(3, (s + 1), s)
>>> tf_2 = TransferFunction(s + 6, (s + 1)*(s + 2), s)
>>> tf_3 = TransferFunction(s + 3, s**2 + 3*s + 2, s)
>>> tf_4 = TransferFunction(s + 2, s**2 + 5*s - 10, s)
>>> tfm_1 = TransferFunctionMatrix([[tf_1, tf_2], [tf_3, tf_4]])
>>> tfm_1
TransferFunctionMatrix(((TransferFunction(3, s + 1, s), TransferFunction(s + 6, (s + 1)*(s + 2), s)), (TransferFunction(s + 3, s**2 + 3*s + 2, s), TransferFunction(s + 2, s**2 + 5*s - 10, s))))
>>> tfm_1.poles()
[[[-1], [-2, -1]], [[-2, -1], [-5/2 + sqrt(65)/2, -sqrt(65)/2 - 5/2]]]

See also:

elem_zeros (page 1991)

elem_zeros()

Returns the zeros of each element of the TransferFunctionMatrix.

**Note:** Actual zeros of a MIMO system are NOT the zeros of individual elements.

**Examples**

```python
>>> from sympy import s
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix
>>> tf_1 = TransferFunction(3, (s + 1), s)
>>> tf_2 = TransferFunction(s + 6, (s + 1)*(s + 2), s)
>>> tf_3 = TransferFunction(s + 3, s**2 + 3*s + 2, s)
>>> tf_4 = TransferFunction(s**2 - 9*s + 20, s**2 + 5*s - 10, s)
>>> tfm_1 = TransferFunctionMatrix([[tf_1, tf_2], [tf_3, tf_4]])
>>> tfm_1
TransferFunctionMatrix(((TransferFunction(3, s + 1, s), TransferFunction(s + 6, (s + 1)*(s + 2), s)), (TransferFunction(s + 3, s**2 + 3*s + 2, s), TransferFunction(s**2 - 9*s + 20, s**2 + 5*s - 10, s))))
>>> tfm_1.zeros()
[[[], [-6]], [[-3], [4, 5]]]
```
**See also:**

*elem_poles (page 1990)*

**expand(****hints***)
Expands the transfer function matrix

**classmethod from_Matrix(matrix, var)**
Creates a new `TransferFunctionMatrix` efficiently from a SymPy Matrix of Expr objects.

**Parameters**

- **matrix**: `ImmutableMatrix` having `Expr/Number` elements.
- **var**: `Symbol`

Complex variable of the Laplace transform which will be used by the all the `TransferFunction` objects in the `TransferFunctionMatrix`.

**Examples**

```python
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunctionMatrix
>>> from sympy import Matrix, pprint

>>> M = Matrix([[s, 1/s], [1/(s+1), s]])
>>> M_tf = TransferFunctionMatrix.from_Matrix(M, s)
>>> pprint(M_tf, use_unicode=False)
\[
\begin{bmatrix}
 s & 1 \\
 - & - \\
 1 & s \\
 - & - \\
 [s + 1] & 1 \\
\end{bmatrix}
\]

>>> M_tf.elem_poles()
[[[]], [[0]]]
>>> M_tf.elem_zeros()
[[[0], []], [[]], [[], [0]]]
```

**property num_inputs**

Returns the number of inputs of the system.

**Examples**

```python
>>> from sympy.abc import s, p
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix

>>> G1 = TransferFunction(s + 3, s**2 - 3, s)
>>> G2 = TransferFunction(4, s**2, s)
>>> G3 = TransferFunction(p**2 + s**2, p - 3, s)
>>> tfm_1 = TransferFunctionMatrix([[G2, -G1, G3], [-G2, -G1, -G3]])
>>> tfm_1.num_inputs
3
```
See also:

num_outputs (page 1993)

**property num_outputs**

Returns the number of outputs of the system.

**Examples**

```python
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunctionMatrix
>>> from sympy import Matrix

>>> M_1 = Matrix([[s], [1/s]])
>>> TFM = TransferFunctionMatrix.from_Matrix(M_1, s)
>>> print(TFM)
TransferFunctionMatrix(((TransferFunction(s, 1, s),),
 (TransferFunction(1, s, s),)))
>>> TFM.num_outputs
2
```

See also:

num_inputs (page 1992)

**property shape**

Returns the shape of the transfer function matrix, that is, (# of outputs, # of inputs).

**Examples**

```python
>>> from sympy.abc import s, p
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix

>>> tf1 = TransferFunction(p**2 - 1, s**4 + s**3 - p, p)
>>> tf2 = TransferFunction(1 - p, p**2 - 3*p + 7, p)
>>> tf3 = TransferFunction(3, 4, p)
>>> tfm1 = TransferFunctionMatrix([[tf1, -tf2]])
>>> tfm1.shape
(1, 2)
>>> tfm2 = TransferFunctionMatrix([[-tf2, tf3], [tf1, -tf1]])
>>> tfm2.shape
(2, 2)
```

**transpose()**

Returns the transpose of the TransferFunctionMatrix (switched input and output layers).

**property var**

Returns the complex variable used by all the transfer functions or Series/Parallel objects in a transfer function matrix.

5.8. Topics 1993
Examples

```python
>>> from sympy import p, s
>>> from sympy.physics.control.lti import TransferFunction,
 TransferFunctionMatrix, Series, Parallel
>>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p)
>>> G2 = TransferFunction(p, 4 - p, p)
>>> G3 = TransferFunction(0, p**4 - 1, p)
>>> G4 = TransferFunction(s + 1, s**2 + s + 1, s)
>>> S1 = Series(G1, G2)
>>> S2 = Series(-G3, Parallel(G2, -G1))
>>> tfm1 = TransferFunctionMatrix([[G1], [G2], [G3]])
>>> tfm1.var
p
>>> tfm2 = TransferFunctionMatrix([[-S1, -S2], [S1, S2]])
>>> tfm2.var
p
>>> tfm3 = TransferFunctionMatrix([[G4]])
>>> tfm3.var
s
```

class sympy.physics.control.lti.MIMOSeries(*args, evaluate=False)

A class for representing a series configuration of MIMO systems.

**Parameters**

args: MIMOLinearTimeInvariant

MIMO systems in a series configuration.

evaluate : Boolean, Keyword

When passed True, returns the equivalent MIMOSeries(*args).
doit(). Set to False by default.

**Raises**

ValueError

When no argument is passed.

var attribute is not same for every system.

num_outputs of the MIMO system is not equal to the num_inputs of its adjacent MIMO system. (Matrix multiplication constraint, basically)

TypeError

Any of the passed *args has unsupported type

A combination of SISO and MIMO systems is passed. There should be homogeneity in the type of systems passed, MIMO in this case.
Examples

```python
>>> from sympy.physics.control.lti import MIMOSeries,
 TransferFunctionMatrix
>>> from sympy import Matrix, pprint

mat_a = Matrix([[5*s], [5]]) # 2 Outputs 1 Input
mat_b = Matrix([[5, 1/(6*s**2)]]) # 1 Output 2 Inputs
mat_c = Matrix([[1, s], [5/s, 1]]) # 2 Outputs 2 Inputs

from sympy import s

>>> tfm_a = TransferFunctionMatrix.from_Matrix(mat_a, s)
>>> tfm_b = TransferFunctionMatrix.from_Matrix(mat_b, s)
>>> tfm_c = TransferFunctionMatrix.from_Matrix(mat_c, s)

>>> MIMOSeries(tfm_c, tfm_b, tfm_a)
MIMOSeries(TransferFunctionMatrix(((TransferFunction(1, 1, s),
 TransferFunction(s, 1, s)), (TransferFunction(5, s, s),
 TransferFunction(1, 1, s)))),
 TransferFunctionMatrix(((TransferFunction(5, 1, s), TransferFunction(1,
 6*s**2, s)),), TransferFunctionMatrix(((TransferFunction(5*s, 1, s),
 ...), (TransferFunction(5, 1, s),))))

>>> pprint(_, use_unicode=False) # For Better Visualization
\[
\begin{aligned}
[5*s] &
[\begin{array}{c}
[-] \\
[1]
\end{array}] &
[1 s] \\
[\begin{array}{c}
[5] \\
[1]
\end{array}] &
[\begin{array}{c}
1 \ 2
\end{array}] &
\begin{array}{c}
\frac{1}{s}
\end{array}
\]
[5 s] &
[\begin{array}{c}
\frac{1}{5}
\end{array}]
\]

>>> MIMOSeries(tfm_c, tfm_b, tfm_a).doit()
TransferFunctionMatrix(((TransferFunction(150*s**4 + 25*s, 6*s**3, s),
 TransferFunction(150*s**4 + 5*s, 6*s**2, s)),
 TransferFunction(150*s**3 + 25, 6*s**3, s), TransferFunction(150*s**3
 + 5, 6*s**2, s))))

>>> pprint(_, use_unicode=False) # (2 Inputs -A-> 2 Outputs) -> (2,
 Inputs -B-> 1 Output) -> (1 Input -C-> 2 Outputs) is equivalent to (2,
 Inputs -Series Equivalent-> 2 Outputs).
\[
\begin{aligned}
[150*s + 25*s] &
[150*s + 5*s] &
\begin{array}{c}
3 \\
2
\end{array}
\]
[6 s] &
[6 s] &
\begin{array}{c}
3 \\
2
\end{array}
\]
[150*s + 25] &
[150*s + 5] &
\begin{array}{c}
3 \\
2
\end{array}
\]
[6 s] &
[6 s] \{t\}
\]
```

5.8. Topics 1995
Notes

All the transfer function matrices should use the same complex variable \texttt{var} of the Laplace transform.

\texttt{MIMOSeries(A, B)} is not equivalent to \texttt{A*B}. It is always in the reverse order, that is \texttt{B*A}.

See also:

\texttt{Series} (page 1971), \texttt{MIMOParallel} (page 1997)

\texttt{doit(cancel=False, **kwargs)}

Returns the resultant transfer function matrix obtained after evaluating the MIMO systems arranged in a series configuration.

Examples

```python
>>> from sympy.abc import s, p, a, b
>>> from sympy.physics.control.lti import TransferFunction, MIMOSeries, TransferFunctionMatrix
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
>>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)
>>> tfm1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf2]])
>>> tfm2 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf1]])
>>> MIMOSeries(tfm2, tfm1).doit()

\begin{verbatim}
TransferFunctionMatrix(((TransferFunction(2*(-p + s)*(s**3 - 2)*(a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)**2*(s**4 + 5*s + 6)**2, s), TransferFunction((-p + s)**2*(s**3 - 2)*(a*p**2 + b*s) + (-p + s)**3*(s**4 + 5*s + 6), (-p + s)**3*(s**4 + 5*s + 6)**2, s)), (TransferFunction((-p + s)*(s**3 - 2)**2*(s**4 + 5*s + 6) + (-s)**3*(s**4 + 5*s + 6)**2, (-p + s)**3*(s**4 + 5*s + 6), (-p + s)**3*(s**4 + 5*s + 6))
\end{verbatim}
```

\texttt{property num_inputs}

Returns the number of input signals of the series system.

\texttt{property num_outputs}

Returns the number of output signals of the series system.

\texttt{property shape}

Returns the shape of the equivalent MIMO system.

\texttt{property var}

Returns the complex variable used by all the transfer functions.
Examples

```python
>>> from sympy import p
>>> from sympy.physics.control.lti import TransferFunction, MIMOSeries, TransferFunctionMatrix
>>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p)
>>> G2 = TransferFunction(p, 4 - p, p)
>>> G3 = TransferFunction(0, p**2 - 1, p)
>>> tfm_1 = TransferFunctionMatrix([[G1, G2, G3]])
>>> tfm_2 = TransferFunctionMatrix([[G1], [G2], [G3]])
>>> MIMOSeries(tfm_2, tfm_1).var
```

class sympy.physics.control.lti.MIMOParallel(*args, evaluate=False)
A class for representing a parallel configuration of MIMO systems.

Parameters

**args** : MIMOLinearTimeInvariant
MIMO Systems in a parallel arrangement.

**evaluate** : Boolean, Keyword
When passed True, returns the equivalent MIMOParallel(*args). doit(). Set to False by default.

Raises

**ValueError**
When no argument is passed.
var attribute is not same for every system.
All MIMO systems passed do not have same shape.

**TypeError**
Any of the passed *args has unsupported type
A combination of SISO and MIMO systems is passed. There should be homogeneity in the type of systems passed, MIMO in this case.

Examples

```python
>>> from sympy import s
>>> from sympy.physics.control.lti import TransferFunctionMatrix, MIMOParallel
>>> from sympy import Matrix, pprint
>>> expr_1 = 1/s
>>> expr_2 = s/(s**2-1)
>>> expr_3 = (2 + s)/(s**2 - 1)
>>> expr_4 = 5
>>> tfm_a = TransferFunctionMatrix.from_Matrix(Matrix([[expr_1, expr_2], [expr_3, expr_4]]), s)
>>> tfm_b = TransferFunctionMatrix.from_Matrix(Matrix([[expr_2, expr_1], [expr_4, expr_3]]), s)
>>> tfm_c = TransferFunctionMatrix.from_Matrix(Matrix([[expr_3, expr_4], [expr_1, expr_2]]), s)
```
(continues on next page)
All the transfer function matrices should use the same complex variable \( \text{var} \) of the Laplace transform.

See also:

Parallel (page 1975), MIMOSeries (page 1994)

doit(**hints)

Returns the resultant transfer function matrix obtained after evaluating the MIMO systems arranged in a parallel configuration.
Examples

```python
>>> from sympy import s, p, a, b
>>> from sympy.physics.control.lti import TransferFunction, MIMOParallel, TransferFunctionMatrix
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
>>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)
>>> tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]])
>>> tfm_2 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf2]])
>>> MIMOParallel(tfm_1, tfm_2).doit()
```

```python
property num_inputs
Returns the number of input signals of the parallel system.

property num_outputs
Returns the number of output signals of the parallel system.

property shape
Returns the shape of the equivalent MIMO system.

property var
Returns the complex variable used by all the systems.
```

Examples

```python
>>> from sympy import p
>>> from sympy.physics.control.lti import TransferFunction, MIMOParallel
>>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p)
>>> G2 = TransferFunction(p, 4 - p, p)
>>> G3 = TransferFunction(0, p**4 - 1, p)
>>> G4 = TransferFunction(p**2, p**2 - 1, p)
>>> tfm_a = TransferFunctionMatrix([[G1, G2], [G3, G4]])
>>> tfm_b = TransferFunctionMatrix([[G2, G1], [G4, G3]])
>>> MIMOParallel(tfm_a, tfm_b).var
```

class sympy.physics.control.lti.MIMOFeedback(sys1, sys2, sign=-1)
A class for representing closed-loop feedback interconnection between two MIMO input/output systems.

Parameters

- **sys1**: MIMOSeries, TransferFunctionMatrix
  The MIMO system placed on the feedforward path.
- **sys2**: MIMOSeries, TransferFunctionMatrix
```
The system placed on the feedback path (often a feedback controller).

sign : int, optional

The sign of feedback. Can either be 1 (for positive feedback) or -1 (for negative feedback). Default value is -1.

Raises

ValueError

When `sys1` and `sys2` are not using the same complex variable of the Laplace transform.

Forward path model should have an equal number of inputs/outputs to the feedback path outputs/inputs.

When product of `sys1` and `sys2` is not a square matrix.

When the equivalent MIMO system is not invertible.

TypeError

When either `sys1` or `sys2` is not a MIMOSeries or a TransferFunctionMatrix object.

Examples

```python
>>> from sympy import Matrix, pprint
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunctionMatrix,
>>> MIMOFeedback
>>> plant_mat = Matrix([[1, 1/s], [0, 1]])
>>> controller_mat = Matrix([[10, 0], [0, 10]])  # Constant Gain
>>> plant = TransferFunctionMatrix.from_Matrix(plant_mat, s)
>>> controller = TransferFunctionMatrix.from_Matrix(controller_mat, s)
>>> feedback = MIMOFeedback(plant, controller)  # Negative Feedback
>>> (default)
>>> pprint(feedback, use_unicode=False)
/  [1 1]  [10 0 ] \-1 [1 1]  \\
| [- -]  [- - ] | [- -]  |
| [1 s] [1 1 ] | [1 s]  |
|I + [ ] *[ ] | *[ ]  |
| [0 1 ] [0 10] | [0 1 ]  |
| [- -]  [- -- ] | [- -]  |
\ [1 1]{t} [1 1 ]{t}/ [1 1]{t}
```

To get the equivalent system matrix, use either `doit` or `rewrite` method.

```python
>>> pprint(feedback.doit(), use_unicode=False)
[1  1 ]
[-- ------]
[11 121*s]
[ ]
[0  1 ]
[- -- ]
[1 11 ]{t}
```
To negate the MIMOFeedback object, use `-` operator.

```python
>>> neg_feedback = -feedback
```

```python
>>> pprint(neg_feedback.doit(), use_unicode=False)
[-1 -1 ]
[---- ----]  
[ 1 121*s]  
[ 0 -1 ]
[ - ---- ]  
[ 1 11 ]
```

See also:

- `Feedback` (page 1978)
- `MIMOSeries` (page 1994)
- `MIMOParallel` (page 1997)

`doit(cancel=True, expand=False, **hints)`

Returns the resultant transfer function matrix obtained by the feedback interconnection.

Examples

```python
>>> from sympy import pprint
>>> from sympy.abc import s

>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback

>>> tf1 = TransferFunction(s, 1 - s, s)
>>> tf2 = TransferFunction(1, s, s)
>>> tf3 = TransferFunction(5, 1, s)
>>> tf4 = TransferFunction(s - 1, s, s)
>>> tf5 = TransferFunction(0, 1, s)

>>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]])
>>> sys2 = TransferFunctionMatrix([[tf3, tf5], [tf5, tf5]])

>>> F_1 = MIMOFeedback(sys1, sys2, 1)

>>> pprint(F_1, use_unicode=False)
/ [ s 1 ] [5 0] \-1 [ s 1 ]
| [----- -] [1 1] | [----- -]  
| [1 - s s ] [1 1] | [1 - s s ]  
| I - [ ] *[ ] | *[ ]
| [ 5 s - 1] [0 0] | [ 5 s - 1]
| [ - -----] [ - ] | [ - -----]
\ [ 1 s ]

>>> pprint(F_1.doit(), use_unicode=False)
[ -s s - 1 ]
[-------- ------------ ]
[6*s - 1 s*(6*s - 1) ]
[ [5*s - 5 (s - 1)*(6*s + 24)]
[-------- ------------ ]
[6*s - 1 s*(6*s - 1) ]
```

If the user wants the resultant `TransferFunctionMatrix` object without canceling the common factors then the `cancel` kwarg should be passed `False`.

5.8. Topics 2001
If the user wants the expanded form of the resultant transfer function matrix, the `expand` kwarg should be passed as `True`.

```python
>>> pprint(F_1.doit(expand=True), use_unicode=False)
[    -s  s - 1 ]
[------- -------- ]
[6*s - 1 2    ]
[            ]
[            ]
[6*s - s    ]
[            ]
[2           ]
[            ]
[5*s - 5 6*s + 18*s - 24]
[------- -------- ]
[6*s - 1 2    ]
[            ]
[            ]
[ 6*s - s    ]{t}
```

property sensitivity

Returns the sensitivity function matrix of the feedback loop.

Sensitivity of a closed-loop system is the ratio of change in the open loop gain to the change in the closed loop gain.

Note: This method would not return the complementary sensitivity function.

Examples

```python
>>> from sympy import pprint
>>> from sympy.abc import p
>>> from sympy.physics.control.lti import TransferFunction,
... TransferFunctionMatrix, MIMOFeedback
>>> tf1 = TransferFunction(p, 1 - p, p)
>>> tf2 = TransferFunction(1, p, p)
>>> tf3 = TransferFunction(1, 1, p)
```
```python
>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]])
>> sys2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf2]])
>> F_1 = MIMOFeedback(sys1, sys2, 1)  # Positive feedback
>> F_2 = MIMOFeedback(sys1, sys2)    # Negative feedback
>> pprint(F_1.sensitivity, use_unicode=False)
[ 4 3 2 5 4 2 ]
[- p + 3*p - 4*p + 3*p - 1 p - 2*p + 3*p - 3*p + 1 ]
[-------------------- -----------------------------]
[ 4 3 2 5 4 3 2 ]
[ p + 3*p - 8*p + 8*p - 3 p + 3*p - 8*p + 8*p - 3*p ]
[-------------------- ]
[ 4 3 2 3 2 ]
[ p - p - p + p 3*p - 6*p + 4*p - 1 ]
[-------------------------- ]
[ 4 3 2 4 3 2 ]
[ p + 3*p - 8*p + 8*p - 3 p + 3*p - 8*p + 8*p - 3 ]
```
property sys2

Returns the feedback controller of the MIMO feedback interconnection.

Examples

```python
>>> from sympy import pprint
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback
>>> tf1 = TransferFunction(s**2, s**3 - s + 1, s)
>>> tf2 = TransferFunction(1, s, s)
>>> tf3 = TransferFunction(1, 1, s)
>>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]])
>>> sys2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf2]])
>>> F_1 = MIMOFeedback(sys1, sys2)
>>> F_1.sys2
TransferFunctionMatrix((TransferFunction(s**2, s**3 - s + 1, s), TransferFunction(1, 1, s)), (TransferFunction(1, 1, s), TransferFunction(1, s, s)))
```

property var

Returns the complex variable of the Laplace transform used by all the transfer functions involved in the MIMO feedback loop.
Examples

```python
>>> from sympy.abc import p
>>> from sympy.physics.control.lti import TransferFunction,
    TransferFunctionMatrix, MIMOFeedback
>>> tf1 = TransferFunction(p, 1 - p, p)
>>> tf2 = TransferFunction(1, p, p)
>>> tf3 = TransferFunction(1, 1, p)
>>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]])
>>> sys2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf2]])
>>> F_1 = MIMOFeedback(sys1, sys2, 1)  # Positive feedback
```

`sympy.physics.control.lti.bilinear(tf, sample_per)`

Returns falling coefficients of H(z) from numerator and denominator. Where H(z) is the corresponding discretized transfer function, discretized with the bilinear transform method. H(z) is obtained from the continuous transfer function H(s) by substituting s(z) = 2/T * (z-1)/(z+1) into H(s), where T is the sample period. Coefficients are falling, i.e. H(z) = (az+b)/(cz+d) is returned as [a, b], [c, d].

Examples

```python
>>> from sympy.physics.control.lti import TransferFunction, bilinear
>>> from sympy.abc import s, L, R, T
>>> tf = TransferFunction(1, s*L + R, s)
>>> numZ, denZ = bilinear(tf, T)
>>> numZ
[T, T]
>>> denZ
```

`sympy.physics.control.lti.backward_diff(tf, sample_per)`

Returns falling coefficients of H(z) from numerator and denominator. Where H(z) is the corresponding discretized transfer function, discretized with the backward difference transform method. H(z) is obtained from the continuous transfer function H(s) by substituting s(z) = (z-1)/(T*z) into H(s), where T is the sample period. Coefficients are falling, i.e. H(z) = (az+b)/(cz+d) is returned as [a, b], [c, d].

Examples

```python
>>> from sympy.physics.control.lti import TransferFunction, backward_diff
>>> from sympy.abc import s, L, R, T
>>> tf = TransferFunction(1, s*L + R, s)
>>> numZ, denZ = backward_diff(tf, T)
>>> numZ
[T, 0]
>>> denZ
[L + R*T, -L]
```
Control System Plots

This module contains plotting functions for some of the common plots used in control system. Matplotlib will be required as an external dependency if the user wants the plots. To get only the numerical data of the plots, NumPy will be required as external dependency.

Pole-Zero Plot

control_plots.pole_zero_plot(pole_color='blue', pole_markersize=10, zero_color='orange', zero_markersize=7, grid=True, show_axes=True, show=True, **kwargs)

Returns the Pole-Zero plot (also known as PZ Plot or PZ Map) of a system.

A Pole-Zero plot is a graphical representation of a system’s poles and zeros. It is plotted on a complex plane, with circular markers representing the system’s zeros and ‘x’ shaped markers representing the system’s poles.

Parameters

- system : SISOLinearTimelInvariant type systems
 The system for which the pole-zero plot is to be computed.
- pole_color : str, tuple, optional
 The color of the pole points on the plot. Default color is blue. The color can be provided as a matplotlib color string, or a 3-tuple of floats each in the 0-1 range.
- pole_markersize : Number, optional
 The size of the markers used to mark the poles in the plot. Default pole markersize is 10.
- zero_color : str, tuple, optional
 The color of the zero points on the plot. Default color is orange. The color can be provided as a matplotlib color string, or a 3-tuple of floats each in the 0-1 range.
- zero_markersize : Number, optional
 The size of the markers used to mark the zeros in the plot. Default zero markersize is 7.
- grid : boolean, optional
 If True, the plot will have a grid. Defaults to True.
- show_axes : boolean, optional
 If True, the coordinate axes will be shown. Defaults to False.
- show : boolean, optional
 If True, the plot will be displayed otherwise the equivalent matplotlib plot object will be returned. Defaults to True.
Examples

```python
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunction
>>> from sympy.physics.control.control_plots import pole_zero_plot
>>> tf1 = TransferFunction(s**2 + 1, s**4 + 4*s**3 + 6*s**2 + 5*s + 2, s)
>>> pole_zero_plot(tf1)
```

Poles and Zeros of \(\frac{s^2 + 1}{s^4 + 4s^3 + 6s^2 + 5s + 2} \)

See also:

`pole_zero_numerical_data` (page 2007)

References

[R671]

control_plots.pole_zero_numerical_data()

Returns the numerical data of poles and zeros of the system. It is internally used by pole_zero_plot to get the data for plotting poles and zeros. Users can use this data to further analyse the dynamics of the system or plot using a different backend/plotting-module.

Parameters

- `system`: SISOLinearTimeInvariant
The system for which the pole-zero data is to be computed.

Returns

tuple : (zeros, poles)

** Raises **

NotImplementedError

 When a SISO LTI system is not passed.
 When time delay terms are present in the system.

ValueError

 When more than one free symbol is present in the system. The only variable in the transfer function should be the variable of the Laplace transform.

Examples

```python
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunction
>>> from sympy.physics.control.control_plots import pole_zero_numerical_data
>>> tf1 = TransferFunction(s**2 + 1, s**4 + 4*s**3 + 6*s**2 + 5*s + 2, s)
>>> pole_zero_numerical_data(tf1)
([-0.+1.j 0.-1.j], [-2. +0.j -0.5+0.8660254j -0.5-0.8660254j -1. +0.j])
```

See also:

pole_zero_plot (page 206)

Bode Plot

control_plots.bode_plot(initial_exp=-5, final_exp=5, grid=True, show_axes=False, show=True, freq_unit='rad/sec', phase_unit='rad', **kwargs)

Returns the Bode phase and magnitude plots of a continuous-time system.

Parameters

- **system** : SISOLinearTimelInvariant type
 The LTI SISO system for which the Bode Plot is to be computed.

- **initial_exp** : Number, optional
 The initial exponent of 10 of the semilog plot. Defaults to -5.

- **final_exp** : Number, optional
 The final exponent of 10 of the semilog plot. Defaults to 5.

- **show** : boolean, optional
 If True, the plot will be displayed otherwise the equivalent matplotlib plot object will be returned. Defaults to True.
Examples

```python
>>> from sympy import s
>>> from sympy.physics.control.lti import TransferFunction
>>> from sympy.physics.control.control_plots import bode_plot
>>> tf1 = TransferFunction(1*s**2 + 0.1*s + 7.5, 1*s**4 + 0.12*s**3 + 9*s**2, s)
>>> bode_plot(tf1, initial_exp=0.2, final_exp=0.7)
```

See also:

- `bode_magnitude_plot` (page 2009), `bode_phase_plot` (page 2009)
- `control_plots.bode_magnitude_plot(initial_exp=-5, final_exp=5, color='b',
 show_axes=False, grid=True, show=True,
 freq_unit='rad/sec', **kwargs)`

 Returns the Bode magnitude plot of a continuous-time system.

 See `bode_plot` for all the parameters.

- `control_plots.bode_phase_plot(initial_exp=-5, final_exp=5, color='b', show_axes=False,
 grid=True, show=True, freq_unit='rad/sec',
 phase_unit='rad', **kwargs)`

 Returns the Bode phase plot of a continuous-time system.

 See `bode_plot` for all the parameters.

- `control_plots.bode_magnitude_numerical_data(initial_exp=-5, final_exp=5,
 freq_unit='rad/sec', **kwargs)`

 Returns the numerical data of the Bode magnitude plot of the system. It is internally
 used by `bode_magnitude_plot` to get the data for plotting Bode magnitude plot. Users
 can use this data to further analyse the dynamics of the system or plot using a different
 backend/plotting-module.

Parameters

- **system** : SISOLinearTimeInvariant
Bode Plot of \(\frac{s^2 + 0.1s + 7.5}{s^4 + 0.12s^3 + 9s^2} \)
The system for which the data is to be computed.

initial_exp : Number, optional
The initial exponent of 10 of the semilog plot. Defaults to -5.

final_exp : Number, optional
The final exponent of 10 of the semilog plot. Defaults to 5.

freq_unit : string, optional
User can choose between 'rad/sec' (radians/second) and 'Hz' (Hertz) as frequency units.

Returns

tuple : (x, y)

x = x-axis values of the Bode magnitude plot. y = y-axis values of the Bode magnitude plot.

Raises

NotImplementedError
When a SISO LTI system is not passed.
When time delay terms are present in the system.

ValueError
When more than one free symbol is present in the system. The only variable in the transfer function should be the variable of the Laplace transform.
When incorrect frequency units are given as input.

Examples

```python
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunction
>>> from sympy.physics.control.control_plots import bode_magnitude_numerical_data
>>> tf1 = TransferFunction(s**2 + 1, s**4 + 4*s**3 + 6*s**2 + 5*s + 2, s)
>>> bode_magnitude_numerical_data(tf1)
([[1e-05, 1.5148378120533502e-05,..., 68437.36188804005, 100000.0],
  [-6.020599914256786, -6.0205999155219505,..., -193.4117304087953, -200.00000000000000260573]]
```

See also:

- `bode_magnitude_plot` (page 2009), `bode_phase_numerical_data` (page 211)

control_plots.bode_phase_numerical_data(initial_exp=-5, final_exp=5,
freq_unit='rad/sec', phase_unit='rad',
**kwargs)

Returns the numerical data of the Bode phase plot of the system. It is internally used by bode_phase_plot to get the data for plotting Bode phase plot. Users can use this data to further analyse the dynamics of the system or plot using a different backend/plotting-module.
Parameters

- **system**: SISOLinearTimeInvariant
 The system for which the Bode phase plot data is to be computed.
- **initial_exp**: Number, optional
 The initial exponent of 10 of the semilog plot. Defaults to -5.
- **final_exp**: Number, optional
 The final exponent of 10 of the semilog plot. Defaults to 5.
- **freq_unit**: string, optional
 User can choose between 'rad/sec' (radians/second) and 'Hz' (Hertz) as frequency units.
- **phase_unit**: string, optional
 User can choose between 'rad' (radians) and 'deg' (degree) as phase units.

Returns

- **tuple**: (x, y)
 x = x-axis values of the Bode phase plot. y = y-axis values of the Bode phase plot.

Raises

- **NotImplementedError**
 When a SISO LTI system is not passed.
 When time delay terms are present in the system.
- **ValueError**
 When more than one free symbol is present in the system. The only variable in the transfer function should be the variable of the Laplace transform.
 When incorrect frequency or phase units are given as input.

Examples

```python
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunction
>>> from sympy.physics.control.control_plots import bode_phase_numerical_data
>>> tf1 = TransferFunction(s**2 + 1, s**4 + 4*s**3 + 6*s**2 + 5*s + 2, s)
>>> bode_phase_numerical_data(tf1)
([1e-05, 1.4472354033813751e-05, 2.035581932165858e-05,..., 47577.
 →3248186011, 67884.09326036123, 100000.0],
[-2.5000000000291665e-05, -3.6180885085e-05, -5.08895483066e-05,...,-3.
 →1415085799262523, -3.14155265358979])
```

See also:

- `bode_magnitude_plot` (page 2009), `bode_phase_numerical_data` (page 2011)
Impulse-Response Plot

control_plots.impulse_response_plot(color='b', prec=8, lower_limit=0, upper_limit=10, show_axes=False, grid=True, show=True, **kwargs)

Returns the unit impulse response (Input is the Dirac-Delta Function) of a continuous-time system.

Parameters

- `system`: SISOLinearTimeInvariant type
 The LTI SISO system for which the Impulse Response is to be computed.
- `color`: str, tuple, optional
 The color of the line. Default is Blue.
- `show`: boolean, optional
 If True, the plot will be displayed otherwise the equivalent matplotlib plot object will be returned. Defaults to True.
- `lower_limit`: Number, optional
 The lower limit of the plot range. Defaults to 0.
- `upper_limit`: Number, optional
 The upper limit of the plot range. Defaults to 10.
- `prec`: int, optional
 The decimal point precision for the point coordinate values. Defaults to 8.
- `show_axes`: boolean, optional
 If True, the coordinate axes will be shown. Defaults to False.
- `grid`: boolean, optional
 If True, the plot will have a grid. Defaults to True.

Examples

```python
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunction
>>> from sympy.physics.control.control_plots import impulse_response_plot
>>> tf1 = TransferFunction(8*s**2 + 18*s + 32, s**3 + 6*s**2 + 14*s + 24, s)
>>> impulse_response_plot(tf1)
```

See also:

`step_response_plot` (page 2016), `ramp_response_plot` (page 2019)
Impulse Response of \(\frac{8s^2 + 18s + 32}{s^3 + 6s^2 + 14s + 24} \)
control_plots.impulse_response_numerical_data(prec=8, lower_limit=0, upper_limit=10, **kwargs)

Returns the numerical values of the points in the impulse response plot of a SISO continuous-time system. By default, adaptive sampling is used. If the user wants to instead get an uniformly sampled response, then adaptive kwarg should be passed False and nb_of_points must be passed as additional kwargs. Refer to the parameters of class sympy.plotting.plot.LineOver1DRangeSeries (page 2950) for more details.

Parameters

- **system**: SISOLinearTimeInvariant
 - The system for which the impulse response data is to be computed.
- **prec**: int, optional
 - The decimal point precision for the point coordinate values. Defaults to 8.
- **lower_limit**: Number, optional
 - The lower limit of the plot range. Defaults to 0.
- **upper_limit**: Number, optional
 - The upper limit of the plot range. Defaults to 10.
- **kwargs**:
 - Additional keyword arguments are passed to the underlying sympy.plotting.plot.LineOver1DRangeSeries (page 2950) class.

Returns

- **tuple**: (x, y)
 - x = Time-axis values of the points in the impulse response. NumPy array.
 - y = Amplitude-axis values of the points in the impulse response. NumPy array.

Raises

- **NotImplementedError**
 - When a SISO LTI system is not passed.
 - When time delay terms are present in the system.
- **ValueError**
 - When more than one free symbol is present in the system. The only variable in the transfer function should be the variable of the Laplace transform.
 - When lower_limit parameter is less than 0.
Examples

```python
>>> from sympy import s
>>> from sympy.physics.control.lti import TransferFunction
>>> from sympy.physics.control.control_plots import impulse_response_numerical_data
>>> tf1 = TransferFunction(s, s**2 + 5*s + 8, s)
>>> impulse_response_numerical_data(tf1)
([0.0, 0.06616480200395854,... , 9.854500743565858, 10.0],
 [0.9999997999999999, 0.7042848373025861,...,7.170748906965121e-13, -5.
 →1901263495547205e-12])
```

See also:

`impulse_response_plot` (page 2013)

Step-Response Plot

`control_plots.step_response_plot(color='b', prec=8, lower_limit=0, upper_limit=10, show_axes=False, grid=True, show=True, **kwargs)`

Returns the unit step response of a continuous-time system. It is the response of the system when the input signal is a step function.

Parameters

- `system` : SISOLinearTimeInvariant type
 The LTI SISO system for which the Step Response is to be computed.
- `color` : str, tuple, optional
 The color of the line. Default is Blue.
- `show` : boolean, optional
 If True, the plot will be displayed otherwise the equivalent matplotlib plot object will be returned. Defaults to True.
- `lower_limit` : Number, optional
 The lower limit of the plot range. Defaults to 0.
- `upper_limit` : Number, optional
 The upper limit of the plot range. Defaults to 10.
- `prec` : int, optional
 The decimal point precision for the point coordinate values. Defaults to 8.
- `show_axes` : boolean, optional
 If True, the coordinate axes will be shown. Defaults to False.
- `grid` : boolean, optional
 If True, the plot will have a grid. Defaults to True.
Examples

```python
from sympy.abc import s
from sympy.physics.control.lti import TransferFunction
from sympy.physics.control.control_plots import step_response_plot

tf1 = TransferFunction(8*s**2 + 18*s + 32, s**3 + 6*s**2 + 14*s + 24, s)
step_response_plot(tf1)
```

See also:
- `impulse_response_plot` (page 2013), `ramp_response_plot` (page 2019)

References

[R673]

control_plots.step_response_numerical_data(\(prec=8, \text{lower_limit}=0, \text{upper_limit}=10, \text{**kwargs}\))

Returns the numerical values of the points in the step response plot of a SISO continuous-time system. By default, adaptive sampling is used. If the user wants to instead get an uniformly sampled response, then adaptive kwarg should be passed False and
nb_of_points must be passed as additional kwargs. Refer to the parameters of class `sympy.plotting.plot.LineOver1DRangeSeries` (page 2950) for more details.

Parameters

- **system**: SISOLinearTimeInvariant

 The system for which the unit step response data is to be computed.

- **prec**: int, optional

 The decimal point precision for the point coordinate values. Defaults to 8.

- **lower_limit**: Number, optional

 The lower limit of the plot range. Defaults to 0.

- **upper_limit**: Number, optional

 The upper limit of the plot range. Defaults to 10.

- **kwargs**: Additional keyword arguments are passed to the underlying `sympy.plotting.plot.LineOver1DRangeSeries` class.

Returns

- **tuple**: (x, y)

 x = Time-axis values of the points in the step response. NumPy array.

 y = Amplitude-axis values of the points in the step response. NumPy array.

Raises

- **NotImplementedError**

 When a SISO LTI system is not passed.

 When time delay terms are present in the system.

- **ValueError**

 When more than one free symbol is present in the system. The only variable in the transfer function should be the variable of the Laplace transform.

 When lower_limit parameter is less than 0.

Examples

```python
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunction
>>> from sympy.physics.control.control_plots import step_response_numerical_data
>>> tf1 = TransferFunction(s, s**2 + 5*s + 8, s)
>>> step_response_numerical_data(tf1)
([0.0, 0.025413462339411542, 0.0484508722725343, ... , 9.670250533855183, 9.844291913708725, 10.0], [0.0, 0.023844582399907256, 0.042894276802320226, ..., 6.828770759094287e-12, 6.456457160755703e-12])
```
SymPy Documentation, Release 1.12.1

See also:

step_response_plot (page 2016)

Ramp-Response Plot

control_plots.ramp_response_plot(slope=1, color='b', prec=8, lower_limit=0, upper_limit=10, show_axes=False, grid=True, show=True, **kwargs)

Returns the ramp response of a continuous-time system.

Ramp function is defined as the straight line passing through origin \(f(x) = mx \). The slope of the ramp function can be varied by the user and the default value is 1.

Parameters

- **system** : SISOLinearTimeInvariant type
 The LTI SISO system for which the Ramp Response is to be computed.

- **slope** : Number, optional
 The slope of the input ramp function. Defaults to 1.

- **color** : str, tuple, optional
 The color of the line. Default is Blue.

- **show** : boolean, optional
 If True, the plot will be displayed otherwise the equivalent matplotlib plot object will be returned. Defaults to True.

- **lower_limit** : Number, optional
 The lower limit of the plot range. Defaults to 0.

- **upper_limit** : Number, optional
 The upper limit of the plot range. Defaults to 10.

- **prec** : int, optional
 The decimal point precision for the point coordinate values. Defaults to 8.

- **show_axes** : boolean, optional
 If True, the coordinate axes will be shown. Defaults to False.

- **grid** : boolean, optional
 If True, the plot will have a grid. Defaults to True.
Examples

```python
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunction
>>> from sympy.physics.control.control_plots import ramp_response_plot
>>> tf1 = TransferFunction(s, (s+4)*(s+8), s)
>>> ramp_response_plot(tf1, upper_limit=2)
```

Ramp Response of \(\frac{s}{(s+4)(s+8)}\) [Slope = 1]

See also:

- `step_response_plot` (page 2016), `ramp_response_plot` (page 2019)

References

[R674]

calculus.control_plots.ramp_response_numerical_data(slope=1, prec=8, lower_limit=0, upper_limit=10, **kwargs)

Returns the numerical values of the points in the ramp response plot of a SISO continuous-time system. By default, adaptive sampling is used. If the user wants to instead get an uniformly sampled response, then adaptive kwarg should be passed False and nb_of_points must be passed as additional kwargs. Refer to the parameters of class `sympy.plotting.plot.LineOver1DRangeSeries` (page 2950) for more details.
Parameters

- **system**: SISOLinearTimeInvariant
 The system for which the ramp response data is to be computed.
- **slope**: Number, optional
 The slope of the input ramp function. Defaults to 1.
- **prec**: int, optional
 The decimal point precision for the point coordinate values. Defaults to 8.
- **lower_limit**: Number, optional
 The lower limit of the plot range. Defaults to 0.
- **upper_limit**: Number, optional
 The upper limit of the plot range. Defaults to 10.
- **kwargs**: Additional keyword arguments are passed to the underlying sympy.plotting.plot.LineOver1DRangeSeries (page 2950) class.

Returns

- **tuple**: (x, y)
 x = Time-axis values of the points in the ramp response plot. NumPy array. y = Amplitude-axis values of the points in the ramp response plot. NumPy array.

Raises

- **NotImplementedError**
 When a SISO LTI system is not passed.
 When time delay terms are present in the system.
- **ValueError**
 When more than one free symbol is present in the system. The only variable in the transfer function should be the variable of the Laplace transform.
 When lower_limit parameter is less than 0.
 When slope is negative.

Examples

```python
>>> from sympy.abc import s
>>> from sympy.physics.control.lti import TransferFunction
>>> from sympy.physics.control.control_plots import ramp_response_numerical_data
>>> tf1 = TransferFunction(s, s**2 + 5*s + 8, s)
>>> ramp_response_numerical_data(tf1)
([[0.0, 0.12166980856813935,..., 9.861246379582118, 10.0],
  [1.4504508011325967e-09, 0.006046440489058766,..., 0.12499999999661349]])
```
Continuum Mechanics

Abstract

Contains docstrings for methods in continuum mechanics module.

Beam

Beam (Docstrings)

This module can be used to solve 2D beam bending problems with singularity functions in mechanics.

```python
class sympy.physics.continuum_mechanics.beam.Beam(length, elastic_modulus, second_moment, area=A, variable=x, base_char='C')
```

A Beam is a structural element that is capable of withstanding load primarily by resisting against bending. Beams are characterized by their cross sectional profile (Second moment of area), their length and their material.

Note: A consistent sign convention must be used while solving a beam bending problem; the results will automatically follow the chosen sign convention. However, the chosen sign convention must respect the rule that, on the positive side of beam’s axis (in respect to current section), a loading force giving positive shear yields a negative moment, as below (the curved arrow shows the positive moment and rotation):
Examples

There is a beam of length 4 meters. A constant distributed load of 6 N/m is applied from half of the beam till the end. There are two simple supports below the beam, one at the starting point and another at the ending point of the beam. The deflection of the beam at the end is restricted.

Using the sign convention of downwards forces being positive.

```python
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols, Piecewise

>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')

>>> b = Beam(4, E, I)

>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(6, 2, 0)
>>> b.apply_load(R2, 4, -1)

>>> b.bc_deflection = [(0, 0), (4, 0)]

>>> b.boundary_conditions
{'deflection': [(0, 0), (4, 0)], 'slope': []}

>>> b.load
R1*SingularityFunction(x, 0, -1) + R2*SingularityFunction(x, 4, -1) +
   6*SingularityFunction(x, 2, 0)

>>> b.solve_for_reaction_loads(R1, R2)
```
Calculate the support reactions for a fully symbolic beam of length \(L \). There are two simple supports below the beam, one at the starting point and another at the ending point of the beam. The deflection of the beam at the end is restricted. The beam is loaded with:

- a downward point load \(P_1 \) applied at \(L/4 \)
- an upward point load \(P_2 \) applied at \(L/8 \)
- a counterclockwise moment \(M_1 \) applied at \(L/2 \)
- a clockwise moment \(M_2 \) applied at \(3L/4 \)
- a distributed constant load \(q_1 \), applied downward, starting from \(L/2 \) up to \(3L/4 \)
- a distributed constant load \(q_2 \), applied upward, starting from \(3L/4 \) up to \(L \)

No assumptions are needed for symbolic loads. However, defining a positive length will help the algorithm to compute the solution.

```python
>>> E, I = symbols('E, I')
>>> L = symbols('L', positive=True)
>>> P1, P2, M1, M2, q1, q2 = symbols('P1, P2, M1, M2, q1, q2')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(L, E, I)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, L, -1)
>>> b.apply_load(P1, L/4, -1)
>>> b.apply_load(-P2, L/8, -1)
>>> b.apply_load(M1, L/2, -2)
>>> b.apply_load(-M2, 3*L/4, -2)
>>> b.apply_load(q1, L/2, 0, 3*L/4)
>>> b.apply_load(-q2, 3*L/4, 0, L)
>>> b.bc_deflection = [(0, 0), (L, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> print(b.reaction_loads[R1])
(-3*L**2*q1 + L**2*q2 - 24*L*P1 + 28*L*P2 - 32*M1 + 32*M2)/(32*L)
```
>>> print(breaction_loads[R2])
-5*L^2q1 + 7*L^2q2 - 8*Lp1 + 4*Lp2 + 32*m1 - 32*m2)/(32*L)

property applied_loads

Returns a list of all loads applied on the beam object. Each load in the list is a tuple of form (value, start, order, end).

Examples

There is a beam of length 4 meters. A moment of magnitude 3 Nm is applied in the clockwise direction at the starting point of the beam. A pointload of magnitude 4 N is applied from the top of the beam at 2 meters from the starting point. Another pointload of magnitude 5 N is applied at same position.

```python
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(4, E, I)
>>> b.apply_load(-3, 0, -2)
>>> b.apply_load(4, 2, -1)
>>> b.apply_load(5, 2, -1)
>>> b.load
-3*SingularityFunction(x, 0, -2) + 9*SingularityFunction(x, 2, -1)
>>> b.applied_loads
[(-3, 0, -2, None), (4, 2, -1, None), (5, 2, -1, None)]
```

apply_load *(value, start, order, end=None)*

This method adds up the loads given to a particular beam object.

Parameters

- **value**: Sympifyable

The value inserted should have the units [Force/(Distance**(n+1))] where n is the order of applied load. Units for applied loads:

 - For moments, unit = kN*m
 - For point loads, unit = kN
 - For constant distributed load, unit = kN/m
 - For ramp loads, unit = kN/m/m
 - For parabolic ramp loads, unit = kN/m/m/m
 - ... so on.

 start: Sympifyable

The starting point of the applied load. For point moments and point forces this is the location of application.

 order: Integer

The order of the applied load.

 - For moments, order = -2

5.8. Topics
• For point loads, order = -1
• For constant distributed load, order = 0
• For ramp loads, order = 1
• For parabolic ramp loads, order = 2
• ... so on.

end: Symplifiable, optional

An optional argument that can be used if the load has an end point within the length of the beam.

Examples

There is a beam of length 4 meters. A moment of magnitude 3 Nm is applied in the clockwise direction at the starting point of the beam. A point load of magnitude 4 N is applied from the top of the beam at 2 meters from the starting point and a parabolic ramp load of magnitude 2 N/m is applied below the beam starting from 2 meters to 3 meters away from the starting point of the beam.

```python
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(4, E, I)
>>> b.apply_load(-3, 0, -2)
>>> b.apply_load(4, 2, -1)
>>> b.apply_load(-2, 2, 2, end=3)
>>> b.load
-3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) - 2*SingularityFunction(x, 2, 2) + 2*SingularityFunction(x, 3, 0) + 4*SingularityFunction(x, 3, 1) + 2*SingularityFunction(x, 3, 2)
```

apply_support(loc, type='fixed')

This method applies support to a particular beam object.

Parameters

- **loc**: Symplifiable

 Location of point at which support is applied.

- **type**: String

 Determines type of Beam support applied. To apply support structure with - zero degree of freedom, type = “fixed” - one degree of freedom, type = “pin” - two degrees of freedom, type = “roller”
Examples

There is a beam of length 30 meters. A moment of magnitude 120 Nm is applied in the clockwise direction at the end of the beam. A point load of magnitude 8 N is applied from the top of the beam at the starting point. There are two simple supports below the beam. One at the end and another one at a distance of 10 meters from the start. The deflection is restricted at both the supports.

Using the sign convention of upward forces and clockwise moment being positive.

```python
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(30, E, I)
>>> b.apply_support(10, 'roller')
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(120, 30, -2)
>>> R_10, R_30 = symbols('R_10, R_30')
>>> b.solve_for_reaction_loads(R_10, R_30)
>>> b.load
-8*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 10, -1) + 120*SingularityFunction(x, 30, -2) + 2*SingularityFunction(x, 30, -1)
>>> b.slope()
(-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2) + 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + 4000/3)/(E*I)
```

property area

Cross-sectional area of the Beam.

bending_moment()

Returns a Singularity Function expression which represents the bending moment curve of the Beam object.

Examples

There is a beam of length 30 meters. A moment of magnitude 120 Nm is applied in the clockwise direction at the end of the beam. A point load of magnitude 8 N is applied from the top of the beam at the starting point. There are two simple supports below the beam. One at the end and another one at a distance of 10 meters from the start. The deflection is restricted at both the supports.

Using the sign convention of upward forces and clockwise moment being positive.

```python
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(30, E, I)
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(R1, 10, -1)
```
property boundary_conditions

Returns a dictionary of boundary conditions applied on the beam. The dictionary has three keywords namely moment, slope and deflection. The value of each keyword is a list of tuple, where each tuple contains location and value of a boundary condition in the format (location, value).

Examples

There is a beam of length 4 meters. The bending moment at 0 should be 4 and at 4 it should be 0. The slope of the beam should be 1 at 0. The deflection should be 2 at 0.

```python
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(4, E, I)
>>> b.bc_deflection = [(0, 2)]
>>> b.bc_slope = [(0, 1)]
>>> b.boundary_conditions
{'deflection': [(0, 2)], 'slope': [(0, 1)]}
```

Here the deflection of the beam should be 2 at 0. Similarly, the slope of the beam should be 1 at 0.

property cross_section

Cross-section of the beam

deflection()

Returns a Singularity Function expression which represents the elastic curve or deflection of the Beam object.

Examples

There is a beam of length 30 meters. A moment of magnitude 120 Nm is applied in the clockwise direction at the end of the beam. A pointload of magnitude 8 N is applied from the top of the beam at the starting point. There are two simple supports below the beam. One at the end and another one at a distance of 10 meters from the start. The deflection is restricted at both the supports.

Using the sign convention of upward forces and clockwise moment being positive.

```python
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
```

>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(30, E, I)
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(R1, 10, -1)
>>> b.apply_load(R2, 30, -1)
>>> b.apply_load(120, 30, -2)
>>> b.bc_deflection = [(10, 0), (30, 0)]
>>> b.solve_for_reaction_loads(R1, R2)

\[
\text{deflection} = \left(\frac{4000x}{3} - \frac{4}{3}\text{SingularityFunction}(x, 0, 3) + \text{SingularityFunction}(x, 10, 3)
+ 60\text{SingularityFunction}(x, 30, 2) + \text{SingularityFunction}(x, 30, 3)/3 - 12000\right)/(E*I)
\]

draw(pictorial=True)

Returns a plot object representing the beam diagram of the beam.

Note: The user must be careful while entering load values. The draw function assumes a sign convention which is used for plotting loads. Given a right handed coordinate system with XYZ coordinates, the beam’s length is assumed to be along the positive X axis. The draw function recognizes positive loads(with n>2) as loads acting along negative Y direction and positive moments acting along positive Z direction.

Parameters

pictorial: Boolean (default=True)

Setting pictorial=True would simply create a pictorial (scaled) view of the beam diagram not with the exact dimensions. Although setting pictorial=False would create a beam diagram with the exact dimensions on the plot.

Examples

```python
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> E, I = symbols('E, I')
>>> b = Beam(50, 20, 30)
>>> b.apply_load(10, 2, -1)
>>> b.apply_load(R1, 10, -1)
>>> b.apply_load(R2, 30, -1)
>>> b.apply_load(90, 5, 0, 23)
>>> b.apply_load(10, 30, 1, 50)
>>> b.apply_support(50, "pin")
>>> b.apply_support(0, "fixed")
>>> b.apply_support(20, "roller")
>>> p = b.draw()
```

(continues on next page)
property elastic_modulus
 Young’s Modulus of the Beam.

property ild_moment
 Returns the I.L.D. moment equation.

property ild_reactions
 Returns the I.L.D. reaction forces in a dictionary.

property ild_shear
 Returns the I.L.D. shear equation.

join(beam, via='fixed')
 This method joins two beams to make a new composite beam system. Passed Beam
class instance is attached to the right end of calling object. This method can be used to form beams having Discontinuous values of Elastic modulus or Second moment.

Parameters

beam : Beam class object

The Beam object which would be connected to the right of calling object.

via : String

States the way two Beam object would get connected - For axially fixed Beams, via="fixed" - For Beams connected via hinge, via="hinge"

Examples

There is a cantilever beam of length 4 meters. For first 2 meters its moment of inertia is $1.5*I$ and I for the other end. A pointload of magnitude 4 N is applied from the top at its free end.

```python
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b1 = Beam(2, E, 1.5*I)
>>> b2 = Beam(2, E, I)
>>> b = b1.join(b2, "fixed")
>>> b.apply_load(20, 4, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 0, -2)
>>> b.bc_slope = [(0, 0)]
>>> b.bc_deflection = [(0, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.load
80*SingularityFunction(x, 0, -2) - 20*SingularityFunction(x, 0, -1) -
20*SingularityFunction(x, 4, -1)
```

property length

Length of the Beam.

property load

Returns a Singularity Function expression which represents the load distribution curve of the Beam object.
Examples

There is a beam of length 4 meters. A moment of magnitude 3 Nm is applied in the clockwise direction at the starting point of the beam. A point load of magnitude 4 N is applied from the top of the beam at 2 meters from the starting point and a parabolic ramp load of magnitude 2 N/m is applied below the beam starting from 3 meters away from the starting point of the beam.

```python
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(4, E, I)
>>> b.apply_load(-3, 0, -2)
>>> b.apply_load(4, 2, -1)
>>> b.apply_load(-2, 3, 2)
>>> load
-3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) - 2*SingularityFunction(x, 3, 2)
```

max_bmoment()

Returns maximum Shear force and its coordinate in the Beam object.

max_deflection()

Returns point of max deflection and its corresponding deflection value in a Beam object.

max_shear_force()

Returns maximum Shear force and its coordinate in the Beam object.

plot_bending_moment(sub=None)

Returns a plot for Bending moment present in the Beam object.

Parameters

- **sub**: dictionary

 Python dictionary containing Symbols as key and their corresponding values.

Examples

There is a beam of length 8 meters. A constant distributed load of 10 KN/m is applied from half of the beam till the end. There are two simple supports below the beam, one at the starting point and another at the ending point of the beam. A point load of magnitude 5 KN is also applied from top of the beam, at a distance of 4 meters from the starting point. Take E = 200 GPa and I = 400*(10**-6) meter**4.

Using the sign convention of downwards forces being positive.

```python
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
```
```python
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
```

```python
Plot object containing:
[0]: cartesian line: 13750*SingularityFunction(x, 0, 1) - 5000*SingularityFunction(x, 2, 1) - 5000*SingularityFunction(x, 4, 2) + 31250*SingularityFunction(x, 8, 1) + 5000*SingularityFunction(x, 8, 2) for x over (0.0, 8.0)
```

plot_deflection(subs=None)

Returns a plot for deflection curve of the Beam object.

Parameters

- **subs**: dictionary

 Python dictionary containing Symbols as key and their corresponding values.

5.8. Topics 2033
Examples

There is a beam of length 8 meters. A constant distributed load of 10 KN/m is applied from half of the beam till the end. There are two simple supports below the beam, one at the starting point and another at the ending point of the beam. A point load of magnitude 5 KN is also applied from top of the beam, at a distance of 4 meters from the starting point. Take E = 200 GPa and I = 400*(10**-6) meter**4.

Using the sign convention of downwards forces being positive.

```python
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.plot_deflection()
```

Plot object containing:

[0]: cartesian line: 0.0013854166666667*x - 2.86458333333333e-5*SingularityFunction(x, 0, 3) + 1.04166666666667e-5*SingularityFunction(x, 2, 3) + 5.20833333333333e-6*SingularityFunction(x, 4, 4) - 6.51041666666667e-5*SingularityFunction(x, 8, 3) - 5.20833333333333e-6*SingularityFunction(x, 8, 4) for x over (0.0, 8.0)

plot_ild_moment(subs=None)

Plots the Influence Line Diagram for Moment under the effect of a moving load. This function should be called after calling solve_for_ild_moment().

Parameters

subs: dictionary

Python dictionary containing Symbols as key and their corresponding values.

Examples

There is a beam of length 12 meters. There are two simple supports below the beam, one at the starting point and another at a distance of 8 meters. Plot the I.L.D. for Moment at a distance of 4 meters under the effect of a moving load of magnitude 1kN.

Using the sign convention of downwards forces being positive.

```python
>>> from sympy import symbols
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> E, I = symbols('E, I')
>>> R_0, R_8 = symbols('R_0, R_8')
>>> b = Beam(12, E, I)
```
Deflection

\[\delta \]

\[x \]

Deflection
>>> b.apply_support(0, 'roller')
>>> b.apply_support(8, 'roller')
>>> b.solve_for_ild_reactions(1, R_0, R_8)
>>> b.solve_for_ild_moment(4, 1, R_0, R_8)
>>> b.ild_moment
Piecewise((-x/2, x < 4), (x/2 - 4, x > 4))

>>> b.plot_ild_moment()
Plot object containing:
[0]: cartesian line: Piecewise((-x/2, x < 4), (x/2 - 4, x > 4)) for x,
over (0.0, 12.0)

plot_ild_reactions(subs=None)
Plots the Influence Line Diagram of Reaction Forces under the effect of a moving
load. This function should be called after calling solve_for_ild_reactions().

Parameters
subs : dictionary
Python dictionary containing Symbols as key and their corresponding
values.
Examples

There is a beam of length 10 meters. A point load of magnitude 5kN is also applied from top of the beam, at a distance of 4 meters from the starting point. There are two simple supports below the beam, located at the starting point and at a distance of 7 meters from the starting point. Plot the I.L.D. equations for reactions at both support points under the effect of a moving load of magnitude 1kN.

Using the sign convention of downwards forces being positive.

```python
from sympy import symbols
from sympy.physics.continuum_mechanics.beam import Beam

E, I = symbols('E, I')
R_0, R_7 = symbols('R_0, R_7')
b = Beam(10, E, I)
b.apply_support(0, 'roller')
b.apply_support(7, 'roller')
b.apply_load(5, 4, -1)
b.solve_for_ild_reactions(1, R_0, R_7)

b.ild_reactions
{R_0: x/7 - 22/7, R_7: -x/7 - 20/7}
b.plot_ild_reactions()
```

`plot_ild/shear(subs=None)`

Plots the Influence Line Diagram for Shear under the effect of a moving load. This function should be called after calling `solve_for_ild/shear()`.

Parameters

- `subs`: dictionary

 Python dictionary containing Symbols as key and their corresponding values.

Examples

There is a beam of length 12 meters. There are two simple supports below the beam, one at the starting point and another at a distance of 8 meters. Plot the I.L.D. for Shear at a distance of 4 meters under the effect of a moving load of magnitude 1kN.

Using the sign convention of downwards forces being positive.

```python
from sympy import symbols
from sympy.physics.continuum_mechanics.beam import Beam

E, I = symbols('E, I')
R_0, R_8 = symbols('R_0, R_8')
b = Beam(12, E, I)
b.apply_support(0, 'roller')
b.apply_support(8, 'roller')
b.solve_for_ild_reactions(1, R_0, R_8)
```
```python
>>> b.solve_for_ild_shear(4, 1, R_0, R_8)
>>> b.ild_shear
Piecewise((x/8, x < 4), (x/8 - 1, x > 4))
>>> b.plot_ild_shear()
Plot object containing:
[0]: cartesian line: Piecewise((x/8, x < 4), (x/8 - 1, x > 4)) for x over (0.0, 12.0)
```

plot_loading_results

plot_loading_results(subs=None)

Returns a subplot of Shear Force, Bending Moment, Slope and Deflection of the Beam object.

Parameters

- **subs**: dictionary

 Python dictionary containing Symbols as key and their corresponding values.

5.8. Topics 2039
Examples

There is a beam of length 8 meters. A constant distributed load of 10 KN/m is applied from half of the beam till the end. There are two simple supports below the beam, one at the starting point and another at the ending point of the beam. A point load of magnitude 5 KN is also applied from top of the beam, at a distance of 4 meters from the starting point. Take $E = 200$ GPa and $I = 400*(10**-6)$ meter4.

Using the sign convention of downwards forces being positive.

```python
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols

>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**6))
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> axes = b.plot_loading_results()
```

```
plot_shear_force(subs=None)
Returns a plot for Shear force present in the Beam object.
```
Parameters

subs : dictionary

Python dictionary containing Symbols as key and their corresponding values.

Examples

There is a beam of length 8 meters. A constant distributed load of 10 KN/m is applied from half of the beam till the end. There are two simple supports below the beam, one at the starting point and another at the ending point of the beam. A point load of magnitude 5 KN is also applied from top of the beam, at a distance of 4 meters from the starting point. Take $E = 200$ GPa and $I = 400*(10**-6)$ meter**4.

Using the sign convention of downwards forces being positive.

```python
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.plot_shear_force()

Plot object containing:
[0]: cartesian line: 13750*SingularityFunction(x, 0, 0) - 5000*SingularityFunction(x, 2, 0) - 10000*SingularityFunction(x, 4, 1) + 31250*SingularityFunction(x, 8, 0) + 10000*SingularityFunction(x, 8, 1) for x over (0.0, 8.0)

plot_shear_stress(subs=None)

Returns a plot of shear stress present in the beam object.

Parameters

subs : dictionary

Python dictionary containing Symbols as key and their corresponding values.

Examples

There is a beam of length 8 meters and area of cross section 2 square meters. A constant distributed load of 10 KN/m is applied from half of the beam till the end. There are two simple supports below the beam, one at the starting point and another at the ending point of the beam. A point load of magnitude 5 KN is also applied from top of the beam, at a distance of 4 meters from the starting point. Take $E = 200$ GPa and $I = 400*(10**-6)$ meter**4.

Using the sign convention of downwards forces being positive.
```python
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols

>>> R1, R2 = symbols('R1, R2')

>>> b = Beam(8, 200*(10**9), 400*(10**6), 2)

>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)

>>> b.apply_load(10000, 4, 0, end=8)

>>> b.bc_deflection = [(0, 0), (8, 0)]

>>> b.solve_for_reaction_loads(R1, R2)

>>> b.plot_shear_stress()
```

**plot_slope**(subs=None)

Returns a plot for slope of deflection curve of the Beam object.

**Parameters**

*subs*: dictionary
Python dictionary containing Symbols as key and their corresponding values.

Examples

There is a beam of length 8 meters. A constant distributed load of 10 KN/m is applied from half of the beam till the end. There are two simple supports below the beam, one at the starting point and another at the ending point of the beam. A point load of magnitude 5 KN is also applied from top of the beam, at a distance of 4 meters from the starting point. Take E = 200 GPa and I = 400*(10**-6) meter**4.

Using the sign convention of downwards forces being positive.

```python
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.plot_slope()
Plot object containing:
[0]: cartesian line: -8.59375e-5*SingularityFunction(x, 0, 2) + 3.
 -125e-5*SingularityFunction(x, 2, 2)
 + 2.0833333333333*SingularityFunction(x, 4, 3) - 0.
 -0.01953125*SingularityFunction(x, 8, 2)
 - 2.0833333333333*SingularityFunction(x, 8, 3) + 0.
 0.0138541666666667 for x over (0.0, 8.0)
```

point_cflexure()

Returns a Set of point(s) with zero bending moment and where bending moment curve of the beam object changes its sign from negative to positive or vice versa.

Examples

There is a 10 meter long overhanging beam. There are two simple supports below the beam. One at the start and another one at a distance of 6 meters from the start. Point loads of magnitude 10KN and 20KN are applied at 2 meters and 4 meters from start respectively. A Uniformly distribute load of magnitude of magnitude 3KN/m is also applied on top starting from 6 meters away from starting point till end. Using the sign convention of upward forces and clockwise moment being positive.

```python
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(10, E, I)
>>> b.apply_load(-4, 0, -1)
>>> b.apply_load(-46, 6, -1)
>>> b.apply_load(10, 2, -1)
```
>>> b.apply_load(20, 4, -1)
>>> b.apply_load(3, 6, 0)
>>> b.point_cflexure()
[10/3]

property reaction_loads
Returns the reaction forces in a dictionary.

remove_load(value, start, order, end=None)
This method removes a particular load present on the beam object. Returns a ValueError if the load passed as an argument is not present on the beam.

Parameters
value : Sympifyable
The magnitude of an applied load.
start : Sympifyable
The starting point of the applied load. For point moments and point forces this is the location of application.
order : Integer
The order of the applied load. - For moments, order= -2 - For point loads, order= -1 - For constant distributed load, order=0 - For ramp loads, order=1 - For parabolic ramp loads, order=2 - ... so on.
end : Sympifyable, optional
An optional argument that can be used if the load has an end point within the length of the beam.

Examples
There is a beam of length 4 meters. A moment of magnitude 3 Nm is applied in the clockwise direction at the starting point of the beam. A pointload of magnitude 4 N is applied from the top of the beam at 2 meters from the starting point and a parabolic ramp load of magnitude 2 N/m is applied below the beam starting from 2 meters to 3 meters away from the starting point of the beam.

```python
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(4, E, I)
>>> b.apply_load(-3, 0, -2)
>>> b.apply_load(4, 2, -1)
>>> b.apply_load(-2, 2, 2, end=3)
>>> b.load
-3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) - 2*SingularityFunction(x, 2, 2) + 2*SingularityFunction(x, 3, 0) + 4*SingularityFunction(x, 3, 1) + 2*SingularityFunction(x, 3, 2)
```
property second_moment
    Second moment of area of the Beam.

shear_force()
    Returns a Singularity Function expression which represents the shear force curve
    of the Beam object.

Examples

There is a beam of length 30 meters. A moment of magnitude 120 Nm is applied
in the clockwise direction at the end of the beam. A point load of magnitude 8 N
is applied from the top of the beam at the starting point. There are two simple supports
below the beam. One at the end and another one at a distance of 10 meters from
the start. The deflection is restricted at both the supports.

Using the sign convention of upward forces and clockwise moment being positive.

```python
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(30, E, I)
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(R1, 10, -1)
>>> b.apply_load(R2, 30, -1)
>>> b.apply_load(120, 30, -2)
>>> b.bc_deflection = [(10, 0), (30, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.shear_force()
8*SingularityFunction(x, 0, 0) - 6*SingularityFunction(x, 10, 0) - 120*SingularityFunction(x, 30, -1) - 2*SingularityFunction(x, 30, 0)
```

shear_stress()
    Returns an expression representing the Shear Stress curve of the Beam object.

slope()
    Returns a Singularity Function expression which represents the slope the elastic
curve of the Beam object.

Examples

There is a beam of length 30 meters. A moment of magnitude 120 Nm is applied
in the clockwise direction at the end of the beam. A point load of magnitude 8 N
is applied from the top of the beam at the starting point. There are two simple supports
below the beam. One at the end and another one at a distance of 10 meters from
the start. The deflection is restricted at both the supports.

Using the sign convention of upward forces and clockwise moment being positive.

```python
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
```
SymPy Documentation, Release 1.12.1

(continued from previous page)

```python
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(30, E, I)
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(R1, 10, -1)
>>> b.apply_load(R2, 30, -1)
>>> b.apply_load(120, 30, -2)
>>> b.bc_deflection = [(10, 0), (30, 0)]
>>> b.solve_for_reactionLoads(R1, R2)
>>> b.slope()
(-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2) + 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + 4000/3)/(E*I)
```

`solve_for_ild_moment(distance, value, *reactions)`

Determines the Influence Line Diagram equations for moment at a specified point under the effect of a moving load.

**Parameters**

- **distance** : Integer
  Distance of the point from the start of the beam for which equations are to be determined

- **value** : Integer
  Magnitude of moving load

- **reactions** :
  The reaction forces applied on the beam.

**Examples**

There is a beam of length 12 meters. There are two simple supports below the beam, one at the starting point and another at a distance of 8 meters. Calculate the I.L.D. equations for Moment at a distance of 4 meters under the effect of a moving load of magnitude 1kN.

Using the sign convention of downwards forces being positive.

```python
>>> from sympy import symbols
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> E, I = symbols('E, I')
>>> R_0, R_8 = symbols('R_0, R_8')
>>> b = Beam(12, E, I)
>>> b.apply_support(0, 'roller')
>>> b.apply_support(8, 'roller')
>>> b.solve_for_ild_reactions(1, R_0, R_8)
>>> b.solve_for_ild_moment(4, 1, R_0, R_8)
>>> b.ild_moment
Piecewise((-x/2, x < 4), (x/2 - 4, x > 4))
```

`solve_for_ild_reactions(value, *reactions)`

Determines the Influence Line Diagram equations for reaction forces under the effect of a moving load.

---

2048 Chapter 5. API Reference
Parameters

- **value**: Integer
  
  Magnitude of moving load

- **reactions**: The reaction forces applied on the beam.

Examples

There is a beam of length 10 meters. There are two simple supports below the beam, one at the starting point and another at the ending point of the beam. Calculate the I.L.D. equations for reaction forces under the effect of a moving load of magnitude 1kN.

Using the sign convention of downwards forces being positive.

```python
>>> from sympy import symbols
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> E, I = symbols('E, I')
>>> R_0, R_10 = symbols('R_0, R_10')
>>> b = Beam(10, E, I)
>>> b.apply_support(0, 'roller')
>>> b.apply_support(10, 'roller')
>>> b.solve_for_ild_reactions(1, R_0, R_10)
{R_0: x/10 - 1, R_10: -x/10}
```

**solve_for_ild_shear** *(distance, value, *reactions)*

Determines the Influence Line Diagram equations for shear at a specified point under the effect of a moving load.

Parameters

- **distance**: Integer
  
  Distance of the point from the start of the beam for which equations are to be determined

- **value**: Integer
  
  Magnitude of moving load

- **reactions**: The reaction forces applied on the beam.

Examples

There is a beam of length 12 meters. There are two simple supports below the beam, one at the starting point and another at a distance of 8 meters. Calculate the I.L.D. equations for Shear at a distance of 4 meters under the effect of a moving load of magnitude 1kN.

Using the sign convention of downwards forces being positive.
```python
>>> from sympy import symbols
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> E, I = symbols('E, I')
>>> R_0, R_8 = symbols('R_0, R_8')
>>> b = Beam(12, E, I)
>>> b.apply_support(0, 'roller')
>>> b.apply_support(8, 'roller')
>>> b.solve_for_ild_reactions(1, R_0, R_8)
>>> b.solve_for_ild_shear(4, 1, R_0, R_8)
>>> b.ild_shear
Piecewise((x/8, x < 4), (x/8 - 1, x > 4))
```

**solve_for_reaction_loads(***reactions***)

Solves for the reaction forces.

**Examples**

There is a beam of length 30 meters. A moment of magnitude 120 Nm is applied in the clockwise direction at the end of the beam. A pointload of magnitude 8 N is applied from the top of the beam at the starting point. There are two simple supports below the beam. One at the end and another one at a distance of 10 meters from the start. The deflection is restricted at both the supports.

Using the sign convention of upward forces and clockwise moment being positive.

```python
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(30, E, I)
>>> b.apply_load(-8, 0, -1) # Reaction force at x = 10
>>> b.apply_load(R1, 10, -1) # Reaction force at x = 10
>>> b.apply_load(R2, 30, -1) # Reaction force at x = 30
>>> b.apply_load(120, 30, -2)
>>> b.bc_deflection = [(10, 0), (30, 0)]
>>> b.load
R1*SingularityFunction(x, 10, -1) + R2*SingularityFunction(x, 30, -1) - 8*SingularityFunction(x, 0, -1) + 120*SingularityFunction(x, 30, -2)
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.reaction_loads
{R1: 6, R2: 2}
>>> b.load
-8*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 10, -1) + 120*SingularityFunction(x, 30, -2) + 2*SingularityFunction(x, 30, -1)
```

**property variable**

A symbol that can be used as a variable along the length of the beam while representing load distribution, shear force curve, bending moment, slope curve and the deflection curve. By default, it is set to `Symbol('x')`, but this property is mutable.
Examples

```python
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I, A = symbols('E, I, A')
>>> x, y, z = symbols('x, y, z')
>>> b = Beam(4, E, I)
>>> b.variable = x
>>> b.variable = y
>>> b.variable = y
>>> b = Beam(4, E, I, A, z)
>>> b.variable = z
```

```python
class sympy.physics.continuum_mechanics.beam.Beam3D(length, elastic_modulus, shear_modulus, second_moment, area, variable=x)
```

This class handles loads applied in any direction of a 3D space along with unequal values of Second moment along different axes.

**Note:** A consistent sign convention must be used while solving a beam bending problem; the results will automatically follow the chosen sign convention. This class assumes that any kind of distributed load/moment is applied through out the span of a beam.

Examples

There is a beam of l meters long. A constant distributed load of magnitude q is applied along y-axis from start till the end of beam. A constant distributed moment of magnitude m is also applied along z-axis from start till the end of beam. Beam is fixed at both of its end. So, deflection of the beam at the both ends is restricted.

```python
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols, simplify, collect, factor
>>> l, E, G, I, A = symbols('l, E, G, I, A')
>>> b = Beam3D(l, E, G, I, A)
>>> x, q, m = symbols('x, q, m')
>>> b.apply_load(q, 0, 0, dir="y")
>>> b.apply_moment_load(m, 0, -1, dir="z")
>>> b.shear_force()
[0, -q*x, 0]
>>> b.bending_moment()
[0, 0, -m*x + q*x**2/2]
>>> b.bc_slope = [(0, [0, 0, 0]), (l, [0, 0, 0])]
>>> b.bc_deflection = [(0, [0, 0, 0]), (l, [0, 0, 0])]
>>> b.solve_slope_deflection()
>>> factor(b.slope())
[0, 0, x*(-l + x)*(-A*G*l**3*q + 2*A*G*l**2*q*x - 12*E*I*l*q
(continues on next page)
- 72*E*I*m + 24*E*I*q*x)/(12*E*I*(A*G*l**2 + 12*E*I))

```
>>> dx, dy, dz = b.deflection()
>>> dy = collect(simplify(dy), x)
>>> dx == dz == 0
True
>>> dy == (x*(12*E*I*l*(A*G*l**2*q - 2*A*G*l*m + 12*E*I*q))
    + x*(A*G*l*(3*l*(A*G*l**2*q - 2*A*G*l*m + 12*E*I*q) + x*(-
    2*A*G*l**2*q + 4*A*G*l*m - 24*E*I*q))
    + A*G*(A*G*l**2 + 12*E*I)*(-2*l**2*q + 6*l*m - 4*m*x + q*x**2)
```

References

[R670]

angular_deflection()

Returns a function in x depicting how the angular deflection, due to moments in the x-axis on the beam, varies with x.

apply_load(value, start, order, dir='y')

This method adds up the force load to a particular beam object.

Parameters

value : Sympifyable

The magnitude of an applied load.

dir : String

Axis along which load is applied.

order : Integer

The order of the applied load. - For point loads, order=-1 - For constant distributed load, order=0 - For ramp loads, order=1 - For parabolic ramp loads, order=2 - ... so on.

apply_moment_load(value, start, order, dir='y')

This method adds up the moment loads to a particular beam object.

Parameters

value : Sympifyable

The magnitude of an applied moment.

dir : String

Axis along which moment is applied.

order : Integer

The order of the applied load. - For point moments, order=-2 - For constant distributed moment, order=-1 - For ramp moments, order=0 - For parabolic ramp moments, order=1 - ... so on.

property area

Cross-sectional area of the Beam.
axial_force()
 Returns expression of Axial shear force present inside the Beam object.

axial_stress()
 Returns expression of Axial stress present inside the Beam object.

bending_moment()
 Returns a list of three expressions which represents the bending moment curve of
 the Beam object along all three axes.

property boundary_conditions
 Returns a dictionary of boundary conditions applied on the beam. The dictionary
 has two keywords namely slope and deflection. The value of each keyword is a list
 of tuple, where each tuple contains location and value of a boundary condition in
 the format (location, value). Further each value is a list corresponding to slope or
 deflection(s) values along three axes at that location.

Examples

There is a beam of length 4 meters. The slope at 0 should be 4 along the x-axis and
0 along others. At the other end of beam, deflection along all the three axes should
be zero.

```python
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(30, E, G, I, A, x)
>>> b.bc_slope = [(0, (4, 0, 0))]
>>> b.bc_deflection = [(4, [0, 0, 0])]
>>> b.boundary_conditions
{'deflection': [(4, [0, 0, 0])], 'slope': [(0, (4, 0, 0))]}
```

Here the deflection of the beam should be 0 along all the three axes at 4. Similarly,
the slope of the beam should be 4 along x-axis and 0 along y and z axis at 0.

deflection()
 Returns a three element list representing deflection curve along all the three axes.

property load vector
 Returns a three element list representing the load vector.

max_bending_moment()
 Returns point of max bending moment and its corresponding bending moment value
 along all directions in a Beam object as a list. solve_for_reaction_loads() must be
 called before using this function.
Examples

There is a beam of length 20 meters. It is supported by rollers at its end. A linear load having slope equal to 12 is applied along y-axis. A constant distributed load of magnitude 15 N is applied from start till its end along z-axis.

```python
from sympy.physics.continuum_mechanics.beam import Beam3D
from sympy import symbols

l, E, G, I, A, x = symbols('l, E, G, I, A, x')
b = Beam3D(20, 40, 21, 100, 25, x)
b.apply_load(15, start=0, order=0, dir="z")
b.apply_load(12*x, start=0, order=0, dir="y")
b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
b.apply_load(R1, start=0, order=-1, dir="z")
b.apply_load(R2, start=20, order=-1, dir="z")
b.apply_load(R3, start=0, order=-1, dir="y")
b.apply_load(R4, start=20, order=-1, dir="y")
b.solve_for_reaction_loads(R1, R2, R3, R4)
b.max_bending_moment()
```

`max_bmoment()`

Returns point of max bending moment and its corresponding bending moment value along all directions in a Beam object as a list. `solve_for_reaction_loads()` must be called before using this function.

Examples

There is a beam of length 20 meters. It is supported by rollers at its end. A linear load having slope equal to 12 is applied along y-axis. A constant distributed load of magnitude 15 N is applied from start till its end along z-axis.

```python
from sympy.physics.continuum_mechanics.beam import Beam3D
from sympy import symbols

l, E, G, I, A, x = symbols('l, E, G, I, A, x')
b = Beam3D(20, 40, 21, 100, 25, x)
b.apply_load(15, start=0, order=0, dir="z")
b.apply_load(12*x, start=0, order=0, dir="y")
b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
b.apply_load(R1, start=0, order=-1, dir="z")
b.apply_load(R2, start=20, order=-1, dir="z")
b.apply_load(R3, start=0, order=-1, dir="y")
b.apply_load(R4, start=20, order=-1, dir="y")
b.solve_for_reaction_loads(R1, R2, R3, R4)
b.max_bending_moment()
```

`max_deflection()`

Returns point of max deflection and its corresponding deflection value along all directions in a Beam object as a list. `solve_for_reaction_loads()` and `solve_slope_deflection()` must be called before using this function.
Examples

There is a beam of length 20 meters. It is supported by rollers at its end. A linear load having slope equal to 12 is applied along y-axis. A constant distributed load of magnitude 15 N is applied from start till its end along z-axis.

```python
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols

>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, 40, 21, 100, 25, x)
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.solve_slope_deflection()
>>> b.max_deflection()

max_deflection()

[(0, 0), (10, 495/14), (-10 + 10*sqrt(10793)/43, (10 - 10*sqrt(10793)/43)**3/160 - 20/7 + (10 - 10*sqrt(10793)/43)**4/6400 + 20*sqrt(10793)/301 + 27*(10 - 10*sqrt(10793)/43)**2/560)]

max_shear_force()

Returns point of max shear force and its corresponding shear value along all directions in a Beam object as a list. solve_for_reaction_loads() must be called before using this function.

Examples

There is a beam of length 20 meters. It is supported by rollers at its end. A linear load having slope equal to 12 is applied along y-axis. A constant distributed load of magnitude 15 N is applied from start till its end along z-axis.

```python
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols

>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, 40, 21, 100, 25, x)
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.max_shear_force()

max_shear_force()

[0, 20, 2400, (20, 300)]
```
property moment_load_vector
Returns a three element list representing moment loads on Beam.

plot_bending_moment(dir='all', subs=None)
Returns a plot for bending moment along all three directions present in the Beam object.

Parameters
dir : string (default)
    Direction along which bending moment plot is required. If no direction is specified, all plots are displayed.
subs : dictionary
    Python dictionary containing Symbols as key and their corresponding values.

Examples
There is a beam of length 20 meters. It is supported by rollers at its end. A linear load having slope equal to 12 is applied along y-axis. A constant distributed load of magnitude 15 N is applied from start till its end along z-axis.

```
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols

>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, E, G, I, A, x)
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.plot_bending_moment()
PlotGrid object containing:
Plot[0]: Plot object containing:
 [0]: cartesian line: 0 for x over (0.0, 20.0)
Plot[1]: Plot object containing:
 [0]: cartesian line: -15*x**2/2 for x over (0.0, 20.0)
Plot[2]: Plot object containing:
 [0]: cartesian line: 2*x**3 for x over (0.0, 20.0)
```

plot_deflection(dir='all', subs=None)
Returns a plot for Deflection along all three directions present in the Beam object.

Parameters
dir : string (default)
    Direction along which deflection plot is required. If no direction is specified, all plots are displayed.
subs : dictionary
Bending Moment along x direction

Bending Moment along y direction

Bending Moment along z direction
Examples

There is a beam of length 20 meters. It it supported by rollers at of its end. A linear load having slope equal to 12 is applied along y-axis. A constant distributed load of magnitude 15 N is applied from start till its end along z-axis.

```python
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols

>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')

>>> b = Beam3D(l=20, E=40, I=21, A=100, G=25, x=x)

>>> b.apply_load(15, start=0, order=0, dir="z")

>>> b.apply_load(12*x, start=0, order=0, dir="y")

>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]

>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')

>>> b.apply_load(R1, start=0, order=-1, dir="z")

>>> b.apply_load(R2, start=20, order=-1, dir="z")

>>> b.solve_forReactionLoads(R1, R2, R3, R4)

>>> b.solve_slope_deflection()

>>> b.plot_deflection()

plot_loading_results(dir='x', subs=None)

Returns a subplot of Shear Force, Bending Moment, Slope and Deflection of the Beam object along the direction specified.

Parameters

dir: string (default)

Direction along which plots are required. If no direction is specified, plots along x-axis are displayed.

subs: dictionary

Python dictionary containing Symbols as key and their corresponding values.
Deflection along x direction

Deflection along y direction

Deflection along z direction
Examples

There is a beam of length 20 meters. It is supported by rollers at its end. A linear load having slope equal to 12 is applied along y-axis. A constant distributed load of magnitude 15 N is applied from start till its end along z-axis.

```python
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols

l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(l, E, G, I, A, x)
>>> subs = {E: 40, G: 21, I: 100, A: 25}
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.solve_slope_deflection()
>>> b.plot_loading_results('y', subs)
PlotGrid object containing:
Plot[0]:Plot object containing:
  [0]: cartesian line: -6*x**2 for x over (0.0, 20.0)
Plot[1]:Plot object containing:
  [0]: cartesian line: -15*x**2/2 for x over (0.0, 20.0)
Plot[2]:Plot object containing:
  [0]: cartesian line: -x**3/1600 + 3*x**2/160 - x/8 for x over (0.0, 20.0)
  [1]: cartesian line: x**5/40000 - 4013*x**3/90300 + 26*x**2/43 +
       -1520*x/903 for x over (0.0, 20.0)
```

plot_shear_force(dir='all', subs=None)

Returns a plot for Shear force along all three directions present in the Beam object.

Parameters

dir : string (default)
 Direction along which shear force plot is required. If no direction is specified, all plots are displayed.

subs : dictionary
 Python dictionary containing Symbols as key and their corresponding values.
Shear Force along y direction

Bending Moment along y direction

Slope along y direction

Deflection along y direction
Examples

There is a beam of length 20 meters. It is supported by rollers at of its end. A linear load having slope equal to 12 is applied along y-axis. A constant distributed load of magnitude 15 N is applied from start till its end along z-axis.

```python
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
global symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, E, G, I, A, x)
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.plot_shear_force()
```

plot_shear_stress\(dir='all', \text{subs=None}\)

Returns a plot for Shear Stress along all three directions present in the Beam object.

Parameters

- **dir** : string (default)
 Direction along which shear stress plot is required. If no direction is specified, all plots are displayed.

- **subs** : dictionary
 Python dictionary containing Symbols as key and their corresponding values.

Examples

There is a beam of length 20 meters and area of cross section 2 square meters. It is supported by rollers at of its end. A linear load having slope equal to 12 is applied along y-axis. A constant distributed load of magnitude 15 N is applied from start till its end along z-axis.

```python
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
global symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, E, G, I, 2, x)
>>> b.apply_load(15, start=0, order=0, dir="z")
```
Shear Force along x direction

Shear Force along y direction

Shear Force along z direction
```python
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.plot_shear_stress()
```

Returns a plot for Slope along all three directions present in the Beam object.

Parameters
- **dir**: string (default 'all')
Direction along which Slope plot is required. If no direction is specified, all plots are displayed.

subs: dictionary

Python dictionary containing Symbols as keys and their corresponding values.

Examples

There is a beam of length 20 meters. It is supported by rollers at its end. A linear load having slope equal to 12 is applied along y-axis. A constant distributed load of magnitude 15 N is applied from start till its end along z-axis.

```python
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> l, E, G, I, A = symbols('l, E, G, I, A')
>>> b = Beam3D(l, E, G, I, A)
```

```python
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
```

```python
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
```

```python
>>> b.solve_slope_deflection()
```

```python
>>> b.plot_slope()
```

`polar_moment()`

Returns the polar moment of area of the beam about the X axis with respect to the centroid.

Examples

```python
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> l, E, G, I, A = symbols('l, E, G, I, A')
>>> b = Beam3D(l, E, G, I, A)
```

```python
>>> b.polar_moment()
```

```python
>>> I1 = [9, 15]
```
property second_moment
Second moment of area of the Beam.

shear_force()
Returns a list of three expressions which represents the shear force curve of the
Beam object along all three axes.

property shear_modulus
Young’s Modulus of the Beam.

shear_stress()
Returns a list of three expressions which represents the shear stress curve of the
Beam object along all three axes.

tslope()
Returns a three element list representing slope of deflection curve along all the three
axes.

solve_for_reaction_loads(*reaction)
Solves for the reaction forces.

Examples
There is a beam of length 30 meters. It is supported by rollers at its end. A
constant distributed load of magnitude 8 N is applied from start till its end along
y-axis. Another linear load having slope equal to 9 is applied along z-axis.

>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(l, E, G, I, A, x)
>>> b.apply_load(8, start=0, order=0, dir="y")
>>> b.apply_load(9*x, start=0, order=0, dir="z")
>>> b.bc_deflection = [(0, [0, 0, 0]), (30, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="y")
>>> b.apply_load(R2, start=30, order=-1, dir="y")
>>> b.apply_load(R3, start=0, order=-1, dir="z")
>>> b.apply_load(R4, start=30, order=-1, dir="z")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.reaction_loads
{R1: -120, R2: -120, R3: -1350, R4: -2700}

solve_for_torsion()
Solves for the angular deflection due to the torsional effects of moments being
applied in the x-direction i.e. out of or into the beam.

Here, a positive torque means the direction of the torque is positive i.e. out of the
beam along the beam-axis. Likewise, a negative torque signifies a torque into the
beam cross-section.
Examples

```python
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, E, G, I, A, x)
>>> b.apply_moment_load(4, 4, -2, dir='x')
>>> b.apply_moment_load(4, 8, -2, dir='x')
>>> b.apply_moment_load(4, 8, -2, dir='x')
>>> b.solve_for_torsion()
>>> b.angular_deflection().subs(x, 3)
18/(G*I)
```

torsional_moment()

Returns expression of Torsional moment present inside the Beam object.

Solving Beam Bending Problems using Singularity Functions

To make this document easier to read, enable pretty printing:

```python
>>> from sympy import *
>>> x, y, z = symbols('x y z')
>>> init_printing(use_unicode=True, wrap_line=False)
```

Beam

A planar beam is a structural element that is capable of withstanding load through resistance to internal shear and bending. Beams are characterized by their length, constraints, cross-sectional second moment of area, and elastic modulus. In SymPy, 2D beam objects are constructed by specifying the following properties:

- **Length**
- **Elastic Modulus**
- **Second Moment of Area**
- **Variable**: A symbol representing the location along the beam’s length. By default, this is set to Symbol(x).
- **Boundary Conditions**
 - bc_slope: Boundary conditions for slope.
 - bc_deflection: Boundary conditions for deflection.
- **Load Distribution**

Once the above are specified, the following methods are used to compute useful information about the loaded beam:

- `solve_for_reaction_loads()`
- `shear_force()`
- `bending_moment()`
• `slope()`

Examples

Below are examples of a variety two dimensional beam bending problems.

Example 1

A cantilever beam 9 meters in length has a distributed constant load of 8 kN/m applied downward from the fixed end over a 5 meter distance. A counterclockwise moment of 50 kN-m is applied 5 meters from the fixed end. Lastly, a downward point load of 12 kN is applied at the free end of the beam.

![Diagram of beam bending problem](image)

Note: The user is free to choose their own sign convention. In this case the downward forces and counterclockwise bending moment being positive.

The beam must be initialized with the length, modulus of elasticity, and the second moment of area. These quantities can be symbols or numbers.

```python
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> E, I = symbols('E, I')
>>> b = Beam(9, E, I)
```

The three loads are applied to the beam using the `apply_load()` method. This method supports point forces, point moments, and polynomial distributed loads of any order, i.e. \(c, cx, cx^2, cx^3, \ldots \).

The 12 kN point load is in the negative direction, at the location of 9 meters, and the polynomial order is specified as -1:

```python
>>> b.apply_load(12, 9, -1)
```

The `load` attribute can then be used to access the loading function in singularity function form:
Similarly, the positive moment can be applied with a polynomial order -2:

```python
>>> b.apply_load(50, 5, -2)
```

The distributed load is of order 0 and spans x=0 to x=5:

```python
>>> b.apply_load(8, 0, 0, end=5)
```

The fixed end imposes two boundary conditions: 1) no vertical deflection and 2) no rotation. These are specified by appending tuples of x values and the corresponding deflection or slope values:

```python
>>> b.bc_deflection.append((0, 0))
>>> b.bc_slope.append((0, 0))
```

These boundary conditions introduce an unknown reaction force and moment which need to be applied to the beam to maintain static equilibrium:

```python
>>> R, M = symbols('R, M')
>>> b.apply_load(R, 0, -1)
>>> b.apply_load(M, 0, -2)
>>> b.load
-2  -1  0   -2  0   -1
M·<x> + R·<x> + 8·<x> + 50·<x - 5> - 8·<x - 5> + 12·<x - 9>
```

These two variables can be solved for in terms of the applied loads and the final loading can be displayed:

```python
>>> b.solve_for_reaction_loads(R, M)
>>> b.reaction_loads
{M: 158, R: -52}
>>> b.load
-2  -1  0   -2  0   -1
158·<x> - 52·<x> + 8·<x> + 50·<x - 5> - 8·<x - 5> + 12·<x - 9>
```

At this point, the beam is fully defined and the internal shear and bending moments are calculated:

```python
>>> b.shear_force()
-1  0  1  1  0
- 158·<x> + 52·<x> - 8·<x> - 50·<x - 5> + 8·<x - 5> - 12·<x - 9>
```

```python
>>> b.bending_moment()
0  1  2  0  2  1
- 158·<x> + 52·<x> - 4·<x> - 50·<x - 5> + 4·<x - 5> - 12·<x - 9>
```

These can be visualized by calling the respective plot methods:

```python
>>> b.plot_shear_force()
>>> b.plot_bending_moment()
```
Shear Force

5.8. Topics
The beam will deform under load and the slope and deflection can be determined with:

```python
>>> b.slope()
\begin{pmatrix}
\frac{1}{3} & 2 & \frac{4 \cdot x}{3} \\
- \frac{158 \cdot x}{3} & \frac{26 \cdot x}{3} & - \frac{50 \cdot x - 5}{3} & + & \frac{4 \cdot x - 5}{3} & - \frac{6 \cdot x - 9}{3} \\
\end{pmatrix}

\frac{E \cdot I}{
\begin{pmatrix}
\frac{2}{3} & \frac{26 \cdot x}{3} & \frac{x}{3} & - \frac{25 \cdot x - 5}{3} & + & \frac{x - 5}{3} & - \frac{2 \cdot x - 9}{3} \\
\end{pmatrix}

\frac{E \cdot I}{\}

>>> b.deflection()
```

The slope and deflection of the beam can be plotted so long as numbers are provided for the modulus and second moment:

```python
>>> b.plot_slope(subs={E: 20E9, I: 3.25E-6})
>>> b.plot_deflection(subs={E: 20E9, I: 3.25E-6})
```

All of the plots can be shown in one figure with:
Example 2

There is a beam of length 30 meters. A moment of magnitude 120 Nm is applied in the counter-clockwise direction at the end of the beam. A point load of magnitude 8 N is applied from the top of the beam at the starting point. There are two simple supports below the beam. One at the end and another one at a distance of 10 meters from the start. The deflection is restricted at both the supports.

Note: Using the sign convention of downward forces and counterclockwise moment being positive.
```python
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols

>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')

>>> b = Beam(30, E, I)
>>> b.apply_load(8, 0, -1)
>>> b.apply_load(R1, 10, -1)
>>> b.apply_load(R2, 30, -1)
>>> b.apply_load(120, 30, -2)

>>> b.bc_deflection.append((10, 0))
>>> b.bc_deflection.append((30, 0))

>>> b.solve_for_reaction_loads(R1, R2)

>>> b.reaction_loads
{R1: -18, R2: 10}

>>> b.load
-1  -1  -2  -1
8⋅<x> - 18⋅<x - 10> + 120⋅<x - 30> + 10⋅<x - 30>

>>> b.shear_force()
0  0  -1  0
- 8⋅<x> + 18⋅<x - 10> - 120⋅<x - 30> - 10⋅<x - 30>

>>> b.bending_moment()
1  1  0  1
- 8⋅<x> + 18⋅<x - 10> - 120⋅<x - 30> - 10⋅<x - 30>

>>> b.slope()
2  2  1  2  2  1600
4⋅<x> - 9⋅<x - 10> + 120⋅<x - 30> + 5⋅<x - 30> - ───────
3

>>> b.deflection()
3  3
1600⋅x 4⋅<x>  3 2  5⋅<x - 30> 3
- ───── + ───── - 3⋅<x - 10> + 60⋅<x - 30> + ─────── + 4000
3 3 3

E⋅I

E⋅I
```

Example 3

A beam of length 6 meters is having a roller support at the start and a hinged support at the end. A counterclockwise moment of 1.5 kN-m is applied at the mid of the beam. A constant distributed load of 3 kN/m and a ramp load of 1 kN/m/m is applied from the mid till the end of the beam.

<table>
<thead>
<tr>
<th>ramp load = 1 kN/m/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant load = 3 kN/m</td>
</tr>
<tr>
<td>1.5 kN-m</td>
</tr>
</tbody>
</table>

(continues on next page)
Note: Using the sign convention of downward forces and counterclockwise moment being positive.

```python
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols, plot, S

>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(6, E, I)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(-S(3)/2, 3, -2)
>>> b.apply_load(3, 3, 0)
>>> b.apply_load(1, 3, 1)
>>> b.apply_load(R2, 6, -1)
>>> b.bc_deflection.append((0, 0))
>>> b.bc_deflection.append((6, 0))
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.reaction_loads
{R_1: -11/4, R_2: -43/4}
```

```python
>>> b.load
-1
11⋅<x> 3⋅<x - 3> 0 1 43⋅<x - 6>
- ─────── - ─────────── + 3⋅<x - 3> + <x - 3> - ───────────
4 2 4

>>> plot(b.load)
```

```python
>>> b.shear_force()
0
11⋅<x> 3⋅<x - 3> 1 <x - 3> 43⋅<x - 6>
- ─────── + ─────────── - 3⋅<x - 3> - ─────── + ───────────
4 2 2 4

>>> b.bending_moment()
1
11⋅<x> 3⋅<x - 3> 3⋅<x - 3> <x - 3> 43⋅<x - 6>
+ ─────── - ────────── - ────────── - ─────── + ───────────
4 2 2 6 4

>>> b.slope()
2
11⋅<x> 3⋅<x - 3> <x - 3> <x - 3> 43⋅<x - 6> 78
- ─────── - ────────── + ─────── + ─────── - ─────── + ──
8 2 2 24 8 5
```

5.8. Topics
Example 4

An overhanging beam of length 8 meters is pinned at 1 meter from starting point and supported by a roller 1 meter before the other end. It is subjected to a distributed constant load of 10 KN/m from the starting point till 2 meters away from it. Two point loads of 20KN and 8KN are applied at 5 meters and 7.5 meters away from the starting point respectively.
Example 5

A cantilever beam of length 6 meters is under downward distributed constant load with magnitude of 4.0 KN/m from starting point till 2 meters away from it. A ramp load of 1 kN/m/m applied from the mid till the end of the beam. A point load of 12KN is also applied in same direction 4 meters away from start.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols

>>> E, I, M, V = symbols('E I M V')
>>> b = Beam(6, E, I)
>>> b.apply_load(V, 0, -1)
>>> b.apply_load(M, 0, -2)
>>> b.apply_load(4, 0, 0, end=2)
>>> b.apply_load(12, 4, -1)
>>> b.apply_load(1, 3, 1, end=6)
>>> b.solve_for_reaction_loads(V, M)
>>> b.reaction_loads
{M: 157/2, V: -49/2}

>>> b.load
-2 -1
157⋅<x> 49⋅<x> 0 0 1 -1

-6> - <x - 6>

>>> b.shear_force()
-1 0 2
157⋅<x> 49⋅<x> 1 1 <x - 3> 0

-6> +

2 2

>>> b.bending_moment()
0 1 3
2 3 157⋅<x> 49⋅<x> 2 2 <x - 3> 1 3⋅<x - 6>

-6> +

2 2 6 2

6

>>> b.bc_deflection = [(0, 0)]
>>> b.bc_slope = [(0, 0)]
>>> b.slope()
\[
\begin{pmatrix}
\frac{1}{2} & 2 & 3 & 3 & 4 \\
157⋅<x> & 49⋅<x> & 2⋅<x> & 2⋅<x - 2> & <x - 3> & 2 & <x - 6>
\end{pmatrix}
\]

-6> +

E⋅I

>>> b.deflection()
\[
\begin{pmatrix}
\frac{2}{24} & 3 & 4 & 4 & 5 \\
\end{pmatrix}
\]

(continues on next page)
Example 6

An overhanging beam of length 11 meters is subjected to a distributed constant load of 2 KN/m from 2 meters away from the starting point till 6 meters away from it. It is pinned at the starting point and is resting over a roller 8 meters away from that end. Also a counterclockwise moment of 5 KN-m is applied at the overhanging end.

```python
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(11, E, I)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(2, 2, 0, end=6)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(5, 11, -2)
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.reaction_loads
{R1: -37/8, R2: -27/8}
>>> b.load
-1
37⋅<x> 0 0 27⋅<x - 8> 8
- ─────── + 2⋅<x - 2> - 2⋅<x - 6> - ─────── + 5⋅<x - 11>
8
>>> b.shear_force()
0
37⋅<x> 1 27⋅<x - 8> 0
- ─────── + 2⋅<x - 2> + 2⋅<x - 6> + ─────── - 5⋅<x - 11>
8
```

(continues on next page)
Example 7

There is a beam of length \(l \), fixed at both ends. A concentrated point load of magnitude \(F \) is applied in downward direction at mid-point of the beam.

```
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> E, I, F = symbols('E I F')
>>> l = symbols('l', positive=True)
>>> b = Beam(l, E, I)
>>> R1, R2 = symbols('R1 R2')
>>> M1, M2 = symbols('M1, M2')
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(M1, 0, -2)
>>> b.apply_load(R2, l, -1)
>>> b.apply_load(M2, l, -2)
```
>>> b.apply_load(-F, l/2, -1)

```python
>>> b.bc_deflection = [(0, 0), (l, 0)]
>>> b.bc_slope = [(0, 0), (l, 0)]
>>> b.solve_for_reaction_loads(R1, R2, M1, M2)

>>> b.reaction_loads

```

```
\[
\begin{align*}
M_1: \frac{-F\cdot l}{8}, & \quad M_2: \frac{F\cdot l}{8}, \\
R_1: -F, & \quad R_2: -F
\end{align*}
\]

```

```python
>>> b.load

```

```
\[
\begin{align*}
-2 & \quad -2 & \quad -1 & \quad -1 & \quad -1 \\
\frac{F\cdot l\cdot<x>}{8} & + & \frac{-F\cdot l\cdot<-l+x>}{8} & + & \frac{F\cdot<x>}{2} & - & \frac{F\cdot<-l+x>}{2}
\end{align*}
\]

```

```python
>>> b.shear_force()

```

```
\[
\begin{align*}
\frac{-1}{8} & \quad -1 & \quad 0 & \quad 0 & \quad 0 \\
\frac{F\cdot l\cdot<x>}{8} & - & \frac{F\cdot l\cdot<-l+x>}{8} & - & \frac{F\cdot<x>}{2} & + & \frac{F\cdot<-l+x>}{2}
\end{align*}
\]

```

```python
>>> b.bending_moment()

```

```
\[
\begin{align*}
0 & \quad 0 & \quad 1 & \quad 1 & \quad 1 \\
\frac{F\cdot l\cdot<x>}{8} & - & \frac{F\cdot l\cdot<-l+x>}{8} & - & \frac{F\cdot<x>}{2} & + & \frac{F\cdot<-l+x>}{2}
\end{align*}
\]

```

```python
>>> b.slope()

```

```
\[
\begin{pmatrix}
1 & \quad 2
-\frac{F\cdot l\cdot<x>}{8} & -\frac{1}{4} & + & \frac{F\cdot<-l+x>}{4}
\end{pmatrix}
\]

```

```python
>>> b.deflection()

```

```
\[
\begin{pmatrix}
3
-\frac{2}{16} & -\frac{2}{16} & + & \frac{3}{12} & - & \frac{3}{12}
\end{pmatrix}
\]

```

```python
```
Example 8

There is a beam of length $4 \times l$, having a hinge connector at the middle. It is having a fixed support at the start and also has two rollers at a distance of l and $4 \times l$ from the starting point. A concentrated point load P is also applied at a distance of $3 \times l$ from the starting point.

```python
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E I')
>>> l = symbols('l', positive=True)
>>> R1, M1, R2, R3, P = symbols('R1 M1 R2 R3 P')
>>> b1 = Beam(2*l, E, I)
>>> b2 = Beam(2*l, E, I)
>>> b = b1.join(b2, "hinge")
>>> b.apply_load(M1, 0, -2)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, l, -1)
>>> b.apply_load(R3, 4*l, -1)
>>> b.apply_load(P, 3*l, -1)
>>> b.bc_slope = [(0, 0)]
>>> b.bc_deflection = [(0, 0), (l, 0), (4*l, 0)]
>>> b.solve_for_reaction_loads(M1, R1, R2, R3)
>>> b.reaction_loads
{M1: -P⋅l 3⋅P -5⋅P -P \n 4 4 4 2 }, R1: ─────, R2: ─────, R3: ─────, R3: ─────
{ 4 4 4 2 }

>>> b.load
-2 3⋅P⋅<x> 5⋅P⋅<-l + x> -1 1
- ── + ─── - ─── + P⋅<-3⋅l + x> + P⋅<-4⋅l + x> - ───
4 4 4 2 2

>>> b.shear_force()
-1 3⋅P⋅<x> 5⋅P⋅<-l + x> 0 0
- ── + ─── - ─── + P⋅<-3⋅l + x> + P⋅<-4⋅l + x> + ───
4 4 4 2 2

>>> b.bending_moment()
0 1 1
```

(continues on next page)
\[
\frac{P \cdot l \cdot <x>}{4} - \frac{3 \cdot P \cdot <x>}{4} + \frac{5 \cdot P \cdot <-l + x>}{4} - \frac{P \cdot <-3 \cdot l + x>}{2} + \frac{1 \cdot P \cdot <-4 \cdot l + x>}{2}
\]

```python
>>> b.slope()
\[
\begin{array}{cccc}
2 & 2 & 2 & 2 \\
1 & 2 & 2 & 2
\end{array}
\]
```

```python
>>> b.deflection()
\[
\begin{array}{cccc}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{array}
\]
```

```python
\[
\begin{array}{cccc}
P \cdot l \cdot <x> & P \cdot <x> & 5 \cdot P \cdot <-l + x> & P \cdot <-2 \cdot l + x>
\end{array}
\]
```
Example 9

There is a cantilever beam of length 4 meters. For first 2 meters its moment of inertia is $1.5*I$ and I for the rest. A point load of magnitude 20 N is applied from the top at its free end.

```
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b1 = Beam(2, E, 1.5*I)
>>> b2 = Beam(2, E, I)
>>> b = b1.join(b2, "fixed")
>>> b.apply_load(20, 4, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 0, -2)
>>> b.bc_slope = [(0, 0)]
>>> b.bc_deflection = [(0, 0)]
>>> b.solve_for_reactionLoads(R1, R2)
>>> b.load
[-2 -1 -1
 80.<x> -20.<x> +20.<x - 4>]
>>> b.shear_force()
[-1 0 0
 -80.<x> +20.<x> -20.<x - 4>]
>>> b.bending_moment()
[0 1 1
 -80.<x> +20.<x> -20.<x - 4>]
>>> b.slope()
[1 2 2
 -80.<x> +10.<x> -10.<x - 4> 120
 / 1 2 2 \ 0 ]
\ 2 2 / 0 ]
\ I \ 80.0 ] 0 0.
\ E \ E\ I ]
```
Example 10

A combined beam, with constant flexural rigidity $E*I$, is formed by joining a Beam of length $2*l$ to the right of another Beam of length l. The whole beam is fixed at both of its ends. A point load of magnitude P is also applied from the top at a distance of $2*l$ from starting point.

```python
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> l = symbols('l', positive=True)
>>> b1 = Beam(l, E, I)
>>> b2 = Beam(2*l, E, I)
>>> b = b1.join(b2, "hinge")
>>> M1, A1, M2, A2, P = symbols('M1 A1 M2 A2 P')
>>> b.apply_load(A1, 0, -1)
>>> b.apply_load(M1, 0, -2)
>>> b.apply_load(P, 2*l, -1)
>>> b.apply_load(A2, 3*l, -1)
>>> b.apply_load(M2, 3*l, -2)
>>> b.bc_slope = [(0, 0), (3*l, 0)]
>>> b.bc_deflection = [(0, 0), (3*l, 0)]
>>> b.solve_for_reaction_loads(M1, A1, M2, A2)
>>> b.reaction_loads
{A1: -5*P/18, A2: -13*P/18, M1: 5*P*l/18, M2: -4*P*l/9}
>>> b.load
-2
-2
-1
-1
5*P*l < x >= 4*P*l < -3*l + x > 5*P < x > -1 13*P < -3*l + x >

(continues on next page)
>>> b.shear_force()
      1  -1  0
       18 9 18
      18

>>> b.bending_moment()

>>> b.slope()

>>> b.deflection()
Example 11

Any type of load defined by a polynomial can be applied to the beam. This allows approximation of arbitrary load distributions. The following example shows six truncated polynomial loads across the surface of a beam.

```python
>>> n = 6
>>> b = Beam(10**n, E, I)
>>> for i in range(n):
... b.apply_load(1 / (5**i), 10*i + 5, i, end=10*i + 10)
>>> plot(b.load, (x, 0, 10**n))
```

![Graph showing six truncated polynomial loads across the surface of a beam.](image)
Truss

Truss (Docstrings)

This module can be used to solve problems related to 2D Trusses.

```python
from sympy.physics.continuum_mechanics.truss import Truss
```

A Truss is an assembly of members such as beams, connected by nodes, that create a rigid structure. In engineering, a truss is a structure that consists of two-force members only.

Trusses are extremely important in engineering applications and can be seen in numerous real-world applications like bridges.

Examples

There is a Truss consisting of four nodes and five members connecting the nodes. A force $P$ acts downward on the node D and there also exist pinned and roller joints on the nodes A and B respectively.

```python
>>> t = Truss()
>>> t.add_node("node_1", 0, 0)
>>> t.add_node("node_2", 6, 0)
>>> t.add_node("node_3", 2, 2)
>>> t.add_node("node_4", 2, 0)
>>> t.add_member("member_1", "node_1", "node_4")
>>> t.add_member("member_2", "node_2", "node_4")
>>> t.add_member("member_3", "node_1", "node_3")
>>> t.add_member("member_4", "node_2", "node_3")
>>> t.add_member("member_5", "node_3", "node_4")
>>> t.apply_load("node_4", magnitude=10, direction=270)
>>> t.apply_support("node_1", type="fixed")
>>> t.apply_support("node_2", type="roller")
```

add_member($label$, $start$, $end$)

This method adds a member between any two nodes in the given truss.
Parameters

**label**: String or Symbol

The label for a member. It is the only way to identify a particular member.

**start**: String or Symbol

The label of the starting point/node of the member.

**end**: String or Symbol

The label of the ending point/node of the member.

Examples

```python
>>> from sympy.physics.continuum_mechanics.truss import Truss
>>> t = Truss()
>>> t.add_node('A', 0, 0)
>>> t.add_node('B', 3, 0)
>>> t.add_node('C', 2, 2)
>>> t.add_member('AB', 'A', 'B')
>>> t.members
{'AB': ['A', 'B']}
```

**add_node**(label, x, y)

This method adds a node to the truss along with its name/label and its location.

Parameters

**label**: String or a Symbol

The label for a node. It is the only way to identify a particular node.

**x**: Sympifyable

The x-coordinate of the position of the node.

**y**: Sympifyable

The y-coordinate of the position of the node.

Examples

```python
>>> from sympy.physics.continuum_mechanics.truss import Truss
>>> t = Truss()
>>> t.add_node('A', 0, 0)
>>> t.nodes
[('A', 0, 0)]
>>> t.add_node('B', 3, 0)
>>> t.nodes
[('A', 0, 0), ('B', 3, 0)]
```

**apply_load**(location, magnitude, direction)

This method applies an external load at a particular node

Parameters

**location**: String or Symbol
Label of the Node at which load is applied.

**magnitude: Sympifyable**

Magnitude of the load applied. It must always be positive and any changes in the direction of the load are not reflected here.

**direction: Sympifyable**

The angle, in degrees, that the load vector makes with the horizontal in the counter-clockwise direction. It takes the values 0 to 360, inclusive.

### Examples

```python
>>> from sympy.physics.continuum_mechanics.truss import Truss
>>> from sympy import symbols
>>> t = Truss()
>>> t.add_node('A', 0, 0)
>>> t.add_node('B', 3, 0)
>>> P = symbols('P')
>>> t.apply_load('A', P, 90)
>>> t.apply_load('A', P/2, 45)
>>> t.apply_load('A', P/4, 90)
>>> t.loads
{'A': [[P, 90], [P/2, 45], [P/4, 90]]}
```

**apply_support(location, type)**

This method adds a pinned or roller support at a particular node.

---

#### Parameters

- **location: String or Symbol**
  
  Label of the Node at which support is added.

- **type: String**
  
  Type of the support being provided at the node.

### Examples

```python
>>> from sympy.physics.continuum_mechanics.truss import Truss
>>> t = Truss()
>>> t.add_node('A', 0, 0)
>>> t.add_node('B', 3, 0)
>>> t.apply_support('A', 'pinned')
>>> t.supports
{'A': 'pinned'}
```

**change_member_label(label, new_label)**

This method changes the label of a member.

---

#### Parameters

- **label: String or Symbol**
  
  The label of the member for which the label has to be changed.
new_label: String or Symbol

The new label of the member.

Examples

```python
>>> from sympy.physics.continuum_mechanics.truss import Truss
>>> t = Truss()
>>> t.add_node('A', 0, 0)
>>> t.add_node('B', 3, 0)
>>> t.nodes
[('A', 0, 0), ('B', 3, 0)]
>>> t.change_node_label('A', 'C')
>>> t.nodes
[('C', 0, 0), ('B', 3, 0)]
>>> t.add_member('BC', 'B', 'C')
>>> t.members
{'BC': ['B', 'C']}
>>> t.change_member_label('BC', 'BC_new')
>>> t.members
{'BC_new': ['B', 'C']}
```

change_node_label(label, new_label)

This method changes the label of a node.

Parameters

- **label**: String or Symbol
  - The label of the node for which the label has to be changed.

- **new_label**: String or Symbol
  - The new label of the node.

Examples

```python
>>> from sympy.physics.continuum_mechanics.truss import Truss
>>> t = Truss()
>>> t.add_node('A', 0, 0)
>>> t.add_node('B', 3, 0)
>>> t.nodes
[('A', 0, 0), ('B', 3, 0)]
>>> t.change_node_label('A', 'C')
>>> t.nodes
[('C', 0, 0), ('B', 3, 0)]
```

property internal_forces

Returns the internal forces for all members which are all initialized to 0.

property loads

Returns the loads acting on the truss.
**property member_labels**
Returns the members of the truss along with the start and end points.

**property members**
Returns the members of the truss along with the start and end points.

**property node_labels**
Returns the node labels of the truss.

**property node_positions**
Returns the positions of the nodes of the truss.

**property nodes**
Returns the nodes of the truss along with their positions.

**property reaction_loads**
Returns the reaction forces for all supports which are all initialized to 0.

**remove_load**(location, magnitude, direction)
This method removes an already present external load at a particular node

Parameters

**location**: String or Symbol
Label of the Node at which load is applied and is to be removed.

**magnitude**: Sympifyable
Magnitude of the load applied.

**direction**: Sympifyable
The angle, in degrees, that the load vector makes with the horizontal in the counter-clockwise direction. It takes the values 0 to 360, inclusive.

**Examples**

```python
>>> from sympy.physics.continuum_mechanics.truss import Truss
>>> from sympy import symbols
>>> t = Truss()
>>> t.add_node('A', 0, 0)
>>> t.add_node('B', 3, 0)
>>> P = symbols('P')
>>> t.apply_load('A', P, 90)
>>> t.apply_load('A', P/2, 45)
>>> t.apply_load('A', P/4, 90)
>>> t.loads
{'A': [[P, 90], [P/2, 45], [P/4, 90]]}
>>> t.remove_load('A', P/4, 90)
>>> t.loads
{'A': [[P, 90], [P/2, 45]]}
```

**remove_member**(label)
This method removes a member from the given truss.
Parameters

label: String or Symbol

The label for the member to be removed.

Examples

```python
>>> from sympy.physics.continuum_mechanics.truss import Truss
>>> t = Truss()
>>> t.add_node('A', 0, 0)
>>> t.add_node('B', 3, 0)
>>> t.add_node('C', 2, 2)
>>> t.add_member('AB', 'A', 'B')
>>> t.add_member('AC', 'A', 'C')
>>> t.add_member('BC', 'B', 'C')
>>> t.members
{'AB': ['A', 'B'], 'AC': ['A', 'C'], 'BC': ['B', 'C']}
>>> t.remove_member('AC')
>>> t.members
{'AB': ['A', 'B'], 'BC': ['B', 'C']}
```

remove_node(label)

This method removes a node from the truss.

Parameters

label: String or Symbol

The label of the node to be removed.

Examples

```python
>>> from sympy.physics.continuum_mechanics.truss import Truss
>>> t = Truss()
>>> t.add_node('A', 0, 0)
>>> t.add_node('B', 3, 0)
>>> t.nodes
[('A', 0, 0)]
>>> t.add_node('B', 3, 0)
>>> t.nodes
[('A', 0, 0), ('B', 3, 0)]
>>> t.remove_node('A')
>>> t.nodes
[('B', 3, 0)]
```

remove_support(location)

This method removes support from a particular node.

Parameters

location: String or Symbol

Label of the Node at which support is to be removed.
Examples

```python
>>> from sympy.physics.continuum_mechanics.truss import Truss
>>> t = Truss()
>>> t.add_node('A', 0, 0)
>>> t.add_node('B', 3, 0)
>>> t.apply_support('A', 'pinned')
>>> t.supports
{'A': 'pinned'}
>>> t.remove_support('A')
>>> t.supports
{}```

`solve()`

This method solves for all reaction forces of all supports and all internal forces of all the members in the truss, provided the Truss is solvable.

A Truss is solvable if the following condition is met,

\[\text{2n} \geq \text{r + m}\]

Where \(n\) is the number of nodes, \(r\) is the number of reaction forces, where each pinned support has 2 reaction forces and each roller has 1, and \(m\) is the number of members.

The given condition is derived from the fact that a system of equations is solvable only when the number of variables is lesser than or equal to the number of equations. Equilibrium Equations in x and y directions give two equations per node giving \(2n\) number equations. However, the truss needs to be stable as well and may be unstable if \(2n > r + m\). The number of variables is simply the sum of the number of reaction forces and member forces.

Note: The sign convention for the internal forces present in a member revolves around whether each force is compressive or tensile. While forming equations for each node, internal force due to a member on the node is assumed to be away from the node i.e. each force is assumed to be compressive by default. Hence, a positive value for an internal force implies the presence of compressive force in the member and a negative value implies a tensile force.

Examples

```python
>>> from sympy.physics.continuum_mechanics.truss import Truss
>>> t = Truss()
>>> t.add_node("node_1", 0, 0)
>>> t.add_node("node_2", 6, 0)
>>> t.add_node("node_3", 2, 2)
>>> t.add_node("node_4", 2, 0)
>>> t.add_member("member_1", "node_1", "node_2")
>>> t.add_member("member_2", "node_2", "node_4")
>>> t.add_member("member_3", "node_1", "node_3")
>>> t.add_member("member_4", "node_2", "node_3")
>>> t.add_member("member_5", "node_3", "node_4")
```

(continues on next page)
>>> t.apply_load("node_4", magnitude=10, direction=270)
>>> t.apply_support("node_1", type="pinned")
>>> t.apply_support("node_2", type="roller")
>>> t.solve()
>>> t.reaction_loads
{'R_node_1_x': 0, 'R_node_1_y': 20/3, 'R_node_2_y': 10/3}
>>> t.internal_forces
{'member_1': 20/3, 'member_2': 20/3, 'member_3': -20*sqrt(2)/3,
 'member_4': -10*sqrt(5)/3, 'member_5': 10}

property supports

Returns the nodes with provided supports along with the kind of support provided i.e. pinned or roller.

5.8.7 Utilities

Contents

Testing

This module contains code for running the tests in SymPy.

Contents:

- **pytest**

 pytest hacks to support XFAIL/XPASS

 sympy.testing.pytest.SKIP(reason)

 Similar to skip(), but this is a decorator.

 sympy.testing.pytest.nocache_fail(func)

 Dummy decorator for marking tests that fail when cache is disabled

 sympy.testing.pytest.raises(expectedException, code=None)

 Tests that code raises the exception expectedException.

 code may be a callable, such as a lambda expression or function name.

 If code is not given or None, raises will return a context manager for use in with statements; the code to execute then comes from the scope of the with.

 raises() does nothing if the callable raises the expected exception, otherwise it raises an AssertionError.
Examples

```python
>>> from sympy.testing.pytest import raises

>>> raises(ZeroDivisionError, lambda: 1/0)
<ExceptionInfo ZeroDivisionError(...)>

>>> raises(ZeroDivisionError, lambda: 1/0)
Failed: DID NOT RAISE

>>> raises(ZeroDivisionError, lambda: 1/2)
Traceback (most recent call last):
... Failed: DID NOT RAISE

Note that you cannot test multiple statements via with raises:

```python
>>> with raises(ZeroDivisionError):
... n = 1/0 # will execute and raise, aborting the `with`
... n = 9999/0 # never executed
```

This is just what with is supposed to do: abort the contained statement sequence at the first exception and let the context manager deal with the exception.

To test multiple statements, you’ll need a separate with for each:

```python
>>> with raises(ZeroDivisionError):
... n = 1/0 # will execute and raise
>>> with raises(ZeroDivisionError):
... n = 9999/0 # will also execute and raise
```

sympy.testing.pytest.skip_under_pyodide(message)
Decorator to skip a test if running under pyodide.

sympy.testing.pytest.warns(warningcls, *, match='', test_stacklevel=True)
Like raises but tests that warnings are emitted.

```python
>>> from sympy.testing.pytest import warns
>>> import warnings

>>> with warns(UserWarning):
... warnings.warn('deprecated', UserWarning, stacklevel=2)

>>> with warns(UserWarning):
... pass
Traceback (most recent call last):
... Failed: DID NOT WARN. No warnings of type UserWarning was emitted.
```

The list of emitted warnings is: [].

5.8. Topics
test_stacklevel makes it check that the stacklevel parameter to warn() is set so that
the warning shows the user line of code (the code under the warns() context manager).
Set this to False if this is ambiguous or if the context manager does not test the direct
user code that emits the warning.

If the warning is a SymPyDeprecationWarning, this additionally tests that the
active_deprecations_target is a real target in the active-deprecations.md file.

```python
sympy.testing.pytest.warns_deprecated_sympy()
```

Shorthand for warns(SymPyDeprecationWarning)

This is the recommended way to test that SymPyDeprecationWarning is emitted for depre-
cated features in SymPy. To test for other warnings use warns. To suppress warnings
without asserting that they are emitted use ignore_warnings.

**Note:** warns_deprecated_sympy() is only intended for internal use in the SymPy test
suite to test that a deprecation warning triggers properly. All other code in the SymPy
codebase, including documentation examples, should not use deprecated behavior.

If you are a user of SymPy and you want to disable SymPyDeprecationWarnings, use
warnings filters (see *Silencing SymPy Deprecation Warnings* (page 214)).

```python
>>> from sympy.testing.pytest import warns_deprecated_sympy
>>> from sympy.utilities.exceptions import sympy_deprecation_warning
```

```python
>>> with warns_deprecated_sympy():
 ...
 sympy_deprecation_warning("Don't use",
 ...
 deprecated_since_version="1.0",
 ...
 active_deprecations_target="active-deprecations")
```

```python
>>> with warns_deprecated_sympy():
 ...
 pass
```

`Traceback (most recent call last):`

```python
Failed: DID NOT WARN. No warnings of type SymPyDeprecationWarning were emitted. The list of emitted warnings is: [].
```

**Note:** Sometimes the stacklevel test will fail because the same warning is emitted mul-
tiple times. In this case, you can use sympy.utilities.exceptions.ignore_warnings() (page 2138) in the code to prevent the SymPyDeprecationWarning from being emitted
gain recursively. In rare cases it is impossible to have a consistent stacklevel for dep-
recation warnings because different ways of calling a function will produce different call
stacks.. In those cases, use warns(SymPyDeprecationWarning) instead.

**See also:**

sympy.utilities.exceptions.SymPyDeprecationWarning (page 2137), sympy.
utilities.exceptions.sympy_deprecation_warning (page 2138), sympy.utilities.
decorator.deprecated (page 2128)
Randomised Testing

Deprecated since version 1.10: sympy.testing.randtest functions have been moved to sympy.core.random (page 1122).

Run Tests

This is our testing framework.

Goals:

• it should be compatible with py.test and operate very similarly (or identically)
• does not require any external dependencies
• preferably all the functionality should be in this file only
• no magic, just import the test file and execute the test functions, that’s it
• portable

class sympy.testing.runtests.PyTestReporter(verbosel=False, tb='short', colorsel=True,
force_colorsel=False, splitel=None)

Py.test like reporter. Should produce output identical to py.test.

write(text, color='', align='left', width=None, force_colorsel=False)

Prints a text on the screen.

It uses sys.stdout.write(), so no readline library is necessary.

Parameters

color : choose from the colors below, ”” means default color

align : “left”/"right", “left” is a normal print, “right” is aligned on
the right-hand side of the screen, filled with spaces if necessary

width : the screen width

class sympy.testing.runtests.Reporter

Parent class for all reporters.

class sympy.testing.runtests.SymPyDocTestFinder(verbosel=False,
parser=<doctest.DocTestParser object>, recurseel=True,
exclude_emptyel=True)

A class used to extract the DocTests that are relevant to a given object, from its doc-
string and the docstrings of its contained objects. Doctests can currently be extracted
from the following object types: modules, functions, classes, methods, staticmethods,
classmethods, and properties.

Modified from doctest’s version to look harder for code that appears comes from a dif-
ferent module. For example, the @vectorize decorator makes it look like functions come
from multidimensional.py even though their code exists elsewhere.

class sympy.testing.runtests.SymPyDocTestRunner(checker=None, verbosel=None,
optionflags=0)

A class used to run DocTest test cases, and accumulate statistics. The run method is
used to process a single DocTest case. It returns a tuple (f, t), where t is the number of
test cases tried, and f is the number of test cases that failed.

5.8. Topics
Modified from the doctest version to not reset the sys.displayhook (see issue 5140).
See the docstring of the original DocTestRunner for more information.

```python
run(test, compileflags=None, out=None, clear_globs=True)
```
Run the examples in `test`, and display the results using the writer function `out`.

The examples are run in the namespace `test.globs`. If `clear_globs` is true (the default), then this namespace will be cleared after the test runs, to help with garbage collection. If you would like to examine the namespace after the test completes, then use `clear_globs=False`.

`compileflags` gives the set of flags that should be used by the Python compiler when running the examples. If not specified, then it will default to the set of future-import flags that apply to `globs`.

The output of each example is checked using SymPyDocTestRunner.check_output, and the results are formatted by the SymPyDocTestRunner.report_* methods.

class sympy.testing.runtests.SymPyOutputChecker
Compared to the OutputChecker from the stdlib our OutputChecker class supports numerical comparison of floats occurring in the output of the doctest examples

```python
check_output(want, got, optionflags)
```
Return True iff the actual output from an example (`got`) matches the expected output (`want`). These strings are always considered to match if they are identical; but depending on what option flags the test runner is using, several non-exact match types are also possible. See the documentation for TestRunner for more information about option flags.

class sympy.testing.runtests.SymPyTestResults(failed, attempted)

`attempted`  
Alias for field number 1

`failed`  
Alias for field number 0

```python
convert_to_native_paths(lst)
```
Converts a list of ‘/’ separated paths into a list of native (os.sep separated) paths and converts to lowercase if the system is case insensitive.

```python
doctest(*paths, subprocess=True, rerun=0, **kwargs)
```
Runs doctests in all *.py files in the SymPy directory which match any of the given strings in `paths` or all tests if `paths=[]`.

Notes:
- Paths can be entered in native system format or in unix, forward-slash format.
- Files that are on the blacklist can be tested by providing their path; they are only excluded if no paths are given.
Examples

```python
>>> import sympy
```

Run all tests:
```python
>>> sympy.doctest()
```

Run one file:
```python
>>> sympy.doctest("sympy/core/basic.py")
>>> sympy.doctest("polynomial.rst")
```

Run all tests in sympy/functions/ and some particular file:
```python
>>> sympy.doctest("/functions", "basic.py")
```

Run any file having polynomial in its name, doc/src/modules/polynomial.rst, sympy/functions/special/polynomials.py, and sympy/polys/polynomial.py:
```python
>>> sympy.doctest("polynomial")
```

The split option can be passed to split the test run into parts. The split currently only splits the test files, though this may change in the future. `split` should be a string of the form ‘a/b’, which will run part a of b. Note that the regular doctests and the Sphinx doctests are split independently. For instance, to run the first half of the test suite:
```python
>>> sympy.doctest(split='1/2')
```

The subprocess and verbose options are the same as with the function `test()` (see the docstring of that function for more information) except that verbose may also be set equal to 2 in order to print individual doctest lines, as they are being tested.

`sympy.testing.runtests.get_sympy_dir()`
Returns the root SymPy directory and set the global value indicating whether the system is case sensitive or not.

`sympy.testing.runtests.raise_on_deprecated()`
Context manager to make DeprecationWarning raise an error

This is to catch SymPyDeprecationWarning from library code while running tests and doctests. It is important to use this context manager around each individual test/doctest in case some tests modify the warning filters.

`sympy.testing.runtests.run_all_tests(test_args=(), test_kwargs=None, doctest_args=(), doctest_kwargs=None, examples_args=(), examples_kwargs=None)`

Run all tests.

Right now, this runs the regular tests (bin/test), the doctests (bin/doctest), and the examples (examples/all.py).

This is what `setup.py test` uses.

You can pass arguments and keyword arguments to the test functions that support them (for now, test, doctest, and the examples). See the docstrings of those functions for a description of the available options.
For example, to run the solvers tests with colors turned off:

```python
>>> from sympy.testing.runtests import run_all_tests
>>> run_all_tests(test_args=("solvers"),
... test_kwargs={"colors:False"})
```

sympy.testing.runtests.run_in_subprocess_with_hash_randomization(function, function_args=(), function_kwargs=None, command='/opt/hostedtoolcache/Python/3.10.14/x64/bin/python', module='sympy.testing.runtests', force=False)

Run a function in a Python subprocess with hash randomization enabled.

If hash randomization is not supported by the version of Python given, it returns False. Otherwise, it returns the exit value of the command. The function is passed to sys.exit(), so the return value of the function will be the return value.

The environment variable PYTHONHASHSEED is used to seed Python's hash randomization. If it is set, this function will return False, because starting a new subprocess is unnecessary in that case. If it is not set, one is set at random, and the tests are run. Note that if this environment variable is set when Python starts, hash randomization is automatically enabled. To force a subprocess to be created even if PYTHONHASHSEED is set, pass force=True. This flag will not force a subprocess in Python versions that do not support hash randomization (see below), because those versions of Python do not support the -R flag.

function should be a string name of a function that is importable from the module module, like "_test". The default for module is "sympy.testing.runtests". function_args and function_kwargs should be a repr-able tuple and dict, respectively. The default Python command is sys.executable, which is the currently running Python command.

This function is necessary because the seed for hash randomization must be set by the environment variable before Python starts. Hence, in order to use a predetermined seed for tests, we must start Python in a separate subprocess.

Hash randomization was added in the minor Python versions 2.6.8, 2.7.3, 3.1.5, and 3.2.3, and is enabled by default in all Python versions after and including 3.3.0.

Examples

```python
>>> from sympy.testing.runtests import (
... run_in_subprocess_with_hash_randomization)
>>> # run the core tests in verbose mode
>>> run_in_subprocess_with_hash_randomization("_test",
... function_args=("core"),
... function_kwargs={'verbose': True})
Will return 0 if sys.executable supports hash randomization and tests
pass, 1 if they fail, and False if it does not support hash
randomization.
```
sympy.testing.runtests.split_list(l, split, density=None)

Splits a list into part a of b

split should be a string of the form ‘a/b’. For instance, ‘1/3’ would give the split one of three.

If the length of the list is not divisible by the number of splits, the last split will have more items.

density may be specified as a list. If specified, tests will be balanced so that each split has as equal-as-possible amount of mass according to density.

```python
>>> from sympy.testing.runtests import split_list
>>> a = list(range(10))
>>> split_list(a, '1/3')
[0, 1, 2]
>>> split_list(a, '2/3')
[3, 4, 5]
>>> split_list(a, '3/3')
[6, 7, 8, 9]
```

sympy.testing.runtests.sympytestfile(filename, module_relative=True, name=None, package=None, globs=None, verbose=None, report=True, optionflags=0, extraglobs=None, raise_on_error=False, parser=<doctest.DocTestParser object>, encoding=None)

Test examples in the given file. Return (#failures, #tests).

Optional keyword arg module_relative specifies how filenames should be interpreted:

- If module_relative is True (the default), then filename specifies a module-relative path. By default, this path is relative to the calling module’s directory; but if the package argument is specified, then it is relative to that package. To ensure os-independence, filename should use “/” characters to separate path segments, and should not be an absolute path (i.e., it may not begin with “/”).

- If module_relative is False, then filename specifies an os-specific path. The path may be absolute or relative (to the current working directory).

Optional keyword arg name gives the name of the test; by default use the file’s basename.

Optional keyword argument package is a Python package or the name of a Python package whose directory should be used as the base directory for a module relative filename. If no package is specified, then the calling module’s directory is used as the base directory for module relative filenames. It is an error to specify package if module_relative is False.

Optional keyword arg globs gives a dict to be used as the globals when executing examples; by default, use {}. A copy of this dict is actually used for each docstring, so that each docstring’s examples start with a clean slate.

Optional keyword arg extraglobs gives a dictionary that should be merged into the globals that are used to execute examples. By default, no extra globals are used.

Optional keyword arg verbose prints lots of stuff if true, prints only failures if false; by default, it’s true iff “-v” is in sys.argv.

5.8. Topics
Optional keyword arg `report` prints a summary at the end when true, else prints nothing at the end. In verbose mode, the summary is detailed, else very brief (in fact, empty if all tests passed).

Optional keyword arg `optionflags` or `s` together module constants, and defaults to 0. Possible values (see the docs for details):

- `DONT_ACCEPT_TRUE_FOR_1`
- `DONT_ACCEPT_BLANKLINE`
- `NORMALIZE_WHITESPACE`
- `ELLIPSIS`
- `SKIP`
- `IGNORE_EXCEPTION_DETAIL`
- `REPORT_UDIFF`
- `REPORT_CDIFF`
- `REPORT_NDIFF`
- `REPORT_ONLY_FIRST_FAILURE`

Optional keyword arg `raise_on_error` raises an exception on the first unexpected exception or failure. This allows failures to be post-mortem debugged.

Optional keyword arg `parser` specifies a `DocTestParser` (or subclass) that should be used to extract tests from the files.

Optional keyword arg `encoding` specifies an encoding that should be used to convert the file to unicode.

Advanced tomfoolery: `testmod` runs methods of a local instance of class `doctest.Tester`, then merges the results into (or creates) global `Tester` instance `doctest.master`. Methods of `doctest.master` can be called directly too, if you want to do something unusual. Passing `report=0` to `testmod` is especially useful then, to delay displaying a summary. Invoke `doctest.master.summarize(verbos)` when you’re done fiddling.

```python
sympy.testing.runtests.test(*paths, subprocess=True, rerun=0, **kwargs)
```

Run tests in the specified test_*.py files.

Tests in a particular test_*.py file are run if any of the given strings in `paths` matches a part of the test file’s path. If `paths=[]`, tests in all test_*.py files are run.

Notes:

- If `sort=False`, tests are run in random order (not default).
- Paths can be entered in native system format or in unix, forward-slash format.
- Files that are on the blacklist can be tested by providing their path; they are only excluded if no paths are given.

**Explanation of test results**
<table>
<thead>
<tr>
<th>Output</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>passed</td>
</tr>
<tr>
<td>F</td>
<td>failed</td>
</tr>
<tr>
<td>X</td>
<td>XPassed (expected to fail but passed)</td>
</tr>
<tr>
<td>f</td>
<td>XFAILed (expected to fail and indeed failed)</td>
</tr>
<tr>
<td>s</td>
<td>skipped</td>
</tr>
<tr>
<td>w</td>
<td>slow</td>
</tr>
<tr>
<td>T</td>
<td>timeout (e.g., when --timeout is used)</td>
</tr>
<tr>
<td>K</td>
<td>KeyboardInterrupt (when running the slow tests with --slow, you can interrupt one of them without killing the test runner)</td>
</tr>
</tbody>
</table>

Colors have no additional meaning and are used just to facilitate interpreting the output.

**Examples**

```python
>>> import sympy
```

Run all tests:

```python
>>> sympy.test()
```

Run one file:

```python
>>> sympy.test("sympy/core/tests/test_basic.py")
>>> sympy.test("_basic")
```

Run all tests in sympy/functions/ and some particular file:

```python
>>> sympy.test("sympy/core/tests/test_basic.py",...
 "sympy/functions")
```

Run all tests in sympy/core and sympy/utilities:

```python
>>> sympy.test("/core", "/util")
```

Run specific test from a file:

```python
>>> sympy.test("sympy/core/tests/test_basic.py",...
 kw="test_equality")
```

Run specific test from any file:

```python
>>> sympy.test(kw="subs")
```

Run the tests with verbose mode on:

```python
>>> sympy.test(verbosetrue)
```

Do not sort the test output:
>>> sympy.test(sort=False)

Turn on post-mortem pdb:

>>> sympy.test(pdb=True)

Turn off colors:

>>> sympy.test(colors=False)

Force colors, even when the output is not to a terminal (this is useful, e.g., if you are piping to less -r and you still want colors)

>>> sympy.test(force_colors=False)

The traceback verboseness can be set to "short" or "no" (default is "short")

>>> sympy.test(tb='no')

The split option can be passed to split the test run into parts. The split currently only splits the test files, though this may change in the future. split should be a string of the form ‘a/b’, which will run part a of b. For instance, to run the first half of the test suite:

>>> sympy.test(split='1/2')

The time_balance option can be passed in conjunction with split. If time_balance=True (the default for sympy.test), SymPy will attempt to split the tests such that each split takes equal time. This heuristic for balancing is based on pre-recorded test data.

>>> sympy.test(split='1/2', time_balance=True)

You can disable running the tests in a separate subprocess using subprocess=False. This is done to support seeding hash randomization, which is enabled by default in the Python versions where it is supported. If subprocess=False, hash randomization is enabled/disabled according to whether it has been enabled or not in the calling Python process. However, even if it is enabled, the seed cannot be printed unless it is called from a new Python process.

Hash randomization was added in the minor Python versions 2.6.8, 2.7.3, 3.1.5, and 3.2.3, and is enabled by default in all Python versions after and including 3.3.0.

If hash randomization is not supported subprocess=False is used automatically.

>>> sympy.test(subprocess=False)

To set the hash randomization seed, set the environment variable PYTHONHASHSEED before running the tests. This can be done from within Python using

>>> import os
>>> os.environ['PYTHONHASHSEED'] = '42'

Or from the command line using

$ PYTHONHASHSEED=42 ./bin/test

If the seed is not set, a random seed will be chosen.
Note that to reproduce the same hash values, you must use both the same seed as well as the same architecture (32-bit vs. 64-bit).

Utilities

This module contains some general purpose utilities that are used across SymPy.

Contents:

Autowrap Module

The autowrap module works very well in tandem with the Indexed classes of the Tensor (page 1432). Here is a simple example that shows how to setup a binary routine that calculates a matrix-vector product.

```python
>>> from sympy.utilities.autowrap import autowrap
>>> from sympy import symbols, IndexedBase, Idx, Eq

>>> A, x, y = map(IndexedBase, ['A', 'x', 'y'])

>>> m, n = symbols('m n', integer=True)

>>> i = Idx('i', m)

>>> j = Idx('j', n)

>>> instruction = Eq(y[i], A[i,j]*x[j])

>>> matvec = autowrap(instruction)
```

Because the code printers treat Indexed objects with repeated indices as a summation, the above equality instance will be translated to low-level code for a matrix-vector product. This is how you tell SymPy to generate the code, compile it and wrap it as a python function:

```python
>>> matvec(M, [2, 3])
[3. 2.]
```

Implementation details

The autowrap module is implemented with a backend consisting of CodeWrapper objects. The base class CodeWrapper takes care of details about module name, filenames and options. It also contains the driver routine, which runs through all steps in the correct order, and also takes care of setting up and removing the temporary working directory.

The actual compilation and wrapping is done by external resources, such as the system installed f2py command. The Cython backend runs a distutils setup script in a subprocess. Subclasses of CodeWrapper takes care of these backend-dependent details.
API Reference

Module for compiling codegen output, and wrap the binary for use in python.

**Note:** To use the autowrap module it must first be imported

```python
>>> from sympy.utilities.autowrap import autowrap
```

This module provides a common interface for different external backends, such as f2py, fwrap, Cython, SWIG(?) etc. (Currently only f2py and Cython are implemented) The goal is to provide access to compiled binaries of acceptable performance with a one-button user interface, e.g.,

```python
>>> from sympy.abc import x,y
>>> expr = (x - y)**25
>>> flat = expr.expand()
>>> binary_callable = autowrap(flat)
>>> binary_callable(2, 3)
-1.0
```

Although a SymPy user might primarily be interested in working with mathematical expressions and not in the details of wrapping tools needed to evaluate such expressions efficiently in numerical form, the user cannot do so without some understanding of the limits in the target language. For example, the expanded expression contains large coefficients which result in loss of precision when computing the expression:

```python
>>> binary_callable(3, 2)
0.0
>>> binary_callable(4, 5), binary_callable(5, 4)
(-22925376.0, 25165824.0)
```

Wrapping the unexpanded expression gives the expected behavior:

```python
>>> e = autowrap(expr)
>>> e(4, 5), e(5, 4)
(-1.0, 1.0)
```

The callable returned from autowrap() is a binary Python function, not a SymPy object. If it is desired to use the compiled function in symbolic expressions, it is better to use binary_function() which returns a SymPy Function object. The binary callable is attached as the _imp_attribute and invoked when a numerical evaluation is requested with evalf(), or with lambdify().

```python
>>> from sympy.utilities.autowrap import binary_function
>>> f = binary_function('f', expr)
>>> 2*f(x, y) + y
y + 2*f(x, y)
>>> (2*f(x, y) + y).evalf(2, subs={x: 1, y:2})
0.e-110
```

When is this useful?

1) For computations on large arrays, Python iterations may be too slow, and depending on the mathematical expression, it may be difficult to exploit the advanced index operations provided by NumPy.
2) For really long expressions that will be called repeatedly, the compiled binary should be significantly faster than SymPy’s .evalf()

3) If you are generating code with the codegen utility in order to use it in another project, the automatic Python wrappers let you test the binaries immediately from within SymPy.

4) To create customized ufuncs for use with numpy arrays. See ufuncify.

When is this module NOT the best approach?

1) If you are really concerned about speed or memory optimizations, you will probably get better results by working directly with the wrapper tools and the low level code. However, the files generated by this utility may provide a useful starting point and reference code. Temporary files will be left intact if you supply the keyword tempdir="path/to/files/".

2) If the array computation can be handled easily by numpy, and you do not need the binaries for another project.

class sympy.utilities.autowrap.CodeWrapper(generator, filepath=None, flags=[], verbose=False)

Base Class for code wrappers

class sympy.utilities.autowrap.CythonCodeWrapper(*args, **kwargs)

Wrapper that uses Cython
dump_pyx(routines, f, prefix)
Write a Cython file with Python wrappers
This file contains all the definitions of the routines in c code and refers to the header file.

Arguments

routines
List of Routine instances

f
File-like object to write the file to

prefix
The filename prefix, used to refer to the proper header file. Only the basename of the prefix is used.

class sympy.utilities.autowrap.DummyWrapper(generator, filepath=None, flags=[], verbose=False)

Class used for testing independent of backends

class sympy.utilities.autowrap.F2PyCodeWrapper(*args, **kwargs)
Wrapper that uses f2py

class sympy.utilities.autowrap.UfuncifyCodeWrapper(*args, **kwargs)
Wrapper for Ufuncify
dump_c(routines, f, prefix, funcname=None)
Write a C file with Python wrappers
This file contains all the definitions of the routines in c code.
Arguments

routines
   List of Routine instances

f
   File-like object to write the file to

prefix
   The filename prefix, used to name the imported module.

funcname
   Name of the main function to be returned.

sympy.utilities.autowrap.autowrap(expr, language=None, backend='f2py',
   tempdir=None, args=None, flags=None,
   verbose=False, helpers=None, code_gen=None, **kwargs)

Generates Python callable binaries based on the math expression.

Parameters

expr
   The SymPy expression that should be wrapped as a binary routine.

language : string, optional
   If supplied, (options: 'C' or 'F95'), specifies the language of the generated code. If None [default], the language is inferred based upon the specified backend.

backend : string, optional
   Backend used to wrap the generated code. Either 'f2py' [default], or 'cython'.

tempdir : string, optional
   Path to directory for temporary files. If this argument is supplied, the generated code and the wrapper input files are left intact in the specified path.

args : iterable, optional
   An ordered iterable of symbols. Specifies the argument sequence for the function.

flags : iterable, optional
   Additional option flags that will be passed to the backend.

verbose : bool, optional
   If True, autowrap will not mute the command line backends. This can be helpful for debugging.

helpers : 3-tuple or iterable of 3-tuples, optional
   Used to define auxiliary expressions needed for the main expr. If the main expression needs to call a specialized function it should be passed in via helpers. Autowrap will then make sure that the compiled main expression can link to the helper routine. Items should
be 3-tuples with (function_name, sympy_expression, argument_tuple). It is mandatory to supply an argument sequence to helper routines.

code_gen : CodeGen instance

include_dirs : [string]
A list of directories to search for C/C++ header files (in Unix form for portability).

library_dirs : [string]
A list of directories to search for C/C++ libraries at link time.

libraries : [string]
A list of library names (not filenames or paths) to link against.

extra_compile_args : [string]
Any extra platform- and compiler-specific information to use when compiling the source files in ‘sources’. For platforms and compilers where “command line” makes sense, this is typically a list of command-line arguments, but for other platforms it could be anything.

extra_link_args : [string]
Any extra platform- and compiler-specific information to use when linking object files together to create the extension (or to create a new static Python interpreter). Similar interpretation as for ‘extra_compile_args’.

Examples

```python
>>> from sympy.abc import x, y, z
>>> from sympy.utilities.autowrap import autowrap
>>> expr = ((x - y + z) ** (13)).expand()
>>> binary_func = autowrap(expr)
>>> binary_func(1, 4, 2)
-1.0
```

sympy.utilities.autowrap.binary_function(symfunc, expr, **kwargs)
Returns a SymPy function with expr as binary implementation

This is a convenience function that automates the steps needed to autowrap the SymPy expression and attaching it to a Function object with implemented_function().

Parameters

symfunc : SymPy Function
The function to bind the callable to.

expr : SymPy Expression
The expression used to generate the function.

kwargs : dict
Any kwargs accepted by autowrap.

Examples

```python
>>> from sympy.abc import x, y
>>> from sympy.utilities.autowrap import binary_function
>>> expr = ((x - y)**(25)).expand()
>>> f = binary_function('f', expr)
>>> type(f)
<class 'sympy.core.function.UndefinedFunction'>
>>> 2*f(x, y)
2*f(x, y)
>>> f(x, y).evalf(2, subs={x: 1, y: 2})
-1.0
```

`sympy.utilities.autowrap.ufuncify(args, expr, language=None, backend='numpy', tempdir=None, flags=None, verbose=False, helpers=None, **kwargs)`

Generates a binary function that supports broadcasting on numpy arrays.

**Parameters**

- **args** : iterable
  Either a Symbol or an iterable of symbols. Specifies the argument sequence for the function.

- **expr**
  A SymPy expression that defines the element wise operation.

- **language** : string, optional
  If supplied, (options: ‘C’ or ‘F95’), specifies the language of the generated code. If None [default], the language is inferred based upon the specified backend.

- **backend** : string, optional
  Backend used to wrap the generated code. Either ‘numpy’ [default], ‘cython’, or ‘f2py’.

- **tempdir** : string, optional
  Path to directory for temporary files. If this argument is supplied, the generated code and the wrapper input files are left intact in the specified path.

- **flags** : iterable, optional
  Additional option flags that will be passed to the backend.

- **verbose** : bool, optional
  If True, autowrap will not mute the command line backends. This can be helpful for debugging.

- **helpers** : iterable, optional
  Used to define auxiliary expressions needed for the main `expr`. If the main expression needs to call a specialized function it should be put in
the helpers iterable. Autowrap will then make sure that the compiled main expression can link to the helper routine. Items should be tuples with (<function_name>, <sympy_expression>, <arguments>). It is mandatory to supply an argument sequence to helper routines.

**kwargs : dict

These kwargs will be passed to autowrap if the f2py or cython backend is used and ignored if the numpy backend is used.

**Notes**

The default backend (‘numpy’) will create actual instances of numpy.ufunc. These support ndimensional broadcasting, and implicit type conversion. Use of the other backends will result in a “ufunc-like” function, which requires equal length 1-dimensional arrays for all arguments, and will not perform any type conversions.

**Examples**

```python
>>> from sympy.utilities.autowrap import ufuncify
>>> from sympy.abc import x, y
>>> import numpy as np
>>> f = ufuncify((x, y), y + x**2)
>>> type(f)
<class 'numpy.ufunc'>
>>> f([1, 2, 3], 2)
array([3., 6., 11.])
>>> f(np.arange(5), 3)
array([3., 4., 7., 12., 19.])
```

For the ‘f2py’ and ‘cython’ backends, inputs are required to be equal length 1-dimensional arrays. The ‘f2py’ backend will perform type conversion, but the Cython backend will error if the inputs are not of the expected type.

```python
>>> f_fortran = ufuncify((x, y), y + x**2, backend='f2py')
>>> f_fortran(1, 2)
array([3.])
>>> f_fortran(np.array([1, 2, 3]), np.array([1.0, 2.0, 3.0]))
array([2., 6., 12.])
>>> f_cython = ufuncify((x, y), y + x**2, backend='Cython')
>>> f_cython(1, 2)
Traceback (most recent call last):
 ...
TypeError: Argument '_x' has incorrect type (expected numpy.ndarray, got <class 'int'>)
>>> f_cython(np.array([1.0]), np.array([2.0]))
array([3.0])
```
References

[R982]

Codegen

This module provides functionality to generate directly compilable code from SymPy expressions. The codegen function is the user interface to the code generation functionality in SymPy. Some details of the implementation is given below for advanced users that may want to use the framework directly.

**Note:** The codegen callable is not in the sympy namespace automatically, to use it you must first execute

```python
>>> from sympy.utilities.codegen import codegen
```

Implementation Details

Here we present the most important pieces of the internal structure, as advanced users may want to use it directly, for instance by subclassing a code generator for a specialized application. **It is very likely that you would prefer to use the codegen() function documented above.**

Basic assumptions:

- A generic Routine data structure describes the routine that must be translated into C/Fortran/... code. This data structure covers all features present in one or more of the supported languages.
- Descendants from the CodeGen class transform multiple Routine instances into compilable code. Each derived class translates into a specific language.
- In many cases, one wants a simple workflow. The friendly functions in the last part are a simple api on top of the Routine/CodeGen stuff. They are easier to use, but are less powerful.

Routine

The Routine class is a very important piece of the codegen module. Viewing the codegen utility as a translator of mathematical expressions into a set of statements in a programming language, the Routine instances are responsible for extracting and storing information about how the math can be encapsulated in a function call. Thus, it is the Routine constructor that decides what arguments the routine will need and if there should be a return value.
API Reference

module for generating C, C++, Fortran77, Fortran90, Julia, Rust and Octave/Matlab routines that evaluate SymPy expressions. This module is work in progress. Only the milestones with a ‘+’ character in the list below have been completed.

— How is sympy.utilities.codegen different from sympy.printing.ccode? —

We considered the idea to extend the printing routines for SymPy functions in such a way that it prints complete compilable code, but this leads to a few unsurmountable issues that can only be tackled with dedicated code generator:

• For C, one needs both a code and a header file, while the printing routines generate just one string. This code generator can be extended to support .pyf files for f2py.

• SymPy functions are not concerned with programming-technical issues, such as input, output and input-output arguments. Other examples are contiguous or non-contiguous arrays, including headers of other libraries such as GSL or others.

• It is highly interesting to evaluate several SymPy functions in one C routine, eventually sharing common intermediate results with the help of the cse routine. This is more than just printing.

• From the programming perspective, expressions with constants should be evaluated in the code generator as much as possible. This is different for printing.

— Basic assumptions —

• A generic Routine data structure describes the routine that must be translated into C/Fortran/... code. This data structure covers all features present in one or more of the supported languages.

• Descendants from the CodeGen class transform multiple Routine instances into compilable code. Each derived class translates into a specific language.

• In many cases, one wants a simple workflow. The friendly functions in the last part are a simple api on top of the Routine/CodeGen stuff. They are easier to use, but are less powerful.

— Milestones —

• First working version with scalar input arguments, generating C code, tests

• Friendly functions that are easier to use than the rigorous Routine/CodeGen workflow.

• Integer and Real numbers as input and output

• Output arguments

• InputOutput arguments

• Sort input/output arguments properly

• Contiguous array arguments (numpy matrices)

• Also generate .pyf code for f2py (in autowrap module)

• Isolate constants and evaluate them beforehand in double precision

• Fortran 90

• Octave/Matlab

• Common Subexpression Elimination

• User defined comments in the generated code
- Optional extra include lines for libraries/objects that can eval special functions
- Test other C compilers and libraries: gcc, tcc, libtcc, gcc+gsl, ...
- Contiguous array arguments (SymPy matrices)
- Non-contiguous array arguments (SymPy matrices)
- ccode must raise an error when it encounters something that cannot be translated into c. 
code(integrate(sin(x)/x,x)) does not make sense.
- Complex numbers as input and output
- A default complex datatype
- Include extra information in the header: date, user, hostname, sha1 hash, ...
- Fortran 77
- C++
- Python
- Julia
- Rust
- ...

```python
class sympy.utilities.codegen.Argument(name, datatype=None, dimensions=None, precision=None)
```

An abstract Argument data structure: a name and a data type.
This structure is refined in the descendants below.

```python
class sympy.utilities.codegen.CCodeGen(project='project', printer=None, preprocessor_statements=None, cse=False)
```

Generator for C code.
The .write() method inherited from CodeGen will output a code file and an interface file, 
<prefix>.c and <prefix>.h respectively.

```python
dump_c(routines, f, prefix, header=True, empty=True)
```

Write the code by calling language specific methods.
The generated file contains all the definitions of the routines in low-level code and refers to the header file if appropriate.

**Parameters**

- **routines**: list
  A list of Routine instances.
- **f**: file-like
  Where to write the file.
- **prefix**: string
  The filename prefix, used to refer to the proper header file. Only the basename of the prefix is used.
- **header**: bool, optional
  When True, a header comment is included on top of each source file.
  [default : True]
empty : bool, optional
    When True, empty lines are included to structure the source files.
    [default : True]

dump_h(routines, f, prefix, header=True, empty=True)
    Writes the C header file.
    This file contains all the function declarations.

    Parameters
    routines : list
        A list of Routine instances.
    f : file-like
        Where to write the file.
    prefix : string
        The filename prefix, used to construct the include guards. Only the
basename of the prefix is used.
    header : bool, optional
        When True, a header comment is included on top of each source file.
        [default : True]
    empty : bool, optional
        When True, empty lines are included to structure the source files.
        [default : True]

get_prototype(routine)
    Returns a string for the function prototype of the routine.
    If the routine has multiple result objects, an CodeGenError is raised.
    See: https://en.wikipedia.org/wiki/Function_prototype

class sympy.utilities.codegen.CodeGen(project='project', cse=False)
    Abstract class for the code generators.

dump_code(routines, f, prefix, header=True, empty=True)
    Write the code by calling language specific methods.
    The generated file contains all the definitions of the routines in
    low-level code and refers to the header file if appropriate.

    Parameters
    routines : list
        A list of Routine instances.
    f : file-like
        Where to write the file.
    prefix : string
        The filename prefix, used to refer to the proper header file. Only the
        basename of the prefix is used.
    header : bool, optional
When True, a header comment is included on top of each source file. [default: True]

empty : bool, optional
      When True, empty lines are included to structure the source files. [default: True]

routine(name, expr, argument_sequence=None, global_vars=None)
      Creates a Routine object that is appropriate for this language.
      This implementation is appropriate for at least C/Fortran. Subclasses can override
      this if necessary.
      Here, we assume at most one return value (the l-value) which must be scalar. Additional
      outputs are OutputArguments (e.g., pointers on right-hand-side or pass-by-reference). Matrices
      are always returned via OutputArguments. If argument_sequence is None, arguments will be ordered
      alphabetically, but with all InputArguments first, and then OutputArgument and InOutArguments.

write(routines, prefix, to_files=False, header=True, empty=True)
      Writes all the source code files for the given routines.
      The generated source is returned as a list of (filename, contents) tuples, or is written
      to files (see below). Each filename consists of the given prefix, appended with an
      appropriate extension.

Parameters
routine : list
      A list of Routine instances to be written
prefix : string
      The prefix for the output files
to_files : bool, optional
      When True, the output is written to files. Otherwise, a list of (filename, contents) tuples is returned. [default: False]
header : bool, optional
      When True, a header comment is included on top of each source file. [default: True]
empty : bool, optional
      When True, empty lines are included to structure the source files. [default: True]

class sympy.utilities.codegen.DataType(cname, fname, pyname, jlname, octname, rsname)
      Holds strings for a certain datatype in different languages.

class sympy.utilities.codegen.FCodeGen(project='project', printer=None)
      Generator for Fortran 95 code
      The .write() method inherited from CodeGen will output a code file and an interface file,
      <prefix>.f90 and <prefix>.h respectively.
dump_f95\((routines, f, prefix, header=True, empty=True)\)
Write the code by calling language specific methods.
The generated file contains all the definitions of the routines in low-level code and refers to the header file if appropriate.

**Parameters**
- **routines**: list
  A list of Routine instances.
- **f**: file-like
  Where to write the file.
- **prefix**: string
  The filename prefix, used to refer to the proper header file. Only the basename of the prefix is used.
- **header**: bool, optional
  When True, a header comment is included on top of each source file. [default: True]
- **empty**: bool, optional
  When True, empty lines are included to structure the source files. [default: True]

dump_h\((routines, f, prefix, header=True, empty=True)\)
Writes the interface to a header file.
This file contains all the function declarations.

**Parameters**
- **routines**: list
  A list of Routine instances.
- **f**: file-like
  Where to write the file.
- **prefix**: string
  The filename prefix.
- **header**: bool, optional
  When True, a header comment is included on top of each source file. [default: True]
- **empty**: bool, optional
  When True, empty lines are included to structure the source files. [default: True]

get_interface\(\text{routine}\)
Returns a string for the function interface.
The routine should have a single result object, which can be None. If the routine has multiple result objects, a CodeGenError is raised.

See: https://en.wikipedia.org/wiki/Function_prototype
class sympy.utilities.codegen.JuliaCodeGen(project='project', printer=None)
Generator for Julia code.

The .write() method inherited from CodeGen will output a code file <prefix>.jl.

dump_jl(routines, f, prefix, header=True, empty=True)
Write the code by calling language specific methods.

The generated file contains all the definitions of the routines in low-level code and refers to the header file if appropriate.

Parameters
routines : list
A list of Routine instances.
f : file-like
Where to write the file.

prefix : string
The filename prefix, used to refer to the proper header file. Only the basename of the prefix is used.

header : bool, optional
When True, a header comment is included on top of each source file.
[default: True]

empty : bool, optional
When True, empty lines are included to structure the source files.
[default: True]

routine(name, expr, argument_sequence, global_vars)
Specialized Routine creation for Julia.

class sympy.utilities.codegen.OctaveCodeGen(project='project', printer=None)
Generator for Octave code.

The .write() method inherited from CodeGen will output a code file <prefix>.m.

Octave .m files usually contain one function. That function name should match the filename (prefix). If you pass multiple name_expr pairs, the latter ones are presumed to be private functions accessed by the primary function.

You should only pass inputs to argument_sequence: outputs are ordered according to their order in name_expr.

dump_m(routines, f, prefix, header=True, empty=True, inline=True)
Write the code by calling language specific methods.

The generated file contains all the definitions of the routines in low-level code and refers to the header file if appropriate.

Parameters
routines : list
A list of Routine instances.
f : file-like
Where to write the file.
prefix : string
    The filename prefix, used to refer to the proper header file. Only the
    basename of the prefix is used.

header : bool, optional
    When True, a header comment is included on top of each source file.
    [default : True]

empty : bool, optional
    When True, empty lines are included to structure the source files.
    [default : True]

routine(name, expr, argument_sequence, global_vars)
    Specialized Routine creation for Octave.

class sympy.utilities.codegen.OutputArgument(name, result_var, expr,
    datatype=None, dimensions=None, precision=None)

    OutputArgument are always initialized in the routine.

class sympy.utilities.codegen.Result(expr, name=None, result_var=None,
    datatype=None, dimensions=None, precision=None)

    An expression for a return value.
    The name result is used to avoid conflicts with the reserved word “return” in the Python
    language. It is also shorter than ReturnValue.
    These may or may not need a name in the destination (e.g., “return(x*y)” might return
    a value without ever naming it).

class sympy.utilities.codegen.Routine(name, arguments, results, local_vars,
    global_vars)

    Generic description of evaluation routine for set of expressions.
    A CodeGen class can translate instances of this class into code in a particular language.
    The routine specification covers all the features present in these languages. The Code-
    Gen part must raise an exception when certain features are not present in the target
    language. For example, multiple return values are possible in Python, but not in C or
    Fortran. Another example: Fortran and Python support complex numbers, while C does
    not.

    property result_variables
        Returns a list of OutputArgument, InOutArgument and Result.
        If return values are present, they are at the end of the list.

    property variables
        Returns a set of all variables possibly used in the routine.
        For routines with unnamed return values, the dummies that may or may not be used
        will be included in the set.

class sympy.utilities.codegen.RustCodeGen(project='project', printer=None)

    Generator for Rust code.
    The .write() method inherited from CodeGen will output a code file <prefix>.rs
dump_rs(routines, f, prefix, header=True, empty=True)

Write the code by calling language specific methods.

The generated file contains all the definitions of the routines in low-level code and refers to the header file if appropriate.

Parameters

- **routines**: list
  A list of Routine instances.

- **f**: file-like
  Where to write the file.

- **prefix**: string
  The filename prefix, used to refer to the proper header file. Only the basename of the prefix is used.

- **header**: bool, optional
  When True, a header comment is included on top of each source file. [default: True]

- **empty**: bool, optional
  When True, empty lines are included to structure the source files. [default: True]

get_prototype(routine)

Returns a string for the function prototype of the routine.

If the routine has multiple result objects, an CodeGenError is raised.

See: https://en.wikipedia.org/wiki/Function_prototype

routine(name, expr, argument_sequence, global_vars)

Specialized Routine creation for Rust.

sympy.utilities.codegen.codegen(name_expr, language=None, prefix=None, project='project', to_files=False, header=True, empty=True, argument_sequence=None, global_vars=None, standard=None, code_gen=None, printer=None)

Generate source code for expressions in a given language.

Parameters

- **name_expr**: tuple, or list of tuples
  A single (name, expression) tuple or a list of (name, expression) tuples. Each tuple corresponds to a routine. If the expression is an equality (an instance of class Equality) the left hand side is considered an output argument. If expression is an iterable, then the routine will have multiple outputs.

- **language**: string
  A string that indicates the source code language. This is case insensitive. Currently, ‘C’, ‘F95’ and ‘Octave’ are supported. ‘Octave’ generates code compatible with both Octave and Matlab.

- **prefix**: string, optional
A prefix for the names of the files that contain the source code. Language-dependent suffixes will be appended. If omitted, the name of the first name_expr tuple is used.

**project**: string, optional
A project name, used for making unique preprocessor instructions. [default: “project”]

**to_files**: bool, optional
When True, the code will be written to one or more files with the given prefix, otherwise strings with the names and contents of these files are returned. [default: False]

**header**: bool, optional
When True, a header is written on top of each source file. [default: True]

**empty**: bool, optional
When True, empty lines are used to structure the code. [default: True]

**argument_sequence**: iterable, optional
Sequence of arguments for the routine in a preferred order. A CodeGenError is raised if required arguments are missing. Redundant arguments are used without warning. If omitted, arguments will be ordered alphabetically, but with all input arguments first, and then output or in-out arguments.

**global_vars**: iterable, optional
Sequence of global variables used by the routine. Variables listed here will not show up as function arguments.

**standard**: string

**code_gen**: CodeGen instance

**Examples**

```python
>>> from sympy.utilities.codegen import codegen
>>> from sympy.abc import x, y, z
>>> [(c_name, c_code), (h_name, c_header)] = codegen(
... ("f", x+y*z), "C89", "test", header=False, empty=False)
>>> print(c_name)
test.c
>>> print(c_code)
#include "test.h"
#include "math.h"
double f(double x, double y, double z) {
 double f_result;
 f_result = x + y*z;
 return f_result;
}(continues on next page)```
Another example using Equality objects to give named outputs. Here the filename (prefix) is taken from the first (name, expr) pair.

```python
>>> from sympy import f, g
>>> from sympy import Eq
>>> [(c_name, c_code), (h_name, c_header)] = codegen(...
    ["myfcn", x + y], ["fcn2", [Eq(f, 2*x), Eq(g, y)]],
    "C99", header=False, empty=False)
>>> print(c_name)
myfcn.c
>>> print(c_code)
#include "myfcn.h"
#include <math.h>
double myfcn(double x, double y) {
    double myfcn_result;
    myfcn_result = x + y;
    return myfcn_result;
}
void fcn2(double x, double y, double *f, double *g) {
    (*f) = 2*x;
    (*g) = y;
}
```

If the generated function(s) will be part of a larger project where various global variables have been defined, the ‘global_vars’ option can be used to remove the specified variables from the function signature.

```python
>>> from sympy.utilities.codegen import codegen
>>> from sympy import x, y, z
>>> [(f_name, f_code), header] = codegen(...
    ["f", x+y*z], ["F95", header=False, empty=False,
    argument_sequence=(x, y), global_vars=(z,))
>>> print(f_code)
REAL*8 function f(x, y)
implicit none
REAL*8, intent(in) :: x
REAL*8, intent(in) :: y
f = x + y*z
end function
```

`sympy.utilities.codegen.get_default_datatype(expr, complex_allowed=None)`

Derives an appropriate datatype based on the expression.
sympy.utilities.codegen.make_routine(name, expr, argument_sequence=None, global_vars=None, language='F95')

A factory that makes an appropriate Routine from an expression.

Parameters

- **name**: string

 The name of this routine in the generated code.

- **expr**: expression or list/tuple of expressions

 A SymPy expression that the Routine instance will represent. If given a list or tuple of expressions, the routine will be considered to have multiple return values and/or output arguments.

- **argument_sequence**: list or tuple, optional

 List arguments for the routine in a preferred order. If omitted, the results are language dependent, for example, alphabetical order or in the same order as the given expressions.

- **global_vars**: iterable, optional

 Sequence of global variables used by the routine. Variables listed here will not show up as function arguments.

- **language**: string, optional

 Specify a target language. The Routine itself should be language-agnostic but the precise way one is created, error checking, etc depend on the language. [default: “F95”].

Notes

A decision about whether to use output arguments or return values is made depending on both the language and the particular mathematical expressions. For an expression of type Equality, the left hand side is typically made into an OutputArgument (or perhaps an InOutArgument if appropriate). Otherwise, typically, the calculated expression is made a return values of the routine.

Examples

```python
>>> from sympy.utilities.codegen import make_routine
>>> from sympy.abc import x, y, f, g
>>> from sympy import Eq
>>> r = make_routine('test', [Eq(f, 2*x), Eq(g, x + y)])
>>> [arg.result_var for arg in r.results]
[]
>>> [arg.name for arg in r.arguments]
[x, y, f, g]
>>> [arg.name for arg in r.result_variables]
[f, g]
>>> r.local_vars
set()
```
Another more complicated example with a mixture of specified and automatically-assigned names. Also has Matrix output.

```
>>> from sympy import Matrix
>>> r = make_routine('fcn', [x*y, Eq(f, 1), Eq(g, x + g), Matrix([[x, y], [-2]])])
>>> [arg.result_var for arg in r.results]
[result_53974605702048505]
>>> [arg.expr for arg in r.results]
[x*y]
>>> [arg.name for arg in r.arguments]
[x, y, f, g, out_8598435338387848786]
```

We can examine the various arguments more closely:

```
>>> from sympy.utilities.codegen import (InputArgument, OutputArgument, ...
     InOutArgument)
>>> [a.name for a in r.arguments if isinstance(a, InputArgument)]
[x, y]
>>> [a.name for a in r.arguments if isinstance(a, OutputArgument)]
[f, out_8598435338387848786]
>>> [a.expr for a in r.arguments if isinstance(a, OutputArgument)]
[1, Matrix([[x, 2]])]
>>> [a.name for a in r.arguments if isinstance(a, InOutArgument)]
[g]
>>> [a.expr for a in r.arguments if isinstance(a, InOutArgument)]
[g + x]
```

Decorator

Useful utility decorators.

@sympy.utilities.decorator.deprecated(*message, *, deprecated_since_version, active_deprecations_target, stacklevel=3)

Mark a function as deprecated.

This decorator should be used if an entire function or class is deprecated. If only a certain functionality is deprecated, you should use warns_deprecated_sympy() (page 2100) directly. This decorator is just a convenience. There is no functional difference between using this decorator and calling warns_deprecated_sympy() at the top of the function.

The decorator takes the same arguments as warns_deprecated_sympy() (page 2100). See its documentation for details on what the keywords to this decorator do.

See the *Deprecation Policy* (page 3101) document for details on when and how things should be deprecated in SymPy.
Examples

```python
>>> from sympy.utilities.decorator import deprecated
>>> from sympy import simplify
>>> @deprecated("... The simplify_this(expr) function is deprecated. Use simplify(expr) instead.", deprecated_since_version="1.1",
... active_deprecations_target='simplify-this-deprecation')
... def simplify_this(expr):
...     ""
...     Simplify `expr`.
...     .. deprecated:: 1.1
...     The `simplify_this` function is deprecated. Use :func:`simplify` instead. See its documentation for more information. See :ref:`simplify-this-deprecation` for details.
...     ""
...     return simplify(expr)
>>> from sympy.abc import x
>>> simplify_this(x*(x + 1) - x**2)
<stdin>:1: SymPyDeprecationWarning: The simplify_this(expr) function is deprecated. Use simplify(expr) instead.
See https://docs.sympy.org/latest/explanation/active-deprecations.html for details.
This has been deprecated since SymPy version 1.1. It will be removed in a future version of SymPy.

simplify_this(x)
```

See also:

- `sympy.utilities.exceptions.SymPyDeprecationWarning` (page 2137)
- `sympy.utilities.exceptions.sympy_deprecation_warning` (page 2138)
- `sympy.utilities.exceptions.ignore_warnings` (page 2138)
- `sympy.testing.pytest.warns_deprecated_sympy` (page 2100)

`sympy.utilities.decorator.conserve_mpmath_dps(func)`

After the function finishes, resets the value of mpmath.mp.dps to the value it had before the function was run.

`sympy.utilities.decorator.doctest_depends_on(exe=None, modules=None, disable_viewers=None, python_version=None)`

Adds metadata about the dependencies which need to be met for doctesting the docstrings of the decorated objects.

5.8. Topics 2129
exe should be a list of executables
modules should be a list of modules
disable_viewers should be a list of viewers for preview() to disable
python_version should be the minimum Python version required, as a tuple (like (3, 0))

```python
sympy.utilities.decorator.memoize_property(propfunc)
```  
Property decorator that caches the value of potentially expensive `propfunc` after the first evaluation. The cached value is stored in the corresponding property name with an attached underscore.

```python
class sympy.utilities.decorator.no_attrs_in_subclass(cls, f)
```  
Don’t ‘inherit’ certain attributes from a base class

```python
>>> from sympy.utilities.decorator import no_attrs_in_subclass
```

```python
>>> class A(object):
...    x = 'test'
```

```python
>>> A.x = no_attrs_in_subclass(A, A.x)
```

```python
>>> class B(A):
...    pass
```

```python
>>> hasattr(A, 'x')
True
>>> hasattr(B, 'x')
False
```

```python
sympy.utilities.decorator.public(obj)
```  
Append obj's name to global `__all__` variable (call site).

By using this decorator on functions or classes you achieve the same goal as by filling `__all__` variables manually, you just do not have to repeat yourself (object’s name). You also know if object is public at definition site, not at some random location (where `__all__` was set).

Note that in multiple decorator setup (in almost all cases) @public decorator must be applied before any other decorators, because it relies on the pointer to object's global namespace. If you apply other decorators first, @public may end up modifying the wrong namespace.

Examples

```python
>>> from sympy.utilities.decorator import public
```

```python
>>> __all__ # noqa: F821
Traceback (most recent call last):
...
NameError: name '__all__' is not defined
```
sympy.utilities.decorator.threaded(func)

Apply func to sub-elements of an object, including Add (page 1062).

This decorator is intended to make it uniformly possible to apply a function to all elements of composite objects, e.g. matrices, lists, tuples and other iterable containers, or just expressions.

This version of threaded() (page 2131) decorator allows threading over elements of Add (page 1062) class. If this behavior is not desirable use xthreaded() (page 2131) decorator.

Functions using this decorator must have the following signature:

```python
@threaded
def function(expr, *args, **kwargs):
```

sympy.utilities.decorator.threaded_factory(func, use_add)

A factory for threaded decorators.

sympy.utilities.decorator.xthreaded(func)

Apply func to sub-elements of an object, excluding Add (page 1062).

This decorator is intended to make it uniformly possible to apply a function to all elements of composite objects, e.g. matrices, lists, tuples and other iterable containers, or just expressions.

This version of threaded() (page 2131) decorator disallows threading over elements of Add (page 1062) class. If this behavior is not desirable use threaded() (page 2131) decorator.

Functions using this decorator must have the following signature:

```python
@xthreaded
def function(expr, *args, **kwargs):
```

Enumerative

This module includes functions and classes for enumerating and counting multiset partitions.

sympy.utilities.enumerative.multiset_partitions_taocp(multiplicities)

Enumerates partitions of a multiset.

Parameters

multiplicities

list of integer multiplicities of the components of the multiset.

Yields

state
Internal data structure which encodes a particular partition. This output is then usually processed by a visitor function which combines the information from this data structure with the components themselves to produce an actual partition.

Unless they wish to create their own visitor function, users will have little need to look inside this data structure. But, for reference, it is a 3-element list with components:

- **f** is a frame array, which is used to divide pstack into parts.
- **lpart** points to the base of the topmost part.
- **pstack** is an array of PartComponent objects.

The state output offers a peek into the internal data structures of the enumeration function. The client should treat this as read-only; any modification of the data structure will cause unpredictable (and almost certainly incorrect) results. Also, the components of state are modified in place at each iteration. Hence, the visitor must be called at each loop iteration. Accumulating the state instances and processing them later will not work.

Examples

```python
>>> from sympy.utilities.enumerative import list_visitor
>>> from sympy.utilities.enumerative import multiset_partitions_taocp
>>> # variables components and multiplicities represent the multiset 'abb'
>>> components = 'ab'
>>> multiplicities = [1, 2]
>>> states = multiset_partitions_taocp(multiplicities)
>>> list(list_visitor(state, components) for state in states)
[[['a', 'b', 'b']], [['a', 'b'], ['b']], [['a'], ['b', 'b']], [['a'], ['b'], ['b']]]
```

See also:

- `sympy.utilities.iterables.multiset_partitions` *(page 2154)*

 Takes a multiset as input and directly yields multiset partitions. It dispatches to a number of functions, including this one, for implementation. Most users will find it more convenient to use than multiset_partitions_taocp.

- `sympy.utilities.enumerative.factoring_visitor(state, primes)`

 Use with multiset_partitions_taocp to enumerate the ways a number can be expressed as a product of factors. For this usage, the exponents of the prime factors of a number are arguments to the partition enumerator, while the corresponding prime factors are input here.
Examples

To enumerate the factorings of a number we can think of the elements of the partition as being the prime factors and the multiplicities as being their exponents.

```python
>>> from sympy.utilities.enumerative import factoring_visitor
>>> from sympy.utilities.enumerative import multiset_partitions_taocp
>>> primes, multiplicities = zip(*factorint(24).items())
>>> primes
(2, 3)
>>> multiplicities
(3, 1)
>>> states = multiset_partitions_taocp(multiplicities)
>>> list(factoring_visitor(state, primes) for state in states)
[[24], [8, 3], [12, 2], [4, 6], [4, 2, 3], [6, 2, 2], [2, 2, 2, 3]]
```

```
sympy.utilities.enumerative.list_visitor(state, components)
Return a list of lists to represent the partition.
```

Examples

```python
>>> from sympy.utilities.enumerative import list_visitor
>>> from sympy.utilities.enumerative import multiset_partitions_taocp
>>> states = multiset_partitions_taocp([1, 2, 1])
>>> s = next(states)
>>> list_visitor(s, 'abc')  # for multiset 'a b b c'
[['a', 'b', 'b', 'c']]
>>> s = next(states)
>>> list_visitor(s, [1, 2, 3])  # for multiset '1 2 2 3'
[[1, 2, 2], [3]]
```

The approach of the function multiset_partitions_taocp is extended and generalized by the class MultisetPartitionTraverser.

class sympy.utilities.enumerative.MultisetPartitionTraverser

Has methods to enumerate and count the partitions of a multiset.

This implements a refactored and extended version of Knuth’s algorithm 7.1.2.5M [AOCP].”

The enumeration methods of this class are generators and return data structures which can be interpreted by the same visitor functions used for the output of multiset_partitions_taocp.

5.8. Topics 2133
Examples

>>> from sympy.utilities.enumerative import MultisetPartitionTraverser
>>> m = MultisetPartitionTraverser()
>>> m.count_partitions([4,4,4,2])
127750
>>> m.count_partitions([3,3,3])
686

See also:

multiset_partitions_taocp (page 2131), sympy.utilities.iterables.

multiset_partitions (page 2154)

References

[AOCP], [Factorisatio], [Yorgey]

count_partitions(multiplicities)

Returns the number of partitions of a multiset whose components have the multiplicities given in multiplicities.

For larger counts, this method is much faster than calling one of the enumerators and counting the result. Uses dynamic programming to cut down on the number of nodes actually explored. The dictionary used in order to accelerate the counting process is stored in the MultisetPartitionTraverser object and persists across calls. If the user does not expect to call count_partitions for any additional multisets, the object should be cleared to save memory. On the other hand, the cache built up from one count run can significantly speed up subsequent calls to count_partitions, so it may be advantageous not to clear the object.

Examples

>>> from sympy.utilities.enumerative import MultisetPartitionTraverser
>>> m = MultisetPartitionTraverser()
>>> m.count_partitions([9,8,2])
288716
>>> m.count_partitions([2,2])
9
>>> del m

Notes

If one looks at the workings of Knuth’s algorithm M [AOCP], it can be viewed as a traversal of a binary tree of parts. A part has (up to) two children, the left child resulting from the spread operation, and the right child from the decrement operation. The ordinary enumeration of multiset partitions is an in-order traversal of this tree, and with the partitions corresponding to paths from the root to the leaves. The mapping from paths to partitions is a little complicated, since the partition would contain only those parts which are leaves or the parents of a spread link, not those which are parents of a decrement link.
For counting purposes, it is sufficient to count leaves, and this can be done with a recursive in-order traversal. The number of leaves of a subtree rooted at a particular part is a function only of that part itself, so memoizing has the potential to speed up the counting dramatically.

This method follows a computational approach which is similar to the hypothetical memoized recursive function, but with two differences:

1) This method is iterative, borrowing its structure from the other enumerations and maintaining an explicit stack of parts which are in the process of being counted. (There may be multisets which can be counted reasonably quickly by this implementation, but which would overflow the default Python recursion limit with a recursive implementation.)

2) Instead of using the part data structure directly, a more compact key is constructed. This saves space, but more importantly coalesces some parts which would remain separate with physical keys.

Unlike the enumeration functions, there is currently no _range version of count_partitions. If someone wants to stretch their brain, it should be possible to construct one by memoizing with a histogram of counts rather than a single count, and combining the histograms.

enum_all(multiplicities)

Enumerate the partitions of a multiset.

Examples

```python
>>> from sympy.utilities.enumerative import list_visitor
>>> from sympy.utilities.enumerative import MultisetPartitionTraverser
>>> m = MultisetPartitionTraverser()
>>> states = m.enum_all([2, 2])
>>> list(list_visitor(state, 'ab') for state in states)
[['a', 'a', 'b', 'b'], ['a', 'a', 'b'], ['b'], ['a', 'a'], ['b', 'b'], ['a'], ['a'], ['b', 'b'], ['a', 'b'], ['b'], ['a', 'b'], ['b', 'b'], ['a'], ['a'], ['a'], ['b', 'b'], ['a', 'b'], ['b'], ['a', 'b'], ['b', 'b'], ['a'], ['a'], ['b', 'b'], ['a'], ['a'], ['b', 'b']]
```

See also:

multiset_partitions_taoecp (page 2131)

which provides the same result as this method, but is about twice as fast. Hence, *enum_all* is primarily useful for testing. Also see the function for a discussion of states and visitors.

enum_large(multiplicities, lb)

Enumerate the partitions of a multiset with lb < num(parts)

Equivalent to *enum_range(multiplicities, lb, sum(multiplicities))*
Parameters

multiplicities

list of multiplicities of the components of the multiset.

lb

Number of parts in the partition must be greater than this lower bound.

Examples

```python
>>> from sympy.utilities.enumerative import list_visitor
>>> from sympy.utilities.enumerative import MultisetPartitionTraverser
>>> m = MultisetPartitionTraverser()
>>> states = m.enum_large([2, 2], 2)
>>> list(list_visitor(state, 'ab') for state in states)
[['a', 'a'], ['b'], ['b']],
[['a', 'b'], ['a'], ['b']],
[['a'], ['a'], ['b', 'b']],
[['a'], ['a'], ['b'], ['b']]]
```

See also:

`enum_all` (page 2135), `enum_small` (page 2136), `enum_range` (page 2136)

enum_range *(multiplicities, lb, ub)*

Enumerate the partitions of a multiset with lb < num(parts) <= ub.

In particular, if partitions with exactly k parts are desired, call with (multiplicities, k - 1, k). This method generalizes enum_all, enum_small, and enum_large.

Examples

```python
>>> from sympy.utilities.enumerative import list_visitor
>>> from sympy.utilities.enumerative import MultisetPartitionTraverser
>>> m = MultisetPartitionTraverser()
>>> states = m.enum_range([2, 2], 1, 2)
>>> list(list_visitor(state, 'ab') for state in states)
[['a', 'a', 'b'], ['b']],
[['a', 'a'], ['b', 'b']],
[['a', 'b', 'b'], ['a']],
[['a', 'b'], ['a', 'b']]]
```

enum_small *(multiplicities, ub)*

Enumerate multiset partitions with no more than ub parts.

Equivalent to enum_range(multiplicities, 0, ub)

Parameters

multiplicities

list of multiplicities of the components of the multiset.

ub
Maximum number of parts

Examples

```python
>>> from sympy.utilities.enumerative import list_visitor
>>> from sympy.utilities.enumerative import MultisetPartitionTraverser
>>> m = MultisetPartitionTraverser()
>>> states = m.enum_small([[2, 2]], 2)
>>> list(list_visitor(state, 'ab') for state in states)

[[['a', 'a', 'b', 'b']],
[['a', 'a', 'b'], ['b']],
[['a', 'a'], ['b', 'b']],
[['a', 'b'], ['a']],
[['a', 'b'], ['a', 'b']]]
```

The implementation is based, in part, on the answer given to exercise 69, in Knuth [AOCP].

See also:

`enum_all` (page 2135), `enum_large` (page 2135), `enum_range` (page 2136)

Exceptions and Warnings

General SymPy exceptions and warnings.

```python
exception sympy.utilities.exceptions.SymPyDeprecationWarning(message, *, deprecated_since_version, active_deprecations_target)
```

A warning for deprecated features of SymPy.

See the *Deprecation Policy* (page 3101) document for details on when and how things should be deprecated in SymPy.

Note that simply constructing this class will not cause a warning to be issued. To do that, you must call the :func:`sympy_deprecation_warning` function. For this reason, it is not recommended to ever construct this class directly.

Explanation

The SymPyDeprecationWarning class is a subclass of DeprecationWarning that is used for all deprecations in SymPy. A special subclass is used so that we can automatically augment the warning message with additional metadata about the version the deprecation was introduced in and a link to the documentation. This also allows users to explicitly filter deprecation warnings from SymPy using warnings filters (see *Silencing SymPy DeprecationWarnings* (page 214)).

Additionally, SymPyDeprecationWarning is enabled to be shown by default, unlike normal DeprecationWarnings, which are only shown by default in interactive sessions. This ensures that deprecation warnings in SymPy will actually be seen by users.

See the documentation of `sympy_deprecation_warning()` (page 2138) for a description of the parameters to this function.
To mark a function as deprecated, you can use the `@deprecated` (page 2128) decorator.

See also:

`sympy.utilities.exceptions.sympy_deprecation_warning` (page 2138), `sympy.utilities.exceptions.ignore_warnings` (page 2138), `sympy.utilities.decorator.deprecated` (page 2128), `sympy.testing.pytest.warns_deprecated_sympy` (page 2100)

`sympy.utilities.exceptions.ignore_warnings(warningcls)`

Context manager to suppress warnings during tests.

Note: Do not use this with SymPyDeprecationWarning in the tests. `warns_deprecated_sympy()` should be used instead.

This function is useful for suppressing warnings during tests. The `warns` function should be used to assert that a warning is raised. The `ignore_warnings` function is useful in situation when the warning is not guaranteed to be raised (e.g. on importing a module) or if the warning comes from third-party code.

This function is also useful to prevent the same or similar warnings from being issue twice due to recursive calls.

When the warning is coming (reliably) from SymPy the `warns` function should be preferred to `ignore_warnings`.

```python
>>> from sympy.utilities.exceptions import ignore_warnings
>>> import warnings

Here’s a warning:

```python
>>> with warnings.catch_warnings(): # reset warnings in doctest
... warnings.simplefilter('error')
... warnings.warn('deprecated', UserWarning)
Traceback (most recent call last):
... UserWarning: deprecated
```

Let’s suppress it with `ignore_warnings`:

```python
>>> with warnings.catch_warnings(): # reset warnings in doctest
... warnings.simplefilter('error')
... with ignore_warnings(UserWarning):
... warnings.warn('deprecated', UserWarning)
```

(No warning emitted)

**See also:**

`sympy.utilities.exceptions.SymPyDeprecationWarning` (page 2137), `sympy.utilities.exceptions.sympy_deprecation_warning` (page 2138), `sympy.utilities.decorator.deprecated` (page 2128), `sympy.testing.pytest.warns_deprecated_sympy` (page 2100)

`sympy.utilities.exceptions.sympy_deprecation_warning(message, *,
    deprecated_since_version,
    active_deprecations_target,
    stacklevel=3)`
Warn that a feature is deprecated in SymPy.

See the Deprecation Policy (page 3101) document for details on when and how things should be deprecated in SymPy.

To mark an entire function or class as deprecated, you can use the @deprecated (page 2128) decorator.

**Parameters**

message: str

The deprecation message. This may span multiple lines and contain code examples. Messages should be wrapped to 80 characters. The message is automatically dedented and leading and trailing whitespace stripped. Messages may include dynamic content based on the user input, but avoid using str(expression) if an expression can be arbitrary, as it might be huge and make the warning message unreadable.

deprecated_since_version: str

The version of SymPy the feature has been deprecated since. For new deprecations, this should be the version in sympy/release.py without the .dev. If the next SymPy version ends up being different from this, the release manager will need to update any SymPyDeprecationWarnings using the incorrect version. This argument is required and must be passed as a keyword argument. (example: deprecated_since_version="1.10").

active_deprecations_target: str

The Sphinx target corresponding to the section for the deprecation in the List of active deprecations (page 214) document (see doc/src/explanation/active-deprecations.md). This is used to automatically generate a URL to the page in the warning message. This argument is required and must be passed as a keyword argument. (example: active_deprecations_target="deprecated-feature-abc")

stacklevel: int (default: 3)

The stacklevel parameter that is passed to warnings.warn. If you create a wrapper that calls this function, this should be increased so that the warning message shows the user line of code that produced the warning. Note that in some cases there will be multiple possible different user code paths that could result in the warning. In that case, just choose the smallest common stacklevel.

**Examples**

```python
>>> from sympy.utilities.exceptions import sympy_deprecation_warning
>>> def is_this_zero(x, y=0):
... """
... Determine if x = 0.
... ...
... Parameters
... ========
```
x : Expr
The expression to check.

y : Expr, optional
If provided, check if x = y.

.. deprecated:: 1.1

The ``y`` argument to ``is_this_zero`` is deprecated. Use
``is_this_zero(x - y)`` instead.

""
from sympy import simplify

if y != 0:
sympy_deprecation_warning(""
    The y argument to is_zero() is deprecated. Use is_zero(x - y)\n    instead."",
    deprecated_since_version="1.1",
    active_deprecations_target='is-this-zero-y-deprecation')

return simplify(x - y) == 0

See also:
sympy.utilities.exceptions.SymPyDeprecationWarning (page 2137), sympy.
utilities.exceptions.ignore_warnings (page 2138), sympy.utilities.decorator.
derprecated (page 2128), sympy.testing.pytest.warns_deprecated_sympy
(page 2100)
Iterables

```python
from sympy.utilities.iterables import binary_partitions

for i in binary_partitions(5):
 print(i)
```

doesn't print anything because binary_partitions returns a generator of lists of partitions, not the partitions themselves.

```
>>> from sympy.utilities.iterables import capture
>>> from sympy import pprint
>>> from sympy.abc import x

>>> def foo():
 print('hello world!')
 ...

>>> 'hello' in capture(foo) # foo, not foo()
True
>>> capture(lambda: pprint(2/x))
'2\n-\nx
'
```

References

[R983]
```python
>>> from sympy.utilities.iterables import common_prefix
>>> common_prefix(list(range(3)))
[0, 1, 2]
>>> common_prefix(list(range(3)), list(range(4)))
[0, 1, 2]
>>> common_prefix([1, 2, 3], [1, 2, 5])
[1, 2]
>>> common_prefix([1, 2, 3], [1, 3, 5])
[1]
```

The `common_suffix` function returns the subsequence that is a common ending of sequences in `seqs`.

```python
>>> from sympy.utilities.iterables import common_suffix
>>> common_suffix(list(range(3)))
[0, 1, 2]
>>> common_suffix(list(range(3)), list(range(4)))
[]
>>> common_suffix([1, 2, 3], [9, 2, 3])
[2, 3]
>>> common_suffix([1, 2, 3], [9, 7, 3])
[3]
```

The `connected_components` function finds the connected components of a graph.

```python
sympy.utilities.iterables.connected_components(G)
```

### Parameters
- **graph**: `tuple[list, list[tuple[T, T]]]`
  - A tuple consisting of a list of vertices and a list of edges of a graph whose connected components are to be found.

### Examples

Given an undirected graph:

```python
graph {
 A -- B
 C -- D
}
```
We can find the connected components using this function if we include each edge in both directions:

```python
from sympy.utilities.iterables import connected_components

V = ['A', 'B', 'C', 'D']
E = [('A', 'B'), ('B', 'A'), ('C', 'D'), ('D', 'C')]
connected_components((V, E))
```

The weakly connected components of a directed graph can be found the same way.

**Notes**

The vertices of the graph must be hashable for the data structures used. If the vertices are unhashable replace them with integer indices.

This function uses Tarjan’s algorithm to compute the connected components in $O(|V|+|E|)$ (linear) time.

**See also:**

`sympy.utilities.iterables.strongly_connected_components` (page 2166)

**References**

[R984], [R985]

`sympy.utilities.iterables.dict_merge(*dicts)`  
Merge dictionaries into a single dictionary.

`sympy.utilities.iterables.filter_symbols(iterator, exclude)`  
Only yield elements from `iterator` that do not occur in `exclude`.

**Parameters**

- `iterator`: iterable
  - iterator to take elements from
**include** : iterable

elements to exclude

**Returns**

**iterator** : iterator

filtered iterator

```python
sympy.utilities.iterables.flatten(iterable, levels=None, cls=None)
```

Recursively denest iterable containers.

```python
from sympy import flatten

>>> flatten([1, 2, 3])
[1, 2, 3]
>>> flatten([1, 2, [3]])
[1, 2, 3]
>>> flatten([1, [2, 3], [4, 5]])
[1, 2, 3, 4, 5]
>>> flatten([1.0, 2, (1, None)])
[1.0, 2, 1, None]
```

If you want to denest only a specified number of levels of nested containers, then set `levels` flag to the desired number of levels:

```python
ls = [[(-2, -1), (1, 2)], [(0, 0)]]

>>> flatten(ls, levels=1)
[(-2, -1), (1, 2), (0, 0)]
```

If `cls` argument is specified, it will only flatten instances of that class, for example:

```python
from sympy import Basic, S
class MyOp(Basic):
 ...
 pass
 ...

>>> flatten([MyOp(S(1), MyOp(S(2), S(3)))]), cls=MyOp)
[1, 2, 3]
```

adapted from https://kogs-www.informatik.uni-hamburg.de/~meine/python_tricks

```python
sympy.utilities.iterables.generate_bell(n)
```

Return permutations of \([0, 1, \ldots, n - 1]\) such that each permutation differs from the last by the exchange of a single pair of neighbors. The \(n!\) permutations are returned as an iterator. In order to obtain the next permutation from a random starting permutation, use the `next_trotterjohnson` method of the `Permutation` class (which generates the same sequence in a different manner).
Examples

```python
>>> from itertools import permutations
>>> from sympy.utilities.iterables import generate_bell
>>> from sympy import zeros, Matrix
```

This is the sort of permutation used in the ringing of physical bells, and does not produce permutations in lexicographical order. Rather, the permutations differ from each other by exactly one inversion, and the position at which the swapping occurs varies periodically in a simple fashion. Consider the first few permutations of 4 elements generated by permutations and generate_bell:

```python
>>> list(permutations(range(4)))[5:
[(0, 1, 2, 3), (0, 1, 3, 2), (0, 2, 1, 3), (0, 2, 3, 1), (0, 3, 1, 2)]
``` 

```python
>>> list(generate_bell(4))[5:
[(0, 1, 2, 3), (0, 1, 3, 2), (0, 3, 1, 2), (3, 0, 1, 2), (3, 0, 2, 1)]
``` 

Notice how the 2nd and 3rd lexicographical permutations have 3 elements out of place whereas each “bell” permutation always has only two elements out of place relative to the previous permutation (and so the signature (+/-1) of a permutation is opposite of the signature of the previous permutation).

How the position of inversion varies across the elements can be seen by tracing out where the largest number appears in the permutations:

```python
>>> m = zeros(4, 24)
>>> for i, p in enumerate(generate_bell(4)):
... m[:, i] = Matrix([j - 3 for j in list(p)]) # make largest zero
>>> m.print_nonzero('X')
[XXX XXXXXX XXXXXX XXX]
[XX XX XXXX XX XXXX XX XX]
[X XXXX XX XXXX XX XXXX X]
[XXXXXX XXXXXX XXXXXX]
```

See also:

*sympy.combinatorics.permutations.Permutation.next_trotterjohnson* (page 332)
**References**

[R986], [R987], [R988], [R989], [R990]

sympy.utilities.iterables.generate_derangements(s)

Return unique derangements of the elements of iterable s.

**Examples**

```python
>>> from sympy.utilities.iterables import generate_derangements
>>> list(generate_derangements([0, 1, 2]))
[[1, 2, 0], [2, 0, 1]]
>>> list(generate_derangements([0, 1, 2, 2]))
[[2, 2, 0, 1], [2, 2, 1, 0]]
>>> list(generate_derangements([0, 1, 1]))
[]
```

See also:
sympy.functions.combinatorial.factorials.subfactorial (page 491)

sympy.utilities.iterables.generate_involutions(n)

Generates involutions.

An involution is a permutation that when multiplied by itself equals the identity permutation. In this implementation the involutions are generated using Fixed Points.

Alternatively, an involution can be considered as a permutation that does not contain any cycles with a length that is greater than two.

**Examples**

```python
>>> from sympy.utilities.iterables import generate_involutions
>>> list(generate_involutions(3))
[(0, 1, 2), (0, 2, 1), (1, 0, 2), (2, 1, 0)]
>>> len(list(generate_involutions(4)))
10
```

**References**

[R991]

sympy.utilities.iterables.generate_oriented_forest(n)

This algorithm generates oriented forests.

An oriented graph is a directed graph having no symmetric pair of directed edges. A forest is an acyclic graph, i.e., it has no cycles. A forest can also be described as a disjoint union of trees, which are graphs in which any two vertices are connected by exactly one simple path.
Examples

```python
>>> from sympy.utilities.iterables import generate_oriented_forest
>>> list(generate_oriented_forest(4))
[[0, 1, 2, 3], [0, 1, 2, 2], [0, 1, 2, 1], [0, 1, 2, 0], [0, 1, 1, 1], [0, 1, 1, 0], [0, 1, 0, 1], [0, 1, 0, 0], [0, 0, 0, 0]]
```

References

[R992], [R993]
sympy.utilities.iterables.group(seq, multiple=True)
Splits a sequence into a list of lists of equal, adjacent elements.

Examples

```python
>>> from sympy import group

>>> group([1, 1, 1, 2, 2, 3])
[[1, 1, 1], [2, 2], [3]]

>>> group([1, 1, 1, 2, 2, 3], multiple=False)
[(1, 3), (2, 2), (3, 1)]

>>> group([1, 1, 3, 2, 2, 1], multiple=False)
[(1, 2), (3, 1), (2, 2), (1, 1)]
```

See also:

`multiset` (page 2153)
sympy.utilities.iterables.has_dups(seq)
Return True if there are any duplicate elements in seq.

Examples

```python
>>> from sympy import has_dups, Dict, Set

>>> has_dups((1, 2, 1))
True

>>> has_dups(range(3))
False

>>> all(has_dups(c) is False for c in (set(), Set(), dict(), Dict()))
True
```
sympy.utilities.iterables.has_variety(seq)
Return True if there are any different elements in seq.
SymPy Documentation, Release 1.12.1

Examples

```python
>>> from sympy import has_variety

>>> has_variety((1, 2, 1))
True
>>> has_variety((1, 1, 1))
False
```

**sympy.utilities.iterables.ibin** *(n, bits=None, str=False)*

Return a list of length bits corresponding to the binary value of n with small bits to the right (last). If bits is omitted, the length will be the number required to represent n. If the bits are desired in reversed order, use the `[::-1]` slice of the returned list.

If a sequence of all bits-length lists starting from `[0, 0,..., 0]` through `[1, 1,..., 1]` are desired, pass a non-integer for bits, e.g. `'all'`.

If the bit string is desired pass `str=True`.

Examples

```python
>>> from sympy.utilities.iterables import ibin

>>> ibin(2)
[1, 0]
>>> ibin(2, 4)
[0, 0, 1, 0]
```

If all lists corresponding to 0 to 2**n - 1, pass a non-integer for bits:

```python
>>> bits = 2
>>> for i in ibin(2, 'all'):
... print(i)
(0, 0)
(0, 1)
(1, 0)
(1, 1)
```

If a bit string is desired of a given length, use `str=True`:

```python
>>> n = 123
>>> bits = 10
>>> ibin(n, bits, str=True)
'0001111011'
>>> ibin(n, bits, str=True)[::-1] # small bits left
'1101111000'
>>> list(ibin(3, 'all', str=True))
['000', '001', '010', '011', '100', '101', '110', '111']
```

**sympy.utilities.iterables.iproduct(**iterables)**

Cartesian product of iterables.

Generator of the Cartesian product of iterables. This is analogous to `itertools.product` except that it works with infinite iterables and will yield any item from the infinite product eventually.
Examples

```python
from sympy.utilities.iterables import iproduct
sorted(iproduct([1,2], [3,4]))
[(1, 3), (1, 4), (2, 3), (2, 4)]
```

With an infinite iterator:

```python
from sympy import S
(3,) in iproduct(S.Integers)
True
(3, 4) in iproduct(S.Integers, S.Integers)
True
```

See also:

- `itertools.product`
- `sympy.utilities.iterables.is_palindromic(s, i=0, j=None)`

    Return True if the sequence is the same from left to right as it is from right to left in the whole sequence (default) or in the Python slice s[i: j]; else False.

Examples

```python
from sympy.utilities.iterables import is_palindromic
is_palindromic([1, 0, 1])
True
is_palindromic('abcbb')
False
is_palindromic('abcbb', 1)
False
```

Normal Python slicing is performed in place so there is no need to create a slice of the sequence for testing:

```python
is_palindromic('abcbb', 1, -1)
True
is_palindromic('abcbb', -4, -1)
True
```

See also:

- `sympy.ntheory.digits.is_palindromic` (page 1573) tests integers
- `sympy.utilities.iterables.is_sequence(i, include=None)`

    Return a boolean indicating whether i is a sequence in the SymPy sense. If anything that fails the test below should be included as being a sequence for your application, set ‘include’ to that object’s type; multiple types should be passed as a tuple of types.

    Note: although generators can generate a sequence, they often need special handling to make sure their elements are captured before the generator is exhausted, so these are not included by default in the definition of a sequence.
See also: iterable

Examples

```python
>>> from sympy.utilities.iterables import is_sequence
>>> from types import GeneratorType

>>> is_sequence([])
True
>>> is_sequence(set())
False
>>> is_sequence('abc')
False
>>> is_sequence('abc', include=str)
True
>>> generator = (c for c in 'abc')
>>> is_sequence(generator)
False
>>> is_sequence(generator, include=(str, GeneratorType))
True
```

```python
sympy.utilities.iterables.iterable(i, exclude=(<class 'str'>, <class 'dict'>, <class 'sympy.utilities.iterables.NotIterable'>))
```

Return a boolean indicating whether i is SymPy iterable. True also indicates that the
iterator is finite, e.g. you can call list(...) on the instance.

When SymPy is working with iterables, it is almost always assuming that the iterable is
not a string or a mapping, so those are excluded by default. If you want a pure Python
definition, make exclude=None. To exclude multiple items, pass them as a tuple.

You can also set the _iterable attribute to True or False on your class, which will override
the checks here, including the exclude test.

As a rule of thumb, some SymPy functions use this to check if they should recursively
map over an object. If an object is technically iterable in the Python sense but does not
desire this behavior (e.g., because its iteration is not finite, or because iteration might
induce an unwanted computation), it should disable it by setting the _iterable attribute
to False.

See also: is_sequence

Examples

```python
>>> from sympy.utilities.iterables import iterable
>>> from sympy import Tuple

>>> things = [[1], (1,), set([1]), Tuple(1), (j for j in [1, 2]), [1:2],
... '1', 1]
>>> for i in things:
... print('%s %s' % (iterable(i), type(i)))
True <... 'list'>
True <... 'tuple'>
True <... 'set'>
True <class 'sympy.core.containers.Tuple'>
```

(continues on next page)
True <... 'generator'>
False <... 'dict'>
False <... 'str'>
False <... 'int'>

```python
>>> iterable({}, exclude=None)
True
>>> iterable({}, exclude=str)
True
>>> iterable("no", exclude=str)
False
```

**Examples**

The default is to give the items in the same order, but grouped into k partitions without any reordering:

```python
from sympy.utilities.iterables import kbins
for p in kbins(list(range(5)), 2):
 print(p)
...
[[0], [1, 2, 3, 4]]
[[0, 1], [2, 3, 4]]
[[0, 1, 2], [3, 4]]
[[0, 1, 2, 3], [4]]
```

The ordered flag is either None (to give the simple partition of the elements) or is a 2 digit integer indicating whether the order of the bins and the order of the items in the bins matters. Given:

```python
A = [[0], [1, 2]]
B = [[1, 2], [0]]
C = [[2, 1], [0]]
D = [[0], [2, 1]]
```

the following values for ordered have the shown meanings:

- **00** means A == B == C == D
- **01** means A == B
- **10** means A == D
- **11** means A == A

```python
>>> for ordered_flag in [None, 0, 1, 10, 11]:
... print('%s' % ordered_flag)
... for p in kbins(list(range(3)), 2, ordered=ordered_flag):
... print(' %s' % p)
... ordered = None
```
See also:

partitions (page 2159), multiset_partitions (page 2154)

See also:

partitions (page 2159), multiset_partitions (page 2154)

sympy.utilities.iterables.least_rotation(x, key=None)

Returns the number of steps of left rotation required to obtain lexicographically minimal string/list/tuple, etc.

Examples

```python
>>> from sympy.utilities.iterables import least_rotation, rotate_left
>>> a = [3, 1, 5, 1, 2]
>>> least_rotation(a)
3
>>> rotate_left(a, _)
[1, 2, 3, 1, 5]
```
References

[R994]

sympy.utilities.iterables.minlex(seq, directed=True, key=None)

Return the rotation of the sequence in which the lexically smallest elements appear first, e.g. $cba \rightarrowacb$.

The sequence returned is a tuple, unless the input sequence is a string in which case a string is returned.

If directed is False then the smaller of the sequence and the reversed sequence is returned, e.g. $cba \rightarrow abc$.

If key is not None then it is used to extract a comparison key from each element in iterable.

Examples

```python
>>> from sympy.combinatorics.polyhedron import minlex
>>> minlex((1, 2, 0))
(0, 1, 2)
>>> minlex((1, 0, 2))
(0, 2, 1)
>>> minlex((1, 0, 2), directed=False)
(0, 1, 2)
>>> minlex('11010011000', directed=True)
'00011010011'
>>> minlex('11010011000', directed=False)
'00011001011'
>>> minlex(('bb', 'aaa', 'c', 'a'))
('a', 'bb', 'aaa', 'c')
>>> minlex(('bb', 'aaa', 'c', 'a'), key=len)
('c', 'a', 'bb', 'aaa')
```

sympy.utilities.iterables.multiset(seq)

Return the hashable sequence in multiset form with values being the multiplicity of the item in the sequence.

Examples

```python
>>> from sympy.utilities.iterables import multiset
>>> multiset('mississippi')
{'i': 4, 'm': 1, 'p': 2, 's': 4}
```

See also:

[group](page 2147)

sympy.utilities.iterables.multiset_combinations(m, n, g=None)

Return the unique combinations of size $n$ from multiset $m$.  

5.8. Topics
Examples

```python
>>> from sympy.utilities.iterables import multiset_combinations
>>> from itertools import combinations

>>> [''.join(i) for i in multiset_combinations('baby', 3)]
['abb', 'aby', 'bby']

>>> def count(f, s):
... return len(list(f(s, 3)))
```

The number of combinations depends on the number of letters; the number of unique combinations depends on how the letters are repeated.

```python
>>> s1 = 'abracadabra'
>>> s2 = 'banana tree'

>>> count(combinations, s1), count(multiset_combinations, s1)
(165, 23)

>>> count(combinations, s2), count(multiset_combinations, s2)
(165, 54)
```

```
sympy.utilities.iterables.multiset_derangements(s)
Generate derangements of the elements of s in place.

Examples

```python
>>> from sympy.utilities.iterables import multiset_derangements, uniq
```

Because the derangements of multisets (not sets) are generated in place, copies of the return value must be made if a collection of derangements is desired or else all values will be the same:

```python
>>> list(uniq([i for i in multiset_derangements('1233')]))
[[None, None, None, None]]

>>> [i.copy() for i in multiset_derangements('1233')]
[[[3', '3', '1', '2'], ['3', '3', '2', '1']]
>>> [''.join(i) for i in multiset_derangements('1233')]
['3312', '3321']
```

```
sympy.utilities.iterables.multiset_partitions(multiset, m=None)
Return unique partitions of the given multiset (in list form). If m is None, all multisets will be returned, otherwise only partitions with m parts will be returned.

If multiset is an integer, a range [0, 1, ..., multiset - 1] will be supplied.
Examples

```python
>>> from sympy.utilities.iterables import multiset_partitions

>>> list(multiset_partitions([1, 2, 3, 4], 2))
[[[1, 2, 3], [4]], [[1, 2, 4], [3]], [[1, 2], [3, 4]],
 [[1, 3, 4], [2]], [[1, 3], [2, 4]], [[1, 4], [2, 3]],
 [[1], [2, 3, 4]]]

>>> list(multiset_partitions([1, 2, 3, 4], 1))
[[[1, 2, 3, 4]]]
```

Only unique partitions are returned and these will be returned in a canonical order regardless of the order of the input:

```python
>>> a = [1, 2, 2, 1]
>>> ans = list(multiset_partitions(a, 2))
>>> a.sort()
list(multiset_partitions(a, 2)) == ans
True
>>> a = range(3, 1, -1)
>>> (list(multiset_partitions(a)) == ...
... list(multiset_partitions(sorted(a))))
True
```

If \(m\) is omitted then all partitions will be returned:

```python
>>> list(multiset_partitions([1, 1, 2]))
[[[1, 1, 2]], [[1, 1], [2]], [[1, 2], [1]], [[1], [1], [2]]]
>>> list(multiset_partitions([1]*3))
[[[1, 1, 1]], [[1], [1, 1]], [[1], [1], [1]]]
```

Counting

The number of partitions of a set is given by the bell number:

```python
>>> from sympy import bell

>>> len(list(multiset_partitions(5))) == bell(5) == 52
True
```

The number of partitions of length \(k\) from a set of size \(n\) is given by the Stirling Number of the 2nd kind:

```python
>>> from sympy.functions.combinatorial.numbers import stirling

>>> stirling(5, 2) == len(list(multiset_partitions(5, 2))) == 15
True
```

These comments on counting apply to sets, not multisets.
Notes

When all the elements are the same in the multiset, the order of the returned partitions is determined by the partitions routine. If one is counting partitions then it is better to use the nT function.

See also:

partitions (page 2159), sympy.combinatorics.partitions.Partition (page 306),
sympy.combinatorics.partitions.IntegerPartition (page 308), sympy.functions.
combinatorial.numbers.nT (page 505)

sympy.utilities.iterables.multiset_permutations(m, size=None, g=None)

Return the unique permutations of multiset m.

Examples

```python
>>> from sympy.utilities.iterables import multiset_permutations
>>> from sympy import factorial

['aab', 'aba', 'baa']

720

60
```

sympy.utilities.iterables.necklaces(n, k, free=False)

A routine to generate necklaces that may (free=True) or may not (free=False) be turned over to be viewed. The “necklaces” returned are comprised of n integers (beads) with k different values (colors). Only unique necklaces are returned.

Examples

```python
>>> from sympy.utilities.iterables import necklaces, bracelets

>>> def show(s, i):
... return ''.join(s[j] for j in i)
... return ''

>>> B = [show('ABC', i) for i in bracelets(3, 3)]
>>> N = [show('ABC', i) for i in necklaces(3, 3)]
>>> set(N) - set(B)
{'ACB'}
```

(mnemonic: Bracelets can be viewed Backwards, but Not Necklaces.)
```python
>>> list(necklaces(4, 2))
[(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 1),
 (0, 1, 0, 1), (0, 1, 1, 1), (1, 1, 1, 1)]

>>> [show('.o', i) for i in bracelets(4, 2)]
['....', '...o', '..oo', '.o.o', '.ooo', 'oooo']
```

References

[R995], [R996]

```python
sympy.utilities.iterables.numbered_symbols(prefix='x', cls=None, start=0,
 exclude=(), *args, **assumptions)
```

Generate an infinite stream of Symbols consisting of a prefix and increasing subscripts provided that they do not occur in exclude.

**Parameters**

- `prefix` : str, optional
  The prefix to use. By default, this function will generate symbols of the form “x0”, “x1”, etc.

- `cls` : class, optional
  The class to use. By default, it uses Symbol, but you can also use Wild or Dummy.

- `start` : int, optional
  The start number. By default, it is 0.

**Returns**

- `sym` : Symbol
  The subscripted symbols.

```python
sympy.utilities.iterables.ordered_partitions(n, m=None, sort=True)
```

Generates ordered partitions of integer n.

**Parameters**

- `m` : integer (default None)
  The default value gives partitions of all sizes else only those with size m. In addition, if m is not None then partitions are generated in place (see examples).

- `sort` : bool (default True)
  Controls whether partitions are returned in sorted order when m is not None; when False, the partitions are returned as fast as possible with elements sorted, but when m|n the partitions will not be in ascending lexicographical order.
Examples

```python
>>> from sympy.utilities.iterables import ordered_partitions
```

All partitions of 5 in ascending lexicographical:

```python
>>> for p in ordered_partitions(5):
... print(p)
[1, 1, 1, 1, 1]
[1, 1, 1, 2]
[1, 1, 3]
[1, 2, 2]
[1, 4]
[2, 3]
[5]
```

Only partitions of 5 with two parts:

```python
>>> for p in ordered_partitions(5, 2):
... print(p)
[1, 4]
[2, 3]
```

When \( m \) is given, a given list objects will be used more than once for speed reasons so you will not see the correct partitions unless you make a copy of each as it is generated:

```python
>>> [p for p in ordered_partitions(7, 3)]
[[1, 1, 1], [1, 1, 1], [1, 1, 1], [2, 2, 2]]
>>> [list(p) for p in ordered_partitions(7, 3)]
[[1, 1, 5], [1, 2, 4], [1, 3, 3], [2, 2, 3]]
```

When \( n \) is a multiple of \( m \), the elements are still sorted but the partitions themselves will be unordered if sort is False; the default is to return them in ascending lexicographical order.

```python
>>> for p in ordered_partitions(6, 2):
... print(p)
[1, 5]
[2, 4]
[3, 3]
```

But if speed is more important than ordering, sort can be set to False:

```python
>>> for p in ordered_partitions(6, 2, sort=False):
... print(p)
[1, 5]
[3, 3]
[2, 4]
```
References

[R997], [R998]

sympy.utilities.iterables.partitions(n, m=None, k=None, size=False)
Generate all partitions of positive integer, n.

Parameters

- **m**: integer (default gives partitions of all sizes)
  limits number of parts in partition (mnemonic: m, maximum parts)
- **k**: integer (default gives partitions number from 1 through n)
  limits the numbers that are kept in the partition (mnemonic: k, keys)
- **size**: bool (default False, only partition is returned)
  when True then (M, P) is returned where M is the sum of the multi-
  plicities and P is the generated partition.

Each partition is represented as a dictionary, mapping an integer
to the number of copies of that integer in the partition. For example,
the first partition of 4 returned is {4: 1}, “4: one of them”.

Examples

```python
>>> from sympy.utilities.iterables import partitions

The numbers appearing in the partition (the key of the returned dict) are limited with k:
```n
```python
>>> for p in partitions(6, k=2):
... print(p)
{2: 3}
{1: 2, 2: 2}
{1: 4, 2: 1}
{1: 6}
```n
The maximum number of parts in the partition (the sum of the values in the returned
dict) are limited with m (default value, None, gives partitions from 1 through n):

```python
>>> for p in partitions(6, m=2):
... print(p)

{6: 1}
{1: 1, 5: 1}
{2: 1, 4: 1}
{3: 2}
```n

See also:

sympy.combinatorics.partitions.Partition (page 306), sympy.combinatorics.
partitions.IntegerPartition (page 308)
References

[R999]
sympy.utilities.iterables.permute_signs(t)
Return iterator in which the signs of non-zero elements of t are permuted.

Examples

```python
>>> from sympy.utilities.iterables import permute_signs
>>> list(permute_signs((0, 1, 2)))
[(0, 1, 2), (0, -1, 2), (0, 1, -2), (0, -1, -2)]
```

sympy.utilities.iterables.postfixes(seq)
Generate all postfixes of a sequence.

Examples

```python
>>> from sympy.utilities.iterables import postfixes
>>> list(postfixes([1, 2, 3, 4]))
[[4], [3, 4], [2, 3, 4], [1, 2, 3, 4]]
```

sympy.utilities.iterables.prefixes(seq)
Generate all prefixes of a sequence.

Examples

```python
>>> from sympy.utilities.iterables import prefixes
>>> list(prefixes([1, 2, 3, 4]))
[[1], [1, 2], [1, 2, 3], [1, 2, 3, 4]]
```

sympy.utilities.iterables.random_derangement(t, choice=None, strict=True)
Return a list of elements in which none are in the same positions as they were originally. If an element fills more than half of the positions then an error will be raised since no derangement is possible. To obtain a derangement of as many items as possible–with some of the most numerous remaining in their original positions–pass strict = False. To produce a pseudorandom derangement, pass a pseudorandom selector like choice (see below).
Examples

```python
>>> from sympy.utilities.iterables import random_derangement
>>> t = 'SymPy: a CAS in pure Python'
>>> d = random_derangement(t)
>>> all(i != j for i, j in zip(d, t))
True

A predictable result can be obtained by using a pseudorandom generator for the choice:

```python
>>> from sympy.core.random import seed, choice as c
>>> seed(1)
>>> d = [''.join(random_derangement(t, c)) for i in range(5)]
>>> assert len(set(d)) != 1  # we got different values
```

By reseeding, the same sequence can be obtained:

```python
>>> seed(1)
>>> d2 = [''.join(random_derangement(t, c)) for i in range(5)]
>>> assert d == d2
```

```
sympy.utilities.iterables.reshape(seq, how)
Reshape the sequence according to the template in how.
```

Examples

```python
>>> from sympy.utilities import reshape
>>> seq = list(range(1, 9))

>>> reshape(seq, [4])  # lists of 4
[[1, 2, 3, 4], [5, 6, 7, 8]]

>>> reshape(seq, (4,))  # tuples of 4
[(1, 2, 3, 4), (5, 6, 7, 8)]

>>> reshape(seq, (2, 2))  # tuples of 4
[(1, 2, 3, 4), (5, 6, 7, 8)]

>>> reshape(seq, (2, [2]))  # (i, i, [i, i])
[(1, 2, [3, 4]), (5, 6, [7, 8])]

>>> reshape(seq, ((2,), [2]))  # etc....
[((1, 2), [3, 4]), ((5, 6), [7, 8])]

>>> reshape(seq, (1, [2], 1))
[(1, [2, 3], 4), (5, [6, 7], 8)]

>>> reshape(tuple(seq), (([[1], 1, (2,)]),)
(([[1], 2, (3, 4)]), (5, [6, (7, 8)]),))
```
reshape(
tuple(seq), ([1], 1, (2,)))

(([1], 2, (3, 4)), ([5], 6, (7, 8)))

reshape(
list(range(12)), [2, [3], {2}, (1, (3,), 1)])

[[0, 1, [2, 3, 4], {5, 6}, (7, (8, 9, 10), 11)]]

sympy.utilities.iterables.rotate_left(x, y)
Left rotates a list x by the number of steps specified in y.

Examples

```python
>>> from sympy.utilities.iterables import rotate_left
>>> a = [0, 1, 2]
>>> rotate_left(a, 1)
[1, 2, 0]
```

sympy.utilities.iterables.rotate_right(x, y)
Right rotates a list x by the number of steps specified in y.

Examples

```python
>>> from sympy.utilities.iterables import rotate_right
>>> a = [0, 1, 2]
>>> rotate_right(a, 1)
[2, 0, 1]
```

sympy.utilities.iterables.rotations(s, dir=1)
Return a generator giving the items in s as list where each subsequent list has the items rotated to the left (default) or right (dir=-1) relative to the previous list.

Examples

```python
>>> from sympy import rotations
>>> list(rotations([1,2,3]))
[[1, 2, 3], [2, 3, 1], [3, 1, 2]]
>>> list(rotations([1,2,3], -1))
[[1, 2, 3], [3, 1, 2], [2, 3, 1]]
```

sympy.utilities.iterables.roundrobin(*iterables)
roundrobin recipe taken from itertools documentation: https://docs.python.org/3/library/itertools.html#itertools-recipes

roundrobin('ABC', 'D', 'EF') -> A D E B F C
Recipe credited to George Sakkis

sympy.utilities.iterables.runs(seq, op=<built-in function gt>)
Group the sequence into lists in which successive elements all compare the same with the comparison operator, op: op(seq[i + 1], seq[i]) is True from all elements in a run.
Examples

```python
>>> import runs
>>> runs([0, 1, 2, 2, 1, 4, 3, 2, 2])
[[0, 1, 2, 2, 1], [4, 3, 2, 2]]
>>> runs([0, 1, 2, 2, 1, 4, 3, 2, 2], op=ge)
[[0, 1, 2, 2, 1], [4, 3, 2, 2]]
```

```python
sympy.utilities.iterables.sequence_partitions(l, n, /)

Returns the partition of sequence l into n bins

Parameters
l : Sequence[T]
    A nonempty sequence of any Python objects

n : int
    A positive integer

Yields
out : list[Sequence[T]]
    A list of sequences with concatenation equals l. This should conform
    with the type of l.

Explanation

Given the sequence \(l_1 \cdots l_m \in V^+\) where \(V^+\) is the Kleene plus of \(V\)
The set of n partitions of l is defined as:
\[
\{(s_1, \cdots, s_n) | s_1 \in V^+, \cdots, s_n \in V^+, s_1 \cdots s_n = l_1 \cdots l_m\}
\]

Examples

```python
>>> sequence_partitions([1, 2, 3, 4], 2):
... print(out)
[[1, [2, 3, 4]]
[[1, 2], [3, 4]]
[[1, 2, 3], [4]]
```
Notes

This is modified version of EnricoGiampieri’s partition generator from https://stackoverflow.com/questions/13131491/partition-n-items-into-k-bins-in-python-lazily

See also:

sequence_partitions_empty (page 2164)
sympy.utilities.iterables.sequence_partitions_empty(l, n, /)

Returns the partition of sequence l into n bins with empty sequence

Parameters

l : Sequence[T]
    A sequence of any Python objects (can be possibly empty)

n : int
    A positive integer

Yields

out : list[Sequence[T]]
    A list of sequences with concatenation equals l. This should conform with the type of l.

Explanation

Given the sequence $l_1 \ldots l_m \in V^*$ where $V^*$ is the Kleene star of $V$
The set of $n$ partitions of $l$ is defined as:

$$\{(s_1, \ldots, s_n) | s_1 \in V^*, \ldots, s_n \in V^*, s_1 \ldots s_n = l_1 \ldots l_m\}$$

There are more combinations than sequence_partitions() (page 2163) because empty sequence can fill everywhere, so we try to provide different utility for this.

Examples

>>> from sympy.utilities.iterables import sequence_partitions_empty
>>> for out in sequence_partitions_empty([1, 2, 3, 4], 2):
...   print(out)
[[], [1, 2, 3, 4]]
[[1], [2, 3, 4]]
[[1, 2], [3, 4]]
[[1, 2, 3], [4]]
[[1, 2, 3, 4], []]

See also:

sequence_partitions (page 2163)
sympy.utilities.iterables.sift(seq, keyfunc, binary=False)

Sift the sequence, seq according to keyfunc.
Returns
When binary is False (default), the output is a dictionary where elements of seq are stored in a list keyed to the value of keyfunc for that element. If binary is True then a tuple with lists T and F are returned where T is a list containing elements of seq for which keyfunc was True and F containing those elements for which keyfunc was False; a ValueError is raised if the keyfunc is not binary.

Examples

```python
>>> from sympy.utilities import sift
>>> from sympy.abc import x, y
>>> from sympy import sqrt, exp, pi, Tuple

>>> sift(range(5), lambda x: x % 2)
{0: [0, 2, 4], 1: [1, 3]}

sift() returns a defaultdict() object, so any key that has no matches will give [].

>>> sift([x], lambda x: x.is_commutative)
{True: [x], False: []}

Sometimes you will not know how many keys you will get:

>>> sift([sqrt(x), exp(x), (y**x)**2], lambda x: x.as_base_exp()[0])
{E: [exp(x)], x: [sqrt(x)], y: [y**(2*x)]}

Sometimes you expect the results to be binary; the results can be unpacked by setting binary to True:

>>> sift(range(4), lambda x: x % 2, binary=True)
([1, 3], [0, 2])

>>> sift(Tuple(1, pi), lambda x: x.is_rational, binary=True)
([[1], [pi]])

A ValueError is raised if the predicate was not actually binary (which is a good test for the logic where sifting is used and binary results were expected):

```python
>>> unknown = exp(1) - pi # the rationality of this is unknown
>>> args = Tuple(1, pi, unknown)
>>> sift(args, lambda x: x.is_rational, binary=True)
Traceback (most recent call last):
...
ValueError: keyfunc gave non-binary output
```

The non-binary sifting shows that there were 3 keys generated:
>>> set(sift(args, lambda x: x.is_rational).keys())
{None, False, True}

If you need to sort the sifted items it might be better to use ordered which can economically apply multiple sort keys to a sequence while sorting.

See also:

ordered (page 1121)

sympy.utilities.iterables.signed_permutations(t)

Return iterator in which the signs of non-zero elements of t and the order of the elements are permuted.

Examples

>>> from sympy.utilities.iterables import signed_permutations
>>> list(signed_permutations((0, 1, 2)))
[(0, 1, 2), (0, -1, 2), (0, 1, -2), (0, -1, -2), (0, 2, 1),
 (0, -2, 1), (0, 2, -1), (0, -2, -1), (1, 0, 2), (-1, 0, 2),
 (1, 0, -2), (-1, 0, -2), (1, 2, 0), (-1, 2, 0), (1, -2, 0),
 (-1, -2, 0), (2, 0, 1), (-2, 0, 1), (2, 0, -1), (-2, 0, -1),
 (2, 1, 0), (-2, 1, 0), (2, -1, 0), (-2, -1, 0)]

sympy.utilities.iterables.strongly_connected_components(G)

Strongly connected components of a directed graph in reverse topological order.

Parameters

graph : tuple[list, list[tuple[T, T]]]

A tuple consisting of a list of vertices and a list of edges of a graph whose strongly connected components are to be found.

Examples

Consider a directed graph (in dot notation):

digraph {
 A -> B
 A -> C
 B -> C
 C -> B
 B -> D
}
where vertices are the letters A, B, C and D. This graph can be encoded using Python’s elementary data structures as follows:

```
>>> V = ['A', 'B', 'C', 'D']
>>> E = [('A', 'B'), ('A', 'C'), ('B', 'C'), ('C', 'B'), ('B', 'D')]
```

The strongly connected components of this graph can be computed as

```
>>> from sympy.utilities.iterables import strongly_connected_components

>>> strongly_connected_components((V, E))
[['D'], ['B', 'C'], ['A']]
```

This also gives the components in reverse topological order.

Since the subgraph containing B and C has a cycle they must be together in a strongly connected component. A and D are connected to the rest of the graph but not in a cyclic manner so they appear as their own strongly connected components.

Notes

The vertices of the graph must be hashable for the data structures used. If the vertices are unhashable replace them with integer indices.

This function uses Tarjan’s algorithm to compute the strongly connected components in \(O(|V| + |E|)\) (linear) time.

See also:

`sympy.utilities.iterables.connected_components` (page 2142)
References

[R1000], [R1001]

sympy.utilities.iterables.subsets(seq, k=None, repetition=False)
Generates all k-subsets (combinations) from an n-element set, seq.

A k-subset of an n-element set is any subset of length exactly k. The number of k-subsets of an n-element set is given by $\binom{n}{k}$, whereas there are 2^n subsets altogether. If k is None then all 2^n subsets will be returned from shortest to longest.

Examples

```python
>>> from sympy import subsets

subsets(seq, k) will return the $\binom{n}{k}$ $k$-subsets (combinations) without repetition, i.e. once an item has been removed, it can no longer be “taken”:

```python
>>> list(subsets([1, 2], 2))
[(1, 2)]
>>> list(subsets([1, 2]))
[(), (1,), (2,), (1, 2)]
>>> list(subsets([1, 2, 3], 2))
[(1, 2), (1, 3), (2, 3)]
```  

subsets(seq, k, repetition=True) will return the $\binom{n^{1+k}}{k}$ combinations with repetition:

```python
>>> list(subsets([1, 2], 2, repetition=True))
[(1, 1), (1, 2), (2, 2)]
```  

If you ask for more items than are in the set you get the empty set unless you allow repetitions:

```python
>>> list(subsets([0, 1], 3, repetition=False))
[]
>>> list(subsets([0, 1], 3, repetition=True))
[(0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1)]
```  

sympy.utilities.iterables.take(iter, n)
Return $n$ items from iter iterator.

sympy.utilities.iterables.topological_sort(graph, key=None)
Topological sort of graph’s vertices.

Parameters
  graph : tuple[list, list[tuple[T, T]]]
    A tuple consisting of a list of vertices and a list of edges of a graph to be sorted topologically.
  key : callable[T] (optional)
    Ordering key for vertices on the same level. By default the natural (e.g. lexicographic) ordering is used (in this case the base type must implement ordering relations).
Examples

Consider a graph:

```
+----+----+----+
| 7 | 5 | 3 |
+----+----+----+
| | | |
V V V V V V V V
+----+----+----+
| 11 | 8 | |
+----+----+----+
| | | |
V V V V V V V V
+----+----+----+
| 2 | 9 | 10 |
+----+----+----+
```

where vertices are integers. This graph can be encoded using elementary Python’s data structures as follows:

```python
>>> V = [2, 3, 5, 7, 8, 9, 10, 11]
>>> E = [(7, 11), (7, 8), (5, 11), (3, 8), (3, 10), ...
 (11, 2), (11, 9), (11, 10), (8, 9)]
```

To compute a topological sort for graph \((V, E)\) issue:

```python
>>> from sympy.utilities.iterables import topological_sort
>>> topological_sort((V, E))
[3, 5, 7, 8, 11, 2, 9, 10]
```

If specific tie breaking approach is needed, use key parameter:

```python
>>> topological_sort((V, E), key=lambda v: -v)
[7, 5, 11, 3, 10, 8, 9, 2]
```

Only acyclic graphs can be sorted. If the input graph has a cycle, then ValueError will be raised:

```python
>>> topological_sort((V, E + [(10, 7)]))
Traceback (most recent call last):
 ...
ValueError: cycle detected
```
References

[R1002]
sympy.utilities.iterables.unflatten(iter, n=2)
Group iter into tuples of length n. Raise an error if the length of iter is not a multiple
of n.
sympy.utilities.iterables.uniq(seq, result=None)
Yield unique elements from seq as an iterator. The second parameter result is used
internally; it is not necessary to pass anything for this.
Note: changing the sequence during iteration will raise a RuntimeError if the size of the
sequence is known; if you pass an iterator and advance the iterator you will change the
output of this routine but there will be no warning.

Examples

```python
>>> from sympy.utilities.iterables import uniq
>>> dat = [1, 4, 1, 5, 4, 2, 1, 2]
>>> type(uniq(dat)) in (list, tuple)
False
```

```python
>>> list(uniq(dat))
[1, 4, 5, 2]
>>> list(uniq(x for x in dat))
[1, 4, 5, 2]
>>> list(uniq([[1], [2, 1], [1]]))
[[1], [2, 1]]
```
sympy.utilities.iterables.variations(seq, n, repetition=False)
Returns an iterator over the n-sized variations of seq (size N). repetition controls
whether items in seq can appear more than once;

Examples

variations(seq, n) will return \( \frac{N!}{(N-n)!} \) permutations without repetition of seq’s ele-
ments:

```python
>>> from sympy import variations
>>> list(variations([1, 2], 2))
[(1, 2), (2, 1)]
```

variations(seq, n, True) will return the \( N^n \) permutations obtained by allowing rep-
etition of elements:

```python
>>> list(variations([1, 2], 2, repetition=True))
[((1, 1), (1, 2), (2, 1), (2, 2))
```
If you ask for more items than are in the set you get the empty set unless you allow
repetitions:
>> list(variations([0, 1], 3, repetition=False))
[]
>> list(variations([0, 1], 3, repetition=True))[:4]
[(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)]

See also:
- itertools.permutations
- itertools.product

**variations**

`variations(seq, n)` Returns all the variations of the list of size `n`.

Has an optional third argument. Must be a boolean value and makes the method return the variations with repetition if set to True, or the variations without repetition if set to False.

**Examples:**

```python
>>> from sympy.utilities.iterables import variations
>>> list(variations([1, 2, 3], 2))
[(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)]
>>> list(variations([1, 2, 3], 2, True))
[(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)]
```

**partitions**

Although the combinatorics module contains Partition and IntegerPartition classes for investigation and manipulation of partitions, there are a few functions to generate partitions that can be used as low-level tools for routines: `partitions` and `multiset_partitions`. The former gives integer partitions, and the latter gives enumerated partitions of elements. There is also a routine `kbins` that will give a variety of permutations of partitions. And to obtain partitions as a list instead of a dictionary, there is the `ordered_partition` function which is quite fast. Finally, to simply obtain a count of the number of partitions without enumerating them, there is the `nT` function.

**See Also**

- sympy.utilities.iterables.ordered_partitions
- sympy.functions.combinatorial.numbers.nT
- partitions:

```python
>>> from sympy.utilities.iterables import partitions
>>> [p.copy() for s, p in partitions(7, m=2, size=True) if s == 2]
[{{1: 1, 6: 1}, {2: 1, 5: 1}, {3: 1, 4: 1}}]
```

- multiset_partitions:

```python
>>> from sympy.utilities.iterables import multiset_partitions
>>> [p for p in multiset_partitions([1, 1, 1, 2], 2)]
[[[1, 1, 1], [2]], [[1, 1, 2], [1]], [[1, 1], [1, 2]], [[1, 2], [1, 1]]]
```
kbins:

```python
from sympy.utilities.iterables import kbins

def show(k):
 rv = []
 for p in k:
 rv.append(', '.join([''.join(j) for j in p]))
 return sorted(rv)

>>> show(kbins("ABCD", 2))
['A,BCD', 'AB,CD', 'ABC,D']
>>> show(kbins("ABC", 2))
['A,BC', 'AB,C']
>>> show(kbins("ABC", 2, ordered=0)) # same as multiset_partitions
['A,BC', 'AB,C', 'AC,B']
>>> show(kbins("ABC", 2, ordered=1))
>>> show(kbins("ABC", 2, ordered=10))
>>> show(kbins("ABC", 2, ordered=11))
```

### Lambdify

This module provides convenient functions to transform SymPy expressions to lambda functions which can be used to calculate numerical values very fast.

`sympy.utilities.lambdify.implemented_function(symfunc, implementation)`

Add numerical implementation to function `symfunc`.

`symfunc` can be an `UndefinedFunction` instance, or a name string. In the latter case we create an `UndefinedFunction` instance with that name.

Be aware that this is a quick workaround, not a general method to create special symbolic functions. If you want to create a symbolic function to be used by all the machinery of SymPy you should subclass the `Function` class.

**Parameters**

- `symfunc`: `str` or `UndefinedFunction` instance
  
  If `str`, then create new `UndefinedFunction` with this as name. If `symfunc` is an `UndefinedFunction`, create a new function with the same name and the implemented function attached.

- `implementation`: `callable`
  
  numerical implementation to be called by `evalf()` or `lambdify`

**Returns**

- `afunc`: `sympy.FunctionClass` instance
function with attached implementation

Examples

```python
>>> from sympy.abc import x
>>> from sympy.utilities.lambdify import implemented_function
>>> from sympy import lambdify

>>> f = implemented_function('f', lambda x: x+1)
>>> lam_f = lambdify(x, f(x))
>>> lam_f(4)
5
```

sympy.utilities.lambdify.lambdastr(args, expr, printer=None, dummify=None)

Returns a string that can be evaluated to a lambda function.

Examples

```python
>>> from sympy.abc import x, y, z
>>> from sympy.utilities.lambdify import lambdastr

>>> lambdastr(x, x**2)
'lambda x: (x**2)'
>>> lambdastr((x,y,z), [z,y,x])
'lambda x,y,z: ([z, y, x])'
```

Although tuples may not appear as arguments to lambda in Python 3, lambdastr will create a lambda function that will unpack the original arguments so that nested arguments can be handled:

```python
>>> lambdastr((x, (y, z)), x + y)
'lambda _0,_1: (lambda x,y,z: (x + y)(_0,_1[0],_1[1]))'
```

sympy.utilities.lambdify.lambdify(args, expr, modules=None, printer=None, use_imps=True, dummify=False, cse=False, docstring_limit=1000)

Convert a SymPy expression into a function that allows for fast numeric evaluation.

**Warning:** This function uses exec, and thus should not be used on unsanitized input.

Deprecated since version 1.7: Passing a set for the `args` parameter is deprecated as sets are unordered. Use an ordered iterable such as a list or tuple.

**Parameters**

- **args**: List[Symbol]
  
  A variable or a list of variables whose nesting represents the nesting of the arguments that will be passed to the function.

  Variables can be symbols, undefined functions, or matrix symbols.

```python
>>> from sympy import Eq
>>> from sympy import x, y, z
```
The list of variables should match the structure of how the arguments will be passed to the function. Simply enclose the parameters as they will be passed in a list.

To call a function like $f(x)$ then $[x]$ should be the first argument to lambdify; for this case a single $x$ can also be used:

```python
>>> f = lambdify(x, x + 1)
>>> f(1)
2
>>> f = lambdify([x], x + 1)
>>> f(1)
2
```

To call a function like $f(x, y)$ then $[x, y]$ will be the first argument of the lambdify:

```python
>>> f = lambdify([x, y], x + y)
>>> f(1, 1)
2
```

To call a function with a single 3-element tuple like $f((x, y, z))$ then $[(x, y, z)]$ will be the first argument of the lambdify:

```python
>>> f = lambdify([(x, y, z)], Eq(z**2, x**2 + y**2))
>>> f((3, 4, 5))
True
```

If two args will be passed and the first is a scalar but the second is a tuple with two arguments then the items in the list should match that structure:

```python
>>> f = lambdify([x, (y, z)], x + y + z)
>>> f(1, (2, 3))
6
```

**expr**: Expr

An expression, list of expressions, or matrix to be evaluated.

Lists may be nested. If the expression is a list, the output will also be a list.

```python
>>> f = lambdify(x, [x, [x + 1, x + 2]])
>>> f(1)
[1, [2, 3]]
```

If it is a matrix, an array will be returned (for the NumPy module).

```python
>>> from sympy import Matrix
>>> f = lambdify(x, Matrix([x, x + 1]))
>>> f(1)
[[1]
 [2]]
```

Note that the argument order here (variables then expression) is used to emulate the Python lambda keyword. `lambdify(x, expr)` works
(roughly) like lambda x: expr (see *How It Works* (page 2179) below).

**modules**: str, optional

Specifies the numeric library to use.

If not specified, *modules* defaults to:
- ["scipy", "numpy"] if SciPy is installed
- ["numpy"] if only NumPy is installed
- ["math", "mpmath", "sympy"] if neither is installed.

That is, SymPy functions are replaced as far as possible by either scipy or numpy functions if available, and Python’s standard library math, or mpmath functions otherwise.

*modules* can be one of the following types:

- The strings "math", "mpmath", "numpy", "numexpr", "scipy", "sympy", or "tensorflow" or "jax". This uses the corresponding printer and namespace mapping for that module.
- A module (e.g., math). This uses the global namespace of the module. If the module is one of the above known modules, it will also use the corresponding printer and namespace mapping (i.e., *modules=numpy* is equivalent to *modules="numpy"*).
- A dictionary that maps names of SymPy functions to arbitrary functions (e.g., \{'sin': custom_sin\}).
- A list that contains a mix of the arguments above, with higher priority given to entries appearing first (e.g., to use the NumPy module but override the \sin\ function with a custom version, you can use \[[\{'sin': custom_sin\}, 'numpy']\).

**dummify**: bool, optional

Whether or not the variables in the provided expression that are not valid Python identifiers are substituted with dummy symbols.

This allows for undefined functions like `Function('f')(t)` to be supplied as arguments. By default, the variables are only dummified if they are not valid Python identifiers.

Set `dummify=True` to replace all arguments with dummy symbols (if `args` is not a string) - for example, to ensure that the arguments do not redefine any built-in names.

**cse**: bool, or callable, optional

Large expressions can be computed more efficiently when common subexpressions are identified and precomputed before being used multiple time. Finding the subexpressions will make creation of the 'lambdify' function slower, however.

When `True`, `sympy.simplify.cse` is used, otherwise (the default) the user may pass a function matching the cse signature.

**docstring_limit**: int or None

When lambdifying large expressions, a significant proportion of the time spent inside lambdify is spent producing a string representation
of the expression for use in the automatically generated docstring of
the returned function. For expressions containing hundreds or more
nodes the resulting docstring often becomes so long and dense that it
is difficult to read. To reduce the runtime of lambdify, the rendering
of the full expression inside the docstring can be disabled.

When None, the full expression is rendered in the docstring. When \(0\)
or a negative int, an ellipsis is rendering in the docstring instead of
the expression. When a strictly positive int, if the number of nodes
in the expression exceeds docstring_limit an ellipsis is rendered in
the docstring, otherwise a string representation of the expression is
rendered as normal. The default is 1000.

**Explanation**

For example, to convert the SymPy expression \(\sin(x) + \cos(x)\) to an equivalent NumPy
function that numerically evaluates it:

```python
>>> from sympy import sin, cos, symbols, lambdify
>>> import numpy as np
>>> x = symbols('x')
>>> expr = sin(x) + cos(x)
>>> expr
sin(x) + cos(x)
>>> f = lambdify(x, expr, 'numpy')
>>> a = np.array([1, 2])
>>> f(a)
[1.38177329 0.49315059]
```

The primary purpose of this function is to provide a bridge from SymPy expressions
to numerical libraries such as NumPy, SciPy, NumExpr, mpmath, and tensorflow. In
general, SymPy functions do not work with objects from other libraries, such as NumPy
arrays, and functions from numeric libraries like NumPy or mpmath do not work on
SymPy expressions. lambdify bridges the two by converting a SymPy expression to an
equivalent numeric function.

The basic workflow with lambdify is to first create a SymPy expression representing
whatever mathematical function you wish to evaluate. This should be done using only
SymPy functions and expressions. Then, use lambdify to convert this to an equivalent
function for numerical evaluation. For instance, above we created expr using the SymPy
symbol \(x\) and SymPy functions \(\sin\) and \(\cos\), then converted it to an equivalent NumPy
function \(f\), and called it on a NumPy array \(a\).

**Examples**

```python
>>> from sympy.utilities.lambdify import implemented_function
>>> from sympy import sqrt, sin, Matrix
>>> from sympy import Function
>>> from sympy.abc import w, x, y, z

>>> f = lambdify(x, x**2)
>>> f(2)
```

(continues on next page)
lambdify can be used to translate SymPy expressions into mpmath functions. This may be preferable to using evalf (which uses mpmath on the backend) in some cases.

```
>>> f = lambdify(x, sin(x), 'mpmath')
>>> f(1)
0.8414709848078965
```

Tuple arguments are handled and the lambdified function should be called with the same type of arguments as were used to create the function:

```
>>> f = lambdify((x, (y, z)), x + y)
>>> f(1, (2, 4))
3
```

The flatten function can be used to always work with flattened arguments:

```
>>> from sympy.utilities.iterables import flatten
>>> Args = w, (x, (y, z))
>>> vals = 1, (2, (3, 4))
>>> f = lambdify(flatten(args), w + x + y + z)
>>> f(*flatten(vals))
10
```

Functions present in expr can also carry their own numerical implementations, in a callable attached to the _imp_ attribute. This can be used with undefined functions using the implemented_function factory:

```
>>> f = implemented_function(Function('f'), lambda x: x+1)
>>> func = lambdify(x, f(x))
>>> func(4)
5
```

lambdify always prefers _imp_ implementations to implementations in other namespaces, unless the use_imps input parameter is False.

Usage with Tensorflow:

```
>>> import tensorflow as tf
>>> from sympy import Max, sin, lambdify
>>> from sympy.abc import x
```
>>> f = Max(x, sin(x))
>>> func = lambdify(x, f, 'tensorflow')

After tensorflow v2, eager execution is enabled by default. If you want to get the compatible result across tensorflow v1 and v2 as same as this tutorial, run this line.

>>> tf.compat.v1.enable_eager_execution()

If you have eager execution enabled, you can get the result out immediately as you can use numpy.
If you pass tensorflow objects, you may get an EagerTensor object instead of value.

>>> result = func(tf.constant(1.0))
>>> print(result)
Tensor(1.0, shape=(), dtype=float32)
>>> print(result.__class__)
<class 'tensorflow.python.framework.ops.EagerTensor'>

You can use .numpy() to get the numpy value of the tensor.

>>> result.numpy()
1.0

>>> var = tf.Variable(2.0)
>>> result = func(var) # also works for tf.Variable and tf.Placeholder
>>> result.numpy()
2.0

And it works with any shape array.

>>> tensor = tf.constant([[1.0, 2.0], [3.0, 4.0]])
>>> result = func(tensor)
>>> result.numpy()
[[1. 2.]
 [3. 4.]]

Notes

- For functions involving large array calculations, numexpr can provide a significant speedup over numpy. Please note that the available functions for numexpr are more limited than numpy but can be expanded with implemented_function and user defined subclasses of Function. If specified, numexpr may be the only option in modules. The official list of numexpr functions can be found at: https://numexpr.readthedocs.io/projects/NumExpr3/en/latest/user_guide.html#supported-functions

- In the above examples, the generated functions can accept scalar values or numpy arrays as arguments. However, in some cases the generated function relies on the input being a numpy array:
>>> from sympy.test.pytest import ignore_warnings
>>> f = lambdify(x, Piecewise((x, x <= 1), (1/x, x > 1)), "numpy")

>>> with ignore_warnings(RuntimeWarning):
...   f(numpy.array([-1, 0, 1, 2]))
[-1. 0. 1. 0.5]

>>> f(0)
Traceback (most recent call last):
  ... ZeroDivisionError: division by zero

In such cases, the input should be wrapped in a numpy array:

>>> with ignore_warnings(RuntimeWarning):
...   float(f(numpy.array([0])))
0.0

Or if numpy functionality is not required another module can be used:

>>> f = lambdify(x, Piecewise((x, x <= 1), (1/x, x > 1)), "math")
>>> f(0)
0

**How It Works**

When using this function, it helps a great deal to have an idea of what it is doing. At its core, lambdify is nothing more than a namespace translation, on top of a special printer that makes some corner cases work properly.

To understand lambdify, first we must properly understand how Python namespaces work. Say we had two files. One called sin_cos_sympy.py, with

```python
sin_cos_sympy.py
from sympy.functions.elementary.trigonometric import (cos, sin)
def sin_cos(x):
 return sin(x) + cos(x)
```

and one called sin_cos_numpy.py with

```python
sin_cos_numpy.py
from numpy import sin, cos
def sin_cos(x):
 return sin(x) + cos(x)
```

The two files define an identical function sin_cos. However, in the first file, sin and cos are defined as the SymPy sin and cos. In the second, they are defined as the NumPy versions.
If we were to import the first file and use the `sin_cos` function, we would get something like

```python
>>> from sin_cos_sympy import sin_cos
>>> sin_cos(1)
cos(1) + sin(1)
```

On the other hand, if we imported `sin_cos` from the second file, we would get

```python
>>> from sin_cos_numpy import sin_cos
>>> sin_cos(1)
1.38177329068
```

In the first case we got a symbolic output, because it used the symbolic `sin` and `cos` functions from SymPy. In the second, we got a numeric result, because `sin_cos` used the numeric `sin` and `cos` functions from NumPy. But notice that the versions of `sin` and `cos` that were used was not inherent to the `sin_cos` function definition. Both `sin_cos` definitions are exactly the same. Rather, it was based on the names defined at the module where the `sin_cos` function was defined.

The key point here is that when function in Python references a name that is not defined in the function, that name is looked up in the “global” namespace of the module where that function is defined.

Now, in Python, we can emulate this behavior without actually writing a file to disk using the `exec` function. `exec` takes a string containing a block of Python code, and a dictionary that should contain the global variables of the module. It then executes the code “in” that dictionary, as if it were the module globals. The following is equivalent to the `sin_cos` defined in `sin_cos_sympy.py`:

```python
>>> import sympy
>>> module_dictionary = {'sin': sympy.sin, 'cos': sympy.cos}
>>> exec('...
... def sin_cos(x):
... return sin(x) + cos(x)
... ''', module_dictionary)
>>> sin_cos = module_dictionary['sin_cos']
>>> sin_cos(1)
cos(1) + sin(1)
```

and similarly with `sin_cos_numpy`:

```python
>>> import numpy
>>> module_dictionary = {'sin': numpy.sin, 'cos': numpy.cos}
>>> exec('...
... def sin_cos(x):
... return sin(x) + cos(x)
... ''', module_dictionary)
>>> sin_cos = module_dictionary['sin_cos']
>>> sin_cos(1)
1.38177329068
```

So now we can get an idea of how `lambdify` works. The name “lambdify” comes from the fact that we can think of something like `lambdify(x, sin(x) + cos(x), 'numpy')` as lambda `x`: `sin(x) + cos(x)`, where `sin` and `cos` come from the `numpy` namespace.
This is also why the symbols argument is first in lambdify, as opposed to most SymPy functions where it comes after the expression: to better mimic the lambda keyword.

lambdify takes the input expression (like \(\sin(x) + \cos(x)\)) and

1. Converts it to a string
2. Creates a module globals dictionary based on the modules that are passed in (by default, it uses the NumPy module)
3. Creates the string "def func({vars}): return {expr}", where {vars} is the list of variables separated by commas, and {expr} is the string created in step 1., then exec``s that string with the module globals namespace and returns ``func.

In fact, functions returned by lambdify support inspection. So you can see exactly how they are defined by using inspect.getsource, or ?? if you are using IPython or the Jupyter notebook.

```python
>>> f = lambdify(x, sin(x) + cos(x))
>>> import inspect
>>> print(inspect.getsource(f))
def _lambdifygenerated(x):
 return sin(x) + cos(x)
```

This shows us the source code of the function, but not the namespace it was defined in. We can inspect that by looking at the __globals__ attribute of f:

```python
>>> f.__globals__[\'sin\']
<ufunc 'sin'>
>>> f.__globals__[\'cos\']
<ufunc 'cos'>
>>> f.__globals__[\'sin\'] is numpy.sin
True
```

This shows us that \(\sin\) and \(\cos\) in the namespace of f will be numpy.sin and numpy.cos.

Note that there are some convenience layers in each of these steps, but at the core, this is how lambdify works. Step 1 is done using the LambdaPrinter printers defined in the printing module (see sympy.printing.lambdarepr (page 2245)). This allows different SymPy expressions to define how they should be converted to a string for different modules. You can change which printer lambdify uses by passing a custom printer in to the printer argument.

Step 2 is augmented by certain translations. There are default translations for each module, but you can provide your own by passing a list to the modules argument. For instance,

```python
>>> def mysin(x):
... print('taking the sin of', x)
... return numpy.sin(x)
... >>> f = lambdify(x, sin(x), [{\'sin\': mysin}, \'numpy\'])
>>> f(1)
taking the sin of 1
0.8414709848078965
```
The globals dictionary is generated from the list by merging the dictionary `{ 'sin': mysin }` and the module dictionary for NumPy. The merging is done so that earlier items take precedence, which is why `mysin` is used above instead of `numpy.sin`.

If you want to modify the way `lambdify` works for a given function, it is usually easiest to do so by modifying the globals dictionary as such. In more complicated cases, it may be necessary to create and pass in a custom printer.

Finally, step 3 is augmented with certain convenience operations, such as the addition of a docstring.

Understanding how `lambdify` works can make it easier to avoid certain gotchas when using it. For instance, a common mistake is to create a lambdified function for one module (say, NumPy), and pass it objects from another (say, a SymPy expression).

For instance, say we create

```python
>>> from sympy.abc import x
>>> f = lambdify(x, x + 1, 'numpy')
```

Now if we pass in a NumPy array, we get that array plus 1

```python
>>> import numpy
>>> a = numpy.array([1, 2])
>>> f(a)
[2 3]
```

But what happens if you make the mistake of passing in a SymPy expression instead of a NumPy array:

```python
>>> f(x + 1)
x + 2
```

This worked, but it was only by accident. Now take a different lambdified function:

```python
>>> from sympy import sin
>>> g = lambdify(x, x + sin(x), 'numpy')
```

This works as expected on NumPy arrays:

```python
>>> g(a)
[1.84147098 2.90929743]
```

But if we try to pass in a SymPy expression, it fails

```python
>>> try:
... g(x + 1)
... # NumPy release after 1.17 raises TypeError instead of
... # AttributeError
... except (AttributeError, TypeError):
... raise AttributeError()
Traceback (most recent call last):
 raise AttributeError()
AttributeError:
```

Now, let’s look at what happened. The reason this fails is that `g` calls `numpy.sin` on the input expression, and `numpy.sin` does not know how to operate on a SymPy object. As
a general rule, NumPy functions do not know how to operate on SymPy expressions, and SymPy functions do not know how to operate on NumPy arrays. This is why lambdify exists: to provide a bridge between SymPy and NumPy.

However, why is it that f did work? That’s because f does not call any functions, it only adds 1. So the resulting function that is created, def _lambdifygenerated(x): return x + 1 does not depend on the globals namespace it is defined in. Thus it works, but only by accident. A future version of lambdify may remove this behavior.

Be aware that certain implementation details described here may change in future versions of SymPy. The API of passing in custom modules and printers will not change, but the details of how a lambda function is created may change. However, the basic idea will remain the same, and understanding it will be helpful to understanding the behavior of lambdify.

In general: you should create lambdified functions for one module (say, NumPy), and only pass it input types that are compatible with that module (say, NumPy arrays). Remember that by default, if the module argument is not provided, lambdify creates functions using the NumPy and SciPy namespaces.

**Memoization**

sympy.utilities.memoization.assoc_recurrence_memo(base_seq)

Memo decorator for associated sequences defined by recurrence starting from base

base_seq(n) - callable to get base sequence elements

XXX works only for Pn0 = base_seq(0) cases XXX works only for m <= n cases

sympy.utilities.memoization.recurrence_memo(initial)

Memo decorator for sequences defined by recurrence

See usage examples e.g. in the specfun/combinatorial module

**Miscellaneous**

Miscellaneous stuff that does not really fit anywhere else.

sympy.utilities.misc.as_int(n, strict=True)

Convert the argument to a builtin integer.

The return value is guaranteed to be equal to the input. ValueError is raised if the input has a non-integral value. When strict is True, this uses __index__ and when it is False it uses int.
Examples

```python
>>> from sympy.utilities.misc import as_int
>>> from sympy import sqrt, S
```

The function is primarily concerned with sanitizing input for functions that need to work with built-in integers, so anything that is unambiguously an integer should be returned as an int:

```python
>>> as_int(S(3))
3
```

Floats, being of limited precision, are not assumed to be exact and will raise an error unless the `strict` flag is False. This precision issue becomes apparent for large floating point numbers:

```python
>>> big = 1e23
>>> type(big) is float
True
>>> big == int(big)
True
>>> as_int(big)
Traceback (most recent call last):
 ... ValueError: ... is not an integer
>>> as_int(big, strict=False)
99999999999999991611392
```

Input that might be a complex representation of an integer value is also rejected by default:

```python
>>> one = sqrt(3 + 2*sqrt(2)) - sqrt(2)
>>> int(one) == 1
True
>>> as_int(one)
Traceback (most recent call last):
 ... ValueError: ... is not an integer
```

`sympy.utilities.misc.debug(*args)`
Print `*args` if SYMPY_DEBUG is True, else do nothing.

`sympy.utilities.misc.debug_decorator(func)`
If SYMPY_DEBUG is True, it will print a nice execution tree with arguments and results of all decorated functions, else do nothing.

`sympy.utilities.misc.debugf(string, args)`
Print `string%args` if SYMPY_DEBUG is True, else do nothing. This is intended for debug messages using formatted strings.

`sympy.utilities.misc.filldedent(s, w=70, **kwargs)`
Strips leading and trailing empty lines from a copy of `s`, then dedents, fills and returns it.

Empty line stripping serves to deal with docstrings like this one that start with a newline after the initial triple quote, inserting an empty line at the beginning of the string.
Additional keyword arguments will be passed to `textwrap.fill()`.

**See also:**

- `strlines` (page 2187), `rawlines` (page 2185)

**sympy.utilities.misc.find_executable(executable, path=None)**

Try to find `executable` in the directories listed in `path` (a string listing directories separated by `os.pathsep`; defaults to `os.environ['PATH']`). Returns the complete filename or None if not found.

**sympy.utilities.misc.func_name(x, short=False)**

Return function name of `x` (if defined) else the `type(x)`. If short is True and there is a shorter alias for the result, return the alias.

### Examples

```python
>>> from sympy.utilities.misc import func_name
>>> from sympy import Matrix
>>> from sympy.abc import x

>>> func_name(Matrix.eye(3))
'MutableDenseMatrix'

>>> func_name(x < 1)
'StrictLessThan'

>>> func_name(x < 1, short=True)
'Lt'
```

**sympy.utilities.misc.ordinal(num)**

Return ordinal number string of num, e.g. 1 becomes 1st.

**sympy.utilities.misc.rawlines(s)**

Return a cut-and-pasteable string that, when printed, is equivalent to the input. Use this when there is more than one line in the string. The string returned is formatted so it can be indented nicely within tests; in some cases it is wrapped in the dedent function which has to be imported from `textwrap`.

### Examples

Note: because there are characters in the examples below that need to be escaped because they are themselves within a triple quoted docstring, expressions below look more complicated than they would be if they were printed in an interpreter window.

```python
>>> from sympy.utilities.misc import rawlines
>>> from sympy import TableForm

>>> s = str(TableForm([[1, 10]], headings=(None, ['a', 'bee'])))

>>> print(rawlines(s))
(a bee

 1 10)

>>> print(rawlines('''this
(continues on next page)'''))
```

5.8. Topics
... that''')
dedent('''
    this
    that''')

>>> print(rawlines('''this
... that
... '''))
dedent('''
    this
    that''')

>>> s = """"this
... is a triple ''
... ""

>>> print(rawlines(s))
dedent(""""
    this
    is a triple '''
    """)

>>> print(rawlines('''this
... that
... '''))
('this
' 'that
'
)

See also:
filldedent (page 2184), strlines (page 2187)
sympy.utilities.misc.replace(string, *reps)
Return string with all keys in reps replaced with their corresponding values, longer strings first, irrespective of the order they are given. reps may be passed as tuples or a single mapping.

Examples

>>> from sympy.utilities.misc import replace
>>> replace('foo', {'oo': 'ar', 'f': 'b'})
'bar'

>>> replace("spamham sha", ("spam", "eggs"), ("sha","md5"))
'eggsham md5'

There is no guarantee that a unique answer will be obtained if keys in a mapping overlap (i.e. are the same length and have some identical sequence at the beginning/end):
>>> reps = [
... ('ab', 'x'),
... ('bc', 'y'))
>>> replace('abc', *reps) in ('xc', 'ay')
True

References

[R1003]
sympy.utilities.misc.strlines(s, c=64, short=False)

Return a cut-and-pastable string that, when printed, is equivalent to the input. The lines will be surrounded by parentheses and no line will be longer than c (default 64) characters. If the line contains newlines characters, the rawlines result will be returned. If short is True (default is False) then if there is one line it will be returned without bounding parentheses.

Examples

```python
>>> from sympy.utilities.misc import strlines
>>> q = 'this is a long string that should be broken into shorter lines'
>>> print(strlines(q, 40))
('this is a long string that should be b'
'roken into shorter lines'
)
```

```python
>>> q == ('this is a long string that should be b'
... 'roken into shorter lines'
...)
True
```

See also:

filldedent (page 2184), rawlines (page 2185)

sympy.utilities.misc.translate(s, a=None, b=None, c=None)

Return s where characters have been replaced or deleted.

Syntax

translate(s, None, deletechars):

all characters in deletechars are deleted

translate(s, map [,deletechars]):

all characters in deletechars (if provided) are deleted then the replacements defined by map are made; if the keys of map are strings then the longer ones are handled first. Multicharacter deletions should have a value of "."

translate(s, oldchars, newchars, deletechars)

all characters in deletechars are deleted then each character in oldchars is replaced with the corresponding character in newchars
Examples

```python
>>> from sympy.utilities.misc import translate
>>> abc = 'abc'
'bc'
>>> translate(abc, None, 'a')
'bc'
>>> translate(abc, {'a': 'x'}, 'c')
'xb'
>>> translate(abc, {'abc': 'x', 'a': 'y'})
'x'
```

```python
>>> translate('abcd', 'ac', 'AC', 'd')
'AbC'
```

There is no guarantee that a unique answer will be obtained if keys in a mapping overlap are the same length and have some identical sequences at the beginning/end:

```python
>>> translate(abc, {'ab': 'x', 'bc': 'y'}) in ('xc', 'ay')
True
```

PKGDATA

pkgdata is a simple, extensible way for a package to acquire data file resources.
The getResource function is equivalent to the standard idioms, such as the following minimal implementation:

```python
import sys, os

def getResource(identifier, pkgname=__name__):
 pkgpath = os.path.dirname(sys.modules[pkgname].__file__)
 path = os.path.join(pkgpath, identifier)
 return open(os.path.normpath(path), mode='rb')
```

When a __loader__ is present on the module given by __name__, it will defer getResource to its get_data implementation and return it as a file-like object (such as StringIO).

```python
sympy.utilities.pkgdata.get_resource(identifier, pkgname='sympy.utilities.pkgdata')
```

Acquire a readable object for a given package name and identifier. An IOError will be raised if the resource cannot be found.

For example:

```python
mydata = get_resource('mypkgdata.jpg').read()
```

Note that the package name must be fully qualified, if given, such that it would be found in sys.modules.

In some cases, getResource will return a real file object. In that case, it may be useful to use its name attribute to get the path rather than use it as a file-like object. For example, you may be handing data off to a C API.
Source Code Inspection

This module adds several functions for interactive source code inspection.

\texttt{sympy.utilities.source.get\_class(lookup\_view)}

Convert a string version of a class name to the object.

For example, \texttt{get\_class('sympy.core.Basic')} will return class \texttt{Basic} located in module \texttt{sympy.core}

\texttt{sympy.utilities.source.get\_mod\_func(callback)}

splits the string path to a class into a string path to the module and the name of the class.

Examples

\begin{verbatim}
>>> from sympy.utilities.source import get_mod_func
>>> get_mod_func('sympy.core.basic.Basic')
('sympy.core.basic', 'Basic')
\end{verbatim}

Timing Utilities

Simple tools for timing functions' execution, when IPython is not available.

\texttt{sympy.utilities.timeutils.timed(func, setup='pass', limit=None)}

Adaptively measure execution time of a function.

Interactive

Helper module for setting up interactive SymPy sessions.

Session

Tools for setting up interactive sessions.

\texttt{sympy.interactive.session.enable\_automatic\_int\_sympification(shell)}

Allow IPython to automatically convert integer literals to \texttt{Integer}.

\texttt{sympy.interactive.session.enable\_automatic\_symbols(shell)}

Allow IPython to automatically create symbols (isympy -a).

\texttt{sympy.interactive.session.init\_ipython\_session(shell=None, argv=[],
auto\_symbols=False,
auto\_int\_to\_Integer=False)}

Construct new IPython session.

\texttt{sympy.interactive.session.init\_python\_session()}

Construct new Python session.
Initialize an embedded IPython or Python session. The IPython session is initiated with the –pylab option, without the numpy imports, so that Matplotlib plotting can be interactive.

**Parameters**

- **pretty_print**: boolean
  
  If True, use pretty_print to stringify; if False, use sstrrepr to stringify.

- **order**: string or None
  
  There are a few different settings for this parameter: lex (default), which is lexicographic order; grlex, which is graded lexicographic order; grevlex, which is reversed graded lexicographic order; old, which is used for compatibility reasons and for long expressions; None, which sets it to lex.

- **use_unicode**: boolean or None
  
  If True, use unicode characters; if False, do not use unicode characters.

- **use_latex**: boolean or None
  
  If True, use latex rendering if IPython GUI’s; if False, do not use latex rendering.

- **quiet**: boolean
  
  If True, init_session will not print messages regarding its status; if False, init_session will print messages regarding its status.

- **auto_symbols**: boolean
  
  If True, IPython will automatically create symbols for you. If False, it will not. The default is False.

- **auto_int_to_Integer**: boolean
  
  If True, IPython will automatically wrap int literals with Integer, so that things like 1/2 give Rational(1, 2). If False, it will not. The default is False.

- **ipython**: boolean or None
  
  If True, printing will initialize for an IPython console; if False, printing will initialize for a normal console; The default is None, which automatically determines whether we are in an ipython instance or not.

- **str_printer**: function, optional, default=None
  
  A custom string printer function. This should mimic sympy.printing.sstrrepr().

- **pretty_printer**: function, optional, default=None
  
  A custom prettyprinter function.
A custom pretty printer. This should mimic sympy.printing.pretty().

latex_printer: function, optional, default=None

A custom LaTeX printer. This should mimic sympy.printing.latex().

argv: list of arguments for IPython

See sympy.bin.isympy for options that can be used to initialize IPython.

Examples

```python
>>> from sympy import init_session, Symbol, sin, sqrt
>>> sin(x)
NameError: name 'x' is not defined
>>> init_session()
>>> sin(x)
sin(x)
>>> sqrt(5)
\sqrt{5}
>>> init_session(pretty_print=False)
>>> sqrt(5)
sqrt(5)
>>> y + x + y**2 + x**2
x**2 + x + y**2 + y
>>> init_session(order='grlex')
>>> y + x + y**2 + x**2
x**2 + y**2 + x + y
>>> init_session(order='grevlex')
>>> y * x**2 + x * y**2
x**2*y + x*y**2
>>> init_session(order='old')
>>> x**2 + y**2 + x + y
x + y + x**2 + y**2
>>> theta = Symbol('theta')
>>> theta
theta
>>> init_session(use_unicode=True)
>>> theta
θ
```

See also:

sympy.interactive.printing.init_printing (page 2192)
for examples and the rest of the parameters.

sympy.interactive.session.int_to_Integer(s)
Wrap integer literals with Integer.

This is based on the decistmt example from https://docs.python.org/3/library/tokenize.html.

Only integer literals are converted. Float literals are left alone.

5.8. Topics 2191
Examples

```python
>>> from sympy import Integer # noqa: F401
>>> from sympy.interactive.session import int_to_Integer
>>> s = '1.2 + 1/2 - 0x12 + a1'
>>> int_to_Integer(s)
'1.2 +Integer (1)/Integer (2)-Integer (0x12)+a1 '
>>> s = 'print (1/2) '
>>> int_to_Integer(s)
'print (Integer (1)/Integer (2))'
>>> exec(s)
0.5
>>> exec(int_to_Integer(s))
1/2
```

Printing

Tools for setting up printing in interactive sessions.

```python
sympy.interactive.printing.init_printing(pretty_print=True, order=None,
 use_unicode=None, use_latex=None,
 wrap_line=None, num_columns=None,
 no_global=False, ip=None, euler=False,
 forecolor=None, backcolor='Transparent',
 fontsize='10pt', latex_mode='plain',
 print_builtin=True, str_printer=None,
 pretty_printer=None, latex_printer=None,
 scale=1.0, **settings)
```

Initializes pretty-printer depending on the environment.

**Parameters**

- **pretty_print**: bool, default=True
  - If True, use `pretty_print()` (page 2212) to stringify or the provided pretty printer; if False, use `sstrrepr()` (page 2253) to stringify or the provided string printer.

- **order**: string or None, default='lex'
  - There are a few different settings for this parameter: 'lex' (default), which is lexicographic order; 'grlex', which is graded lexicographic order; 'grevlex', which is reversed graded lexicographic order; 'old', which is used for compatibility reasons and for long expressions; None, which sets it to lex.

- **use_unicode**: bool or None, default=None
  - If True, use unicode characters; if False, do not use unicode characters; if None, make a guess based on the environment.

- **use_latex**: string, bool, or None, default=None
  - If True, use default LaTeX rendering in GUI interfaces (png and mathjax); if False, do not use LaTeX rendering; if None, make a guess based on the environment; if 'png', enable LaTeX rendering with an
external LaTeX compiler, falling back to matplotlib if external compilation fails; if 'matplotlib', enable LaTeX rendering with matplotlib; if 'mathjax', enable LaTeX text generation, for example MathJax rendering in IPython notebook or text rendering in LaTeX documents; if 'svg', enable LaTeX rendering with an external latex compiler, no fallback

wrap_line : bool

If True, lines will wrap at the end; if False, they will not wrap but continue as one line. This is only relevant if pretty_print is True.

num_columns : int or None, default=None

If int, number of columns before wrapping is set to num_columns; if None, number of columns before wrapping is set to terminal width. This is only relevant if pretty_print is True.

no_global : bool, default=False

If True, the settings become system wide; if False, use just for this console/session.

ip : An interactive console

This can either be an instance of IPython, or a class that derives from code.InteractiveConsole.

euler : bool, optional, default=False

Loads the euler package in the LaTeX preamble for handwritten style fonts (https://www.ctan.org/pkg/euler).

forecolor : string or None, optional, default=None

DVI setting for foreground color. None means that either ‘Black’, ‘White’, or ‘Gray’ will be selected based on a guess of the IPython terminal color setting. See notes.

backcolor : string, optional, default='Transparent'

DVI setting for background color. See notes.

fontsize : string or int, optional, default='10pt'

A font size to pass to the LaTeX documentclass function in the preamble. Note that the options are limited by the documentclass. Consider using scale instead.

latex_mode : string, optional, default='plain'

The mode used in the LaTeX printer. Can be one of: {'inline'|'plain'|'equation'|'equation*'}.

print_builtin : boolean, optional, default=True

If True then floats and integers will be printed. If False the printer will only print SymPy types.

str_printer : function, optional, default=None

A custom string printer function. This should mimic sstrrepr() (page 2253).

pretty_printer : function, optional, default=None
A custom pretty printer. This should mimic \texttt{pretty()} (page 2212).

\texttt{latex\_printer} : function, optional, default=None

A custom LaTeX printer. This should mimic \texttt{latex()} (page 2245).

\texttt{scale} : float, optional, default=1.0

Scale the LaTeX output when using the 'png' or 'svg' backends. Useful for high dpi screens.

\texttt{settings} :

Any additional settings for the \texttt{latex} and \texttt{pretty} commands can be used to fine-tune the output.

\section*{Examples}

\begin{verbatim}
>>> from sympy.interactive import init_printing
>>> from sympy import Symbol, sqrt
>>> from sympy.abc import x, y
>>> sqrt(5)
sqrt(5)
>>> init_printing(pretty_print=True)
>>> sqrt(5)
\sqrt{5}

\theta

>>> theta = Symbol('theta')
>>> init_printing(use_unicode=True)
>>> theta
\theta

>>> init_printing(use_unicode=False)
>>> theta
theta
>>> init_printing(order='lex')
>>> str(y + x + y**2 + x**2)
x**2 + x + y**2 + y
>>> init_printing(order='grlex')
>>> str(y + x + y**2 + x**2)
x**2 + x + y**2 + y
>>> init_printing(order='grevlex')
>>> str(y * x**2 + x * y**2)
x**2*y + x*y**2
>>> init_printing(order='old')
>>> str(x**2 + y**2 + x + y)
x**2 + x + y**2 + y
>>> init_printing(num_columns=10)
>>> x**2 + x + y**2 + y
x + y +
x**2 + y**2
\end{verbatim}
Notes

The foreground and background colors can be selected when using 'png' or 'svg' LaTeX rendering. Note that before the init_printing command is executed, the LaTeX rendering is handled by the IPython console and not SymPy.

The colors can be selected among the 68 standard colors known to dvips, for a list see [R568]. In addition, the background color can be set to 'Transparent' (which is the default value).

When using the 'Auto' foreground color, the guess is based on the colors variable in the IPython console, see [R569]. Hence, if that variable is set correctly in your IPython console, there is a high chance that the output will be readable, although manual settings may be needed.

See also:

sympy.printing.latex (page 2245), sympy.printing.pretty (page 2212)

References

[R568], [R569]

Parsing

Parsing Functions Reference


Converts the string s to a SymPy expression, in local_dict.

Parameters

s : str
   The string to parse.

local_dict : dict, optional
   A dictionary of local variables to use when parsing.

global_dict : dict, optional
   A dictionary of global variables. By default, this is initialized with from sympy import *; provide this parameter to override this behavior (for instance, to parse “Q & S”).

5.8. Topics
transformations : tuple or str

A tuple of transformation functions used to modify the tokens of the parsed expression before evaluation. The default transformations convert numeric literals into their SymPy equivalents, convert undefined variables into SymPy symbols, and allow the use of standard mathematical factorial notation (e.g. x!). Selection via string is available (see below).

evaluate : bool, optional

When False, the order of the arguments will remain as they were in the string and automatic simplification that would normally occur is suppressed. (see examples)

Examples

```python
>>> from sympy.parsing.sympy_parser import parse_expr
>>> parse_expr("1/2")
1/2
>>> type(_)
<class 'sympy.core.numbers.Half'>
>>> from sympy.parsing.sympy_parser import standard_transformations,
 ... implicit_multiplication_application
>>> transformations = (standard_transformations +
 ... (implicit_multiplication_application,))
>>> parse_expr("2x", transformations=transformations)
2*x
```

When evaluate=False, some automatic simplifications will not occur:

```python
>>> parse_expr("2**3"), parse_expr("2**3", evaluate=False)
(8, 2**3)
```

In addition the order of the arguments will not be made canonical. This feature allows one to tell exactly how the expression was entered:

```python
>>> a = parse_expr('1 + x', evaluate=False)
>>> b = parse_expr('x + 1', evaluate=0)
>>> a == b
False
>>> a.args
(1, x)
>>> b.args
(x, 1)
```

Note, however, that when these expressions are printed they will appear the same:

```python
>>> assert str(a) == str(b)
```

As a convenience, transformations can be seen by printing transformations:

```python
>>> from sympy.parsing.sympy_parser import transformations
```
The `T` object provides a way to select these transformations:

```python
>>> from sympy.parsing.sympy_parser import T
```

If you print it, you will see the same list as shown above.

```python
>>> str(T) == str(transformations)
True
```

Standard slicing will return a tuple of transformations:

```python
>>> T[:5] == standard_transformations
True
```

So `T` can be used to specify the parsing transformations:

```python
>>> parse_expr("2x", transformations=T[:5])
Traceback (most recent call last):
... SyntaxError: invalid syntax
>>> parse_expr("2x", transformations=T[:6])
2*x
>>> parse_expr('.3', transformations=T[3, 11])
3/10
>>> parse_expr('.3x', transformations=T[:])
3*x/10
```

As a further convenience, strings ‘implicit’ and ‘all’ can be used to select 0-5 and all the transformations, respectively.

```python
>>> parse_expr('.3x', transformations='all')
3*x/10
```

See also:

- `stringify_expr` (page 2197), `eval_expr` (page 2198), `standard_transformations` (page 2199), `implicit_multiplication_application` (page 2200)
sympy.parsing.sympy_parser.stringify_expr\(s: str, local\_dict: Dict[str, Any],
global\_dict: Dict[str, Any],
transformations:
Tuple[Callable[[List[Tuple[int, str]], Dict[str, Any], Dict[str, Any]],
List[Tuple[int, str]]], ...]) \rightarrow str\

Converts the string \(s\) to Python code, in local\_dict
Generally, parse\_expr should be used.

sympy.parsing.sympy_parser.eval_expr\(code, local\_dict: Dict[str, Any], global\_dict: Dict[str, Any]\)

Evaluate Python code generated by stringify\_expr.
Generally, parse\_expr should be used.

sympy.parsing.maxima.parse_maxima\(str, globals=None, name\_dict={}\)

sympy.parsing.mathematica.parse_mathematica\(s\)

Translate a string containing a Wolfram Mathematica expression to a SymPy expression.
If the translator is unable to find a suitable SymPy expression, the FullForm of the Mathematica expression will be output, using SymPy Function objects as nodes of the syntax tree.

**Examples**

```python
>>> from sympy.parsing.mathematica import parse_mathematica
>>> parse_mathematica("Sin[x]^2 Tan[y]")
\sin(x)**2*tan(y)
>>> e = parse_mathematica("F[7,5,3]")
>>> e
F(7, 5, 3)
>>> from sympy import Function, Max, Min
>>> e.replace(Function("F"), lambda *x: Max(*x)*Min(*x))
21
```

Both standard input form and Mathematica full form are supported:

```python
>>> parse_mathematica("x*(a + b)")
x*(a + b)
>>> parse_mathematica("Times[x, Plus[a, b]]")
x*(a + b)
```

To get a matrix from Wolfram’s code:

```python
>>> m = parse_mathematica("\{\{a, b\}, \{c, d\}\}\")
>>> m
((a, b), (c, d))
>>> from sympy import Matrix
>>> Matrix(m)
Matrix([[a, b], [c, d]])
```
If the translation into equivalent SymPy expressions fails, an SymPy expression equivalent to Wolfram Mathematica’s “FullForm” will be created:

```python
>>> parse_mathematica("x_.")
Optional(Pattern(x, Blank()))
```

```python
>>> parse_mathematica("Plus @@ {x, y, z}"
Apply(Plus, (x, y, z))
```

```python
>>> parse_mathematica("f[x_, 3] := x^3 /; x > 0"
SetDelayed(f(Pattern(x, Blank()), 3), Condition(x**3, x > 0))
```

**Parsing Transformations Reference**

A transformation is a function that accepts the arguments tokens, local_dict, global_dict and returns a list of transformed tokens. They can be used by passing a list of functions to `parse_expr()` (page 2195) and are applied in the order given.

```python
sympy.parsing.sympy_parser.standard_transformations:
Tuple[Callable[[List[Tuple[int, str]], Dict[str, Any], Dict[str, Any]],
List[Tuple[int, str]]], ...] = (<function lambda_notation>, <function auto_symbol>, <function repeated_decimals>, <function auto_number>, <function factorial_notation>)
```

Standard transformations for `parse_expr()` (page 2195). Inserts calls to `Symbol` (page 1028), `Integer` (page 1038), and other SymPy datatypes and allows the use of standard factorial notation (e.g. x!).

```python
sympy.parsing.sympy_parser.split_symbols(tokens: List[Tuple[int, str]], local_dict:
Dict[str, Any], global_dict: Dict[str, Any])
```

Splits symbol names for implicit multiplication.

Intended to let expressions like xyz be parsed as x*y*z. Does not split Greek character names, so theta will not become t*h*e*t*a. Generally this should be used with `implicit_multiplication`.

```python
sympy.parsing.sympy_parser.split_symbols_custom(predicate: Callable[[str], bool])
```

Creates a transformation that splits symbol names.

Predicate should return True if the symbol name is to be split.

For instance, to retain the default behavior but avoid splitting certain symbol names, a predicate like this would work:

```python
>>> from sympy.parsing.sympy_parser import (parse_expr, _token_splittable, ...
standard_transformations, implicit_multiplication, ...
split_symbols_custom)
>>> def can_split(symbol):
... if symbol not in ('list', 'of', 'unsplittable', 'names'):
... return _token_splittable(symbol)
... return False
...
>>> transformation = split_symbols_custom(can_split)
>>> parse_expr('unsplittable', transformations=standard_transformations + ...
(unsplittable, implicit_multiplication))
```
sympy.parsing.sympy_parser.implicit_multiplication(tokens: List[Tuple[int, str]], local_dict: Dict[str, Any], global_dict: Dict[str, Any]) \to List[Tuple[int, str]]

Makes the multiplication operator optional in most cases.

Use this before implicit_application() (page 2200), otherwise expressions like \sin 2x will be parsed as \(x \times \sin(2)\) rather than \(\sin(2 \cdot x)\).

Examples

```python
>>> from sympy.parsing.sympy_parser import (parse_expr,
... standard_transformations, implicit_multiplication)
>>> transformations = standard_transformations + (implicit_multiplication,)
>>> parse_expr('3 x y', transformations=transformations)
3*x*y
```

sympy.parsing.sympy_parser.implicit_application(tokens: List[Tuple[int, str]], local_dict: Dict[str, Any], global_dict: Dict[str, Any]) \to List[Tuple[int, str]]

Makes parentheses optional in some cases for function calls.

Use this after implicit_multiplication() (page 2199), otherwise expressions like \sin 2x will be parsed as \(x \times \sin(2)\) rather than \(\sin(2 \cdot x)\).

Examples

```python
>>> from sympy.parsing.sympy_parser import (parse_expr,
... standard_transformations, implicit_application)
>>> transformations = standard_transformations + (implicit_application,)
>>> parse_expr('cot z + csc z', transformations=transformations)
cot(z) + csc(z)
```

sympy.parsing.sympy_parser.function_exponentiation(tokens: List[Tuple[int, str]], local_dict: Dict[str, Any], global_dict: Dict[str, Any])

Allows functions to be exponentiated, e.g. \(\cos^2(x)\).

Examples

```python
>>> from sympy.parsing.sympy_parser import (parse_expr,
... standard_transformations, function_exponentiation)
>>> transformations = standard_transformations + (function_exponentiation,)
>>> parse_expr('\sin^{*4}(x)', transformations=transformations)
\sin(x)^{**4}
```
sympy.parsing.sympy_parser.implicit_multiplication_application(result: List[Tuple[int, str]], local_dict: Dict[str, Any], global_dict: Dict[str, Any]) → List[Tuple[int, str]]

Allows a slightly relaxed syntax.

- Parentheses for single-argument method calls are optional.
- Multiplication is implicit.
- Symbol names can be split (i.e. spaces are not needed between symbols).
- Functions can be exponentiated.

**Examples**

```python
from sympy.parsing.sympy_parser import (parse_expr,
... standard_transformations, implicit_multiplication_application)
>>> parse_expr("10sin**2 x**2 + 3xyz + tan theta",
... transformations=(standard_transformations +
... (implicit_multiplication_application,)))
3*x*y*z + 10*sin(x**2)**2 + tan(theta)
```

sympy.parsing.sympy_parser.rationalize(tokens: List[Tuple[int, str]], local_dict: Dict[str, Any], global_dict: Dict[str, Any])

Converts floats into Rational. Run AFTER auto_number.

sympy.parsing.sympy_parser.convert_xor(tokens: List[Tuple[int, str]], local_dict: Dict[str, Any], global_dict: Dict[str, Any])

Treats XOR, ^, as exponentiation, **.

These are included in sympy.parsing.sympy_parser.standard_transformations (page 2199) and generally don’t need to be manually added by the user.

sympy.parsing.sympy_parser.lambda_notation(tokens: List[Tuple[int, str]], local_dict: Dict[str, Any], global_dict: Dict[str, Any])

Substitutes “lambda” with its SymPy equivalent Lambda(). However, the conversion does not take place if only “lambda” is passed because that is a syntax error.

sympy.parsing.sympy_parser.auto_symbol(tokens: List[Tuple[int, str]], local_dict: Dict[str, Any], global_dict: Dict[str, Any])

 Inserts calls to Symbol/Function for undefined variables.

sympy.parsing.sympy_parser.repeated_decimals(tokens: List[Tuple[int, str]], local_dict: Dict[str, Any], global_dict: Dict[str, Any])

Allows 0.2[1] notation to represent the repeated decimal 0.2111... (19/90)

Run this before auto_number.
SymPy documentation, Release 1.12.1

sympy.parsing.sympy_parser.auto_number(tokens: List[Tuple[int, str]], local_dict: Dict[str, Any], global_dict: Dict[str, Any])

Converts numeric literals to use SymPy equivalents.
Complex numbers use \text{i}, integer literals use Integer, and float literals use Float.

sympy.parsing.sympy_parser.factorial_notation(tokens: List[Tuple[int, str]], local_dict: Dict[str, Any], global_dict: Dict[str, Any])

Allows standard notation for factorial.

**Experimental \LaTeX** Parsing

\LaTeX** parsing was ported from latex2sympy. While functional and its API should remain stable, the parsing behavior or backend may change in future releases.

**\LaTeX** Parsing Caveats

The current implementation is experimental. The behavior, parser backend and API might change in the future. Unlike some of the other parsers, \LaTeX is designed as a type-setting language, not a computer algebra system and so can contain typographical conventions that might be interpreted multiple ways.

In its current definition, the parser will at times will fail to fully parse the expression, but not throw a warning:

```python
parse_latex(r'x - ')
```

Will simply find \(x\). What is covered by this behavior will almost certainly change between releases, and become stricter, more relaxed, or some mix.

**\LaTeX** Parsing Functions Reference

sympy.parsing.latex.parse_latex(s)

Converts the string \(s\) to a SymPy Expr

**Parameters**

- **s**: str

  The \LaTeX string to parse. In Python source containing \LaTeX, raw strings (denoted with \texttt{r"}, like this one) are preferred, as \LaTeX makes liberal use of the \textbackslash character, which would trigger escaping in normal Python strings.
Examples

```python
>>> from sympy.parsing.latex import parse_latex
>>> expr = parse_latex(r"\frac{1 + \sqrt{a}}{b}")
>>> expr
(sqrt(a) + 1)/b
>>> expr.evalf(4, subs=dict(a=5, b=2))
1.618
```

LaTeX Parsing Exceptions Reference

class sympy.parsing.latex.LaTeXParsingError

SymPy Expression Reference

class sympy.parsing.sym_expr.SymPyExpression(source_code=None, mode=None)

Class to store and handle SymPy expressions

This class will hold SymPy Expressions and handle the API for the conversion to and from different languages.

It works with the C and the Fortran Parser to generate SymPy expressions which are stored here and which can be converted to multiple language’s source code.

Notes

The module and its API are currently under development and experimental and can be changed during development.

The Fortran parser does not support numeric assignments, so all the variables have been initialized to zero.

The module also depends on external dependencies:

- LFortran which is required to use the Fortran parser
- Clang which is required for the C parser

Examples

Example of parsing C code:

```python
>>> from sympy.parsing.sym_expr import SymPyExpression
>>> src = ...'
... int a,b;
... float c = 2, d =4;
...
... a = SymPyExpression(src, 'c')
>>> a.return_expr()
[Declaration(Variable(a, type=intc)),
 (continues on next page)
An example of variable definition:

```python
>>> from sympy.parsing.sympy_expr import SymPyExpression
>>> src2 = '''
... integer :: a, b, c, d
... real :: p, q, r, s
... '''
>>> p = SymPyExpression()
>>> p.convert_to_expr(src2, 'f')
>>> p.convert_to_c()
['int a = 0', 'int b = 0', 'int c = 0', 'int d = 0', 'double p = 0.0',
 'double q = 0.0', 'double r = 0.0', 'double s = 0.0']
```

An example of Assignment:

```python
>>> from sympy.parsing.sympy_expr import SymPyExpression
>>> src3 = '''
... integer :: a, b, c, d, e
... d = a + b - c
... e = b * d + c * e / a
... '''
>>> p = SymPyExpression(src3, 'f')
>>> p.convert_to_python()
['a = 0', 'b = 0', 'c = 0', 'd = 0', 'e = 0', 'd = a + b - c', 'e = b*d + c*e/a']
```

An example of function definition:

```python
>>> from sympy.parsing.sympy_expr import SymPyExpression
>>> src = '''
... integer function f(a,b)
... integer, intent(in) :: a, b
... integer :: r
... end function
... '''
>>> a = SymPyExpression(src, 'f')
>>> a.convert_to_python()
['def f(a, b):
 f = 0
 r = 0
 return f']
```

c\text{convert}_\text{to}_c()\

Returns a list with the c source code for the SymPy expressions
Examples

```python
from sympy.parsing.sympy_expr import SymPyExpression

src2 = '''
... integer :: a, b, c, d
... real :: p, q, r, s
... c = a/b
... d = c/a
... s = p/q
... r = q/p
...'''

>>> p = SymPyExpression()
>>> p.convert_to_expr(src2, 'f')
```

```python
['int a = 0', 'int b = 0', 'int c = 0', 'int d = 0', 'double p = 0.0',
 'double q = 0.0', 'double r = 0.0', 'double s = 0.0', 'c = a/b;',
 'd = c/a;', 's = p/q;', 'r = q/p;']
```

convert_to_expr *(src_code, mode)*

Converts the given source code to SymPy Expressions

Examples

```python
from sympy.parsing.sympy_expr import SymPyExpression

src3 = '''
... integer function f(a,b) result(r)
... integer, intent(in) :: a, b
... integer :: x
... r = a + b -x
... end function
...'''

>>> p = SymPyExpression()
>>> p.convert_to_expr(src3, 'f')
```

```python
[FunctionDefinition(integer, name=f, parameters=(Variable(a),
 Variable(b)), body=CodeBlock(Declaration(Variable(r, type=integer, value=0)),
 Declaration(Variable(x, type=integer, value=0)),
 Assignment(Variable(r), a + b - x),
 Return(Variable(r)) ))]
```
Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>src_code</td>
<td>(String) the source code or filename of the source code that is to be converted</td>
</tr>
<tr>
<td>mode</td>
<td>the mode to determine which parser is to be used according to the language of the source code for Fortran or C for C/C++</td>
</tr>
</tbody>
</table>

convert_to_fortran()

Returns a list with the fortran source code for the SymPy expressions

Examples

```python
>>> from sympy.parsing.sym_expr import SymPyExpression
>>> src2 = '''
... integer :: a, b, c, d
... real :: p, q, r, s
... c = a/b
... d = c/a
... s = p/q
... r = q/p
...'''
>>> p = SymPyExpression(src2, 'f')
>>> p.convert_to_fortran()
[' integer*4 a', ' integer*4 b', ' integer*4 c', ' integer*4 d', ' real*8 p', ' real*8 q', ' real*8 r', ' real*8 s', ' c = a/b', ' d = c/a', ' s = p/q', ' r = q/p']
```

convert_to_python()

Returns a list with Python code for the SymPy expressions

Examples

```python
>>> from sympy.parsing.sym_expr import SymPyExpression
>>> src2 = '''
... integer :: a, b, c, d
... real :: p, q, r, s
... c = a/b
... d = c/a
... s = p/q
... r = q/p
...'''
>>> p = SymPyExpression(src2, 'f')
>>> p.convert_to_python()
['a = 0', 'b = 0', 'c = 0', 'd = 0', 'p = 0.0', 'q = 0.0', 'r = 0.0', 's = 0.0', 'c = a/b', 'd = c/a', 's = p/q', 'r = q/p']
```

return_expr()

Returns the expression list
Examples

```python
from sympy.parsing.sym_expr import SymPyExpression

src3 = '''
... integer function f(a,b)
... integer, intent(in) :: a, b
... integer :: r
... r = a+b
... f = r
... end function
...'''

p = SymPyExpression()

p.convert_to_expr(src3, 'f')
p.return_expr()

[FunctionDefinition(integer, name=f, parameters=(Variable(a), Variable(b)),
  body=CodeBlock(Declaration(Variable(f, type=integer, value=0)),
  Declaration(Variable(r, type=integer, value=0)),
  Assignment(Variable(f), Variable(r)),
  Return(Variable(f)))
  ]

Runtime Installation

The currently-packaged LaTeX parser backend is partially generated with ANTLR4, but to use the parser, you only need the antlr4 Python package available.

Depending on your package manager, you can install the right package with, for example, pip:

```
$ pip install antlr4-python3-runtime==4.11
```

or conda:

```
$ conda install -c conda-forge antlr-python-runtime==4.11
```

The C parser depends on clang and the Fortran parser depends on LFortran. You can install these packages using:

```
$ conda install -c conda-forge lfortran clang
```

Printing

See the Printing (page 19) section in tutorial for introduction into printing.

This guide documents the printing system in SymPy and how it works internally.
**Printer Class**

Printing subsystem driver

SymPy’s printing system works the following way: Any expression can be passed to a designated Printer who then is responsible to return an adequate representation of that expression.

**The basic concept is the following:**

1. Let the object print itself if it knows how.
2. Take the best fitting method defined in the printer.
3. As fall-back use the emptyPrinter method for the printer.

**Which Method is Responsible for Printing?**

The whole printing process is started by calling `.doprint(expr)` on the printer which you want to use. This method looks for an appropriate method which can print the given expression in the given style that the printer defines. While looking for the method, it follows these steps:

1. **Let the object print itself if it knows how.**

   The printer looks for a specific method in every object. The name of that method depends on the specific printer and is defined under `Printer.printmethod`. For example, StrPrinter calls `_sympystr` and LatexPrinter calls `_latex`. Look at the documentation of the printer that you want to use. The name of the method is specified there.

   This was the original way of doing printing in sympy. Every class had its own latex, mathml, str and repr methods, but it turned out that it is hard to produce a high quality printer, if all the methods are spread out that far. Therefore all printing code was combined into the different printers, which works great for built-in SymPy objects, but not that good for user defined classes where it is inconvenient to patch the printers.

2. **Take the best fitting method defined in the printer.**

   The printer loops through expr classes (class + its bases), and tries to dispatch the work to `_print_<EXPR_CLASS>`

   e.g., suppose we have the following class hierarchy:

   ```
 Basic
 |
 Atom
 |
 Number
 |
 Rational
   ```

   then, for `expr=Rational(...)`, the Printer will try to call printer methods in the order as shown in the figure below:

   ```
 p._print(expr)
 |-- p._print_Rational(expr)
   ```

   (continues on next page)
if \_.print\_.Rational method exists in the printer, then it is called, and the result is returned back. Otherwise, the printer tries to call \_.print\_.Number and so on.

3. **As a fall-back use the emptyPrinter method for the printer.**

   As fall-back self.emptyPrinter will be called with the expression. If not defined in the Printer subclass this will be the same as str(expr).

Example of Custom Printer

In the example below, we have a printer which prints the derivative of a function in a shorter form.

```python
class MyLatexPrinter(LatexPrinter):
 """Print derivative of a function of symbols in a shorter form.\n """
 def _print_Derivative(self, expr):
 function, *vars = expr.args
 if not isinstance(type(function), UndefinedFunction) or \
 not all(isinstance(i, Symbol) for i in vars):
 return super()._print_Derivative(expr)

 # If you want the printer to work correctly for nested
 # expressions then use self.print() instead of str() or latex().
 # See the example of nested modulo below in the custom printing
 # method section.
 return "{}_\{{}\}".format(
 self._print(Symbol(function.func.__name__)),
 ''.join(self._print(i) for i in vars))

def print_my_latex(expr):
 """Most of the printers define their own wrappers for print().
 These wrappers usually take printer settings. Our printer does not have
 any settings.\n """
 print(MyLatexPrinter().doprint(expr))
```

```
y = Symbol("y")
x = Symbol("x")
```
f = Function("f")
expr = f(x, y).diff(x, y)

# Print the expression using the normal latex printer and our custom
# printer.
print_latex(expr)
print_my_latex(expr)

The output of the code above is:

\frac{\partial^2}{\partial x \partial y} f\{x,y \right\}
f_{xy}

Example of Custom Printing Method

In the example below, the latex printing of the modulo operator is modified. This is done by
overriding the method _latex of Mod.

```python
>>> from sympy import Symbol, Mod, Integer, print_latex

>>> # Always use printer._print()
>>> class ModOp(Mod):
... def _latex(self, printer):
... a, b = [printer._print(i) for i in self.args]
... return r"\operatorname{Mod}\{\left(%s, %s\right)}" % (a, b)
```

Comparing the output of our custom operator to the builtin one:

```python
>>> x = Symbol('x')
>>> m = Symbol('m')
>>> print_latex(Mod(x, m))
x \bmod m
>>> print_latex(ModOp(x, m))
\operatorname{Mod}{\left(x, m\right)}
```

Common mistakes

It’s important to always use self._print(obj) to print subcomponents of an expression when
customizing a printer. Mistakes include:

1. Using self.doprint(obj) instead:

```python
>>> # This example does not work properly, as only the outermost call
>>> # may use
>>> # doprint.
>>> class ModOpWrong(Mod):
... def _latex(self, printer):
... a, b = [printer.doprint(i) for i in self.args]
... return r"\operatorname{Mod}\{\left(%s, %s\right)}" % (a, b)
```
This fails when the mode argument is passed to the printer:

```
>>> print_latex(ModOp(x, m), mode='inline') # ok
$\text{operatorname}{\left(x, m\right)}$
>>> print_latex(ModOpModeWrong(x, m), mode='inline') # bad
$\text{operatorname}{\left(x, m\right)}$
```

2. Using `str(obj)` instead:

```
>>> class ModOpNestedWrong(Mod):
... def _latex_(self, printer):
... a, b = [str(i) for i in self.args]
... return r"\text{operatorname}{\left(%s, %s\right)}" % (a, b)
```

This fails on nested objects:

```
>>> # Nested modulo.
>>> print_latex(ModOp(ModOp(x, m), Integer(7))) # ok
$\text{operatorname}{\left(\text{operatorname}{\left(x, m\right)}, 7\right)}$
>>> print_latex(ModOpNestedWrong(ModOpNestedWrong(x, m), Integer(7))) # bad
$\text{operatorname}{\left(\text{operatorname}{\left(x, m\right)}, 7\right)}$
```

3. Using LaTeXPrinter()._print(obj) instead.

```
>>> from sympy.printing.latex import LaTeXPrinter
>>> class ModOpSettingsWrong(Mod):
... def _latex_(self, printer):
... a, b = [LaTeXPrinter()._print(i) for i in self.args]
... return r"\text{operatorname}{\left(%s, %s\right)}" % (a, b)
```

This causes all the settings to be discarded in the subobjects. As an example, the `full_prec` setting which shows floats to full precision is ignored:

```
>>> from sympy import Float
>>> print_latex(ModOp(Float(1) * x, m), full_prec=True) # ok
$\text{operatorname}{\left(1.00000000000000 x, m\right)}$
>>> print_latex(ModOpSettingsWrong(Float(1) * x, m), full_prec=True) # bad
$\text{operatorname}{\left(1.0 x, m\right)}$
```

The main class responsible for printing is Printer (see also its source code):

```
class sympy.printing.printer.Printer(settings=None)
Generic printer
Its job is to provide infrastructure for implementing new printers easily.
If you want to define your custom Printer or your custom printing method for your custom
class then see the example above: printer_example (page 2209).

printmethod: str = None

_print(expr, **kwargs) → str
Internal dispatcher
Tries the following concepts to print an expression:
```
1. Let the object print itself if it knows how.
2. Take the best fitting method defined in the printer.
3. As fall-back use the emptyPrinter method for the printer.

```python
doprint(expr)
 Returns printer's representation for expr (as a string)
```

```python
classmethod set_global_settings(**settings)
 Set system-wide printing settings.
```

**PrettyPrinter Class**

The pretty printing subsystem is implemented in `sympy.printing.pretty.pretty` by the `PrettyPrinter` class deriving from `Printer`. It relies on the modules `sympy.printing.pretty.stringPict` and `sympy.printing.pretty.pretty_symbology` for rendering nice-looking formulas.

The module `stringPict` provides a base class `stringPict` and a derived class `prettyForm` that ease the creation and manipulation of formulas that span across multiple lines.

The module `pretty_symbology` provides primitives to construct 2D shapes (hline, vline, etc) together with a technique to use unicode automatically when possible.

```python
class sympy.printing.pretty.pretty.PrettyPrinter(settings=None)
 Printer, which converts an expression into 2D ASCII-art figure.
```

```python
printmethod: str = '_pretty'
```

```python
sympy.printing.pretty.pretty.pretty(expr, *, order=None, full_prec='auto',
 use_unicode=True, wrap_line=False,
 num_columns=None,
 use_unicode_sqrt_char=True,
 root_notation=True, mat_symbol_style='plain',
 imaginary_unit='i', perm_cyclic=True)
```

Returns a string containing the prettified form of expr.

For information on keyword arguments see pretty_print function.

```python
sympy.printing.pretty.pretty.pretty_print(expr, **kwargs)
```

Prints expr in pretty form.

`pprint` is just a shortcut for this function.

**Parameters**

- `expr`: expression
  - The expression to print.
- `wrap_line`: bool, optional (default=True)
  - Line wrapping enabled/disabled.
- `num_columns`: int or None, optional (default=None)
  - Number of columns before line breaking (default to None which reads the terminal width), useful when using SymPy without terminal.
- `use_unicode`: bool or None, optional (default=None)
Use unicode characters, such as the Greek letter pi instead of the string pi.

**full_prec** : bool or string, optional (default="auto")

Use full precision.

**order** : bool or string, optional (default=None)

Set to ‘none’ for long expressions if slow; default is None.

**use_unicode_sqrt_char** : bool, optional (default=True)

Use compact single-character square root symbol (when unambiguous).

**root_notation** : bool, optional (default=True)

Set to ‘False’ for printing exponents of the form 1/n in fractional form. By default exponent is printed in root form.

**mat_symbol_style** : string, optional (default="plain")

Set to “bold” for printing MatrixSymbols using a bold mathematical symbol face. By default the standard face is used.

**imaginary_unit** : string, optional (default="i")

Letter to use for imaginary unit when use_unicode is True. Can be “i” (default) or “j”.

### C code printers

This class implements C code printing, i.e. it converts Python expressions to strings of C code (see also **C89CodePrinter**).

Usage:

```python
>>> from sympy.printing import print_ccode
>>> from sympy.functions import sin, cos, Abs, gamma
>>> from sympy import x

>>> print_ccode(sin(x)**2 + cos(x)**2, standard='C89')
pow(sin(x), 2) + pow(cos(x), 2)

>>> print_ccode(2*x + cos(x), assign_to="result", standard='C89')
result = 2*x + cos(x);

>>> print_ccode(Abs(x**2), standard='C89')
fabs(pow(x, 2))

>>> print_ccode(gamma(x**2), standard='C99')
tgamma(pow(x, 2))
```

```python
sympy.printing.c.known_functions_C89 = {'Abs': [(<function <lambda>>, 'fabs'), (<function <lambda>>, 'abs')], 'acos': 'acos', 'asin': 'asin', 'atan': 'atan', 'atan2': 'atan2', 'ceiling': 'ceil', 'cos': 'cos', 'cosh': 'cosh', 'exp': 'exp', 'floor': 'floor', 'log': 'log', 'sin': 'sin', 'sinh': 'sinh', 'sqrt': 'sqrt', 'tan': 'tan', 'tanh': 'tanh'}
```
SymPy Documentation, Release 1.12.1

```python
sympy.printing.c.known_functions_C99 = {'Abs': [(<function <lambda>>, 'fabs'), (<function <lambda>>, 'abs')], 'Cbrt': 'cbrt', 'Max': 'fmax', 'Min': 'fmin', 'acos': 'acos', 'acosh': 'acosh', 'asin': 'asin', 'asinh': 'asinh', 'atan': 'atan', 'atan2': 'atan2', 'atanh': 'atanh', 'ceiling': 'ceil', 'cos': 'cos', 'cosh': 'cosh', 'erf': 'erf', 'erfc': 'erfc', 'exp': 'exp', 'exp2': 'exp2', 'expm1': 'expm1', 'floor': 'floor', 'fma': 'fma', 'gamma': 'tgamma', 'hypot': 'hypot', 'log': 'log', 'log10': 'log10', 'log1p': 'log1p', 'log2': 'log2', 'loggamma': 'lgamma', 'sin': 'sin', 'sind': 'sind', 'sqrt': 'sqrt', 'tan': 'tan', 'tanh': 'tanh'}
```

class sympy.printing.c.C89CodePrinter(settings=None)

A printer to convert Python expressions to strings of C code

```python
printmethod: str = '_ccode'
indent_code(code)
 Accepts a string of code or a list of code lines
```

class sympy.printing.c.C99CodePrinter(settings=None)

```python
printmethod: str = '_ccode'
sympy.printing.c.ccode(expr, assign_to=None, standard='c99', **settings)
 Converts an expr to a string of c code
```

**Parameters**

- **expr**: Expr
  A SymPy expression to be converted.

- **assign_to**: optional
  When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string, Symbol, MatrixSymbol, or Indexed type. This is helpful in case of line-wrapping, or for expressions that generate multi-line statements.

- **standard**: str, optional
  String specifying the standard. If your compiler supports a more modern standard you may set this to 'c99' to allow the printer to use more math functions. [default='c89'].

- **precision**: integer, optional
  The precision for numbers such as pi [default=17].

- **user_functions**: dict, optional
  A dictionary where the keys are string representations of either FunctionClass or UndefinedFunction instances and the values are their desired C string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)] or [(argument_test, cfunction_formater)]. See below for examples.

- **dereference**: iterable, optional
  An iterable of symbols that should be dereferenced in the printed code expression. These would be values passed by address to the function. For example, if dereference=[a], the resulting code would print (*a) instead of a.
human : bool, optional

If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True].

contract : bool, optional

If True, Indexed instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True].

Examples

```python
>>> from sympy import ccode, symbols, Rational, sin, ceiling, Abs,
 ... Function
>>> x, tau = symbols("x, tau")
>>> expr = (2*tau)**Rational(7, 2)
>>> ccode(expr)
'8*M_SQRT2*pow(tau, 7.0/2.0)'
>>> ccode(expr, math_macros={})
'8*sqrt(2)*pow(tau, 7.0/2.0)'
>>> ccode(sin(x), assign_to="s")
's = sin(x);'
>>> from sympy.codegen.ast import real, float80
>>> ccode(expr, type_aliases={real: float80})
'8*M_SQRT2l*powl(tau, 7.0L/2.0L)'
Simple custom printing can be defined for certain types by passing a dictionary of \{"type" : "function"\} to the user_functions kwarg. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)].

```python
>>> custom_functions = {
    ... "ceiling": "CEIL",
    ... "Abs": [(lambda x: not x.is_integer, "fabs"),
              (lambda x: x.is_integer, "ABS")],
    ... "func": "f"
    ... }
>>> func = Function('func')
>>> ccode(func(Abs(x) + ceiling(x)), standard='C89', user_functions=custom_functions)
'f(fabs(x) + CEIL(x))'
```
or if the C-function takes a subset of the original arguments:

```python
>>> ccode(2**x + 3**x, standard='C99', user_functions={
    ... 'Pow': [
              (lambda b, e: b == 2, lambda b, e: 'exp2(%s)' % e),
              (lambda b, e: b != 2, 'pow')]
    ... })
'exp2(x) + pow(3, x)'
```

Piecewise expressions are converted into conditionals. If an assign_to variable is provided an if statement is created, otherwise the ternary operator is used. Note that if
the Piecewise lacks a default term, represented by (expr, True) then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything.

```python
>>> from sympy import Piecewise
>>> expr = Piecewise((x + 1, x > 0), (x, True))
>>> print(ccode(expr, tau, standard='C89'))
if (x > 0) {
    tau = x + 1;
} else {
    tau = x;
}
```

Support for loops is provided through Indexed types. With contract=True these expressions will be turned into loops, whereas contract=False will just print the assignment expression that should be looped over:

```python
>>> from sympy import Eq, IndexedBase, Idx
>>> len_y = 5
>>> y = IndexedBase('y', shape=(len_y,))
>>> t = IndexedBase('t', shape=(len_y,))
>>> Dy = IndexedBase('Dy', shape=(len_y-1,))
>>> i = Idx('i', len_y-1)
>>> e = Eq(Dy[i], (y[i+1] - y[i])/(t[i+1] - t[i]))
>>> ccode(e.rhs, assign_to=e.lhs, contract=False, standard='C89')
'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);'
```

Matrices are also supported, but a MatrixSymbol of the same dimensions must be provided to assign_to. Note that any expression that can be generated normally can also exist inside a Matrix:

```python
>>> from sympy import Matrix, MatrixSymbol
>>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)])
>>> A = MatrixSymbol('A', 3, 1)
>>> print(ccode(mat, A, standard='C89'))
A[0] = pow(x, 2);
if (x > 0) {
    A[1] = x + 1;
} else {
    A[1] = x;
} A[2] = sin(x);
```

The `sympy.printing.c.print_ccode` function:

Prints C representation of the given expression.
C++ code printers

This module contains printers for C++ code, i.e. functions to convert SymPy expressions to strings of C++ code.

Usage:

```python
>>> from sympy.printing import cxxcode
>>> from sympy.functions import Min, gamma
>>> from sympy.abc import x

>>> print(cxxcode(Min(gamma(x) - 1, x), standard='C++11'))
std::min(x, std::tgamma(x) - 1)
```

```python
class sympy.printing.cxx.CXX98CodePrinter(settings=None)
    printmethod: str = '_cxxcode'
class sympy.printing.cxx.CXX11CodePrinter(settings=None)
    printmethod: str = '_cxxcode'
sympy.printing.codeprinter.cxxcode(expr, assign_to=None, standard='c++11', **settings)
```

C++ equivalent of `ccode()` (page 2214).

RCodePrinter

This class implements R code printing (i.e. it converts Python expressions to strings of R code).

Usage:

```python
>>> from sympy.printing import print_rcode
>>> from sympy.functions import sin, cos, Abs
>>> from sympy.abc import x

>>> print_rcode(sin(x)**2 + cos(x)**2)
sin(x)^2 + cos(x)^2
>>> print_rcode(2*x + cos(x), assign_to="result")
result = 2*x + cos(x);
>>> print_rcode(Abs(x**2))
abs(x^2)
```

```python
sympy.printing.rcode.known_functions = {'Abs': 'abs', 'Max': 'max', 'Min': 'min', 'acos': 'acos', 'acosh': 'acosh', 'asin': 'asin', 'asinh': 'asinh', 'atan': 'atan', 'atan2': 'atan2', 'atanh': 'atanh', 'beta': 'beta', 'cos': 'cos', 'cosh': 'cosh', 'digamma': 'digamma', 'erf': 'erf', 'exp': 'exp', 'factorial': 'factorial', 'floor': 'floor', 'gamma': 'gamma', 'log': 'log', 'sign': 'sign', 'sin': 'sin', 'sinh': 'sinh', 'sqrt': 'sqrt', 'tan': 'tan', 'tanh': 'tanh', 'trigamma': 'trigamma'}
class sympy.printing.rcode.RCodePrinter(settings={})
    printmethod: str = '_rcode'
```

A printer to convert SymPy expressions to strings of R code.
indent_code(code)
 Accepts a string of code or a list of code lines

sympy.printing.rcode.rcode(expr, assign_to=None, **settings)
 Converts an expr to a string of r code

Parameters
expr : Expr
 A SymPy expression to be converted.
assign_to : optional
 When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string, Symbol, MatrixSymbol, or Indexed type. This is helpful in case of line-wrapping, or for expressions that generate multi-line statements.
precision : integer, optional
 The precision for numbers such as pi [default=15].
user_functions : dict, optional
 A dictionary where the keys are string representations of either FunctionClass or UndefinedFunction instances and the values are their desired R string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, rfunction_string)] or [(argument_test, rfunction_formater)]. See below for examples.
human : bool, optional
 If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_toDeclare, not_supported_functions, code_text). [default=True].
contract: bool, optional
 If True, Indexed instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True].

Examples

>>> from sympy import rcode, symbols, Rational, sin, ceiling, Abs, Function
>>> x, tau = symbols("x, tau")
>>> rcode((2*tau)**Rational(7, 2))
'8*sqrt(2)*tau^(7.0/2.0)'
>>> rcode(sin(x), assign_to="s")
's = sin(x);'

Simple custom printing can be defined for certain types by passing a dictionary of {"type" : "function"} to the user_functions kwarg. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)].
```python
custom_functions = {
    "ceiling": "CEIL",
    "Abs": [(lambda x: not x.is_integer, "fabs"),
             (lambda x: x.is_integer, "ABS")],
    "func": "f"
}

func = Function('func')
rcode(func(abs(x) + ceiling(x)), user_functions=custom_functions)
'f(fabs(x) + CEIL(x))'
```

or if the R-function takes a subset of the original arguments:

```python
rcode(2**x + 3**x, user_functions={'Pow': [
    (lambda b, e: b == 2, lambda b, e: 'exp2(%s)' % e),
    (lambda b, e: b != 2, 'pow')
]},
'exp2(x) + pow(3, x)'
```

Piecewise expressions are converted into conditionals. If an assign_to variable is provided an if statement is created, otherwise the ternary operator is used. Note that if the Piecewise lacks a default term, represented by (expr, True) then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything.

```python
from sympy import Piecewise
expr = Piecewise((x + 1, x > 0), (x, True))
print(rkode(expr, assign_to=tau))
tau = ifelse(x > 0, x + 1, x);
```

Support for loops is provided through Indexed types. With contract=True these expressions will be turned into loops, whereas contract=False will just print the assignment expression that should be looped over:

```python
from sympy import Eq, IndexedBase, Idx
len_y = 5
y = IndexedBase('y', shape=(len_y,))
t = IndexedBase('t', shape=(len_y,))
Dy = IndexedBase('Dy', shape=(len_y-1,))
i = Idx('i', len_y-1)
e=Eq(Dy[i], (y[i+1] - y[i])/(t[i+1] - t[i]))
rcode(e.rhs, assign_to=e.lhs, contract=False)
'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);'
```

Matrices are also supported, but a MatrixSymbol of the same dimensions must be provided to assign_to. Note that any expression that can be generated normally can also exist inside a Matrix:

```python
from sympy import Matrix, MatrixSymbol
mat = Matrix([[2**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)]
mat = Matrix([[2**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)]
A = MatrixSymbol('A', 3, 1)
print(rkode(mat, A))
A[0] = x^2;
A[1] = ifelse(x > 0, x + 1, x);
A[2] = sin(x);
```

sympy.printing.rcode.print_rkode(expr, **settings)
Prints R representation of the given expression.

Fortran Printing

The `fcode` function translates a SymPy expression into Fortran code. The main purpose is to take away the burden of manually translating long mathematical expressions. Therefore the resulting expression should also require no (or very little) manual tweaking to make it compilable. The optional arguments of `fcode` can be used to fine-tune the behavior of `fcode` in such a way that manual changes in the result are no longer needed.

```python
sympy.printing.fortran.fcode(expr, assign_to=None, **settings)
```

Converts an expr to a string of fortran code

Parameters

- `expr` : Expr
 A SymPy expression to be converted.

- `assign_to` : optional
 When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string, Symbol, MatrixSymbol, or Indexed type. This is helpful in case of line-wrapping, or for expressions that generate multi-line statements.

- `precision` : integer, optional
 DEPRECATED. Use type_mappings instead. The precision for numbers such as pi [default=17].

- `user_functions` : dict, optional
 A dictionary where keys are FunctionClass instances and values are their string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. See below for examples.

- `human` : bool, optional
 If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True].

- `contract` : bool, optional
 If True, Indexed instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True].

- `source_format` : optional
 The source format can be either ‘fixed’ or ‘free’. [default=’fixed’]

- `standard` : integer, optional
 The Fortran standard to be followed. This is specified as an integer. Acceptable standards are 66, 77, 90, 95, 2003, and 2008. Default
is 77. Note that currently the only distinction internally is between standards before 95, and those 95 and after. This may change later as more features are added.

name_mangling : bool, optional

If True, then the variables that would become identical in case-insensitive Fortran are mangled by appending different number of _ at the end. If False, SymPy will not interfere with naming of variables. [default=True]

Examples

```python
>>> from sympy import fcode, symbols, Rational, sin, ceiling, floor

>>> x, tau = symbols("x, tau")

>>> fcode((2*tau)**Rational(7, 2))
' 8*sqrt(2.0d0)*tau**(7.0d0/2.0d0)'

>>> fcode(sin(x), assign_to="s")
' s = sin(x)'
```

Custom printing can be defined for certain types by passing a dictionary of “type” : “function“ to the user_functions kwarg. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)].

```python
>>> custom_functions = {
...     "ceiling": "CEIL",
...     "floor": [(lambda x: not x.is_integer, "FLOOR1"),
...               (lambda x: x.is_integer, "FLOOR2")]
... }

>>> fcode(floor(x) + ceiling(x), user_functions=custom_functions)
' CEIL(x) + FLOOR1(x)'
```

Piecewise expressions are converted into conditionals. If an assign_to variable is provided an if statement is created, otherwise the ternary operator is used. Note that if the Piecewise lacks a default term, represented by (expr, True) then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything.

```python
>>> from sympy import Piecewise

>>> expr = Piecewise((x + 1, x > 0), (x, True))

>>> print(fcode(expr, tau))
    if (x > 0) then
        tau = x + 1
    else
        tau = x
    end if
```

Support for loops is provided through Indexed types. With contract=True these expressions will be turned into loops, whereas contract=False will just print the assignment expression that should be looped over:

```python
>>> from sympy import Eq, IndexedBase, Idx

>>> len_y = 5

>>> y = IndexedBase('y', shape=(len_y,))
```

(continues on next page)
Matrices are also supported, but a MatrixSymbol of the same dimensions must be provided to assign_to. Note that any expression that can be generated normally can also exist inside a Matrix:

```python
>>> from sympy import Matrix, MatrixSymbol
>>> mat = Matrix([[x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x))])
>>> A = MatrixSymbol('A', 3, 1)
>>> print(fcode(mat, A))
A(1, 1) = x**2
    if (x > 0) then
A(2, 1) = x + 1
    else
A(2, 1) = x
    end if
A(3, 1) = sin(x)
```
In case of line wrapping, it is handy to include the assignment so that lines are wrapped properly when the assignment part is added.

```python
>>> print(fcode(expr, assign_to="var"))
var = -715.0d0/65536.0d0*x**18 - 429.0d0/32768.0d0*x**16 - 33.0d0/2048.0d0*x**14 - 21.0d0/1024.0d0*x**12 - 7.0d0/256.0d0*x**10 - 5.0d0/128.0d0*x**8 - 1.0d0/16.0d0*x**6 - 1.0d0/8.0d0*x**4 - 1.0d0/2.0d0*x**2 + 1
```

For piecewise functions, the `assign_to` option is mandatory:

```python
>>> print(fcode(Piecewise((x,x<1),(x**2,True)), assign_to="var"))
if (x < 1) then
  var = x
else
  var = x**2
end if
```

Note that by default only top-level piecewise functions are supported due to the lack of a conditional operator in Fortran 77. Inline conditionals can be supported using the `merge` function introduced in Fortran 95 by setting of the kwarg `standard=95`:

```python
>>> print(fcode(Piecewise((x,x<1),(x**2,True)), standard=95))
merge(x, x**2, x < 1)
```

Loops are generated if there are Indexed objects in the expression. This also requires use of the `assign_to` option.

```python
>>> A, B = map(IndexedBase, ['A', 'B'])
>>> m = Symbol('m', integer=True)
>>> i = Idx('i', m)
>>> print(fcode(2*B[i], assign_to=A[i]))
do i = 1, m
  A(i) = 2*B(i)
end do
```

Repeated indices in an expression with Indexed objects are interpreted as summation. For instance, code for the trace of a matrix can be generated with

```python
>>> print(fcode(A[i, i], assign_to=x))
x = 0
do i = 1, m
  x = x + A(i, i)
end do
```

By default, number symbols such as `pi` and `E` are detected and defined as Fortran parameters. The precision of the constants can be tuned with the precision argument. Parameter definitions are easily avoided using the `N` function.

```python
>>> print(fcode(x - pi**2 - E))
parameter (E = 2.7182818284590452d0)
parameter (pi = 3.1415926535897932d0)
x - pi**2 - E
>>> print(fcode(x - pi**2 - E, precision=25))
```

(continues on next page)
When some functions are not part of the Fortran standard, it might be desirable to introduce the names of user-defined functions in the Fortran expression.

```
>>> print(fcode(1 - gamma(x)**2, user_functions={'gamma': 'mygamma'}))
1 - mygamma(x)**2
```

However, when the user_functions argument is not provided, fcode will generate code which assumes that a function of the same name will be provided by the user. A comment will be added to inform the user of the issue:

```
>>> print(fcode(1 - gamma(x)**2))
C Not supported in Fortran:
C gamma
   1 - gamma(x)**2
```

The printer can be configured to omit these comments:

```
>>> print(fcode(1 - gamma(x)**2, allow_unknown_functions=True))
1 - gamma(x)**2
```

By default the output is human readable code, ready for copy and paste. With the option human=False, the return value is suitable for post-processing with source code generators that write routines with multiple instructions. The return value is a three-tuple containing: (i) a set of number symbols that must be defined as 'Fortran parameters', (ii) a list functions that cannot be translated in pure Fortran and (iii) a string of Fortran code. A few examples:

```
>>> fcode(1 - gamma(x)**2, human=False)
(set(), {gamma(x)}, ' 1 - gamma(x)**2')
>>> fcode(1 - sin(x)**2, human=False)
(set(), set(), ' 1 - sin(x)**2')
>>> fcode(x - pi**2, human=False)
({(pi, '3.1415926535897932d0')}, set(), ' x - pi**2')
```

SMT-Lib printing

```python
class sympy.printing.smtlib.SMTLibPrinter(settings: dict | None = None,
symbol_table=None)
```

```
printmethod: str = '_smtlib'
```
SymPy Documentation, Release 1.12.1

```python
_sym_default_settings: dict = {'known_constants': {}, 'known_functions':
    {<class 'sympy.core.add.Add'>: '+', <class 'sympy.core.mul.Mul'>: '*',
     <class 'sympy.core.power.Pow'>: 'pow', <class
     'sympy.core.relational.Equality'>: '=', <class
     'sympy.core.relational.GreaterThan'>: '>=', <class
     'sympy.core.relational.LessThan'>: '<=', <class
     'sympy.core.relational.StrictGreaterThan'>: '>', <class
     'sympy.core.relational.StrictLessThan'>: '<', Abs: 'abs', And: 'and',
     Xor: 'xor', acos: 'arccos', asin: 'arcsin', atan: 'arctan', atan2:
     sinh: 'sinh', tan: 'tan', tanh: 'tanh'}, 'known_types': {<class 'bool'>:
     'Bool', <class 'float'>: 'Real', <class 'int'>: 'Int'}, 'precision':
    None}

sympy.printing.smtlib.smtlib_code(expr, auto_assert=True, auto_declare=True,
    precision=None, symbol_table=None, known_types=None, known_constants=None,
    known_functions=None, prefix_expressions=None, suffix_expressions=None,
    log_warn=None)
```

Converts `expr` to a string of SMTlib code.

Parameters

- `expr` : Expr | List[Expr]
 A SymPy expression or system to be converted.

- `auto_assert` : bool, optional
 If false, do not modify `expr` and produce only the S-Expression equiva-
 lent of `expr`. If true, assume `expr` is a system and assert each boolean
 element.

- `auto_declare` : bool, optional
 If false, do not produce declarations for the symbols used in `expr`. If
 true, prepend all necessary declarations for variables used in `expr`
 based on `symbol_table`.

- `precision` : integer, optional
 The `evalf(…)` precision for numbers such as pi.

- `symbol_table` : dict, optional
 A dictionary where keys are `Symbol` or `Function` instances and values
 are their Python type i.e. `bool`, `int`, `float`, or `Callable[...]`. If
 incomplete, an attempt will be made to infer types from `expr`.

- `known_types`: dict, optional
 A dictionary where keys are `bool`, `int`, `float` etc. and values are
 their corresponding SMT type names. If not given, a partial listing
 compatible with several solvers will be used.

- `known_functions`: dict, optional
 A dictionary where keys are `Function`, `Relational`, `BooleanFunction`, or
 `Expr` instances and values are their SMT string representations. If not given, a partial listing optimized
 for dReal solver (but compatible with others) will be used.

5.8. Topics

2225
known_constants: dict, optional

A dictionary where keys are NumberSymbol instances and values are their SMT variable names. When using this feature, extra caution must be taken to avoid naming collisions between user symbols and listed constants. If not given, constants will be expanded inline i.e. 3.14159 instead of MY_SMT_VARIABLE_FOR_PI.

prefix_expressions: list, optional

A list of lists of str and/or expressions to convert into SMTLib and prefix to the output.

suffix_expressions: list, optional

A list of lists of str and/or expressions to convert into SMTLib and postfix to the output.

log_warn: lambda function, optional

A function to record all warnings during potentially risky operations. Soundness is a core value in SMT solving, so it is good to log all assumptions made.

Examples

```python
>>> from sympy import smtlib_code, symbols, sin, Eq
>>> x = symbols('x')
>>> smtlib_code(sin(x).series(x).removeO(), log_warn=print)
Could not infer type of `x`. Defaulting to float.
Non-Boolean expression `x**5/120 - x**3/6 + x` will not be asserted.
Converting to SMTLib verbatim.
'(declare-const x Real)\n(+ x (* (/ -1 6) (pow x 3)) (* (/ 1 120) (pow x 5)))'
```

```python
>>> from sympy import Rational
>>> x, y, tau = symbols("x, y, tau")
>>> smtlib_code((2*tau)**Rational(7, 2), log_warn=print)
Could not infer type of `tau`. Defaulting to float.
Non-Boolean expression `8*sqrt(2)*tau**(7/2)` will not be asserted.
Converting to SMTLib verbatim.
'(declare-const tau Real)\n(* 8 (pow 2 (/ 1 2)) (pow tau (/ 7 2)))'
```

Piecewise expressions are implemented with ite expressions by default. Note that if the Piecewise lacks a default term, represented by (expr, True) then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything.

```python
>>> from sympy import Piecewise
>>> pw = Piecewise((x + 1, x > 0), (x, True))
>>> smtlib_code(Eq(pw, 3), symbol_table={x: float}, log_warn=print)
'(declare-const x Real)\n(= (ite (> x 0) (+ 1 x) x) 3)'
```

Custom printing can be defined for certain types by passing a dictionary of PythonType: “SMT Name” to the known_types, known_constants, and known_functions kwargs.
```python
>>> from typing import Callable
>>> from sympy import Function, Add
>>> f = Function('f')
>>> g = Function('g')
>>> smt_builtin_funcs = {  # functions our SMT solver will understand
...     f: "existing_smtlib_fcn",
...     Add: "sum",
... }
>>> user_def_funcs = {  # functions defined by the user must have their
...     g: Callable[[int], float],
... }
>>> smtlib_code(f(x) + g(x), symbol_table=user_def_funcs, known_
...     functions=smt_builtin_funcs, log_warn=print)
Non-Boolean expression `f(x) + g(x)` will not be asserted. Converting to
SMTLib verbatim.
'(declare-const x Int)\n(declare-fun g (Int) Real)\n(sum (existing_
    smtlib_fcn x) (g x))'
```

Mathematica code printing
SymPy Documentation, Release 1.12.1

sympy.printing.mathematica.known_functions = {'Chi': [(<function <lambda>>, 'CoshIntegral')], 'Ci': [(<function <lambda>>, 'CosIntegral')], 'DiracDelta': [(<function <lambda>>, 'DiracDelta')], 'Ei': [(<function <lambda>>, 'ExpIntegralEi')], 'FallingFactorial': [(<function <lambda>>, 'FactorialPower')], 'Heaviside': [(<function <lambda>>, 'HeavisideTheta')], 'KroneckerDelta': [(<function <lambda>>, 'KroneckerDelta')], 'Max': [(<function <lambda>>, 'Max')], 'Min': [(<function <lambda>>, 'Min')], 'RisingFactorial': [(<function <lambda>>, 'Pochhammer')], 'Shi': [(<function <lambda>>, 'SinIntegral')], 'Si': [(<function <lambda>>, 'SinIntegral')], 'acos': [(<function <lambda>>, 'ArcCos')], 'acosh': [(<function <lambda>>, 'ArcCosh')], 'acot': [(<function <lambda>>, 'ArcCot')], 'acoth': [(<function <lambda>>, 'ArcCoth')], 'acsc': [(<function <lambda>>, 'ArcCsc')], 'acsch': [(<function <lambda>>, 'ArcCsch')], 'airyai': [(<function <lambda>>, 'ArcCsch')], 'airybipp': [(<function <lambda>>, 'AiryBiPrime')], 'airybiprime': [(<function <lambda>>, 'AiryBiPrime')], 'appellf1': [(<function <lambda>>, 'AppellF1')], 'asec': [(<function <lambda>>, 'ArcSec')], 'asech': [(<function <lambda>>, 'ArcSech')], 'asin': [(<function <lambda>>, 'ArcSin')], 'asinh': [(<function <lambda>>, 'ArcSin')], 'assoc_laguerre': [(<function <lambda>>, 'LaguerreL')], 'assoc_legendre': [(<function <lambda>>, 'LegendreP')], 'atan': [(<function <lambda>>, 'ArcTan')], 'atan2': [(<function <lambda>>, 'ArcTan')], 'atanh': [(<function <lambda>>, 'ArcTanh')], 'besseli': [(<function <lambda>>, 'BesselI')], 'besselj': [(<function <lambda>>, 'BesselJ')], 'besselk': [(<function <lambda>>, 'BesselK')], 'bessely': [(<function <lambda>>, 'BesselY')], 'beta': [(<function <lambda>>, 'Beta')], 'catalan': [(<function <lambda>>, 'CatalanNumber')], 'chebyshevT': [(<function <lambda>>, 'ChebyshevT')], 'chebyshevU': [(<function <lambda>>, 'ChebyshevU')], 'conjugate': [(<function <lambda>>, 'Conjugate')], 'cos': [(<function <lambda>>, 'Cos')], 'cosh': [(<function <lambda>>, 'Cosh')], 'cot': [(<function <lambda>>, 'Cot')], 'coth': [(<function <lambda>>, 'Coth')], 'csc': [(<function <lambda>>, 'Csc')], 'csch': [(<function <lambda>>, 'Csch')], 'dirichlet_eta': [(<function <lambda>>, 'DirichletE')], 'elliptic_e': [(<function <lambda>>, 'EllipticE')], 'elliptic_f': [(<function <lambda>>, 'EllipticF')], 'elliptic_k': [(<function <lambda>>, 'EllipticK')], 'elliptic_pi': [(<function <lambda>>, 'EllipticPi')], 'erf': [(<function <lambda>>, 'Erf')], 'erf2': [(<function <lambda>>, 'Erf')], 'erf2inv': [(<function <lambda>>, 'InverseErf')], 'erfc': [(<function <lambda>>, 'Erfc')], 'erfcinv': [(<function <lambda>>, 'InverseErf')], 'erfi': [(<function <lambda>>, 'Erfi')], 'erfinv': [(<function <lambda>>, 'InverseErf')], 'exp': [(<function <lambda>>, 'Exp')], 'expint': [(<function <lambda>>, 'ExpIntegralEi')], 'factorial': [(<function <lambda>>, 'Factorial')], 'factorial2': [(<function <lambda>>, 'Factorial2')], 'fresnelc': [(<function <lambda>>, 'FresnelC')], 'fresnels': [(<function <lambda>>, 'Fresnels')], 'gamma': [(<function <lambda>>, 'Gamma')], 'gcd': [(<function <lambda>>, 'GCD')], 'gegenbauer': [(<function <lambda>>, 'GegenbauerC')], 'hankel1': [(<function <lambda>>, 'HankelH1')], 'hankel2': [(<function <lambda>>, 'HankelH2')], 'harmonic': [(<function <lambda>>, 'HarmonicNumber')], 'hermite': [(<function <lambda>>, 'HermiteH')], 'hyper': [(<function <lambda>>, 'HypergeometricPFQ')], 'jacobi': [(<function <lambda>>, 'JacobiP')], 'jn': [(<function <lambda>>, 'SphericalBesselJ')], 'laguerre': [(<function <lambda>>, 'LaguerreL')], 'lcm': [(<function <lambda>>, 'LCM')], 'legendre': [(<function <lambda>>, 'LegendreP')], 'lerchphi': [(<function <lambda>>, 'LerchPhi')], 'li': [(<function <lambda>>, 'LogIntegral')], 'log': [(<function <lambda>>, 'Log')], 'loggamma': [(<function <lambda>>, 'LogGamma')], 'lucas': [(<function <lambda>>, 'LucasL')], 'mathieu': [(<function <lambda>>, 'MathieuC')], 'mathieuprime': [(<function <lambda>>, 'MathieuCPrime')], 'mathieus': [(<function <lambda>>, 'MathieuS')], 'mathieusprime': [(<function <lambda>>, 'MathieuSPrime')], 'meijerg': [(<function <lambda>>, 'MeijerG')], 'polygamma': [(<function <lambda>>, 'Polygamma')], 'polynomial': [(<function <lambda>>, 'Polynomial')], 'riemann_xi': [(<function <lambda>>, 'RiemannXi')], 'sec': [(<function <lambda>>, 'Sec')], 'sech': [(<function <lambda>>, 'Sech')], 'sin': [(<function <lambda>>, 'Sin')], 'sinc': [(<function <lambda>>, 'Sinc')], 'sinh': [(<function <lambda>>, 'Sinh')], 'sqrt': [(<function <lambda>>, 'Sqrt')], 'stieltjes': [(<function <lambda>>, 'StieltjesGamma')], 'subfactorial': [(<function <lambda>>, 'Subfactorial')], 'tan': [(<function <lambda>>, 'Tan')], 'tanh': [(<function <lambda>>, 'Tanh')], 'uppergamma': [(<function <lambda>>, 'Uppergamma')], 'yn': [(<function <lambda>>, 'SphericalBesselY')], 'zeta': [(<function <lambda>>, 'Zeta')]}
class sympy.printing.mathematica.MCodePrinter(settings={})
A printer to convert Python expressions to strings of the Wolfram’s Mathematica code

printmethod: str = '_mcode'

sympy.printing.mathematica.mathematica_code(expr, **settings)
Converts an expr to a string of the Wolfram Mathematica code

Examples

```python
>>> from sympy import mathematica_code as mcode, symbols, sin
>>> x = symbols('x')
>>> mcode(sin(x).series(x).removeO())
'(1/120)*x^5 - 1/6*x^3 + x'
```

Maple code printing

class sympy.printing.maple.MapleCodePrinter(settings=None)
Printer which converts a SymPy expression into a maple code.

printmethod: str = '_maple'

sympy.printing.maple.maple_code(expr, assign_to=None, **settings)
Converts expr to a string of Maple code.

Parameters

- expr: Expr
 A SymPy expression to be converted.

- assign_to: optional
 When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string, Symbol, MatrixSymbol, or Indexed type. This can be helpful for expressions that generate multi-line statements.

- precision: integer, optional
 The precision for numbers such as pi [default=16].

- user_functions: dict, optional
 A dictionary where keys are FunctionClass instances and values are their string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. See below for examples.

- human: bool, optional
 If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True].

5.8. Topics 2229
contract: bool, optional

If True, Indexed instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True].

inline: bool, optional

If True, we try to create single-statement code instead of multiple statements. [default=True].

```python
from sympy import print_maple_code, symbols
x, y = symbols('x y')
print_maple_code(x, assign_to=y)
```

```
y := x
```

Javascript Code printing

```python

class sympy.printing.jscode.JavaScriptCodePrinter(settings={})
    # A Printer to convert Python expressions to strings of JavaScript code
    printmethod: str = '_javascript'

indent_code(code)
    Accepts a string of code or a list of code lines

sympy.printing.jscode.jscode(expr, assign_to=None, **settings)
    Converts an expr to a string of javascript code

Parameters

- **expr** : Expr
    A SymPy expression to be converted.

- **assign_to** : optional
    When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string, Symbol,
MatrixSymbol, or Indexed type. This is helpful in case of line-wrapping, or for expressions that generate multi-line statements.

**precision**: integer, optional

The precision for numbers such as pi [default=15].

**user_functions**: dict, optional

A dictionary where keys are FunctionClass instances and values are their string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, js_function_string)]. See below for examples.

**human**: bool, optional

If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True].

**contract**: bool, optional

If True, Indexed instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True].

### Examples

```python
>>> from sympy import jscode, symbols, Rational, sin, ceiling, Abs
>>> x, tau = symbols("x, tau")
>>> jscode((2*tau)**Rational(7, 2))
'8*Math.sqrt(2)*Math.pow(tau, 7/2)'
>>> jscode(sin(x), assign_to="s")
's = Math.sin(x);'
```

Custom printing can be defined for certain types by passing a dictionary of “type”: “function” to the user_functions kwarg. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, js_function_string)].

```python
>>> custom_functions = {
... "ceiling": "CEIL",
... "Abs": [(lambda x: not x.is_integer, "fabs"),
... (lambda x: x.is_integer, "ABS")]
... }
>>> jscode(Abs(x) + ceiling(x), user_functions=custom_functions)
'fabs(x) + CEIL(x)'
```

Piecewise expressions are converted into conditionals. If an assign_to variable is provided an if statement is created, otherwise the ternary operator is used. Note that if the Piecewise lacks a default term, represented by (expr, True) then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything.
```python
>>> from sympy import Piecewise
>>> expr = Piecewise((x + 1, x > 0), (x, True))
>>> print(jscode(expr, tau))
if (x > 0) {
 tau = x + 1;
} else {
 tau = x;
}
```

Support for loops is provided through Indexed types. With contract=True these expressions will be turned into loops, whereas contract=False will just print the assignment expression that should be looped over:

```python
>>> from sympy import Eq, IndexedBase, Idx
>>> len_y = 5
>>> y = IndexedBase('y', shape=(len_y,))
>>> t = IndexedBase('t', shape=(len_y,))
>>> Dy = IndexedBase('Dy', shape=(len_y-1,))
>>> i = Idx('i', len_y-1)
>>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
>>> jscode(e.rhs, assign_to=e.lhs, contract=False)
'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);'
```

Matrices are also supported, but a MatrixSymbol of the same dimensions must be provided to assign_to. Note that any expression that can be generated normally can also exist inside a Matrix:

```python
>>> from sympy import Matrix, MatrixSymbol
>>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)]
>>> A = MatrixSymbol('A', 3, 1)
>>> print(jscode(mat, A))
A[0] = Math.pow(x, 2);
if (x > 0) {
 A[1] = x + 1;
} else {
 A[1] = x;
}
A[2] = Math.sin(x);
```

**Julia code printing**


Built-in mutable sequence.
If no argument is given, the constructor creates a new empty list. The argument must be an iterable if specified.

```python
sympy.printing.julia.known_fcns_src2 = {'Abs': 'abs', 'ceiling': 'ceil', 'conjugate': 'conj', 'hankel1': 'hankelh1', 'hankel2': 'hankelh2', 'im': 'imag', 're': 'real'}
```

```python
class sympy.printing.julia.JuliaCodePrinter(settings={})

A printer to convert expressions to strings of Julia code.

printmethod: str = '_julia'

indent_code(code)

Accepts a string of code or a list of code lines
```

```python
sympy.printing.julia.julia_code(expr, assign_to=None, **settings)

Converts expr to a string of Julia code.
```

**Parameters**

expr : Expr

A SymPy expression to be converted.

assign_to : optional

When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string, Symbol, MatrixSymbol, or Indexed type. This can be helpful for expressions that generate multi-line statements.

precision : integer, optional

The precision for numbers such as pi [default=16].

user_functions : dict, optional

A dictionary where keys are FunctionClass instances and values are their string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. See below for examples.

human : bool, optional

If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True].

contract: bool, optional

If True, Indexed instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True].

inline: bool, optional

If True, we try to create single-statement code instead of multiple statements. [default=True].
Examples

```python
>>> from sympy import julia_code, symbols, sin, pi
>>> x = symbols('x')
>>> julia_code(sin(x).series(x).removeO())
'x .^ 5 / 120 - x .^ 3 / 6 + x'

>>> from sympy import Rational, ceiling
>>> x, y, tau = symbols("x, y, tau")
>>> julia_code((2*tau)**Rational(7, 2))
'8 * sqrt(2) * tau .^ (7 // 2)'

Note that element-wise (Hadamard) operations are used by default between symbols. This is because it's possible in Julia to write "vectorized" code. It is harmless if the values are scalars.

```python
>>> julia_code(sin(pi*x*y), assign_to="s")
's = sin(pi * x .* y)'

If you need a matrix product "*" or matrix power "^", you can specify the symbol as a MatrixSymbol.

```python
>>> from sympy import Symbol, MatrixSymbol
>>> n = Symbol('n', integer=True, positive=True)
>>> A = MatrixSymbol('A', n, n)
>>> julia_code(3*pi*A**3)
'(3 * pi) * A ^ 3'

This class uses several rules to decide which symbol to use a product. Pure numbers use "*", Symbols use ".*" and MatrixSymbols use "^". A HadamardProduct can be used to specify componentwise multiplication ".*" of two MatrixSymbols. There is currently no easy way to specify scalar symbols, so sometimes the code might have some minor cosmetic issues. For example, suppose x and y are scalars and A is a Matrix, then while a human programmer might write "(x^2*y)*A^3", we generate:

```python
>>> julia_code(x**2*y*A**3)
'(x .^ 2 .* y) * A ^ 3'

Matrices are supported using Julia inline notation. When using assign_to with matrices, the name can be specified either as a string or as a MatrixSymbol. The dimensions must align in the latter case.

```python
>>> from sympy import Matrix, MatrixSymbol
>>> mat = Matrix([[x**2, sin(x), ceiling(x)]]
>>> julia_code(mat, assign_to='A')
'A = [x .^ 2 sin(x) ceil(x)]'

Piecewise expressions are implemented with logical masking by default. Alternatively, you can pass "inline=False" to use if-else conditionals. Note that if the Piecewise lacks a default term, represented by (expr, True) then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything.

```python
>>> from sympy import Piecewise
>>> pw = Piecewise((x + 1, x > 0), (x, True))

(continues on next page)
Note that any expression that can be generated normally can also exist inside a Matrix:

```python
>>> mat = Matrix([[x**2, pw, sin(x)]]
`A = [x .^ 2 ((x > 0) ? (x + 1) : (x)) sin(x)]`
```

Custom printing can be defined for certain types by passing a dictionary of “type”: “function” to the `user_functions` keyword. Alternatively, the dictionary value can be a list of tuples i.e., [(argument_test, cfunction_string)]. This can be used to call a custom Julia function.

```python
>>> from sympy import Function
>>> f = Function('f')
>>> g = Function('g')
>>> custom_functions = {
... "f": "existing_julia_fcn",
... "g": [(lambda x: x.is_Matrix, "my_mat_fcn"),
... (lambda x: not x.is_Matrix, "my_fcn")]
... }
>>> mat = Matrix([[1, x]])
>>> julia_code(f(x) + g(x) + g(mat), user_functions=custom_functions)
'existing_julia_fcn(x) + my_fcn(x) + my_mat_fcn([1 x])'
```

Support for loops is provided through Indexed types. With contract=True these expressions will be turned into loops, whereas contract=False will just print the assignment expression that should be looped over:

```python
>>> from sympy import Eq, IndexedBase, Idx
>>> len_y = 5
>>> y = IndexedBase('y', shape=(len_y,))
>>> t = IndexedBase('t', shape=(len_y,))
>>> Dy = IndexedBase('Dy', shape=(len_y-1,))
>>> i = Idx('i', len_y-1)
>>> e = Eq(Dy[i], (y[i+1] - y[i]) / (t[i+1] - t[i]))
>>> julia_code(e.rhs, assign_to=e.lhs, contract=False)
'Dy[i] = (y[i + 1] - y[i]) ./ (t[i + 1] - t[i])'
```

**Octave (and Matlab) Code printing**

```python
```

Built-in mutable sequence.

5.8. Topics 2235
If no argument is given, the constructor creates a new empty list. The argument must be an iterable if specified.

```python
sympy.printing.octave.known_fcns_src2 = {'Abs': 'abs', 'Chi': 'coshint', 'Ci': 'cosint', 'DiracDelta': 'dirac', 'Heaviside': 'heaviside', 'LambertW': 'lambertw', 'Max': 'max', 'Min': 'min', 'Mod': 'mod', 'RisingFactorial': 'pochhammer', 'Shi': 'sinhint', 'Si': 'sinint', 'arg': 'angle', 'binomial': 'bincoeff', 'ceiling': 'ceil', 'chebyshevt': 'chebyshevT', 'chebyshevu': 'chebyshevU', 'conjugate': 'conj', 'im': 'imag', 'laguerre': 'laguerrel', 'li': 'logint', 'loggamma': 'gammaln', 'polygamma': 'psi', 're': 'real'}
```

```python
class sympy.printing.octave.OctaveCodePrinter(settings={})
 A printer to convert expressions to strings of Octave/Matlab code.

 printmethod: str = '_octave'

 indent_code(code)
 Accepts a string of code or a list of code lines

 sympy.printing.octave.octave_code(expr, assign_to=None, **settings)
 Converts expr to a string of Octave (or Matlab) code.
 The string uses a subset of the Octave language for Matlab compatibility.

 Parameters
 expr : Expr
 A SymPy expression to be converted.

 assign_to : optional
 When given, the argument is used as the name of the variable
to which the expression is assigned. Can be a string, Symbol,
MatrixSymbol, or Indexed type. This can be helpful for expressions
that generate multi-line statements.

 precision : integer, optional
 The precision for numbers such as pi [default=16].

 user_functions : dict, optional
 A dictionary where keys are FunctionClass instances and values are
their string representations. Alternatively, the dictionary value can
be a list of tuples i.e. [(argument_test, cfunction_string)]. See below
for examples.

 human : bool, optional
 If True, the result is a single string that may contain some
constant declarations for the number symbols. If False, the
same information is returned in a tuple of (symbols_to_declare,
not_supported_functions, code_text). [default=True].

 contract: bool, optional
 If True, Indexed instances are assumed to obey tensor contraction
rules and the corresponding nested loops over indices are generated.
Setting contract=False will not generate loops, instead the
user is responsible to provide values for the indices in the code. [de-
fault=True].
inline: bool, optional

If True, we try to create single-statement code instead of multiple statements. [default=True].

Examples

```python
>>> from sympy import octave_code, symbols, sin, pi
>>> x = symbols('x')
>>> octave_code(sin(x).series(x).removeO())
'x.^5/120 - x.^3/6 + x'

>>> from sympy import Rational, ceiling
>>> x, y, tau = symbols('x, y, tau')
>>> octave_code((2*tau)**Rational(7, 2))
'8*sqrt(2)*tau.^(7/2)'
```

Note that element-wise (Hadamard) operations are used by default between symbols. This is because it is very common in Octave to write “vectorized” code. It is harmless if the values are scalars.

```python
>>> octave_code(sin(pi*x*y), assign_to='s')
's = sin(pi*x.*y);'
```

If you need a matrix product "**" or matrix power "^", you can specify the symbol as a MatrixSymbol.

```python
>>> from sympy import Symbol, MatrixSymbol
>>> n = Symbol('n', integer=True, positive=True)
>>> A = MatrixSymbol('A', n, n)
>>> octave_code(3*pi*A**3)
'(3*pi)*A^3'
```

This class uses several rules to decide which symbol to use a product. Pure numbers use "*", Symbols use ".*" and MatrixSymbols use "**". A HadamardProduct can be used to specify component-wise multiplication ".*" of two MatrixSymbols. There is currently no easy way to specify scalar symbols, so sometimes the code might have some minor cosmetic issues. For example, suppose x and y are scalars and A is a Matrix, then while a human programmer might write "(x^2*y)*A^3", we generate:

```python
>>> octave_code(x**2*y*A**3)
'(x.^2.*y)*A^3'
```

Matrices are supported using Octave inline notation. When using assign_to with matrices, the name can be specified either as a string or as a MatrixSymbol. The dimensions must align in the latter case.

```python
>>> from sympy import Matrix, MatrixSymbol
>>> mat = Matrix([[x**2, sin(x), ceiling(x)]])
>>> octave_code(mat, assign_to='A')
'A = [x.^2 sin(x) ceil(x)];'
```

Piecewise expressions are implemented with logical masking by default. Alternatively, you can pass "inline=False" to use if-else conditionals. Note that if the Piecewise lacks
a default term, represented by (expr, True) then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything.

```python
>>> from sympy import Piecewise
>>> pw = Piecewise((x + 1, x > 0), (x, True))
>>> octave_code(pw, assign_to=tau)
'tau = ((x > 0).*(x + 1) + ~(x > 0)).*(x));'
```

Note that any expression that can be generated normally can also exist inside a Matrix:

```python
>>> mat = Matrix([[x**2, pw, sin(x)]])
>>> octave_code(mat, assign_to='A')
'A = [x.^2 ((x > 0).*(x + 1) + (~x > 0)).*(x)) sin(x)];'
```

Custom printing can be defined for certain types by passing a dictionary of “type” : “function” to the user_functions kwarg. Alternatively, the dictionary value can be a list of tuples i.e., [argument_test, cfunction_string]]. This can be used to call a custom Octave function.

```python
>>> from sympy import Function
>>> f = Function('f')
>>> g = Function('g')
>>> custom_functions = {
...     "f": "existing_octave_fcn",
...     "g": [(lambda x: x.is_Matrix, "my_mat_fcn"),
...            (lambda x: not x.is_Matrix, "my_fcn")]
... }
>>> mat = Matrix([[1, x]])
>>> octave_code(f(x) + g(x) + g(mat), user_functions=custom_functions)
'existing_octave_fcn(x) + my_fcn(x) + my_mat_fcn([1 x])'
```

Support for loops is provided through Indexed types. With contract=True these expressions will be turned into loops, whereas contract=False will just print the assignment expression that should be looped over:

```python
>>> from sympy import Eq, IndexedBase, Idx
>>> len_y = 5
>>> y = IndexedBase('y', shape=(len_y,))
>>> t = IndexedBase('t', shape=(len_y,))
>>> Dy = IndexedBase('Dy', shape=(len_y-1,))
>>> i = Idx('i', len_y-1)
>>> e = Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
>>> octave_code(e.rhs, assign_to=e.lhs, contract=False)
'Dy(i) = (y(i + 1) - y(i))./(t(i + 1) - t(i));'
```
Rust code printing

```python
SymPy.printing.rust.known_functions = {'Abs': 'abs', 'Max': 'max', 'Min': 'min', 'Pow': lambda expr: 'pow' if isinstance(expr, 2), (lambda expr: 'sqrt') if isinstance(expr, 2), (lambda expr: 'sqrt().recip') if isinstance(expr, 2), (lambda expr: 'cbrt', 2), (lambda expr: 'exp2', 3), (lambda expr: 'powi', 1), (lambda expr: 'powf', 1), 'acos': 'acos', 'acosh': 'acosh', 'asin': 'asin', 'asinh': 'asinh', 'atan': 'atan', 'atan2': 'atan2', 'atanh': 'atanh', 'ceiling': 'ceil', 'cos': 'cos', 'cosh': 'cosh', 'exp': lambda expr: 'exp', 'floor': 'floor', 'log': 'ln', 'sign': 'signum', 'sin': 'sin', 'sinh': 'sinh', 'sqrt': 'sqrt', 'tan': 'tan', 'tanh': 'tanh'}

class sympy.printing.rust.RustCodePrinter(settings={})
    A printer to convert SymPy expressions to strings of Rust code
    printmethod: str = '_rust_code'
    indent_code(code)
        Accepts a string of code or a list of code lines
    sympy.printing.rust.rust_code(expr, assign_to=None, **settings)
        Converts an expr to a string of Rust code

Parameters
expr : Expr
    A SymPy expression to be converted.
assign_to : optional
    When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string, Symbol, MatrixSymbol, or Indexed type. This is helpful in case of line-wrapping, or for expressions that generate multi-line statements.
precision : integer, optional
    The precision for numbers such as pi [default=15].
user_functions : dict, optional
    A dictionary where the keys are string representations of either FunctionClass or UndefinedFunction instances and the values are their desired C string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. See below for examples.
dereference : iterable, optional
    An iterable of symbols that should be dereferenced in the printed code expression. These would be values passed by address to the function. For example, if dereference=[a], the resulting code would print (*a) instead of a.
human : bool, optional
    If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_toDeclare, not_supportedFunctions, code_text). [default=True].
```
contract: bool, optional

If True, Indexed instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True].

Examples

```python
>>> from sympy import rust_code, symbols, Rational, sin, ceiling, Abs,
                 Function
>>> x, tau = symbols("x, tau")
>>> rust_code((2*tau)**Rational(7, 2))
'8*1.4142135623731*tau.powf(7_f64/2.0)'
>>> rust_code(sin(x), assign_to="s")
's = x.sin();'
```

Simple custom printing can be defined for certain types by passing a dictionary of {"type": "function"} to the user_functions kwarg. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)].

```python
>>> custom_functions = {
...     "ceiling": "CEIL",
...     "Abs": [(lambda x: not x.is_integer, "fabs", 4),
...             (lambda x: x.is_integer, "ABS", 4)],
...     "func": "f"
... }
>>> func = Function('func')
>>> rust_code(func(Abs(x) + ceiling(x)), user_functions=custom_functions)
'(fabs(x) + x.CEIL()).f()'
```

Piecewise expressions are converted into conditionals. If an assign_to variable is provided an if statement is created, otherwise the ternary operator is used. Note that if the Piecewise lacks a default term, represented by (expr, True) then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything.

```python
>>> from sympy import Piecewise
>>> expr = Piecewise((x + 1, x > 0), (x, True))
>>> print(rust_code(expr, tau))
tau = if (x > 0) {
  x + 1
} else {
  x
};
```

Support for loops is provided through Indexed types. With contract=True these expressions will be turned into loops, whereas contract=False will just print the assignment expression that should be looped over:

```python
>>> from sympy import Eq, IndexedBase, Idx
>>> len_y = 5
>>> y = IndexedBase('y', shape=(len_y,))
```
Matrices are also supported, but a MatrixSymbol of the same dimensions must be provided to assign_to. Note that any expression that can be generated normally can also exist inside a Matrix:

```python
>>> from sympy import Matrix, MatrixSymbol
>>> mat = Matrix([[x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)]])
>>> A = MatrixSymbol('A', 3, 1)
>>> print(rust_code(mat, A))
A = [x.powi(2), if (x > 0) {
   x + 1
} else {
   x
}, x.sin()];
```

Aesara Code printing

class sympy.printing.aesaracode.AesaraPrinter(*args, **kwargs)**

Code printer which creates Aesara symbolic expression graphs.

Parameters

- **cache**: dict

 Cache dictionary to use. If None (default) will use the global cache. To create a printer which does not depend on or alter global state pass an empty dictionary. Note: the dictionary is not copied on initialization of the printer and will be updated in-place, so using the same dict object when creating multiple printers or making multiple calls to `aesara_code()` (page 2242) or `aesara_function()` (page 2242) means the cache is shared between all these applications.

Attributes

- **cache** (dict) A cache of Aesara variables which have been created for SymPy symbol-like objects (e.g. `sympy.core.symbol.Symbol` (page 1028) or `sympy.matrices.expressions.MatrixSymbol` (page 1417)). This is used to ensure that all references to a given symbol in an expression (or multiple expressions) are printed as the same Aesara variable, which is created only once. Symbols are differentiated only by name and type. The format of the cache’s contents should be considered opaque to the user.

- **printmethod**: str = '_aesara'
doprint(expr, dtypes=None, broadcastables=None)

Convert a SymPy expression to a Aesara graph variable.

The dtypes and broadcastables arguments are used to specify the data type, dimension, and broadcasting behavior of the Aesara variables corresponding to the free symbols in expr. Each is a mapping from SymPy symbols to the value of the corresponding argument to aesara.tensor.var.TensorVariable.

See the corresponding documentation page for more information on broadcasting in Aesara.

Parameters
expr : sympy.core.expr.Expr
SymPy expression to print.
dtypes : dict
Mapping from SymPy symbols to Aesara datatypes to use when creating new Aesara variables for those symbols. Corresponds to the dtype argument to aesara.tensor.var.TensorVariable. Defaults to 'floatX' for symbols not included in the mapping.
broadcastables : dict
Mapping from SymPy symbols to the value of the broadcastable argument to aesara.tensor.var.TensorVariable to use when creating Aesara variables for those symbols. Defaults to the empty tuple for symbols not included in the mapping (resulting in a scalar).

Returns
aesara.graph.basic.Variable
A variable corresponding to the expression’s value in a Aesara symbolic expression graph.

sympy.printing.aesaracode.aesara_code(expr, cache=None, **kwargs)

Convert a SymPy expression into a Aesara graph variable.

Parameters
expr : sympy.core.expr.Expr
SymPy expression object to convert.
cache : dict
Cached Aesara variables (see AesaraPrinter.cache (page 2241)). Defaults to the module-level global cache.
dtypes : dict
Passed to AesaraPrinter.doprint() (page 2241).
broadcastables : dict
Passed to AesaraPrinter.doprint() (page 2241).

Returns
aesara.graph.basic.Variable
A variable corresponding to the expression’s value in a Aesara symbolic expression graph.
sympy.printing.aesaracode.aesara_function(inputs, outputs, scalar=False, *
 dim=None, dims=None,
 broadcastables=None, **kwargs)

Create a Aesara function from SymPy expressions.

The inputs and outputs are converted to Aesara variables using `aesara_code()` (page 2242) and then passed to `aesara.function`.

Parameters

inputs

Sequence of symbols which constitute the inputs of the function.

outputs

Sequence of expressions which constitute the outputs(s) of the function. The free symbols of each expression must be a subset of inputs.

scalar : bool

Convert 0-dimensional arrays in output to scalars. This will return a Python wrapper function around the Aesara function object.

cache : dict

Cached Aesara variables (see `AesaraPrinter.cache` (page 2241)). Defaults to the module-level global cache.

dtypes : dict

Passed to `AesaraPrinter.doprint()` (page 2241).

broadcastables : dict

Passed to `AesaraPrinter.doprint()` (page 2241).

dims : dict

Alternative to `broadcastables` argument. Mapping from elements of inputs to integers indicating the dimension of their associated arrays/tensors. Overrides `broadcastables` argument if given.

dim : int

Another alternative to the `broadcastables` argument. Common number of dimensions to use for all arrays/tensors. `aesara_function([x, y], [...], dim=2)` is equivalent to using `broadcastables={x: (False, False), y: (False, False)}`.

Returns

callable

A callable object which takes values of inputs as positional arguments and returns an output array for each of the expressions in outputs. If outputs is a single expression the function will return a Numpy array, if it is a list of multiple expressions the function will return a list of arrays. See description of the `squeeze` argument above for the behavior when a single output is passed in a list. The returned object will either be an instance of `aesara.compile.function.types.Function` or a Python wrapper function around one. In both cases, the returned value will have a `aesara_function` attribute which points to the return value of `aesara.function`.

5.8. Topics
Examples

```python
>>> from sympy.abc import x, y, z
>>> from sympy.printing.aesaracode import aesara_function
```

A simple function with one input and one output:

```python
>>> f1 = aesara_function([x], [x**2 - 1], scalar=True)
>>> f1(3)
8.0
```

A function with multiple inputs and one output:

```python
>>> f2 = aesara_function([x, y, z], [(x**z + y**z)**(1/z)], scalar=True)
>>> f2(3, 4, 2)
5.0
```

A function with multiple inputs and multiple outputs:

```python
>>> f3 = aesara_function([x, y], [x**2 + y**2, x**2 - y**2], scalar=True)
>>> f3(2, 3)
[13.0, -5.0]
```

See also:

dim_handling (page 2244)

```python
sympy.printing.aesaracode.dim_handling(inputs, dim=None, dims=None, broadcastables=None)
```

Get value of broadcastables argument to `aesara_code()` (page 2242) from keyword arguments to `aesara_function()` (page 2242).

Included for backwards compatibility.

Parameters

- **inputs**
 - Sequence of input symbols.

- **dim**
 - int
 - Common number of dimensions for all inputs. Overrides other arguments if given.

- **dims**
 - dict
 - Mapping from input symbols to number of dimensions. Overrides broadcastables argument if given.

- **broadcastables**
 - dict
 - Explicit value of broadcastables argument to `AesaraPrinter.doprint()` (page 2241). If not None function will return this value unchanged.

Returns

- **dict**
 - Dictionary mapping elements of inputs to their “broadcastable” values (tuple of bools).
Gtk

You can print to a gtkmathview widget using the function `print_gtk` located in `sympy.printing.gtk` (it requires to have installed gtkmathview and libgtkmathview-bin in some systems).

GtkMathView accepts MathML, so this rendering depends on the MathML representation of the expression.

Usage:

```python
from sympy import *
print_gtk(x**2 + 2*exp(x**3))
```

```python
sympy.printing.gtk.print_gtk(x, start_viewer=True)
```

Print to Gtkmathview, a gtk widget capable of rendering MathML.

Needs libgtkmathview-bin

LambdaPrinter

This classes implements printing to strings that can be used by the `sympy.utilities.lambdify.lambdify()` function.

```python
class sympy.printing.lambdarepr.LambdaPrinter(settings=None)
```

```
printmethod: str = '_lambdacode'
```

```python
sympy.printing.lambdarepr.lambdarepr(expr, **settings)
```

Returns a string usable for lambdifying.

LatexPrinter

This class implements LaTeX printing. See `sympy.printing.latex`.

```python
sympy.printing.latex.accepted_latex_functions = ['arcsin', 'arccos', 'arctan', 'sin', 'cos', 'tan', 'cosh', 'sinh', 'tanh', 'sqrt', 'ln', 'log', 'sec', 'csc', 'cot', 'coth', 're', 'im', 'frac', 'root', 'arg']
```

Built-in mutable sequence.

If no argument is given, the constructor creates a new empty list. The argument must be an iterable if specified.

```python
class sympy.printing.latex.LatexPrinter(settings=None)
```

```
printmethod: str = '_latex'
```

```
parenthesize_super(s)
```

Protect superscripts in `s`

If the `parenthesize_super` option is set, protect with parentheses, else wrap in braces.

5.8. Topics
Convert the given expression to LaTeX string representation.

Parameters

- **full_prec**: boolean, optional
 If set to True, a floating point number is printed with full precision.

- **fold_frac_powers**: boolean, optional
 Emit $^p/q$ instead of $^{\frac{p}{q}}$ for fractional powers.

- **fold_func_brackets**: boolean, optional
 Fold function brackets where applicable.

- **fold_short_frac**: boolean, optional
 Emit p / q instead of $\frac{p}{q}$ when the denominator is simple enough (at most two terms and no powers). The default value is True for inline mode, False otherwise.

- **inv_trig_style**: string, optional
 How inverse trig functions should be displayed. Can be one of 'abbreviated', 'full', or 'power'. Defaults to 'abbreviated'.

- **itex**: boolean, optional
 Specifies if itex-specific syntax is used, including emitting $$...$$.

- **ln_notation**: boolean, optional
 If set to True, \ln is used instead of default \log.

- **long_frac_ratio**: float or None, optional
 The allowed ratio of the width of the numerator to the width of the denominator before the printer breaks off long fractions. If None (the default value), long fractions are not broken up.

- **mat_delim**: string, optional
 The delimiter to wrap around matrices. Can be one of '{', '(', or the empty string ''. Defaults to '{'.

- **mat_str**: string, optional
 Which matrix environment string to emit. 'smallmatrix', 'matrix', 'array', etc. Defaults to 'smallmatrix' for inline mode, 'matrix' for matrices of no more than 10 columns, and 'array' otherwise.

- **mode**: string, optional
Specifies how the generated code will be delimited. mode can be one of 'plain', 'inline', 'equation' or 'equation*'. If mode is set to 'plain', then the resulting code will not be delimited at all (this is the default). If mode is set to 'inline' then inline LaTeX $...$ will be used. If mode is set to 'equation' or 'equation*', the resulting code will be enclosed in the equation or equation* environment (remember to import amsmath for equation*), unless the itex option is set. In the latter case, the $$...$$ syntax is used.

mul_symbol: string or None, optional

The symbol to use for multiplication. Can be one of None, 'ldot', 'dot', or 'times'.

order: string, optional

Any of the supported monomial orderings (currently 'lex', 'grlex', or 'grevlex'), 'old', and 'none'. This parameter does nothing for :class:`Mul` objects. Setting order to 'old' uses the compatibility ordering for ~. Add defined in Printer. For very large expressions, set the order keyword to 'none' if speed is a concern.

symbol_names: dictionary of strings mapped to symbols, optional

Dictionary of symbols and the custom strings they should be emitted as.

root_notation: boolean, optional

If set to False, exponents of the form 1/n are printed in fractional form. Default is True, to print exponent in root form.

mat_symbol_style: string, optional

Can be either 'plain' (default) or 'bold'. If set to 'bold', a :class:`MatrixSymbol` A will be printed as \textbf{A}, otherwise as A.

imaginary_unit: string, optional

String to use for the imaginary unit. Defined options are 'i' (default) and 'j'. Adding r or t in front gives \texttt{r} or \texttt{t}, so 'ri' leads to \texttt{r} which gives i.

gothic_re_im: boolean, optional

If set to True, \mathbb{R} and \mathbb{I} is used for re and im, respectively. The default is False leading to re and im.

decimal_separator: string, optional

Specifies what separator to use to separate the whole and fractional parts of a floating point number as in 2.5 for the default, period or 2,5 when comma is specified. Lists, sets, and tuple are printed with semicolon separating the elements when comma is chosen. For example, [1; 2; 3] when comma is chosen and [1,2,3] for when period is chosen.

parenthesize_super: boolean, optional

If set to False, superscripted expressions will not be parenthesized when powered. Default is True, which parenthesizes the expression when powered.

min: Integer or None, optional
Sets the lower bound for the exponent to print floating point numbers in fixed-point format.

max: Integer or None, optional

Sets the upper bound for the exponent to print floating point numbers in fixed-point format.

diff_operator: string, optional

String to use for differential operator. Default is 'd', to print in italic form. 'rd', 'td' are shortcuts for \mathrm{d} and \text{d}.

Notes

Not using a print statement for printing, results in double backslashes for latex commands since that's the way Python escapes backslashes in strings.

```python
>>> from sympy import latex, Rational
>>> from sympy.abc import tau
>>> latex((2*tau)**Rational(7,2))
'8 \sqrt{2} \tau^{\frac{7}{2}}'
>>> print(latex((2*tau)**Rational(7,2)))
8 \sqrt{2} \tau^\frac{7}{2}
```

Examples

```python
>>> from sympy import latex, pi, sin, asin, Integral, Matrix, Rational, log
>>> from sympy.abc import x, y, mu, r, tau

Basic usage:

```latex
>>> print(latex((2*mu)**Rational(7,2)))
8 \sqrt{2} \mu^\frac{7}{2}
```

```python
>>> print(latex((2*mu)**Rational(7,2), mode='plain'))
8 \sqrt{2} \mu^\frac{7}{2}
```
\begin{equation*}8 \sqrt{2} \mu^\frac{7}{2}\end{equation*}

```python
>>> print(latex((2*mu)**Rational(7,2), mode='equation'))
\begin{equation*}8 \sqrt{2} \mu^\frac{7}{2}\end{equation*}
```

Fraction options:

```python
>>> print(latex((2*tau)**Rational(7,2), fold_frac_powers=True))
8 \sqrt{2} \tau^{\frac{7}{2}}
>>> print(latex((2*tau)**sin(Rational(7,2))), fold_func_brackets=True))
left(2 \tau\right)^{\sin \frac{7}{2}}
```

Multiplication options:

```python
>>> print(latex((2*tau)**sin(Rational(7,2)), mul_symbol="times"))
left(2 \times \tau\right)^{\sin \frac{7}{2}}
```

Trig options:

```python
>>> print(latex(asin(Rational(7,2))))
\operatorname{asin}{\left(\frac{7}{2} \right)}
>>> print(latex(asin(Rational(7,2)), inv_trig_style="full"))
\arcsin{\left(\frac{7}{2} \right)}
```

Matrix options:

```python
>>> print(latex(Matrix(2, 1, [x, y])))
\left(\begin{matrix}x & y\end{matrix}\right)
>>> print(latex(Matrix(2, 1, [x, y]), mat_str = "array"))
\left(\begin{array}{c}x & y\end{array}\right)
>>> print(latex(Matrix(2, 1, [x, y]), mat_delim="")
\left(\begin{matrix}x & y\end{matrix}\right)
```

Custom printing of symbols:

```python
>>> print(latex(x**2, symbol_names={x: 'x_i'}))
x_{i}^{2}
```

Logarithms:

5.8. Topics 2249
latex() also supports the built-in container types list, tuple, and dict:

```python
>>> print(latex([2/x, y], mode='inline'))
$\left[2 / x, \ y\right]$
```

Unsupported types are rendered as monospaced plaintext:

```python
>>> print(latex(int))
\mathtt{\text{<class 'int'>}}
>>> print(latex("plain \% text"))
\mathtt{\text{plain \% text}}
```

See Example of Custom Printing Method (page 2210) for an example of how to override this behavior for your own types by implementing _latex.

Changed in version 1.7.0: Unsupported types no longer have their str representation treated as valid latex.

**sympy.printing.latex.print_latex(expr, **settings)**

Prints LaTeX representation of the given expression. Takes the same settings as latex().

### MathMLPrinter

This class is responsible for MathML printing. See sympy.printing.mathml.

More info on mathml: https://www.w3.org/TR/MathML2

**class sympy.printing.mathml.MathMLPrinterBase(settings=None)**

Contains common code required for MathMLContentPrinter and MathMLPresentationPrinter.

**doprint(expr)**

Prints the expression as MathML.

**class sympy.printing.mathml.MathMLContentPrinter(settings=None)**

Prints an expression to the Content MathML markup language.

References: https://www.w3.org/TR/MathML2/chapter4.html

**printmethod: str = '_mathml_content'**

**mathml_tag(e)**

Returns the MathML tag for an expression.

**class sympy.printing.mathml.MathMLPresentationPrinter(settings=None)**

Prints an expression to the Presentation MathML markup language.

References: https://www.w3.org/TR/MathML2/chapter3.html

**printmethod: str = '_mathml_presentation'**
mathml_tag(e)

Returns the MathML tag for an expression.

```
sympy.printing.mathml.mathml(expr, printer='content', *, order=None, encoding='utf-8',
fold_frac_powers=False, fold_func_brackets=False,
fold_short_frac=None, inv_trig_style='abbreviated',
ln_notation=False, long_frac_ratio=None, mat_delim='[',
mat_symbol_style='plain', mul_symbol=None,
root_notation=True, symbol_names={},
mul_symbol_mathml_numbers='·')
```

Returns the MathML representation of expr. If printer is presentation then prints Presentation MathML else prints content MathML.

```
sympy.printing.mathml.print_mathml(expr, printer='content', **settings)
```

Prints a pretty representation of the MathML code for expr. If printer is presentation then prints Presentation MathML else prints content MathML.

### Examples

```python
>>> from sympy import print_mathml
>>> from sympy.abc import x
>>> print_mathml(x+1)
<apply>
 <plus/>
 <ci>x</ci>
 <cn>1</cn>
</apply>
```

```python
>>> print_mathml(x+1, printer='presentation')
<mrow>
 <mi>x</mi>
 <mo>+</mo>
 <mn>1</mn>
</mrow>
```

## PythonCodePrinter

Python code printers

This module contains Python code printers for plain Python as well as NumPy & SciPy enabled code.

```python
class sympy.printing.pycode.MpmathPrinter(settings=None)
 Lambda printer for mpmath which maintains precision for floats
```

```python
sympy.printing.pycode.pycode(expr, **settings)
 Converts an expr to a string of Python code
```

### Parameters

- **expr**: Expr
  
  A SymPy expression.

- **fullyQualifiedName**: bool
Whether or not to write out full module names of functions (math.sin vs. sin). default: True.

**standard**: str or None, optional

Only ‘python3’ (default) is supported. This parameter may be removed in the future.

### Examples

```python
>>> from sympy import pycode, tan, Symbol
>>> pycode(tan(Symbol('x')) + 1)
'math.tan(x) + 1'
```

#### PythonPrinter

This class implements Python printing. Usage:

```python
>>> from sympy import print_python, sin
>>> from sympy.abc import x

>>> print_python(5*x**3 + sin(x))
x = Symbol('x')
e = 5*x**3 + sin(x)
```

**srepr**

This printer generates executable code. This code satisfies the identity `eval(srepr(expr)) == expr`.

`srepr()` gives more low level textual output than `repr()`

Example:

```python
>>> repr(5*x**3 + sin(x))
'5*x**3 + sin(x)'

>>> srepr(5*x**3 + sin(x))
>Add(Mul(Integer(5), Pow(Symbol('x'), Integer(3))), sin(Symbol('x')))
```

`srepr()` gives the `repr` form, which is what `repr()` would normally give but for SymPy we don’t actually use `srepr()` for `_repr_` because it’s is so verbose, it is unlikely that anyone would want it called by default. Another reason is that lists call `repr` on their elements, like `print([a, b, c])` calls `repr(a), repr(b), repr(c)`. So if we used `srepr` for `_repr_` any list with SymPy objects would include the `srepr` form, even if we used `str()` or `print()`.

```python
class sympy.printing.repr.ReprPrinter(settings=None)

 printmethod: str = '_sympyrepr'

 emptyPrinter(expr)
 The fallback printer.
```
reprify\((\text{args, sep})\)

Prints each item in \text{args} and joins them with \text{sep}.

```python
sympy.printing.repr.srepr(expr, *, order=None, perm_cyclic=True)
```

return expr in repr form

**StrPrinter**

This module generates readable representations of SymPy expressions.

```python
class sympy.printing.str.StrPrinter(settings=None)
```

**printmethod**: str = '_sympystr'

```python
sympy.printing.str.sstr(expr, *, order=None, full_prec='auto', sympy_integers=False, abbrev=False, perm_cyclic=True, min=None, max=None)
```

Returns the expression as a string.

For large expressions where speed is a concern, use the setting \text{order}='none'. If \text{abbrev}=True setting is used then units are printed in abbreviated form.

**Examples**

```python
>>> from sympy import symbols, Eq, sstr
>>> a, b = symbols('a b')
>>> sstr(Eq(a + b, 0))
'Eq(a + b, 0)'
```

```python
sympy.printing.str.sstrrepr(expr, *, order=None, full_prec='auto', sympy_integers=False, abbrev=False, perm_cyclic=True, min=None, max=None)
```

return expr in mixed str/repr form

i.e. strings are returned in repr form with quotes, and everything else is returned in str form.

This function could be useful for hooking into \text{sys.displayhook}

**Tree Printing**

The functions in this module create a representation of an expression as a tree.

```python
sympy.printing.tree.pprint_nodes(subtrees)
```

Prettyprints systems of nodes.
Examples

```python
>>> from sympy.printing.tree import pprint_nodes
>>> print(pprint_nodes(["a", "b1\nb2", "c"]))
+--a
 | +--b1
 | | b2
 | +--c
```

`sympy.printing.tree.print_node(node, assumptions=True)`
Returns information about the “node”.
This includes class name, string representation and assumptions.

**Parameters**

- `assumptions` : bool, optional
  
  See the assumptions keyword in `tree`

`sympy.printing.tree.tree(node, assumptions=True)`
Returns a tree representation of “node” as a string.
It uses print_node() together with pprint_nodes() on node.args recursively.

**Parameters**

- `assumptions` : bool, optional
  
  The flag to decide whether to print out all the assumption data (such as `is_integer`, `is_real`) associated with the expression or not.

  Enabling the flag makes the result verbose, and the printed result may not be deterministic because of the randomness used in back-tracing the assumptions.

**See also:**

- `print_tree` (page 2254)

`sympy.printing.tree.print_tree(node, assumptions=True)`
Prints a tree representation of “node”.

**Parameters**

- `assumptions` : bool, optional
  
  The flag to decide whether to print out all the assumption data (such as `is_integer`, `is_real`) associated with the expression or not.

  Enabling the flag makes the result verbose, and the printed result may not be deterministic because of the randomness used in back-tracing the assumptions.
Examples

```python
>>> from sympy.printing import print_tree
>>> from sympy import Symbol
>>> x = Symbol('x', odd=True)
>>> y = Symbol('y', even=True)
```

Printing with full assumptions information:

```python
>>> print_tree(y**x)
Pow: y**x
+-Symbol: y
 | algebraic: True
 | commutative: True
 | complex: True
 | even: True
 | extended_real: True
 | finite: True
 | hermitian: True
 | imaginary: False
 | infinite: False
 | integer: True
 | irrational: False
 | noninteger: False
 | odd: False
 | rational: False
 | real: True
 | transcendental: False
+-Symbol: x
 | algebraic: True
 | commutative: True
 | complex: True
 | even: False
 | extended_nonzero: True
 | extended_real: True
 | finite: True
 | hermitian: True
 | imaginary: False
 | infinite: False
 | integer: True
 | irrational: False
 | noninteger: False
 | nonzero: True
 | odd: True
 | rational: True
 | real: True
 | transcendental: False
 | zero: False
```

Hiding the assumptions:

```python
>>> print_tree(y**x, assumptions=False)
Pow: y**x
```

(continues on next page)
A useful function is `preview`:

```python
from sympy import symbols, preview, Symbol

x, y = symbols("x,y")

preview(x + y, output='png')
```

View expression or LaTeX markup in PNG, DVI, PostScript or PDF form.

If the `expr` argument is an expression, it will be exported to LaTeX and then compiled using the available TeX distribution. The first argument, `expr`, may also be a LaTeX string. The function will then run the appropriate viewer for the given output format or use the user defined one. By default png output is generated.

By default pretty Euler fonts are used for typesetting (they were used to typeset the well known "Concrete Mathematics" book). For that to work, you need the `eulervm.sty` LaTeX style (in Debian/Ubuntu, install the texlive-fonts-extra package). If you prefer default AMS fonts or your system lacks `eulervm` LaTeX package then unset the `euler` keyword argument.

To use viewer auto-detection, lets say for ‘png’ output, issue

```python
from sympy import symbols, preview, Symbol

x, y = symbols("x,y")

preview(x + y, output='png')
```

This will choose ‘pyglet’ by default. To select a different one, do

```python
from sympy import symbols, preview, Symbol

x, y = symbols("x,y")

preview(x + y, output='png', viewer='gimp')
```

The ‘png’ format is considered special. For all other formats the rules are slightly different. As an example we will take ‘dvi’ output format. If you would run

```python
from sympy import symbols, preview, Symbol

x, y = symbols("x,y")

preview(x + y, output='dvi')
```

then ‘view’ will look for available ‘dvi’ viewers on your system (predefined in the function, so it will try evince, first, then kdvi and xdvi). If nothing is found, it will fall back to using a system file association (via open and xdg-open). To always use your system file association without searching for the above readers, use

```python
from sympy import symbols, preview, Symbol

x, y = symbols("x,y")

from sympy.printing.preview import system_default_viewer

preview(x + y, output='dvi', viewer=system_default_viewer)
```

If this still does not find the viewer you want, it can be set explicitly.
This will skip auto-detection and will run user specified ‘superior-dvi-viewer’. If view fails to find it on your system it will gracefully raise an exception.

You may also enter 'file' for the viewer argument. Doing so will cause this function to return a file object in read-only mode, if filename is unset. However, if it was set, then ‘preview’ writes the generated file to this filename instead.

There is also support for writing to a io.BytesIO like object, which needs to be passed to the outputbuffer argument.

The LaTeX preamble can be customized by setting the ‘preamble’ keyword argument. This can be used, e.g., to set a different font size, use a custom documentclass or import certain set of LaTeX packages.

It is also possible to use the standard preamble and provide additional information to the preamble using the extra_preamble keyword argument.

If the value of ‘output’ is different from ‘dvi’ then command line options can be set (‘dvioptions’ argument) for the execution of the ‘dvi’+output conversion tool. These options have to be in the form of a list of strings (see subprocess.Popen).

Additional keyword args will be passed to the latex() (page 2245) call, e.g., the symbol_names flag.

For post-processing the generated TeX File can be written to a file by passing the desired filename to the ‘outputTexFile’ keyword argument. To write the TeX code to a file named “sample.tex” and run the default png viewer to display the resulting bitmap, do
Implementation - Helper Classes/Functions

`sympy.printing.conventions.split_super_sub(text)`

Split a symbol name into a name, superscripts and subscripts.

The first part of the symbol name is considered to be its actual 'name', followed by super- and subscripts. Each superscript is preceded with a “^” character or by “__”. Each subscript is preceded by a “_” character. The three return values are the actual name, a list with superscripts and a list with subscripts.

**Examples**

```python
>>> from sympy.printing.conventions import split_super_sub
>>> split_super_sub('a_x^1')
('a', ['1'], ['x'])
>>> split_super_sub('var_sub1__sup_sub2')
('var', ['sup'], ['sub1', 'sub2'])
```

**CodePrinter**

This class is a base class for other classes that implement code-printing functionality, and additionally lists a number of functions that cannot be easily translated to C or Fortran.

```python
class sympy.printing.codeprinter.CodePrinter(settings=None)
```

The base class for code-printing subclasses.

```python
printmethod: str = '_sympystr'
```

```python
doprint(expr, assign_to=None)
```

Print the expression as code.

**Parameters**

- `expr`: Expression
  - The expression to be printed.

- `assign_to`: Symbol, string, MatrixSymbol, list of strings or Symbols (optional)
  - If provided, the printed code will set the expression to a variable or multiple variables with the name or names given in assign_to.

**exception sympy.printing.codeprinter.AssignmentError**

Raised if an assignment variable for a loop is missing.
Precedence

```python
sympy.printing.precedence.PRECEDENCE = {'Add': 40, 'And': 30, 'Atom': 1000,
'BitwiseAnd': 38, 'BitwiseOr': 36, 'BitwiseXor': 37, 'Func': 70, 'Lambda': 1,
'Mul': 50, 'Not': 100, 'Or': 20, 'Pow': 60, 'Relational': 35, 'Xor': 10}
```

Default precedence values for some basic types.

```python
sympy.printing.precedence.PRECEDENCE_VALUES = {'Add': 40, 'And': 30,
'Equality': 50, 'Equivalent': 10, 'Function': 70, 'HadamardPower': 60,
'HadamardProduct': 50, 'Imply': 10, 'KroneckerProduct': 50, 'MatAdd': 40,
'MatPow': 60, 'MatrixMultiply': 50, 'Mod': 50, 'NegativeInfinity': 40, 'Not':
100, 'Or': 20, 'Pow': 60, 'Relational': 35, 'Sub': 40, 'TensAdd': 40,
'TensMul': 50, 'Unequality': 50, 'Xor': 10}
```

A dictionary assigning precedence values to certain classes. These values are treated
like they were inherited, so not every single class has to be named here.

```python
sympy.printing.precedence.PRECEDENCE_FUNCTIONS = {'Float': <function
precedence_Float>, 'FracElement': <function precedence_FracElement>,
'Integer': <function precedence_Integer>, 'Mul': <function precedence_Mul>,
'PolyElement': <function precedence_PolyElement>, 'Rational': <function
precedence_Rational>, 'UnevaluatedExpr': <function
precedence_UnevaluatedExpr>}
```

Sometimes it's not enough to assign a fixed precedence value to a class. Then a function
can be inserted in this dictionary that takes an instance of this class as argument and
returns the appropriate precedence value.

```python
sympy.printing.precedence.precedence(item)
```

Returns the precedence of a given object.

This is the precedence for StrPrinter.

Pretty-Printing Implementation Helpers

```python
sympy.printing.pretty.pretty_symbology.U(name)
```

Get a unicode character by name or, None if not found.

This exists because older versions of Python use older unicode databases.

```python
sympy.printing.pretty.pretty_symbology.pretty_use_unicode(flag=False)
```

Set whether pretty-printer should use unicode by default

```python
sympy.printing.pretty.pretty_symbology.pretty_try_use_unicode()
```

See if unicode output is available and leverage it if possible

```python
sympy.printing.pretty.pretty_symbology.xstr(*args)
```

The following two functions return the Unicode version of the inputted Greek letter:

```python
sympy.printing.pretty.pretty_symbology.g(l)
```

```python
sympy.printing.pretty.pretty_symbology.G(l)
```

```python
sympy.printing.pretty.pretty_symbology.greek_letters = ['alpha', 'beta',
'gamma', 'delta', 'epsilon', 'zeta', 'eta', 'theta', 'iota', 'kappa', 'lamda',
'mu', 'nu', 'xi', 'omicron', 'pi', 'rho', 'sigma', 'tau', 'upsilon', 'phi',
'chi', 'psi', 'omega']
```
Built-in mutable sequence.

If no argument is given, the constructor creates a new empty list. The argument must be an iterable if specified.

```python
sympy.printing.pretty.pretty_symbology.digit_2txt = {'0': 'ZERO', '1': 'ONE', '2': 'TWO', '3': 'THREE', '4': 'FOUR', '5': 'FIVE', '6': 'SIX', '7': 'SEVEN', '8': 'EIGHT', '9': 'NINE'}
```

```python
sympy.printing.pretty.pretty_symbology.symb_2txt = {')': 'RIGHT PARENTHESIS', '+': 'PLUS SIGN', '-': 'MINUS', '=': 'EQUALS SIGN', '[': 'LEFT SQUARE BRACKET', ']': 'RIGHT SQUARE BRACKET', 'int': 'INTEGRAL', 'sum': 'SUMMATION', '{': 'LEFT CURLY BRACKET', '}': 'RIGHT CURLY BRACKET'}
```

The following functions return the Unicode subscript/superscript version of the character.

```python
sympy.printing.pretty.pretty_symbology.sub = {')': '₍', '+': '₊', '-': '₋', '0': '₀', '1': '₁', '2': '₂', '3': '₃', '4': '₄', '5': '₅', '6': '₆', '7': '₇', '8': '₈', '9': '₉', '=': '₌', 'a': 'ₐ', 'beta': '', 'chi': '', 'e': 'ₑ', 'gamma': '', 'h': 'ₕ', 'i': 'ᵢ', 'k': 'ₖ', 'l': 'ₗ', 'm': 'ₒ', 'n': 'ₙ', 'o': 'ₒ', 'p': 'ₚ', 'phi': '', 'r': 'ᵣ', 'rho': '', 's': 'ₛ', 't': 'ₜ', 'u': 'ᵤ', 'v': 'ᵥ', 'x': 'ₓ'}
```

```python
sympy.printing.pretty.pretty_symbology.sup = {')': '₎', '+': '⁺', '-': '⁻', '0': '₀', '1': '₁', '2': '₂', '3': '₃', '4': '₄', '5': '₅', '6': '₆', '7': '₇', '8': '₈', '9': '₉', '=': '⁼', 'i': 'ⁱ', 'n': 'ⁿ'}
```

The following functions return Unicode vertical objects.

```python
sympy.printing.pretty.pretty_symbology.xobj(symb, length)

Construct spatial object of given length.

return: [] of equal-length strings
```

```python
sympy.printing.pretty.pretty_symbology.vobj(symb, height)

Construct vertical object of a given height

see: xobj
```

```python
sympy.printing.pretty.pretty_symbology.hobj(symb, width)

Construct horizontal object of a given width

see: xobj
```

The following constants are for rendering roots and fractions.

```python
```

```python
sympy.printing.pretty.pretty_symbology.VF(txt)
```

```python
```

The following constants/functions are for rendering atoms and symbols.
SymPy printing pretty_symbology

```python
symy.printing.pretty.pretty_symbology.xsym(sym)
get symbology for a 'character'
symy.printing.pretty.pretty_symbology.atoms_table = {'Complexes': 'ℂ', 'EmptySequence': 'EmptySequence', 'EmptySet': '∅', 'Exp1': 'e', 'ImaginaryUnit': 'i', 'Infinity': '∞', 'Integers': 'ℤ', 'Intersection': '∩', 'Modifier Letter Low Ring': '˳', 'Naturals': 'ℕ', 'Naturals0': 'ℕ₀', 'NegativeInfinity': '-∞', 'Pi': 'π', 'Rationals': 'ℚ', 'Reals': 'ℝ', 'Ring': '∘', 'SymmetricDifference': 'Δ', 'Union': '∪'}
symy.printing.pretty.pretty_symbology.pretty_atom(atom_name, default=None, printer=None)
return pretty representation of an atom
symy.printing.pretty.pretty_symbology.pretty_symbol(symb_name, bold_name=False)
return pretty representation of a symbol
symy.printing.pretty.pretty_symbology.annotated(letter)
Return a stylised drawing of the letter letter, together with information on how to put annotations (super- and subscripts to the left and to the right) on it.
See pretty.py functions _print_meijerg, _print_hyper on how to use this information.
Prettyprinter by Jurjen Bos. (I hate spammers: mail me at pietjepuk314 at the reverse of ku.oc.oohay). All objects have a method that create a "stringPict", that can be used in the str method for pretty printing.

Updates by Jason Gedge (email <my last name> at cs mun ca)
• terminal_string() method
• minor fixes and changes (mostly to prettyForm)

TODO:
• Allow left/center/right alignment options for above/below and top/center/bottom alignment options for left/right

class symy.printing.pretty.stringpict.stringPict(s, baseline=0)
An ASCII picture. The pictures are represented as a list of equal length strings.
above(*args)
Put pictures above this picture. Returns string, baseline arguments for stringPict. Baseline is baseline of bottom picture.
below(*args)
Put pictures under this picture. Returns string, baseline arguments for stringPict. Baseline is baseline of top picture
```
Examples

```python
>>> from sympy.printing.pretty.stringpict import stringPict
>>> print(stringPict("x+3").below(
...
 stringPict.LINE, '3')[0])
x+3

3
```

height()

The height of the picture in characters.

left(*args)

Put pictures (left to right) at left. Returns string, baseline arguments for stringPict.

leftslash()

Precede object by a slash of the proper size.

static next(*args)

Put a string of stringPicts next to each other. Returns string, baseline arguments for stringPict.

parens(left='(', right=')', ifascii_nougly=False)

Put parentheses around self. Returns string, baseline arguments for stringPict.

left or right can be None or empty string which means ‘no paren from that side’

render(*args, **kwargs)

Return the string form of self.

Unless the argument line_break is set to False, it will break the expression in a form that can be printed on the terminal without being broken up.

right(*args)

Put pictures next to this one. Returns string, baseline arguments for stringPict. (Multiline) strings are allowed, and are given a baseline of 0.

Examples

```python
>>> from sympy.printing.pretty.stringpict import stringPict
>>> print(stringPict("10").right(" + ",stringPict("1\r-\r2",1))[0])
10 + -
2
```

root(n=None)

Produce a nice root symbol. Produces ugly results for big n inserts.

static stack(*args)

Put pictures on top of each other, from top to bottom. Returns string, baseline arguments for stringPict. The baseline is the baseline of the second picture. Everything is centered. Baseline is the baseline of the second picture. Strings are allowed. The special value stringPict.LINE is a row of ‘-’ extended to the width.
terminal_width()
Return the terminal width if possible, otherwise return 0.

width()
The width of the picture in characters.

class sympy.printing.pretty.stringpict.prettyForm(s, baseline=0, binding=0, unicode=None)
Extension of the stringPict class that knows about basic math applications, optimizing double minus signs.

“Binding” is interpreted as follows:

<table>
<thead>
<tr>
<th>Binding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATOM</td>
<td>this is an atom: never needs to be parenthesized</td>
</tr>
<tr>
<td>FUNC</td>
<td>this is a function application: parenthesize if added (?)</td>
</tr>
<tr>
<td>DIV</td>
<td>this is a division: make wider division if divided</td>
</tr>
<tr>
<td>POW</td>
<td>this is a power: only parenthesize if exponent</td>
</tr>
<tr>
<td>MUL</td>
<td>this is a multiplication: parenthesize if powered</td>
</tr>
<tr>
<td>ADD</td>
<td>this is an addition: parenthesize if multiplied or powered</td>
</tr>
<tr>
<td>NEG</td>
<td>this is a negative number: optimize if added, parenthesize if multiplied or powered</td>
</tr>
<tr>
<td>OPEN</td>
<td>this is an open object: parenthesize if added, multiplied, or powered (example: Piecewise)</td>
</tr>
</tbody>
</table>

static apply(function, *args)
Functions of one or more variables.

dotprint

sympy.printing.dot.dotprint(expr, styles=((<class 'sympy.core.basic.Basic'>, {'color': 'blue', 'shape': 'ellipse'}), (<class 'sympy.core.expr.Expr'>, {'color': 'black'})), atom=<function <lambda>>, maxdepth=None, repeat=True, labelfunc=<class 'str'>, **kwargs)

DOT description of a SymPy expression tree

Parameters
styles : list of lists composed of (Class, mapping), optional
Styles for different classes.
The default is

{(Basic, {'color': 'blue', 'shape': 'ellipse'}), (Expr, {'color': 'black'})}

atom : function, optional
Function used to determine if an arg is an atom.
A good choice is lambda x: not x.args.
The default is lambda x: not isinstance(x, Basic).

maxdepth : integer, optional
The maximum depth.
The default is None, meaning no limit.

**repeat** : boolean, optional
Whether to use different nodes for common subexpressions.
The default is True.
For example, for $x + x*y$ with repeat=True, it will have two nodes
for $x$; with repeat=False, it will have one node.

**Warning:** Even if a node appears twice in the same object
like $x$ in $\text{Pow}(x, x)$, it will still only appear once. Hence, with
repeat=False, the number of arrows out of an object might not
equal the number of args it has.

**labelfunc** : function, optional
A function to create a label for a given leaf node.
The default is str.
Another good option is srepr.
For example with str, the leaf nodes of $x + 1$ are labeled, x and 1.
With srepr, they are labeled Symbol('x') and Integer(1).

**kwargs** : optional
Additional keyword arguments are included as styles for the graph.

**Examples**

```python
>>> from sympy import dotprint
>>> from sympy.abc import x
>>> print(dotprint(x+2))
digraph{
 # Graph style
 "ordering"="out"
 "rankdir"="TD"

 # Nodes #

 "Add(Integer(2), Symbol('x'))()" ["color"="black", "label"="Add", "shape"="ellipse"];
 "Integer(2)_(0,)" ["color"="black", "label"="2", "shape"="ellipse"];
 "Symbol('x')_(1,)" ["color"="black", "label"="x", "shape"="ellipse"];

 # Edges #

 (continues on next page)
```
5.8.8 Topics

Contents

Geometry

Introduction

The geometry module for SymPy allows one to create two-dimensional geometrical entities, such as lines and circles, and query for information about these entities. This could include asking the area of an ellipse, checking for collinearity of a set of points, or finding the intersection between two lines. The primary use case of the module involves entities with numerical values, but it is possible to also use symbolic representations.

Available Entities

The following entities are currently available in the geometry module:

- Point (page 2277)
- Line (page 2303), Segment (page 2308), Ray (page 2305)
- Ellipse (page 2328), Circle (page 2344)
- Polygon (page 2348), RegularPolygon (page 2359), Triangle (page 2368)

Most of the work one will do will be through the properties and methods of these entities, but several global methods exist:

- intersection(entity1, entity2)
- are_similar(entity1, entity2)
- convex_hull(points)

For a full API listing and an explanation of the methods and their return values please see the list of classes at the end of this document.
Example Usage

The following Python session gives one an idea of how to work with some of the geometry module.

```python
>>> from sympy import *
>>> from sympy.geometry import *
>>> x = Point(0, 0)
>>> y = Point(1, 1)
>>> z = Point(2, 2)
>>>zp = Point(1, 0)
>>> Point.is_collinear(x, y, z)
True
>>> Point.is_collinear(x, y, zp)
False
>>> t = Triangle(zp, y, x)
>>> t.area
1/2
>>> t.medians[x]
Segment2D(Point2D(0, 0), Point2D(1, 1/2))
>>> m = t.medians
>>> intersection(m[x], m[y], m[zp])
[Point2D(2/3, 1/3)]
>>> c = Circle(x, 5)
>>> l = Line(Point(5, -5), Point(5, 5))
>>> c.is_tangent(l) # is l tangent to c?
True
>>> l = Line(x, y)
>>> c.is_tangent(l) # is l tangent to c?
False
>>> intersection(c, l)
[Point2D(-5*sqrt(2)/2, -5*sqrt(2)/2), Point2D(5*sqrt(2)/2, 5*sqrt(2)/2)]
```

Intersection of medians

```python
>>> from sympy import symbols
>>> from sympy.geometry import Point, Triangle, intersection

>>> a, b = symbols("a,b", positive=True)

>>> x = Point(0, 0)
>>> y = Point(a, 0)
>>> z = Point(2*a, b)
>>> t = Triangle(x, y, z)

>>> t.area
a*b/2
>>> t.medians[x]
Segment2D(Point2D(0, 0), Point2D(3*a/2, b/2))
```
An in-depth example: Pappus’ Hexagon Theorem

From Wikipedia ([WikiPappus]):

Given one set of collinear points \(A, B, C\), and another set of collinear points \(a, b, c\), then the intersection points \(X, Y, Z\) of line pairs \(Ab\) and \(aB\), \(Ac\) and \(aC\), \(Bc\) and \(bC\) are collinear.

```python
>>> from sympy import *
>>> from sympy.geometry import *

>>> l1 = Line(Point(0, 0), Point(5, 6))
>>> l2 = Line(Point(0, 0), Point(2, -2))

>>> def subs_point(l, val):
... """Take an arbitrary point and make it a fixed point.""
... t = Symbol('t', real=True)
... ap = l.arbitrary_point()
... return Point(ap.x.subs(t, val), ap.y.subs(t, val))

>>> p11 = subs_point(l1, 5)
>>> p12 = subs_point(l1, 6)
>>> p13 = subs_point(l1, 11)

>>> p21 = subs_point(l2, -1)
>>> p22 = subs_point(l2, 2)
>>> p23 = subs_point(l2, 13)

>>> ll1 = Line(p11, p22)
>>> ll2 = Line(p11, p23)
>>> ll3 = Line(p12, p21)
>>> ll4 = Line(p12, p23)
>>> ll5 = Line(p13, p21)
>>> ll6 = Line(p13, p22)

>>> pp1 = intersection(ll1, ll3)[0]
>>> pp2 = intersection(ll2, ll5)[0]
>>> pp3 = intersection(ll4, ll6)[0]

>>> Point.is_collinear(pp1, pp2, pp3)
True
```
References

Miscellaneous Notes

• The area property of Polygon and Triangle may return a positive or negative value, depending on whether or not the points are oriented counter-clockwise or clockwise, respectively. If you always want a positive value be sure to use the abs function.

• Although Polygon can refer to any type of polygon, the code has been written for simple polygons. Hence, expect potential problems if dealing with complex polygons (overlapping sides).

• Since SymPy is still in its infancy some things may not simplify properly and hence some things that should return True (e.g., Point.is_collinear) may not actually do so. Similarly, attempting to find the intersection of entities that do intersect may result in an empty result.

Future Work

Truth Setting Expressions

When one deals with symbolic entities, it often happens that an assertion cannot be guaranteed. For example, consider the following code:

```python
>>> from sympy import *
>>> from sympy.geometry import *
>>> x, y, z = map(Symbol, 'xyz')
>>> p1, p2, p3 = Point(x, y), Point(y, z), Point(2*x*y, y)
>>> Point.is_collinear(p1, p2, p3)
False
```

Even though the result is currently False, this is not always true. If the quantity $z - y - 2 * y * z + 2 * y ^ 2 == 0$ then the points will be collinear. It would be really nice to inform the user of this because such a quantity may be useful to a user for further calculation and, at the very least, being nice to know. This could be potentially done by returning an object (e.g., GeometryResult) that the user could use. This actually would not involve an extensive amount of work.

Three Dimensions and Beyond

Currently a limited subset of the geometry module has been extended to three dimensions, but it certainly would be a good addition to extend more. This would probably involve a fair amount of work since many of the algorithms used are specific to two dimensions.
Geometry Visualization

The plotting module is capable of plotting geometric entities. See *Plotting Geometric Entities* (page 2956) in the plotting module entry.

Submodules

Entities

class sympy.geometry.entity.GeometryEntity(*args, **kwargs)

The base class for all geometrical entities.

This class does not represent any particular geometric entity, it only provides the implementation of some methods common to all subclasses.

property ambient_dimension

What is the dimension of the space that the object is contained in?

property bounds

Return a tuple (xmin, ymin, xmax, ymax) representing the bounding rectangle for the geometric figure.

encloses(o)

Return True if o is inside (not on or outside) the boundaries of self.

The object will be decomposed into Points and individual Entities need only define an encloses_point method for their class.

Examples

```python
>>> from sympy import RegularPolygon, Point, Polygon
>>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
>>> t2 = Polygon(*RegularPolygon(Point(0, 0), 2, 3).vertices)
>>> t2.encloses(t)
True
>>> t.encloses(t2)
False
```

See also:

* sympy.geometry.ellipse.Ellipse.encloses_point  (page 2332),  sympy.geometry.polygon.Polygon.encloses_point  (page 2353)

intersection(o)

Returns a list of all of the intersections of self with o.
Notes

An entity is not required to implement this method.

If two different types of entities can intersect, the item with higher index in ordering of classes should implement intersections with anything having a lower index.

See also:

sympy.geometry.util.intersection (page 2272)

is_similar(other)

Is this geometrical entity similar to another geometrical entity?
Two entities are similar if a uniform scaling (enlarging or shrinking) of one of the entities will allow one to obtain the other.

Notes

This method is not intended to be used directly but rather through the are_similar function found in util.py. An entity is not required to implement this method. If two different types of entities can be similar, it is only required that one of them be able to determine this.

See also:

scale (page 2271)

parameter_value(other, t)

Return the parameter corresponding to the given point. Evaluating an arbitrary point of the entity at this parameter value will return the given point.

Examples

```python
>>> from sympy import Line, Point
>>> from sympy import t
>>> a = Point(0, 0)
>>> b = Point(2, 2)
>>> Line(a, b).parameter_value((1, 1), t)
{t: 1/2}
>>> Line(a, b).arbitrary_point(t).subs(_)
Point2D(1, 1)
```

reflect(line)

Reflects an object across a line.

Parameters

- **line**: Line
Examples

```python
>>> from sympy import pi, sqrt, Line, RegularPolygon
>>> l = Line((0, pi), slope=sqrt(2))
>>> pent = RegularPolygon((1, 2), 1, 5)
>>> rpent = pent.reflect(l)
>>> rpent
RegularPolygon(Point2D(-2*sqrt(2)*pi/3 - 1/3 + 4*sqrt(2)/3, 2/3 + 2*sqrt(2)/3 + 2*pi/3), -1, 5, -atan(2*sqrt(2)) + 3*pi/5)
```

```python
>>> from sympy import pi, Line, Circle, Point
>>> l = Line((0, pi), slope=1)
>>> circ = Circle(Point(0, 0), 5)
>>> rcirc = circ.reflect(l)
>>> rcirc
Circle(Point2D(-pi, pi), -5)
```

**rotate**(angle, pt=None)

Rotate angle radians counterclockwise about Point pt.

The default pt is the origin, Point(0, 0)

Examples

```python
>>> from sympy import Point, RegularPolygon, Polygon, pi
>>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
>>> t # vertex on x axis
Triangle(Point2D(1, 0), Point2D(-1/2, sqrt(3)/2), Point2D(-1/2, -sqrt(3)/2))
>>> t.rotate(pi/2) # vertex on y axis now
Triangle(Point2D(0, 1), Point2D(-sqrt(3)/2, -1/2), Point2D(sqrt(3)/2, -1/2))
```

See also: 

* **scale** (page 2271), **translate** (page 2272)

**scale**(x=1, y=1, pt=None)

Scale the object by multiplying the x,y-coordinates by x and y.

If pt is given, the scaling is done relative to that point; the object is shifted by -pt, scaled, and shifted by pt.
Examples

```python
>>> from sympy import RegularPolygon, Point, Polygon
>>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
>>> t
Triangle(Point2D(1, 0), Point2D(-1/2, sqrt(3)/2), Point2D(-1/2, -sqrt(3)/2))
>>> t.scale(2)
Triangle(Point2D(2, 0), Point2D(-1, sqrt(3)/2), Point2D(-1, -sqrt(3)/2))
>>> t.scale(2, 2)
Triangle(Point2D(2, 0), Point2D(-1, sqrt(3)), Point2D(-1, -sqrt(3)))
```

See also:

`rotate` (page 2271), `translate` (page 2272)

**translate** (x=0, y=0)

Shift the object by adding to the x,y-coordinates the values x and y.

```
translate(x=0, y=0)
```

Examples

```python
>>> from sympy import RegularPolygon, Point, Polygon
>>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
>>> t
Triangle(Point2D(1, 0), Point2D(-1/2, sqrt(3)/2), Point2D(-1/2, -sqrt(3)/2))
>>> t.translate(2)
Triangle(Point2D(3, 0), Point2D(3/2, sqrt(3)/2), Point2D(3/2, -sqrt(3)/2))
>>> t.translate(2, 2)
Triangle(Point2D(3, 2), Point2D(3/2, sqrt(3)/2 + 2), Point2D(3/2, 2 - sqrt(3)/2))
```

See also:

`rotate` (page 2271), `scale` (page 2271)

**utility**

```python
sympy.geometry.util.intersection(*entities, pairwise=False, **kwargs)
```

The intersection of a collection of GeometryEntity instances.

**Parameters**

- `entities` : sequence of GeometryEntity
- `pairwise` (keyword argument) : Can be either True or False

**Returns**

- `intersection` : list of GeometryEntity

**Raises**

- `NotImplementedError`

When unable to calculate intersection.
Notes

The intersection of any geometrical entity with itself should return a list with one item: the entity in question. An intersection requires two or more entities. If only a single entity is given then the function will return an empty list. It is possible for intersection to miss intersections that one knows exists because the required quantities were not fully simplified internally. Reals should be converted to Rationals, e.g. Rational(str(real_num)) or else failures due to floating point issues may result.

Case 1: When the keyword argument ‘pairwise’ is False (default value): In this case, the function returns a list of intersections common to all entities.

Case 2: When the keyword argument ‘pairwise’ is True: In this case, the functions returns a list intersections that occur between any pair of entities.

Examples

```python
from sympy import Ray, Circle, intersection

c = Circle((0, 1), 1)
intersection(c, c.center)
[]
right = Ray((0, 0), (1, 0))
up = Ray((0, 0), (0, 1))
intersection(c, right, up)
[Point2D(0, 0)]
intersection(c, right, up, pairwise=True)
[Point2D(0, 0), Point2D(0, 2)]
left = Ray((1, 0), (0, 0))
intersection(right, left)
[Segment2D(Point2D(0, 0), Point2D(1, 0))]
```

See also:

- `sympy.geometry.entity.GeometryEntity.intersection` (page 2269)
- `sympy.geometry.util.convex_hull(*args, polygon=True)`

The convex hull surrounding the Points contained in the list of entities.

Parameters

- **args**: a collection of Points, Segments and/or Polygons

Returns

- **convex_hull**: Polygon if polygon is True else as a tuple $(U, L)$ where $L$ and $U$ are the lower and upper hulls, respectively.
Optional Parameters

**polygon**

[Boolean. If True, returns a Polygon, if false a tuple, see below.] Default is True.

Notes

This can only be performed on a set of points whose coordinates can be ordered on the number line.

Examples

```python
>>> from sympy import convex_hull
>>> points = [(1, 1), (1, 2), (3, 1), (-5, 2), (15, 4)]
>>> convex_hull(*points)
Polygon(Point2D(-5, 2), Point2D(1, 1), Point2D(3, 1), Point2D(15, 4))
>>> convex_hull(*points, **dict(polygon=False))
([Point2D(-5, 2), Point2D(15, 4)],
 [Point2D(-5, 2), Point2D(1, 1), Point2D(3, 1), Point2D(15, 4)])
```

See also:

* sympy.geometry.point.Point (page 2277), sympy.geometry.polygon.Polygon (page 2348)

References

[R535], [R536]

sympy.geometry.util.are_similar(e1, e2)

Are two geometrical entities similar.

Can one geometrical entity be uniformly scaled to the other?

Parameters

- **e1**: GeometryEntity
- **e2**: GeometryEntity

Returns

- **are_similar**: boolean

Raises

- **GeometryError**

    When $e_1$ and $e_2$ cannot be compared.
Notes

If the two objects are equal then they are similar.

Examples

```python
from sympy import Point, Circle, Triangle, are_similar

c1, c2 = Circle(Point(0, 0), 4), Circle(Point(1, 4), 3)
t1 = Triangle(Point(0, 0), Point(1, 0), Point(0, 1))
t2 = Triangle(Point(0, 0), Point(2, 0), Point(0, 2))
t3 = Triangle(Point(0, 0), Point(3, 0), Point(0, 1))
are_similar(t1, t2)
True
are_similar(t1, t3)
False
```

See also:

`sympy.geometry.entity.GeometryEntity.is_similar` (page 2270)

`sympy.geometry.util.centroid(*args)`

Find the centroid (center of mass) of the collection containing only Points, Segments or Polygons. The centroid is the weighted average of the individual centroid where the weights are the lengths (of segments) or areas (of polygons). Overlapping regions will add to the weight of that region.

If there are no objects (or a mixture of objects) then None is returned.

Examples

```python
from sympy import Point, Segment, Polygon

from sympy.geometry.util import centroid

p = Polygon((0, 0), (10, 0), (10, 10))
q = p.translate(0, 20)
 centroid(p, q)
Point2D(1, 2 - sqrt(2))

p, q = Segment((0, 0), (2, 0)), Segment((0, 0), (2, 2))
 centroid(p, q)
Point2D(1/2)

Stacking 3 polygons on top of each other effectively triples the weight of that polygon:

```python
p = Polygon((0, 0), (1, 0), (1, 1), (0, 1))
q = Polygon((1, 0), (3, 0), (3, 1), (1, 1))
 centroid(p, q)
Point2D(3/2, 1/2)
 centroid(p, p, p, q) # centroid x-coord shifts left
Point2D(11/10, 1/2)
```
Stacking the squares vertically above and below p has the same effect:

```
>>> centroid(p, p.translate(0, 1), p.translate(0, -1), q)
Point2D(11/10, 1/2)
```

See also:

- `sympy.geometry.point.Point` (page 2277)
- `sympy.geometry.line.Segment` (page 2308)
- `sympy.geometry.polygon.Polygon` (page 2348)

`sympy.geometry.util.idiff(eq, y, x, n=1)`

Return dy/dx assuming that eq == 0.

Parameters

- `y`: the dependent variable or a list of dependent variables (with y first)
- `x`: the variable that the derivative is being taken with respect to
- `n`: the order of the derivative (default is 1)

Examples

```
>>> from sympy import x, y, a
>>> from sympy.geometry.util import idiff

>>> circ = x**2 + y**2 - 4
>>> idiff(circ, y, x)
-x/y
>>> idiff(circ, y, x, 2).simplify()
(-x**2 - y**2)/y**3
```

Here, a is assumed to be independent of x:

```
>>> idiff(x + a + y, y, x)
-1
```

Now the x-dependence of a is made explicit by listing a after y in a list.

```
>>> idiff(x + a + y, [y, a], x)
-Derivative(a, x) - 1
```

See also:

- `sympy.core.function.Derivative` (page 1088)
 represents unevaluated derivatives
- `sympy.core.function.diff` (page 1094)
 explicitly differentiates wrt symbols
Points

class sympy.geometry.point.Point(*args, **kwargs)
A point in a n-dimensional Euclidean space.

Parameters
- **coords**: sequence of n-coordinate values. In the special
case where n=2 or 3, a Point2D or Point3D will be created as appro-
priate.
- **evaluate**: if True (default), all floats are turn into
effect types.
- **dim**: number of coordinates the point should have. If coordinates
are unspecified, they are padded with zeros.
- **on_morph**: indicates what should happen when the number of
coordinates of a point need to be changed by adding or removing ze-
ros. Possible values are 'warn', 'error', or 'ignore' (default). No warning
or error is given when *args is empty and dim is given. An error is
always raised when trying to remove nonzero coordinates.

Raises
- **TypeError**: When instantiating with anything but a Point or sequence

Examples

```python
>>> from sympy import Point
>>> from sympy.abc import x
>>> Point(1, 2, 3)
Point3D(1, 2, 3)
>>> Point([1, 2])
Point2D(1, 2)
>>> Point(0, x)
Point2D(0, x)
>>> Point(dim=4)
Point(0, 0, 0, 0)
```

Floats are automatically converted to Rational unless the evaluate flag is False:

```python
>>> Point(0.5, 0.25)
Point2D(1/2, 1/4)
>>> Point(0.5, 0.25, evaluate=False)
Point2D(0.5, 0.25)
```

See also:

sympy.geometry.line.Segment (page 2308)
Connects two Points
Attributes

| length | origin: A *Point* representing the origin of the appropriately-dimensioned space. |

static affine_rank(*args)

The affine rank of a set of points is the dimension of the smallest affine space containing all the points. For example, if the points lie on a line (and are not all the same) their affine rank is 1. If the points lie on a plane but not a line, their affine rank is 2. By convention, the empty set has affine rank -1.

property ambient_dimension

Number of components this point has.

classmethod are_coplanar(*points)

Return True if there exists a plane in which all the points lie. A trivial True value is returned if len(points) < 3 or all Points are 2-dimensional.

Parameters

A set of points

Returns

boolean

Raises

* ValueError : if less than 3 unique points are given

Examples

```python
>>> from sympy import Point3D
>>> p1 = Point3D(1, 2, 2)
>>> p2 = Point3D(2, 7, 2)
>>> p3 = Point3D(0, 0, 2)
>>> p4 = Point3D(1, 1, 2)
>>> Point3D.are_coplanar(p1, p2, p3, p4)
True
>>> p5 = Point3D(0, 1, 3)
>>> Point3D.are_coplanar(p1, p2, p3, p5)
False
```

canberra_distance(p)

The Canberra Distance from self to point p.

Returns the weighted sum of horizontal and vertical distances to point p.

Parameters

p : Point

Returns

canberra_distance : The weighted sum of horizontal and vertical distances to point p. The weight used is the sum of absolute values of the coordinates.
Defines a point in the (affine) plane.

Attributes

- `x`:
 - The horizontal coordinate of the point.
- `y`:
 - The vertical coordinate of the point.

Methods

- `canberra_distance(other)`:
 - Return the Canberra distance between vectors
 - Raises `ValueError` when both vectors are zero.

Examples

```python
>>> from sympy import Point
>>> p1, p2 = Point(1, 1), Point(3, 3)
>>> p1.canberra_distance(p2)
1
>>> p1, p2 = Point(0, 0), Point(3, 3)
>>> p1.canberra_distance(p2)
2
See also:

sympy.geometry.point.Point.distance (page 2279)
```

distance(other)

The Euclidean distance between self and another GeometricEntity.

Returns

- `distance` : number or symbolic expression.

Raises

- `TypeError` : if `other` is not recognized as a GeometricEntity or is a GeometricEntity for which distance is not defined.

Examples

```python
>>> from sympy import Point, Line
>>> p1, p2 = Point(1, 1), Point(4, 5)
>>> l = Line((3, 1), (2, 2))
>>> p1.distance(p2)
5
>>> p1.distance(l)
sqrt(2)
```

The computed distance may be symbolic, too:

```python
>>> from sympy.abc import x, y
>>> p3 = Point(x, y)
>>> p3.distance((0, 0))
sqrt(x**2 + y**2)
```

See also:

sympy.geometry.line.Segment.length (page 2310), sympy.geometry.point. Point.taxicab_distance (page 2283)

dot(p)

Return dot product of self with another Point.
equals($other$)
 Returns whether the coordinates of self and other agree.

intersection($other$)
 The intersection between this point and another GeometryEntity.

Parameters
 $other$: GeometryEntity or sequence of coordinates

Returns
 intersection : list of Points

Notes
 The return value will either be an empty list if there is no intersection, otherwise it will contain this point.

Examples

```python
>>> from sympy import Point
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, 0)
>>> p1.intersection(p2)
[]
>>> p1.intersection(p3)
[Point2D(0, 0)]
```

is_collinear(*$args$)
 Returns $True$ if there exists a line that contains $self$ and $points$. Returns $False$ otherwise. A trivially True value is returned if no points are given.

Parameters
 $args$: sequence of Points

Returns
 is_collinear : boolean

Examples

```python
>>> from sympy import Point
>>> from sympy.abc import x
>>> p1, p2 = Point(0, 0), Point(1, 1)
>>> p3, p4, p5 = Point(2, 2), Point(x, x), Point(1, 2)
>>> Point.is_collinear(p1, p2, p3, p4)
True
>>> Point.is_collinear(p1, p2, p3, p5)
False
```

See also:

`sympy.geometry.line.Line` (page 2303)
is_concyclic(*args**)

Do `self` and the given sequence of points lie in a circle?

Returns True if the set of points are concyclic and False otherwise. A trivial value of True is returned if there are fewer than 2 other points.

Parameters

- **args**: sequence of Points

Returns

- **is_concyclic**: boolean

Examples

```python
>>> from sympy import Point

Define 4 points that are on the unit circle:

```py
>>> p1, p2, p3, p4 = Point(1, 0), (0, 1), (-1, 0), (0, -1)
```

```py
>>> p1.is_concyclic() == p1.is_concyclic(p2, p3, p4) == True
```

Define a point not on that circle:

```py
>>> p = Point(1, 1)
```

```py
>>> p.is_concyclic(p1, p2, p3) == False
```

**property is_nonzero**

True if any coordinate is nonzero, False if every coordinate is zero, and None if it cannot be determined.

**is_scalar_multiple**(p)

Returns whether each coordinate of `self` is a scalar multiple of the corresponding coordinate in point `p`.

**property is_zero**

True if every coordinate is zero, False if any coordinate is not zero, and None if it cannot be determined.

**property length**

Treating a Point as a Line, this returns 0 for the length of a Point.
Examples

```python
>>> from sympy import Point
>>> p = Point(0, 1)
>>> p.length
0
```

`midpoint(p)`
The midpoint between self and point p.

**Parameters**

- `p`: Point

**Returns**

- `midpoint`: Point

Examples

```python
>>> from sympy import Point
>>> p1, p2 = Point(1, 1), Point(13, 5)
>>> p1.midpoint(p2)
Point2D(7, 3)
```

See also:

`sympy.geometry.line.Segment.midpoint` (page 2310)

property `origin`
A point of all zeros of the same ambient dimension as the current point

property `orthogonal_direction`
Returns a non-zero point that is orthogonal to the line containing self and the origin.

Examples

```python
>>> from sympy import Line, Point
>>> a = Point(1, 2, 3)
>>> a.orthogonal_direction
Point3D(-2, 1, 0)
>>> b = _
>>> Line(b, b.origin).is_perpendicular(Line(a, a.origin))
True
```

static `project(a, b)`
Project the point a onto the line between the origin and point b along the normal direction.

**Parameters**

- `a`: Point
- `b`: Point

**Returns**

- `p`: Point
Examples

```python
>>> from sympy import Line, Point
>>> a = Point(1, 2)
>>> b = Point(2, 5)
>>> z = a.origin
>>> p = Point.project(a, b)
>>> Line(p, a).is_perpendicular(Line(p, b))
True
>>> Point.is_collinear(z, p, b)
True
```

See also:

- `sympy.geometry.line.LinearEntity.projection` (page 2301)

**taxicab_distance(p)**

The Taxicab Distance from self to point p.

Returns the sum of the horizontal and vertical distances to point p.

**Parameters**

- `p`: Point

**Returns**

- `taxicab_distance`: The sum of the horizontal and vertical distances to point p.

Examples

```python
>>> from sympy import Point
>>> p1, p2 = Point(1, 1), Point(4, 5)
>>> p1.taxicab_distance(p2)
7
```

See also:

- `sympy.geometry.point.Point.distance` (page 2279)

**property unit**

Return the Point that is in the same direction as `self` and a distance of 1 from the origin.

**class** `sympy.geometry.point.Point2D(*args, _nocheck=False, **kwargs)`

A point in a 2-dimensional Euclidean space.

**Parameters**

- `coords`: A sequence of 2 coordinate values.

**Raises**

- `TypeError`: When trying to add or subtract points with different dimensions.
- `TypeError`: When trying to create a point with more than two dimensions. When `intersection` is called with object other than a Point.
Examples

```python
from sympy import Point2D
from sympy.abc import x

Point2D(1, 2)
Point2D([1, 2])
Point2D(0, x)

Point2D(1, 2)
Point2D(1/2, 1/4)
Point2D(0.5, 0.25, evaluate=False)
```

Floats are automatically converted to Rational unless the evaluate flag is False:

```
See also:

sympy.geometry.line.Segment (page 2308)
Connects two Points

Attributes

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

property bounds
Return a tuple (xmin, ymin, xmax, ymax) representing the bounding rectangle for the geometric figure.

property coordinates
Returns the two coordinates of the Point.

Examples

```python
from sympy import Point2D

p = Point2D(0, 1)

p.coordinates (0, 1)
```

rotate(angle, pt=None)
Rotate angle radians counterclockwise about Point pt.
Examples

```python
>>> from sympy import Point2D, pi
>>> t = Point2D(1, 0)
>>> t.rotate(pi/2)
Point2D(0, 1)
>>> t.rotate(pi/2, (2, 0))
Point2D(2, -1)
```

See also:

`translate` (page 2285), `scale` (page 2285)

`scale`(x=1, y=1, pt=None)
Scale the coordinates of the Point by multiplying by x and y after subtracting pt - default is (0, 0) – and then adding pt back again (i.e. pt is the point of reference for the scaling).

Examples

```python
>>> from sympy import Point2D
>>> t = Point2D(1, 1)
>>> t.scale(2)
Point2D(2, 1)
>>> t.scale(2, 2)
Point2D(2, 2)
```

See also:

`rotate` (page 2284), `translate` (page 2285)

`transform`(matrix)
Return the point after applying the transformation described by the 3x3 Matrix, matrix.

See also:

sympy.geometry.point.Point2D.rotate (page 2284), sympy.geometry.point.Point2D.scale (page 2285), sympy.geometry.point.Point2D.translate (page 2285)

`translate`(x=0, y=0)
Shift the Point by adding x and y to the coordinates of the Point.

Examples

```python
>>> from sympy import Point2D
>>> t = Point2D(0, 1)
>>> t.translate(2)
Point2D(2, 1)
>>> t.translate(2, 2)
Point2D(2, 3)
```
See also:

`sympy.geometry.point.Point2D.rotate` (page 2284), `scale` (page 2285)

property x

Returns the X coordinate of the Point.

Examples

```python
>>> from sympy import Point2D
>>> p = Point2D(0, 1)
>>> p.x
0
```

property y

Returns the Y coordinate of the Point.

Examples

```python
>>> from sympy import Point2D
>>> p = Point2D(0, 1)
>>> p.y
1
```

class sympy.geometry.point.Point3D(coords, _nocheck=False, **kwargs)

A point in a 3-dimensional Euclidean space.

Parameters

- **coords**
 A sequence of 3 coordinate values.

Raises

- **TypeError**
 When trying to add or subtract points with different dimensions.
 When `intersection` is called with object other than a Point.

Examples

```python
>>> from sympy import Point3D
>>> from sympy.abc import x
>>> Point3D(1, 2, 3)
Point3D(1, 2, 3)
>>> Point3D([1, 2, 3])
Point3D(1, 2, 3)
>>> Point3D((0, x, 3))
Point3D(0, x, 3)
```
Floats are automatically converted to Rational unless the evaluate flag is False:

```python
>>> Point3D(0.5, 0.25, 2)
Point3D(1/2, 1/4, 2)
>>> Point3D(0.5, 0.25, 3, evaluate=False)
Point3D(0.5, 0.25, 3)
```

Attributes

```python
tax
y
z
length
```

static are_collinear(points**)**

Is a sequence of points collinear?

Test whether or not a set of points are collinear. Returns True if the set of points are collinear, or False otherwise.

Parameters

- **points**: sequence of Point

Returns

- **are_collinear**: boolean

Examples

```python
>>> from sympy import Point3D
>>> from sympy.abc import x
>>> p1, p2 = Point3D(0, 0, 0), Point3D(1, 1, 1)
>>> p3, p4, p5 = Point3D(2, 2, 2), Point3D(x, x, x), Point3D(1, 2, 6)
>>> Point3D.are_collinear(p1, p2, p3, p4)
True
>>> Point3D.are_collinear(p1, p2, p3, p5)
False
```

See also:

- `sympy.geometry.line.Line3D` (page 2319)

property coordinates

Returns the three coordinates of the Point.
Examples

```python
>>> from sympy import Point3D
>>> p = Point3D(0, 1, 2)
>>> p.coordinates
(0, 1, 2)
```

direction_cosine(point)

Gives the direction cosine between 2 points

Parameters

- `p` : Point3D

Returns

list

Examples

```python
>>> from sympy import Point3D
>>> p1 = Point3D(1, 2, 3)
>>> p1.direction_cosine(Point3D(2, 3, 5))
[sqrt(6)/6, sqrt(6)/6, sqrt(6)/3]
```

direction_ratio(point)

Gives the direction ratio between 2 points

Parameters

- `p` : Point3D

Returns

list

Examples

```python
>>> from sympy import Point3D
>>> p1 = Point3D(1, 2, 3)
>>> p1.direction_ratio(Point3D(2, 3, 5))
[1, 1, 2]
```

intersection(other)

The intersection between this point and another GeometryEntity.

Parameters

- `other` : GeometryEntity or sequence of coordinates

Returns

- `intersection` : list of Points
Notes

The return value will either be an empty list if there is no intersection, otherwise it will contain this point.

Examples

```python
>>> from sympy import Point3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(0, 0, 0)
>>> p1.intersection(p2)
[]
>>> p1.intersection(p3)
[Point3D(0, 0, 0)]
```

scale\((x=1, y=1, z=1, pt=None)\)

Scale the coordinates of the Point by multiplying by \(x\) and \(y\) after subtracting \(pt\) - default is \((0, 0)\) - and then adding \(pt\) back again (i.e. \(pt\) is the point of reference for the scaling).

Examples

```python
>>> from sympy import Point3D
>>> t = Point3D(1, 1, 1)
>>> t.scale(2)
Point3D(2, 1, 1)
>>> t.scale(2, 2)
Point3D(2, 2, 1)
```

See also:

translate (page 2289)

transform\((\text{matrix})\)

Return the point after applying the transformation described by the 4x4 Matrix, \(\text{matrix}\).

See also:

sympy.geometry.point.Point3D.scale (page 2289), sympy.geometry.point.Point3D.translate (page 2289)

translate\((x=0, y=0, z=0)\)

Shift the Point by adding \(x\) and \(y\) to the coordinates of the Point.
Examples

```python
>>> from sympy import Point3D
>>> t = Point3D(0, 1, 1)
>>> t.translate(2)
Point3D(2, 1, 1)
>>> t.translate(2, 2)
Point3D(2, 3, 1)
>>> t + Point3D(2, 2, 2)
Point3D(2, 3, 3)
```

See also:

`sacle` (page 2289)

property x

Returns the X coordinate of the Point.

Examples

```python
>>> from sympy import Point3D
>>> p = Point3D(0, 1, 3)
>>> p.x
0
```

property y

Returns the Y coordinate of the Point.

Examples

```python
>>> from sympy import Point3D
>>> p = Point3D(0, 1, 2)
>>> p.y
1
```

property z

Returns the Z coordinate of the Point.

Examples

```python
>>> from sympy import Point3D
>>> p = Point3D(0, 1, 1)
>>> p.z
1
```
Lines

class sympy.geometry.line.LinearEntity(p1, p2=None, **kwargs)
A base class for all line entities (Line, Ray and Segment) in n-dimensional Euclidean space.

Notes

This is an abstract class and is not meant to be instantiated.

See also:
sympy.geometry.entity.GeometryEntity (page 2269)

Attributes

| ambient_dimension
| direction
| length
| p1
| p2
| points

property ambient_dimension
A property method that returns the dimension of LinearEntity object.

Parameters

p1 : LinearEntity

Returns
dimension : integer

Examples

```python
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0), Point(1, 1)
>>> l1 = Line(p1, p2)
>>> l1.ambient_dimension
2

>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0, 0), Point(1, 1, 1)
>>> l1 = Line(p1, p2)
>>> l1.ambient_dimension
3
```

angle_between(l2)
Return the non-reflex angle formed by rays emanating from the origin with directions the same as the direction vectors of the linear entities.
Parameters

- \(l_1 \) : LinearEntity
- \(l_2 \) : LinearEntity

Returns

- \(\text{angle} \) : angle in radians

Notes

From the dot product of vectors \(v_1 \) and \(v_2 \) it is known that:

\[
\text{dot}(v_1, v_2) = |v_1|*|v_2|*\cos(A)
\]

where \(A \) is the angle formed between the two vectors. We can get the directional vectors of the two lines and readily find the angle between the two using the above formula.

Examples

```python
>>> from sympy import Line
>>> e = Line((0, 0), (1, 0))
>>> ne = Line((0, 0), (1, 1))
>>> sw = Line((1, 1), (0, 0))
>>> ne.angle_between(e)
pi/4
>>> sw.angle_between(e)
3*pi/4
```

To obtain the non-obtuse angle at the intersection of lines, use the `smallest_angle_between` method:

```python
>>> sw.smallest_angle_between(e)
pi/4
```

See also:

- `is_perpendicular` (page 2296), `Ray2D.closing_angle` (page 2316)

arbitrary_point *(parameter='t')*

A parameterized point on the Line.

Parameters

- `parameter` : str, optional
 The name of the parameter which will be used for the parametric point. The default value is 't'. When this parameter is 0, the first
point used to define the line will be returned, and when it is 1 the
second point will be returned.

Returns

point : Point

Raises

ValueError

When parameter already appears in the Line's definition.

Examples

```python
>>> from sympy import Point, Line
>>> p1, p2 = Point(1, 0), Point(5, 3)
>>> l1 = Line(p1, p2)
>>> l1.arbitrary_point()
Point2D(4*t + 1, 3*t)
>>> from sympy import Point3D, Line3D
>>> p1, p2 = Point3D(1, 0, 0), Point3D(5, 3, 1)
>>> l1 = Line3D(p1, p2)
>>> l1.arbitrary_point()
Point3D(4*t + 1, 3*t, t)
```

See also:

`sympy.geometry.point.Point` (page 2277)

static are_concurrent(lines)**

Is a sequence of linear entities concurrent?

Two or more linear entities are concurrent if they all intersect at a single point.

Parameters

lines

A sequence of linear entities.

Returns

True : if the set of linear entities intersect in one point

False : otherwise.

Examples

```python
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0), Point(3, 5)
>>> p3, p4 = Point(-2, -2), Point(0, 2)
>>> l1, l2, l3 = Line(p1, p2), Line(p1, p3), Line(p1, p4)
>>> Line.are_concurrent(l1, l2, l3)
True
>>> l4 = Line(p2, p3)
>>> Line.are_concurrent(l2, l3, l4)
False
>>> from sympy import Point3D, Line3D
```

(continues on next page)
See also:

`sympy.geometry.util.intersection` (page 2272)

bisectors(other)

Returns the perpendicular lines which pass through the intersections of self and other that are in the same plane.

Parameters
- **line**: Line3D

Returns
- list: two Line instances

Examples

```python
>>> from sympy import Point3D, Line3D
>>> r1 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))
>>> r2 = Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))
>>> r1.bisectors(r2)
[Line3D(Point3D(0, 0, 0), Point3D(1, 1, 0)), Line3D(Point3D(0, 0, 0), Point3D(1, -1, 0))]
```

contains(other)

Subclasses should implement this method and should return True if other is on the boundaries of self; False if not on the boundaries of self; None if a determination cannot be made.

property direction

The direction vector of the LinearEntity.

Returns
- **p**: a Point; the ray from the origin to this point is the direction of self
Examples

```python
>>> from sympy import Line
>>> a, b = (1, 1), (1, 3)
>>> Line(a, b).direction
Point2D(0, 2)
>>> Line(b, a).direction
Point2D(0, -2)
```

This can be reported so the distance from the origin is 1:

```python
>>> Line(b, a).direction.unit
Point2D(0, -1)
```

See also:

`sympy.geometry.point.Point.unit` (page 2283)

intersection(other)

The intersection with another geometrical entity.

Parameters

- `o`: Point or LinearEntity

Returns

- `intersection`: list of geometrical entities

Examples

```python
>>> from sympy import Point, Line, Segment
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(7, 7)
>>> l1 = Line(p1, p2)
>>> l1.intersection(p3)
[Point2D(7, 7)]
>>> p4, p5 = Point(5, 0), Point(0, 3)
>>> l2 = Line(p4, p5)
>>> l1.intersection(l2)
[Point2D(15/8, 15/8)]
>>> p6, p7 = Point(0, 5), Point(2, 6)
>>> s1 = Segment(p6, p7)
>>> l1.intersection(s1)
[]
```

```python
>>> from sympy import Point3D, Line3D, Segment3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(7, 7, 7)
>>> l1 = Line3D(p1, p2)
>>> l1.intersection(p3)
[Point3D(7, 7, 7)]
>>> l1 = Line3D(Point3D(4, 19, 12), Point3D(5, 25, 17))
>>> l2 = Line3D(Point3D(-3, -15, -19), direction_ratio=[2, 8, 8])
>>> l1.intersection(l2)
[Point3D(1, 1, -3)]
>>> p6, p7 = Point3D(0, 5, 2), Point3D(2, 6, 3)
>>> s1 = Segment3D(p6, p7)
```
>>> l1.intersection(s1)
[]

See also:

sympy.geometry.point.Point (page 2277)

is_parallel(l2)
Are two linear entities parallel?

Parameters

l1 : LinearEntity
l2 : LinearEntity

Returns

True : if l1 and l2 are parallel,
False : otherwise.

Examples

>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0), Point(1, 1)
>>> p3, p4 = Point(3, 4), Point(6, 7)
>>> l1, l2 = Line(p1, p2), Line(p3, p4)
>>> Line.is_parallel(l1, l2)
True
>>> p5 = Point(6, 6)
>>> l3 = Line(p3, p5)
>>> Line.is_parallel(l1, l3)
False

See also:

coefficients (page 2314)

is_perpendicular(l2)
Are two linear entities perpendicular?

Parameters

l1 : LinearEntity
l2 : LinearEntity
Returns

- **True**: if \(l_1 \) and \(l_2 \) are perpendicular,
- **False**: otherwise.

Examples

```python
>>> from sympy import Point, Line
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(-1, 1)
>>> l1, l2 = Line(p1, p2), Line(p1, p3)
>>> l1.is_perpendicular(l2)
True
>>> p4 = Point(5, 3)
>>> l3 = Line(p1, p4)
>>> l1.is_perpendicular(l3)
False
```

See also:

- `coefficients` (page 2314)
- `is_similar(other)`
 Return True if self and other are contained in the same line.

Examples

```python
>>> from sympy import Point, Line
>>> p1, p2, p3 = Point(0, 1), Point(3, 4), Point(2, 3)
>>> l1 = Line(p1, p2)
>>> l2 = Line(p1, p3)
>>> l1.is_similar(l2)
True
```
Examples

```python
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0), Point(3, 5)
>>> l1 = Line(p1, p2)
>>> l1.length
oo
```

property p1
The first defining point of a linear entity.

Examples

```python
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0), Point(5, 3)
>>> l = Line(p1, p2)
>>> l.p1
Point2D(0, 0)
```

See also:
* [sympy.geometry.point.Point](page2277)

property p2
The second defining point of a linear entity.

Examples

```python
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0), Point(5, 3)
>>> l = Line(p1, p2)
>>> l.p2
Point2D(5, 3)
```

See also:
* [sympy.geometry.point.Point](page2277)

parallel_line(p)
Create a new Line parallel to this linear entity which passes through the point `p`.

Parameters
- `p`: Point

Returns
- `line`: Line
Examples

```python
>>> from sympy import Point, Line
>>> p1, p2, p3 = Point(0, 0), Point(2, 3), Point(-2, 2)
>>> l1 = Line(p1, p2)
>>> l2 = l1.parallel_line(p3)
>>> p3 in l2
True
>>> l1.is_parallel(l2)
True
>>> from sympy import Line3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(2, 3, 4), Point3D(-2, 2, 0)
>>> l1 = Line3D(p1, p2)
>>> l2 = l1.parallel_line(p3)
>>> p3 in l2
True
>>> l1.is_parallel(l2)
True
```

See also:

`is_parallel` (page 2296)

`perpendicular_line(p)`
Create a new Line perpendicular to this linear entity which passes through the point `p`.

Parameters
- `p`: Point

Returns
- `line`: Line

Examples

```python
>>> from sympy import Point3D, Line3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(2, 3, 4), Point3D(-2, 2, 0)
>>> L = Line3D(p1, p2)
>>> P = L.perpendicular_line(p3); P
Line3D(Point3D(-2, 2, 0), Point3D(4/29, 6/29, 8/29))
>>> L.is_perpendicular(P)
True
```

In 3D the, the first point used to define the line is the point through which the perpendicular was required to pass; the second point is (arbitrarily) contained in the given line:

```python
>>> P.p2 in L
True
```

See also:

`sympy.geometry.line.LinearEntity.is_perpendicular` (page 2296),
`perpendicular_segment` (page 2299)
perpendicular_segment\((p)\)
Create a perpendicular line segment from \(p\) to this line.
The endpoints of the segment are \(p\) and the closest point in the line containing self.
(If self is not a line, the point might not be in self.)

Parameters
\(p\) : Point

Returns
segment : Segment

Notes
Returns \(p\) itself if \(p\) is on this linear entity.

Examples

```python
>>> from sympy import Point, Line
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, 2)
>>> l1 = Line(p1, p2)
>>> s1 = l1.perpendicular_segment(p3)
>>> l1.is_perpendicular(s1)
True
>>> p3 in s1
True
>>> l1.perpendicular_segment(Point(4, 0))
Segment2D(Point2D(4, 0), Point2D(2, 2))
```

See also:
perpendicular_line (page 2299)

property points
The two points used to define this linear entity.

Returns
points : tuple of Points
Examples

```python
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0), Point(5, 11)
>>> l1 = Line(p1, p2)
>>> l1.points
(Point2D(0, 0), Point2D(5, 11))
```

See also:
`sympy.geometry.point.Point` (page 2277)

`projection(other)`
Project a point, line, ray, or segment onto this linear entity.

Parameters

- `other`: Point or LinearEntity (Line, Ray, Segment)

Returns

- `projection`: Point or LinearEntity (Line, Ray, Segment)

The return type matches the type of the parameter `other`.

Raises

- `GeometryError`

When method is unable to perform projection.

Notes

A projection involves taking the two points that define the linear entity and projecting those points onto a Line and then reforming the linear entity using these projections. A point P is projected onto a line L by finding the point on L that is closest to P. This point is the intersection of L and the line perpendicular to L that passes through P.

Examples

```python
>>> from sympy import Point, Line, Segment, Rational
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(Rational(1, 2), 0)
>>> l1 = Line(p1, p2)
>>> l1.projection(p3)
Point2D(1/4, 1/4)
>>> p4, p5 = Point(10, 0), Point(12, 1)
>>> s1 = Segment(p4, p5)
>>> l1.projection(s1)
Segment2D(Point2D(5, 5), Point2D(13/2, 13/2))
>>> p1, p2, p3 = Point(0, 0, 1), Point(1, 1, 2), Point(2, 0, 1)
>>> l1 = Line(p1, p2)
>>> l1.projection(p3)
Point3D(2/3, 2/3, 5/3)
>>> p4, p5 = Point(10, 0, 1), Point(12, 1, 3)
>>> s1 = Segment(p4, p5)
```

(continues on next page)
l1.projection(s1)
Segment3D(Point3D(10/3, 10/3, 13/3), Point3D(5, 5, 6))

See also:
sympy.geometry.point.Point (page 2277), perpendicular_line (page 2299)

random_point(seed=None)
A random point on a LinearEntity.

Returns
point : Point

Examples

from sympy import Point, Line, Ray, Segment
p1, p2 = Point(0, 0), Point(5, 3)
line = Line(p1, p2)
r = line.random_point(seed=42) # seed value is optional
r.n(3)
Point2D(-0.72, -0.432)
r in line
True
Ray(p1, p2).random_point(seed=42).n(3)
Point2D(0.72, 0.432)
Segment(p1, p2).random_point(seed=42).n(3)
Point2D(3.2, 1.92)

See also:
sympy.geometry.point.Point (page 2277)

smallest_angle_between(l2)
Return the smallest angle formed at the intersection of the lines containing the linear entities.

Parameters
l1 : LinearEntity
l2 : LinearEntity

Returns
angle : angle in radians

Examples

from sympy import Point, Line
p1, p2, p3 = Point(0, 0), Point(0, 4), Point(2, -2)
l1, l2 = Line(p1, p2), Line(p1, p3)
l1.smallest_angle_between(l2)
pi/4
class sympy.geometry.line.Line(*args, **kwargs)

An infinite line in space.

A 2D line is declared with two distinct points, point and slope, or an equation. A 3D line may be defined with a point and a direction ratio.

Parameters

- `p1` : Point
- `p2` : Point
- `slope` : SymPy expression
- `direction_ratio` : list
- `equation` : equation of a line

Notes

`Line` will automatically subclass to `Line2D` or `Line3D` based on the dimension of `p1`. The `slope` argument is only relevant for `Line2D` and the `direction_ratio` argument is only relevant for `Line3D`.

The order of the points will define the direction of the line which is used when calculating the angle between lines.

Examples

```python
>>> from sympy import Line, Segment, Point, Eq
>>> from sympy.abc import x, y, a, b

>>> L = Line(Point(2, 3), Point(3, 5))
>>> L
Line2D(Point2D(2, 3), Point2D(3, 5))
>>> L.points
(Point2D(2, 3), Point2D(3, 5))
>>> L.equation()
-2*x + y + 1
>>> L.coefficients
(-2, 1, 1)
```

Instantiate with keyword slope:

```python
>>> Line(Point(0, 0), slope=0)
Line2D(Point2D(0, 0), Point2D(1, 0))
```

Instantiate with another linear object

```python
>>> s = Segment((0, 0), (0, 1))
>>> Line(s).equation()
x
```
The line corresponding to an equation in the for \(ax + by + c = 0 \), can be entered:

```python
>>> Line(3*x + y + 18)
Line2D(Point2D(0, -18), Point2D(1, -21))
```

If \(x \) or \(y \) has a different name, then they can be specified, too, as a string (to match the name) or symbol:

```python
>>> Line(Eq(3*a + b, -18), x='a', y=b)
Line2D(Point2D(0, -18), Point2D(1, -21))
```

See also:

sympy.geometry.point.Point (page 2277), sympy.geometry.line.Line2D (page 2313), sympy.geometry.line.Line3D (page 2319)

`contains(other)`

Return True if \(other \) is on this Line, or False otherwise.

Examples

```python
>>> from sympy import Line, Point
>>> p1, p2 = Point(0, 1), Point(3, 4)
>>> l = Line(p1, p2)
>>> l.contains(p1)
True
>>> l.contains((0, 1))
True
>>> l.contains((0, 0))
False
>>> a = (0, 0, 0)
>>> b = (1, 1, 1)
>>> c = (2, 2, 2)
>>> l1 = Line(a, b)
>>> l2 = Line(b, a)
>>> l1 == l2
False
>>> l1 in l2
True
```

distance\((other)\)

Finds the shortest distance between a line and a point.

 Raises

\(\text{NotImplementedError} \) is raised if \``other``\ is not a Point
Examples

```python
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0), Point(1, 1)
>>> s = Line(p1, p2)
>>> s.distance(Point(-1, 1))
sqrt(2)
>>> s.distance((-1, 2))
3*sqrt(2)/2
>>> p1, p2 = Point(0, 0, 0), Point(1, 1, 1)
>>> s = Line(p1, p2)
>>> s.distance(Point(-1, 1, 1))
2*sqrt(6)/3
>>> s.distance((-1, 1, 1))
2*sqrt(6)/3

equals(other)

Returns True if self and other are the same mathematical entities

plot_interval(parameter='t')

The plot interval for the default geometric plot of line. Gives values that will produce
a line that is +/- 5 units long (where a unit is the distance between the two points
that define the line).

Parameters

parameter : str, optional
Default value is ‘t’.

Returns

plot_interval : list (plot interval)
[parameter, lower_bound, upper_bound]
```

```
class sympy.geometry.line.Ray(p1, p2=None, **kwargs)

A Ray is a semi-line in the space with a source point and a direction.

Parameters

p1 : Point
The source of the Ray

p2 : Point or radian value
This point determines the direction in which the Ray propagates. If
given as an angle it is interpreted in radians with the positive direc-
tion being ccw.
```
Notes

Ray will automatically subclass to Ray2D or Ray3D based on the dimension of p1.

Examples

```python
>>> from sympy import Ray, Point, pi
>>> r = Ray(Point(2, 3), Point(3, 5))
>>> r
Ray2D(Point2D(2, 3), Point2D(3, 5))
>>> r.points
(Point2D(2, 3), Point2D(3, 5))
>>> r.source
Point2D(2, 3)
>>> r.xdirection
oo
>>> r.ydirection
oo
>>> r.slope
2
>>> Ray(Point(0, 0), angle=pi/4).slope
1
```

See also:
sympy.geometry.line.Ray2D (page 2315), sympy.geometry.line.Ray3D (page 2320), sympy.geometry.point.Point (page 2277), sympy.geometry.line.Line (page 2303)

Attributes

- **source**
 - contains(other)
 - Is other GeometryEntity contained in this Ray?

Examples

```python
>>> from sympy import Ray, Point, Segment
>>> p1, p2 = Point(0, 0), Point(4, 4)
>>> r = Ray(p1, p2)
>>> r.contains(p1)
True
>>> r.contains((1, 1))
True
>>> r.contains((1, 3))
False
>>> s = Segment((1, 1), (2, 2))
>>> r.contains(s)
```

(continues on next page)
True
>>> s = Segment((1, 2), (2, 5))
>>> r.contains(s)
False
>>> r1 = Ray((2, 2), (3, 3))
>>> r.contains(r1)
True
>>> r1 = Ray((2, 2), (3, 5))
>>> r.contains(r1)
False

distance(other)
Find the shortest distance between the ray and a point.

Raises
NotImplementedError is raised if `other` is not a Point

Examples

```python
>>> from sympy import Point, Ray
>>> p1, p2 = Point(0, 0), Point(1, 1)
>>> s = Ray(p1, p2)
>>> s.distance(Point(-1, -1))
sqrt(2)
>>> s.distance((-1, 2))
3*sqrt(2)/2
>>> p1, p2 = Point(0, 0, 0), Point(1, 1, 2)
>>> s = Ray(p1, p2)
>>> s
Ray3D(Point3D(0, 0, 0), Point3D(1, 1, 2))
>>> s.distance(Point(-1, -1, 2))
4*sqrt(3)/3
>>> s.distance((-1, -1, 2))
4*sqrt(3)/3
```
equals(other)
Returns True if self and other are the same mathematical entities

plot_interval(parameter='t')
The plot interval for the default geometric plot of the Ray. Gives values that will produce a ray that is 10 units long (where a unit is the distance between the two points that define the ray).

Parameters
- parameter : str, optional
 Default value is ‘t’.

Returns
- plot_interval : list
 [parameter, lower_bound, upper_bound]
Examples

```python
>>> from sympy import Ray, pi
>>> r = Ray((0, 0), angle=pi/4)
>>> r.plot_interval()
[t, 0, 10]
```

property source
The point from which the ray emanates.

Examples

```python
>>> from sympy import Point, Ray
>>> p1, p2 = Point(0, 0), Point(4, 1)
>>> r1 = Ray(p1, p2)
>>> r1.source
Point2D(0, 0)
>>> p1, p2 = Point(0, 0, 0), Point(4, 1, 5)
>>> r1 = Ray(p2, p1)
>>> r1.source
Point3D(4, 1, 5)
```

See also:

* sympy.geometry.point.Point (page 2277)

class sympy.geometry.line.Segment(p1, p2, **kwargs)
A line segment in space.

Parameters

- `p1`: Point
- `p2`: Point

Notes

If 2D or 3D points are used to define `Segment`, it will be automatically subclassed to `Segment2D` or `Segment3D`.

Examples

```python
>>> from sympy import Point, Segment
>>> Segment((1, 0), (1, 1)) # tuples are interpreted as pts
Segment2D(Point2D(1, 0), Point2D(1, 1))
>>> s = Segment(Point(4, 3), Point(1, 1))
>>> s.points
(Point2D(4, 3), Point2D(1, 1))
>>> s.slope
2/3
>>> s.length
(continues on next page)```
sqrt(13)

>>> s.midx
Point2D(5/2, 2)

>>> Segment(((1, 0, 0), (1, 1, 1)))  # tuples are interpreted as pts
Segment3D(Point3D(1, 0, 0), Point3D(1, 1, 1))

>>> s = Segment(Point(4, 3, 9), Point(1, 1, 7)); s
Segment3D(Point3D(4, 3, 9), Point3D(1, 1, 7))

>>> s.points
(Point3D(4, 3, 9), Point3D(1, 1, 7))

>>> s.length
sqrt(17)

>>> s.midx
Point3D(5/2, 2, 8)

See also:

sympy.geometry.line.Segment2D (page 2317),  
sympy.geometry.line.Segment3D (page 2322),  
sympy.geometry.point.Point (page 2277),  
sympy.geometry.line.Line (page 2303)

Attributes

<table>
<thead>
<tr>
<th>length</th>
<th>(number or SymPy expression)</th>
</tr>
</thead>
<tbody>
<tr>
<td>midpoint</td>
<td>(Point)</td>
</tr>
</tbody>
</table>

contains(other)

Is the other GeometryEntity contained within this Segment?

Examples

```python
>>> from sympy import Point, Segment
>>> p1, p2 = Point(0, 1), Point(3, 4)
>>> s = Segment(p1, p2)
>>> s.contains(s2)
True
```

```python
>>> from sympy import Point3D, Segment3D
>>> p1, p2 = Point3D(0, 1, 1), Point3D(3, 4, 5)
>>> s = Segment3D(p1, p2)
>>> s.contains(s2)
True
```

distance(other)

Finds the shortest distance between a line segment and a point.

Raises

NotImplementedError is raised if `other` is not a Point

5.8. Topics
Examples

```python
>>> from sympy import Point, Segment
>>> p1, p2 = Point(0, 1), Point(3, 4)
>>> s = Segment(p1, p2)
>>> s.distance(Point(10, 15))
sqrt(170)
>>> s.distance((0, 12))
sqrt(73)
>>> from sympy import Point3D, Segment3D
>>> p1, p2 = Point3D(0, 0, 3), Point3D(1, 1, 4)
>>> s = Segment3D(p1, p2)
>>> s.distance(Point3D(10, 15, 12))
sqrt(341)
>>> s.distance((10, 15, 12))
sqrt(341)
```

equals(other)

Returns True if self and other are the same mathematical entities

**property length**

The length of the line segment.

**See also:**

*sympy.geometry.point.Point.distance* (page 2279)

**property midpoint**

The midpoint of the line segment.
Examples

```python
>>> from sympy import Point, Segment
>>> p1, p2 = Point(0, 0), Point(4, 3)
>>> s1 = Segment(p1, p2)
>>> s1.midpoint
Point2D(2, 3/2)
```

```python
>>> from sympy import Point3D, Segment3D
>>> p1, p2 = Point3D(0, 0, 0), Point3D(4, 3, 3)
>>> s1 = Segment3D(p1, p2)
>>> s1.midpoint
Point3D(2, 3/2, 3/2)
```

See also:

`sympy.geometry.point.Point.midpoint` (page 2282)

**perpendicular_bisector** *(p=None)*

The perpendicular bisector of this segment.

If no point is specified or the point specified is not on the bisector then the bisector is returned as a Line. Otherwise a Segment is returned that joins the point specified and the intersection of the bisector and the segment.

**Parameters**

- **p**: Point

**Returns**

- **bisector**: Line or Segment

Examples

```python
>>> from sympy import Point, Segment
>>> p1, p2, p3 = Point(0, 0), Point(6, 6), Point(5, 1)
>>> s1 = Segment(p1, p2)
>>> s1.perpendicular_bisector()
Line2D(Point2D(3, 3), Point2D(-3, 9))
```

```python
>>> s1.perpendicular_bisector(p3)
Segment2D(Point2D(5, 1), Point2D(3, 3))
```

See also:

`LinearEntity.perpendicular_segment` (page 2299)

**plot_interval** *(parameter='t')*

The plot interval for the default geometric plot of the Segment gives values that will produce the full segment in a plot.

**Parameters**

- **parameter** : str, optional

  Default value is ‘t’.

**Returns**

- **plot_interval**: list
Examples

```python
>>> from sympy import Point, Segment
>>> p1, p2 = Point(0, 0), Point(5, 3)
>>> s1 = Segment(p1, p2)
>>> s1.plot_interval()
[t, 0, 1]
```

class sympy.geometry.line.LinearEntity2D(p1, p2=None, **kwargs)

A base class for all line entities (line, ray and segment) in a 2-dimensional Euclidean space.

Notes

This is an abstract class and is not meant to be instantiated.

See also:
sympy.geometry.entity.GeometryEntity (page 2269)

Attributes

- p1
- p2
- coefficients
- slope
- points

property bounds

Return a tuple (xmin, ymin, xmax, ymax) representing the bounding rectangle for the geometric figure.

perpendicular_line(p)

Create a new Line perpendicular to this linear entity which passes through the point p.

Parameters

- p : Point

Returns

- line : Line
Examples

```python
>>> from sympy import Point, Line
>>> p1, p2, p3 = Point(0, 0), Point(2, 3), Point(-2, 2)
>>> L = Line(p1, p2)
>>> P = L.perpendicular_line(p3); P
Line2D(Point2D(-2, 2), Point2D(-5, 4))
>>> L.is_perpendicular(P)
True
```

In 2D, the first point of the perpendicular line is the point through which was required to pass; the second point is arbitrarily chosen. To get a line that explicitly uses a point in the line, create a line from the perpendicular segment from the line to the point:

```python
>>> Line(L.perpendicular_segment(p3))
Line2D(Point2D(-2, 2), Point2D(4/13, 6/13))
```

See also:

- `sympy.geometry.line.LinearEntity.is_perpendicular` (page 2296), `perpendicular_segment` (page 2299)

**property slope**

The slope of this linear entity, or infinity if vertical.

Returns

- **slope**: number or SymPy expression

Examples

```python
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0), Point(3, 5)
>>> l1 = Line(p1, p2)
>>> l1.slope
5/3
>>> p3 = Point(0, 4)
>>> l2 = Line(p1, p3)
>>> l2.slope
oo
```

See also:

- `coefficients` (page 2314)

**class** `sympy.geometry.line.Line2D(p1, pt=None, slope=None, **kwargs)`

An infinite line in space 2D.

A line is declared with two distinct points or a point and slope as defined using keyword `slope`.

**Parameters**

- **p1**: Point
- **pt**: Point

---

5.8. Topics 2313
**Examples**

```python
>>> from sympy import Line, Segment, Point
>>> L = Line(Point(2, 3), Point(3, 5))
>>> L
Line2D(Point2D(2, 3), Point2D(3, 5))
>>> L.points
(Point2D(2, 3), Point2D(3, 5))
>>> L.equation()
-2*x + y + 1
>>> L.coefficients
(-2, 1, 1)
```

Instantiate with keyword `slope`:

```python
>>> Line(Point(0, 0), slope=0)
Line2D(Point2D(0, 0), Point2D(1, 0))
```

Instantiate with another linear object

```python
>>> s = Segment((0, 0), (0, 1))
>>> Line(s).equation()
x
```

See also:

* sympy.geometry.point.Point (page 2277)*

**property coefficients**

The coefficients $(a, b, c)$ for $ax + by + c = 0$.

**Examples**

```python
>>> from sympy import Point, Line
>>> from sympy.abc import x, y
>>> p1, p2 = Point(0, 0), Point(5, 3)
>>> l = Line(p1, p2)
>>> l.coefficients
(-3, 5, 0)

>>> p3 = Point(x, y)
>>> l2 = Line(p1, p3)
>>> l2.coefficients
(-y, x, 0)
```

See also:

* sympy.geometry.line.Line2D.equation (page 2314)*
The equation of the line: \( ax + by + c \).

**Parameters**
- **x**: str, optional
  - The name to use for the x-axis, default value is ‘x’.
- **y**: str, optional
  - The name to use for the y-axis, default value is ‘y’.

**Returns**
- **equation**: SymPy expression

**Examples**

```python
from sympy import Point, Line
p1, p2 = Point(1, 0), Point(5, 3)
l1 = Line(p1, p2)
l1.equation()
```

```
-3*x + 4*y + 3
```

**See also:**
- `sympy.geometry.line.Line2D.coefficients` (page 2314)

**class** sympy.geometry.line.Ray2D(p1, pt=None, angle=None, **kwargs)**

A Ray is a semi-line in the space with a source point and a direction.

**Parameters**
- **p1**: Point
  - The source of the Ray
- **p2**: Point or radian value
  - This point determines the direction in which the Ray propagates. If given as an angle it is interpreted in radians with the positive direction being ccw.

**Examples**

```python
from sympy import Point, pi, Ray
r = Ray(Point(2, 3), Point(3, 5))
r.points
r.source
r.xdirection
r.ydirection
```

(continues on next page)
SymPy Documentation, Release 1.12.1

(continued from previous page)

```python
>>> r.slope
2
>>> Ray(Point(0, 0), angle=pi/4).slope
1
```

**See also:**

`sympy.geometry.point.Point` (page 2277), `Line` (page 2303)

**Attributes**

<table>
<thead>
<tr>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
</tr>
<tr>
<td>xdirection</td>
</tr>
<tr>
<td>ydirection</td>
</tr>
</tbody>
</table>

**closing_angle**(r2)

Return the angle by which r2 must be rotated so it faces the same direction as r1.

**Parameters**

- **r1**: Ray2D
- **r2**: Ray2D

**Returns**

- **angle**: angle in radians (ccw angle is positive)

**Examples**

```python
>>> from sympy import Ray, pi
>>> r1 = Ray((0, 0), (1, 0))
>>> r2 = r1.rotate(-pi/2)
>>> angle = r1.closing_angle(r2); angle
pi/2
>>> r2.rotate(angle).direction.unit == r1.direction.unit
True
>>> r2.closing_angle(r1)
-pi/2
```

**See also:**

`LinearEntity.angle_between` (page 2291)

**property xdirection**

The x direction of the ray.

Positive infinity if the ray points in the positive x direction, negative infinity if the ray points in the negative x direction, or 0 if the ray is vertical.
Examples

```python
>>> from sympy import Point, Ray
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, -1)
>>> r1, r2 = Ray(p1, p2), Ray(p1, p3)
>>> r1.xdirection
oo
>>> r2.xdirection
0
```

See also:

`ydirection` (page 2317)

**property ydirection**

The y direction of the ray.

Positive infinity if the ray points in the positive y direction, negative infinity if the ray points in the negative y direction, or 0 if the ray is horizontal.

Examples

```python
>>> from sympy import Point, Ray
>>> p1, p2, p3 = Point(0, 0), Point(-1, -1), Point(-1, 0)
>>> r1, r2 = Ray(p1, p2), Ray(p1, p3)
>>> r1.ydirection
-oo
>>> r2.ydirection
0
```

See also:

`xdirection` (page 2316)

class sympy.geometry.line.Segment2D(p1, p2, **kwargs)

A line segment in 2D space.

**Parameters**

- `p1`: Point
- `p2`: Point

Examples

```python
>>> from sympy import Point, Segment
>>> Segment((1, 0), (1, 1)) # tuples are interpreted as pts
Segment2D(Point2D(1, 0), Point2D(1, 1))
>>> s = Segment(Point(4, 3), Point(1, 1)); s
Segment2D(Point2D(4, 3), Point2D(1, 1))
>>> s.points
(Point2D(4, 3), Point2D(1, 1))
>>> s.slope
2/3
```
See also:
sympy.geometry.point.Point (page 2277), Line (page 2303)

Attributes

<table>
<thead>
<tr>
<th>length</th>
<th>(number or SymPy expression)</th>
</tr>
</thead>
<tbody>
<tr>
<td>midpoint</td>
<td>(Point)</td>
</tr>
</tbody>
</table>

class sympy.geometry.line.LinearEntity3D(p1, p2, **kwargs)

An base class for all linear entities (line, ray and segment) in a 3-dimensional Euclidean space.

Notes

This is a base class and is not meant to be instantiated.

Attributes

<table>
<thead>
<tr>
<th>p1</th>
</tr>
</thead>
<tbody>
<tr>
<td>p2</td>
</tr>
<tr>
<td>direction_ratio</td>
</tr>
<tr>
<td>direction_cosine</td>
</tr>
<tr>
<td>points</td>
</tr>
</tbody>
</table>

property direction_cosine

The normalized direction ratio of a given line in 3D.

Examples

```python
>>> from sympy import Point3D, Line3D
>>> p1, p2 = Point3D(0, 0, 0), Point3D(5, 3, 1)
>>> l = Line3D(p1, p2)
>>> l.direction_cosine
[sqrt(35)/7, 3*sqrt(35)/35, sqrt(35)/35]
>>> sum(i**2 for i in _)
1
```

See also:
sympy.geometry.line.Line3D.equation (page 2319)
property `direction_ratio`  
The direction ratio of a given line in 3D.

**Examples**

```python
>>> from sympy import Point3D, Line3D
>>> p1, p2 = Point3D(0, 0, 0), Point3D(5, 3, 1)
>>> l = Line3D(p1, p2)
>>> l.direction_ratio
[5, 3, 1]
```

See also:  
*sympy.geometry.line.Line3D.equation* (page 2319)

```python
class sympy.geometry.line.Line3D(p1, pt=None, direction_ratio=(), **kwargs)
```

An infinite 3D line in space.

A line is declared with two distinct points or a point and direction_ratio as defined using keyword `direction_ratio`.

**Parameters**

- `p1`: Point3D
- `pt`: Point3D
- `direction_ratio`: list

**Examples**

```python
>>> from sympy import Line3D, Point3D
>>> L = Line3D(Point3D(2, 3, 4), Point3D(3, 5, 1))
>>> L
Line3D(Point3D(2, 3, 4), Point3D(3, 5, 1))
>>> L.points
(Point3D(2, 3, 4), Point3D(3, 5, 1))
```

See also:  
*sympy.geometry.point.Point3D* (page 2286), *sympy.geometry.line.Line* (page 2303), *sympy.geometry.line.Line2D* (page 2313)

```python
equation(x='x', y='y', z='z')
```

Return the equations that define the line in 3D.

**Parameters**

- `x`: str, optional
  - The name to use for the x-axis, default value is ‘x’.
- `y`: str, optional
  - The name to use for the y-axis, default value is ‘y’.
- `z`: str, optional
  - The name to use for the z-axis, default value is ‘z’.
Returns

**equation** : Tuple of simultaneous equations

Examples

```python
>>> from sympy import Point3D, Line3D, solve
>>> from sympy.abc import x, y, z
>>> p1, p2 = Point3D(1, 0, 0), Point3D(5, 3, 0)
>>> l1 = Line3D(p1, p2)
>>> eq = l1.equation(x, y, z); eq
(-3*x + 4*y + 3, z)
>>> solve(eq.subs(z, 0), (x, y, z))
{x: 4*y/3 + 1}
```

class sympy.geometry.line.Ray3D(p1, pt=None, direction_ratio=(), **kwargs)

A Ray is a semi-line in the space with a source point and a direction.

**Parameters**

- **p1** : Point3D
  - The source of the Ray
- **p2** : Point or a direction vector
  - **direction_ratio** : Determines the direction in which the Ray propagates.

Examples

```python
>>> from sympy import Point3D, Ray3D
>>> r = Ray3D(Point3D(2, 3, 4), Point3D(3, 5, 0))
>>> r
Ray3D(Point3D(2, 3, 4), Point3D(3, 5, 0))
>>> r.points
(Point3D(2, 3, 4), Point3D(3, 5, 0))
>>> r.source
Point3D(2, 3, 4)
>>> r.xdirection
oo
>>> r.ydirection
oo
>>> r.direction_ratio
[1, 2, -4]
```

See also:

- *sympy.geometry.point.Point3D* (page 2286), *Line3D* (page 2319)
Attributes

| source | xdirection | ydirection | zdirection |

**property xdirection**

The x direction of the ray.

Positive infinity if the ray points in the positive x direction, negative infinity if the ray points in the negative x direction, or 0 if the ray is vertical.

**Examples**

```python
>>> from sympy import Point3D, Ray3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(0, -1, 0)
>>> r1, r2 = Ray3D(p1, p2), Ray3D(p1, p3)
>>> r1.xdirection
oo
>>> r2.xdirection
0
```

**See also:**

*ydirection* (page 2321)

**property ydirection**

The y direction of the ray.

Positive infinity if the ray points in the positive y direction, negative infinity if the ray points in the negative y direction, or 0 if the ray is horizontal.

**Examples**

```python
>>> from sympy import Point3D, Ray3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(-1, -1, -1), Point3D(-1, 0, 1)
>>> r1, r2 = Ray3D(p1, p2), Ray3D(p1, p3)
>>> r1.ydirection
-oo
>>> r2.ydirection
0
```

**See also:**

*xdirection* (page 2321)

**property zdirection**

The z direction of the ray.

Positive infinity if the ray points in the positive z direction, negative infinity if the ray points in the negative z direction, or 0 if the ray is horizontal.
Examples

```python
>>> from sympy import Point3D, Ray3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(-1, -1, -1), Point3D(-1, 0, 1)
>>> r1, r2 = Ray3D(p1, p2), Ray3D(p1, p3)
>>> r1.ydirection
-oo
>>> r2.ydirection
0
>>> r2.zdirection
0
```

See also:

`xdirection` (page 2321)

```python
class sympy.geometry.line.Segment3D(p1, p2, **kwargs)
```

A line segment in a 3D space.

**Parameters**

- `p1`: Point3D
- `p2`: Point3D

**Examples**

```python
>>> from sympy import Point3D, Segment3D
>>> Segment3D((1, 0, 0), (1, 1, 1)) # tuples are interpreted as pts
Segment3D(Point3D(1, 0, 0), Point3D(1, 1, 1))
>>> s = Segment3D(Point3D(4, 3, 9), Point3D(1, 1, 7)); s
Segment3D(Point3D(4, 3, 9), Point3D(1, 1, 7))
>>> s.points
(Point3D(4, 3, 9), Point3D(1, 1, 7))
>>> s.length
sqrt(17)
>>> s.midpoint
Point3D(5/2, 2, 8)
```

See also:

`sympy.geometry.point.Point3D` (page 2286), `Line3D` (page 2319)

**Attributes**

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>length</td>
<td>(number or SymPy expression)</td>
</tr>
<tr>
<td>midpoint</td>
<td>(Point3D)</td>
</tr>
</tbody>
</table>
Curves

class sympy.geometry.curve.Curve(function, limits)
A curve in space.
A curve is defined by parametric functions for the coordinates, a parameter and the lower and upper bounds for the parameter value.

Parameters

function : list of functions
limits : 3-tuple
Function parameter and lower and upper bounds.

Raises
ValueError
When functions are specified incorrectly. When limits are specified incorrectly.

Examples

```python
>>> from sympy import Curve, sin, cos, interpolate
>>> from sympy.abc import t, a
>>> C = Curve((sin(t), cos(t)), (t, 0, 2))
>>> C.functions
(sin(t), cos(t))
>>> C.limits
(t, 0, 2)
>>> C.parameter
(t, 0, 2)
>>> C = Curve((t, interpolate([1, 4, 9, 16], t)), (t, 0, 1)); C
Curve((t, t**2), (t, 0, 1))
>>> C.subs(t, 4)
Point2D(4, 16)
>>> C.arbitrary_point(a)
Point2D(a, a**2)
```

See also:
sympy.core.function.Function (page 1096), sympy.polys.polyfuncts.interpolate (page 2502)

Attributes

functions parameter limits

property ambient_dimension
The dimension of the curve.
Returns

int:

the dimension of curve.

Examples

```python
>>> from sympy.abc import t
>>> from sympy import Curve
>>> C = Curve((t, t**2), (t, 0, 2))
>>> C.ambient_dimension
2
```

arbitrary_point(parameter='t')

A parameterized point on the curve.

Parameters

- **parameter**: str or Symbol, optional

  Default value is ‘t’. The Curve’s parameter is selected with None or self.parameter otherwise the provided symbol is used.

Returns

Point:

Returns a point in parametric form.

Raises

- **ValueError**

  When parameter already appears in the functions.

Examples

```python
>>> from sympy import Curve, Symbol
>>> from sympy.abc import s
>>> C = Curve([2*s, s**2], (s, 0, 2))
>>> C.arbitrary_point()
Point2D(2*t, t**2)
>>> C.arbitrary_point(C.parameter)
Point2D(2*s, s**2)
>>> C.arbitrary_point(None)
Point2D(2*s, s**2)
>>> C.arbitrary_point(Symbol('a'))
Point2D(2*a, a**2)
```

See also:

* sympy.geometry.point.Point (page 2277)

property free_symbols

Return a set of symbols other than the bound symbols used to parametrically define the Curve.

Returns

set:
Set of all non-parameterized symbols.

**Examples**

```python
>>> from sympy.abc import t, a
>>> from sympy import Curve
>>> Curve((t, t**2), (t, 0, 2)).free_symbols
set()
>>> Curve((t, t**2), (t, a, 2)).free_symbols
{a}
```

**property functions**

The functions specifying the curve.

**Returns**

- `functions`: list of parameterized coordinate functions.

**Examples**

```python
>>> from sympy.abc import t
>>> from sympy import Curve
>>> C = Curve((t, t**2), (t, 0, 2))
>>> C.functions
(t, t**2)
```

**See also:**

- `parameter` (page 2326)

**property length**

The curve length.

**Examples**

```python
>>> from sympy import Curve
>>> from sympy.abc import t
>>> Curve((t, t), (t, 0, 1)).length
sqrt(2)
```

**property limits**

The limits for the curve.

**Returns**

- `limits`: tuple

  Contains parameter and lower and upper limits.
**Examples**

```python
>>> from sympy.abc import t
>>> from sympy import Curve
>>> C = Curve([t, t**3], (t, -2, 2))
>>> C.limits
(t, -2, 2)
```

**See also:**

`plot_interval` (page 2326)

**property parameter**

The curve function variable.

**Returns**

Symbol:

returns a bound symbol.

**Examples**

```python
>>> from sympy.abc import t
>>> from sympy import Curve
>>> C = Curve([t, t**2], (t, 0, 2))
>>> C.parameter
```

**See also:**

`functions` (page 2325)

`plot_interval` (parameter='t')

The plot interval for the default geometric plot of the curve.

**Parameters**

- **parameter**: str or Symbol, optional
  - Default value is 't'; otherwise the provided symbol is used.

**Returns**

List:

the plot interval as below:

[parameter, lower_bound, upper_bound]

**Examples**

```python
>>> from sympy import Curve, sin
>>> from sympy.abc import x, s
>>> Curve((x, sin(x)), (x, 1, 2)).plot_interval()
[t, 1, 2]
>>> Curve((x, sin(x)), (x, 1, 2)).plot_interval(s)
[s, 1, 2]
```
See also:

**limits** *(page 2325)*

Returns limits of the parameter interval

**rotate** *(angle=0, pt=None)*

This function is used to rotate a curve along given point pt at given angle(in radian).

**Parameters**

- **angle** :
  
  the angle at which the curve will be rotated(in radian) in counter-clockwise direction. default value of angle is 0.

- **pt** : Point
  
  the point along which the curve will be rotated. If no point given, the curve will be rotated around origin.

**Returns**

- **Curve** :
  
  returns a curve rotated at given angle along given point.

**Examples**

```python
>>> from sympy import Curve, pi
>>> from sympy.abc import x
>>> Curve((x, x), (x, 0, 1)).rotate(pi/2)
Curve((-x, x), (x, 0, 1))
```

**scale** *(x=1, y=1, pt=None)*

Override GeometryEntity.scale since Curve is not made up of Points.

**Returns**

- **Curve** :
  
  returns scaled curve.

**Examples**

```python
>>> from sympy import Curve
>>> from sympy.abc import x
>>> Curve((x, x), (x, 0, 1)).scale(2)
Curve((2*x, x), (x, 0, 1))
```

**translate** *(x=0, y=0)*

Translate the Curve by (x, y).

**Returns**

- **Curve** :
  
  returns a translated curve.
Examples

```python
>>> from sympy import Curve
>>> from sympy.abc import x
>>> Curve((x, x), (x, 0, 1)).translate(1, 2)
Curve((x + 1, x + 2), (x, 0, 1))
```

Ellipses

class sympy.geometry.ellipse.Ellipse(center=None, hradius=None, vradius=None, eccentricity=None, **kwargs)

An elliptical GeometryEntity.

Parameters

**center** : Point, optional
Default value is Point(0, 0)

**hradius** : number or SymPy expression, optional

**vradius** : number or SymPy expression, optional

**eccentricity** : number or SymPy expression, optional

Two of **hradius**, **vradius** and **eccentricity** must be supplied to create an Ellipse. The third is derived from the two supplied.

Raises

**GeometryError**

When **hradius**, **vradius** and **eccentricity** are incorrectly supplied as parameters.

**TypeError**

When **center** is not a Point.

Notes

Constructed from a center and two radii, the first being the horizontal radius (along the x-axis) and the second being the vertical radius (along the y-axis).

When symbolic value for **hradius** and **vradius** are used, any calculation that refers to the foci or the major or minor axis will assume that the ellipse has its major radius on the x-axis. If this is not true then a manual rotation is necessary.
Examples

```python
>>> from sympy import Ellipse, Point, Rational
>>> e1 = Ellipse(Point(0, 0), 5, 1)
>>> e1.hradius, e1.vradius
(5, 1)
>>> e2 = Ellipse(Point(3, 1), hradius=3, eccentricity=Rational(4, 5))
>>> e2
Ellipse(Point2D(3, 1), 3, 9/5)
```

See also:

Circle (page 2344)

Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>center</td>
</tr>
<tr>
<td>hradius</td>
</tr>
<tr>
<td>vradius</td>
</tr>
<tr>
<td>area</td>
</tr>
<tr>
<td>circumference</td>
</tr>
<tr>
<td>eccentricity</td>
</tr>
<tr>
<td>periapsis</td>
</tr>
<tr>
<td>apoapsis</td>
</tr>
<tr>
<td>focus_distance</td>
</tr>
<tr>
<td>foci</td>
</tr>
</tbody>
</table>

property apoapsis

The apoapsis of the ellipse.

The greatest distance between the focus and the contour.

Returns

apoapsis : number

Examples

```python
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.apoapsis
2*sqrt(2) + 3
```

See also:

periapsis (page 2338)

Returns shortest distance between foci and contour

arbitrary_point (parameter='t')

A parameterized point on the ellipse.
Parameters

**parameter** : str, optional
Default value is ‘t’.

Returns

**arbitrary_point** : Point

Raises

**ValueError**
When *parameter* already appears in the functions.

Examples

```python
>>> from sympy import Point, Ellipse
>>> e1 = Ellipse(Point(0, 0), 3, 2)
>>> e1.arbitrary_point()
Point2D(3*cos(t), 2*sin(t))
```

See also:

`sympy.geometry.point.Point` (page 2277)

**property area**
The area of the ellipse.

Returns

**area** : number

Examples

```python
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.area
3*pi
```

**auxiliary_circle()**
Returns a Circle whose diameter is the major axis of the ellipse.

Examples

```python
>>> from sympy import Ellipse, Point, symbols
>>> c = Point(1, 2)
>>> Ellipse(c, 8, 7).auxiliary_circle()
Circle(Point2D(1, 2), 8)
>>> a, b = symbols('a b')
>>> Ellipse(c, a, b).auxiliary_circle()
Circle(Point2D(1, 2), Max(a, b))
```
property bounds
Return a tuple (xmin, ymin, xmax, ymax) representing the bounding rectangle for the geometric figure.

property center
The center of the ellipse.

    Returns
center : number

Examples

>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.center
Point2D(0, 0)

See also:
sympy.geometry.point.Point (page 2277)

property circumference
The circumference of the ellipse.

Examples

>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.circumference
12*elliptic_e(8/9)

director_circle()
Returns a Circle consisting of all points where two perpendicular tangent lines to the ellipse cross each other.

    Returns
circle

    A director circle returned as a geometric object.

Examples

>>> from sympy import Ellipse, Point, symbols
>>> c = Point(3,8)
>>> Ellipse(c, 7, 9).director_circle()
Circle(Point2D(3, 8), sqrt(130))
>>> a, b = symbols('a b')
>>> Ellipse(c, a, b).director_circle()
Circle(Point2D(3, 8), sqrt(a**2 + b**2))
property eccentricity

The eccentricity of the ellipse.

Returns

eccentricity : number

Examples

```python
>>> from sympy import Point, Ellipse, sqrt
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, sqrt(2))
>>> e1.eccentricity
sqrt(7)/3
```

eencloses_point(p)

Return True if p is enclosed by (is inside of) self.

Parameters

p : Point

Returns

encloses_point : True, False or None

Notes

Being on the border of self is considered False.

Examples

```python
>>> from sympy import Ellipse, S
>>> from sympy.abc import t
>>> e = Ellipse((0, 0), 3, 2)
>>> e.encloses_point((0, 0))
True
>>> e.encloses_point(e.arbitrary_point(t).subs(t, S.Half))
False
>>> e.encloses_point((4, 0))
False
```

See also:

sympy.geometry.point.Point (page 2277)

equation(x='x', y='y', _slope=None)

Returns the equation of an ellipse aligned with the x and y axes; when slope is given, the equation returned corresponds to an ellipse with a major axis having that slope.

Parameters

x : str, optional
Label for the x-axis. Default value is ‘x’.

\[ y : \text{str, optional} \]
Label for the y-axis. Default value is ‘y’.

\[ _\text{slope} : \text{Expr, optional} \]
The slope of the major axis. Ignored when ‘None’.

**Returns**

**equation** : SymPy expression

**Examples**

```python
>>> from sympy import Point, Ellipse, pi
>>> from sympy.abc import x, y
>>> e1 = Ellipse(Point(1, 0), 3, 2)
>>> eq1 = e1.equation(x, y); eq1
ey**2/4 + (x/3 - 1/3)**2 - 1
>>> eq2 = e1.equation(x, y, _slope=1); eq2
(-x + y + 1)**2/8 + (x + y - 1)**2/18 - 1
```

A point on \( e1 \) satisfies eq1. Let’s use one on the x-axis:

```python
>>> p1 = e1.center + Point(e1.major, 0)
>>> assert eq1.subs(x, p1.x).subs(y, p1.y) == 0
```

When rotated the same as the rotated ellipse, about the center point of the ellipse, it will satisfy the rotated ellipse’s equation, too:

```python
>>> r1 = p1.rotate(pi/4, e1.center)
>>> assert eq2.subs(x, r1.x).subs(y, r1.y) == 0
```

**See also:**

*arbitrary_point* (page 2329)
Returns parameterized point on ellipse

**References**

[R518], [R519]

\[ \text{evolute}(x='x', y='y') \]
The equation of evolute of the ellipse.

**Parameters**

\[ x : \text{str, optional} \]
Label for the x-axis. Default value is ‘x’.

\[ y : \text{str, optional} \]
Label for the y-axis. Default value is ‘y’.

**Returns**

**equation** : SymPy expression
Examples

```python
>>> from sympy import Point, Ellipse
>>> e1 = Ellipse(Point(1, 0), 3, 2)
>>> e1.evolute()
2**(2/3)*y**(2/3) + (3*x - 3)**(2/3) - 5**(2/3)
```

**property foci**

The foci of the ellipse.

**Raises**

*ValueError*

When the major and minor axis cannot be determined.

**Notes**

The foci can only be calculated if the major/minor axes are known.

Examples

```python
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.foci
(Point2D(-2*sqrt(2), 0), Point2D(2*sqrt(2), 0))
```

See also:

*sympy.geometry.point.Point* (page 2277)

**focus_distance** (page 2334)

Returns the distance between focus and center

**property focus_distance**

The focal distance of the ellipse.

The distance between the center and one focus.

**Returns**

*focus_distance* : number

Examples

```python
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.focus_distance
2*sqrt(2)
```

See also:

*foci* (page 2334)
property hradius

The horizontal radius of the ellipse.

Returns
hradius: number

Examples

```python
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.hradius
3
```

See also:

vradius (page 2344), major (page 2336), minor (page 2337)

intersection(o)

The intersection of this ellipse and another geometrical entity o.

Parameters
o: GeometryEntity

Returns
intersection: list of GeometryEntity objects

Notes

Currently supports intersections with Point, Line, Segment, Ray, Circle and Ellipse types.

Examples

```python
>>> from sympy import Ellipse, Point, Line
>>> e = Ellipse(Point(0, 0), 5, 7)
>>> e.intersection(Point(0, 0))
[]
>>> e.intersection(Point(5, 0))
[Point2D(5, 0)]
>>> e.intersection(Line(Point(0,0), Point(0, 1)))
[Point2D(0, -7), Point2D(0, 7)]
>>> e.intersection(Line(Point(5,0), Point(5, 1)))
[Point2D(5, 0)]
>>> e.intersection(Line(Point(6,0), Point(6, 1)))
[]
>>> e = Ellipse(Point(-1, 0), 4, 3)
>>> e.intersection(Ellipse(Point(1, 0), 4, 3))
[Point2D(0, -3*sqrt(15)/4), Point2D(0, 3*sqrt(15)/4)]
>>> e.intersection(Ellipse(Point(5, 0), 4, 3))
[Point2D(2, -3*sqrt(7)/4), Point2D(2, 3*sqrt(7)/4)]
```

(continues on next page)
See also:  

`sympy.geometry.entity.GeometryEntity` (page 2269)

```
>>> e.intersection(Ellipse(Point(100500, 0), 4, 3))
[]
>>> e.intersection(Ellipse(Point(0, 0), 3, 4))
[Point2D(3, 0), Point2D(-363/175, -48*sqrt(111)/175), Point2D(-363/175, 48*sqrt(111)/175)]
>>> e.intersection(Ellipse(Point(-1, 0), 3, 4))
[Point2D(-17/5, -12/5), Point2D(-17/5, 12/5), Point2D(7/5, -12/5), Point2D(7/5, -12/5)]
```

```python

See also:

`sympy.geometry.entity.GeometryEntity` (page 2269)

```python
is_tangent(o)
```

Is o tangent to the ellipse?

Parameters

- o : GeometryEntity

 An Ellipse, LinearEntity or Polygon

Returns

- is_tangent: boolean

 True if o is tangent to the ellipse, False otherwise.

Raises

- `NotImplementedError`

 When the wrong type of argument is supplied.

Examples

```python
>>> from sympy import Point, Ellipse, Line
>>> p0, p1, p2 = Point(0, 0), Point(3, 0), Point(3, 3)
>>> e1 = Ellipse(p0, 3, 2)
>>> l1 = Line(p1, p2)
>>> e1.is_tangent(l1)
True
```

See also:

`tangent_lines` (page 2343)

property major

Longer axis of the ellipse (if it can be determined) else hradius.

Returns

- major: number or expression
Examples

```python
>>> from sympy import Point, Ellipse, Symbol
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.major
3

>>> a = Symbol('a')
>>> b = Symbol('b')
>>> Ellipse(p1, a, b).major
a
>>> Ellipse(p1, b, a).major
b

>>> m = Symbol('m')
>>> M = m + 1
>>> Ellipse(p1, m, M).major
m + 1
```

See also:

`hradius` (page 2334), `vradius` (page 2344), `minor` (page 2337)

property minor
Shorter axis of the ellipse (if it can be determined) else vradius.

Returns

`minor`: number or expression

Examples

```python
>>> from sympy import Point, Ellipse, Symbol
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.minor
1

>>> a = Symbol('a')
>>> b = Symbol('b')
>>> Ellipse(p1, a, b).minor
b
>>> Ellipse(p1, b, a).minor
a

>>> m = Symbol('m')
>>> M = m + 1
>>> Ellipse(p1, m, M).minor
m
```

See also:

`hradius` (page 2334), `vradius` (page 2344), `major` (page 2336)
normal_lines\(p, \text{prec=None}\)

Normal lines between \(p\) and the ellipse.

Parameters

\(p\) : Point

Returns

normal_lines : list with 1, 2 or 4 Lines

Examples

```python
>>> from sympy import Point, Ellipse
>>> e = Ellipse((0, 0), 2, 3)
>>> c = e.center
>>> e.normal_lines(c + Point(1, 0))
[Line2D(Point2D(0, 0), Point2D(1, 0))]
```

Off-axis points require the solution of a quartic equation. This often leads to very large expressions that may be of little practical use. An approximate solution of \(\text{prec}\) digits can be obtained by passing in the desired value:

```python
>>> e.normal_lines((3, 3), prec=2)
[Line2D(Point2D(-0.81, -2.7), Point2D(0.19, -1.2)), Line2D(Point2D(1.5, -2.0), Point2D(2.5, -2.7))]
```

Whereas the above solution has an operation count of 12, the exact solution has an operation count of 2020.

property periapsis

The periapsis of the ellipse.

The shortest distance between the focus and the contour.

Returns

periapsis : number

Examples

```python
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.periapsis
3 - 2*sqrt(2)
```

See also:

apoapsis (page 2329)

Returns greatest distance between focus and contour
plot_interval\((parameter='t')\)

The plot interval for the default geometric plot of the Ellipse.

Parameters

- **parameter**: str, optional
 Default value is ‘t’.

Returns

- **plot_interval**: list
 [parameter, lower_bound, upper_bound]

Examples

```python
>>> from sympy import Point, Ellipse
>>> e1 = Ellipse(Point(0, 0), 3, 2)
>>> e1.plot_interval()
[t, -pi, pi]
```

polar_second_moment_of_area()

Returns the polar second moment of area of an Ellipse

It is a constituent of the second moment of area, linked through the perpendicular axis theorem. While the planar second moment of area describes an object’s resistance to deflection (bending) when subjected to a force applied to a plane parallel to the central axis, the polar second moment of area describes an object’s resistance to deflection when subjected to a moment applied in a plane perpendicular to the object’s central axis (i.e. parallel to the cross-section)

Examples

```python
>>> from sympy import symbols, Circle, Ellipse
>>> c = Circle((5, 5), 4)
>>> c.polar_second_moment_of_area()
128*pi
>>> a, b = symbols('a, b')
>>> e = Ellipse((0, 0), a, b)
>>> e.polar_second_moment_of_area()
pi*a**3*b/4 + pi*a*b**3/4
```

References

[R520]

random_point\((seed=None)\)

A random point on the ellipse.

Returns

- **point**: Point
Examples

```python
>>> from sympy import Point, Ellipse
>>> e1 = Ellipse(Point(0, 0), 3, 2)
>>> e1.random_point()  # gives some random point
Point2D(...)
>>> p1 = e1.random_point(seed=0); p1.n(2)
Point2D(2.1, 1.4)
```

Notes

When creating a random point, one may simply replace the parameter with a random number. When doing so, however, the random number should be made a Rational or else the point may not test as being in the ellipse:

```python
>>> from sympy.abc import t
>>> from sympy import Rational
>>> arb = e1.arbitrary_point(t); arb
Point2D(3*cos(t), 2*sin(t))
>>> arb.subs(t, .1) in e1
False
>>> arb.subs(t, Rational(.1)) in e1
True
>>> arb.subs(t, Rational('.1')) in e1
True
```

See also:

* `sympy.geometry.point.Point` (page 2277)

`arbitrary_point` (page 2329)

Returns parameterized point on ellipse

`reflect(line)`

Override GeometryEntity.reflect since the radius is not a GeometryEntity.

Examples

```python
>>> from sympy import Circle, Line
>>> Circle((0, 1), 1).reflect(Line((0, 0), (1, 1)))
Circle(Point2D(1, 0), -1)
>>> from sympy import Ellipse, Line, Point
>>> Ellipse(Point(3, 4), 1, 3).reflect(Line(Point(0, -4), Point(5, -4)))
Traceback (most recent call last):
...
NotImplementedError:
General Ellipse is not supported but the equation of the reflected
Ellipse is given by the zeros of: f(x, y) = (9*x/41 + 40*y/41 +
37/41)**2 + (40*x/123 - 3*y/41 - 364/123)**2 - 1
```
Notes

Until the general ellipse (with no axis parallel to the x-axis) is supported a NotImplemented error is raised and the equation whose zeros define the rotated ellipse is given.

rotate(angle=0, pt=None)
Rotate angle radians counterclockwise about Point pt.
Note: since the general ellipse is not supported, only rotations that are integer multiples of pi/2 are allowed.

Examples

```python
>>> from sympy import Ellipse, pi
>>> Ellipse((1, 0), 2, 1).rotate(pi/2)
Ellipse(Point2D(0, 1), 1, 2)
>>> Ellipse((1, 0), 2, 1).rotate(pi)
Ellipse(Point2D(-1, 0), 2, 1)
```

scale(x=1, y=1, pt=None)
Override GeometryEntity.scale since it is the major and minor axes which must be scaled and they are not GeometryEntities.

Examples

```python
>>> from sympy import Ellipse
>>> Ellipse((0, 0), 2, 1).scale(2, 4)
Circle(Point2D(0, 0), 4)
>>> Ellipse((0, 0), 2, 1).scale(2)
Ellipse(Point2D(0, 0), 4, 1)
```

second_moment_of_area(point=None)
Returns the second moment and product moment area of an ellipse.

Parameters

point : Point, two-tuple of sympifiable objects, or None(default=None)
point is the point about which second moment of area is to be found. If “point=None” it will be calculated about the axis passing through the centroid of the ellipse.

Returns

I_{xx}, I_{yy}, I_{xy} : number or SymPy expression
I_{xx}, I_{yy} are second moment of area of an ellipse. I_{xy} is product moment of area of an ellipse.
Examples

```python
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.second_moment_of_area()
(3*pi/4, 27*pi/4, 0)
```

References

[R521]

`section_modulus(point=None)`

Returns a tuple with the section modulus of an ellipse

Section modulus is a geometric property of an ellipse defined as the ratio of second moment of area to the distance of the extreme end of the ellipse from the centroidal axis.

Parameters

- **point**: Point, two-tuple of sympifyable objects, or None (default=None)

 point is the point at which section modulus is to be found. If “point=None” section modulus will be calculated for the point farthest from the centroidal axis of the ellipse.

Returns

- **S_x, S_y**: numbers or SymPy expressions

 S_x is the section modulus with respect to the x-axis S_y is the section modulus with respect to the y-axis A negative sign indicates that the section modulus is determined for a point below the centroidal axis.

Examples

```python
>>> from sympy import Symbol, Ellipse, Circle, Point2D
>>> d = Symbol('d', positive=True)
>>> c = Circle((0, 0), d/2)
>>> c.section_modulus()
(pi*d**3/32, pi*d**3/32)
>>> e = Ellipse(Point2D(0, 0), 2, 4)
>>> e.section_modulus()
(8*pi, 4*pi)
>>> e.section_modulus((2, 2))
(16*pi, 4*pi)
```
References

[R522]

property semilatus_rectum

Calculates the semi-latus rectum of the Ellipse.

Semi-latus rectum is defined as one half of the chord through a focus parallel to the conic section directrix of a conic section.

Returns

`semilatus_rectum`: number

Examples

```python
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.semilatus_rectum
1/3
```

See also:

- **apoapsis** (page 2329)
 Returns greatest distance between focus and contour
- **periapsis** (page 2338)
 The shortest distance between the focus and the contour

References

[R523], [R524]

tangent_lines(*p*)

Tangent lines between *p* and the ellipse.

If *p* is on the ellipse, returns the tangent line through point *p*. Otherwise, returns the tangent line(s) from *p* to the ellipse, or None if no tangent line is possible (e.g., *p* inside ellipse).

Parameters

- *p*: Point

Returns

- `tangent_lines`: list with 1 or 2 Lines

Raises

- `NotImplementedError`

 Can only find tangent lines for a point, *p*, on the ellipse.
Examples

```python
>>> from sympy import Point, Ellipse
>>> e1 = Ellipse(Point(0, 0), 3, 2)
>>> e1.tangent_lines(Point(3, 0))
[Line2D(Point2D(3, 0), Point2D(3, -12))]
```

See also:

* `sympy.geometry.point.Point` (page 2277), `sympy.geometry.line.Line` (page 2303)

property vradius

The vertical radius of the ellipse.

Returns

vradius : number

Examples

```python
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.vradius
1
```

See also:

* `hradius` (page 2334), `major` (page 2336), `minor` (page 2337)

class sympy.geometry.ellipse.Circle(*args, **kwargs)

A circle in space.

Constructed simply from a center and a radius, from three non-collinear points, or the equation of a circle.

Parameters

- center : Point
- radius : number or SymPy expression
- points : sequence of three Points
- equation : equation of a circle

 Raises

- GeometryError

When the given equation is not that of a circle. When trying to construct circle from incorrect parameters.
Examples

```python
>>> from sympy import Point, Circle, Eq
>>> from sympy.abc import x, y, a, b

A circle constructed from a center and radius:

```python
>>> c1 = Circle(Point(0, 0), 5)
```  
```python
>>> c1.hradius, c1.vradius, c1.radius
(5, 5, 5)
```

A circle constructed from three points:

```python
>>> c2 = Circle(Point(0, 0), Point(1, 1), Point(1, 0))
>>> c2.hradius, c2.vradius, c2.radius, c2.center
(sqrt(2)/2, sqrt(2)/2, sqrt(2)/2, Point2D(1/2, 1/2))
```

A circle can be constructed from an equation in the form \(a * x^2 + b * y^2 + g * x + h * y + c = 0\), too:

```python
>>> Circle(x**2 + y**2 - 25)
Circle(Point2D(0, 0), 5)
```

If the variables corresponding to \(x\) and \(y\) are named something else, their name or symbol can be supplied:

```python
>>> Circle(Eq(a**2 + b**2, 25), x='a', y=b)
Circle(Point2D(0, 0), 5)
```

See also:

Ellipse (page 2328), sympy.geometry.point.Point (page 2277)

Attributes

- radius (synonymous with hradius, vradius, major and minor)
- circumference
- equation

property circumference

The circumference of the circle.

Returns

- circumference : number or SymPy expression
Examples

```python
>>> from sympy import Point, Circle
>>> c1 = Circle(Point(3, 4), 6)
>>> c1.circumference
12*pi
```

equation(x='x', y='y')

The equation of the circle.

**Parameters**

- `x`: str or Symbol, optional
  - Default value is 'x'.
- `y`: str or Symbol, optional
  - Default value is 'y'.

**Returns**

- `equation`: SymPy expression

Examples

```python
>>> from sympy import Point, Circle
>>> c1 = Circle(Point(0, 0), 5)
>>> c1.equation()
\(x^2 + y^2 - 25\)
```

intersection(o)

The intersection of this circle with another geometrical entity.

**Parameters**

- `o`: GeometryEntity

**Returns**

- `intersection`: list of GeometryEntities

Examples

```python
>>> from sympy import Point, Circle, Line, Ray
>>> p1, p2, p3 = Point(0, 0), Point(5, 5), Point(6, 0)
>>> p4 = Point(5, 0)
>>> c1 = Circle(p1, 5)
>>> c1.intersection(p2)
[]
>>> c1.intersection(p4)
[Point2D(5, 0)]
>>> c1.intersection(Ray(p1, p2))
[Point2D(5*sqrt(2)/2, 5*sqrt(2)/2)]
>>> c1.intersection(Line(p2, p3))
[]
```
property radius

The radius of the circle.

Returns
radius : number or SymPy expression

Examples

```python
>>> from sympy import Point, Circle
>>> c1 = Circle(Point(3, 4), 6)
>>> c1.radius
6
```

See also:

Ellipse.major (page 2336), Ellipse.minor (page 2337), Ellipse.hradius (page 2334), Ellipse.vradius (page 2344)

reflect(line)

Override GeometryEntity.reflect since the radius is not a GeometryEntity.

Examples

```python
>>> from sympy import Circle, Line
>>> Circle((0, 1), 1).reflect(Line((0, 0), (1, 1)))
Circle(Point2D(1, 0), -1)
```

scale(x=1, y=1, pt=None)

Override GeometryEntity.scale since the radius is not a GeometryEntity.

Examples

```python
>>> from sympy import Circle
>>> Circle((0, 0), 1).scale(2, 2)
Circle(Point2D(0, 0), 2)
>>> Circle((0, 0), 1).scale(2, 4)
Ellipse(Point2D(0, 0), 2, 4)
```

property vradius

This Ellipse property is an alias for the Circle’s radius.

Whereas hradius, major and minor can use Ellipse’s conventions, the vradius does not exist for a circle. It is always a positive value in order that the Circle, like Polygons, will have an area that can be positive or negative as determined by the sign of the hradius.
Examples

```python
>>> from sympy import Point, Circle
>>> c1 = Circle(Point(3, 4), 6)
>>> c1.vradius
6
```

Polygons

```python
class sympy.geometry.polygon.Polygon(*args, n=0, **kwargs)
A two-dimensional polygon.
A simple polygon in space. Can be constructed from a sequence of points or from a
center, radius, number of sides and rotation angle.

Parameters
vertices
A sequence of points.
n : int, optional
If > 0, an n-sided RegularPolygon is created. Default value is 0.

Raises
GeometryError
If all parameters are not Points.

Notes
Polygons are treated as closed paths rather than 2D areas so some calculations can be
be negative or positive (e.g., area) based on the orientation of the points.
Any consecutive identical points are reduced to a single point and any points collinear
and between two points will be removed unless they are needed to define an explicit
intersection (see examples).
A Triangle, Segment or Point will be returned when there are 3 or fewer points provided.

Examples

```python
>>> from sympy import Polygon, pi
>>> p1, p2, p3, p4, p5 = [(0, 0), (1, 0), (5, 1), (0, 1), (3, 0)]
>>> Polygon(p1, p2, p3, p4, p5)
Polygon(Point2D(0, 0), Point2D(1, 0), Point2D(5, 1), Point2D(0, 1))
```

The area of a polygon is calculated as positive when vertices are traversed in a ccw
direction. When the sides of a polygon cross the area will have positive and negative
contributions. The following defines a Z shape where the bottom right connects back to the top left.

```python
>>> Polygon((0, 2), (2, 2), (0, 0), (2, 0)).area
0
```

When the keyword n is used to define the number of sides of the Polygon then a RegularPolygon is created and the other arguments are interpreted as center, radius and rotation. The unrotated RegularPolygon will always have a vertex at Point(r, 0) where r is the radius of the circle that circumscribes the RegularPolygon. Its method spin can be used to increment that angle.

```python
>>> p = Polygon((0,0), 1, n=3)
>>> p
RegularPolygon(Point2D(0, 0), 1, 3, 0)
>>> p.vertices[0]
Point2D(1, 0)
>>> p.args[0]
Point2D(0, 0)
>>> p.spin(pi/2)
>>> p.vertices[0]
Point2D(0, 1)
```

See also:
sympy.geometry.point.Point (page 2277), sympy.geometry.line.Segment (page 2308), Triangle (page 2368)

Attributes

- **area**
- **angles**
- **perimeter**
- **vertices**
- **centroid**
- **sides**

property angles

The internal angle at each vertex.

Returns

- **angles** : dict

 A dictionary where each key is a vertex and each value is the internal angle at that vertex. The vertices are represented as Points.
Examples

```python
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.angles[p1]
pi/2
>>> poly.angles[p2]
acos(-4*sqrt(17)/17)
```

See also:

- `sympy.geometry.point.Point` (page 2277), `sympy.geometry.line.LinearEntity.angle_between` (page 2291)

`arbitrary_point`(parameter='t')

A parameterized point on the polygon.

The parameter, varying from 0 to 1, assigns points to the position on the perimeter that is that fraction of the total perimeter. So the point evaluated at t=1/2 would return the point from the first vertex that is 1/2 way around the polygon.

Parameters

- `parameter`: str, optional
 - Default value is ‘t’.

Returns

- `arbitrary_point`: Point

Raises

- `ValueError`
 - When `parameter` already appears in the Polygon’s definition.

Examples

```python
>>> from sympy import Polygon, Symbol
>>> t = Symbol('t', real=True)
>>> tri = Polygon((0, 0), (1, 0), (1, 1))
>>> p = tri.arbitrary_point('t')
>>> perimeter = tri.perimeter
>>> s1, s2 = [s.length for s in tri.sides[:2]]
>>> p.subs(t, (s1 + s2/2)/perimeter)
Point2D(1, 1/2)
```

See also:

- `sympy.geometry.point.Point` (page 2277)

property area

The area of the polygon.
Notes

The area calculation can be positive or negative based on the orientation of the points. If any side of the polygon crosses any other side, there will be areas having opposite signs.

Examples

```python
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.area
3
```

In the Z shaped polygon (with the lower right connecting back to the upper left) the areas cancel out:

```python
>>> Z = Polygon((0, 1), (1, 1), (0, 0), (1, 0))
>>> Z.area
0
```

In the M shaped polygon, areas do not cancel because no side crosses any other (though there is a point of contact).

```python
>>> M = Polygon((0, 0), (0, 1), (2, 0), (3, 1), (3, 0))
>>> M.area
-3/2
```

See also:
- `sympy.geometry.ellipse.Ellipse.area` (page 2330)

`bisectors` *(prec=None)*

Returns angle bisectors of a polygon. If prec is given then approximate the point defining the ray to that precision.

The distance between the points defining the bisector ray is 1.

Examples

```python
>>> from sympy import Polygon, Point
>>> p = Polygon(Point(0, 0), Point(2, 0), Point(1, 1), Point(0, 3))
>>> p.bisectors(2)
{Point2D(0, 0): Ray2D(Point2D(0, 0), Point2D(0.71, 0.71)),
 Point2D(0, 3): Ray2D(Point2D(0, 3), Point2D(0.23, 2.0)),
 Point2D(1, 1): Ray2D(Point2D(1, 1), Point2D(0.19, 0.42)),
 Point2D(2, 0): Ray2D(Point2D(2, 0), Point2D(1.1, 0.38))}
```

`property bounds`

Return a tuple (xmin, ymin, xmax, ymax) representing the bounding rectangle for the geometric figure.
property centroid

The centroid of the polygon.

Returns

centroid : Point

Examples

```python
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.centroid
Point2D(31/18, 11/18)
```

See also:

sympy.geometry.point.Point (page 2277), sympy.geometry.util.centroid (page 2275)

cut_section(line)

Returns a tuple of two polygon segments that lie above and below the intersecting line respectively.

Parameters

- line: Line object of geometry module

 line which cuts the Polygon. The part of the Polygon that lies above and below this line is returned.

Returns

- upper_polygon, lower_polygon: Polygon objects or None

 upper_polygon is the polygon that lies above the given line. lower_polygon is the polygon that lies below the given line. upper_polygon and lower polygon are None when no polygon exists above the line or below the line.

Raises

- ValueError: When the line does not intersect the polygon

Examples

```python
>>> from sympy import Polygon, Line
>>> a, b = 20, 10
>>> p1, p2, p3, p4 = [(0, b), (0, 0), (a, 0), (a, b)]
>>> rectangle = Polygon(p1, p2, p3, p4)
>>> t = rectangle.cut_section(Line((0, 5), slope=0))
>>> t
(Polygon(Point2D(0, 10), Point2D(0, 5), Point2D(20, 5), Point2D(20, 0)),
 Polygon(Point2D(0, 5), Point2D(0, 0), Point2D(20, 0), Point2D(20, 5)))
>>> upper_segment, lower_segment = t
>>> upper_segment.area
100
```

(continues on next page)
upper_segment.centroid
Point2D(10, 15/2)

lower_segment.centroid
Point2D(10, 5/2)

References

[R525]
distance(o)

Returns the shortest distance between self and o.
If o is a point, then self does not need to be convex. If o is another polygon self and o must be convex.

Examples

from sympy import Point, Polygon, RegularPolygon
>>> p1, p2 = map(Point, [(0, 0), (7, 5)])
>>> poly = Polygon(*RegularPolygon(p1, 1, 3).vertices)
>>> poly.distance(p2)
sqrt(61)

encloses_point(p)

Return True if p is enclosed by (is inside of) self.

Parameters
p : Point

Returns
encloses_point : True, False or None

Notes

Being on the border of self is considered False.

Examples

from sympy import Polygon, Point
>>> p = Polygon((0, 0), (4, 0), (4, 4))
>>> p.encloses_point(Point(2, 1))
True
>>> p.encloses_point(Point(2, 2))
False
>>> p.encloses_point(Point(5, 5))
False
See also:

```
sympy.geometry.point.Point  (page 2277),  sympy.geometry.ellipse.Ellipse. encloses_point  (page 2332)
```

References

[R526]

first_moment_of_area(point=None)

Returns the first moment of area of a two-dimensional polygon with respect to a certain point of interest.

First moment of area is a measure of the distribution of the area of a polygon in relation to an axis. The first moment of area of the entire polygon about its own centroid is always zero. Therefore, here it is calculated for an area, above or below a certain point of interest, that makes up a smaller portion of the polygon. This area is bounded by the point of interest and the extreme end (top or bottom) of the polygon. The first moment for this area is then determined about the centroidal axis of the initial polygon.

Parameters

point: Point, two-tuple of sympifyable objects, or None (default=None)

point is the point above or below which the area of interest lies If point=None then the centroid acts as the point of interest.

Returns

Q_x, Q_y: number or SymPy expressions

Q_x is the first moment of area about the x-axis Q_y is the first moment of area about the y-axis A negative sign indicates that the section modulus is determined for a section below (or left of) the centroidal axis

Examples

```python
>>> from sympy import Point, Polygon
>>> a, b = 50, 10
>>> p1, p2, p3, p4 = [(0, b), (0, 0), (a, 0), (a, b)]
>>> p = Polygon(p1, p2, p3, p4)
>>> p.first_moment_of_area()
(625, 3125)
>>> p.first_moment_of_area(point=Point(30, 7))
(525, 3000)
```
References

[R527], [R528]

intersection(o)

The intersection of polygon and geometry entity.

The intersection may be empty and can contain individual Points and complete Line Segments.

Parameters

other: GeometryEntity

Returns

Intersection: list

The list of Segments and Points

Examples

```python
>>> from sympy import Point, Polygon, Line
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly1 = Polygon(p1, p2, p3, p4)
>>> p5, p6, p7 = map(Point, [(3, 2), (1, -1), (0, 2)])
>>> poly2 = Polygon(p5, p6, p7)
>>> poly1.intersection(poly2)
[Point2D(1/3, 1), Point2D(2/3, 0), Point2D(9/5, 1/5), Point2D(7/3, 1)]
>>> poly1.intersection(Line(p1, p2))
[Segment2D(Point2D(0, 0), Point2D(1, 0))]
>>> poly1.intersection(p1)
[Point2D(0, 0)]
```

See also:

`sympy.geometry.point.Point` (page 2277), `sympy.geometry.line.Segment` (page 2308)

is_convex()

Is the polygon convex?

A polygon is convex if all its interior angles are less than 180 degrees and there are no intersections between sides.

Returns

is_convex: boolean

True if this polygon is convex, False otherwise.
Examples

```python
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.is_convex()
True
```

See also:

`sympy.geometry.util.convex_hull` (page 2273)

property `perimeter`

The perimeter of the polygon.

 Returns
 perimeter : number or Basic instance

Examples

```python
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.perimeter
sqrt(17) + 7
```

See also:

`sympy.geometry.line.Segment.length` (page 2310)

`plot_interval`(parameter='t')

The plot interval for the default geometric plot of the polygon.

 Parameters
 parameter : str, optional
 Default value is ‘t’.
 Returns
 plot_interval : list (plot interval)
 [parameter, lower_bound, upper_bound]

Examples

```python
>>> from sympy import Polygon
>>> p = Polygon((0, 0), (1, 0), (1, 1))
>>> p.plot_interval()
[t, 0, 1]
```

`polar_second_moment_of_area()`

Returns the polar modulus of a two-dimensional polygon
It is a constituent of the second moment of area, linked through the perpendicular axis theorem. While the planar second moment of area describes an object’s resistance to deflection (bending) when subjected to a force applied to a plane parallel to the central axis, the polar second moment of area describes an object’s resistance to deflection when subjected to a moment applied in a plane perpendicular to the object’s central axis (i.e. parallel to the cross-section)

Examples

```python
>>> from sympy import Polygon, symbols
>>> a, b = symbols('a, b')
>>> rectangle = Polygon((0, 0), (a, 0), (a, b), (0, b))
>>> rectangle.polar_second_moment_of_area()
a**3*b/12 + a*b**3/12
```

References

[R529]

second_moment_of_area(point=None)

Returns the second moment and product moment of area of a two dimensional polygon.

Parameters

- **point**: Point, two-tuple of sympifiable objects, or None(default=None)
 point is the point about which second moment of area is to be found. If “point=None” it will be calculated about the axis passing through the centroid of the polygon.

Returns

- I_xx, I_yy, I_xy : number or SymPy expression

 I_xx, I_yy are second moment of area of a two dimensional polygon. I_xy is product moment of area of a two dimensional polygon.

Examples

```python
>>> from sympy import Polygon, symbols
>>> a, b = symbols('a, b')
>>> p1, p2, p3, p4, p5 = [(0, 0), (a, 0), (a, b), (0, b), (a/3, b/3)]
>>> rectangle = Polygon(p1, p2, p3, p4)
>>> rectangle.second_moment_of_area()
(a*b**3/12, a**3*b/12, 0)
>>> rectangle.second_moment_of_area(p5)
(a*b**3/9, a**3*b/9, a**2*b**2/36)
```
References

[R530]

section_modulus(point=None)

Returns a tuple with the section modulus of a two-dimensional polygon.

Section modulus is a geometric property of a polygon defined as the ratio of second moment of area to the distance of the extreme end of the polygon from the centroidal axis.

Parameters

point : Point, two-tuple of sympifiable objects, or None (default=None)

point is the point at which section modulus is to be found. If "point=None" it will be calculated for the point farthest from the centroidal axis of the polygon.

Returns

S_x, S_y: numbers or SymPy expressions

S_x is the section modulus with respect to the x-axis S_y is the section modulus with respect to the y-axis A negative sign indicates that the section modulus is determined for a point below the centroidal axis.

Examples

```python
>>> from sympy import symbols, Polygon, Point
>>> a, b = symbols('a, b', positive=True)
>>> rectangle = Polygon((0, 0), (a, 0), (a, b), (0, b))
>>> rectangle.section_modulus()
(a*b**2/6, a**2*b/6)
>>> rectangle.section_modulus(Point(a/4, b/4))
(-a*b**2/3, -a**2*b/3)
```

References

[R531]

property sides

The directed line segments that form the sides of the polygon.

Returns

sides : list of sides

Each side is a directed Segment.
Examples

```python
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.sides
[Segment2D(Point2D(0, 0), Point2D(1, 0)),
 Segment2D(Point2D(1, 0), Point2D(5, 1)),
 Segment2D(Point2D(5, 1), Point2D(0, 1)), Segment2D(Point2D(0, 1),
 →Point2D(0, 0))]
```

See also:

- `sympy.geometry.point.Point` (page 2277), `sympy.geometry.line.Segment` (page 2308)

property vertices

The vertices of the polygon.

Returns

- `vertices` : list of Points

Notes

When iterating over the vertices, it is more efficient to index `self` rather than to request the vertices and index them. Only use the vertices when you want to process all of them at once. This is even more important with RegularPolygons that calculate each vertex.

Examples

```python
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.vertices
[Point2D(0, 0), Point2D(1, 0), Point2D(5, 1), Point2D(0, 1)]
>>> poly.vertices[0]
Point2D(0, 0)
```

See also:

- `sympy.geometry.point.Point` (page 2277)

class `sympy.geometry.polygon.RegularPolygon(c, r, n, rot=0, **kwargs)`

A regular polygon.

Such a polygon has all internal angles equal and all sides the same length.

Parameters

- `center` : Point
- `radius` : number or Basic instance
 The distance from the center to a vertex
- `n` : int
The number of sides

Raises
GeometryError

If the `center` is not a Point, or the `radius` is not a number or Basic instance, or the number of sides, `n`, is less than three.

Notes

A RegularPolygon can be instantiated with Polygon with the kwarg `n`.

Regular polygons are instantiated with a center, radius, number of sides and a rotation angle. Whereas the arguments of a Polygon are vertices, the vertices of the Regular-Polygon must be obtained with the vertices method.

Examples

```python
>>> from sympy import RegularPolygon, Point
>>> r = RegularPolygon(Point(0, 0), 5, 3)
>>> r
RegularPolygon(Point2D(0, 0), 5, 3, 0)
>>> r.vertices[0]
Point2D(5, 0)
```

See also:

* sympy.geometry.point.Point (page 2277), Polygon (page 2348) *

Attributes

<table>
<thead>
<tr>
<th>vertices</th>
<th>center</th>
<th>radius</th>
<th>rotation</th>
<th>apothem</th>
<th>interior_angle</th>
<th>exterior_angle</th>
<th>circumcircle</th>
<th>incircle</th>
<th>angles</th>
</tr>
</thead>
</table>

property angles

Returns a dictionary with keys, the vertices of the Polygon, and values, the interior angle at each vertex.
Examples

```python
>>> from sympy import RegularPolygon, Point
>>> r = RegularPolygon(Point(0, 0), 5, 3)
>>> r.angles
{Point2D(-5/2, -5*sqrt(3)/2): pi/3,
 Point2D(-5/2, 5*sqrt(3)/2): pi/3,
 Point2D(5, 0): pi/3}
```

property apothem

The inradius of the RegularPolygon.

The apothem/inradius is the radius of the inscribed circle.

Returns

| apothem : number or instance of Basic

Examples

```python
>>> from sympy import Symbol
>>> from sympy import RegularPolygon, Point
>>> radius = Symbol('r')
>>> rp = RegularPolygon(Point(0, 0), radius, 4)
>>> rp.apothem
sqrt(2)*r/2
```

See also:

- `sympy.geometry.line.Segment.length` (page 2310), `sympy.geometry.ellipse.Circle.radius` (page 2346)

property area

Returns the area.

Examples

```python
>>> from sympy import RegularPolygon
>>> square = RegularPolygon((0, 0), 1, 4)
>>> square.area
2
>>> _ == square.length**2
True
```

property args

Returns the center point, the radius, the number of sides, and the orientation angle.
Examples

```python
>>> from sympy import RegularPolygon, Point
>>> r = RegularPolygon(Point(0, 0), 5, 3)
>>> r.args
(Point2D(0, 0), 5, 3, 0)
```

property `center`

The center of the `RegularPolygon`

This is also the center of the circumscribing circle.

Returns

```
center : Point
```

Examples

```python
>>> from sympy import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 5, 4)
>>> rp.center
Point2D(0, 0)
```

See also:

`sympy.geometry.point.Point` (page 2277), `sympy.geometry.ellipse.Ellipse.center` (page 2331)

property `centroid`

The center of the `RegularPolygon`

This is also the center of the circumscribing circle.

Returns

```
center : Point
```

Examples

```python
>>> from sympy import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 5, 4)
>>> rp.center
Point2D(0, 0)
```

See also:

`sympy.geometry.point.Point` (page 2277), `sympy.geometry.ellipse.Ellipse.center` (page 2331)

property `circumcenter`

Alias for `center`.

Examples

```python
>>> from sympy import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 5, 4)
>>> rp.circumcenter
Point2D(0, 0)
```

property circumcircle

The circumcircle of the RegularPolygon.

Returns
- **circumcircle**: Circle

Examples

```python
>>> from sympy import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 4, 8)
>>> rp.circumcircle
Circle(Point2D(0, 0), 4)
```

See also:
- `circumcenter` (page 2362), `sympy.geometry.ellipse.Circle` (page 2344)

property circumradius

Alias for radius.

Examples

```python
>>> from sympy import Symbol

>>> from sympy import RegularPolygon, Point

>>> radius = Symbol('r')

>>> rp = RegularPolygon(Point(0, 0), radius, 4)
>>> rp.circumradius
r
```

encloses_point(p)

Return True if p is enclosed by (is inside of) self.

Parameters
- **p**: Point

Returns
- **encloses_point**: True, False or None
Notes

Being on the border of self is considered False.
The general Polygon.encloses_point method is called only if a point is not within or beyond the incircle or circumcircle, respectively.

Examples

```python
>>> from sympy import RegularPolygon, S, Point, Symbol
>>> p = RegularPolygon((0, 0), 3, 4)
>>> p.encloses_point(Point(0, 0))
True
>>> r, R = p.inradius, p.circumradius
>>> p.encloses_point(Point((r + R)/2, 0))
True
>>> p.encloses_point(Point(R/2, R/2 + (R - r)/10))
False
>>> t = Symbol('t', real=True)
>>> p.encloses_point(p.arbitrary_point().subs(t, S.Half))
False
>>> p.encloses_point(Point(5, 5))
False
```

See also:

* [sympy.geometry.ellipse.Ellipse.encloses_point](page2332)

property exterior_angle

Measure of the exterior angles.

Returns

* `exterior_angle` : number

Examples

```python
>>> from sympy import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 4, 8)
>>> rp.exterior_angle
pi/4
```

See also:

* [sympy.geometry.line.LinearEntity.angle_between](page2291)

property incircle

The incircle of the RegularPolygon.

Returns

* `incircle` : Circle
Examples

```python
>>> from sympy import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 4, 7)
>>> rp.incircle
Circle(Point2D(0, 0), 4*cos(pi/7))
```

See also:

`inradius` (page 2365), `sympy.geometry.ellipse.Circle` (page 2344)

property inradius

Alias for apothem.

Examples

```python
>>> from sympy import Symbol
>>> from sympy import RegularPolygon, Point
>>> radius = Symbol('r')
>>> rp = RegularPolygon(Point(0, 0), radius, 4)
>>> rp.inradius
sqrt(2)*r/2
```

property interior_angle

Measure of the interior angles.

Returns

- `interior_angle` : number

Examples

```python
>>> from sympy import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 4, 8)
>>> rp.interior_angle
3*pi/4
```

See also:

`sympy.geometry.line.LinearEntity.angle_between` (page 2291)

property length

Returns the length of the sides.

The half-length of the side and the apothem form two legs of a right triangle whose hypotenuse is the radius of the regular polygon.
Examples

```python
>>> from sympy import RegularPolygon
>>> from sympy import sqrt
>>> s = square_in_unit_circle = RegularPolygon((0, 0), 1, 4)
>>> s.length
sqrt(2)
>>> sqrt((_/2)**2 + s.apothem**2) == s.radius
True
```

property `radius`

Radius of the RegularPolygon

This is also the radius of the circumscribing circle.

Returns

`radius` : number or instance of Basic

Examples

```python
>>> from sympy import Symbol
>>> from sympy import RegularPolygon, Point
>>> radius = Symbol('r')
>>> rp = RegularPolygon(Point(0, 0), radius, 4)
>>> rp.radius
r
```

See also:

`sympy.geometry.line.Segment.length` (page 2310), `sympy.geometry.ellipse.Circle.radius` (page 2346)

`reflect(line)`

Override GeometryEntity.reflect since this is not made of only points.

Examples

```python
>>> from sympy import RegularPolygon, Line
```

```python
>>> RegularPolygon((0, 0), 1, 4).reflect(Line((0, 1), slope=-2))
RegularPolygon(Point2D(4/5, 2/5), -1, 4, atan(4/3))
```

`rotate(angle, pt=None)`

Override GeometryEntity.rotate to first rotate the RegularPolygon about its center.

```python
>>> from sympy import Point, RegularPolygon, pi
>>> t = RegularPolygon(Point(1, 0), 1, 3)
>>> t.vertices[0] # vertex on x-axis
Point2D(2, 0)
>>> t.rotate(pi/2).vertices[0] # vertex on y axis now
Point2D(0, 2)
```
See also:

rotation (page 2367)

spin (page 2367)
 Rotates a RegularPolygon in place

property rotation
 CCW angle by which the RegularPolygon is rotated

 Returns
 rotation : number or instance of Basic

Examples

```python
>>> from sympy import pi
>>> from sympy import RegularPolygon, Point
>>> RegularPolygon(Point(0, 0), 3, 4, pi/4).rotation
pi/4
```

Numerical rotation angles are made canonical:

```python
>>> RegularPolygon(Point(0, 0), 3, 4, a).rotation
a
>>> RegularPolygon(Point(0, 0), 3, 4, pi).rotation
0
```

scale(x=1, y=1, pt=None)

Override GeometryEntity.scale since it is the radius that must be scaled (if x == y) or else a new Polygon must be returned.

```python
>>> from sympy import RegularPolygon
```

Symmetric scaling returns a RegularPolygon:

```python
>>> RegularPolygon((0, 0), 1, 4).scale(2, 2)
RegularPolygon(Point2D(0, 0), 2, 4, 0)
```

Asymmetric scaling returns a kite as a Polygon:

```python
>>> RegularPolygon((0, 0), 1, 4).scale(2, 1)
Polygon(Point2D(2, 0), Point2D(0, 1), Point2D(-2, 0), Point2D(0, -1))
```

spin(angle)

Increment in place the virtual Polygon’s rotation by ccw angle.

See also: rotate method which moves the center.

```python
>>> from sympy import Polygon, Point, pi
>>> r = Polygon(Point(0,0), 1, n=3)
>>> r.vertices[0]
Point2D(1, 0)
>>> r.spin(pi/6)
```
See also:
rotation (page 2367)
rotate (page 2366)
Creates a copy of the RegularPolygon rotated about a Point

property vertices
The vertices of the RegularPolygon.

Returns
vertices : list
Each vertex is a Point.

Examples

```python
>>> from sympy import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 5, 4)
>>> rp.vertices
[Point2D(5, 0), Point2D(0, 5), Point2D(-5, 0), Point2D(0, -5)]
```

See also:
sympy.geometry.point.Point (page 2277)

class sympy.geometry.polygon.Triangle(*args, **kwargs)
A polygon with three vertices and three sides.

Parameters
points : sequence of Points

keyword: asa, sas, or sss to specify sides/angles of the triangle

Raises
GeometryError
If the number of vertices is not equal to three, or one of the vertices
is not a Point, or a valid keyword is not given.

Examples

```python
>>> from sympy import Triangle, Point
>>> Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
Triangle(Point2D(0, 0), Point2D(4, 0), Point2D(4, 3))
```

Keywords sss, sas, or asa can be used to give the desired side lengths (in order) and
interior angles (in degrees) that define the triangle:
```
>>> Triangle(sss=(3, 4, 5))
Triangle(Point2D(0, 0), Point2D(3, 0), Point2D(3, 4))
>>> Triangle(asa=(30, 1, 30))
Triangle(Point2D(0, 0), Point2D(1, 0), Point2D(1/2, sqrt(3)/6))
>>> Triangle(sas=(1, 45, 2))
Triangle(Point2D(0, 0), Point2D(2, 0), Point2D(sqrt(2)/2, sqrt(2)/2))
```

See also:

`sympy.geometry.point.Point` (page 2277), `Polygon` (page 2348)

Attributes

- **vertices**
- **altitudes**
- **orthocenter**
- **circumcenter**
- **circumradius**
- **circumcircle**
- **inradius**
- **incircle**
- **exradii**
- **medians**
- **medial**
- **nine_point_circle**

property altitudes

The altitudes of the triangle.

An altitude of a triangle is a segment through a vertex, perpendicular to the opposite side, with length being the height of the vertex measured from the line containing the side.

Returns

altitudes : dict

The dictionary consists of keys which are vertices and values which are Segments.

Examples

```
>>> from sympy import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.altitudes[p1]
Segment2D(Point2D(0, 0), Point2D(1/2, 1/2))
```

See also:

`sympy.geometry.point.Point` (page 2277), `sympy.geometry.line.Segment.length` (page 2310)
bisectors()

The angle bisectors of the triangle.
An angle bisector of a triangle is a straight line through a vertex which cuts the corresponding angle in half.

Returns

bisectors : dict

Each key is a vertex (Point) and each value is the corresponding bisector (Segment).

Examples

```python
>>> from sympy import Point, Triangle, Segment
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> from sympy import sqrt
>>> t.bisectors()[p2] == Segment(Point(1, 0), Point(0, sqrt(2) - 1))
True
```

See also:
sympy.geometry.point.Point (page 2277), sympy.geometry.line.Segment (page 2308)

property circumcenter

The circumcenter of the triangle
The circumcenter is the center of the circumcircle.

Returns

circumcenter : Point

Examples

```python
>>> from sympy import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.circumcenter
Point2D(1/2, 1/2)
```

See also:
sympy.geometry.point.Point (page 2277)

property circumcircle

The circle which passes through the three vertices of the triangle.

Returns

circumcircle : Circle
Examples

```python
>>> from sympy import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.circumcircle
Circle(Point2D(1/2, 1/2), sqrt(2)/2)
```

See also:
`sympy.geometry.ellipse.Circle` (page 2344)

property circumradius
The radius of the circumcircle of the triangle.

Returns
circumradius : number of Basic instance

Examples

```python
>>> from sympy import Symbol
>>> from sympy import Point, Triangle
>>> a = Symbol('a')
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, a)
>>> t = Triangle(p1, p2, p3)
>>> t.circumradius
sqrt(a**2/4 + 1/4)
```

See also:
`sympy.geometry.ellipse.Circle.radius` (page 2346)

property eulerline
The Euler line of the triangle.

The line which passes through circumcenter, centroid and orthocenter.

Returns
eulerline : Line (or Point for equilateral triangles in which case all
centers coincide)

Examples

```python
>>> from sympy import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.eulerline
Line2D(Point2D(0, 0), Point2D(1/2, 1/2))
```

property excenters
Excenters of the triangle.

An excenter is the center of a circle that is tangent to a side of the triangle and the
extensions of the other two sides.
Returns

excenters : dict

Examples

The excenters are keyed to the side of the triangle to which their corresponding excircle is tangent: The center is keyed, e.g. the excenter of a circle touching side 0 is:

```python
>>> from sympy import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(6, 0), Point(0, 2)
>>> t = Triangle(p1, p2, p3)
>>> t.excenters[t.sides[0]]
Point2D(12*sqrt(10), 2/3 + sqrt(10)/3)
```

See also:

sympy.geometry.polygon.Triangle.exradii (page 2372)

References

[R532]

property exradii

The radius of excircles of a triangle.

An excircle of the triangle is a circle lying outside the triangle, tangent to one of its sides and tangent to the extensions of the other two.

Returns

exradii : dict

Examples

The exradius touches the side of the triangle to which it is keyed, e.g. the exradius touching side 2 is:

```python
>>> from sympy import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(6, 0), Point(0, 2)
>>> t = Triangle(p1, p2, p3)
>>> t.exradii[t.sides[2]]
-2 + sqrt(10)
```

See also:

sympy.geometry.polygon.Triangle.inradius (page 2373)
property incenter

The center of the incircle.
The incircle is the circle which lies inside the triangle and touches all three sides.

Returns

incenter : Point

Examples

```python
>>> from sympy import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.incenter
Point2D(1 - sqrt(2)/2, 1 - sqrt(2)/2)
```

See also:

* incircle (page 2373), sympy.geometry.point.Point (page 2277)

property incircle

The incircle of the triangle.
The incircle is the circle which lies inside the triangle and touches all three sides.

Returns

incircle : Circle

Examples

```python
>>> from sympy import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(2, 0), Point(0, 2)
>>> t = Triangle(p1, p2, p3)
>>> t.incircle
Circle(Point2D(2 - sqrt(2), 2 - sqrt(2)), 2 - sqrt(2))
```

See also:

* sympy.geometry.ellipse.Circle (page 2344)

property inradius

The radius of the incircle.

Returns

inradius : number of Basic instance
Examples

```python
>>> from sympy import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(4, 0), Point(0, 3)
>>> t = Triangle(p1, p2, p3)
>>> t.inradius
1
```

See also:

`incircle` (page 2373), `sympy.geometry.ellipse.Circle.radius` (page 2346)

is_equilateral()

Are all the sides the same length?

Returns

`is_equilateral` : boolean

Examples

```python
>>> from sympy import Triangle, Point
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
>>> t1.is_equilateral()
False

>>> from sympy import sqrt
>>> t2 = Triangle(Point(0, 0), Point(10, 0), Point(5, 5*sqrt(3)))
>>> t2.is_equilateral()
True
```

See also:

`sympy.geometry.entity.GeometryEntity.is_similar` (page 2270), `RegularPolygon` (page 2359), `is_isosceles` (page 2374), `is_right` (page 2374), `is_scalene` (page 2375)

is_isosceles()

Are two or more of the sides the same length?

Returns

`is_isosceles` : boolean

Examples

```python
>>> from sympy import Triangle, Point
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(2, 4))
>>> t1.is_isosceles()
True
```

See also:

`is_equilateral` (page 2374), `is_right` (page 2374), `is_scalene` (page 2375)
is_right()
Is the triangle right-angled.

Returns
is_right : boolean

Examples

```python
>>> from sympy import Triangle, Point
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
>>> t1.is_right()
True
```

See also:

* sympy.geometry.line.LinearEntity.is_perpendicular (page 2296),
 * is_equilateral (page 2374), is_isosceles (page 2374), is_scalene (page 2375)

is_scalene()
Are all the sides of the triangle of different lengths?

Returns
is_scalene : boolean

Examples

```python
>>> from sympy import Triangle, Point
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(1, 4))
>>> t1.is_scalene()
True
```

See also:

* is_equilateral (page 2374), is_isosceles (page 2374), is_right (page 2374)

is_similar(t2)
Is another triangle similar to this one.
Two triangles are similar if one can be uniformly scaled to the other.

Parameters
other : Triangle

Returns
is_similar : boolean
Examples

```python
from sympy import Triangle, Point

>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
>>> t2 = Triangle(Point(0, 0), Point(-4, 0), Point(-4, -3))
>>> t1.is_similar(t2)
True

>>> t2 = Triangle(Point(0, 0), Point(-4, 0), Point(-4, -4))
>>> t1.is_similar(t2)
False
```

See also:

sympy.geometry.entity.GeometryEntity.is_similar (page 2270)

property medial

The medial triangle of the triangle.

The triangle which is formed from the midpoints of the three sides.

Returns

medial : Triangle

Examples

```python
from sympy import Point, Triangle

>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.medial
Triangle(Point2D(1/2, 0), Point2D(1/2, 1/2), Point2D(0, 1/2))
```

See also:

sympy.geometry.line.Segment.midpoint (page 2310)

property medians

The medians of the triangle.

A median of a triangle is a straight line through a vertex and the midpoint of the opposite side, and divides the triangle into two equal areas.

Returns

medians : dict

Each key is a vertex (Point) and each value is the median (Segment) at that point.
Examples

```python
>>> from sympy import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.medians[p1]
Segment2D(Point2D(0, 0), Point2D(1/2, 1/2))
```

See also:
- `sympy.geometry.point.Point.midpoint` (page 2282), `sympy.geometry.line.Segment.midpoint` (page 2310)

property nine_point_circle

The nine-point circle of the triangle.

Nine-point circle is the circumcircle of the medial triangle, which passes through the feet of altitudes and the middle points of segments connecting the vertices and the orthocenter.

Returns

```
nine_point_circle : Circle
```

Examples

```python
>>> from sympy import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.nine_point_circle
Circle(Point2D(1/4, 1/4), sqrt(2)/4)
```

See also:
- `sympy.geometry.line.Segment.midpoint` (page 2310), `sympy.geometry.polygon.Triangle.medial` (page 2376), `sympy.geometry.polygon.Triangle.orthocenter` (page 2377)

property orthocenter

The orthocenter of the triangle.

The orthocenter is the intersection of the altitudes of a triangle. It may lie inside, outside or on the triangle.

Returns

```
orthocenter : Point
```
Examples

```python
>>> from sympy import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.orthocenter
Point2D(0, 0)
```

See also:

`sympy.geometry.point.Point` (page 2277)

property vertices

The triangle’s vertices

Returns

vertices : tuple

Each element in the tuple is a Point

Examples

```python
>>> from sympy import Triangle, Point
>>> t = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
>>> t.vertices
(Point2D(0, 0), Point2D(4, 0), Point2D(4, 3))
```

See also:

`sympy.geometry.point.Point` (page 2277)

Plane

```python
class sympy.geometry.plane.Plane(p1, a=None, b=None, **kwargs)
```

A plane is a flat, two-dimensional surface. A plane is the two-dimensional analogue of a point (zero-dimensions), a line (one-dimension) and a solid (three-dimensions). A plane can generally be constructed by two types of inputs. They are three non-collinear points and a point and the plane’s normal vector.

Examples

```python
>>> from sympy import Plane, Point3D
>>> Plane(Point3D(1, 1, 1), Point3D(2, 3, 4), Point3D(2, 2, 2))
>>> Plane(Point3D(1, 1, 1), (-1, 2, -1))
>>> Plane((1, 1, 1), (2, 3, 4), (2, 2, 2))
>>> Plane(Point3D(1, 1, 1), (-1, 2, -1))
>>> Plane(Point3D(1, 1, 1), normal_vector=(1, 4, 7))
>>> Plane(Point3D(1, 1, 1), (1, 4, 7))
```
Attributes

 angle_between(o)
 Angle between the plane and other geometric entity.

 Parameters
 LinearEntity3D, Plane.

 Returns
 angle : angle in radians

 Notes
 This method accepts only 3D entities as it's parameter, but if you want to calculate
 the angle between a 2D entity and a plane you should first convert to a 3D entity by
 projecting onto a desired plane and then proceed to calculate the angle.

 Examples

 >>> from sympy import Point3D, Line3D, Plane
 >>> a = Plane(Point3D(1, 2, 2), normal_vector=(1, 2, 3))
 >>> b = Line3D(Point3D(1, 3, 4), Point3D(2, 2, 2))
 >>> a.angle_between(b)
 -asin(sqrt(21)/6)

 arbitrary_point(u=None, v=None)
 Returns an arbitrary point on the Plane. If given two parameters, the point ranges
 over the entire plane. If given 1 or no parameters, returns a point with one param-
 eter which, when varying from 0 to 2*pi, moves the point in a circle of radius 1 about
 p1 of the Plane.

 Returns
 Point3D

 Examples

 >>> from sympy import Plane, Ray
 >>> from sympy.abc import u, v, t, r
 >>> p = Plane((1, 1, 1), normal_vector=(1, 0, 0))
 >>> p.arbitrary_point(u, v)
 Point3D(1, u + 1, v + 1)
 >>> p.arbitrary_point(t)
 Point3D(1, cos(t) + 1, sin(t) + 1)

 While arbitrary values of u and v can move the point anywhere in the plane, the
 single-parameter point can be used to construct a ray whose arbitrary point can be
 located at angle t and radius r from p.p1:
static are_concurrent(*planes)

Is a sequence of Planes concurrent?

Two or more Planes are concurrent if their intersections are a common line.

Parameters
planes: list

Returns
Boolean

Examples

```python
>>> from sympy import Plane, Point3D
>>> a = Plane(Point3D(5, 0, 0), normal_vector=(1, -1, 1))
>>> b = Plane(Point3D(0, -2, 0), normal_vector=(3, 1, 1))
>>> c = Plane(Point3D(0, -1, 0), normal_vector=(5, -1, 9))
>>> Plane.are_concurrent(a, b)
True
>>> Plane.are_concurrent(a, b, c)
False
```

distance(o)

Distance between the plane and another geometric entity.

Parameters
Point3D, LinearEntity3D, Plane.

Returns
distance

Notes

This method accepts only 3D entities as it’s parameter; but if you want to calculate the distance between a 2D entity and a plane you should first convert to a 3D entity by projecting onto a desired plane and then proceed to calculate the distance.

Examples

```python
>>> from sympy import Point3D, Line3D, Plane
>>> a = Plane(Point3D(1, 1, 1), normal_vector=(1, 1, 1))
>>> b = Point3D(1, 2, 3)
>>> a.distance(b)
sqrt(3)
>>> c = Line3D(Point3D(2, 3, 1), Point3D(1, 2, 2))
>>> a.distance(c)
0
```
equals(o)
Returns True if self and o are the same mathematical entities.

Examples

```python
>>> from sympy import Plane, Point3D
>>> a = Plane(Point3D(1, 2, 3), normal_vector=(1, 1, 1))
>>> b = Plane(Point3D(1, 2, 3), normal_vector=(2, 2, 2))
>>> c = Plane(Point3D(1, 2, 3), normal_vector=(-1, 4, 6))
>>> a.equals(a)
True
>>> a.equals(b)
True
>>> a.equals(c)
False
```

equation(x=None, y=None, z=None)
The equation of the Plane.

Examples

```python
>>> from sympy import Point3D, Plane
>>> a = Plane(Point3D(1, 1, 2), Point3D(2, 4, 7), Point3D(3, 5, 1))
>>> a.equation()
-23*x + 11*y - 2*z + 16
>>> a = Plane(Point3D(1, 4, 2), normal_vector=(6, 6, 6))
>>> a.equation()
6*x + 6*y + 6*z - 42
```

intersection(o)
The intersection with other geometrical entity.

Parameters
Plane, Point3D, LinearEntity, LinearEntity3D

Returns
List

Examples

```python
>>> from sympy import Point3D, Line3D, Plane
>>> a = Plane(Point3D(1, 2, 3), normal_vector=(1, 1, 1))
>>> b = Point3D(1, 2, 3)
>>> a.intersection(b)
[Point3D(1, 2, 3)]
>>> c = Line3D(Point3D(1, 4, 7), Point3D(2, 2, 2))
>>> a.intersection(c)
[Point3D(2, 2, 2)]
>>> d = Plane(Point3D(6, 0, 0), normal_vector=(2, -5, 3))
```
is_coplanar(o)
Returns True if o is coplanar with self, else False.

Examples

```python
>>> from sympy import Plane
>>> o = (0, 0, 0)
>>> p = Plane(o, (1, 1, 1))
>>> p2 = Plane(o, (2, 2, 2))
>>> p == p2
False
>>> p.is_coplanar(p2)
True
```

is_parallel(l)
Is the given geometric entity parallel to the plane?

Parameters
LinearEntity3D or Plane

Returns
Boolean

Examples

```python
>>> from sympy import Plane, Point3D
>>> a = Plane(Point3D(1,4,6), normal_vector=(2, 4, 6))
>>> b = Plane(Point3D(3,1,3), normal_vector=(4, 8, 12))
>>> a.is_parallel(b)
True
```

is_perpendicular(l)
Is the given geometric entity perpendicular to the given plane?

Parameters
LinearEntity3D or Plane

Returns
Boolean
Examples

```python
>>> from sympy import Plane, Point3D
>>> a = Plane(Point3D(1, 4, 6), normal_vector=(2, 4, 6))
>>> b = Plane(Point3D(2, 2, 2), normal_vector=(-1, 2, -1))
>>> a.is_perpendicular(b)
True
```

property normal_vector
Normal vector of the given plane.

Examples

```python
>>> from sympy import Plane, Point3D
>>> a = Plane(Point3D(1, 1, 1), Point3D(2, 3, 4), Point3D(2, 2, 2))
>>> a.normal_vector
(-1, 2, -1)
>>> a = Plane(Point3D(1, 1, 1), normal_vector=(1, 4, 7))
>>> a.normal_vector
(1, 4, 7)
```

property p1
The only defining point of the plane. Others can be obtained from the arbitrary_point method.

Examples

```python
>>> from sympy import Plane, Point3D
>>> a = Plane(Point3D(1, 1, 1), Point3D(2, 3, 4), Point3D(2, 2, 2))
>>> a.p1
Point3D(1, 1, 1)
```

See also:
sympy.geometry.point.Point3D (page 2286)

parallel_plane(pt)
Plane parallel to the given plane and passing through the point pt.

Parameters
pt: Point3D

Returns
Plane
SymPy Documentation, Release 1.12.1

Examples

```python
>>> from sympy import Plane, Point3D
>>> a = Plane(Point3D(1, 4, 6), normal_vector=(2, 4, 6))
>>> a.parallel_plane(Point3D(2, 3, 5))
Plane(Point3D(2, 3, 5), (2, 4, 6))
```

parameter_value(other, u=None, v=None)

Return the parameter(s) corresponding to the given point.

Examples

```python
>>> from sympy import pi, Plane
>>> from sympy import pi
>>> from sympy import t, u, v

>>> p = Plane((2, 0, 0), (0, 0, 1), (0, 1, 0))
By default, the parameter value returned defines a point that is a distance of 1 from
the Plane’s p1 value and in line with the given point:

```python
>>> on_circle = p.arbitrary_point(t).subs(t, pi/4)
>>> on_circle.distance(p.p1)
1
>>> p.parameter_value(on_circle, t)
{t: pi/4}
```

Moving the point twice as far from p1 does not change the parameter value:

```python
>>> off_circle = p.p1 + (on_circle - p.p1)*2
>>> off_circle.distance(p.p1)
2
>>> p.parameter_value(off_circle, t)
{t: pi/4}
```

If the 2-value parameter is desired, supply the two parameter symbols and a replacement
dictionary will be returned:

```python
>>> p.parameter_value(on_circle, u, v)
{u: sqrt(10)/10, v: sqrt(10)/30}
>>> p.parameter_value(off_circle, u, v)
{u: sqrt(10)/5, v: sqrt(10)/15}
```

**perpendicular_line**(pt)

A line perpendicular to the given plane.

Parameters

- **pt**: Point3D

Returns

Line3D
Examples

```python
>>> from sympy import Plane, Point3D
>>> a = Plane(Point3D(1, 4, 6), normal_vector=(2, 4, 6))
>>> a.perpendicular_line(Point3D(9, 8, 7))
Line3D(Point3D(9, 8, 7), Point3D(11, 12, 13))
```

perpendicular_plane(*pts)
Return a perpendicular passing through the given points. If the direction ratio between the points is the same as the Plane's normal vector then, to select from the infinite number of possible planes, a third point will be chosen on the z-axis (or the y-axis if the normal vector is already parallel to the z-axis). If less than two points are given they will be supplied as follows: if no point is given then p1 will be self.p1; if a second point is not given it will be a point through p1 on a line parallel to the z-axis (if the normal is not already the z-axis, otherwise on the line parallel to the y-axis).

Parameters
pts: 0, 1 or 2 Point3D

Returns
Plane

Examples

```python
>>> from sympy import Plane, Point3D
>>> a, b = Point3D(0, 0, 0), Point3D(0, 1, 0)
>>> Z = (0, 0, 1)
>>> p = Plane(a, normal_vector=Z)
>>> p.perpendicular_plane(a, b)
Plane(Point3D(0, 0, 0), (1, 0, 0))
```

projection(pt)
Project the given point onto the plane along the plane normal.

Parameters
Point or Point3D

Returns
Point3D

Examples

```python
>>> from sympy import Plane, Point3D
>>> A = Plane(Point3D(1, 1, 2), normal_vector=(1, 1, 1))
```

The projection is along the normal vector direction, not the z axis, so (1, 1) does not project to (1, 1, 2) on the plane A:

```python
>>> b = Point3D(1, 1)
>>> A.projection(b)
Point3D(5/3, 5/3, 2/3)
```
But the point (1, 1, 2) projects to (1, 1) on the XY-plane:

```python
>>> XY = Plane((0, 0, 0), (0, 0, 1))
>>> XY.projection((1, 1, 2))
Point3D(1, 1, 0)
```

**project_line(line)**

Project the given line onto the plane through the normal plane containing the line.

**Parameters**

- **LinearEntity or LinearEntity3D**

**Returns**

- Point3D, Line3D, Ray3D or Segment3D

**Notes**

For the interaction between 2D and 3D lines (segments, rays), you should convert the line to 3D by using this method. For example for finding the intersection between a 2D and a 3D line, convert the 2D line to a 3D line by projecting it on a required plane and then proceed to find the intersection between those lines.

**Examples**

```python
>>> from sympy import Plane, Line, Line3D, Point3D
>>> a = Plane(Point3D(1, 1, 1), normal_vector=(1, 1, 1))
>>> b = Line(Point3D(1, 1), Point3D(2, 2))
>>> a.project_line(b)
Line3D(Point3D(4/3, 4/3, 1/3), Point3D(5/3, 5/3, -1/3))
>>> c = Line3D(Point3D(1, 1, 1), Point3D(2, 2, 2))
>>> a.project_line(c)
Point3D(1, 1, 1)
```

**random_point(seed=None)**

Returns a random point on the Plane.

**Returns**

- Point3D
Examples

```python
>>> from sympy import Plane
>>> p = Plane((1, 0, 0), normal_vector=(0, 1, 0))
>>> r = p.random_point(seed=42) # seed value is optional
>>> r.n(3)
Point3D(2.29, 0, -1.35)
```

The random point can be moved to lie on the circle of radius 1 centered on p1:

```python
>>> c = p.p1 + (r - p.p1).unit
>>> c.distance(p.p1).equals(1)
True
```

Holonomic

The holonomic (page 2387) module is intended to deal with holonomic functions along with various operations on them like addition, multiplication, composition, integration and differentiation. The module also implements various kinds of conversions such as converting holonomic functions to a different form and the other way around.

Contents

About Holonomic Functions

This text aims to explain holonomic functions. We assume you have a basic idea of Differential equations and Abstract algebra.

Definition

Holonomic function is a very general type of special function that includes lots of simple known functions as its special cases. In fact the more known hypergeometric function and Meijer G-function are also a special case of it.

A function is called holonomic if it’s a solution to an ordinary differential equation having polynomial coefficients only. Since the general solution of a differential equation consists of a family of functions rather than a single function, holonomic functions are usually defined by a set of initial conditions along with the differential equation.

Let $K$ be a field of characteristic 0. For example, $K$ can be QQ or RR. A function $f(x)$ will be holonomic if there exists polynomials $p_0, p_1, p_2, ... p_r \in K[x]$ such that

$$p_0 \cdot f(x) + p_1 \cdot f^{(1)}(x) + p_2 \cdot f^{(2)}(x) + ... + p_r \cdot f^{(r)}(x) = 0$$

This differential equation can also be written as $L \cdot f(x) = 0$ where

$$L = p_0 + p_1 \cdot D + p_2 \cdot D^2 + ... p_r \cdot D^r$$

Here $D$ is the Differential Operator and $L$ is called the annihilator of the function.
A unique holonomic function can be defined from the annihilator and a set of initial conditions. For instance:

\[
\begin{align*}
  f(x) &= \exp(x) : L = D - 1, \ f(0) = 1 \\
  f(x) &= \sin(x) : L = D^2 + 1, \ f(0) = 0, \ f'(0) = 1
\end{align*}
\]

Other fundamental functions such as \( \cos(x) \), \( \log(x) \), bessel functions etc. are also holonomic. The family of holonomic functions is closed under addition, multiplication, integration, composition. This means if two functions are given are holonomic, then the function resulting on applying these operation on them will also be holonomic.

References

https://en.wikipedia.org/wiki/Holonomic_function

Representation of holonomic functions in SymPy

Class \texttt{DifferentialOperator} (page 2390) is used to represent the annihilator but we create differential operators easily using the function \texttt{DifferentialOperators()} (page 2390). Class \texttt{HolonomicFunction} (page 2388) represents a holonomic function.

Let’s explain this with an example:

Take \( \sin(x) \) for instance, the differential equation satisfied by it is \( y''(x) + y(x) = 0 \). By definition we conclude it is a holonomic function. The general solution of this ODE is \( C_1 \cdot \sin(x) + C_2 \cdot \cos(x) \) but to get \( \sin(x) \) we need to provide initial conditions i.e. \( y(0) = 0, \ y'(0) = 1 \).

To represent the same in this module one needs to provide the differential equation in the form of annihilator. Basically a differential operator is an operator on functions that differentiates them. So \( D^n \cdot y(x) = y^{(n)}(x) \) where \( y^{(n)}(x) \) denotes \( n \) times differentiation of \( y(x) \) with respect to \( x \).

So the differential equation can also be written as \( D^2 \cdot y(x) + y(x) = 0 \) or \( (D^2 + 1) \cdot y(x) = 0 \). The part left of \( y(x) \) is the annihilator i.e. \( D^2 + 1 \).

So this is how one will represent \( \sin(x) \) as a Holonomic Function:

```python
>>> from sympy.holonomic import DifferentialOperators, HolonomicFunction
>>> from sympy.abc import x
>>> R, D = DifferentialOperators(ZZ.old_poly_ring(x), 'D')
>>> HolonomicFunction(D**2 + 1, x, 0, [0, 1])
HolonomicFunction((1) + (1)*D**2, x, 0, [0, 1])
```

The polynomial coefficients will be members of the ring \( \mathbb{Z}[x] \) in the example. The \( D \) operator returned by the function \texttt{DifferentialOperators()} (page 2390) can be used to create annihilators just like SymPy expressions. We currently use the older implementations of rings in SymPy for priority mechanism.

class sympy.holonomic.holonomic.HolonomicFunction(annihilator, x, x0=0, y0=None)

A Holonomic Function is a solution to a linear homogeneous ordinary differential equation with polynomial coefficients. This differential equation can also be represented by an annihilator i.e. a Differential Operator \( L \) such that \( Lf = 0 \). For uniqueness of these functions, initial conditions can also be provided along with the annihilator.
Explanation

Holonomic functions have closure properties and thus forms a ring. Given two Holonomic Functions f and g, their sum, product, integral and derivative is also a Holonomic Function.

For ordinary points initial condition should be a vector of values of the derivatives i.e. \([y(x_0), y'(x_0), y''(x_0)]\).

For regular singular points initial conditions can also be provided in this format:

\(s_0 : [C_0, C_1, ...], s_1 : [C_0, C_1, ...], ...\) where \(s_0, s_1, ...
\) are the roots of indicial equation and vectors \([C_0, C_1, ...], [C_0, C_1, ...], ...\) are the corresponding initial terms of the associated power series. See Examples below.

Examples

```python
>>> from sympy.holonomic.holonomic import HolonomicFunction,
 DifferentialOperators
>>> from sympy import QQ
>>> from sympy import symbols, S
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
>>> p = HolonomicFunction(Dx - 1, x, 0, [1]) # e^x
>>> q = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]) # sin(x)

>>> p + q # annihilator of e^x + sin(x)
HolonomicFunction((-1) + (1)*Dx + (-1)*Dx**2 + (1)*Dx**3, x, 0, [1, 2, 1])

>>> p * q # annihilator of e^x * sin(x)
HolonomicFunction((2) + (-2)*Dx + (1)*Dx**2, x, 0, [0, 1])
```

An example of initial conditions for regular singular points, the indicial equation has only one root 1/2.

```python
>>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]})
HolonomicFunction((-1/2) + (x)*Dx, x, 0, [1/2: [1]])
```

To plot a Holonomic Function, one can use `.evalf()` for numerical computation. Here's an example on \(\sin(x) * 2/x\) using numpy and matplotlib.

```python
>>> import sympy.holonomic
>>> from sympy import var, sin
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> var("x")
>>> r = np.linspace(1, 5, 100)
>>> y = sympy.holonomic.expr_to_holonomic(sin(x)**2/x, x0=1).evalf(r)
```

(continues on next page)
class sympy.holonomic.holonomic.DifferentialOperator(list_of_poly, parent)

Differential Operators are elements of Weyl Algebra. The Operators are defined by a list of polynomials in the base ring and the parent ring of the Operator i.e. the algebra it belongs to.

Explanation

Takes a list of polynomials for each power of \(Dx\) and the parent ring which must be an instance of DifferentialOperatorAlgebra.

A Differential Operator can be created easily using the operator \(Dx\). See examples below.

Examples

```python
>>> from sympy.holonomic.holonomic import DifferentialOperator,
 DifferentialOperators
>>> from sympy import ZZ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')

>>> DifferentialOperator([0, 1, x**2], R)
(1)*Dx + (x**2)*Dx**2

>>> (x**2*Dx*x + 1 - Dx**2)**2
(2*x**2 + 2*x + 1) + (4*x**3 + 2*x**2 - 4)*Dx + (x**4 - 6*x - 2)*Dx**2 + (-2*x**2)*Dx**3 + (1)*Dx**4
```

See also:

DifferentialOperatorAlgebra (page 2391)

is_singular\((x0)\)

Checks if the differential equation is singular at \(x0\).

sympy.holonomic.holonomic.DifferentialOperators\((base, generator)\)

This function is used to create annihilators using \(Dx\).

Parameters

base:

Base polynomial ring for the algebra. The base polynomial ring is the ring of polynomials in \(x\) that will appear as coefficients in the operators.

generator:

Generator of the algebra which can be either a noncommutative Symbol or a string. e.g. “Dx” or “D”.

---

2390 Chapter 5. API Reference
Explanation

Returns an Algebra of Differential Operators also called Weyl Algebra and the operator for differentiation i.e. the $Dx$ operator.

Examples

```python
>>> from sympy import ZZ
>>> from sympy.abc import x
>>> from sympy.holonomic.holonomic import DifferentialOperators
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
>>> R
Univariate Differential Operator Algebra in intermediate Dx over the
← base ring ZZ[x]
```

```python
>>> Dx*x
(1) + (x)*Dx
```

class sympy.holonomic.holonomic.DifferentialOperatorAlgebra(base, generator)

An Ore Algebra is a set of noncommutative polynomials in the intermediate $Dx$ and coefficients in a base polynomial ring $A$. It follows the commutation rule:

$$Dxa = \sigma(a)Dx + \delta(a)$$

for $a \in A$.

Where $\sigma : A \Rightarrow A$ is an endomorphism and $\delta : A \rightarrow A$ is a skew-derivation i.e. $\delta(ab) = \delta(a)b + \sigma(a)\delta(b)$.

If one takes the sigma as identity map and delta as the standard derivation then it becomes the algebra of Differential Operators also called a Weyl Algebra i.e. an algebra whose elements are Differential Operators.

This class represents a Weyl Algebra and serves as the parent ring for Differential Operators.

Examples

```python
>>> from sympy import ZZ
>>> from sympy import symbols
>>> from sympy.holonomic.holonomic import DifferentialOperators
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
>>> R
Univariate Differential Operator Algebra in intermediate Dx over the
←base ring ZZ[x]
```

See also:

DifferentialOperator (page 2390)
Operations on holonomic functions

Addition and Multiplication

Two holonomic functions can be added or multiplied with the result also a holonomic function.

```python
>>> from sympy.holonomic.holonomic import HolonomicFunction,
 DifferentialOperators
>>> from sympy.polys.domains import QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')

```

p and q here are holonomic representation of $e^x$ and $\sin(x)$ respectively.

```python
>>> p = HolonomicFunction(Dx - 1, x, 0, [1])
>>> q = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1])

```

Holonomic representation of $e^x + \sin(x)$

```python
>>> p + q
HolonomicFunction((-1) + (1)*Dx + (-1)*Dx**2 + (1)*Dx**3, x, 0, [1, \text{\ldots, 2, 1}])

```

Holonomic representation of $e^x \cdot \sin(x)$

```python
>>> p * q
HolonomicFunction((2) + (-2)*Dx + (1)*Dx**2, x, 0, [0, 1])

```

Integration and Differentiation

HolonomicFunction.integrate(\text{\textit{limits, initcond=False}})

Integrates the given holonomic function.

Examples

```python
>>> from sympy.holonomic.holonomic import HolonomicFunction,
 DifferentialOperators
>>> from sympy import QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')

```

```python
>>> HolonomicFunction(Dx - 1, x, 0, [1]).integrate((x, 0, x)) # e^x - 1
HolonomicFunction((-1)*Dx + (1)*Dx**2, x, 0, [0, 1])

```

```python
>>> HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]).integrate((x, 0, x))
HolonomicFunction((1)*Dx + (1)*Dx**3, x, 0, [0, 1, 0])

```

HolonomicFunction.diff(*\text{\textit{args, \textendash\textendash kwargs}})

Differentiation of the given Holonomic function.
Examples

```python
>>> from sympy.holonomic.holonomic import HolonomicFunction,
 DifferentialOperators
>>> from sympy import ZZ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
>>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).diff().to_expr()
 cos(x)
>>> HolonomicFunction(Dx - 2, x, 0, [1]).diff().to_expr()
 2*exp(2*x)
```

See also:
`integrate` (page 2392)

Composition with polynomials

`HolonomicFunction.composition(expr, *args, **kwargs)`

Returns function after composition of a holonomic function with an algebraic function. The method cannot compute initial conditions for the result by itself, so they can be also be provided.

Examples

```python
>>> from sympy.holonomic.holonomic import HolonomicFunction,
 DifferentialOperators
>>> from sympy import QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
>>> HolonomicFunction(Dx - 1, x).composition(x**2, 0, [1]) # e^(x**2)
 HolonomicFunction((-2*x) + (1)*Dx, x, 0, [1])
>>> HolonomicFunction((4*x**3) + (-1)*Dx + (x)*Dx**2, x, 1, [1, 0])
```

See also:
`from_hyper` (page 2397)

Convert to holonomic sequence

`HolonomicFunction.to_sequence(lb=True)`

Finds recurrence relation for the coefficients in the series expansion of the function about \(x_0\), where \(x_0\) is the point at which the initial condition is stored.
**Explanation**

If the point \(x_0\) is ordinary, solution of the form \([R; n_0]\) is returned. Where \(R\) is the recurrence relation and \(n_0\) is the smallest \(n\) for which the recurrence holds true.

If the point \(x_0\) is regular singular, a list of solutions in the format \((R; p; n_0)\) is returned, i.e. \([R; p; n_0, \ldots]\). Each tuple in this vector represents a recurrence relation \(R\) associated with a root of the indicial equation \(p\). Conditions of a different format can also be provided in this case, see the docstring of HolonomicFunction class.

If it’s not possible to numerically compute an initial condition, it is returned as a symbol \(C_j\), denoting the coefficient of \((x - x_0)^j\) in the power series about \(x_0\).

**Examples**

```python
>>> from sympy.holonomic.holonomic import HolonomicFunction, ...
 DifferentialOperators
>>> from sympy import QQ
>>> from sympy import symbols, S
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
>>> HolonomicFunction(Dx - 1, x, 0, [1]).to_sequence()
[(HolonomicSequence((-1) + (n + 1)Sn, n), u(0) = 1, 0)]
>>> HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1]).to_sequence()
[(HolonomicSequence((n**2) + (n**2 + n)Sn, n), u(0) = 0, u(1) = 1, u(2) = -1/2, 2)]
>>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}).to_sequence()
[(HolonomicSequence((n), n), u(0) = 1, 1/2, 1)]
```

See also:

*HolonomicFunction.series* (page 2394)

**References**

[R537], [R538]

**Series expansion**

*HolonomicFunction.series*(\(n=6, coefficient=False, order=True, _recur=None\))

Finds the power series expansion of given holonomic function about \(x_0\).
Explanation

A list of series might be returned if \( x_0 \) is a regular point with multiple roots of the indicial equation.

Examples

```python
>>> from sympy.holonomic.holonomic import HolonomicFunction,
 DifferentialOperators
>>> from sympy import QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
>>> HolonomicFunction(Dx - 1, x, 0, [1]).series() # e^x
1 + x + x**2/2 + x**3/6 + x**4/24 + x**5/120 + O(x**6)
>>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).series(n=8) # sin(x)
x - x**3/6 + x**5/120 - x**7/5040 + O(x**8)
```

See also:

*HolonomicFunction.to_sequence* (page 2393)

Numerical evaluation

`HolonomicFunction.evalf(points, method='RK4', h=0.05, derivatives=False)`

Finds numerical value of a holonomic function using numerical methods. (RK4 by default). A set of points (real or complex) must be provided which will be the path for the numerical integration.

Explanation

The path should be given as a list \([x_1, x_2, \ldots, x_n]\). The numerical values will be computed at each point in this order \( x_1 \to x_2 \to x_3 \cdots \to x_n \).

Returns values of the function at \( x_1, x_2, \ldots, x_n \) in a list.

Examples

```python
>>> from sympy.holonomic.holonomic import HolonomicFunction,
 DifferentialOperators
>>> from sympy import QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
>>> r = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
```

A straight line on the real axis from (0 to 1)

Runge-Kutta 4th order on \( e^x \) from 0.1 to 1. Exact solution at 1 is 2.71828182845905

5.8. Topics 2395
Euler's method for the same

```python
>>> HolonomicFunction(Dx - 1, x, 0, [1]).evalf(r, method='Euler')
[1.1, 1.21, 1.331, 1.4641, 1.61051, 1.771561, 1.9487171, 2.14358881, 2.357947691, 2.5937424601]
```

One can also observe that the value obtained using Runge-Kutta 4th order is much more accurate than Euler's method.

### Convert to a linear combination of hypergeometric functions

HolonomicFunction.to_hyper(as_list=False, _recur=None)

Returns a hypergeometric function (or linear combination of them) representing the given holonomic function.

**Explanation**

Returns an answer of the form: $a_1 x^{b_1} \cdot \text{hyper}() + a_2 x^{b_2} \cdot \text{hyper}()$...

This is very useful as one can now use hyperexpand to find the symbolic expressions/functions.

**Examples**

```python
>>> from sympy.holonomic.holonomic import HolonomicFunction,

>>> from sympy import ZZ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx')
>>> # sin(x)
>>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).to_hyper()
x*hyper(), (3/2,), -x**2/4)
>>> # exp(x)
>>> HolonomicFunction(Dx - 1, x, 0, [1]).to_hyper()
hyper(), (), x)
```

**See also:**

from_hyper (page 2397), from_meijerg (page 2398)
Convert to a linear combination of Meijer G-functions

HolonomicFunction.to_meijerg()

Returns a linear combination of Meijer G-functions.

Examples

```python
>>> from sympy.holonomic import expr_to_holonomic
>>> from sympy import sin, cos, hyperexpand, log, symbols
>>> x = symbols('x')
>>> hyperexpand(expr_to_holonomic(cos(x) + sin(x)).to_meijerg())
sin(x) + cos(x)
>>> hyperexpand(expr_to_holonomic(log(x)).to_meijerg()).simplify()
log(x)
```

See also:

to_hyper (page 2396)

Convert to expressions

HolonomicFunction.to_expr()

Converts a Holonomic Function back to elementary functions.

Examples

```python
>>> from sympy.holonomic.holonomic import HolonomicFunction,

DifferentialOperators
>>> from sympy import ZZ
>>> from sympy import symbols, S
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
>>> HolonomicFunction(x**2*Dx**2 + x*Dx + (x**2 - 1), x, 0, [0, S(1)/2]).

.to_expr()
besselj(1, x)
>>> HolonomicFunction((1 + x)*Dx**3 + Dx**2, x, 0, [1, 1, 1]).to_expr()
x*log(x + 1) + log(x + 1) + 1
```

Converting other representations to holonomic

Converting hypergeometric functions

sympy.holonomic.holonomic.from_hyper(func, x0=0, evalf=False)

Converts a hypergeometric function to holonomic. func is the Hypergeometric Function and x0 is the point at which initial conditions are required.
Examples

```python
>>> from sympy.holonomic.holonomic import from_hyper
>>> from sympy import symbols, hyper, S
>>> x = symbols('x')
>>> from_hyper(hyper([], [S(3)/2], x**2/4))
HolonomicFunction((-x) + (2)*Dx + (x)*Dx**2, x, 1, [sinh(1), -sinh(1) + \cosh(1)])
```

Converting Meijer G-functions

```python
sympy.holonomic.holonomic.from_meijerg(func, x0=0, evaf=False, initcond=True, domain=QQ)
```

Converts a Meijer G-function to Holonomic. func is the G-Function and x0 is the point at which initial conditions are required.

Examples

```python
>>> from sympy.holonomic.holonomic import from_meijerg
>>> from sympy import symbols, meijerg, S
>>> x = symbols('x')
>>> from_meijerg(meijerg([[], []], ([S(1)/2], [0]), x**2/4))
HolonomicFunction((1) + (1)*Dx**2, x, 0, [0, 1/sqrt(pi)])
```

Converting symbolic expressions

```python
sympy.holonomic.holonomic.expr_to_holonomic(func, x=None, x0=0, y0=None, lenics=None, domain=None, initcond=True)
```

Converts a function or an expression to a holonomic function.

**Parameters**

- **func:**
  - The expression to be converted.
- **x:**
  - variable for the function.
- **x0:**
  - point at which initial condition must be computed.
- **y0:**
  - One can optionally provide initial condition if the method is not able to do it automatically.
- **lenics:**
  - Number of terms in the initial condition. By default it is equal to the order of the annihilator.
domain:
Ground domain for the polynomials in x appearing as coefficients in the annihilator.

initcond:
Set it false if you do not want the initial conditions to be computed.

Examples

```python
>>> from sympy.holonomic.holonomic import expr_to_holonomic
>>> from sympy import sin, exp, symbols
>>> x = symbols('x')
>>> expr_to_holonomic(sin(x))
HolonomicFunction((1) + (1)*Dx**2, x, 0, [0, 1])
>>> expr_to_holonomic(exp(x))
HolonomicFunction((-1) + (1)*Dx, x, 0, [1])
```

See also:
- `sympy.integrals.meijerint._rewrite1` (page 631),
- `_convert_poly_rat_alg` (page 2400),
- `_create_table` (page 2400)

Uses and Current limitations

Integration

One can perform integrations using holonomic functions by following these steps:
1. Convert the integrand to a holonomic function.
2. Now integrate the holonomic representation of the function.
3. Convert the integral back to expressions.

Examples

```python
>>> from sympy import x, a
>>> from sympy import sin
>>> from sympy.holonomic.holonomic import expr_to_holonomic
>>> expr_to_holonomic(1/(x**2+a), x).integrate(x).to_expr()
atan(x/sqrt(a))/sqrt(a)
>>> expr_to_holonomic(sin(x)/x).integrate(x).to_expr()
Si(x)
```

As you can see in the first example we converted the function to holonomic, integrated the result and then converted back to symbolic expression.
Limitations

1. Converting to expressions is not always possible. The holonomic function should have a hypergeometric series at $x_0$.

2. Implementation of converting to holonomic sequence currently doesn’t support Frobenius method when the solutions need to have log terms. This happens when at least one pair of the roots of the indicial equation differ by an integer and frobenius method yields linearly dependent series solutions. Since we use this while converting to expressions, sometimes `to_expr()` (page 2397) fails.

3. There doesn’t seem to be a way for computing indefinite integrals, so `integrate()` (page 2392) basically computes $\int_{x_0}^x f(x)dx$ if no limits are given, where $x_0$ is the point at which initial conditions for the integrand are stored. Sometimes this gives an additional constant in the result. For instance:

\[
\begin{align*}
\text{>>> expr_to_holonomic(sin(x)).integrate(x).to_expr()} &= 1 - \cos(x) \\
\text{>>> sin(x).integrate(x) &= -\cos(x)}
\end{align*}
\]

The indefinite integral of $\sin(x)$ is $-\cos(x)$. But the output is $-\cos(x) + 1$ which is $\int_{x_0}^x \sin(x)dx$. Although both are considered correct but $-\cos(x)$ is simpler.

Internal API

```
sympy.holonomic.holonomic._create_table(table, domain=QQ)
 Creates the look-up table. For a similar implementation see meijerint._create_lookup_table.
	sympy.holonomic.holonomic._convert_poly_rat_alg(func, x, x0=0, y0=None, lenics=None, domain=QQ, initcond=True)
 Converts polynomials, rationals and algebraic functions to holonomic.
```

Lie Algebra

```
class sympy.liealgebras.root_system.RootSystem(cartantype)
 Represent the root system of a simple Lie algebra

 Every simple Lie algebra has a unique root system. To find the root system, we first consider the Cartan subalgebra of g, which is the maximal abelian subalgebra, and consider the adjoint action of g on this subalgebra. There is a root system associated with this action. Now, a root system over a vector space V is a set of finite vectors Phi (called roots), which satisfy:
 1. The roots span V
 2. The only scalar multiples of x in Phi are x and -x
 3. For every x in Phi, the set Phi is closed under reflection through the hyperplane perpendicular to x.
 4. If x and y are roots in Phi, then the projection of y onto the line through x is a half-integral multiple of x.
```

Now, there is a subset of \( \Phi \), which we will call \( \Delta \), such that:
1. \( \Delta \) is a basis of \( V \).
2. Each root \( x \) in \( \Phi \) can be written \( x = \sum k_y y \) for \( y \) in \( \Delta \).

The elements of \( \Delta \) are called the simple roots. Therefore, we see that the simple roots span the root space of a given simple Lie algebra.

References

[R570], [R571]

add_as_roots\((\text{root}_1, \text{root}_2)\)
Add two roots together if and only if their sum is also a root.

It takes as input two vectors which should be roots. It then computes their sum and checks if it is in the list of all possible roots. If it is, it returns the sum. Otherwise it returns a string saying that the sum is not a root.

Examples

```python
>>> from sympy.liealgebras.root_system import RootSystem
>>> c = RootSystem("A3")
>>> c.add_as_roots([1, 0, -1, 0], [0, 0, 1, -1])
[1, 0, 0, -1]
>>> c.add_as_roots([1, -1, 0, 0], [0, 0, -1, 1])
'The sum of these two roots is not a root'
```

add_simple_roots\((\text{root}_1, \text{root}_2)\)
Add two simple roots together.

The function takes as input two integers, \( \text{root}_1 \) and \( \text{root}_2 \). It then uses these integers as keys in the dictionary of simple roots, and gets the corresponding simple roots, and then adds them together.

Examples

```python
>>> from sympy.liealgebras.root_system import RootSystem
>>> c = RootSystem("A3")
>>> newroot = c.add_simple_roots(1, 2)
>>> newroot
[1, 0, -1, 0]
```

all_roots()
Generate all the roots of a given root system.

The result is a dictionary where the keys are integer numbers. It generates the roots by getting the dictionary of all positive roots from the bases classes, and then taking each root, and multiplying it by -1 and adding it to the dictionary. In this way all the negative roots are generated.

cartan_matrix()
Cartan matrix of Lie algebra associated with this root system.
Examples

```python
>>> from sympy.liealgebras.root_system import RootSystem
>>> c = RootSystem("A3")
>>> c.cartan_matrix()
Matrix([[2, -1, 0],
 [-1, 2, -1],
 [0, -1, 2]])
```

dynkin_diagram()

Dynkin diagram of the Lie algebra associated with this root system

Examples

```python
>>> from sympy.liealgebras.root_system import RootSystem
>>> c = RootSystem("A3")
>>> print(c.dynkin_diagram())
0---0---0
1 2 3
```

root_space()

Return the span of the simple roots

The root space is the vector space spanned by the simple roots, i.e. it is a vector space with a distinguished basis, the simple roots. This method returns a string that represents the root space as the span of the simple roots, \( \alpha[1], \ldots, \alpha[n] \).

Examples

```python
>>> from sympy.liealgebras.root_system import RootSystem
>>> c = RootSystem("A3")
>>> c.root_space()
```

simple_roots()

Generate the simple roots of the Lie algebra

The rank of the Lie algebra determines the number of simple roots that it has. This method obtains the rank of the Lie algebra, and then uses the simple_root method from the Lie algebra classes to generate all the simple roots.
Examples

```python
>>> from sympy.liealgebras.root_system import RootSystem
>>> c = RootSystem("A3")
>>> roots = c.simple_roots()
>>> roots
{1: [1, -1, 0, 0], 2: [0, 1, -1, 0], 3: [0, 0, 1, -1]}
```

class sympy.liealgebras.type_a.TypeA(n)
This class contains the information about the A series of simple Lie algebras.

basic_root(i,j)
This is a method just to generate roots with a 1 in the i\text{th} position and a -1 in the j\text{th} position.

basis()
Returns the number of independent generators of A_n

cartan_matrix()
Returns the Cartan matrix for A_n. The Cartan matrix for a Lie algebra is generated by assigning an ordering to the simple roots, (alpha[1], ..., alpha[l]). Then the ij\text{th} entry of the Cartan matrix is (\langle alpha[i], alpha[j]\rangle).

Examples

```python
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType('A4')
>>> c.cartan_matrix()
Matrix(
 [2, -1, 0, 0],
 [-1, 2, -1, 0],
 [0, -1, 2, -1],
 [0, 0, -1, 2])
```

dimension()
Dimension of the vector space V underlying the Lie algebra

Examples

```python
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType("A4")
>>> c.dimension()
5
```

highest_root()
Returns the highest weight root for A_n

lie_algebra()
Returns the Lie algebra associated with A_n
positive_roots()

This method generates all the positive roots of $A_n$. This is half of all the roots of $A_n$; by multiplying all the positive roots by -1 we get the negative roots.

Examples

```python
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType("A3")
>>> c.positive_roots()
{1: [1, -1, 0, 0], 2: [1, 0, -1, 0], 3: [1, 0, 0, -1], 4: [0, 1, -1, -1], 5: [0, 1, 0, -1], 6: [0, 0, 1, -1]}
```

roots()

Returns the total number of roots for $A_n$

simple_root($i$)

Every lie algebra has a unique root system. Given a root system $Q$, there is a subset of the roots such that an element of $Q$ is called a simple root if it cannot be written as the sum of two elements in $Q$. If we let $D$ denote the set of simple roots, then it is clear that every element of $Q$ can be written as a linear combination of elements of $D$ with all coefficients non-negative.

In $A_n$ the $i$th simple root is the root which has a 1 in the $i$th position, a -1 in the $(i+1)$th position, and zeroes elsewhere.

This method returns the $i$th simple root for the $A$ series.

Examples

```python
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType("A4")
>>> c.simple_root(1)
[1, -1, 0, 0, 0]
```

class sympy.liealgebras.type_b.TypeB($n$)

basic_root($i$, $j$)

This is a method just to generate roots with a 1 in the $i$th position and a -1 in the $j$th position.

basis()

Returns the number of independent generators of $B_n$

cartan_matrix()

Returns the Cartan matrix for $B_n$. The Cartan matrix matrix for a Lie algebra is generated by assigning an ordering to the simple roots, $(\alpha[1], \ldots, \alpha[l])$. Then the $ij$th entry of the Cartan matrix is $(\langle \alpha[i], \alpha[j] \rangle)$.
Examples

```python
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType('B4')
>>> c.cartan_matrix()
Matrix([[2, -1, 0, 0],
 [-1, 2, -1, 0],
 [0, -1, 2, -2],
 [0, 0, -1, 2]])
```

dimension()

Dimension of the vector space V underlying the Lie algebra

Examples

```python
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType("B3")
>>> c.dimension()
3
```

lie_algebra()

Returns the Lie algebra associated with B_n

positive_roots()

This method generates all the positive roots of A_n. This is half of all of the roots of B_n; by multiplying all the positive roots by -1 we get the negative roots.

Examples

```python
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType("A3")
>>> c.positive_roots()
{1: [1, -1, 0, 0], 2: [1, 0, -1, 0], 3: [1, 0, 0, -1], 4: [0, 1, -1, 0], 5: [0, 1, 0, -1], 6: [0, 0, 1, -1]}
```

roots()

Returns the total number of roots for B_n

simple_root(i)

Every lie algebra has a unique root system. Given a root system Q, there is a subset of the roots such that an element of Q is called a simple root if it cannot be written as the sum of two elements in Q. If we let D denote the set of simple roots, then it is clear that every element of Q can be written as a linear combination of elements of D with all coefficients non-negative.

In B_n the first n-1 simple roots are the same as the roots in A_(n-1) (a 1 in the ith position, a -1 in the (i+1)th position, and zeroes elsewhere). The n-th simple root is the root with a 1 in the n-th position and zeroes elsewhere.

This method returns the ith simple root for the B series.
Examples

```python
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType("B3")
>>> c.simple_root(2)
[0, 1, -1]
```

class `sympy.liealgebras.type_c.TypeC(n)`

**basic_root(i, j)**
Generate roots with 1 in ith position and a -1 in jth position

**basis()**
Returns the number of independent generators of C_n

**cartan_matrix()**
The Cartan matrix for C_n

The Cartan matrix matrix for a Lie algebra is generated by assigning an ordering to the simple roots, (alpha[1], ..., alpha[l]). Then the ijth entry of the Cartan matrix is (alpha[i], alpha[j]).

Examples

```python
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType('C4')
>>> c.cartan_matrix()
Matrix([[2, -1, 0, 0],
[-1, 2, -1, 0],
[0, -1, 2, -1],
[0, 0, -2, 2]])
```

**dimension()**
Dimension of the vector space V underlying the Lie algebra

Examples

```python
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType('C3')
>>> c.dimension()
3
```

**lie_algebra()**
Returns the Lie algebra associated with C_n

**positive_roots()**
Generates all the positive roots of A_n

This is half of all the roots of C_n; by multiplying all the positive roots by -1 we get the negative roots.
Examples

```python
from sympy.liealgebras.cartan_type import CartanType
c = CartanType("A3")
c.positive_roots()
{1: [1, -1, 0, 0], 2: [1, 0, -1, 0], 3: [1, 0, 0, -1], 4: [0, 1, -1, 0], 5: [0, 1, 0, -1], 6: [0, 0, 1, -1]}
```

`roots()`

Returns the total number of roots for C_n

`simple_root(i)`

The ith simple root for the C series

Every lie algebra has a unique root system. Given a root system Q, there is a subset of the roots such that an element of Q is called a simple root if it cannot be written as the sum of two elements in Q. If we let D denote the set of simple roots, then it is clear that every element of Q can be written as a linear combination of elements of D with all coefficients non-negative.

In C_n, the first n-1 simple roots are the same as the roots in A_(n-1) (a 1 in the ith position, a -1 in the (i+1)th position, and zeroes elsewhere). The nth simple root is the root in which there is a 2 in the nth position and zeroes elsewhere.

Examples

```python
from sympy.liealgebras.cartan_type import CartanType
c = CartanType("C3")
c.simple_root(2)
[0, 1, -1]
```

class sympy.liealgebras.type_d.TypeD(n)

`basic_root(i, j)`

This is a method just to generate roots with a 1 in the ith position and a -1 in the jth position.

`basis()`

Returns the number of independent generators of D_n

`cartan_matrix()`

Returns the Cartan matrix for D_n. The Cartan matrix matrix for a Lie algebra is generated by assigning an ordering to the simple roots, (alpha[1], ..., alpha[l]). Then the ijth entry of the Cartan matrix is (<alpha[i],alpha[j]>).
Examples

```python
>>> from sympy.liealgebraskartan_type import CartanType
>>> c = CartanType('D4')
>>> c.cartan_matrix()
Matrix([[2, -1, 0, 0], [-1, 2, -1, -1], [0, -1, 2, 0], [0, -1, 0, 2]])
```

dimension()
Dimension of the vector space $V$ underlying the Lie algebra

Examples

```python
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType('D4')
>>> c.dimension()
4
```

lie_algebra()
Returns the Lie algebra associated with $D_n$

positive_roots()
This method generates all the positive roots of $A_n$. This is half of all the roots of $D_n$ by multiplying all the positive roots by -1 we get the negative roots.

Examples

```python
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType('A3')
>>> c.positive_roots()
{1: [1, -1, 0, 0], 2: [1, 0, -1, 0], 3: [1, 0, 0, -1], 4: [0, 1, -1, 0], 5: [0, 1, 0, -1], 6: [0, 0, 1, -1]}
```

roots()
Returns the total number of roots for $D_n$

simple_root(i)
Every Lie algebra has a unique root system. Given a root system $Q$, there is a subset of the roots such that an element of $Q$ is called a simple root if it cannot be written as the sum of two elements in $Q$. If we let $D$ denote the set of simple roots, then it is clear that every element of $Q$ can be written as a linear combination of elements of $D$ with all coefficients non-negative.

In $D_n$, the first $n-1$ simple roots are the same as the roots in $A_{(n-1)}$ (a 1 in the $i$th position, a -1 in the $(i+1)$th position, and zeroes elsewhere). The $n$th simple root is the root in which there is 1 in the $n$th and $(n-1)$th positions, and zeroes elsewhere.

This method returns the $i$th simple root for the $D$ series.
Examples

```python
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType("D4")
>>> c.simple_root(2)
[0, 1, -1, 0]
```

class sympy.liealgebras.type_e.TypeE(n)

- **basic_root(i,j)**
  This is a method just to generate roots with a -1 in the ith position and a 1 in the jth position.

- **basis()**
  Returns the number of independent generators of E_n

- **cartan_matrix()**
  Returns the Cartan matrix for G_2 The Cartan matrix matrix for a Lie algebra is generated by assigning an ordering to the simple roots, (alpha[1], ...., alpha[l]). Then the ijth entry of the Cartan matrix is (<alpha[i],alpha[j]>).

Examples

```python
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType('A4')
>>> c.cartan_matrix()
Matrix([[2, -1, 0, 0],
[-1, 2, -1, 0],
[0, -1, 2, -1],
[0, 0, -1, 2]])
```

- **dimension()**
  Dimension of the vector space V underlying the Lie algebra

Examples

```python
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType("E6")
>>> c.dimension()
8
```

- **positive_roots()**
  This method generates all the positive roots of A_n. This is half of all of the roots of E_n; by multiplying all the positive roots by -1 we get the negative roots.
Examples

```python
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType("A3")
>>> c.positive_roots()
{1: [1, -1, 0, 0], 2: [1, 0, -1, 0], 3: [1, 0, 0, -1], 4: [0, 1, -1, 0],
 5: [0, 1, 0, -1], 6: [0, 0, 1, -1]}
```

`roots()`

Returns the total number of roots of E_n

`simplified_root(i)`

Every lie algebra has a unique root system. Given a root system Q, there is a subset of the roots such that an element of Q is called a simple root if it cannot be written as the sum of two elements in Q. If we let D denote the set of simple roots, then it is clear that every element of Q can be written as a linear combination of elements of D with all coefficients non-negative.

This method returns the ith simple root for E_n.

Examples

```python
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType("E6")
>>> c.simple_root(2)
[1, 1, 0, 0, 0, 0, 0, 0]
```

class sympy.liealgebras.type_f.TypeF(n)

`basic_root(i, j)`

Generate roots with 1 in ith position and -1 in jth position

`basis()`

Returns the number of independent generators of F_4

`cartan_matrix()`

The Cartan matrix for F_4

The Cartan matrix matrix for a Lie algebra is generated by assigning an ordering to the simple roots, (alpha[1], ..., alpha[l]). Then the ijth entry of the Cartan matrix is (<alpha[i], alpha[j]>).

Examples

```python
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType("A4")
>>> c.cartan_matrix()
Matrix([[2, -1, 0, 0], [-1, 2, -1, 0], [-1, 2, -1, 0], [2, -1, 0, 0]])
```
dimension()
Dimension of the vector space V underlying the Lie algebra

Examples

```python
c = CartanType("F4")
c.dimension()
```

positive_roots()
Generate all the positive roots of A_n
This is half of all the roots of F_4; by multiplying all the positive roots by -1 we get the negative roots.

Examples

```python
c = CartanType("A3")
c.positive_roots()
```

roots()
Returns the total number of roots for F_4

simple_root(i)
The ith simple root of F_4
Every lie algebra has a unique root system. Given a root system Q, there is a subset of the roots such that an element of Q is called a simple root if it cannot be written as the sum of two elements in Q. If we let D denote the set of simple roots, then it is clear that every element of Q can be written as a linear combination of elements of D with all coefficients non-negative.

Examples

```python
c = CartanType("F4")
c.simple_root(3)
```

class sympy.liealgebras.type_g.TypeG(n)
basis()  
Returns the number of independent generators of G_2

cartan_matrix()  
The Cartan matrix for G_2  
The Cartan matrix matrix for a Lie algebra is generated by assigning an ordering to the simple roots, (alpha[1], ..., alpha[l]). Then the i,jth entry of the Cartan matrix is (<alpha[i],alpha[j]>).

Examples

```python
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType("G2")
>>> c.cartan_matrix()
Matrix([[2, -1],
 [-3, 2]])
```

dimension()  
Dimension of the vector space V underlying the Lie algebra

Examples

```python
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType("G2")
>>> c.dimension()
3
```

positive_roots()  
Generate all the positive roots of A_n  
This is half of all of the roots of A_n; by multiplying all the positive roots by -1 we get the negative roots.

Examples

```python
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType("A3")
>>> c.positive_roots()
{1: [1, -1, 0, 0], 2: [1, 0, -1, 0], 3: [1, 0, 0, -1], 4: [0, 1, -1, 0], 5: [0, 1, 0, -1], 6: [0, 0, 1, -1]}
```

roots()  
Returns the total number of roots of G_2
simple_root(i)
The ith simple root of G_2

Every lie algebra has a unique root system. Given a root system Q, there is a subset of the roots such that an element of Q is called a simple root if it cannot be written as the sum of two elements in Q. If we let D denote the set of simple roots, then it is clear that every element of Q can be written as a linear combination of elements of D with all coefficients non-negative.

Examples

```python
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType("G2")
>>> c.simple_root(1)
[0, 1, -1]
```

class sympy.liealgebras.weyl_group.WeylGroup(cartantype)

For each semisimple Lie group, we have a Weyl group. It is a subgroup of the isometry group of the root system. Specifically, it’s the subgroup that is generated by reflections through the hyperplanes orthogonal to the roots. Therefore, Weyl groups are reflection groups, and so a Weyl group is a finite Coxeter group.

coxeter_diagram()

This method returns the Coxeter diagram corresponding to a Weyl group. The Coxeter diagram can be obtained from a Lie algebra’s Dynkin diagram by deleting all arrows; the Coxeter diagram is the undirected graph. The vertices of the Coxeter diagram represent the generating reflections of the Weyl group, s_i. An edge is drawn between s_i and s_j if the order m(i, j) of s_i s_j is greater than two. If there is one edge, the order m(i, j) is 3. If there are two edges, the order m(i, j) is 4, and if there are three edges, the order m(i, j) is 6.

Examples

```python
>>> from sympy.liealgebras.weyl_group import WeylGroup
>>> c = WeylGroup("B3")
>>> print(c.coxeter_diagram())
0---0===0
1 2 3
```

delete_doubles(reflections)

This is a helper method for determining the order of an element in the Weyl group of G2. It takes a Weyl element and if repeated simple reflections in it, it deletes them.

element_order(weylelt)

This method returns the order of a given Weyl group element, which should be specified by the user in the form of products of the generating reflections, i.e. of the form r1*r2 etc.

For types A-F, this method current works by taking the matrix form of the specified element, and then finding what power of the matrix is the identity. It then returns this power.
Examples

```python
>>> from sympy.liealgebras.weyl_group import WeylGroup
>>> b = WeylGroup("B4")
>>> b.element_order('r1*r4*r2')
4
```

generators()

This method creates the generating reflections of the Weyl group for a given Lie algebra. For a Lie algebra of rank n, there are n different generating reflections. This function returns them as a list.

```python
>>> from sympy.liealgebras.weyl_group import WeylGroup
>>> c = WeylGroup("F4")
>>> c.generators()
['r1', 'r2', 'r3', 'r4']
```

group_name()

This method returns some general information about the Weyl group for a given Lie algebra. It returns the name of the group and the elements it acts on, if relevant.

```python
>>> from sympy.liealgebras.weyl_group import WeylGroup
>>> c = WeylGroup("D4")
>>> c.group_order()
192.0
```

matrix_form(weylelt)

This method takes input from the user in the form of products of the generating reflections, and returns the matrix corresponding to the element of the Weyl group. Since each element of the Weyl group is a reflection of some type, there is a corresponding matrix representation. This method uses the standard representation for all the generating reflections.

```python
>>> from sympy.liealgebras.weyl_group import WeylGroup
>>> c = WeylGroup("D4")
>>> c.group_order()
192.0
```
Examples

>>> from sympy.liealgebras.weyl_group import WeylGroup
>>> f = WeylGroup("F4")
>>> f.matrix_form('r2*r3')
Matrix([1, 0, 0, 0],
     [0, 1, 0, 0],
     [0, 0, 0, -1],
     [0, 0, 1, 0])

class sympy.liealgebras.cartan_type.CartanType_generator
    Constructor for actually creating things

class sympy.liealgebras.cartan_type.Standard_Cartan(series, n)
    Concrete base class for Cartan types such as A4, etc

    rank()
        Returns the rank of the Lie algebra

    series()
        Returns the type of the Lie algebra

sympy.liealgebras.dynkin_diagram.DynkinDiagram(t)
    Display the Dynkin diagram of a given Lie algebra

    Works by generating the CartanType for the input, t, and then returning the Dynkin
diagram method from the individual classes.

Examples

>>> from sympy.liealgebras.dynkin_diagram import DynkinDiagram
>>> print(DynkinDiagram("A3"))
0---0---0
1 2 3

>>> print(DynkinDiagram("B4"))
0---0---0=>=0
1 2 3 4

sympy.liealgebras.cartan_matrix.CartanMatrix(ct)
    Access the Cartan matrix of a specific Lie algebra
Examples

```python
>>> from sympy.liealgebras.cartan_matrix import CartanMatrix
>>> CartanMatrix("A2")
Matrix([[2, -1],
[1, 2]])
```

```python
>>> CartanMatrix([['C', 3]])
Matrix([[2, -1, 0],
[-1, 2, -1],
[0, -2, 2]])
```

This method works by returning the Cartan matrix which corresponds to Cartan type t.

**Polynomial Manipulation**

Computations with polynomials are at the core of computer algebra and having a fast and robust polynomials manipulation module is a key for building a powerful symbolic manipulation system. SymPy has a dedicated module `sympy.polys` (page 2435) for computing in polynomial algebras over various coefficient domains.

There is a vast number of methods implemented, ranging from simple tools like polynomial division, to advanced concepts including Gröbner bases and multivariate factorization over algebraic number domains.

**Contents**

**Basic functionality of the module**

**Introduction**

This tutorial tries to give an overview of the functionality concerning polynomials within SymPy. All code examples assume:

```python
>>> from sympy import *
>>> x, y, z = symbols('x,y,z')
>>> init_printing(use_unicode=False, wrap_line=False)
```

**Basic concepts**

**Polynomials**

Given a family \((x_i)\) of symbols, or other suitable objects, including numbers, expressions derived from them by repeated addition, subtraction and multiplication are called *polynomial expressions in the generators* \(x_i\).

By the distributive law it is possible to perform multiplications before additions and subtractions. The products of generators thus obtained are called *monomials*. They are usually
written in the form \( x_1^{\nu_1}x_2^{\nu_2} \cdots x_n^{\nu_n} \) where the exponents \( \nu_i \) are nonnegative integers. It is often convenient to write this briefly as \( x^{\nu} \) where \( x = (x_1, x_2, \ldots, x_n) \) denotes the family of generators and \( \nu = (\nu_1, \nu_2, \ldots, \nu_n) \) is the family of exponents.

When all monomials having the same exponents are combined, the polynomial expression becomes a sum of products \( c_\nu x^{\nu} \), called the terms of the polynomial, where the coefficients \( c_\nu \) are integers. If some of the \( x_i \) are manifest numbers, they are incorporated in the coefficients and not regarded as generators. Such coefficients are typically rational, real or complex numbers. Some symbolic numbers, e.g., \( \pi \), can be either coefficients or generators.

A polynomial expression that is a sum of terms with different monomials is uniquely determined by its family of coefficients \( \{c_\nu\} \). Such an expression is customarily called a polynomial, though, more properly, that name does stand for the coefficient family once the generators are given. SymPy implements polynomials by default as dictionaries with monomials as keys and coefficients as values. Another implementation consists of nested lists of coefficients.

The set of all polynomials with integer coefficients in the generators \( x_i \) is a ring, i.e., the sums, differences and products of its elements are again polynomials in the same generators. This ring is denoted \( \mathbb{Z}[x_1, x_2, \ldots, x_n] \), or \( \mathbb{Z}[(x_i)] \), and called the ring of polynomials in the \( x_i \) with integer coefficients.

More generally, the coefficients of a polynomial can be elements of any commutative ring \( A \), and the corresponding polynomial ring is then denoted \( A[x_1, x_2, \ldots, x_n] \). The ring \( A \) can also be a polynomial ring. In SymPy, the coefficient ring is called the domain of the polynomial ring, and it can be given as a keyword parameter. By default, it is determined by the coefficients of the polynomial arguments.

Polynomial expressions can be transformed into polynomials by the method `sympy.core.expr.Expr.as_poly` (page 1007):

```python
>>> e = (x + y)*(y - 2*z)
>>> e.as_poly()
Poly(x*y - 2*x*z + y**2 - 2*y*z, x, y, z, domain='ZZ')
```

If a polynomial expression contains numbers that are not integers, they are regarded as coefficients and the coefficient ring is extended accordingly. In particular, division by integers leads to rational coefficients:

```python
>>> e = (3*x/2 + y)*(z - 1)
>>> e.as_poly()
Poly(3/2*x*z - 3/2*x + y*z - y, x, y, z, domain='QQ')
```

Symbolic numbers are considered generators unless they are explicitly excluded, in which case they are adjoined to the coefficient ring:

```python
>>> e = (x + 2*pi)*y
>>> e.as_poly()
Poly(x*y + 2*y*pi, x, y, pi, domain='ZZ')
>>> e.as_poly(x, y)
Poly(x*y + 2*pi*y, x, y, domain='ZZ[pi]')
```

Alternatively, the coefficient domain can be specified by means of a keyword argument:

```python
>>> e = (x + 2*pi)*y
>>> e.as_poly(domain=ZZ[pi])
Poly(x*y + 2*pi*y, x, y, domain='ZZ[pi]')
```
Note that the ring \( \mathbb{Z}[\pi][x, y] \) of polynomials in \( x \) and \( y \) with coefficients in \( \mathbb{Z}[\pi] \) is mathematically equivalent to \( \mathbb{Z}[\pi, x, y] \), only their implementations differ.

If an expression contains functions of the generators, other than their positive integer powers, these are interpreted as new generators:

```python
>>> e = x*sin(y) - y
>>> e.as_poly()
Poly(x*(sin(y)) - y, x, y, sin(y), domain='ZZ')
```

Since \( y \) and \( \sin(y) \) are algebraically independent they can both appear as generators in a polynomial. However, polynomial expressions must not contain negative powers of generators:

```python
>>> e = x - 1/x
>>> e.as_poly()
Poly(x - (1/x), x, 1/x, domain='ZZ')
```

It is important to realize that the generators \( x \) and \( 1/x = x^{-1} \) are treated as algebraically independent variables. In particular, their product is not equal to 1. Hence generators in denominators should be avoided even if they raise no error in the current implementation. This behavior is undesirable and may change in the future. Similar problems emerge with rational powers of generators. So, for example, \( x \) and \( \sqrt{x} = x^{1/2} \) are not recognized as algebraically dependent.

If there are algebraic numbers in an expression, it is possible to adjoin them to the coefficient ring by setting the keyword `extension`:

```python
>>> e = x + sqrt(2)
>>> e.as_poly()
Poly(x + (sqrt(2)), x, sqrt(2), domain='ZZ')
>>> e.as_poly(extension=True)
Poly(x + sqrt(2), x, domain='QQ<sqrt(2)>')
```

With the default setting `extension=False`, both \( x \) and \( \sqrt{2} \) are incorrectly considered algebraically independent variables. With coefficients in the extension field \( \mathbb{Q}(\sqrt{2}) \) the square root is treated properly as an algebraic number. Setting `extension=True` whenever algebraic numbers are involved is definitely recommended even though it is not forced in the current implementation.

### Divisibility

The fourth rational operation, division, or inverted multiplication, is not generally possible in rings. If \( a \) and \( b \) are two elements of a ring \( A \), then there may exist a third element \( q \) in \( A \) such that \( a = bq \). In fact, there may exist several such elements.

If also \( a = bq' \) for some \( q' \) in \( A \), then \( b(q - q') = 0 \). Hence either \( b \) or \( q - q' \) is zero, or they are both zero divisors, nonzero elements whose product is zero.
Integral domains

Commutative rings with no zero divisors are called integral domains. Most of the commonly encountered rings, the ring of integers, fields, and polynomial rings over integral domains are integral domains.

Assume now that \( A \) is an integral domain, and consider the set \( P \) of its nonzero elements, which is closed under multiplication. If \( a \) and \( b \) are in \( P \), and there exists an element \( q \) in \( P \) such that \( a = bq \), then \( q \) is unique and called the quotient, \( a/b \), of \( a \) by \( b \). Moreover, it is said that

- \( a \) is divisible by \( b \),
- \( b \) is a divisor of \( a \),
- \( a \) is a multiple of \( b \),
- \( b \) is a factor of \( a \).

An element \( a \) of \( P \) is a divisor of 1 if and only if it is invertible in \( A \), with the inverse \( a^{-1} = 1/a \). Such elements are called units. The units of the ring of integers are 1 and \(-1\). The invertible elements in a polynomial ring over a field are the nonzero constant polynomials.

If two elements of \( P \), \( a \) and \( b \), are divisible by each other, then the quotient \( a/b \) is invertible with inverse \( b/a \), or equivalently, \( b = ua \) where \( u \) is a unit. Such elements are said to be associated with, or associates of, each other. The associates of an integer \( n \) are \( n \) and \(-n\). In a polynomial ring over a field the associates of a polynomial are its constant multiples.

Each element of \( P \) is divisible by its associates and the units. An element is irreducible if it has no other divisors and is not a unit. The irreducible elements in the ring of integers are the prime numbers \( p \) and their opposites \(-p\). In a field, every nonzero element is invertible and there are no irreducible elements.

Factorial domains

In the ring of integers, each nonzero element can be represented as a product of irreducible elements and optionally a unit \( \pm 1 \). Moreover, any two such products have the same number of irreducible factors which are associated with each other in a suitable order. Integral domains having this property are called factorial, or unique factorization domains. In addition to the ring of integers, all polynomial rings over a field are factorial, and so are more generally polynomial rings over any factorial domain. Fields are trivially factorial since there are only units. The irreducible elements of a factorial domain are usually called primes.

A family of integers has only a finite number of common divisors and the greatest of them is divisible by all of them. More generally, given a family of nonzero elements \((a_i)\) in an integral domain, a common divisor \( d \) of the elements is called a greatest common divisor, abbreviated \( gcd \), of the family if it is a multiple of all common divisors. A greatest common divisor, if it exists, is not unique in general; all of its associates have the same property. It is denoted by \( d = gcd(a_1, \ldots, a_n) \) if there is no danger of confusion. A least common multiple, or \( lcm \), of a family \((a_i)\) is defined analogously as a common multiple \( m \) that divides all common multiples. It is denoted by \( m = lcm(a_1, \ldots, a_n) \).

In a factorial domain, greatest common divisors always exists. They can be found, at least in principle, by factoring each element of a family into a product of prime powers and an optional unit, and, for each prime, taking the least power that appears in the factorizations. The product of these prime powers is then a greatest common divisor. A least common multiple
can be obtained from the same factorizations as the product of the greatest powers for each prime.

**Euclidean domains**

A practical algorithm for computing a greatest common divisor can be implemented in *Euclidean domains*. They are integral domains that can be endowed with a function $w$ assigning a nonnegative integer to each nonzero element of the domain and having the following property:

if $a$ and $b$ are nonzero, there are $q$ and $r$ that satisfy the *division identity*

$$a = qb + r$$

such that either $r = 0$ or $w(r) < w(b)$.

The ring of integers and all univariate polynomial rings over fields are Euclidean domains with $w(a) = |a|$ resp. $w(a) = \deg(a)$.

The division identity for integers is implemented in Python as the built-in function `divmod` that can also be applied to SymPy Integers:

```python
>>> divmod(Integer(53), Integer(7))
(7, 4)
```

For polynomials the division identity is given in SymPy by the function `div()` (page 2437):

```python
>>> f = 5*x**2 + 10*x + 3
>>> g = 2*x + 2

>>> q, r = div(f, g, domain='QQ')

>>> q
5*x - 5
--- + -
2 2

>>> r
-2

>>> (q*g + r).expand()
2
5*x + 10*x + 3
```

The division identity can be used to determine the divisibility of elements in a Euclidean domain. If $r = 0$ in the division identity, then $a$ is divisible by $b$. Conversely, if $a = cb$ for some element $c$, then $(c - q)b = r$. It follows that $c = q$ and $r = 0$ if $w$ has the additional property:

if $a$ and $b$ are nonzero, then $w(ab) \geq w(b)$.

This is satisfied by the functions given above. (And it is always possible to redefine $w(a)$ by taking the minimum of the values $w(xa)$ for $x \neq 0$.)

The principal application of the division identity is the efficient computation of a greatest common divisor by means of the *Euclidean algorithm*. It applies to two elements of a Euclidean domain. A gcd of several elements can be obtained by iteration.

The function for computing the greatest common divisor of integers in SymPy is currently `igcd()` (page 1045):
For univariate polynomials over a field the function has its common name \texttt{gcd()} (page 2442), and the returned polynomial is monic:

\begin{verbatim}
>>> f = 4*x**2 - 1
>>> g = 8*x**3 + 1
>>> gcd(f, g, domain=QQ)
x + 1/2
\end{verbatim}

### Divisibility of polynomials

The ring $A = \mathbb{Z}[x]$ of univariate polynomials over the ring of integers is not Euclidean but it is still factorial. To see this, consider the divisibility in $A$.

Let $f$ and $g$ be two nonzero polynomials in $A$. If $f$ is divisible by $g$ in $A$, then it is also divisible in the ring $B = \mathbb{Q}[x]$ of polynomials with rational coefficients. Since $B$ is Euclidean, this can be determined by means of the division identity.

Assume, conversely, that $f = gh$ for some polynomial $h$ in $B$. Then $f$ is divisible by $g$ in $A$ if and only if the coefficients of $h$ are integers. To find out when this is true it is necessary to consider the divisibility of the coefficients.

For a polynomial $f$ in $A$, let $c$ be the greatest common divisor of its coefficients. Then $f$ is divisible by the constant polynomial $c$ in $A$, and the quotient $f/c = p$ is a polynomial whose coefficients are integers that have no common divisor apart from the units. Such polynomials are called 	extit{primitive}. A polynomial with rational coefficients can also be written as $f = cp$, where $c$ is a rational number and $p$ is a primitive polynomial. The constant $c$ is called the 	extit{content} of $f$, and $p$ is its 	extit{primitive part}. These components can be found by the method \texttt{sympy.core.expr.Expr.as_content_primitive} (page 1002):

\begin{verbatim}
>>> f = 6*x**2 - 3*x + 9
>>> c, p = f.as_content_primitive()
>>> c, p
(3, 2*x - x + 3)
>>> f = x**2/3 - x/2 + 1
>>> c, p = f.as_content_primitive()
>>> c, p
(1/6, 2*x - 3*x + 6)
\end{verbatim}

Let $f, f'$ be polynomials with contents $c, c'$ and primitive parts $p, p'$. Then $ff' = (cc')(pp')$ where the product $pp'$ is primitive by Gauss's lemma. It follows that

- the content of a product of polynomials is the product of their contents and the
- primitive part of the product is the product of the primitive parts.

Returning to the divisibility in the ring $\mathbb{Z}[x]$, assume that $f$ and $g$ are two polynomials with integer coefficients such that the division identity in $\mathbb{Q}[x]$ yields the equality $f = gh$ for some polynomial $h$ with rational coefficients. Then the content of $f$ is equal to the content of $g$.
multiplied by the content of \( h \). As \( h \) has integer coefficients if and only if its content is an integer, we get the following criterion:

\[
\begin{align*}
& f \text{ is divisible by } g \text{ in the ring } \mathbb{Z}[x] \text{ if and only if} \\
& \quad \text{i. } f \text{ is divisible by } g \text{ in } \mathbb{Q}[x], \text{ and} \\
& \quad \text{ii. the content of } f \text{ is divisible by the content of } g \text{ in } \mathbb{Z}.
\end{align*}
\]

If \( f = cp \) is irreducible in \( \mathbb{Z}[x] \), then either \( c \) or \( p \) must be a unit. If \( p \) is not a unit, it must be irreducible also in \( \mathbb{Q}[x] \). For if it is a product of two polynomials, it is also the product of their primitive parts, and one of them must be a unit. Hence there are two kinds of irreducible elements in \( \mathbb{Z}[x] \):

i. prime numbers of \( \mathbb{Z} \), and

ii. primitive polynomials that are irreducible in \( \mathbb{Q}[x] \).

It follows that each polynomial in \( \mathbb{Z}[x] \) is a product of irreducible elements. It suffices to factor its content and primitive part separately. These products are essentially unique; hence \( \mathbb{Z}[x] \) is also factorial.

Another important consequence is that a greatest common divisor of two polynomials in \( \mathbb{Z}[x] \) can be found efficiently by applying the Euclidean algorithm separately to their contents and primitive parts in the Euclidean domains \( \mathbb{Z} \) and \( \mathbb{Q}[x] \). This is also implemented in SymPy:

```
>>> f = 4*x**2 - 1
>>> g = 8*x**3 + 1
>>> gcd(f, g)
2*x + 1
>>> gcd(6*f, 3*g)
6*x + 3
```

Basic functionality

These functions provide different algorithms dealing with polynomials in the form of SymPy expression, like symbols, sums etc.

Division

The function `div()` (page 2437) provides division of polynomials with remainder. That is, for polynomials \( f \) and \( g \), it computes \( q \) and \( r \), such that \( f = g \cdot q + r \) and \( \text{deg}(r) < \text{deg}(q) \). For polynomials in one variables with coefficients in a field, say, the rational numbers, \( q \) and \( r \) are uniquely defined this way:

```
>>> f = 5*x**2 + 10*x + 3
>>> g = 2*x + 2

>>> q, r = div(f, g, domain='QQ')

>>> q
5*x + 5
- - + -
2 2

>>> r
-2
```

(continues on next page)
As you can see, \( q \) has a non-integer coefficient. If you want to do division only in the ring of polynomials with integer coefficients, you can specify an additional parameter:

\[
>>> q, r = \text{div}(f, g, \text{domain='ZZ'})
\]

\[
>>> q
0
\]

\[
>>> r
2
5^x + 10^x + 3
\]

But be warned, that this ring is no longer Euclidean and that the degree of the remainder doesn't need to be smaller than that of \( f \). Since 2 doesn't divide 5, \( 2x \) doesn't divide \( 5x^2 \), even if the degree is smaller. But:

\[
>>> g = 5^x + 1
\]

\[
>>> q, r = \text{div}(f, g, \text{domain='ZZ'})
\]

\[
>>> q
x
\]

\[
>>> r
9^x + 3
\]

\[
>>> (q*g + r).expand()
2
5^x + 10^x + 3
\]

This also works for polynomials with multiple variables:

\[
>>> f = x*y + y*z
\]

\[
>>> g = 3^x + 3^z
\]

\[
>>> q, r = \text{div}(f, g, \text{domain='QQ'})
\]

\[
>>> q
y
\]

\[
>>> r
3
\]

\[
>>> (q*g + r).expand()
2
5^x + 10^x + 3
\]

In the last examples, all of the three variables \( x \), \( y \) and \( z \) are assumed to be variables of the polynomials. But if you have some unrelated constant as coefficient, you can specify the variables explicitly:

\[
>>> a, b, c = \text{symbols('a,b,c')}
\]

\[
>>> f = a*x**2 + b*x + c
\]

\[
>>> g = 3^x + 2
\]

\[
>>> q, r = \text{div}(f, g, \text{domain='QQ'})
\]

\[
>>> q
a*x  2*a  b
---  -  --- +  -
\]
GCD and LCM

With division, there is also the computation of the greatest common divisor and the least common multiple.

When the polynomials have integer coefficients, the contents’ gcd is also considered:

```python
>>> f = (12*x + 12)*x
>>> g = 16*x**2
>>> gcd(f, g)
4*x
```

But if the polynomials have rational coefficients, then the returned polynomial is monic:

```python
>>> f = 3*x**2/2
>>> g = 9*x/4
>>> gcd(f, g)
x
```

It also works with multiple variables. In this case, the variables are ordered alphabetically, by default, which has influence on the leading coefficient:

```python
>>> f = x*y/2 + y**2
>>> g = 3*x + 6*y
>>> gcd(f, g)
x + 2*y
```

The lcm is connected with the gcd and one can be computed using the other:

```python
>>> f = x*y**2 + x**2*y
>>> g = x**2*y**2
>>> gcd(f, g)
x*y
>>> lcm(f, g)
3 2 2 3
>>> (f*g).expand()
4 3 3 4
>>> (gcd(f, g, x, y)*lcm(f, g, x, y)).expand()
4 3 3 4
>>> x*y + x*y
```
Square-free factorization

The square-free factorization of a univariate polynomial is the product of all factors (not necessarily irreducible) of degree 1, 2 etc.:

```python
>>> f = 2*x**2 + 5*x**3 + 4*x**4 + x**5

>>> sqf_list(f)
(1, [(x + 2, 1), (x + x, 2)])

>>> sqf(f)
(x + 2)**2*(x + x)/
```

Factorization

This function provides factorization of univariate and multivariate polynomials with rational coefficients:

```python
>>> factor(x**4/2 + 5*x**3/12 - x**2/3)
x*(2*x - 1)*(3*x + 4)
```

Groebner bases

Buchberger’s algorithm is implemented, supporting various monomial orders:

```python
>>> groebner([x**2 + 1, y**4*x + x**3], x, y, order='lex')
\GroebnerBasis\[x + 1, y - 1\], x, y, domain=ZZ, order=lex/
```

```python
>>> groebner([x**2 + 1, y**4*x + x**3, x*y*z**3], x, y, z, order='grevlex')
\GroebnerBasis\[y - 1, z, x + 1\], x, y, z, domain=ZZ, order=grevlex/
```
Solving Equations

We have (incomplete) methods to find the complex or even symbolic roots of polynomials and to solve some systems of polynomial equations:

```python
>>> from sympy import roots, solve_poly_system

>>> solve(x**3 + 2*x + 3, x)
[-1, -1/11*I, 1/11*I]

>>> p = Symbol('p')
>>> q = Symbol('q')

>>> solve(x**2 + p*x + q, x)
[-p/2 - sqrt(p**2 - 4*q)/2, -p/2 + sqrt(p**2 - 4*q)/2]

>>> solve_poly_system([y - x, x - 5], x, y)
[(5, 5)]

>>> solve_poly_system([y**2 - x**3 + 1, y*x], x, y)
[(0, -I), (0, I), (1, 0), (-1, 0), (1, 0), (-1, 0)]
```

Examples from Wester’s Article

Introduction

In this tutorial we present examples from Wester’s article concerning comparison and critique of mathematical abilities of several computer algebra systems (see [Wester1999]). All the examples are related to polynomial and algebraic computations and SymPy specific remarks were added to all of them.

Examples

All examples in this tutorial are computable, so one can just copy and paste them into a Python shell and do something useful with them. All computations were done using the following setup:

```python
>>> from sympy import *

>>> init_printing(use_unicode=True, wrap_line=False)
```
Simple univariate polynomial factorization

To obtain a factorization of a polynomial use \texttt{factor()} (page 2447) function. By default \texttt{factor()} (page 2447) returns the result in unevaluated form, so the content of the input polynomial is left unexpanded, as in the following example:

\begin{verbatim}
>>> factor(6*x - 10)
2·(3·x - 5)
\end{verbatim}

To achieve the same effect in a more systematic way use \texttt{primitive()} (page 2444) function, which returns the content and the primitive part of the input polynomial:

\begin{verbatim}
>>> primitive(6*x - 10)
(2, 3·x - 5)
\end{verbatim}

\textbf{Note:} The content and the primitive part can be computed only over a ring. To simplify coefficients of a polynomial over a field use \texttt{monic()} (page 2443).

Univariate GCD, resultant and factorization

Consider univariate polynomials \( f \), \( g \) and \( h \) over integers:

\begin{verbatim}
>>> f = 64*x**34 - 21*x**47 - 126*x**8 - 46*x**5 - 16*x**60 - 81
>>> g = 72*x**60 - 25*x**25 - 19*x**23 - 22*x**39 - 83*x**52 + 54*x**10 + 81
>>> h = 34*x**19 - 25*x**16 + 70*x**7 + 20*x**3 - 91*x - 86
\end{verbatim}

We can compute the greatest common divisor (GCD) of two polynomials using \texttt{gcd()} (page 2442) function:

\begin{verbatim}
>>> gcd(f, g)
1
\end{verbatim}

We see that \( f \) and \( g \) have no common factors. However, \( f*h \) and \( g*h \) have an obvious factor \( h \):

\begin{verbatim}
>>> gcd(expand(f*h), expand(g*h)) - h
0
\end{verbatim}

The same can be verified using the resultant of univariate polynomials:

\begin{verbatim}
>>> resultant(expand(f*h), expand(g*h))
0
\end{verbatim}

Factorization of large univariate polynomials (of degree 120 in this case) over integers is also possible:
Multivariate GCD and factorization

What can be done in univariate case, can be also done for multivariate polynomials. Consider the following polynomials $f$, $g$ and $h$ in $\mathbb{Z}[x,y,z]$:

\begin{verbatim}
>>> f = 24*x*y**19*z**8 - 47*x**17*y**5*z**8 + 6*x**15*y**9*z**2 - 3*x**22 + 5
>>> g = 34*x**5*y**8*z**13 + 20*x**7*y**7*z**7 + 12*x**9*y**16*z**4 + 80*y**14*z
>>> h = 11*x**12*y**7*z**13 - 23*x**2*y**8*z**10 + 47*x**17*y**5*z**8
\end{verbatim}

As previously, we can verify that $f$ and $g$ have no common factors:

\begin{verbatim}
>>> gcd(f, g)
1
\end{verbatim}

However, $f*h$ and $g*h$ have an obvious factor $h$:

\begin{verbatim}
>>> gcd(expand(f*h), expand(g*h)) - h
0
\end{verbatim}

Multivariate factorization of large polynomials is also possible:

\begin{verbatim}
>>> factor(expand(f*g))
7 ( 9 9 3 7 6 5 12 7 ) / 22 17 5 8
-16*x + 21*x - 64*x + 46*x + 81 / 72*x - 83*x - 22*x - 25*x - 19*x + 54*x + 81
\end{verbatim}

Support for symbols in exponents

Polynomial manipulation functions provided by `sympy.polys` (page 2435) are mostly used with integer exponents. However, it’s perfectly valid to compute with symbolic exponents, e.g.:

\begin{verbatim}
>>> n = var('n')
>>> gcd(x**n - x**(2*n), x**n)
2
\end{verbatim}

Results may depend on powers being expanded (which will depend on assumptions of the base):

\begin{verbatim}
>>> gcd(x**(n + 4), x**(n + 1) - 3*x**n)
\end{verbatim}
Testing if polynomials have common zeros

To test if two polynomials have a root in common we can use `resultant()` function. The theory says that the resultant of two polynomials vanishes if there is a common zero of those polynomials. For example:

```python
>>> x = var('x')
>>> resultant(3*x**4 + 3*x**3 + x**2 - x - 2, x**3 - 3*x**2 + x + 5)
0
```

We can visualize this fact by factoring the polynomials:

```python
>>> factor(3*x**4 + 3*x**3 + x**2 - x - 2)
(x + 1)*(3*x + x - 2)

>>> factor(x**3 - 3*x**2 + x + 5)
(x + 1)*(x - 4*x + 5)
```

In both cases we obtained the factor $x + 1$ which tells us that the common root is $x = -1$.

Normalizing simple rational functions

To remove common factors from the numerator and the denominator of a rational function the elegant way, use `cancel()` function. For example:

```python
>>> cancel((x**2 - 4)/(x**2 + 4*x + 4))
x - 2
─────
x + 2
```

Expanding expressions and factoring back

One can work easily with expressions in both expanded and factored forms. Consider a polynomial $f$ in expanded form. We differentiate it and factor the result back:

```python
>>> f = expand((x + 1)**20)
>>> g = diff(f, x)
>>> factor(g)
```
The same can be achieved in factored form:

```python
>>> diff((x + 1)**20, x)
19
20⋅(x + 1)
```

### Factoring in terms of cyclotomic polynomials

SymPy can very efficiently decompose polynomials of the form \(x^n \pm 1\) in terms of cyclotomic polynomials:

```python
>>> factor(x**15 - 1)
(x - 1) ⋅ (x + x + 1) ⋅ (x + x + x + x + 1) ⋅ (x - x + x - x + x - x + 1)
```

The original Wester’s example was \(x^{100} - 1\), but was truncated for readability purpose. Note that this is not a big struggle for `factor()` (page 2447) to decompose polynomials of degree 1000 or greater.

### Univariate factoring over Gaussian numbers

Consider a univariate polynomial \(f\) with integer coefficients:

```python
>>> f = 4*x**4 + 8*x**3 + 77*x**2 + 18*x + 153
```

We want to obtain a factorization of \(f\) over Gaussian numbers. To do this we use `factor()` (page 2447) as previously, but this time we set `gaussian` keyword to `True`:

```python
>>> factor(f, gaussian=True)
4 ⋅ (x - 3⋅i/2) ⋅ (x + 3⋅i/2) ⋅ (x + 1 - 4⋅i) ⋅ (x + 1 + 4⋅i)
```

As the result we got a splitting factorization of \(f\) with monic factors (this is a general rule when computing in a field with SymPy). The `gaussian` keyword is useful for improving code readability, however the same result can be computed using more general syntax:

```python
>>> factor(f, extension=I)
4 ⋅ (x - 3⋅i/2) ⋅ (x + 3⋅i/2) ⋅ (x + 1 - 4⋅i) ⋅ (x + 1 + 4⋅i)
```
Computing with automatic field extensions

Consider two univariate polynomials $f$ and $g$:

```python
>>> f = x**3 + (sqrt(2) - 2)*x**2 - (2*sqrt(2) + 3)*x - 3*sqrt(2)
>>> g = x**2 - 2
```

We would like to reduce degrees of the numerator and the denominator of a rational function $f/g$. To do this we employ `cancel()` (page 2451) function:

```python
>>> cancel(f/g)
3 2 2
x - 2·x + √2·x - 3·x - 2·√2·x - 3·√2
───────────────────────────────────────
2
x - 2
```

Unfortunately nothing interesting happened. This is because by default SymPy treats $\sqrt{2}$ as a generator, obtaining a bivariate polynomial for the numerator. To make `cancel()` (page 2451) recognize algebraic properties of $\sqrt{2}$, one needs to use extension keyword:

```python
>>> cancel(f/g, extension=True)
2
x - 2·x - 3
────────────
x - √2
```

Setting `extension=True` tells `cancel()` (page 2451) to find minimal algebraic number domain for the coefficients of $f/g$. The automatically inferred domain is $Q(\sqrt{2})$. If one doesn't want to rely on automatic inference, the same result can be obtained by setting the extension keyword with an explicit algebraic number:

```python
>>> cancel(f/g, extension=sqrt(2))
2
x - 2·x - 3
────────────
x - √2
```

Univariate factoring over various domains

Consider a univariate polynomial $f$ with integer coefficients:

```python
>>> f = x**4 - 3*x**2 + 1
```

With `sympy.polys` (page 2435) we can obtain factorizations of $f$ over different domains, which includes:

- rationals:

```python
>>> factor(f)
(2
(x - x - 1)·(x + x - 1)
```

- finite fields:
Factoring polynomials into linear factors

Currently SymPy can factor polynomials into irreducibles over various domains, which can result in a splitting factorization (into linear factors). However, there is currently no systematic way to infer a splitting field (algebraic number field) automatically. In future the following syntax will be implemented:

```python
>>> factor(x**3 + x**2 - 7, split=True)
Traceback (most recent call last):
... NotImplementedError: 'split' option is not implemented yet
```

Note this is different from extension=True, because the later only tells how expression parsing should be done, not what should be the domain of computation. One can simulate the split keyword for several classes of polynomials using `solve()` (page 882) function.

Advanced factoring over finite fields

Consider a univariate polynomial $f$ with integer coefficients:

```python
>>> f = x**11 + x + 1
We can factor f over a large finite field F_{65537}:

```python
>>> factor(f, modulus=65537)
```

and expand the resulting factorization back:

```python
>>> expand(_)
11
x + x + 1
```

obtaining polynomial f. This was done using symmetric polynomial representation over finite fields. The same thing can be done using non-symmetric representation:

```python
>>> factor(f, modulus=65537, symmetric=False)
```
As with symmetric representation we can expand the factorization to get the input polynomial back. This time, however, we need to truncate coefficients of the expanded polynomial modulo 65537:

```python
>>> trunc(expand(_), 65537)
11
x  + x  + 1
```

Working with expressions as polynomials

Consider a multivariate polynomial \(f \) in \(\mathbb{Z}[x, y, z] \):

```python
>>> f = expand((x - 2*y**2 + 3*z**3)**20)
```

We want to compute factorization of \(f \). To do this we use `factor` as usually, however we note that the polynomial in consideration is already in expanded form, so we can tell the factorization routine to skip expanding \(f \):

```python
>>> factor(f, expand=False)
20
\( \begin{pmatrix} 2 & 3 \\ x - 2\cdot y + 3\cdot z \end{pmatrix} \)
```

The default in `sympy.polys` (page 2435) is to expand all expressions given as arguments to polynomial manipulation functions and `Poly` (page 2453) class. If we know that expanding is unnecessary, then by setting `expand=False` we can save quite a lot of time for complicated inputs. This can be really important when computing with expressions like:

```python
>>> g = expand((sin(x) - 2*cos(y)**2 + 3*tan(z)**3)**20)
>>> factor(g, expand=False)
20
\( \begin{pmatrix} 2 & 3 \\ -\sin(x) + 2\cdot \cos(y) - 3\cdot \tan(z) \end{pmatrix} \)
```

Computing reduced Gröbner bases

To compute a reduced Gröbner basis for a set of polynomials use the `groebner()` (page 2451) function. The function accepts various monomial orderings, e.g.: `lex`, `grlex`, and `grevlex`, or a user defined one, via `order` keyword. The `lex` ordering is the most interesting because it has elimination property, which means that if the system of polynomial equations to `groebner()` (page 2451) is zero-dimensional (has finite number of solutions) the last element of the basis is a univariate polynomial. Consider the following example:

```python
>>> f = expand((1 - c**2)**5 * (1 - s**2)**5 * (c**2 + s**2)**10)
>>> groebner([f, c**2 + s**2 - 1])
GroebnerBasis([c + s - 1, c - 5\cdot c + 10\cdot c - 10\cdot c + 5\cdot c - c ], s, order=lex)
```

5.8. Topics 2433
The result is an ordinary Python list, so we can easily apply a function to all its elements, for example we can factor those elements:

```python
>>> list(map(factor, _))
[[2, 2, 10, 5, 5], [c + s - 1, c ·(c - 1) ·(c + 1)]
```

From the above we can easily find all solutions of the system of polynomial equations. Or we can use `solve()` (page 882) to achieve this in a more systematic way:

```python
>>> solve([f, s**2 + c**2 - 1], c, s)
[(-1, 0), (0, -1), (0, 1), (1, 0)]
```

Multivariate factoring over algebraic numbers

Computing with multivariate polynomials over various domains is as simple as in univariate case. For example consider the following factorization over \(\mathbb{Q}(\sqrt{-3})\):

```python
>>> factor(x**3 + y**3, extension=sqrt(-3))
(x + y)·(x + y·(1 + √3·i))·(x + y·(1 - √3·i))
```

Note: Currently multivariate polynomials over finite fields aren’t supported.

Partial fraction decomposition

Consider a univariate rational function \(f\) with integer coefficients:

```python
>>> f = (x**2 + 2*x + 3)/(x**3 + 4*x**2 + 5*x + 2)
```

To decompose \(f\) into partial fractions use `apart()` (page 2522) function:

```python
>>> apart(f)
3/2 - 2/((x + 2)·(x + 1)) + 2/(x + 1)
```

To return from partial fractions to the rational function use a composition of `together()` (page 2521) and `cancel()` (page 2451):

```python
>>> cancel(together(_))
2/3 + 2·x + 3
```

Chapter 5. API Reference
Literature

Polynomials Manipulation Module Reference

Polynomial manipulation algorithms and algebraic objects.

See *Polynomial Manipulation* (page 2416) for an index of documentation for the polys module and *Basic functionality of the module* (page 2416) for an introductory explanation.

Basic polynomial manipulation functions

```python
sympy.polys.polytools.poly(expr, *gens, **args)
```

Efficiently transform an expression into a polynomial.

Examples

```python
>>> from sympy import poly
>>> from sympy.abc import x

>>> poly(x*(x**2 + x - 1)**2)
Poly(x**5 + 2*x**4 - x**3 - 2*x**2 + x, x, domain='ZZ')
```

```python
sympy.polys.polytools.poly_from_expr(expr, *gens, **args)
```

Construct a polynomial from an expression.

```python
sympy.polys.polytools.parallel_poly_from_expr(exprs, *gens, **args)
```

Construct polynomials from expressions.

```python
sympy.polys.polytools.degree(f, gen=0)
```

Return the degree of f in the given variable.

The degree of 0 is negative infinity.

Examples

```python
>>> from sympy import degree
>>> from sympy.abc import x, y

>>> degree(x**2 + y*x + 1, gen=x)
2
>>> degree(x**2 + y*x + 1, gen=y)
1
>>> degree(0, x)
-inf
```

See also:

`sympy.polys.polytools.Poly.total_degree` (page 2497), `degree_list` (page 2435)

```python
sympy.polys.polytools.degree_list(f, *gens, **args)
```

Return a list of degrees of f in all variables.

5.8. Topics 2435
Examples

```python
>>> from sympy import degree_list
>>> from sympy.abc import x, y

>>> degree_list(x**2 + y*x + 1)
(2, 1)
```

`sympy.polys.polytools.LC(f, *gens, **args)`
Return the leading coefficient of \(f \).

Examples

```python
>>> from sympy import LC
>>> from sympy.abc import x, y

>>> LC(4*x**2 + 2*x*y**2 + x*y + 3*y)
4
```

`sympy.polys.polytools.LM(f, *gens, **args)`
Return the leading monomial of \(f \).

Examples

```python
>>> from sympy import LM
>>> from sympy.abc import x, y

>>> LM(4*x**2 + 2*x*y**2 + x*y + 3*y)
x**2
```

`sympy.polys.polytools.LT(f, *gens, **args)`
Return the leading term of \(f \).

Examples

```python
>>> from sympy import LT
>>> from sympy.abc import x, y

>>> LT(4*x**2 + 2*x*y**2 + x*y + 3*y)
4*x**2
```

`sympy.polys.polytools.pdiv(f, g, *gens, **args)`
Compute polynomial pseudo-division of \(f \) and \(g \).
Examples

```python
>>> from sympy import pdiv
>>> from sympy.abc import x

>>> pdiv(x**2 + 1, 2*x - 4)
(2*x + 4, 20)
```

sympy.polys.polytools.prem(f, g, *gens, **args)

Compute polynomial pseudo-remainder of f and g.

Examples

```python
>>> from sympy import prem
>>> from sympy.abc import x

>>> prem(x**2 + 1, 2*x - 4)
20
```

sympy.polys.polytools.pquo(f, g, *gens, **args)

Compute polynomial pseudo-quotient of f and g.

Examples

```python
>>> from sympy import pquo
>>> from sympy.abc import x

>>> pquo(x**2 + 1, 2*x - 4)
2*x + 4
>>> pquo(x**2 - 1, 2*x - 1)
2*x + 1
```

sympy.polys.polytools.pexquo(f, g, *gens, **args)

Compute polynomial exact pseudo-quotient of f and g.

Examples

```python
>>> from sympy import pexquo
>>> from sympy.abc import x

>>> pexquo(x**2 - 1, 2*x - 2)
2*x + 2
>>> pexquo(x**2 + 1, 2*x - 4)
Traceback (most recent call last):
...
ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1
```
sympy.polys.polytools.div(f, g, *gens, **args)
Compute polynomial division of f and g.

Examples

```python
>>> from sympy import div, ZZ, QQ
>>> from sympy.abc import x

>>> div(x**2 + 1, 2*x - 4, domain=ZZ)
(0, x**2 + 1)
>>> div(x**2 + 1, 2*x - 4, domain=QQ)
(x/2 + 1, 5)
```

sympy.polys.polytools.rem(f, g, *gens, **args)
Compute polynomial remainder of f and g.

Examples

```python
>>> from sympy import rem, ZZ, QQ
>>> from sympy.abc import x

>>> rem(x**2 + 1, 2*x - 4, domain=ZZ)
x**2 + 1
>>> rem(x**2 + 1, 2*x - 4, domain=QQ)
5
```

sympy.polys.polytools.quo(f, g, *gens, **args)
Compute polynomial quotient of f and g.

Examples

```python
>>> from sympy import quo
>>> from sympy.abc import x

>>> quo(x**2 + 1, 2*x - 4)
x/2 + 1
>>> quo(x**2 - 1, x - 1)
x + 1
```

sympy.polys.polytools.exquo(f, g, *gens, **args)
Compute polynomial exact quotient of f and g.
Examples

```python
>>> from sympy import exquo
>>> from sympy.abc import x

>>> exquo(x**2 - 1, x - 1)
x + 1

>>> exquo(x**2 + 1, 2*x - 4)
Traceback (most recent call last):
...  
ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1
```

`sympy.polys.polytools.half_gcdex(f, g, *gens, **args)`

Half extended Euclidean algorithm of f and g.

Returns \((s, h) \) such that \(h = \gcd(f, g) \) and \(s*f = h \pmod{g} \).

Examples

```python
>>> from sympy import half_gcdex
>>> from sympy.abc import x

>>> half_gcdex(x**4 - 2*x**3 - 6*x**2 + 12*x + 15, x**3 + x**2 - 4*x - 4)
(3/5 - x/5, x + 1)
```

`sympy.polys.polytools.gcdex(f, g, *gens, **args)`

Extended Euclidean algorithm of f and g.

Returns \((s, t, h) \) such that \(h = \gcd(f, g) \) and \(s*f + t*g = h \).

Examples

```python
>>> from sympy import gcdex
>>> from sympy.abc import x

>>> gcdex(x**4 - 2*x**3 - 6*x**2 + 12*x + 15, x**3 + x**2 - 4*x - 4)
(3/5 - x/5, x**2/5 - 6*x/5 + 2, x + 1)
```

`sympy.polys.polytools.invert(f, g, *gens, **args)`

Invert f modulo g when possible.
Examples

```python
>>> from sympy import invert, S, mod_inverse
>>> from sympy.abc import x

>>> invert(x**2 - 1, 2*x - 1)
-4/3

>>> invert(x**2 - 1, x - 1)
Traceback (most recent call last):
...  
NotInvertible: zero divisor
```

For more efficient inversion of Rationals, use the `mod_inverse` (page 1053) function:

```python
>>> mod_inverse(3, 5)
2
>>> (S(2)/5).invert(S(7)/3)
5/2
```

See also:
- `sympy.core.numbers.mod_inverse` (page 1053)
- `sympy.polys.polytools.subresultants(f, g, *gens, **args)`
 Compute subresultant PRS of f and g.

Examples

```python
>>> from sympy import subresultants
>>> from sympy.abc import x

>>> subresultants(x**2 + 1, x**2 - 1)
[x**2 + 1, x**2 - 1, -2]
```

- `sympy.polys.polytools.resultant(f, g, *gens, includePRS=False, **args)`
 Compute resultant of f and g.

Examples

```python
>>> from sympy import resultant
>>> from sympy.abc import x

>>> resultant(x**2 + 1, x**2 - 1)
4
```

- `sympy.polys.polytools.discriminant(f, *gens, **args)`
 Compute discriminant of f.
Examples

```python
>>> from sympy import discriminant
>>> from sympy.abc import x

>>> discriminant(x**2 + 2*x + 3)
-8
```

```python
sympy.polys.polytools.terms_gcd(f, *gens, **args)
```

Remove GCD of terms from `f`.

If the `deep` flag is `True`, then the arguments of `f` will have terms_gcd applied to them.

If a fraction is factored out of `f` and `f` is an Add, then an unevaluated Mul will be returned so that automatic simplification does not redistribute it. The hint `clear`, when set to `False`, can be used to prevent such factoring when all coefficients are not fractions.

Examples

```python
>>> from sympy import terms_gcd, cos
>>> from sympy.abc import x, y

>>> terms_gcd(x**6*y**2 + x**3*y, x, y)
x**3*y*(x**3*y + 1)
```

The default action of polys routines is to expand the expression given to them. `terms_gcd` follows this behavior:

```python
>>> terms_gcd((3+3*x)*(x+x*y))
3*x*(x*y + x + y + 1)
```

If this is not desired then the hint `expand` can be set to `False`. In this case the expression will be treated as though it were comprised of one or more terms:

```python
>>> terms_gcd((3+3*x)*(x+x*y), expand=False)
(3*x + 3)*(x*y + x)
```

In order to traverse factors of a Mul or the arguments of other functions, the `deep` hint can be used:

```python
>>> terms_gcd((3 + 3*x)*(x + x*y), expand=False, deep=True)
3*x*(x + 1)*(y + 1)
```

```python
>>> terms_gcd(cos(x + x*y), deep=True)
cos(x*(y + 1))
```

Rationals are factored out by default:

```python
>>> terms_gcd(x + y/2)
(2*x + y)/2
```

Only the `y`-term had a coefficient that was a fraction; if one does not want to factor out the 1/2 in cases like this, the flag `clear` can be set to `False`:

5.8. Topics
>>> terms_gcd(x + y/2, clear=False)
 x + y/2
>>> terms_gcd(x*y/2 + y**2, clear=False)
 y*(x/2 + y)

The clear flag is ignored if all coefficients are fractions:

>>> terms_gcd(x/3 + y/2, clear=False)
 (2*x + 3*y)/6

See also:

sympy.core.exprtools.gcd_terms (page 1116), sympy.core.exprtools.factor_terms (page 1117)

sympy.polys.polytools.cofactors(f, g, *gens, **args)
 Compute GCD and cofactors of f and g.
 Returns polynomials (h, cff, cfg) such that h = gcd(f, g), and cff = quo(f, h) and cfg = quo(g, h) are, so called, cofactors of f and g.

Examples

>>> from sympy import cofactors
>>> from sympy.abc import x

>>> cofactors(x**2 - 1, x**2 - 3*x + 2)
 (x - 1, x + 1, x - 2)

sympy.polys.polytools.gcd(f, g=None, *gens, **args)
 Compute GCD of f and g.

Examples

>>> from sympy import gcd
>>> from sympy.abc import x

>>> gcd(x**2 - 1, x**2 - 3*x + 2)
 x - 1

sympy.polys.polytools.gcd_list(seq, *gens, **args)
 Compute GCD of a list of polynomials.
Examples

```python
>>> from sympy import gcd_list
>>> from sympy.abc import x

>>> gcd_list([x**3 - 1, x**2 - 1, x**2 - 3*x + 2])
x - 1
```

sympy.polys.polytools.lcm(f, g=None, *gens, **args)

Compute LCM of f and g.

Examples

```python
>>> from sympy import lcm
>>> from sympy.abc import x

>>> lcm(x**2 - 1, x**2 - 3*x + 2)
x**3 - 2*x**2 - x + 2
```

sympy.polys.polytools.lcm_list(seq, *gens, **args)

Compute LCM of a list of polynomials.

Examples

```python
>>> from sympy import lcm_list
>>> from sympy.abc import x

>>> lcm_list([x**3 - 1, x**2 - 1, x**2 - 3*x + 2])
x**5 - x**4 - 2*x**3 - x**2 + x + 2
```

sympy.polys.polytools.trunc(f, p, *gens, **args)

Reduce f modulo a constant p.

Examples

```python
>>> from sympy import trunc
>>> from sympy.abc import x

>>> trunc(2*x**3 + 3*x**2 + 5*x + 7, 3)
-x**3 - x + 1
```

sympy.polys.polytools.monic(f, *gens, **args)

Divide all coefficients of f by $\text{LC}(f)$.
```
Examples

```python
>>> from sympy import monic
>>> from sympy.abc import x

>>> monic(3*x**2 + 4*x + 2)
x**2 + 4*x/3 + 2/3
```

sympy.polys.polytools.content(f, *gens, **args)
Compute GCD of coefficients of f.

```
Examples

```python
>>> from sympy import content
>>> from sympy.abc import x

>>> content(6*x**2 + 8*x + 12)
2
```

sympy.polys.polytools.primitive(f, *gens, **args)
Compute content and the primitive form of f.

```
Examples

```python
>>> from sympy.polys.polytools import primitive
>>> from sympy.abc import x

>>> primitive(6*x**2 + 8*x + 12)
(2, 3*x**2 + 4*x + 6)

>>> eq = (2 + 2*x)*x + 2

Expansion is performed by default:

```python
>>> primitive(eq)
(2, x**2 + x + 1)
```

Set expand to False to shut this off. Note that the extraction will not be recursive; use the as_contentPrimitive method for recursive, non-destructive Rational extraction.

```python
>>> primitive(eq, expand=False)
(1, x*(2*x + 2) + 2)

>>> eq.as_content_primitive()
(2, x*(x + 1) + 1)
```

sympy.polys.polytools.compose(f, g, *gens, **args)
Compute functional composition f(g).
Examples

```python
>>> from sympy import compose
>>> from sympy.abc import x

>>> compose(x**2 + x, x - 1)
```

```python
x**2 - x
```

`sympy.polys.polytools.decompose(f, *gens, **args)`

Compute functional decomposition of f.

Examples

```python
>>> from sympy import decompose
>>> from sympy.abc import x

>>> decompose(x**4 + 2*x**3 - x - 1)
```

```python
[x**2 - x - 1, x**2 + x]
```

`sympy.polys.polytools.sturm(f, *gens, **args)`

Compute Sturm sequence of f.

Examples

```python
>>> from sympy import sturm
>>> from sympy.abc import x

>>> sturm(x**3 - 2*x**2 + x - 3)
```

```python
[x**3 - 2*x**2 + x - 3, 3*x**2 - 4*x + 1, 2*x/9 + 25/9, -2079/4]
```

`sympy.polys.polytools.gff_list(f, *gens, **args)`

Compute a list of greatest factorial factors of f.

Note that the input to ff() and rf() should be Poly instances to use the definitions here.

Examples

```python
>>> from sympy import gff_list, ff, Poly
>>> from sympy.abc import x

>>> f = Poly(x**5 + 2*x**4 - x**3 - 2*x**2, x)

>>> gff_list(f)
```

```python
[(Poly(x, x, domain='ZZ'), 1), (Poly(x + 2, x, domain='ZZ'), 4)]
```

```python
>>> (ff(Poly(x), 1)*ff(Poly(x + 2), 4)) == f
```

True

5.8. Topics 2445
```python
>>> f = Poly(x**12 + 6*x**11 - 11*x**10 - 56*x**9 + 220*x**8 + 208*x**7 -
1401*x**6 + 1090*x**5 + 2715*x**4 - 6720*x**3 - 1092*x**2 +
-5040*x, x)
```
```
>>> gff_list(f)
[[(Poly(x**3 + 7, x, domain='ZZ'), 2), (Poly(x**2 + 5*x, x, domain='ZZ'),
-3)]
```
```
>>> ff(Poly(x**3 + 7, x), 2)*ff(Poly(x**2 + 5*x, x), 3) == f
True
```
```
sympy.polys.polytools.gff(f, *gens, **args)
    Compute greatest factorial factorization of f.
```
```
sympy.polys.polytools.sqf_norm(f, *gens, **args)
    Compute square-free norm of f.
    Returns s, f, r, such that g(x) = f(x-sa) and r(x) = Norm(g(x)) is a square-free polynomial over K, where a is the algebraic extension of the ground domain.
```
```
Examples
```
```python
>>> from sympy import sqf_norm, sqrt
>>> from sympy.abc import x
```
```
>>> sqf_norm(x**2 + 1, extension=[sqrt(3)])
(1, x**2 - 2*sqrt(3)*x + 4, x**4 - 4*x**2 + 16)
```
```
sympy.polys.polytools.sqf_part(f, *gens, **args)
    Compute square-free part of f.
```
```
Examples
```
```python
>>> from sympy import sqf_part
>>> from sympy.abc import x
```
```
>>> sqf_part(x**3 - 3*x - 2)
x**2 - x - 2
```
```
sympy.polys.polytools.sqf_list(f, *gens, **args)
    Compute a list of square-free factors of f.
```
SymPy Documentation, Release 1.12.1

Examples

```python
>>> from sympy import sqf_list
>>> from sympy.abc import x

>>> sqf_list(2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16)
(2, [(x + 1, 2), (x + 2, 3)])
```

sympy.polys.polytools.sqf(*f*, *gens*, **args**)

Compute square-free factorization of *f*.

Examples

```python
>>> from sympy import sqf
>>> from sympy.abc import x

>>> sqf(2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16)
2*(x + 1)**2*(x + 2)**3
```

sympy.polys.polytools.factor_list(*f*, *gens*, **args**)

Compute a list of irreducible factors of *f*.

Examples

```python
>>> from sympy import factor_list
>>> from sympy.abc import x, y

>>> factor_list(2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y)
(2, [(x + y, 1), (x**2 + 1, 2)])
```

sympy.polys.polytools.factor(*f*, *gens*, *deep=False*, **args**)

Compute the factorization of expression, *f*, into irreducibles. (To factor an integer into primes, use factorint.)

There two modes implemented: symbolic and formal. If *f* is not an instance of Poly (page 2453) and generators are not specified, then the former mode is used. Otherwise, the formal mode is used.

In symbolic mode, factor() (page 2447) will traverse the expression tree and factor its components without any prior expansion, unless an instance of Add (page 1062) is encountered (in this case formal factorization is used). This way factor() (page 2447) can handle large or symbolic exponents.

By default, the factorization is computed over the rationals. To factor over other domain, e.g. an algebraic or finite field, use appropriate options: extension, modulus or domain.

5.8. Topics 2447
Examples

```python
>>> from sympy import factor, sqrt, exp
>>> from sympy.abc import x, y

>>> factor(2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y)
2*(x + y)*(x**2 + 1)**2

>>> factor(x**2 + 1)
(x**2 + 1)

>>> factor(x**2 + 1, modulus=2)
(x + 1)**2

>>> factor(x**2 + 1, gaussian=True)
(x - I)*(x + I)

>>> factor(x**2 - 2, extension=sqrt(2))
(x - sqrt(2))*(x + sqrt(2))

>>> factor((x**2 - 1)/(x**2 + 4*x + 4))
(x - 1)*(x + 1)/(x + 2)**2

>>> factor((x**2 + 4*x + 4)**10000000*(x**2 + 1))
(x + 2)**20000000*(x**2 + 1)

By default, factor deals with an expression as a whole:

```python
>>> eq = 2**((x**2 + 2*x + 1)
>>> factor(eq)
2**((x + 1)**2)
```

If the deep flag is True then subexpressions will be factored:

```python
>>> factor(eq, deep=True)
2**((x + 1)**2)
```

If the fraction flag is False then rational expressions will not be combined. By default it is True.

```python
>>> factor(5*x + 3*exp(2 - 7*x), deep=True)
(5*x*exp(7*x) + 3*exp(2))*exp(-7*x)

>>> factor(5*x + 3*exp(2 - 7*x), deep=True, fraction=False)
5*x + 3*exp(2)*exp(-7*x)
```

See also:

* sympy.ntheory.factor_.factorint (page 1539)
* sympy.polys.polytools.intervals(F, all=False, eps=None, inf=None, sup=None, strict=False, fast=False, sqf=False)

Compute isolating intervals for roots of f.
Examples

```python
>>> from sympy import intervals
>>> from sympy.abc import x

>>> intervals(x**2 - 3)
[((-2, -1), 1), ((1, 2), 1)]
>>> intervals(x**2 - 3, eps=1e-2)
[((-26/15, -19/11), 1), ((19/11, 26/15), 1)]
```

**sympy.polys.polytools.refine_root**

Refine an isolating interval of a root to the given precision.

Examples

```python
>>> from sympy import refine_root
>>> from sympy.abc import x

>>> refine_root(x**2 - 3, 1, 2, eps=1e-2)
(19/11, 26/15)
```

**sympy.polys.polytools.count_roots**

Return the number of roots of *f* in [inf, sup] interval.

If one of inf or sup is complex, it will return the number of roots in the complex rectangle with corners at inf and sup.

Examples

```python
>>> from sympy import count_roots, I
>>> from sympy.abc import x

>>> count_roots(x**4 - 4, -3, 3)
2
>>> count_roots(x**4 - 4, 0, 1 + 3*I)
1
```

**sympy.polys.polytools.real_roots**

Return a list of real roots with multiplicities of *f*.
Examples

```python
>>> from sympy import real_roots
>>> from sympy.abc import x

>>> real_roots(2*x**3 - 7*x**2 + 4*x + 4)
[-1/2, 2, 2]
```

`sympy.polys.polytools.nroots(f, n=15, maxsteps=50, cleanup=True)`
Compute numerical approximations of roots of `f`.

Examples

```python
>>> from sympy import nroots
>>> from sympy.abc import x

>>> nroots(x**2 - 3, n=15)
[-1.73205080756887729352744634151, 1.73205080756887729352744634151]
```

`sympy.polys.polytools.ground_roots(f, *gens, **args)`
Compute roots of `f` by factorization in the ground domain.

Examples

```python
>>> from sympy import ground_roots
>>> from sympy.abc import x

>>> ground_roots(x**6 - 4*x**4 + 4*x**3 - x**2)
{0: 2, 1: 2}
```

`sympy.polys.polytools.nth_power_roots_poly(f, n, *gens, **args)`
Construct a polynomial with n-th powers of roots of `f`.

Examples

```python
>>> from sympy import nth_power_roots_poly, factor, roots
>>> from sympy.abc import x

>>> f = x**4 - x**2 + 1
>>> g = factor(nth_power_roots_poly(f, 2))

>>> g
(x**2 - x + 1)**2
```
```python
>>> R_f = [(r*r*2).expand() for r in roots(f)]
>>> R_g = roots(g).keys()
```

```python
>>> set(R_f) == set(R_g)
True
```

### sympy.polys.polytools.cancel(f, *gens, _signsimp=True, **args)

Cancel common factors in a rational function f.

**Examples**

```python
>>> from sympy import cancel, sqrt, Symbol, together
>>> from sympy.abc import x
>>> A = Symbol('A', commutative=False)
```

```python
>>> cancel((2*x**2 - 2)/(x**2 - 2*x + 1))
(2*x + 2)/(x - 1)
```

```python
>>> cancel((sqrt(3) + sqrt(15)*A)/(sqrt(2) + sqrt(10)*A))
sqrt(6)/2
```

Note: due to automatic distribution of Rationals, a sum divided by an integer will appear as a sum. To recover a rational form use `together` on the result:

```python
>>> cancel(x/2 + 1)
x/2 + 1
```

```python
>>> together(_)
(x + 2)/2
```

### sympy.polys.polytools.reduced(f, G, *gens, **args)

Reduces a polynomial f modulo a set of polynomials G.

Given a polynomial f and a set of polynomials \( G = (g_1, \ldots, g_n) \), computes a set of quotients \( q = (q_1, \ldots, q_n) \) and the remainder \( r \) such that \( f = q_1 g_1 + \ldots + q_n g_n + r \), where \( r \) vanishes or \( r \) is a completely reduced polynomial with respect to \( G \).

**Examples**

```python
>>> from sympy import reduced
>>> from sympy.abc import x, y
```

```python
>>> reduced(2*x**4 + y**2 - x**2 + y**3, [x**3 - x, y**3 - y])
([2*x, 1], x**2 + y**2 + y)
```

### sympy.polys.polytools.groebner(F, *gens, **args)

Computes the reduced Groebner basis for a set of polynomials.

Use the order argument to set the monomial ordering that will be used to compute the basis. Allowed orders are lex, grlex and grevlex. If no order is specified, it defaults to lex.
For more information on Groebner bases, see the references and the docstring of `solve_poly_system()` (page 903).

**Examples**

Example taken from [1].

```python
>>> from sympy import groebner
>>> from sympy.abc import x, y

>>> F = [x*y - 2*y, 2*y**2 - x**2]

>>> groebner(F, x, y, order='lex')
GroebnerBasis([x**2 - 2*y**2, x*y - 2*y, y**3 - 2*y], x, y, domain='ZZ', order='lex')

>>> groebner(F, x, y, order='grlex')
GroebnerBasis([y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y], x, y, domain='ZZ', order='grlex')

>>> groebner(F, x, y, order='grevlex')
GroebnerBasis([y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y], x, y, domain='ZZ', order='grevlex')
```

By default, an improved implementation of the Buchberger algorithm is used. Optionally, an implementation of the F5B algorithm can be used. The algorithm can be set using the method flag or with the `sympy.polys.polyconfig.setup()` (page 2725) function.

```python
>>> F = [x**2 - x - 1, (2*x - 1) * y - (x**10 - (1 - x)**10)]

>>> groebner(F, x, y, method='buchberger')
GroebnerBasis([x**2 - x - 1, y - 55], x, y, domain='ZZ', order='lex')

>>> groebner(F, x, y, method='f5b')
GroebnerBasis([x**2 - x - 1, y - 55], x, y, domain='ZZ', order='lex')
```

**References**

1. [Buchberger01]
2. [Cox97]

[Buchberger01], [Cox97]

`sympy.polys.polytools.is_zero_dimensional(F, *gens, **args)`

Checks if the ideal generated by a Groebner basis is zero-dimensional.

The algorithm checks if the set of monomials not divisible by the leading monomial of any element of F is bounded.
References


class sympy.polys.polytools.Poly(rep, *gens, **args)
Generic class for representing and operating on polynomial expressions.
See Polynomial Manipulation (page 2416) for general documentation.
Poly is a subclass of Basic rather than Expr but instances can be converted to Expr with the as_expr() (page 2457) method.
Deprecated since version 1.6: Combining Poly with non-Poly objects in binary operations is deprecated. Explicitly convert both objects to either Poly or Expr first. See Mixing Poly and non-polynomial expressions in binary operations (page 228).

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x, y

Create a univariate polynomial:

```python
>>> Poly(x*(x**2 + x - 1)**2)
Poly(x**5 + 2*x**4 - x**3 - 2*x**2 + x, x, domain='ZZ')
```

Create a univariate polynomial with specific domain:

```python
>>> from sympy import sqrt
>>> Poly(x**2 + 2*x + sqrt(3), domain='R')
Poly(1.0*x**2 + 2.0*x + 1.73205080756888, x, domain='RR')
```

Create a multivariate polynomial:

```python
>>> Poly(y*x**2 + x*y + 1)
Poly(x**2*y + x*y + 1, x, y, domain='ZZ')
```

Create a univariate polynomial, where y is a constant:

```python
>>> Poly(y*x**2 + x*y + 1, x)
Poly(y*x**2 + y*x + 1, x, domain='ZZ[y]')
```

You can evaluate the above polynomial as a function of y:

```python
>>> Poly(y*x**2 + x*y + 1, x).eval(2)
6*y + 1
```

See also:
sympy.core.expr.Expr (page 999)
EC(order=None)
Returns the last non-zero coefficient of f.
Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(x**3 + 2*x**2 + 3*x, x).EC()
3
```

EM(order=None)

Returns the last non-zero monomial of \(f \).

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x, y

>>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).EM()
x**0*y**1
```

ET(order=None)

Returns the last non-zero term of \(f \).

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x, y

>>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).ET()
(x**0*y**1, 3)
```

LC(order=None)

Returns the leading coefficient of \(f \).

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(4*x**3 + 2*x**2 + 3*x, x).LC()
4
```

LM(order=None)

Returns the leading monomial of \(f \).

The Leading monomial signifies the monomial having the highest power of the principal generator in the expression \(f \).
Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x, y

>>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).LM()
x**2*y**0

LT(order=None)
Returns the leading term of f.
The Leading term signifies the term having the highest power of the principal generator in the expression f along with its coefficient.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x, y

>>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).LT()
(x**2*y**0, 4)

TC()
Returns the trailing coefficient of f.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(x**3 + 2*x**2 + 3*x, x).TC()
0

abs()
Make all coefficients in f positive.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(x**2 - 1, x).abs()
Poly(x**2 + 1, x, domain='ZZ')

add(g)
Add two polynomials f and g.
Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(x**2 + 1, x).add(Poly(x - 2, x))
Poly(x**2 + x - 1, x, domain='ZZ')

>>> Poly(x**2 + 1, x) + Poly(x - 2, x)
Poly(x**2 + x - 1, x, domain='ZZ')
```

add_ground (*coeff*)

Add an element of the ground domain to f.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(x + 1).add_ground(2)
Poly(x + 3, x, domain='ZZ')
```

all_coeffs

Returns all coefficients from a univariate polynomial f.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(x**3 + 2*x - 1, x).all_coeffs()
[1, 0, 2, -1]
```

all_monoms

Returns all monomials from a univariate polynomial f.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(x**3 + 2*x - 1, x).all_monoms()
[(3,), (2,), (1,), (0,)]
```

See also:

all_terms (page 2457)
all_roots\((multiple=True, radicals=True)\)

Return a list of real and complex roots with multiplicities.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(2*x**3 - 7*x**2 + 4*x + 4).all_roots()
[-1/2, 2, 2]

>>> Poly(x**3 + x + 1).all_roots()
[CRootOf(x**3 + x + 1, 0),
 CRootOf(x**3 + x + 1, 1),
 CRootOf(x**3 + x + 1, 2)]
```

all_terms()

Returns all terms from a univariate polynomial \(f\).

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(x**3 + 2*x - 1, x).all_terms()
[((3,), 1), ((2,), 0), ((1,), 2), ((0,), -1)]
```

as_dict\((native=False, zero=False)\)

Switch to a dict representation.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x, y

>>> Poly(x**2 + 2*x*y**2 - y, x, y).as_dict()
{(0, 1): -1, (1, 2): 2, (2, 0): 1}
```

as_expr\(*gens\)

Convert a Poly instance to an Expr instance.
Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x, y

>>> f = Poly(x**2 + 2*x*y**2 - y, x, y)

>>> f.as_expr()
x**2 + 2*x*y**2 - y
>>> f.as_expr({x: 5})
10*y**2 - y + 25
>>> f.as_expr(5, 6)
379
```

as_list(native=False)
Switch to a list representation.

as_poly(gens, **args)
Converts self to a polynomial or returns None.

```python
>>> from sympy import sin
>>> from sympy.abc import x

>>> print((x**2 + x*y).as_poly())
Poly(x**2 + x*y, x, y, domain='ZZ')

>>> print((x**2 + x*y).as_poly(x, y))
Poly(x**2 + x*y, x, y, domain='ZZ')

>>> print((x**2 + sin(y)).as_poly(x, y))
None
```

cancel(g, include=False)
Cancel common factors in a rational function f/g.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(2*x**2 - 2, x).cancel(Poly(x**2 - 2*x + 1, x))
(1, Poly(2*x + 2, x, domain='ZZ'), Poly(x - 1, x, domain='ZZ'))

>>> Poly(2*x**2 - 2, x).cancel(Poly(x**2 - 2*x + 1, x), include=True)
(Poly(2*x + 2, x, domain='ZZ'), Poly(x - 1, x, domain='ZZ'))
```

clear_denoms(convert=False)
Clear denominators, but keep the ground domain.
Examples

```python
>>> from sympy import Poly, S, QQ
>>> from sympy.abc import x

>>> f = Poly(x/2 + S(1)/3, x, domain=QQ)
>>> f.clear_denoms()
(6, Poly(3*x + 2, x, domain='QQ'))
>>> f.clear_denoms(convert=True)
(6, Poly(3*x + 2, x, domain='ZZ'))
```

coeff_monomial(monom)

Returns the coefficient of monom in f if there, else None.

Examples

```python
>>> from sympy import Poly, exp
>>> from sympy.abc import x, y

>>> p = Poly(24*x*y*exp(8) + 23*x, x, y)

>>> p.coeff_monomial(x)
23
>>> p.coeff_monomial(y)
0
>>> p.coeff_monomial(x*y)
24*exp(8)
```

Note that Expr.coeff() behaves differently, collecting terms if possible; the Poly must be converted to an Expr to use that method, however:

```python
>>> p.as_expr().coeff(x)
24*y*exp(8) + 23
>>> p.as_expr().coeff(y)
24*x*exp(8)
>>> p.as_expr().coeff(x*y)
24*exp(8)
```

See also:

nth (page 2483)

more efficient query using exponents of the monomial’s generators

coeffs(order=None)

Returns all non-zero coefficients from f in lex order.
Examples

```python
from sympy import Poly
from sympy.abc import x

Poly(x**3 + 2*x + 3, x).coeffs()
```

[1, 2, 3]

See also:
all_coeffs (page 2456), coeff_monomial (page 2459), nth (page 2483)

cofactors(g)
Returns the GCD of f and g and their cofactors.
Returns polynomials (h, cff, cfg) such that h = gcd(f, g), and cff = quo(f, h) and cfg = quo(g, h) are, so called, cofactors of f and g.

Examples

```python
from sympy import Poly

Poly(x**2 - 1, x).cofactors(Poly(x**2 - 3*x + 2, x))
```

(Poly(x - 1, x, domain='ZZ'),
 Poly(x + 1, x, domain='ZZ'),
 Poly(x - 2, x, domain='ZZ'))

compose(g)
Computes the functional composition of f and g.

Examples

```python
from sympy import Poly

Poly(x**2 + x, x).compose(Poly(x - 1, x))
```

Poly(x**2 - x, x, domain='ZZ')

content()
Returns the GCD of polynomial coefficients.
Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(6*x**2 + 8*x + 12, x).content()
2
```

count_roots\(\text{inf=None, sup=None}\)

Return the number of roots of \(f\) in \([\text{inf}, \text{sup}]\) interval.

Examples

```python
>>> from sympy import Poly, I
>>> from sympy.abc import x

>>> Poly(x**4 - 4, x).count_roots(-3, 3)
2
>>> Poly(x**4 - 4, x).count_roots(0, 1 + 3*I)
1
```

decompose()

Computes a functional decomposition of \(f\).

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(x**6*y**2 + x**3 + 1, x, y).deflate()
((3, 2), Poly(x**2*y + x + 1, x, y, domain='ZZ'))
```

deflate()

Reduce degree of \(f\) by mapping \(x_i^{**m}\) to \(y_i\).

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x, y

>>> Poly(x**6*y**2 + x**3 + 1, x, y).deflate()
((3, 2), Poly(x**2*y + x + 1, x, y, domain='ZZ'))
```

degree\(\text{gen=0}\)

Returns degree of \(f\) in \(x__i\).

The degree of 0 is negative infinity.
Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x, y

>>> Poly(x**2 + y*x + 1, x, y).degree()
2
>>> Poly(x**2 + y*x + y, x, y).degree(y)
1
>>> Poly(0, x).degree()
-oo
```

degree_list()
Returns a list of degrees of f.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x, y

>>> Poly(x**2 + y*x + 1, x, y).degree_list()
(2, 1)
```

diff(*specs, **kwargs)
Computes partial derivative of f.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x, y

>>> Poly(x**2 + 2*x + 1, x).diff()
Poly(2*x + 2, x, domain='ZZ')

>>> Poly(x*y**2 + x, x, y).diff((0, 0), (1, 1))
Poly(2*x*y, x, y, domain='ZZ')
```

discriminant()
Computes the discriminant of f.
Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(x**2 + 2*x + 3, x).discriminant()
-8
```

dispersion\((g=\text{None})\)

Compute the dispersion of polynomials.

For two polynomials \(f(x)\) and \(g(x)\) with \(\deg f > 0\) and \(\deg g > 0\) the dispersion \(\text{dis}(f,g)\) is defined as:

\[
\text{dis}(f,g) := \max\{J(f,g) \cup \{0\}
= \max\{\{a \in \mathbb{N}| \gcd(f(x), g(x + a)) \neq 1\} \cup \{0\}\}
\]

and for a single polynomial \(\text{dis}(f) := \text{dis}(f,f)\).

Examples

```python
>>> from sympy import poly
>>> from sympy.polys.dispersion import dispersion, dispersionset
>>> from sympy.abc import x

Dispersion set and dispersion of a simple polynomial:

```python
>>> fp = poly((x - 3)*(x + 3), x)
>>> sorted(dispersionset(fp))
[0, 6]
>>> dispersion(fp)
6
```

Note that the definition of the dispersion is not symmetric:

```python
>>> fp = poly(x**4 - 3*x**2 + 1, x)
>>> gp = fp.shift(-3)
>>> sorted(dispersionset(fp, gp))
[2, 3, 4]
>>> dispersion(fp, gp)
4
>>> sorted(dispersionset(gp, fp))
[]
>>> dispersion(gp, fp)
-oo
```

Computing the dispersion also works over field extensions:

```python
>>> from sympy import sqrt
>>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>')
>>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>')
```

(continues on next page)
We can even perform the computations for polynomials having symbolic coefficients:

```
>>> from sympy.abc import a
>>> fp = poly((x - 3)*(x + 3), x)
```

```
[0, 6]
```

```
>>> dispersion(fp)
6
```

See also:

`dispersionset` (page 2464)

References

1. [ManWright94]
2. [Koepf98]
3. [Abramov71]
4. [Man93]

[ManWright94], [Koepf98], [Abramov71], [Man93]

**dispersionset**\((g=None)\)

Compute the dispersion set of two polynomials.

For two polynomials \(f(x)\) and \(g(x)\) with \(\deg f > 0\) and \(\deg g > 0\) the dispersion set \(J(f, g)\) is defined as:

\[
J(f, g) := \{a \in \mathbb{N}_0 | \gcd(f(x), g(x + a)) \neq 1\} = \{a \in \mathbb{N}_0 | \deg \gcd(f(x), g(x + a)) \geq 1\}
\]

For a single polynomial one defines \(J(f) := J(f, f)\).

Examples

```
>>> from sympy import poly
>>> from sympy.polys.dispersion import dispersion, dispersionset
>>> from sympy.abc import x
```

Dispersion set and dispersion of a simple polynomial:

```
>>> dispersionset(fp)
[0, 1]
```

```
>>> dispersion(fp)
6
```
Note that the definition of the dispersion is not symmetric:

```python
>>> fp = poly(x**4 - 3*x**2 + 1, x)
>>> gp = fp.shift(-3)
>>> sorted(dispersionset(fp, gp))
[2, 3, 4]
>>> dispersion(fp, gp)
4
>>> sorted(dispersionset(gp, fp))
[]
>>> dispersion(gp, fp)
-oo
```

Computing the dispersion also works over field extensions:

```python
>>> from sympy import sqrt
>>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>')
>>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>')
>>> sorted(dispersionset(fp, gp))
[2]
>>> sorted(dispersionset(gp, fp))
[1, 4]
```

We can even perform the computations for polynomials having symbolic coefficients:

```python
>>> from sympy.abc import a
>>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 - 2*a)*x, x)
>>> sorted(dispersionset(fp))
[0, 1]
```

See also:

dispersion (page 2463)

References

1. [ManWright94]
2. [Koepf98]
3. [Abramov71]
4. [Man93]

[ManWright94], [Koepf98], [Abramov71], [Man93]

**div(g, auto=True)**

Polynomial division with remainder of f by g.
Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x
```

```python
>>> Poly(x**2 + 1, x).div(Poly(2*x - 4, x))
(Poly(1/2*x + 1, x, domain='QQ'), Poly(5, x, domain='QQ'))
```

```python
>>> Poly(x**2 + 1, x).div(Poly(2*x - 4, x), auto=False)
(Poly(0, x, domain='ZZ'), Poly(x**2 + 1, x, domain='ZZ'))
```

**property domain**

Get the ground domain of a `Poly` (page 2453)

**Returns**

`Domain` (page 2584):

Ground domain of the `Poly` (page 2453).

Examples

```python
>>> from sympy import Poly, Symbol
```

```python
>>> x = Symbol('x')
>>> p = Poly(x**2 + x)
>>> p
Poly(x**2 + x, x, domain='ZZ')
>>> p.domain
ZZ
```

eject(*gens)

Eject selected generators into the ground domain.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x, y
```

```python
>>> f = Poly(x**2*y + x*y**3 + x*y + 1, x, y)
```

```python
>>> f.eject(x)
Poly(x*y**3 + (x**2 + x)*y + 1, y, domain='ZZ[x]')
>>> f.eject(y)
Poly(y*x**2 + (y**3 + y)*x + 1, x, domain='ZZ[y]')
```

eval(x, a=None, auto=True)

Evaluate f at a in the given variable.
Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x, y, z

>>> Poly(x**2 + 2*x + 3, x).eval(2)
11

>>> Poly(2*x*y + 3*x + y + 2, x, y).eval(x, 2)
Poly(5*y + 8, y, domain='ZZ')

>>> f = Poly(2*x*y + 3*x + y + 2*z, x, y, z)

>>> f.eval({x: 2})
Poly(5*y + 2*z + 6, y, z, domain='ZZ')
>>> f.eval({x: 2, y: 5})
Poly(2*z + 31, z, domain='ZZ')
>>> f.eval({x: 2, y: 5, z: 7})
45

>>> f.eval((2, 5))
Poly(2*z + 31, z, domain='ZZ')
>>> f(2, 5)
Poly(2*z + 31, z, domain='ZZ')
```

**exclude()**
Remove unnecessary generators from f.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import a, b, c, d, x

>>> Poly(a + x, a, b, c, d, x).exclude()
Poly(a + x, a, x, domain='ZZ')
```

**exquo(g, auto=True)**
Computes polynomial exact quotient of f by g.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(x**2 - 1, x).exquo(Poly(x - 1, x))
Poly(x + 1, x, domain='ZZ')
```
```python
>>> Poly(x**2 + 1, x).exquo(Poly(2*x - 4, x))
Traceback (most recent call last):
...
ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1
```

**exquo_ground**(coeff)

Exact quotient of f by a an element of the ground domain.

**Examples**

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(2*x + 4).exquo_ground(2)
P(x + 2, x, domain='ZZ')

>>> Poly(2*x + 3).exquo_ground(2)
Traceback (most recent call last):
...
ExactQuotientFailed: 2 does not divide 3 in ZZ
```

**factor_list**()

Returns a list of irreducible factors of f.

**Examples**

```python
>>> from sympy import Poly
>>> from sympy.abc import x, y

>>> f = 2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y
>>> Poly(f).factor_list()
(2, [(Poly(x + y, x, y, domain='ZZ'), 1),
 (Poly(x**2 + 1, x, y, domain='ZZ'), 2)])
```

**factor_list_include**()

Returns a list of irreducible factors of f.

**Examples**

```python
>>> from sympy import Poly
>>> from sympy.abc import x, y

>>> f = 2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y
```
>>> Poly(f).factor_list_include()
[(Poly(2*x + 2*y, x, y, domain='ZZ'), 1),
 (Poly(x**2 + 1, x, y, domain='ZZ'), 2)]

**property free_symbols**
Free symbols of a polynomial expression.

**Examples**

```python
>>> from sympy import Poly
>>> from sympy.abc import x, y, z
```

```python
>>> Poly(x**2 + 1).free_symbols
{x}
>>> Poly(x**2 + y).free_symbols
{x, y}
>>> Poly(x**2 + y, x).free_symbols
{x, y}
>>> Poly(x**2 + y, x, z).free_symbols
{x, y}
```

**property free_symbols_in_domain**
Free symbols of the domain of self.

**Examples**

```python
>>> from sympy import Poly
>>> from sympy.abc import x, y
```

```python
>>> Poly(x**2 + 1).free_symbols_in_domain
set()
>>> Poly(x**2 + y).free_symbols_in_domain
set()
>>> Poly(x**2 + y, x).free_symbols_in_domain
{y}
```

**classmethod from_dict**(rep, *gens, **args)
Construct a polynomial from a dict.

**classmethod from_expr**(rep, *gens, **args)
Construct a polynomial from an expression.

**classmethod from_list**(rep, *gens, **args)
Construct a polynomial from a list.

**classmethod from_poly**(rep, *gens, **args)
Construct a polynomial from a polynomial.

**galois_group**(by_name=False, max_tries=30, randomize=False)
Compute the Galois group of this polynomial.

5.8. Topics
Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x
>>> f = Poly(x**4 - 2)
>>> G, _ = f.galois_group(by_name=True)
>>> print(G)
S4TransitiveSubgroups.D4
```

See also:
`sympy.polys.numberfields.galoisgroups.galois_group` (page 2792)

**gcd**

Returns the polynomial GCD of \( f \) and \( g \).

Examples

```python
>>> from sympy import Poly
>>> Poly(x**2 - 1, x).gcd(Poly(x**2 - 3*x + 2, x))
Poly(x - 1, x, domain='ZZ')
```

**gcdex**\((g, auto=True)\)

Extended Euclidean algorithm of \( f \) and \( g \).

Returns \((s, t, h)\) such that \( h = \text{gcd}(f, g) \) and \( s*f + t*g = h \).

Examples

```python
>>> Poly(x**4 - 2*x**3 - 6*x**2 + 12*x + 15)
>>>
```

```python
>>> Poly(f).gcdex(Poly(g))
(Poly(-1/5*x + 3/5, x, domain='QQ'),
 Poly(1/5*x**2 - 6/5*x + 2, x, domain='QQ'),
 Poly(x + 1, x, domain='QQ'))
```

property **gen**

Return the principal generator.
**Examples**

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(x**2 + 1, x).gen
x
```

**get_domain()**

Get the ground domain of f.

**get_modulus()**

Get the modulus of f.

**Examples**

```python
>>> from sympy import Poly

>>> Poly(x**2 + 1, modulus=2).get_modulus()
2
```

**gff_list()**

Computes greatest factorial factorization of f.

**Examples**

```python
>>> from sympy import Poly

>>> f = x**5 + 2*x**4 - x**3 - 2*x**2

>>> Poly(f).gff_list()
[(Poly(x, x, domain='ZZ'), 1), (Poly(x + 2, x, domain='ZZ'), 4)]
```

**ground_roots()**

Compute roots of f by factorization in the ground domain.

**Examples**

```python
>>> from sympy import Poly

>>> Poly(x**6 - 4*x**4 + 4*x**3 - x**2).ground_roots()
{0: 2, 1: 2}
```
half_gcdex\((g, auto=True)\)

Half extended Euclidean algorithm of \(f\) and \(g\).
Returns \((s, h)\) such that \(h = \text{gcd}(f, g)\) and \(sf = h \pmod g\).

**Examples**

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> f = x**4 - 2*x**3 - 6*x**2 + 12*x + 15
>>> g = x**3 + x**2 - 4*x - 4

>>> Poly(f).half_gcdex(Poly(g))
(Poly(-1/5*x + 3/5, x, domain='QQ'), Poly(x + 1, x, domain='QQ'))
```

has_only_gens\(*gens\)

Return True if Poly\((f, *gens)\) retains ground domain.

**Examples**

```python
>>> from sympy import Poly

>>> from sympy.abc import x, y, z

>>> Poly(x*y + 1, x, y, z).has_only_gens(x, y)
True
>>> Poly(x*y + z, x, y, z).has_only_gens(x, y)
False
```

homogeneous_order()

Returns the homogeneous order of \(f\).
A homogeneous polynomial is a polynomial whose all monomials with non-zero coefficients have the same total degree. This degree is the homogeneous order of \(f\). If you only want to check if a polynomial is homogeneous, then use Poly. is_homogeneous() (page 2475).

**Examples**

```python
>>> from sympy import Poly

>>> from sympy.abc import x, y

>>> f = Poly(x**5 + 2*x**3*y**2 + 9*x*y**4)
>>> f.homogeneous_order()
5
```
homogenize(s)

Returns the homogeneous polynomial of f.

A homogeneous polynomial is a polynomial whose all monomials with non-zero coefficients have the same total degree. If you only want to check if a polynomial is homogeneous, then use Poly.is_homogeneous() (page 2475). If you want not only to check if a polynomial is homogeneous but also compute its homogeneous order, then use Poly.homogeneous_order() (page 2472).

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x, y, z

>>> f = Poly(x**5 + 2*x**2*y**2 + 9*x*y**3)
>>> f.homogenize(z)
Poly(x**5 + 2*x**2*y**2*z + 9*x*y**3*z, x, y, z, domain='ZZ')
```

inject(front=False)

Inject ground domain generators into f.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x, y

>>> f = Poly(x**2*y + x*y**3 + x*y + 1, x)

>>> f.inject()
Poly(x**2*y + x*y**3 + x*y + 1, x, y, domain='ZZ')

>>> f.inject(front=True)
Poly(y**3*x + y*x**2 + y*x + 1, y, x, domain='ZZ')
```

integrate(*specs, **args)

Computes indefinite integral of f.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x, y

>>> Poly(x**2 + 2*x + 1, x).integrate()
Poly(1/3*x**3 + x**2 + x, x, domain='QQ')

>>> Poly(x*y**2 + x, x, y).integrate((0, 1), (1, 0))
Poly(1/2*x**2*y**2 + 1/2*x**2, x, y, domain='QQ')
```
**intervals** *(all=False, eps=None, inf=None, sup=None, fast=False, sqf=False)*

Compute isolating intervals for roots of \( f \).

For real roots the Vincent-Akritas-Strzebonski (VAS) continued fractions method is used.

**Examples**

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(x**2 - 3, x).intervals()
[((-2, -1), 1), ((1, 2), 1)]

>>> Poly(x**2 - 3, x).intervals(eps=1e-2)
[((-26/15, -19/11), 1), ((19/11, 26/15), 1)]
```

**References**

**invert** *(g, auto=True)*

Invert \( f \) modulo \( g \) when possible.

**Examples**

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(x**2 - 1, x).invert(Poly(2*x - 1, x))
Poly(-4/3, x, domain='QQ')

>>> Poly(x**2 - 1, x).invert(Poly(x - 1, x))
Traceback (most recent call last):
... NotInvertible: zero divisor
```

**property is_cyclotomic**

Returns True if \( f \) is a cyclotomic polynomial.

**Examples**

```python
>>> from sympy import Poly

>>> f = x**16 + x**14 - x**10 + x**8 - x**6 + x**2 + 1

>>> Poly(f).is_cyclotomic
False
```
```python
>>> g = x**16 + x**14 - x**10 - x**8 - x**6 + x**2 + 1
```

```python
>>> Poly(g).is_cyclotomic
True
```

**property is_ground**

Returns True if f is an element of the ground domain.

**Examples**

```python
>>> from sympy import Poly
>>> from sympy.abc import x, y
```

```python
>>> Poly(x, x).is_ground
False
>>> Poly(2, x).is_ground
True
>>> Poly(y, x).is_ground
True
```

**property is_homogeneous**

Returns True if f is a homogeneous polynomial.

A homogeneous polynomial is a polynomial whose all monomials with non-zero coefficients have the same total degree. If you want not only to check if a polynomial is homogeneous but also compute its homogeneous order, then use `Poly.homogeneous_order()` (page 2472).

**Examples**

```python
>>> from sympy import Poly
>>> from sympy.abc import x, y
```

```python
>>> Poly(x**2 + x*y, x, y).is_homogeneous
True
>>> Poly(x**3 + x*y, x, y).is_homogeneous
False
```

**property is_irreducible**

Returns True if f has no factors over its domain.
Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(x**2 + x + 1, x, modulus=2).is_irreducible
True
>>> Poly(x**2 + 1, x, modulus=2).is_irreducible
False
```

**property is_linear**

Returns True if $f$ is linear in all its variables.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x, y

>>> Poly(x + y + 2, x, y).is_linear
True
>>> Poly(x*y + 2, x, y).is_linear
False
```

**property is_monic**

Returns True if the leading coefficient of $f$ is one.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(x + 2, x).is_monic
True
>>> Poly(2*x + 2, x).is_monic
False
```

**property is_monomial**

Returns True if $f$ is zero or has only one term.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(3*x**2, x).is_monomial
True
>>> Poly(3*x**2 + 1, x).is_monomial
False
```
property is_multivariate
Returns True if f is a multivariate polynomial.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x, y

>>> Poly(x**2 + x + 1, x).is_multivariate
False
>>> Poly(x*y**2 + x*y + 1, x, y).is_multivariate
True
>>> Poly(x*y**2 + x*y + 1, x).is_multivariate
False
>>> Poly(x**2 + x + 1, x, y).is_multivariate
True
```

property is_one
Returns True if f is a unit polynomial.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(0, x).is_one
False
>>> Poly(1, x).is_one
True
```

property is_primitive
Returns True if GCD of the coefficients of f is one.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(2*x**2 + 6*x + 12, x).is_primitive
False
>>> Poly(x**2 + 3*x + 6, x).is_primitive
True
```

property is_quadratic
Returns True if f is quadratic in all its variables.
Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x, y

>>> Poly(x*y + 2, x, y).is_quadratic
True
>>> Poly(x*y**2 + 2, x, y).is_quadratic
False
```

property is_sqf
Returns True if \( f \) is a square-free polynomial.

Examples

```python
>>> from sympy import Poly

>>> from sympy.abc import x

>>> Poly(x**2 - 2*x + 1, x).is_sqf
False
>>> Poly(x**2 - 1, x).is_sqf
True
```

property is_univariate
Returns True if \( f \) is a univariate polynomial.

Examples

```python
>>> from sympy import Poly

>>> from sympy.abc import x, y

>>> Poly(x**2 + x + 1, x).is_univariate
True
>>> Poly(x*y**2 + x*y + 1, x, y).is_univariate
False
>>> Poly(x*y**2 + x*y + 1, x).is_univariate
True
>>> Poly(x**2 + x + 1, x, y).is_univariate
False
```

property is_zero
Returns True if \( f \) is a zero polynomial.
Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(0, x).is_zero
True
>>> Poly(1, x).is_zero
False
```

`l1_norm()`

Returns l1 norm of f.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(-x**2 + 2*x - 3, x).l1_norm()
6
```

`lcm(g)`

Returns polynomial LCM of f and g.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(x**2 - 1, x).lcm(Poly(x**2 - 3*x + 2, x))
Poly(x**3 - 2*x**2 - x + 2, x, domain='ZZ')
```

`length()`

Returns the number of non-zero terms in f.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(x**2 + 2*x - 1).length()
3
```

`lift()`

Convert algebraic coefficients to rationals.
Examples

```python
>>> from sympy import Poly, I
>>> from sympy.abc import x

>>> Poly(x**2 + I*x + 1, x, extension=I).lift()
Poly(x**4 + 3*x**2 + 1, x, domain='QQ')
```

**ltrim(gen)**

Remove dummy generators from f that are to the left of specified gen in the generators as ordered. When gen is an integer, it refers to the generator located at that position within the tuple of generators of f.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x, y, z

>>> Poly(y**2 + y*z**2, x, y, z).ltrim(y)
Poly(y**2 + y*z**2, x, y, z, domain='ZZ')
>>> Poly(z, x, y, z).ltrim(-1)
Poly(z, z, domain='ZZ')
```

**make_monic_over_integers_by_scaling_roots()**

Turn any univariate polynomial over QQ (page 2609) or ZZ (page 2605) into a monic polynomial over ZZ (page 2605), by scaling the roots as necessary.

**Returns**

Pair (g, c)

- g is the polynomial
- c is the integer by which the roots had to be scaled

**Explanation**

This operation can be performed whether or not f is irreducible; when it is, this can be understood as determining an algebraic integer generating the same field as a root of f.

Examples

```python
>>> from sympy import Poly, S
>>> from sympy.abc import x

>>> f = Poly(x**2/2 + S(1)/4 * x + S(1)/8, x, domain='QQ')
>>> f.make_monic_over_integers_by_scaling_roots()
(Poly(x**2 + 2*x + 4, x, domain='ZZ'), 4)
```

**match(*args, **kwargs)**

Match expression from Poly. See Basic.match()
max_norm()

Returns maximum norm of f.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(-x**2 + 2*x - 3, x).max_norm()
3
```

monic(auto=True)

Divides all coefficients by LC(f).

Examples

```python
>>> from sympy import Poly, ZZ
>>> from sympy.abc import x

>>> Poly(3*x**2 + 6*x + 9, x, domain=ZZ).monic()
Poly(x**2 + 2*x + 3, x, domain='QQ')

>>> Poly(3*x**2 + 4*x + 2, x, domain=ZZ).monic()
Poly(x**2 + 4/3*x + 2/3, x, domain='QQ')
```

monoms(order=None)

Returns all non-zero monomials from f in lex order.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x, y

>>> Poly(x**2 + 2*x*y**2 + x*y + 3*y, x, y).monoms()
[(2, 0), (1, 2), (1, 1), (0, 1)]
```

See also:

- all_monom (page 2456)

mul(g)

Multiply two polynomials f and g.
Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(x**2 + 1, x).mul(Poly(x - 2, x))
Poly(x**3 - 2*x**2 + x - 2, x, domain='ZZ')

>>> Poly(x**2 + 1, x)*Poly(x - 2, x)
Poly(x**3 - 2*x**2 + x - 2, x, domain='ZZ')
```

**mul_ground**(coeff)

Multiply f by an element of the ground domain.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(x + 1).mul_ground(2)
Poly(2*x + 2, x, domain='ZZ')
```

**neg**()

Negate all coefficients in f.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(x**2 - 1, x).neg()
Poly(-x**2 + 1, x, domain='ZZ')

>>> -Poly(x**2 - 1, x)
Poly(-x**2 + 1, x, domain='ZZ')
```

**classmethod new**(rep, *gens)

Construct `Poly` (page 2453) instance from raw representation.

**norm**()

Computes the product, Norm(f), of the conjugates of a polynomial f defined over a number field K.
Examples

```python
>>> from sympy import Poly, sqrt
>>> from sympy.abc import x
```
```python
>>> a, b = sqrt(2), sqrt(3)
```
A polynomial over a quadratic extension. Two conjugates $x - a$ and $x + a$.
```python
>>> f = Poly(x - a, x, extension=a)
>>> f.norm()
Poly(x**2 - 2, x, domain='QQ')
```
A polynomial over a quartic extension. Four conjugates $x - a$, $x - a$, $x + a$ and $x + a$.
```python
>>> f = Poly(x - a, x, extension=(a, b))
>>> f.norm()
Poly(x**4 - 4*x**2 + 4, x, domain='QQ')
```

`nroots(n=15, maxsteps=50, cleanup=True)`

Compute numerical approximations of roots of $f$.

**Parameters**
- `n` ... the number of digits to calculate
- `maxsteps` ... the maximum number of iterations to do

If the accuracy `n` cannot be reached in `maxsteps`, it will raise an exception. You need to rerun with higher `maxsteps`.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x
```
```python
>>> Poly(x**2 - 3).nroots(n=15)
[-1.73205080756888, 1.73205080756888]
```
```python
>>> Poly(x**2 - 3).nroots(n=30)
[-1.73205080756887729352744634151, 1.73205080756887729352744634151]
```

`nth(*N)`

Returns the $n$-th coefficient of $f$ where $N$ are the exponents of the generators in the term of interest.
Examples

```python
>>> from sympy import Poly, sqrt
>>> from sympy.abc import x, y

>>> Poly(x**3 + 2*x**2 + 3*x, x).nth(2)
2
>>> Poly(x**3 + 2*x*y**2 + y**2, x, y).nth(1, 2)
2
>>> Poly(4*sqrt(x)*y)
Poly(4*y*(sqrt(x)), y, sqrt(x), domain='ZZ')
>>> _.nth(1, 1)
4
```

See also:

- `coeff_monomial` (page 2459)

**nth_power_roots_poly** *(n)*

Construct a polynomial with n-th powers of roots of f.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> f = Poly(x**4 - x**2 + 1)

>>> f.nth_power_roots_poly(2)
Poly(x**4 - 2*x**3 + 3*x**2 - 2*x + 1, x, domain='ZZ')
>>> f.nth_power_roots_poly(3)
Poly(x**4 + 2*x**3 + 1, x, domain='ZZ')
>>> f.nth_power_roots_poly(4)
Poly(x**4 + 2*x**3 + 3*x**2 + 2*x + 1, x, domain='ZZ')
>>> f.nth_power_roots_poly(12)
Poly(x**4 - 4*x**3 + 6*x**2 - 4*x + 1, x, domain='ZZ')
```

**property one**

Return one polynomial with self’s properties.

**pdiv**(g)

Polynomial pseudo-division of f by g.
Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(x**2 + 1, x).pdiv(Poly(2*x - 4, x))
(Poly(2*x + 4, x, domain='ZZ'), Poly(20, x, domain='ZZ'))
```

**per**(rep, gens=None, remove=None)

Create a Poly out of the given representation.

Examples

```python
>>> from sympy import Poly, ZZ
>>> from sympy.abc import x, y

>>> from sympy.polys.polyclasses import DMP

>>> a = Poly(x**2 + 1)

>>> a.per(DMP([ZZ(1), ZZ(1)], ZZ), gens=[y])
Poly(y + 1, y, domain='ZZ')
```

**pexquo**(g)

Polynomial exact pseudo-quotient of f by g.

Examples

```python
>>> from sympy import Poly

>>> from sympy.abc import x

>>> Poly(x**2 - 1, x).pexquo(Poly(2*x - 2, x))
Poly(2*x + 2, x, domain='ZZ')

>>> Poly(x**2 + 1, x).pexquo(Poly(2*x - 4, x))
Traceback (most recent call last):
...
ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1
```

**pow**(n)

Raise f to a non-negative power n.
Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(x - 2, x).pow(3)
Poly(x**3 - 6*x**2 + 12*x - 8, x, domain='ZZ')

>>> Poly(x**3 - 6*x**2 + 12*x - 8, x, domain='ZZ')
```

**pquo(g)**

Polynomial pseudo-quotient of f by g.

See the Caveat note in the function prem(f, g).

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(x**2 + 1, x).pquo(Poly(2*x - 4, x))
Poly(2*x + 4, x, domain='ZZ')

>>> Poly(x**2 - 1, x).pquo(Poly(2*x - 2, x))
Poly(2*x + 2, x, domain='ZZ')
```

**prem(g)**

Polynomial pseudo-remainder of f by g.

**Caveat:** The function prem(f, g, x) can be safely used to compute
in Z[x] only subresultant polynomial remainder sequences (prs’s).

To safely compute Euclidean and Sturmian prs’s in Z[x] employ anyone of the corresponding functions found in the module sympy.polys.subresultants_qq_zz. The functions in the module with suffix _pg compute prs’s in Z[x] employing rem(f, g, x), whereas the functions with suffix _amv compute prs’s in Z[x] employing rem_z(f, g, x).

The function rem_z(f, g, x) differs from prem(f, g, x) in that to compute the remainder polynomials in Z[x] it premultiplies the dividend times the absolute value of the leading coefficient of the divisor raised to the power degree(f, x) - degree(g, x) + 1.
Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(x**2 + 1, x).prem(Poly(2*x - 4, x))
Poly(20, x, domain='ZZ')
```

**primitive()**

Returns the content and a primitive form of f.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(2*x**2 + 8*x + 12, x).primitive()
(2, Poly(x**2 + 4*x + 6, x, domain='ZZ'))
```

**quo(g, auto=True)**

Computes polynomial quotient of f by g.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(x**2 + 1, x).quo(Poly(2*x - 4, x))
Poly(1/2*x + 1, x, domain='QQ')

>>> Poly(x**2 - 1, x).quo(Poly(x - 1, x))
Poly(x + 1, x, domain='ZZ')
```

**quo_ground(coeffs)**

Quotient of f by a an element of the ground domain.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(2*x + 4).quo_ground(2)
Poly(x + 2, x, domain='ZZ')

>>> Poly(2*x + 3).quo_ground(2)
Poly(x + 1, x, domain='ZZ')
```
rat_clear_denoms\((g)\)
Clear denominators in a rational function \(f/g\).

**Examples**

```python
>>> from sympy import Poly
>>> from sympy.abc import x, y

>>> f = Poly(x**2/y + 1, x)
>>> g = Poly(x**3 + y, x)

>>> p, q = f.rat_clear_denoms(g)

>>> p
Poly(x**2 + y, x, domain='ZZ[y]')

>>> q
Poly(y*x**3 + y**2, x, domain='ZZ[y]')
```

real_roots\((multiple=True, radicals=True)\)
Return a list of real roots with multiplicities.

**Examples**

```python
>>> from sympy import Poly

>>> Poly(2*x**3 - 7*x**2 + 4*x + 4).real_roots()
[-1/2, 2, 2]

>>> Poly(x**3 + x + 1).real_roots()
[CRootOf(x**3 + x + 1, 0)]
```

refine_root\((s, t, eps=None, steps=None, fast=False, check_sqf=False)\)
Refine an isolating interval of a root to the given precision.

**Examples**

```python
>>> from sympy import Poly

>>> Poly(x**2 - 3, x).refine_root(1, 2, eps=1e-2)
(19/11, 26/15)
```

rem\((g, auto=True)\)
Computes the polynomial remainder of \(f\) by \(g\).
Examples

```python
from sympy import Poly
from sympy.abc import x

>>> Poly(x**2 + 1, x).rem(Poly(2*x - 4, x))
Poly(5, x, domain='ZZ')

>>> Poly(x**2 + 1, x).rem(Poly(2*x - 4, x), auto=False)
Poly(x**2 + 1, x, domain='ZZ')
```

`reorder(*gens, **args)`

Efficiently apply new order of generators.

Examples

```python
from sympy import Poly
from sympy.abc import x, y

>>> Poly(x**2 + x*y**2, x, y).reorder(y, x)
Poly(y**2*x + x**2, y, x, domain='ZZ')
```

`replace(x, y=None, **_ignore)`

Replace x with y in generators list.

Examples

```python
from sympy import Poly
from sympy.abc import x, y

>>> Poly(x**2 + 1, x).replace(x, y)
Poly(y**2 + 1, y, domain='ZZ')
```

`resultant(g, includePRS=False)`

Computes the resultant of f and g via PRS.

If includePRS=True, it includes the subresultant PRS in the result. Because the PRS is used to calculate the resultant, this is more efficient than calling `subresultants()` (page 2440) separately.
Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> f = Poly(x**2 + 1, x)

>>> f.resultant(Poly(x**2 - 1, x))
4
>>> f.resultant(Poly(x**2 - 1, x), includePRS=True)
(4, [Poly(x**2 + 1, x, domain='ZZ'), Poly(x**2 - 1, x, domain='ZZ'), Poly(-2, x, domain='ZZ')])
```

`retract(field=None)`
Recalculate the ground domain of a polynomial.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> f = Poly(x**2 + 1, x, domain='QQ[y]')

>>> f.revert()
Poly(1, x, domain='ZZ')
>>> f.revert(field=True)
Poly(1, x, domain='QQ')
```

`revert(n)`
Compute \( f^{-1} \mod x^n \).

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(1, x).revert(2)
Poly(1, x, domain='ZZ')

>>> Poly(1 + x, x).revert(1)
Poly(1, x, domain='ZZ')

>>> Poly(x**2 - 2, x).revert(2)
Traceback (most recent call last):
...
NotReversible: only units are reversible in a ring
```
>>> Poly(1/x, x).revert(1)
Traceback (most recent call last):
...  
PolynomialError: 1/x contains an element of the generators set

root(index, radicals=True)
Get an indexed root of a polynomial.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> f = Poly(2*x**3 - 7*x**2 + 4*x + 4)
>>> f.root(0)
-1/2
>>> f.root(1)
2
>>> f.root(2)
2
>>> f.root(3)
Traceback (most recent call last):
...
IndexError: root index out of [-3, 2] range, got 3
```

```python
>>> Poly(x**5 + x + 1).root(0)
CRootOf(x**3 - x**2 + 1, 0)
```

same_root(a, b)
Decide whether two roots of this polynomial are equal.

Raises
DictError
If the domain of the polynomial is not ZZ (page 2605), QQ (page 2609), RR (page 2626), or CC (page 2627).

MultivariatePolynomialError
If the polynomial is not univariate.

PolynomialError
If the polynomial is of degree < 2.
Examples

```python
>>> from sympy import Poly, cyclotomic_poly, exp, I, pi
>>> f = Poly(cyclotomic_poly(5))
>>> r0 = exp(2*I*pi/5)
>>> indices = [i for i, r in enumerate(f.all_roots()) if f.same_root(r, r0)]
>>> print(indices)
[3]
```

**set_domain**(domain)
Set the ground domain of f.

**set_modulus**(modulus)
Set the modulus of f.

Examples

```python
>>> from sympy import Poly

>>> from sympy.abc import x

>>> Poly(5*x**2 + 2*x - 1, x).set_modulus(2)
Poly(x**2 + 1, x, modulus=2)
```

**shift**(a)
Efficiently compute Taylor shift \( f(x + a) \).

Examples

```python
>>> from sympy import Poly

>>> from sympy.abc import x

>>> Poly(x**2 - 2*x + 1, x).shift(2)
Poly(x**2 + 2*x + 1, x, domain='ZZ')
```

**slice**(x, m, n=None)
Take a continuous subsequence of terms of f.

**sqf_list**(all=False)
Returns a list of square-free factors of f.
Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> f = 2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16

>>> Poly(f).sqf_list()
(2, [(Poly(x + 1, x, domain='ZZ'), 2),
 (Poly(x + 2, x, domain='ZZ'), 3)])

>>> Poly(f).sqf_list(all=True)
(2, [(Poly(1, x, domain='ZZ'), 1),
 (Poly(x + 1, x, domain='ZZ'), 2),
 (Poly(x + 2, x, domain='ZZ'), 3)])
```

**sqf_list_include** *(all=False)*

Returns a list of square-free factors of \( f \).

Examples

```python
>>> from sympy import Poly, expand
>>> from sympy.abc import x

>>> f = expand(2*(x + 1)**3*x**4)

>>> f
2*x**7 + 6*x**6 + 6*x**5 + 2*x**4

>>> Poly(f).sqf_list_include()
[(Poly(2, x, domain='ZZ'), 1),
 (Poly(x + 1, x, domain='ZZ'), 3),
 (Poly(x, x, domain='ZZ'), 4)]

>>> Poly(f).sqf_list_include(all=True)
[(Poly(2, x, domain='ZZ'), 1),
 (Poly(1, x, domain='ZZ'), 2),
 (Poly(x + 1, x, domain='ZZ'), 3),
 (Poly(x, x, domain='ZZ'), 4)]
```

**sqf_norm**

Computes square-free norm of \( f \).

Returns \( s, f, r \), such that \( g(x) = f(x-sa) \) and \( r(x) = \text{Norm}(g(x)) \) is a square-free polynomial over \( K \), where \( a \) is the algebraic extension of the ground domain.
Examples

```python
>>> from sympy import Poly, sqrt
>>> from sympy.abc import x

>>> s, f, r = Poly(x**2 + 1, x, extension=[sqrt(3)]).sqf_norm()

>>> s
1
>>> f
Poly(x**2 - 2*sqrt(3)*x + 4, x, domain='QQ<sqrt(3)>')
>>> r
Poly(x**4 - 4*x**2 + 16, x, domain='QQ')
```

**sqf_part()**
Computes square-free part of f.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(x**3 - 3*x - 2, x).sqf_part()
Poly(x**2 - x - 2, x, domain='ZZ')
```

**sqr()**
Square a polynomial f.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(x - 2, x).sqr()
Poly(x**2 - 4*x + 4, x, domain='ZZ')

>>> Poly(x - 2, x)**2
Poly(x**2 - 4*x + 4, x, domain='ZZ')
```

**sturm**(auto=True)
Computes the Sturm sequence of f.
Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x
```

```python
>>> Poly(x**3 - 2*x**2 + x - 3, x).sturm()
```

```python
[Poly(x**3 - 2*x**2 + x - 3, x, domain='QQ'),
 Poly(3*x**2 - 4*x + 1, x, domain='QQ'),
 Poly(2/9*x + 25/9, x, domain='QQ'),
 Poly(-2079/4, x, domain='QQ')]
```

**sub**

Subtract two polynomials f and g.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x
```

```python
>>> Poly(x**2 + 1, x).sub(Poly(x - 2, x))
```

```
Poly(x**2 - x + 3, x, domain='ZZ')
```

**sub_ground**(coeff)

Subtract an element of the ground domain from f.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x
```

```python
>>> Poly(x + 1).sub_ground(2)
```

```
Poly(x - 1, x, domain='ZZ')
```

**subresultants**

Computes the subresultant PRS of f and g.
Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> Poly(x**2 + 1, x).subresultants(Poly(x**2 - 1, x))
[Poly(x**2 + 1, x, domain='ZZ'),
 Poly(x**2 - 1, x, domain='ZZ'),
 Poly(-2, x, domain='ZZ')]
```

terms(order=None)

Returns all non-zero terms from f in lex order.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x, y

>>> Poly(x**2 + 2*x*y**2 + x*y + 3*y, x, y).terms()
[((2, 0), 1), ((1, 2), 2), ((1, 1), 1), ((0, 1), 3)]
```

See also:

`all_terms` (page 2457)

terms_gcd()

Remove GCD of terms from the polynomial f.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x, y

>>> Poly(x**6*y**2 + x**3*y, x, y).terms_gcd()
((3, 1), Poly(x**3*y + 1, x, y, domain='ZZ'))
```

termwise(func, *gens, **args)

Apply a function to all terms of f.

Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x

>>> def func(k, coeff):
... k = k[0]
... return coeff//10**(2-k)
```
>>> Poly(x**2 + 20*x + 400).termwise(func)
Poly(x**2 + 2*x + 4, x, domain='ZZ')

**to_exact()**
Make the ground domain exact.

**Examples**

```python
>>> from sympy import Poly, RR
>>> from sympy.abc import x

>>> Poly(x**2 + 1.0, x, domain=RR).to_exact()
Poly(x**2 + 1, x, domain='QQ')
```

**to_field()**
Make the ground domain a field.

**Examples**

```python
>>> from sympy import Poly, ZZ
>>> from sympy.abc import x

>>> Poly(x**2 + 1, x, domain=ZZ).to_field()
Poly(x**2 + 1, x, domain='QQ')
```

**to_ring()**
Make the ground domain a ring.

**Examples**

```python
>>> from sympy import Poly, QQ
>>> from sympy.abc import x

>>> Poly(x**2 + 1, domain=QQ).to_ring()
Poly(x**2 + 1, x, domain='ZZ')
```

**total_degree()**
Returns the total degree of f.
Examples

```python
>>> from sympy import Poly
>>> from sympy.abc import x, y

>>> Poly(x**2 + y*x + 1, x, y).total_degree()
2
>>> Poly(x + y**5, x, y).total_degree()
5
```

transform(p, q)

Efficiently evaluate the functional transformation \( q^n * f(p/q) \).

Examples

```python
>>> from sympy import Poly

>>> from sympy.abc import x

>>> Poly(x**2 - 2*x + 1, x).transform(Poly(x + 1, x), Poly(x - 1, x))
Poly(4, x, domain='ZZ')
```

trunc(p)

Reduce \( f \) modulo a constant \( p \).

Examples

```python
>>> from sympy import Poly

>>> from sympy.abc import x

>>> Poly(2*x**3 + 3*x**2 + 5*x + 7, x).trunc(3)
Poly(-x**3 - x + 1, x, domain='ZZ')
```

unify(g)

Make \( f \) and \( g \) belong to the same domain.

Examples

```python
>>> from sympy import Poly

>>> from sympy.abc import x

>>> f, g = Poly(x/2 + 1), Poly(2*x + 1)

>>> f
Poly(1/2*x + 1, x, domain='QQ')
>>> g
Poly(2*x + 1, x, domain='ZZ')
```
>>> F, G = f.unify(g)

>>> F
Poly(1/2*x + 1, x, domain='QQ')
>>> G
Poly(2*x + 1, x, domain='QQ')

**property unit**
Return unit polynomial with self's properties.

**property zero**
Return zero polynomial with self's properties.

class sympy.polys.polytools.PurePoly(rep, *gens, **args)
Class for representing pure polynomials.

**property free_symbols**
Free symbols of a polynomial.

**Examples**

```python
>>> from sympy import PurePoly
>>> from sympy.abc import x, y

>>> PurePoly(x**2 + 1).free_symbols
set()
>>> PurePoly(x**2 + y).free_symbols
set()
>>> PurePoly(x**2 + y, x).free_symbols
{y}
```

class sympy.polys.polytools.GroebnerBasis(F, *gens, **args)
Represents a reduced Groebner basis.

**contains**(poly)
Check if poly belongs the ideal generated by self.

**Examples**

```python
>>> from sympy import groebner
>>> from sympy.abc import x, y

>>> f = 2*x**3 + y**3 + 3*y
>>> G = groebner([x**2 + y**2 - 1, x*y - 2])

>>> G.contains(f)
True
>>> G.contains(f + 1)
False
```
**fglm**(order)

Convert a Groebner basis from one ordering to another.

The FGLM algorithm converts reduced Groebner bases of zero-dimensional ideals from one ordering to another. This method is often used when it is infeasible to compute a Groebner basis with respect to a particular ordering directly.

**Examples**

```python
>>> from sympy.abc import x, y
>>> from sympy import groebner

>>> F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1]
>>> G = groebner(F, x, y, order='grlex')

>>> list(G.fglm('lex'))
[2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7]

>>> list(groebner(F, x, y, order='lex'))
[2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7]
```

**References**

[R742]

**property is_zero_dimensional**

Checks if the ideal generated by a Groebner basis is zero-dimensional.

The algorithm checks if the set of monomials not divisible by the leading monomial of any element of F is bounded.

**References**


**reduce**(expr, auto=True)

Reduces a polynomial modulo a Groebner basis.

Given a polynomial f and a set of polynomials G = (g_1, ..., g_n), computes a set of quotients q = (q_1, ..., q_n) and the remainder r such that f = q_1*f_1 + ... + q_n*f_n + r, where r vanishes or r is a completely reduced polynomial with respect to G.
Examples

```python
>>> from sympy import groebner, expand
>>> from sympy.abc import x, y

>>> f = 2*x**4 - x**2 + y**3 + y**2
>>> G = groebner([x**3 - x, y**3 - y])
>>> G.reduce(f)
([2*x, 1], x**2 + y**2 + y)
```

```python
>>> Q, r = _
>>> expand(sum(q*g for q, g in zip(Q, G)) + r)
2*x**4 - x**2 + y**3 + y**2
>>> _ == f
True
```

Extra polynomial manipulation functions

`sympy.polys.polyfuncs.symmetrize(F, *gens, **args)`
Rewrite a polynomial in terms of elementary symmetric polynomials.

A symmetric polynomial is a multivariate polynomial that remains invariant under any variable permutation, i.e., if \( f = f(x_1, x_2, ..., x_n) \), then \( f = f(x_{i_1}, x_{i_2}, ..., x_{i_n}) \), where \((i_1, i_2, ..., i_n)\) is a permutation of \((1, 2, ..., n)\) (an element of the group \(S_n\)).

Returns a tuple of symmetric polynomials \((f_1, f_2, ..., f_n)\) such that \( f = f_1 + f_2 + ... + f_n \).

Examples

```python
>>> from sympy.polys.polyfuncs import symmetrize
>>> from sympy.abc import x, y

>>> symmetrize(x**2 + y**2)
(-2*x*y + (x + y)**2, 0)
```

```python
>>> symmetrize(x**2 + y**2, formal=True)
(s1**2 - 2*s2, 0, [(s1, x + y), (s2, x*y)])
```

```python
>>> symmetrize(x**2 - y**2)
(-2*x*y + (x + y)**2, -2*y**2)
```

```python
>>> symmetrize(x**2 - y**2, formal=True)
(s1**2 - 2*s2, -2*y**2, [(s1, x + y), (s2, x*y)])
```

`sympy.polys.polyfuncs.horner(f, *gens, **args)`
Rewrite a polynomial in Horner form.
Among other applications, evaluation of a polynomial at a point is optimal when it is applied using the Horner scheme ([1]).

**Examples**

```python
>>> from sympy.polys.polyfuncs import horner
>>> from sympy.abc import x, y, a, b, c, d, e

>>> horner(9*x**4 + 8*x**3 + 7*x**2 + 6*x + 5)
x*(x*(x*(9*x + 8) + 7) + 6) + 5

>>> horner(a*x**4 + b*x**3 + c*x**2 + d*x + e)
e + x*(d + x*(c + x*(a*x + b)))

>>> f = 4*x**2*y**2 + 2*x**2*y + 2*x*y**2 + x*y

>>> horner(f, wrt=x)
x*x*y*(4*y + 2) + y*(2*y + 1)

>>> horner(f, wrt=y)
y*x*y*(4*x + 2) + x*(2*x + 1)
```

**References**


sympy.polys.polyfuncs.interpolate(data, x)

Construct an interpolating polynomial for the data points evaluated at point x (which can be symbolic or numeric).

**Examples**

```python
>>> from sympy.polys.polyfuncs import interpolate
>>> from sympy.abc import a, b, x

A list is interpreted as though it were paired with a range starting from 1:

```python
>>> interpolate([1, 4, 9, 16], x)
x**2
```

This can be made explicit by giving a list of coordinates:

```python
>>> interpolate([(1, 1), (2, 4), (3, 9)], x)
x**2
```

The (x, y) coordinates can also be given as keys and values of a dictionary (and the points need not be equispaced):
```python
>>> interpolate([(-1, 2), (1, 2), (2, 5)], x)
x**2 + 1
>>> interpolate({-1: 2, 1: 2, 2: 5}, x)
x**2 + 1
```

If the interpolation is going to be used only once then the value of interest can be passed instead of passing a symbol:

```python
>>> interpolate([1, 4, 9], 5)
25
```

Symbolic coordinates are also supported:

```python
>>> [(i, interpolate((a, b), i)) for i in range(1, 4)]
[(1, a), (2, b), (3, -a + 2*b)]
```

```python
sympy.polys.polyfuncts.viete(f, roots=None, *gens, **args)
```

Generate Viete’s formulas for f.

Examples

```python
>>> from sympy.polys.polyfuncts import viete
>>> from sympy import symbols

>>> x, a, b, c, r1, r2 = symbols('x,a:c,r1:3')

>>> viete(a*x**2 + b*x + c, [r1, r2], x)
[[(r1 + r2, -b/a), (r1*r2, c/a)]
```

Domain constructors

```python
sympy.polys.constructor.construct_domain(obj, **args)
```

Construct a minimal domain for a list of expressions.

Parameters

- **obj**: list or dict

The expressions to build a domain for.

- **args**: keyword arguments

 Options that affect the choice of domain.

Returns

- (K, elements): Domain and list of domain elements

 The domain K that can represent the expressions and the list or dict of domain elements representing the same expressions as elements of K.
Explanation

Given a list of normal SymPy expressions (of type `Expr` (page 999)) `construct_domain` will find a minimal `Domain` (page 2584) that can represent those expressions. The expressions will be converted to elements of the domain and both the domain and the domain elements are returned.

Examples

Given a list of `Integer` (page 1038) `construct_domain` will return the domain `ZZ` (page 2605) and a list of integers as elements of `ZZ` (page 2605).

```python
>>> from sympy import construct_domain, S
>>> expressions = [S(2), S(3), S(4)]
>>> K, elements = construct_domain(expressions)
>>> K
ZZ
>>> elements
[2, 3, 4]
>>> type(elements[0])
<class 'int'>
>>> type(expressions[0])
<class 'sympy.core.numbers.Integer'>
```

If there are any `Rational` (page 1036) then `QQ` (page 2609) is returned instead.

```python
>>> construct_domain([S(1)/2, S(3)/4])
(QQ, [1/2, 3/4])
```

If there are symbols then a polynomial ring `K[x]` (page 2627) is returned.

```python
>>> from sympy import symbols
>>> x, y = symbols('x, y')
>>> construct_domain([2*x + 1, S(3)/4])
(QQ[x], [2*x + 1, 3/4])
>>> construct_domain([2*x + 1, y])
(ZZ[x,y], [2*x + 1, y])
```

If any symbols appear with negative powers then a rational function field `K(x)` (page 2629) will be returned.

```python
>>> construct_domain([y/x, x/(1 - y)])
(ZZ(x,y), [y/x, -x/(y - 1)])
```

Irrational algebraic numbers will result in the `EX` (page 2630) domain by default. The keyword argument `extension=True` leads to the construction of an algebraic number field `QQ<a>` (page 2619).

```python
>>> from sympy import sqrt
>>> construct_domain([sqrt(2)])
(EX, [EX(sqrt(2))])
>>> construct_domain([sqrt(2)], extension=True)
(QQ<sqrt(2)>, [ANP([1, 0], [1, 0, -2], QQ)])
```
See also:

Domain (page 2584), Expr (page 999)

Monomials encoded as tuples

```python
class sympy.polys.monomials.Monomial(monom, gens=None)
```

Class representing a monomial, i.e. a product of powers.

```python
as_expr(*gens)
```

Convert a monomial instance to a SymPy expression.

```python
gcd(other)
```

Greatest common divisor of monomials.

```python
lcm(other)
```

Least common multiple of monomials.

```python
sympy.polys.monomials.itermonomials(variables, max_degrees, min_degrees=None)
```

max_degrees and min_degrees are either both integers or both lists. Unless otherwise specified, min_degrees is either 0 or [0, ..., 0].

A generator of all monomials `monom` is returned, such that either

\[
\text{min_degree} \leq \text{total_degree}(\text{monom}) \leq \text{max_degree}, \quad \text{or} \quad \text{min_degrees}[i] \leq \text{degree_list}(\text{monom})[i] \leq \text{max_degrees}[i], \text{for all } i.
\]

Case I. max_degrees And min_degrees Are Both Integers

Given a set of variables `V` and a min_degree `N` and a max_degree `M` generate a set of monomials of degree less than or equal to `N` and greater than or equal to `M`. The total number of monomials in commutative variables is huge and is given by the following formula if `M = 0`:

\[
\frac{(\#V+N)!}{\#V!N!}
\]

For example if we would like to generate a dense polynomial of a total degree `N = 50` and `M = 0`, which is the worst case, in 5 variables, assuming that exponents and all of coefficients are 32-bit long and stored in an array we would need almost 80 GiB of memory! Fortunately most polynomials, that we will encounter, are sparse.

Consider monomials in commutative variables `x` and `y` and non-commutative variables `a` and `b`:

```python
>>> from sympy import symbols
>>> from sympy.polys.monomials import itermonomials
>>> from sympy.polys.orderings import monomial_key
>>> from sympy.abc import x, y

>>> sorted(itermonomials([x, y], 2), key=monomial_key('grlex', [y, x]))
[[1, x, y, x**2, x*y, y**2]]
```

(continues on next page)
(continued from previous page)

```python
>>> sorted(itermonomials([x, y], 3), key=monomial_key('grlex', [y, x]))
[1, x, y, x**2, x*y, y**2, x**2*y, x*y**2, y**3]

>>> a, b = symbols('a, b', commutative=False)
>>> set(itermonomials([a, b, x], 2))
{1, a, a**2, b, b**2, x, x**2, a*b, b*a, x*a, x*b}

>>> sorted(itermonomials([x, y], [2, 1], key=monomial_key('grlex', [y, x])))
[x, y, x**2, x*y, y**2]
```

Case II. max_degrees And min_degrees Are Both Lists

If `max_degrees = [d_1, ..., d_n]` and `min_degrees = [e_1, ..., e_n]`, the number of monomials generated is:

\[(d_1 - e_1 + 1)(d_2 - e_2 + 1)\cdots(d_n - e_n + 1)\]

Let us generate all monomials `monom` in variables `x` and `y` such that `1, 2[i] <= degree_list(monom)[i] <= 2, 4[i], i = 0, 1`

```python
>>> from sympy import symbols
>>> from sympy.polys.monomials import itermonomials
>>> from sympy.polys.orderings import monomial_key
>>> from sympy import x, y

>>> sorted(itermonomials([x, y], [2, 4], [1, 2]), reverse=True, key=monomial_key('lex', [x, y]))
[x**2*y**4, x**2*y**3, x**2*y**2, x*y**4, x*y**3, x*y**2]
```

sympy.polys.monomials.monomial_count(V, N)

Computes the number of monomials.

The number of monomials is given by the following formula:

\[
\frac{(#V + N)!}{#V!N!}
\]

where `N` is a total degree and `V` is a set of variables.

Examples

```python
>>> from sympy.polys.monomials import itermonomials, monomial_count
>>> from sympy.polys.orderings import monomial_key
>>> from sympy import x, y

>>> monomial_count(2, 2)
6
```
```python
>>> M = list(itermonomials([x, y], 2))
>>> sorted(M, key=monomial_key('grlex', [y, x]))
[1, x, y, x**2, x*y, y**2]
>>> len(M)
6
```

Orderings of monomials

```python
class sympy.polys.orderings.MonomialOrder
    Base class for monomial orderings.
class sympy.polys.orderings.LexOrder
    Lexicographic order of monomials.
class sympy.polys.orderings.GradedLexOrder
    Graded lexicographic order of monomials.
class sympy.polys.orderings.ReversedGradedLexOrder
    Reversed graded lexicographic order of monomials.
```

Formal manipulation of roots of polynomials

```python
sympy.polys.rootoftools.rootof(f, x, index=None, radicals=True, expand=True)
    An indexed root of a univariate polynomial.
    Returns either a ComplexRootOf (page 2507) object or an explicit expression involving radicals.

    **Parameters**
    - **f**: Expr
      Univariate polynomial.
    - **x**: Symbol, optional
      Generator for f.
    - **index**: int or Integer
    - **radicals**: bool
      Return a radical expression if possible.
    - **expand**: bool
      Expand f.

class sympy.polys.rootoftools.RootOf(f, x, index=None, radicals=True, expand=True)
    Represents a root of a univariate polynomial.
    Base class for roots of different kinds of polynomials. Only complex roots are currently supported.
```
class sympy.polys.rootoftools.ComplexRootOf(f, x, index=None, radicals=False, expand=True)

Represents an indexed complex root of a polynomial.

Roots of a univariate polynomial separated into disjoint real or complex intervals and indexed in a fixed order:

• real roots come first and are sorted in increasing order;
• complex roots come next and are sorted primarily by increasing real part, secondarily by increasing imaginary part.

Currently only rational coefficients are allowed. Can be imported as CRootOf. To avoid confusion, the generator must be a Symbol.

Examples

```python
>>> from sympy import CRootOf, rootof
>>> from sympy.abc import x

CRootOf is a way to reference a particular root of a polynomial. If there is a rational root, it will be returned:

```python
>>> CRootOf(x**2 - 4, 0)
-2
```

Whether roots involving radicals are returned or not depends on whether the radicals flag is true (which is set to True with rootof):

```python
>>> CRootOf(x**2 - 3, 0)
CRootOf(x**2 - 3, 0)
>>> CRootOf(x**2 - 3, 0, radicals=True)
-sqrt(3)
>>> rootof(x**2 - 3, 0)
-sqrt(3)
```

The following cannot be expressed in terms of radicals:

```python
>>> r = rootof(4*x**5 + 16*x**3 + 12*x**2 + 7, 0); r
CRootOf(4*x**5 + 16*x**3 + 12*x**2 + 7, 0)
```

The root bounds can be seen, however, and they are used by the evaluation methods to get numerical approximations for the root.

```python
>>> interval = r._get_interval(); interval
(-1, 0)
>>> r.evalf(2)
-0.98
```

The evalf method refines the width of the root bounds until it guarantees that any decimal approximation within those bounds will satisfy the desired precision. It then stores the refined interval so subsequent requests at or below the requested precision will not have to recompute the root bounds and will return very quickly.

Before evaluation above, the interval was
>>> interval
(-1, 0)

After evaluation it is now

>>> r._get_interval()
(-165/169, -206/211)

To reset all intervals for a given polynomial, the _reset() (page 2511) method can be called from any CRootOf instance of the polynomial:

>>> r._reset()

>>> r._get_interval()
(-1, 0)

The eval_approx() (page 2511) method will also find the root to a given precision but the interval is not modified unless the search for the root fails to converge within the root bounds. And the secant method is used to find the root. (The evalf method uses bisection and will always update the interval.)

>>> r.eval_approx(2)
-0.98

The interval needed to be slightly updated to find that root:

>>> r._get_interval()
(-1, -1/2)

The evalf_rational will compute a rational approximation of the root to the desired accuracy or precision.

>>> r.evalf_rational(n=2)
-69629/71318

>>> t = CRootOf(x**3 + 10*x + 1, 1)

>>> t.evalf_rational(1e-1)
15/256 - 805*I/256

>>> t.evalf_rational(1e-1, 1e-4)
3275/65536 - 414645*I/131072

>>> t.evalf_rational(1e-4, 1e-4)
6545/131072 - 414645*I/131072

>>> t.evalf_rational(n=2)
104755/2097152 - 6634255*I/2097152
Notes

Although a PurePoly can be constructed from a non-symbol generator RootOf instances of non-symbols are disallowed to avoid confusion over what root is being represented.

```python
>>> from sympy import exp, PurePoly
>>> PurePoly(x) == PurePoly(exp(x))
True
>>> CRootOf(x - 1, 0)
1
>>> CRootOf(exp(x) - 1, 0) # would correspond to x == 0
Traceback (most recent call last):
... sympy.polys.polyerrors.PolynomialError: generator must be a Symbol
```

See also:

- `eval_approx` (page 2511), `eval_rational` (page 2512)
- **classmethod** `_all_roots**(poly, use_cache=True)**
  Get real and complex roots of a composite polynomial.
- **classmethod** `_complexes_index**(complexes, index)**
  Map initial complex root index to an index in a factor where the root belongs.
- **classmethod** `_complexes_sorted**(complexes)**
  Make complex isolating intervals disjoint and sort roots.
- **classmethod** `_count_roots**(roots)**
  Count the number of real or complex roots with multiplicities.
- **classmethod** `_get_complexes**(factors, use_cache=True)**
  Compute complex root isolating intervals for a list of factors.
- **classmethod** `_get_complexes_sqf**(currentfactor, use_cache=True)**
  Get complex root isolating intervals for a square-free factor.
- **classmethod** `_get_interval**
  Internal function for retrieving isolation interval from cache.
- **classmethod** `_get_reals**(factors, use_cache=True)**
  Compute real root isolating intervals for a list of factors.
_get_reals_sqf(currentfactor, use_cache=\text{True})
Get \text{real} root isolating intervals for a \text{square-free} factor.

_get_roots(method, poly, radicals)
Return \text{postprocessed} roots of specified kind.

_indexed_root(poly, index, lazy=\text{False})
Get a \text{root} of a \text{composite} polynomial by \text{index}.

_new(poly, index)
Construct new \text{CRootOf} object from \text{raw} data.

_postprocess_root(root, radicals)
Return the \text{root} if it is \text{trivial} or a \text{CRootOf} object.

_preprocess_roots(poly)
Take \text{heroic} measures to make \text{poly} compatible with \text{CRoot0f}.

_real_roots(poly)
Get \text{real} roots of a \text{composite} polynomial.

_reals_index(reals, index)
Map initial \text{real} root index to an \text{index} in a \text{factor} where the \text{root} belongs.

_reals_sorted(reals)
Make real isolating intervals disjoint and \text{sort} roots.

_refine_complexes(complexes)
Return complexes such that no bounding \text{rectangles} of non-conjugate roots would \text{intersect}. In addition, assure that neither ay nor by is 0 to guarantee that non-\text{real} roots are distinct from \text{real} roots in terms of the y-bounds.

_reset()
Reset all intervals

_roots_trivial(poly, radicals)
Compute \text{roots} in linear, quadratic and \text{binomial} cases.

_set_interval(interval)
Internal function for updating \text{isolation interval} in \text{cache}.

_all_roots(poly, radicals=\text{True})
Get \text{real} and \text{complex} roots of a polynomial.

clear_cache()
Reset cache for \text{reals} and \text{complexes}.

The intervals used to approximate a \text{root} instance are updated as needed. When a request is made to see the intervals, the most current values are shown. \text{clear_cache} will reset all \text{CRoot0f} instances back to their original state.

See also:
_reset (page 2511)

eval_approx(n, return_mpmath=\text{False})
Evaluate this \text{complex} root to the \text{given} precision.

This uses secant \text{method} and root \text{bounds} are used to both generate an \text{initial} guess and to check that the \text{root} returned is \text{valid}. If ever the \text{method} converges outside the \text{root} \text{bounds}, the \text{bounds} will be made \text{smaller} and \text{updated}.
eval_rational($dx=None$, $dy=None$, $n=15$)

Return a Rational approximation of self that has real and imaginary component approximations that are within $dx$ and $dy$ of the true values, respectively. Alternatively, $n$ digits of precision can be specified.

The interval is refined with bisection and is sure to converge. The root bounds are updated when the refinement is complete so recalculation at the same or lesser precision will not have to repeat the refinement and should be much faster.

The following example first obtains Rational approximation to $1e-8$ accuracy for all roots of the 4-th order Legendre polynomial. Since the roots are all less than 1, this will ensure the decimal representation of the approximation will be correct (including rounding) to 6 digits:

```python
>>> from sympy import legendre_poly, Symbol
>>> x = Symbol("x")
>>> p = legendre_poly(4, x, polys=True)
>>> r = p.real_roots()[0]
>>> r.eval_rational(10**-8).n(6)
0.861136
```

It is not necessary to a two-step calculation, however: the decimal representation can be computed directly:

```python
>>> r.evalf(17)
0.86113631159405258
```

classmethod real_roots($poly$, $radicals=True$)

Get real roots of a polynomial.

class sympy.polys.rootoftools.RootSum($expr$, $func=None$, $x=None$, $auto=True$, $quadratic=False$)

Represents a sum of all roots of a univariate polynomial.

classmethod new($poly$, $func$, $auto=True$)

Construct new RootSum instance.

**Symbolic root-finding algorithms**

sympy.polys.polyroots.roots($f$, $*gens$, $auto=True$, $cubics=True$, $trig=False$, $quartics=True$, $quintics=False$, $multiple=False$, $filter=None$, $predicate=None$, $strict=False$, $**flags$)

Computes symbolic roots of a univariate polynomial.

Given a univariate polynomial $f$ with symbolic coefficients (or a list of the polynomial's coefficients), returns a dictionary with its roots and their multiplicities.

Only roots expressible via radicals will be returned. To get a complete set of roots use RootOf class or numerical methods instead. By default cubic and quartic formulas are used in the algorithm. To disable them because of unreadable output set cubics=False or quartics=False respectively. If cubic roots are real but are expressed in terms of complex numbers (casus irreducibilis [1]) the trig flag can be set to True to have the solutions returned in terms of cosine and inverse cosine functions.
To get roots from a specific domain set the `filter` flag with one of the following specifiers: Z, Q, R, I, C. By default all roots are returned (this is equivalent to setting `filter='C'`).

By default a dictionary is returned giving a compact result in case of multiple roots. However to get a list containing all those roots set the `multiple` flag to True; the list will have identical roots appearing next to each other in the result. (For a given Poly, the `all_roots` method will give the roots in sorted numerical order.)

If the `strict` flag is True, `UnsolvableFactorError` will be raised if the roots found are known to be incomplete (because some roots are not expressible in radicals).

**Examples**

```python
>>> from sympy import Poly, roots, degree
>>> from sympy.abc import x, y

>>> roots(x**2 - 1, x)
{-1: 1, 1: 1}

>>> p = Poly(x**2-1, x)
>>> roots(p)
{-1: 1, 1: 1}

>>> p = Poly(x**2-y, x, y)

>>> roots(Poly(p, x))
{-sqrt(y): 1, sqrt(y): 1}

>>> roots(x**2 - y, x)
{-sqrt(y): 1, sqrt(y): 1}

>>> roots([1, 0, -1])
{-1: 1, 1: 1}
```

`roots` will only return roots expressible in radicals. If the given polynomial has some or all of its roots inexpressible in radicals, the result of `roots` will be incomplete or empty respectively.

Example where result is incomplete:

```python
>>> roots((x-1)*(x**5-x+1), x)
{1: 1}
```

In this case, the polynomial has an unsolvable quintic factor whose roots cannot be expressed by radicals. The polynomial has a rational root (due to the factor \((x - 1)\)), which is returned since `roots` always finds all rational roots.

Example where result is empty:

```python
>>> roots(x**7-3*x**2+1, x)
{}
Here, the polynomial has no roots expressible in radicals, so `roots` returns an empty dictionary.

The result produced by `roots` is complete if and only if the sum of the multiplicity of each root is equal to the degree of the polynomial. If `strict=True`, `UnsolvableFactorError` will be raised if the result is incomplete.

The result can be be checked for completeness as follows:

```python
>>> f = x**3 - 2*x**2 + 1
>>> sum(roots(f, x).values()) == degree(f, x)
True
>>> f = (x-1)*(x**5 - x + 1)
>>> sum(roots(f, x).values()) == degree(f, x)
False
```

References

[R743]

Special polynomials

sympy.polys.specialpolys.swinnerton_dyer_poly(n, x=None, polys=False)

Generates n-th Swinnerton-Dyer polynomial in \(x \).

Parameters

- **n**: int
 - \(n \) decides the order of polynomial

- **x**: optional

- **polys**: bool, optional
 - polys=True returns an expression, otherwise (default) returns an expression.

sympy.polys.specialpolys.interpolating_poly(n, x, X='x', Y='y')

Construct Lagrange interpolating polynomial for \(n \) data points. If a sequence of values are given for \(X \) and \(Y \) then the first \(n \) values will be used.

sympy.polys.specialpolys.cyclotomic_poly(n, x=None, polys=False)

Generates cyclotomic polynomial of order \(n \) in \(x \).

Parameters

- **n**: int
 - \(n \) decides the order of polynomial

- **x**: optional

- **polys**: bool, optional
 - polys=True returns an expression, otherwise (default) returns an expression.
sympy.polys.specialpolys.symmetric_poly(n, *gens, polys=False)
Generates symmetric polynomial of order \(n \).

Parameters

- **polys**: bool, optional (default: False)
 Returns a Poly object when polys=True, otherwise (default) returns an expression.

sympy.polys.specialpolys.random_poly(x, n, inf, sup, domain=ZZ, polys=False)
Generates a polynomial of degree \(n \) with coefficients in \([\text{inf}, \text{sup}]\).

Parameters

- **x**
 \(x \) is the independent term of polynomial

- **n** : int
 \(n \) decides the order of polynomial

- **inf**
 Lower limit of range in which coefficients lie

- **sup**
 Upper limit of range in which coefficients lie

- **domain** : optional
 Decides what ring the coefficients are supposed to belong. Default is set to Integers.

- **polys** : bool, optional
 polys=True returns an expression, otherwise (default) returns an expression.

Orthogonal polynomials

sympy.polys.orthopolys.chebyshevt_poly(n, x=None, polys=False)
Generates the Chebyshev polynomial of the first kind \(T_n(x) \).

Parameters

- **n** : int
 Degree of the polynomial.

- **x** : optional

- **polys** : bool, optional
 If True, return a Poly, otherwise (default) return an expression.

sympy.polys.orthopolys.chebyshevu_poly(n, x=None, polys=False)
Generates the Chebyshev polynomial of the second kind \(U_n(x) \).

Parameters

- **n** : int
 Degree of the polynomial.
Generates the Gegenbauer polynomial $C_n^{(a)}(x)$.

Parameters
- n : int
 Degree of the polynomial.
- x : optional
- a
 Decides minimal domain for the list of coefficients.
- polys : bool, optional
 If True, return a Poly, otherwise (default) return an expression.

Generates the Hermite polynomial $H_n(x)$.

Parameters
- n : int
 Degree of the polynomial.
- x : optional
- polys : bool, optional
 If True, return a Poly, otherwise (default) return an expression.

Generates the probabilist’s Hermite polynomial $He_n(x)$.

Parameters
- n : int
 Degree of the polynomial.
- x : optional
- polys : bool, optional
 If True, return a Poly, otherwise (default) return an expression.

Generates the Jacobi polynomial $P_n^{(a,b)}(x)$.

Parameters
- n : int
 Degree of the polynomial.
- a
 Lower limit of minimal domain for the list of coefficients.
- b
 Upper limit of minimal domain for the list of coefficients.
sympy.polys.orthopolys.legendre_poly(*n*, *x=None, polys=False*)

Generates the Legendre polynomial $P_n(x)$.

Parameters
- **n**: int
 - Degree of the polynomial.
- **x**: optional
- **polys**: bool, optional
 - If True, return a Poly, otherwise (default) return an expression.

sympy.polys.orthopolys.laguerre_poly(*n*, *x=None, alpha=0, polys=False*)

Generates the Laguerre polynomial $L_n^{(\alpha)}(x)$.

Parameters
- **n**: int
 - Degree of the polynomial.
- **x**: optional
- **alpha**: optional
 - Decides minimal domain for the list of coefficients.
- **polys**: bool, optional
 - If True, return a Poly, otherwise (default) return an expression.

sympy.polys.orthopolys.spherical_bessel_fn(*n*, *x=None, polys=False*)

Coefficients for the spherical Bessel functions.

These are only needed in the jn() function.

The coefficients are calculated from:

$$
fn(0, z) = 1/z
fn(1, z) = 1/z^2
fn(n-1, z) + fn(n+1, z) =\ (2*n+1)/z * fn(n, z)
$$

Parameters
- **n**: int
 - Degree of the polynomial.
- **x**: optional
- **polys**: bool, optional
 - If True, return a Poly, otherwise (default) return an expression.
Examples

```python
>>> from sympy.polys.orthopolys import spherical_bessel_fn as fn
>>> from sympy import Symbol

>>> z = Symbol("z")
>>> fn(1, z)
z**(-2)
>>> fn(2, z)
-1/z + 3/z**3
>>> fn(3, z)
-6/z**2 + 15/z**4
>>> fn(4, z)
1/z - 45/z**3 + 105/z**5
```

Appell sequences

sympy.polys.appellseqs.bernoulli_poly(n, $x=None$, polys=False)

Generates the Bernoulli polynomial $B_n(x)$.

$B_n(x)$ is the unique polynomial satisfying

$$
\int_x^{x+1} B_n(t) \, dt = x^n.
$$

Based on this, we have for nonnegative integer s and integer a and b

$$
\sum_{k=a}^{b} k^s = \frac{B_{s+1}(b+1) - B_{s+1}(a)}{s+1}
$$

which is related to Jakob Bernoulli’s original motivation for introducing the Bernoulli numbers, the values of these polynomials at $x = 1$.

Parameters

- n : int
 Degree of the polynomial.
- x : optional
- polys : bool, optional
 If True, return a Poly, otherwise (default) return an expression.

Examples

```python
>>> from sympy import summation
>>> from sympy.abc import x

>>> from sympy.polys import bernoulli_poly

>>> bernoulli_poly(5, x)
x**5 - 5*x**4/2 + 5*x**3/3 - x/6
```
```python
>>> def psum(p, a, b):
...     return (bernoulli_poly(p+1, b+1) - bernoulli_poly(p+1, a)) / (p+1)
>>> psum(4, -6, 27)
3144337
>>> summation(x**4, (x, -6, 27))
3144337
```
\[E_n(x) = -\frac{G_{n+1}(x)}{n+1} \]

Parameters
- **n**: int
 - Degree of the polynomial.
- **x**: optional
- **polys**: bool, optional
 - If True, return a Poly, otherwise (default) return an expression.

See also:
sympy.functions.combinatorial.numbers.euler (page 489)
sympy.polys.appellseqs.andre_poly(*n*, *x=None*, *polys=False*)

Generates the Andre polynomial \(A_n(x) \).

This is the Appell sequence where the constant coefficients form the sequence of Euler numbers \(\text{euler}(n) \). As such they have integer coefficients and parities matching the parity of \(n \).

Luschny calls these the *Swiss-knife polynomials* because their values at 0 and 1 can be simply transformed into both the Bernoulli and Euler numbers. Here they are called the Andre polynomials because \(|A_n(n \mod 2)| \) for \(n \geq 0 \) generates what Luschny calls the Andre numbers, A000111 in the OEIS.

Parameters
- **n**: int
 - Degree of the polynomial.
- **x**: optional
- **polys**: bool, optional
 - If True, return a Poly, otherwise (default) return an expression.
Examples

```python
>>> from sympy import bernoulli, euler, genocchi
>>> from sympy import x
>>> from sympy.polys import andre_poly
>>> andre_poly(9, x)
-x**9 + 36*x**7 - 630*x**5 + 5124*x**3 - 12465*x
```

```python
>>> [andre_poly(n, 0) for n in range(11)]
[1, 0, -1, 0, 5, 0, -61, 0, 1385, 0, -50521]
```

```python
>>> [euler(n) for n in range(11)]
[1, 0, -1, 0, 5, 0, -61, 0, 1385, 0, -50521]
```

```python
>>> [andre_poly(n-1, 1) * n / (4**n - 2**n) for n in range(1, 11)]
[1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66]
```

```python
>>> [bernoulli(n) for n in range(1, 11)]
[1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66]
```

```python
>>> [-andre_poly(n-1, -1) * n / (-2)**(n-1) for n in range(1, 11)]
[-1, -1, 0, 1, 0, -3, 0, 17, 0, -155]
```

```python
>>> [genocchi(n) for n in range(1, 11)]
[-1, -1, 0, 1, 0, -3, 0, 17, 0, -155]
```

```python
>>> [abs(andre_poly(n, n%2)) for n in range(11)]
[1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521]
```

See also:

`sympy.functions.combinatorial.numbers.andre` (page 499)

References

[R745]
Examples

```python
>>> from sympy import together, exp
>>> from sympy.abc import x, y, z

>>> together(1/x + 1/y)
(x + y)/(x*y)

>>> together(1/x + 1/y + 1/z)
(x*y + x*z + y*z)/(x*y*z)

>>> together(1/(x*y) + 1/y**2)
(x + y)/(x*y**2)

>>> together(1/(1 + 1/x) + 1/(1 + 1/y))
(x*(y + 1) + y*(x + 1))/((x + 1)*(y + 1))

>>> together(exp(1/x + 1/y))
exp(1/y + 1/x)

>>> together(exp(1/x + 1/y), deep=True)
exp((x + y)/(x*y))

>>> together(1/exp(x) + 1/(x*exp(x)))
(x + 1)*exp(-x)/x

>>> together(1/exp(2*x) + 1/(x*exp(3*x)))
(x*exp(x) + 1)*exp(-3*x)/x
```

Partial fraction decomposition

`sympy.polys.partfrac.apart(f, x=None, full=False, **options)`

Compute partial fraction decomposition of a rational function.

Given a rational function \(f \), computes the partial fraction decomposition of \(f \). Two algorithms are available: One is based on the undetermined coefficients method, the other is Bronstein’s full partial fraction decomposition algorithm.

The undetermined coefficients method (selected by full=False) uses polynomial factorization (and therefore accepts the same options as factor) for the denominator. Per default it works over the rational numbers, therefore decomposition of denominators with non-rational roots (e.g. irrational, complex roots) is not supported by default (see options of factor).

Bronstein’s algorithm can be selected by using full=True and allows a decomposition of denominators with non-rational roots. A human-readable result can be obtained via `doit()` (see examples below).
Examples

```python
>>> from sympy.polys.partfrac import apart
>>> from sympy.abc import x, y
```

By default, using the undetermined coefficients method:

```python
>>> apart(y/(x + 2)/(x + 1), x)
-y/(x + 2) + y/(x + 1)
```

The undetermined coefficients method does not provide a result when the denominators roots are not rational:

```python
>>> apart(y/(x**2 + x + 1), x)
y/(x**2 + x + 1)
```

You can choose Bronstein’s algorithm by setting `full=True`:

```python
>>> apart(y/(x**2 + x + 1), x, full=True)
RootSum(_w**2 + _w + 1, Lambda(_a, (-2*_a*y/3 - y/3)/(-_a + x)))
```

Calling `doit()` yields a human-readable result:

```python
>>> apart(y/(x**2 + x + 1), x, full=True).doit()
(-y/3 - 2*y*(-1/2 - sqrt(3)*I/2)/3)/(x + 1/2 + sqrt(3)*I/2) + (-y/3 - 2*y*(-1/2 + sqrt(3)*I/2)/3)/(x + 1/2 - sqrt(3)*I/2)
```

See also:

- `apart_list` (page 2523), `assemble_partfrac_list` (page 2525)

-sympy.polys.partfrac.apart_list(f, x=None, dummies=None, **options)-

Compute partial fraction decomposition of a rational function and return the result in structured form.

Given a rational function f compute the partial fraction decomposition of f. Only Bronstein’s full partial fraction decomposition algorithm is supported by this method. The return value is highly structured and perfectly suited for further algorithmic treatment rather than being human-readable. The function returns a tuple holding three elements:

- The first item is the common coefficient, free of the variable x used for decomposition. (It is an element of the base field K.)
- The second item is the polynomial part of the decomposition. This can be the zero polynomial. (It is an element of $K[x]$.)
- The third part itself is a list of quadruples. Each quadruple has the following elements in this order:

 - The (not necessarily irreducible) polynomial D whose roots w_i appear in the linear denominator of a bunch of related fraction terms. (This item can also be a list of explicit roots. However, at the moment `apart_list` never returns a result this way, but the related `assemble_partfrac_list` function accepts this format as input.)
 - The numerator of the fraction, written as a function of the root w
 - The linear denominator of the fraction excluding its power exponent, written as a function of the root w.

5.8. Topics 2523
On can always rebuild a plain expression by using the function `assemble_partfrac_list`.

Examples

A first example:

```python
>>> from sympy.polys.partfrac import apart_list, assemble_partfrac_list
>>> from sympy.abc import x, t

>>> f = (2*x**3 - 2*x) / (x**2 - 2*x + 1)
>>> pfd = apart_list(f)
>>> pfd
(1,
Poly(2*x + 4, x, domain='ZZ'),
[(Poly(_w - 1, _w, domain='ZZ'), Lambda(_a, 4), Lambda(_a, -_a + x), 1)])

>>> assemble_partfrac_list(pfd)
2*x + 4 + 4/(x - 1)
```

Second example:

```python
>>> f = (-2*x - 2*x**2) / (3*x**2 - 6*x)
>>> pfd = apart_list(f)
>>> pfd
(-1,
Poly(2/3, x, domain='QQ'),
[(Poly(_w - 2, _w, domain='ZZ'), Lambda(_a, 2), Lambda(_a, -_a + x), 1)])

>>> assemble_partfrac_list(pfd)
-2/3 - 2/(x - 2)
```

Another example, showing symbolic parameters:

```python
>>> pfd = apart_list(t/(x**2 + x + t), x)
>>> pfd
(1,
Poly(0, x, domain='ZZ[t]'),
[(Poly(_w**2 + _w + t, _w, domain='ZZ[t]'),
Lambda(_a, -2*_a*t/(4*t - 1) - t/(4*t - 1)),
Lambda(_a, -_a + x), 1)])

>>> assemble_partfrac_list(pfd)
RootSum(_w**2 + _w + t, Lambda(_a, (-2*_a*t/(4*t - 1) - t/(4*t - 1))/(-_a + x)))
```

This example is taken from Bronstein’s original paper:
```python
>>> f = 36 / (x**5 - 2*x**4 - 2*x**3 + 4*x**2 + x - 2)
>>> pfd = apart_list(f)
>>> pfd
(1,
 Poly(0, x, domain='ZZ'),
 [(Poly(_w - 2, _w, domain='ZZ'), Lambda(_a, 4), Lambda(_a, -_a + x), 1),
  (Poly(_w**2 - 1, _w, domain='ZZ'), Lambda(_a, -3*_a - 6), Lambda(_a, -_a + x), 2),
  (Poly(_w + 1, _w, domain='ZZ'), Lambda(_a, -4), Lambda(_a, -_a + x), 1))

>>> assemble_partfrac_list(pfd)
-4/(x + 1) - 3/(x + 1)**2 - 9/(x - 1)**2 + 4/(x - 2)
```

See also:

`apart` (page 2522), `assemble_partfrac_list` (page 2525)

References

[R746]
sympy.polys.partfrac.assemble_partfrac_list(partial_list)

Reassemble a full partial fraction decomposition from a structured result obtained by the function `apart_list`.

Examples

This example is taken from Bronstein’s original paper:

```python
>>> from sympy.polys.partfrac import apart_list, assemble_partfrac_list
>>> from sympy.abc import x

>>> f = 36 / (x**5 - 2*x**4 - 2*x**3 + 4*x**2 + x - 2)
>>> pfd = apart_list(f)
>>> pfd
(1,
 Poly(0, x, domain='ZZ'),
 [(Poly(_w - 2, _w, domain='ZZ'), Lambda(_a, 4), Lambda(_a, -_a + x), 1),
  (Poly(_w**2 - 1, _w, domain='ZZ'), Lambda(_a, -3*_a - 6), Lambda(_a, -_a + x), 2),
  (Poly(_w + 1, _w, domain='ZZ'), Lambda(_a, -4), Lambda(_a, -_a + x), 1))

>>> assemble_partfrac_list(pfd)
-4/(x + 1) - 3/(x + 1)**2 - 9/(x - 1)**2 + 4/(x - 2)
```

If we happen to know some roots we can provide them easily inside the structure:

```python
>>> pfd = apart_list(2/(x**2-2))
>>> pfd
(1,
 Poly(0, x, domain='ZZ'),
 (continues on next page)
```
\.\[(Poly(_w**2 - 2, _w, domain='ZZ'),
 Lambda(_a, _a/2),
 Lambda(_a, -_a + x),
 1))\]

\[
\text{>>=} \quad \text{pfda} = \text{assemble_partfrac_list(pfd)}
\[
\text{>>=} \quad \text{pfda}
\]
\[
\text{RootSum(_w**2 - 2, Lambda(_a, _a/(-_a + x)))/2}
\]

\[
\text{>>=} \quad \text{pfda}.\text{doit()}
\]
\[
-\sqrt{2}/(2*(x + \sqrt{2})) + \sqrt{2}/(2*(x - \sqrt{2}))
\]

\[
\text{>>=} \quad \text{from sympy import Dummy, Poly, Lambda, sqrt}
\]
\[
\text{>>=} \quad a = \text{Dummy("a")}
\]
\[
\text{>>=} \quad \text{pfdf} = (1, \text{Poly(0, x, domain='ZZ')}, \text{[[[sqrt(2), -sqrt(2)], Lambda(a, a/(-a + x), 1)]])}
\]

\[
\text{>>=} \quad \text{assemble_partfrac_list(pfde)}
\]
\[
-\sqrt{2}/(2*(x + \sqrt{2})) + \sqrt{2}/(2*(x - \sqrt{2}))
\]

\text{See also:}
\text{apart (page 2522), apart_list (page 2523)}

\text{Dispersion of Polynomials}

\text{sympy.polys.dispersion.dispersionset}(p, q=\text{None}, *\text{gens}, **\text{args})
\text{Compute the dispersion set of two polynomials.}

\text{For two polynomials } f(x) \text{ and } g(x) \text{ with } \text{deg } f > 0 \text{ and } \text{deg } g > 0 \text{ the dispersion set } J(f,g) \text{ is defined as:}

\[
J(f,g) := \{a \in \mathbb{N}_0 \mid \text{gcd}(f(x), g(x + a)) \neq 1\}
\]
\[
= \{a \in \mathbb{N}_0 \mid \text{deg gcd}(f(x), g(x + a)) \geq 1\}
\]

\text{For a single polynomial one defines } J(f) := J(f,f).

\text{Examples}

\[
\text{>>=} \quad \text{from sympy import poly}
\]
\[
\text{>>=} \quad \text{from sympy.polys.dispersion import dispersion, dispersionset}
\]
\[
\text{>>=} \quad \text{from sympy.abc import x}
\]

\text{Dispersion set and dispersion of a simple polynomial:}

\[
\text{>>=} \quad \text{fp} = \text{poly((x - 3)*(x + 3), x)}
\]
\[
\text{>>=} \quad \text{sorted(dispersionset(fp))}
\]
\[
[0, 6]
\]
\[
\text{>>=} \quad \text{dispersion(fp)}
\]
\[
6
\]
Note that the definition of the dispersion is not symmetric:

```python
>>> fp = poly(x**4 - 3*x**2 + 1, x)
>>> gp = fp.shift(-3)
>>> sorted(dispersionset(fp, gp))
[2, 3, 4]
>>> dispersion(fp, gp)
4
>>> sorted(dispersionset(gp, fp))
[]
>>> dispersion(gp, fp)
-Infinity
```

Computing the dispersion also works over field extensions:

```python
>>> from sympy import sqrt
>>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>')
>>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>')
>>> sorted(dispersionset(fp, gp))
[2]
>>> sorted(dispersionset(gp, fp))
[1, 4]
```

We can even perform the computations for polynomials having symbolic coefficients:

```python
>>> from sympy.abc import a
>>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x)
>>> sorted(dispersionset(fp))
[0, 1]
```

See also:

dispersion (page 2527)

References

[R747], [R748], [R749], [R750]

sympy.polys.dispersion.dispersion(p, q=None, *gens, **args)

Compute the dispersion of polynomials.

For two polynomials \(f(x)\) and \(g(x)\) with \(\deg f > 0\) and \(\deg g > 0\) the dispersion \(\text{dis}(f, g)\) is defined as:

\[
\text{dis}(f, g) := \max\{J(f, g) \cup \{0\}\}
= \max\{\{a \in \mathbb{N} | \gcd(f(x), g(x+a)) \neq 1\} \cup \{0\}\}
\]

and for a single polynomial \(\text{dis}(f) := \text{dis}(f, f)\). Note that we make the definition \(\max\{\} := -\infty\).
Examples

```python
>>> from sympy import poly
>>> from sympy.polys.dispersion import dispersion, dispersionset
>>> from sympy.abc import x
```

Dispersion set and dispersion of a simple polynomial:

```python
>>> fp = poly((x - 3)*(x + 3), x)
>>> sorted(dispersionset(fp))
[0, 6]
```
```
```
```
```
```python
Note that the definition of the dispersion is not symmetric:

```python
>>> fp = poly(x**4 - 3*x**2 + 1, x)
>>> gp = fp.shift(-3)
>>> sorted(dispersionset(fp, gp))
[2, 3, 4]
>>> dispersion(fp, gp)
4
```
```
```
```
```python
The maximum of an empty set is defined to be $-\infty$ as seen in this example.
```
```python
Computing the dispersion also works over field extensions:

```python
>>> from sympy import sqrt
>>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>')
>>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>')
>>> sorted(dispersionset(fp, gp))
[2]
>>> sorted(dispersionset(gp, fp))
[1, 4]
```
```
```
```
```python
We can even perform the computations for polynomials having symbolic coefficients:

```python
>>> from sympy.abc import a
>>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + a - 2*a)*x, x)
>>> sorted(dispersionset(fp))
[0, 1]
```
```
```
```
```python
See also:

dispersionset (page 2526)
```
AGCA - Algebraic Geometry and Commutative Algebra Module

Introduction

Algebraic geometry is a mixture of the ideas of two Mediterranean cultures. It is the superposition of the Arab science of the lightening calculation of the solutions of equations over the Greek art of position and shape. This tapestry was originally woven on European soil and is still being refined under the influence of international fashion. Algebraic geometry studies the delicate balance between the geometrically plausible and the algebraically possible. Whenever one side of this mathematical teeter-totter outweighs the other, one immediately loses interest and runs off in search of a more exciting amusement.

—George R. Kempf (1944 - 2002)

Algebraic Geometry refers to the study of geometric problems via algebraic methods (and sometimes vice versa). While this is a rather old topic, algebraic geometry as understood today is very much a 20th century development. Building on ideas of e.g. Riemann and Dedekind, it was realized that there is an intimate connection between properties of the set of solutions of a system of polynomial equations (called an algebraic variety) and the behavior of the set of polynomial functions on that variety (called the coordinate ring).

As in many geometric disciplines, we can distinguish between local and global questions (and methods). Local investigations in algebraic geometry are essentially equivalent to the study of certain rings, their ideals and modules. This latter topic is also called commutative algebra. It is the basic local toolset of algebraic geometers, in much the same way that differential analysis is the local toolset of differential geometers.

A good conceptual introduction to commutative algebra is [Atiyah69]. An introduction more geared towards computations, and the work most of the algorithms in this module are based on, is [Greuel2008].

This module aims to eventually allow expression and solution of both local and global geometric problems, both in the classical case over a field and in the more modern arithmetic cases. So far, however, there is no geometric functionality at all. Currently the module only provides tools for computational commutative algebra over fields.

All code examples assume:

```python
>>> from sympy import *
>>> x, y, z = symbols('x,y,z')
>>> init_printing(use_unicode=True, wrap_line=False)
```
Reference

In this section we document the usage of the AGCA module. For convenience of the reader, some definitions and examples/explanations are interspersed.

Base Rings

Almost all computations in commutative algebra are relative to a “base ring”. (For example, when asking questions about an ideal, the base ring is the ring the ideal is a subset of.) In principle all polys “domains” can be used as base rings. However, useful functionality is only implemented for polynomial rings over fields, and various localizations and quotients thereof.

As demonstrated in the examples below, the most convenient method to create objects you are interested in is to build them up from the ground field, and then use the various methods to create new objects from old. For example, in order to create the local ring of the nodal cubic $y^2 = x^3$ at the origin, over \mathbb{Q}, you do:

```python
>>> lr = QQ.old_poly_ring(x, y, order="ilex") / [y**2 - x**3]
>>> lr
\mathbb{Q}[x, y, order=ilex]
```

Note how the python list notation can be used as a short cut to express ideals. You can use the convert method to return ordinary sympy objects into objects understood by the AGCA module (although in many cases this will be done automatically – for example the list was automatically turned into an ideal, and in the process the symbols x and y were automatically converted into other representations). For example:

```python
>>> X, Y = lr.convert(x), lr.convert(y); X
\langle 3 \ 2 \ 
- x \ + \ y \rangle
```

When no localisation is needed, a more mathematical notation can be used. For example, let us create the coordinate ring of three-dimensional affine space \mathbb{A}^3:

```python
>>> ar = QQ.old_poly_ring(x, y, z); ar
\mathbb{Q}[x, y, z]
```

For more details, refer to the following class documentation. Note that the base rings, being domains, are the main point of overlap between the AGCA module and the rest of the polys module. All domains are documented in detail in the polys reference, so we show here only an abridged version, with the methods most pertinent to the AGCA module.

```python
class sympy.polys.domains.ring.Ring
    Represents a ring domain.
```
free_module(rank)
Generate a free module of rank rank over self.

```python
>>> from sympy.abc import x
>>> from sympy import QQ
>>> QQ.old_poly_ring(x).free_module(2)
QQ[x]**2
```

ideal(*gens)
Generate an ideal of self.

```python
>>> from sympy.abc import x
>>> from sympy import QQ
>>> QQ.old_poly_ring(x).ideal(x**2)
<x**2>
```

quotient_ring(e)
Form a quotient ring of self.
Here e can be an ideal or an iterable.

```python
>>> from sympy.abc import x
>>> from sympy import QQ
>>> QQ.old_poly_ring(x).quotient_ring(QQ.old_poly_ring(x).ideal(x**2))
QQ[x]/<x**2>
>>> QQ.old_poly_ring(x).quotient_ring([x**2])
QQ[x]/<x**2>
```

The division operator has been overloaded for this:

```python
>>> QQ.old_poly_ring(x) / [x**2]
QQ[x]/<x**2>
```

sympy.polys.domains.polynomialring.PolynomialRing(domain_or_ring, symbols=None, order=None)
A class for representing multivariate polynomial rings.

class sympy.polys.domains.quotientring.QuotientRing(ring, ideal)
Class representing (commutative) quotient rings.

You should not usually instantiate this by hand, instead use the constructor from the base ring in the construction.

```python
>>> from sympy.abc import x
>>> from sympy import QQ
>>> I = QQ.old_poly_ring(x).ideal(x**3 + 1)
>>> QQ.old_poly_ring(x).quotient_ring(I)
QQ[x]/<x**3 + 1>
```

Shorter versions are possible:

```python
>>> QQ.old_poly_ring(x) / I
QQ[x]/<x**3 + 1>
```
>>> QQ.old_poly_ring(x)/[x**3 + 1]
QQ[x]/<x**3 + 1>

Attributes:
- ring - the base ring
- base_ideal - the ideal used to form the quotient

Modules, Ideals and their Elementary Properties

Let A be a ring. An A-module is a set M, together with two binary operations $+: M \times M \to M$ and $\cdot : R \times M \to M$ called addition and scalar multiplication. These are required to satisfy certain axioms, which can be found in e.g. [Atiyah69]. In this way modules are a direct generalisation of both vector spaces (A being a field) and abelian groups ($A = \mathbb{Z}$). A submodule of the A-module M is a subset $N \subset M$, such that the binary operations restrict to N, and N becomes an A-module with these operations.

The ring A itself has a natural A-module structure where addition and multiplication in the module coincide with addition and multiplication in the ring. This A-module is also written as A. An A-submodule of A is called an ideal of A. Ideals come up very naturally in algebraic geometry. More general modules can be seen as a technically convenient “elbow room” beyond talking only about ideals.

If M, N are A-modules, then there is a natural (componentwise) A-module structure on $M \times N$. Similarly there are A-module structures on cartesian products of more components. (For the categorically inclined: the cartesian product of finitely many A-modules, with this A-module structure, is the finite biproduct in the category of all A-modules. With infinitely many components, it is the direct product (but the infinite direct sum has to be constructed differently).) As usual, repeated product of the A-module M is denoted $M, M^2, M^3 \ldots$, or M^I for arbitrary index sets I.

An A-module M is called free if it is isomorphic to the A-module A^I for some (not necessarily finite) index set I (refer to the next section for a definition of isomorphism). The cardinality of I is called the rank of M; one may prove this is well-defined. In general, the AGCA module only works with free modules of finite rank, and other closely related modules. The easiest way to create modules is to use member methods of the objects they are made up from. For example, let us create a free module of rank 4 over the coordinate ring of A^2 we created above, together with a submodule:

```python
>>> F = ar.free_module(4) ; F
4
QQ[x, y, z]

>>> S = F.submodule([1, x, x**2, x**3], [0, 1, 0, y]) ; S
\[
\begin{bmatrix}
1 & x & x & x \\
0 & 1 & 0 & y
\end{bmatrix}
\]
```

Note how python lists can be used as a short-cut notation for module elements (vectors). As usual, the convert method can be used to convert sympy/python objects into the internal AGCA representation (see detailed reference below).

Here is the detailed documentation of the classes for modules, free modules, and submodules:
class sympy.polys.agca.modules.Module(ring)
 Abstract base class for modules.
 Do not instantiate - use ring explicit constructors instead:

 >>> from sympy import QQ
 >>> from sympy.abc import x
 >>> QQ.old_poly_ring(x).free_module(2)
 QQ[x]**2

Attributes:
 • dtype - type of elements
 • ring - containing ring

Non-implemented methods:
 • submodule
 • quotient_module
 • is_zero
 • is_submodule
 • multiply_ideal

The method convert likely needs to be changed in subclasses.

contains(elem)
 Return True if elem is an element of this module.

convert(elem, M=None)
 Convert elem into internal representation of this module.
 If M is not None, it should be a module containing it.

identity_hom()
 Return the identity homomorphism on self.

is submodule(other)
 Returns True if other is a submodule of self.

is_zero()
 Returns True if self is a zero module.

multiply_ideal(other)
 Multiply self by the ideal other.

quotient_module(other)
 Generate a quotient module.

submodule(*gens)
 Generate a submodule.

subset(other)
 Returns True if other is is a subset of self.
Examples

```python
>>> from sympy.abc import x
>>> from sympy import QQ
>>> F = QQ.old_poly_ring(x).free_module(2)
>>> F.subset([(1, x), (x, 2)])
True
>>> F.subset([(1/x, x), (x, 2)])
False
```

class sympy.polys.agca.modules.FreeModule(ring, rank)

Abstract base class for free modules.

Additional attributes:

- rank - rank of the free module

Non-implemented methods:

- submodule

basis()

Return a set of basis elements.

Examples

```python
>>> from sympy.abc import x
>>> from sympy import QQ
>>> QQ.old_poly_ring(x).free_module(3).basis()
([1, 0, 0], [0, 1, 0], [0, 0, 1])
```

convert(elem, M=None)

Convert elem into the internal representation.

This method is called implicitly whenever computations involve elements not in the internal representation.

Examples

```python
>>> from sympy.abc import x
>>> from sympy import QQ
>>> F = QQ.old_poly_ring(x).free_module(2)
>>> F.convert([1, 0])
[1, 0]
```

dtype

alias of FreeModuleElement (page 2536)

identity_hom()

Return the identity homomorphism on self.
Examples

```python
>>> from sympy import x
>>> from sympy import QQ
>>> QQ.old_poly_ring(x).free_module(2).identity_hom()
Matrix([[1, 0],
        [0, 1]], : QQ[x]**2 -> QQ[x]**2)
```

`is_submodule(other)`
Returns True if other is a submodule of self.

Examples

```python
>>> from sympy import x
>>> from sympy import QQ
>>> F = QQ.old_poly_ring(x).free_module(2)
>>> M = F.submodule([2, x])
>>> F.is_submodule(F)
True
>>> F.is_submodule(M)
True
>>> M.is_submodule(F)
False
```

`is_zero()`
Returns True if self is a zero module.

(If, as this implementation assumes, the coefficient ring is not the zero ring, then this is equivalent to the rank being zero.)

Examples

```python
>>> from sympy import QQ
>>> QQ.old_poly_ring(x).free_module(0).is_zero()
True
>>> QQ.old_poly_ring(x).free_module(1).is_zero()
False
```

`multiply_ideal(other)`
Multiply self by the ideal other.
Examples

```python
>>> from sympy.abc import x
>>> from sympy import QQ
>>> I = QQ.old_poly_ring(x).ideal(x)
>>> F = QQ.old_poly_ring(x).free_module(2)
>>> F.multiply_ideal(I)
<[x, 0], [0, x]>
```

`quotient_module(submodule)`

Return a quotient module.

Examples

```python
>>> from sympy.abc import x
>>> from sympy import QQ
>>> M = QQ.old_poly_ring(x).free_module(2)
>>> M.quotient_module(M.submodule([1, x], [x, 2]))
QQ[x]**2/<[1, x], [x, 2]>
```

Or more concisely, using the overloaded division operator:

```python
>>> QQ.old_poly_ring(x).free_module(2) / [[1, x], [x, 2]]
QQ[x]**2/<[1, x], [x, 2]>
```

class sympy.polys.agca.modules.FreeModuleElement(module, data)

Element of a free module. Data stored as a tuple.

class sympy.polys.agca.modules.SubModule(gens, container)

Base class for submodules.

Attributes:

- container - containing module
- gens - generators (subset of containing module)
- rank - rank of containing module

Non-implemented methods:

- _contains
- _syzygies
- _in_terms_of_generators
- _intersect
- _module_quotient

Methods that likely need change in subclasses:

- reduce_element

convert(elem, M=None)

Convert elem into the internal representation.

Mostly called implicitly.
Examples

```python
>>> from sympy import QQ
>>> QQ.old_poly_ring(x).free_module(2).submodule([x, x]).inclusion_hom()
Matrix([1, 0], : <[x, x]> -> QQ[x]**2)
```

inclusion_hom()
Return a homomorphism representing the inclusion map of self.
That is, the natural map from self to self.container.

Examples

```python
>>> from sympy import QQ
>>> QQ.old_poly_ring(x).free_module(2).submodule([x, x]).inclusion_hom()
Matrix([1, 0], : <[x, x]> -> QQ[x]**2)
```

intersec(other, **options)
Returns the intersection of self with submodule other.
Examples

```python
>>> from sympy.abc import x, y
>>> from sympy import QQ

>>> F = QQ.old_poly_ring(x, y).free_module(2)
>>> F.submodule([x, x]).intersect(F.submodule([y, y]))
<[x*y, x*y]>
```

Some implementation allow further options to be passed. Currently, to only one implemented is relations=True, in which case the function will return a triple \((\text{res}, \text{rela}, \text{relb})\), where \(\text{res}\) is the intersection module, and \(\text{rela}\) and \(\text{relb}\) are lists of coefficient vectors, expressing the generators of \(\text{res}\) in terms of the generators of \(\text{self}(\text{rela})\) and \(\text{other}(\text{relb})\).

```python
>>> F.submodule([x, x]).intersect(F.submodule([y, y]), relations=True)
((<[x*y, x*y]>, [(y,)], [(x,)]))
```

The above result says: the intersection module is generated by the single element \((-xy, -xy) = -y(x, x) = -x(y, y)\), where \((x, x)\) and \((y, y)\) respectively are the unique generators of the two modules being intersected.

is_full_module()

Return True if self is the entire free module.

Examples

```python
>>> from sympy.abc import x
>>> from sympy import QQ

>>> F = QQ.old_poly_ring(x).free_module(2)
>>> F.submodule([x, 1]).is_full_module()
False
>>> F.submodule([1, 1], [1, 2]).is_full_module()
True
```

is_submodule(other)

Returns True if other is a submodule of self.

```python
>>> from sympy.abc import x
>>> from sympy import QQ

>>> F = QQ.old_poly_ring(x).free_module(2)
>>> M = F.submodule([2, x])
>>> N = M.submodule([2*x, x**2])
>>> M.is_submodule(M)
True
>>> M.is_submodule(N)
True
>>> N.is_submodule(M)
False
```

is_zero()

Return True if self is a zero module.
Examples

```python
>>> from sympy.abc import x
>>> from sympy import QQ
>>> F = QQ.old_poly_ring(x).free_module(2)
>>> F.submodule([x, 1]).is_zero()
False
>>> F.submodule([0, 0]).is_zero()
True
```

`module_quotient(other, **options)`

Returns the module quotient of self by submodule other.

That is, if self is the module M and other is N, then return the ideal \(\{ f \in R | fN \subset M \} \).

Examples

```python
>>> from sympy import QQ
>>> from sympy.abc import x, y
>>> F = QQ.old_poly_ring(x, y).free_module(2)
>>> S = F.submodule([x*y, x*y])
>>> T = F.submodule([x, x])
>>> S.module_quotient(T)
<y>
```

Some implementations allow further options to be passed. Currently, the only one implemented is `relations=True`, which may only be passed if other is principal. In this case the function will return a pair `(res, rel)` where `res` is the ideal, and `rel` is a list of coefficient vectors, expressing the generators of the ideal, multiplied by the generator of other in terms of generators of self.

```python
>>> S.module_quotient(T, relations=True)
(<y>, [[1]])
```

This means that the quotient ideal is generated by the single element y, and that $y(x, x) = 1(x, xy)$, (x, x) and (xy, xy) being the generators of T and S, respectively.

`multiply_ideal(I)`

Multiply self by the ideal I.

Examples
quotient_module(*other, **opts*)

Return a quotient module.

This is the same as taking a submodule of a quotient of the containing module.

Examples

```python
>>> from sympy.abc import x
>>> from sympy import QQ
>>> F = QQ.old_poly_ring(x).free_module(2)
>>> S1 = F.submodule([x, 1])
>>> S2 = F.submodule([x**2, x])
>>> S1.quotient_module(S2)
<[x, 1] + [x**2, x]>>
```

Or more coincisely, using the overloaded division operator:

```python
>>> F.submodule([x, 1]) / [(x**2, x)]
<[x, 1] + [x**2, x]>>
```

reduce_element(*x*)

Reduce the element *x* of our ring modulo the ideal *self*.

Here “reduce” has no specific meaning, it could return a unique normal form, simplify the expression a bit, or just do nothing.

submodule(*gens*)

Generate a submodule.

Examples

```python
>>> from sympy.abc import x
>>> from sympy import QQ
>>> M = QQ.old_poly_ring(x).free_module(2).submodule([x, 1])
>>> M.submodule([x**2, x])
<[x**2, x]>
```

syzygy_module(***opts*)

Compute the syzygy module of the generators of *self*.

Suppose *M* is generated by \(f_1, \ldots, f_n\) over the ring \(R\). Consider the homomorphism \(\phi : R^n \to M\), given by sending \((r_1, \ldots, r_n) \to r_1 f_1 + \cdots + r_n f_n\). The syzygy module is defined to be the kernel of \(\phi\).
Examples

The syzygy module is zero iff the generators generate freely a free submodule:

```python
>>> from sympy.abc import x, y
>>> from sympy import QQ

>>> QQ.old_poly_ring(x).free_module(2).submodule([1, 0], [1, 1]).
    .syzygy_module().is_zero()
True
```

A slightly more interesting example:

```python
>>> M = QQ.old_poly_ring(x, y).free_module(2).submodule([2*x], [y, 2*y])
>>> S = QQ.old_poly_ring(x, y).free_module(2).submodule([y, -x])
>>> M.syzygy_module() == S
True
```

union(other)

Returns the module generated by the union of self and other.

Examples

```python
>>> from sympy.abc import x
>>> from sympy import QQ

>>> F = QQ.old_poly_ring(x).free_module(1)
>>> M = F.submodule([x**2 + x]) # <x(x+1)>
>>> N = F.submodule([x**2 - 1]) # <(x-1)(x+1)>
>>> M.union(N) == F.submodule([x+1])
True
```

Ideals are created very similarly to modules. For example, let’s verify that the nodal cubic is indeed singular at the origin:

```python
>>> I = lr.ideal(x, y)
>>> I == lr.ideal(x)
False
>>> I == lr.ideal(y)
False
```

We are using here the fact that a curve is non-singular at a point if and only if the maximal ideal of the local ring is principal, and that in this case at least one of \(x\) and \(y\) must be generators.

This is the detailed documentation of the class ideal. Please note that most of the methods regarding properties of ideals (primality etc.) are not yet implemented.

```python
class sympy.polys.agca.ideals.Ideal

Abstract base class for ideals.

Do not instantiate - use explicit constructors in the ring class instead:
```
```python
>>> from sympy import QQ
>>> from sympy.abc import x
>>> QQ.old_poly_ring(x).ideal(x+1)
<x + 1>
```

Attributes

- ring - the ring this ideal belongs to

Non-implemented methods:

- `contains_elem`
- `contains_ideal`
- `quotient`
- `intersect`
- `union`
- `product`
- `is_whole_ring`
- `is_zero`
- `is_prime`, `is_maximal`, `is_primary`, `is_radical`
- `is_principal`
- `height`, `depth`
- `radical`

Methods that likely should be overridden in subclasses:

- `reduce_element`

`contains(elem)`

Return True if `elem` is an element of this ideal.

Examples

```python
>>> from sympy.abc import x
>>> from sympy import QQ
>>> QQ.old_poly_ring(x).ideal(x+1, x-1).contains(3)
True
>>> QQ.old_poly_ring(x).ideal(x**2, x**3).contains(x)
False
```

depth()

Compute the depth of self.

height()

Compute the height of self.

intersect(J)

Compute the intersection of self with ideal J.
Examples

```python
>>> from sympy.abc import x, y
>>> from sympy import QQ
>>> R = QQ.old_poly_ring(x, y)
>>> R.ideal(x).intersect(R.ideal(y))
<x*y>
```

- `is_maximal()`: Return True if self is a maximal ideal.
- `is_primary()`: Return True if self is a primary ideal.
- `is_prime()`: Return True if self is a prime ideal.
- `is_principal()`: Return True if self is a principal ideal.
- `is_radical()`: Return True if self is a radical ideal.
- `is_whole_ring()`: Return True if self is the whole ring.
- `is_zero()`: Return True if self is the zero ideal.
- `product(J)`: Compute the ideal product of self and J.
 That is, compute the ideal generated by products xy, for x an element of self and $y \in J$.

Examples

```python
>>> from sympy.abc import x, y
>>> from sympy import QQ
>>> QQ.old_poly_ring(x, y).ideal(x).product(QQ.old_poly_ring(x, y).ideal(y))
<x*y>
```

- `quotient(J, **opts)`: Compute the ideal quotient of self by J.
 That is, if self is the ideal I, compute the set $I : J = \{x \in R | xJ \subseteq I\}$.
Examples

```python
>>> from sympy import x, y
>>> from sympy import QQ
>>> R = QQ.old_poly_ring(x, y)
>>> R.ideal(x*y).quotient(R.ideal(x))
<y>
```

radical()

Compute the radical of self.

reduce_element(x)

Reduce the element x of our ring modulo the ideal self.

Here “reduce” has no specific meaning: it could return a unique normal form, simplify the expression a bit, or just do nothing.

saturate(J)

Compute the ideal saturation of self by J.

That is, if self is the ideal I, compute the set \(I : J^\infty = \{ x \in R \mid x J^n \subset I \text{ for some } n \} \).

subset(other)

Returns True if other is is a subset of self.

Here other may be an ideal.

Examples

```python
>>> from sympy import x
>>> from sympy import QQ
>>> I = QQ.old_poly_ring(x).ideal(x+1)
>>> I.subset([x**2 - 1, x**2 + 2*x + 1])
True
>>> I.subset([x**2 + 1, x + 1])
False
>>> I.subset(QQ.old_poly_ring(x).ideal(x**2 - 1))
True
```

union(J)

Compute the ideal generated by the union of self and J.

Examples

```python
>>> from sympy import x
>>> from sympy import QQ
>>> QQ.old_poly_ring(x).ideal(x**2 - 1).union(QQ.old_poly_ring(x).ideal((x+1)**2)) == QQ.old_poly_ring(x).ideal(x+1)
True
```
containing \(N \), then \(K/N \) is in a natural way a submodule of \(M/N \). Such a module is called a subquotient. Here is the documentation of quotient and subquotient modules:

```python
class sympy.polys.agca.modules.QuotientModule(ring, base, submodule)
    Class for quotient modules.
    Do not instantiate this directly. For subquotients, see the SubQuotientModule class.
    Attributes:
    • base - the base module we are a quotient of
    • killed_module - the submodule used to form the quotient
    • rank of the base
    convert(elem, M=None)
        Convert elem into the internal representation.
        This method is called implicitly whenever computations involve elements not in the internal representation.
```

Examples

```python
>>> from sympy import x
>>> from sympy import QQ
>>> F = QQ.old_poly_ring(x).free_module(2) / [(1, 2), (1, x)]
>>> F.convert([1, 0])
[1, 0] + <[1, 2], [1, x]>
```

dtype

 alias of QuotientModuleElement (page 2547)

identity_hom()

 Return the identity homomorphism on self.

Examples

```python
>>> from sympy import x
>>> from sympy import QQ
>>> M = QQ.old_poly_ring(x).free_module(2) / [(1, 2), (1, x)]
>>> M.identity_hom()
Matrix([[1, 0], [0, 1]], : QQ[x]**2/<[1, 2], [1, x]> -> QQ[x]**2/<[1, 2], [1, x]>
```

is_submodule(other)

 Return True if other is a submodule of self.
Examples

>>> from sympy import x
>>> from sympy import QQ
>>> Q = QQ.old_poly_ring(x).free_module(2) / [(x, x)]
>>> S = Q.submodule([1, 0])
>>> Q.is_submodule(S)
True
>>> S.is_submodule(Q)
False

is_zero()

Return True if self is a zero module.

This happens if and only if the base module is the same as the submodule being killed.

Examples

>>> from sympy import x
>>> from sympy import QQ
>>> F = QQ.old_poly_ring(x).free_module(2)
>>> (F/[(1, 0)]).is_zero()
False
>>> (F/[(1, 0), (0, 1)]).is_zero()
True

quotient_hom()

Return the quotient homomorphism to self.

That is, return a homomorphism representing the natural map from self.base to self.

Examples

>>> from sympy import x
>>> from sympy import QQ
>>> M = QQ.old_poly_ring(x).free_module(2) / [(1, 2), (1, x)]
>>> M.quotient_hom()
Matrix([[(1, 0), : QQ[x]**2 -> QQ[x]**2/<[1, 2], [1, x]>
[0, 1]])

submodule(*gens, **opts)

Generate a submodule.

This is the same as taking a quotient of a submodule of the base module.
Examples

```python
>>> from sympy.abc import x
>>> from sympy import QQ
>>> Q = QQ.old_poly_ring(x).free_module(2) / [(x, x)]
>>> Q.submodule([x, 0])
<x[x, 0] + <[x, x]>>
```

class sympy.polys.agca.modules.QuotientModuleElement(module, data)
Element of a quotient module.

eq(d1, d2)
Equality comparison.

class sympy.polys.agca.modules.SubQuotientModule(gens, container, **opts)
Submodule of a quotient module.
Equivalently, quotient module of a submodule.

Do not instantiate this, instead use the submodule or quotient_module constructing methods:

```python
>>> from sympy.abc import x
>>> from sympy import QQ
>>> F = QQ.old_poly_ring(x).free_module(2)
>>> S = F.submodule([1, 0], [1, x])
>>> Q = F/[(1, 0)]
>>> S/[(1, 0)] == Q.submodule([5, x])
True
```
Attributes:
• base - base module we are quotient of
• killed_module - submodule used to form the quotient

is_full_module()
Return True if self is the entire free module.

Examples

```python
>>> from sympy.abc import x
>>> from sympy import QQ
>>> F = QQ.old_poly_ring(x).free_module(2)
>>> F.submodule([x, 1]).is_full_module()
False
>>> F.submodule([1, 1], [1, 2]).is_full_module()
True
```

quotient_hom()
Return the quotient homomorphism to self.
That is, return the natural map from self.base to self.
Examples

```python
>>> from sympy import x
>>> from sympy import QQ
>>> M = (QQ.old_poly_ring(x).free_module(2) / [(1, x)]).submodule([1, 0])
>>> M.quotient_hom()
Matrix([([1, 0], : <[1, 0], [1, x]> -> <[1, 0] + <[1, x]>, [1, x] + <[1, x]>>
>>> [0, 1]]
```

Module Homomorphisms and Syzygies

Let M and N be A-modules. A mapping $f : M \rightarrow N$ satisfying various obvious properties (see [Atiyah69]) is called an A-module homomorphism. In this case M is called the domain and N the codomain. The set $\{x \in M | f(x) = 0\}$ is called the kernel $\ker(f)$, whereas the set $\{f(x) | x \in M\}$ is called the image $\im(f)$. The kernel is a submodule of M, the image is a submodule of N. The homomorphism f is injective if and only if $\ker(f) = 0$ and surjective if and only if $\im(f) = N$. A bijective homomorphism is called an isomorphism. Equivalently, $\ker(f) = 0$ and $\im(f) = N$.

(A related notion, which currently has no special name in the AGCA module, is that of the cokernel, $\text{coker}(f) = N/\im(f)$.)

Suppose now M is an A-module. M is called finitely generated if there exists a surjective homomorphism $A^n \rightarrow M$ for some n. If such a morphism f is chosen, the images of the standard basis of A^n are called the generators of M. The module $\ker(f)$ is called syzygy module with respect to the generators. A module is called finitely presented if it is finitely generated with a finitely generated syzygy module. The class of finitely presented modules is essentially the largest class we can hope to be able to meaningfully compute in.

It is an important theorem that, for all the rings we are considering, all submodules of finitely generated modules are finitely generated, and hence finitely generated and finitely presented modules are the same.

The notion of syzygies, while it may first seem rather abstract, is actually very computational. This is because there exist (fairly easy) algorithms for computing them, and more general questions (kernels, intersections, ...) are often reduced to syzygy computation.

Let us say a few words about the definition of homomorphisms in the AGCA module. Suppose first that $f : M \rightarrow N$ is an arbitrary morphism of A-modules. Then if K is a submodule of M, f naturally defines a new homomorphism $g : K \rightarrow N$ (via $g(x) = f(x)$), called the restriction of f to K. If now K contained in the kernel of f, then moreover f defines in a natural homomorphism $g : M/K \rightarrow N$ (same formula as above!), and we say that f descends to M/K. Similarly, if L is a submodule of N, there is a natural homomorphism $g : M \rightarrow N/L$, we say that g factors through f. Finally, if now L contains the image of f, then there is a natural homomorphism $g : M \rightarrow L$ (defined, again, by the same formula), and we say g is obtained from f by restriction of codomain. Observe also that each of these four operations is reversible, in the sense that given g, one can always (non-uniquely) find f such that g is obtained from f in the above way.

Note that all modules implemented in AGCA are obtained from free modules by taking a succession of submodules and quotients. Hence, in order to explain how to define a homomorphism between arbitrary modules, in light of the above, we need only explain how to define homomorphisms of free modules. But, essentially by the definition of free module, a homomorphism from a free module A^n to any module M is precisely the same as giving n elements of M (the images of the standard basis), and giving an element of a free module
A^m is precisely the same as giving m elements of A. Hence a homomorphism of free modules $A^n \rightarrow A^m$ can be specified via a matrix, entirely analogously to the case of vector spaces.

The functions `restrict_domain` etc. of the class `Homomorphism` can be used to carry out the operations described above, and homomorphisms of free modules can in principle be instantiated by hand. Since these operations are so common, there is a convenience function `homomorphism` to define a homomorphism between arbitrary modules via the method outlined above. It is essentially the only way homomorphisms need ever be created by the user.

```python
sympy.polys.agca.homomorphisms.homomorphism(domain, codomain, matrix)
```

Create a homomorphism object.

This function tries to build a homomorphism from `domain` to `codomain` via the matrix `matrix`.

Examples

```python
>>> from sympy import QQ
>>> from sympy.abc import x
>>> from sympy.polys.agca import homomorphism

>>> R = QQ.old_poly_ring(x)
>>> T = R.free_module(2)

>>> F = R.free_module(2)
>>> h = homomorphism(F, T, [[1, x], [x**2, 0]])
>>> h
Matrix([[1, x**2], : QQ[x]**2 -> QQ[x]**2
[0, x]])

>>> h([[1, 0]])
[1, x]

>>> h([[0, 1]])
[x**2, 0]

>>> h([[1, 1]])
[x**2 + 1, x]
```

If `domain` is a submodule of a free module, then `matrix` determines a homomorphism from the containing free module to `codomain`, and the homomorphism returned is obtained by restriction to `domain`.

```python
>>> S = F.submodule([[1, 0], [0, x]])
>>> homomorphism(S, T, [[1, x], [x**2, 0]])
Matrix([[1, x**2], : <[1, 0], [0, x]> -> QQ[x]**2
[0, 0]])
```

If `domain` is a (sub)quotient N/K, then `matrix` determines a homomorphism from N to `codomain`. If the kernel contains K, this homomorphism descends to `domain` and is returned; otherwise an exception is raised.
Finally, here is the detailed reference of the actual homomorphism class:

```python
from sympy import QQ
from sympy.abc import x
from sympy.polys.agca import homomorphism
```

```python
F = QQ.old_poly_ring(x).free_module(2)
F = homomorphism(F, F, [[1, 0], [0, 1]])
```

Attributes:
- `ring` - the ring over which we are considering modules
- `domain` - the domain module
- `codomain` - the codomain module
- `_ker` - cached kernel
- `_img` - cached image

Non-implemented methods:
- `_kernel`
- `_image`
- `_restrict_domain`
- `_restrict_codomain`
- `_quotient_domain`
- `_quotient_codomain`
- `_apply`
- `_mul_scalar`
- `_compose`
- `_add`

Traceback (most recent call last):
... ValueError: kernel <[1, 0], [0, 0]> must contain sm, got <[0,x]>

Non-implemented methods:
- `_kernel`
- `_image`
- `_restrict_domain`
- `_restrict_codomain`
- `_quotient_domain`
- `_quotient_codomain`
- `_apply`
- `_mul_scalar`
- `_compose`
- `_add`
image()

Compute the image of self.

That is, if self is the homomorphism $\phi : M \to N$, then compute $im(\phi) = \{\phi(x) | x \in M\}$. This is a submodule of N.

Examples

```python
>>> from sympy import QQ
>>> from sympy.abc import x
>>> from sympy.polys.agca import homomorphism

>>> F = QQ.old_poly_ring(x).free_module(2)
>>> homomorphism(F, F, [[1, 0], [x, 0]]).image() == F.submodule([1, 0])
True
```

is_injective()

Return True if self is injective.

That is, check if the elements of the domain are mapped to the same codomain element.

Examples

```python
>>> from sympy import QQ
>>> from sympy.abc import x
>>> from sympy.polys.agca import homomorphism

>>> F = QQ.old_poly_ring(x).free_module(2)
>>> h = homomorphism(F, F, [[1, 0], [x, 0]])
>>> h.is_injective()
False
>>> h.quotient_domain(h.kernel()).is_injective()
True
```

is_isomorphism()

Return True if self is an isomorphism.

That is, check if every element of the codomain has precisely one preimage. Equivalently, self is both injective and surjective.
Examples

```python
>>> from sympy import QQ
>>> from sympy.abc import x
>>> from sympy.polys.agca import homomorphism

>>> F = QQ.old_poly_ring(x).free_module(2)
>>> h = homomorphism(F, F, [[1, 0], [x, 0]])
>>> h = h.restrict_codomain(h.image())
>>> h.is_isomorphism()
False
>>> h.quotient_domain(h.kernel()).is_isomorphism()
True
```

is_surjective()

Return True if self is surjective.
That is, check if every element of the codomain has at least one preimage.

Examples

```python
>>> from sympy import QQ
>>> from sympy.abc import x
>>> from sympy.polys.agca import homomorphism

>>> F = QQ.old_poly_ring(x).free_module(2)
>>> h = homomorphism(F, F, [[1, 0], [x, 0]])
>>> h.is_surjective()
False
>>> h.restrict_codomain(h.image()).is_surjective()
True
```

is_zero()

Return True if self is a zero morphism.
That is, check if every element of the domain is mapped to zero under self.

Examples

```python
>>> from sympy import QQ
>>> from sympy.abc import x
>>> from sympy.polys.agca import homomorphism

>>> F = QQ.old_poly_ring(x).free_module(2)
>>> h = homomorphism(F, F, [[1, 0], [x, 0]])
>>> h.is_zero()
False
>>> h.restrict_domain(F.submodule()).is_zero()
True
```
>>> h.quotient_codomain(h.image()).is_zero()
True

kernel()

Compute the kernel of self.

That is, if self is the homomorphism \(\phi : M \rightarrow N\), then compute \(\ker(\phi) = \{ x \in M | \phi(x) = 0 \}\). This is a submodule of \(M\).

Examples

```python
>>> from sympy import QQ
>>> from sympy.abc import x
>>> from sympy.polys.agca import homomorphism

>>> F = QQ.old_poly_ring(x).free_module(2)
>>> homomorphism(F, F, [[1, 0], [x, 0]]).kernel()
<x, -1>
```

quotient_codomain(sm)

Return self with codomain replaced by codomain/sm.

Here sm must be a submodule of self.codomain.

Examples

```python
>>> from sympy import QQ
>>> from sympy.abc import x
>>> from sympy.polys.agca import homomorphism

>>> F = QQ.old_poly_ring(x).free_module(2)
>>> h = homomorphism(F, F, [[1, 0], [x, 0]])
>>> h
Matrix([[1, x], : QQ[x]**2 -> QQ[x]**2
[0, 0]])
>>> h.quotient_codomain(F.submodule([1, 1]))
Matrix([[1, x], : QQ[x]**2 -> QQ[x]**2/<[1, 1]>
[0, 0]])
```

This is the same as composing with the quotient map on the left:

```python
>>> (F/[[1, 1]]).quotient_hom() * h
Matrix([[1, x], : QQ[x]**2 -> QQ[x]**2/<[1, 1]>
[0, 0]])
```
quotient_domain(sm)
 Return self with domain replaced by domain/sm. Here sm must be a submodule of self.kernel().

Examples

>>> from sympy import QQ
>>> from sympy.abc import x
>>> from sympy.polys.agca import homomorphism

>>> F = QQ.old_poly_ring(x).free_module(2)
>>> h = homomorphism(F, F, [[1, 0], [x, 0]])
>>> h
Matrix([1, x], : QQ[x]**2 -> QQ[x]**2
 [0, 0])
>>> h.quotient_domain(F.submodule([-x, 1]))
Matrix([1, x], : QQ[x]**2/<[-x, 1]> -> QQ[x]**2
 [0, 0])

restrict_codomain(sm)
 Return self, with codomain restricted to to sm. Here sm has to be a submodule of self.codomain containing the image.

Examples

>>> from sympy import QQ
>>> from sympy.abc import x
>>> from sympy.polys.agca import homomorphism

>>> F = QQ.old_poly_ring(x).free_module(2)
>>> h = homomorphism(F, F, [[1, 0], [x, 0]])
>>> h
Matrix([1, x], : QQ[x]**2 -> QQ[x]**2
 [0, 0])
>>> h.restrict_codomain(F.submodule([1, 0]))
Matrix([1, x], : QQ[x]**2 -> <[1, 0]>
 [0, 0])

restrict_domain(sm)
 Return self, with the domain restricted to sm. Here sm has to be a submodule of self.domain.
Examples

```python
>>> from sympy import QQ
>>> from sympy.abc import x
>>> from sympy.polys.agca import homomorphism

>>> F = QQ.old_poly_ring(x).free_module(2)
>>> h = homomorphism(F, F, [[1, 0], [x, 0]])
>>> h
Matrix([1, x], : QQ[x]**2 -> QQ[x]**2
[0, 0])

>>> h.restrict_domain(F.submodule([1, 0]))
Matrix([1, x], : <[1, 0]> -> QQ[x]**2
[0, 0])
```

This is the same as just composing on the right with the submodule inclusion:

```python
>>> h * F.submodule([1, 0]).inclusion_hom()
Matrix([1, x], : <[1, 0]> -> QQ[x]**2
[0, 0])
```

Finite Extensions

Let \(A \) be a (commutative) ring and \(B \) an extension ring of \(A \). An element \(t \) of \(B \) is a generator of \(B \) (over \(A \)) if all elements of \(B \) can be represented as polynomials in \(t \) with coefficients in \(A \). The representation is unique if and only if \(t \) satisfies no non-trivial polynomial relation, in which case \(B \) can be identified with a (univariate) polynomial ring over \(A \).

The polynomials having \(t \) as a root form a non-zero ideal in general. The most important case in practice is that of an ideal generated by a single monic polynomial. If \(t \) satisfies such a polynomial relation, then its highest power \(t^n \) can be written as linear combination of lower powers. It follows, inductively, that all higher powers of \(t \) also have such a representation. Hence the lower powers \(t^i \) \((i = 0, \ldots, n - 1)\) form a basis of \(B \), which is then called a finite extension of \(A \), or, more precisely, a monogenic finite extension as it is generated by a single element \(t \).

```python
class sympy.polys.agca.extensions.MonogenicFiniteExtension\( (\text{mod}) \)
```

Finite extension generated by an integral element.

The generator is defined by a monic univariate polynomial derived from the argument \(\text{mod} \).

A shorter alias is FiniteExtension.
Examples

Quadratic integer ring \(\mathbb{Z}[\sqrt{2}] \):

```python
>>> from sympy import Symbol, Poly
>>> from sympy.polys.agca.extensions import FiniteExtension
>>> x = Symbol('x')
>>> R = FiniteExtension(Poly(x**2 - 2)); R
\mathbb{Z}[x]/(x^2 - 2)
>>> R.rank
2
>>> R(1 + x)*(3 - 2*x)
1 - x
```

Finite field \(GF(5^3) \) defined by the primitive polynomial \(x^3 + x^2 + 2 \) (over \(\mathbb{Z}_5 \)).

```python
>>> F = FiniteExtension(Poly(x**3 + x**2 + 2, modulus=5)); F
GF(5)[x]/(x**3 + x**2 + 2)
>>> F.basis
(1, x, x**2)
>>> F(x + 3)/(x**2 + 2)
-2*x**2 + x + 2
```

Function field of an elliptic curve:

```python
>>> t = Symbol('t')
>>> FiniteExtension(Poly(t**2 - x**3 - x + 1, t, field=True))
\mathbb{Z}(x)[t]/(t**2 - x**3 - x + 1)
```

dtype

alias of `ExtensionElement` (page 2556)

class sympy.polys.agca.extensions.ExtensionElement(rep, ext)

Element of a finite extension.

A class of univariate polynomials modulo the modulus of the extension ext. It is represented by the unique polynomial rep of lowest degree. Both rep and the representation mod of modulus are of class DMP.

inverse()

Multiplicative inverse.

Raises

NotInvertible

If the element is a zero divisor.
Introducing the Domains of the poly module

This page introduces the idea of the “domains” that are used in SymPy’s sympy.polys (page 2435) module. The emphasis is on introducing how to use the domains directly and on understanding how they are used internally as part of the Poly (page 2453) class. This is a relatively advanced topic for a more introductory understanding of the Poly (page 2453) class and the sympy.polys (page 2435) module it is recommended to read Basic functionality of the module (page 2416) instead. The reference documentation for the domain classes is in Reference docs for the Poly Domains (page 2584). Internal functions that make use of the domains are documented in Internals of the Polynomial Manipulation Module (page 2651).

What are the domains?

For most users the domains are only really noticeable in the printed output of a Poly (page 2453):

```python
>>> from sympy import Symbol, Poly
>>> x = Symbol('x')
>>> Poly(x**2 + x)
Poly(x**2 + x, x, domain='ZZ')
>>> Poly(x**2 + x/2)
Poly(x**2 + 1/2*x, x, domain='QQ')
```

We see here that one Poly (page 2453) has domain ZZ (page 2605) representing the integers and the other has domain QQ (page 2609) representing the rationals. These indicate the “domain” from which the coefficients of the polynomial are drawn.

From a high-level the domains represent formal concepts such as the set of integers \(\mathbb{Z} \) or rationals \(\mathbb{Q} \). The word “domain” here is a reference to the mathematical concept of an integral domain.

Internally the domains correspond to different computational implementations and representations of the expressions that the polynomials correspond to. The Poly (page 2453) object itself has an internal representation as a list of coefficients and a domain (page 2466) attribute representing the implementation of those coefficients:

```python
>>> p = Poly(x**2 + x/2)
>>> p
Poly(x**2 + 1/2*x, x, domain='QQ')
>>> p.domain
QQ
>>> p.rep
DMP([1, 1/2, 0], QQ, None)
>>> p.rep.rep
[1, 1/2, 0]
>>> type(p.rep.rep[0])
<class 'sympy.external.pythonmpq.PythonMPQ'>
```

Here the domain is QQ (page 2609) which represents the implementation of the rational numbers in the domain system. The Poly (page 2453) instance itself has a Poly.domain (page 2466) attribute QQ (page 2609) and then a list of PythonMPQ (page 2612) coefficients where PythonMPQ (page 2612) is the class that implements the elements of the QQ (page 2609) domain. The list of coefficients [1, 1/2, 0] gives a standardised low-level representation of the polynomial expression \((1)*x**2 + (1/2)*x + (0)\).
This page looks at the different domains that are defined in SymPy, how they are implemented and how they can be used. It introduces how to use the domains and domain elements directly and explains how they are used internally as part of \texttt{Poly} (page 2453) objects. This information is more relevant for development in SymPy than it is for users of the $\texttt{sympy.polys}$ (page 2435) module.

Representing expressions symbolically

There are many different ways that a mathematical expression can be represented symbolically. The purpose of the polynomial domains is to provide suitable implementations for different classes of expressions. This section considers the basic approaches to the symbolic representation of mathematical expressions: “tree”, “dense polynomial” and “sparse polynomial”.

Tree representation

The most general representation of symbolic expressions is as a tree and this is the representation used for most ordinary SymPy expressions which are instances of \texttt{Expr} (page 999) (a subclass of \texttt{Basic} (page 979)). We can see this representation using the $\texttt{srepr()}$ (page 2253) function:

```python
>>> from sympy import Symbol, srepr
>>> x = Symbol('x')
>>> e = 1 + 1/(2 + x**2)
>>> e
1 + 1/(x**2 + 2)
>>> print(srepr(e))
Add(Integer(1), Pow(Add(Pow(Symbol('x'), Integer(2)), Integer(2)), Integer(-1)))
```

Here the expression e is represented as an \texttt{Add} (page 1062) node which has two children 1 and $1/(x**2 + 2)$. The child 1 is represented as an $\texttt{Integer}$ (page 1038) and the other child is represented as a \texttt{Pow} (page 1055) with base $x**2 + 2$ and exponent 1. Then $x**2 + 2$ is represented as an \texttt{Add} (page 1062) with children $x**2$ and 2 and so on. In this way the expression is represented as a tree where the internal nodes are operations like \texttt{Add} (page 1062), \texttt{Mul} (page 1058), \texttt{Pow} (page 1055) and so on and the leaf nodes are atomic expression types like $\texttt{Integer}$ (page 1038) and \texttt{Symbol} (page 1028). See *Advanced Expression Manipulation* (page 61) for more about this representation.

The tree representation is core to the architecture of \texttt{Expr} (page 999) in SymPy. It is a highly flexible representation that can represent a very wide range of possible expressions. It can also represent equivalent expressions in different ways e.g.:

```python
>>> e = x*(x + 1)
>>> e
x*(x + 1)
>>> e.expand()
x**2 + x
```

These two expression although equivalent have different tree representations:
Being able to represent the same expression in different ways is both a strength and a weakness. It is useful to be able to convert an expression into different forms for different tasks but having non-unique representations makes it hard to tell when two expressions are equivalent which is in fact very important for many computational algorithms. The most important task is being able to tell when an expression is equal to zero which is undecidable in general (Richardson's theorem) but is decidable in many important special cases.

DUP representation

Restricting the set of allowed expressions to special cases allows for much more efficient symbolic representations. As we already saw Poly (page 2453) can represent a polynomial as a list of coefficients. This means that an expression like \(x^4 + x + 1 \) could be represented simply as \([1, 0, 0, 1, 1]\). This list of coefficients representation of a polynomial expression is known as the "dense univariate polynomial" (DUP) representation. Working within that representation algorithms for multiplication, addition and crucially zero-testing can be much more efficient than with the corresponding tree representations. We can see this representation from a Poly (page 2453) instance by looking at its rep.rep attribute:

```
>>> p = Poly(x**4 + x + 1)
>>> p.rep.rep
[1, 0, 0, 1, 1]
```

In the DUP representation it is not possible to represent the same expression in different ways. There is no distinction between \(x(x + 1) \) and \(x^2 + x \) because both are just \([1, 1, 0]\). This means that comparing two expressions is easy: they are equal if and only if all of their coefficients are equal. Zero-testing is particularly easy: the polynomial is zero if and only if all coefficients are zero (of course we need to have easy zero-testing for the coefficients themselves).

We can make functions that operate on the DUP representation much more efficiently than functions that operate on the tree representation. Many operations with standard sympy expressions are in fact computed by converting to a polynomial representation and then performing the calculation. An example is the factor() (page 2447) function:

```
>>> from sympy import factor
>>> e = 2*x**3 + 10*x**2 + 16*x + 8
>>> e
2*x**3 + 10*x**2 + 16*x + 8
>>> factor(e)
2*(x + 1)*(x + 2)**2
```

Internally factor() (page 2447) will convert the expression from the tree representation into the DUP representation and then use the function dup_factor_list:

```
>>> from sympy import ZZ
>>> from sympy.polys.factortools import dup_factor_list
>>> p = [ZZ(2), ZZ(10), ZZ(16), ZZ(8)]
```

(continues on next page)
There are many more examples of functions with `dup_*` names for operating on the DUP representation that are documented in *Internals of the Polynomial Manipulation Module* (page 2651). There are also functions with the `dmp_*` prefix for operating on multivariate polynomials.

DMP representation

A multivariate polynomial (a polynomial in multiple variables) can be represented as a polynomial with coefficients that are themselves polynomials. For example \(x^{**2}y + x^{**2} + x^y + y + 1 \) can be represented as polynomial in \(x \) where the coefficients are themselves polynomials in \(y \) i.e.: \((y + 1)*x^{**2} + (y)*x + (y+1)\). Since we can represent a polynomial with a list of coefficients a multivariate polynomial can be represented with a list of lists of coefficients:

```python
from sympy import symbols

x, y = symbols('x, y')
p = Poly(x**2*y + x**2 + x*y + y + 1, x, y, domain='ZZ')
p_poly = p.rep.rep
```

This list of lists of (lists of...) coefficients representation is known as the “dense multivariate polynomial” (DMP) representation.

Sparse polynomial representation

Instead of lists we can use a dict mapping nonzero monomial terms to their coefficients. This is known as the “sparse polynomial” representation. We can see what this would look like using the `as_dict()` (page 2457) method:

```python
from sympy import symbols

x, y = symbols('x, y')
p = Poly(x**2*y + x**2 + x*y + y + 1, x, y, domain='ZZ')
p_sparse = p.as_dict()
```

The keys of this dict are the exponents of the powers of \(x \) and the values are the coefficients so e.g. \(7*x**20 \) becomes \((20,): 7\) in the dict. The key is a tuple so that in the multivariate case something like \(4*x^{**2}*y^{**3} \) can be represented as \((2, 3): 4\). The sparse representation can be more efficient as it avoids the need to store and manipulate the zero coefficients. With a large number of generators (variables) the dense representation becomes particularly inefficient and it is better to use the sparse representation:
SymPy Documentation, Release 1.12.1

(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9)
>>> p = Poly(prod(gens))
>>> p
Poly(x0*x1*x2*x3*x4*x5*x6*x7*x8*x9, x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, \n...domain='ZZ')
>>> p.rep.rep
[[[[[[[[[1, 0], []], [[]], [[[]]], [[[[]]], [[[[]]], [[[[[]]], [[[[[]]], [[[[[]]], [[[[[]]], [[[[[]]], [[[[[]]], []]]]]]]]]]]]]]]]]]]
>>> p.as_dict()
{(1, 1, 1, 1, 1, 1, 1, 1, 1, 1): 1}

The dict representation shown in the last output maps from the monomial which is represented as a tuple of powers \((1, 1, 1, ...)\) i.e. \(x0**1 * x1**1, ...\) to the coefficient 1. Compared to the DMP representation (page 2560) we have a much more flattened data structure: it is a dict with only one key and value. Algorithms for working with sparse representations would likely be much more efficient than dense algorithms for this particular example polynomial.

SymPy’s polynomial module has implementations of polynomial expressions based on both the dense and sparse representations. There are also other implementations of different special classes of expressions that can be used as the coefficients of those polynomials. The rest of this page discusses what those representations are and how to use them.

Basic usage of domains

Several domains are predefined and ready to be used such as \(\texttt{ZZ}\) (page 2605) and \(\texttt{QQ}\) (page 2609) which represent the ring of integers \(\mathbb{Z}\) and the field of rationals \(\mathbb{Q}\). The \texttt{Domain} (page 2584) object is used to construct elements which can then be used in ordinary arithmetic operations.:.

```python
>>> from sympy import ZZ
>>> z1 = ZZ(2)
>>> z1
2
>>> z1 + z1
4
>>> type(z1)
<class 'int'>
>>> z1 in ZZ
True
```

The basic operations +, -, and * for addition, subtraction and multiplication will work for the elements of any domain and will produce new domain elements. Division with / (Python’s “true division” operator) is not possible for all domains and should not be used with domain elements unless the domain is known to be a field. For example dividing two elements of \(\texttt{ZZ}\) (page 2605) gives a float which is not an element of \(\texttt{ZZ}\) (page 2605):

```python
>>> z1 / z1
1.0
>>> type(z1 / z1)
<class 'float'>
```
Most domains representing non-field rings allow floor and modulo division (remainder) with Python's floor division `//` and modulo division `%` operators. For example with `ZZ` (page 2605):

```python
>>> z1 // z1
1
>>> z1 % z1
0
```

The `QQ` (page 2609) domain represents the field of rational numbers and does allow division:

```python
>>> from sympy import QQ
>>> q1 = QQ(1, 2)
>>> q1
1/2
>>> q2 = QQ(2, 3)
>>> q2
2/3
>>> q1 / q2
3/4
>>> type(q1)
<class 'sympy.external.pythonmpq.PythonMPQ'>
```

In general code that is expected to work with elements of an arbitrary domain should not use the division operators `/`, `//` and `%`. Only the operators `+`, `-`, `*` and `**` (with nonnegative integer exponent) should be assumed to work with arbitrary domain elements. All other operations should be accessed as functions from the `Domain` (page 2584) object:

```python
>>> ZZ.quo(ZZ(5), ZZ(3))  # 5 // 3
1
>>> ZZ.rem(ZZ(5), ZZ(3))  # 5 % 3
2
>>> ZZ.div(ZZ(5), ZZ(3))  # divmod(5, 3)
(1, 2)
>>> QQ.div(QQ(5), QQ(3))
(5/3, 0)
```

The `exquo()` (page 2591) function is used to compute an exact quotient. This is the analogue of `a / b` but where the division is expected to be exact (with no remainder) or an error will be raised:

```python
>>> QQ.exquo(QQ(5), QQ(3))
5/3
>>> ZZ.exquo(ZZ(4), ZZ(2))
2
>>> ZZ.exquo(ZZ(5), ZZ(3))
ExactQuotientFailed: 3 does not divide 5 in ZZ
```

The exact methods and attributes of the domain elements are not guaranteed in general beyond the basic arithmetic operations. It should not be presumed that e.g. `ZZ` (page 2605) will
always be of type int. If gmpy or gmpy2 is installed then the mpz or mpq types are used instead for ZZ (page 2605) and QQ (page 2609):

```python
>>> from sympy import ZZ, QQ
>>> ZZ(2)
mpz(2)
>>> QQ(2, 3)
mpq(2, 3)
```

The mpz type is faster than Python’s standard int type for operations with large integers although for smaller integers the difference is not so significant. The mpq type representing rational numbers is implemented in C rather than Python and is many times faster than the pure Python implementation of QQ (page 2609) that is used when gmpy is not installed.

In general the Python type used for the elements of a domain can be checked from the dtype (page 2590) attribute of the domain. When gmpy is installed the dtype for ZZ (page 2605) is mpz which is not an actual type and cannot be used with isinstance. For this reason the of_type() (page 2596) method can be used to check if an object is an element of dtype (page 2590):

```python
>>> z = ZZ(2)
>>> type(z)
<class 'int'>
>>> ZZ.dtype
<class 'int'>
>>> ZZ.of_type(z)
True
```

Domain elements vs sympy expressions

Note that domain elements are not of the same type as ordinary sympy expressions which are subclasses of Expr (page 999) such as Integer (page 1038). Ordinary sympy expressions are created with the sympify() (page 970) function:

```python
>>> from sympy import sympify
>>> z1_sympy = sympify(2)  # Normal sympy object
>>> z1_sympy
2
>>> type(z1_sympy)
<class 'sympy.core.numbers.Integer'>
>>> from sympy import Expr
>>> isinstance(z1_sympy, Expr)
True
```

It is important when working with the domains not to mix sympy expressions with domain elements even though it will sometimes work in simple cases. Each domain object has the methods to_sympy() (page 2597) and from_sympy() (page 2593) for converting back and forth between sympy expressions and domain elements:

```python
>>> z_sympy = sympify(2)
>>> z_zz = ZZ.from_sympy(z_sympy)
>>> z_zz
2
```
>>> type(z_sympy)
<class 'sympy.core.numbers.Integer'>
>>> type(z_zz)
<class 'int'>
>>> ZZ.to_sympy(z_zz)
2
>>> type(ZZ.to_sympy(z_zz))
<class 'sympy.core.numbers.Integer'>

Any particular domain will only be able to represent some sympy expressions so conversion will fail if the expression cannot be represented in the domain:

>>> from sympy import sqrt
>>> e = sqrt(2)
>>> e
sqrt(2)
>>> ZZ.from_sympy(e)
Traceback (most recent call last):
... CoercionFailed: expected an integer, got sqrt(2)

We have already seen that in some cases we can use the domain object itself as a constructor e.g. QQ(2). This will generally work provided the arguments given are valid for the dtype (page 2590) of the domain. Although it is convenient to use this in interactive sessions and in demonstrations it is generally better to use the from_sympy() (page 2593) method for constructing domain elements from sympy expressions (or from objects that can be sympified to sympy expressions).

It is important not to mix domain elements with other Python types such as int, float, as well as standard sympy Expr (page 999) expressions. When working in a domain, care should be taken as some Python operations will do this implicitly. For example the sum function will use the regular int value of zero so that sum([a, b]) is effectively evaluated as (0 + a) + b where 0 is of type int.

Every domain is at least a ring if not a field and as such is guaranteed to have two elements in particular corresponding to 1 and 0. The domain object provides domain elements for these as the attributes one and zero (page 2599). These are useful for something like Python’s sum function which allows to provide an alternative object as the “zero”:

>>> ZZ.one
1
>>> ZZ.zero
0
>>> sum([ZZ(1), ZZ(2)]) # don't do this (even it sometimes works)
3
>>> sum([ZZ(1), ZZ(2)], ZZ.zero) # provide the zero from the domain
3

A standard pattern then for performing calculations in a domain is:

1. Start with sympy Expr (page 999) instances representing expressions.
2. Choose an appropriate domain that can represent the expressions.
3. Convert all expressions to domain elements using from_sympy() (page 2593).
4. Perform the calculation with the domain elements.

5. Convert back to Expr (page 999) with `to_sympy()` (page 2597).

Here is an implementation of the sum function that illustrates these steps and sums some integers but performs the calculation using the domain elements rather than standard sympy expressions:

```python
def sum_domain(expressions_sympy):
    # """Sum sympy expressions but performing calculations in domain ZZ""

    # Convert to domain
    expressions_dom = [ZZ.from_sympy(e) for e in expressions_sympy]

    # Perform calculations in the domain
    result_dom = ZZ.zero
    for e_dom in expressions_dom:
        result_dom += e_dom

    # Convert the result back to Expr
    result_sympy = ZZ.to_sympy(result_dom)
    return result_sympy
```

Gaussian integers and Gaussian rationals

The two example domains that we have seen so far are ZZ (page 2605) and QQ (page 2609) representing the integers and the rationals respectively. There are other simple domains such as ZZ_I (page 2614) and QQ_I (page 2616) representing the Gaussian integers and Gaussian rationals. The Gaussian integers are numbers of the form \(a + b \sqrt{-1} \) where \(a \) and \(b \) are integers. The Gaussian rationals are defined similarly except that \(a \) and \(b \) can be rationals. We can use the Gaussian domains like:

```python
>>> from sympy import ZZ_I, QQ_I, I
>>> z = ZZ_I.from_sympy(1 + 2*I)
>>> z
(1 + 2*I)
>>> z**2
(-3 + 4*I)
```

Note the contrast with the way this calculation works in the tree representation where `expand()` (page 1099) is needed to get the reduced form:

```python
>>> from sympy import expand, I
>>> z = 1 + 2*I
>>> z**2
(1 + 2*I)**2
>>> expand(z**2)
-3 + 4*I
```

The ZZ_I (page 2614) and QQ_I (page 2616) domains are implemented by the classes GaussianIntegerRing (page 2614) and GaussianRationalField (page 2616) and their elements by GaussianInteger (page 2616) and GaussianRational (page 2619) respectively. The internal representation for an element of ZZ_I (page 2614) or QQ_I (page 2616) is simply as a pair \((a, b)\) of elements of ZZ (page 2605) or QQ (page 2609) respectively. The domain
ZZ_I (page 2614) is a ring with similar properties to ZZ (page 2605) whereas QQ_I (page 2616) is a field much like QQ (page 2609):

```python
>>> ZZ.is_Field
False
>>> QQ.is_Field
True
>>> ZZ_I.is_Field
False
>>> QQ_I.is_Field
True
```

Since QQ_I (page 2616) is a field division by nonzero elements is always possible whereas in ZZ_I (page 2614) we have the important concept of the greatest common divisor (GCD):

```python
>>> e1 = QQ_I.from_sympy(1+I)
>>> e2 = QQ_I.from_sympy(2-I/2)
>>> e1/e2
(6/17 + 10/17*I)
>>> ZZ_I.gcd(ZZ_I(5), ZZ_I.from_sympy(1+2*I))
(1 + 2*I)
```

Finite fields

So far we have seen the domains ZZ (page 2605), QQ (page 2609), ZZ_I (page 2614), and QQ_I (page 2616). There are also domains representing the Finite fields although the implementation of these is incomplete. A finite field GF(p) (page 2602) of prime order can be constructed with FF or GF. A domain for the finite field of prime order p can be constructed with GF(p) (page 2602):

```python
>>> from sympy import GF
>>> K = GF(5)
>>> two = K(2)
>>> two
2 mod 5
>>> two ** 2
4 mod 5
>>> two ** 3
3 mod 5
```

There is also FF as an alias for GF (standing for “finite field” and “Galois field” respectively). These are equivalent and both FF(n) and GF(n) will create a domain which is an instance of FiniteField (page 2602). The associated domain elements will be instances of PythonFiniteField (page 2605) or GMPYFiniteField (page 2605) depending on whether or not gmpy is installed.

Finite fields of order p^n where $n \neq 1$ are not implemented. It is possible to use e.g. GF(6) or GF(9) but the resulting domain is not a field. It is just the integers modulo 6 or 9 and therefore has zero divisors and non-invertible elements:

```python
>>> K = GF(6)
>>> K(3) * K(2)
0 mod 6
```
It would be good to have a proper implementation of prime-power order finite fields but this is not yet available in SymPy (contributions welcome!).

Real and complex fields

The fields RR (page 2626) and CC (page 2627) are intended mathematically to correspond to the reals and the complex numbers, \mathbb{R} and \mathbb{C} respectively. The implementation of these uses floating point arithmetic. In practice this means that these are the domains that are used to represent expressions containing floats. Elements of RR (page 2626) are instances of the class `RealElement` (page 2626) and have an `mpf` tuple which is used to represent a float in `mpmath`. Elements of CC (page 2627) are instances of `ComplexElement` (page 2627) and have an `mpc` tuple which is a pair of `mpf` tuples representing the real and imaginary parts. See the `mpmath docs` for more about how floating point numbers are represented:

```python
>>> from sympy import RR, CC
>>> xr = RR(3)
>>> xr
3.0
>>> xr._mpf_
(0, 3, 0, 2)
>>> zc = CC(3+1j)
>>> zc
(3.0 + 1.0j)
>>> zc._mpc_
((0, 3, 0, 2), (0, 1, 0, 1))
```

The use of approximate floating point arithmetic in these domains comes with all of the usual pitfalls. Many algorithms in the `sympy.polys` (page 2435) module are fundamentally designed for exact arithmetic making the use of these domains potentially problematic:

```python
>>> RR('0.1') + RR('0.2') == RR('0.3')
False
```

Since these are implemented using `mpmath` which is a multiprecision library it is possible to create different domains with different working precisions. The default domains RR (page 2626) and CC (page 2627) use 53 binary digits of precision much like standard double precision floating point which corresponds to approximately 15 decimal digits:

```python
>>> from sympy.polys.domains.realfield import RealField
>>> RR.precision
53
>>> RR.dps
15
>>> RR(1) / RR(3)
0.3333333333333333
>>> RR100 = RealField(100)
>>> RR100.precision
100
>>> RR100.dps
29
>>> RR100(1) / RR100(3)
0.33333333333333333333333333333333
```
There is however a bug in the implementation of this so that actually a global precision setting is used by all `RealElement` (page 2626). This means that just creating `RR100` above has altered the global precision and we will need to restore it in the doctest here:

```python
>>> RR(1) / RR(3)  # wrong result!
0.33333333333333333333333333333
>>> dummy = RealField(53)  # hack to restore precision
>>> RR(1) / RR(3)  # restored
0.333333333333333
```

(Obviously that should be fixed!)

Algebraic number fields

An algebraic extension of the rationals \(\mathbb{Q} \) is known as an algebraic number field and these are implemented in sympy as \(\mathbb{Q}<a> \) (page 2619). The natural syntax for these would be something like \(\mathbb{Q}(\sqrt{2}) \) however \(\mathbb{Q}() \) is already overloaded as the constructor for elements of \(\mathbb{Q} \) (page 2609). These domains are instead created using the `algebraic_field()` (page 2588) method e.g. \(\mathbb{Q}.algebraic_field(\sqrt{2}) \). The resulting domain will be an instance of `AlgebraicField` (page 2619) with elements that are instances of `ANP` (page 2650).

The printing support for these is less developed but we can use `to_sympy()` (page 2597) to take advantage of the corresponding `Expr` (page 999) printing support:

```python
>>> K = QQ.algebraic_field(sqrt(2))
>>> K
\mathbb{Q}<\sqrt{2}>
>>> b = K.one + K.from_sympy(sqrt(2))
>>> b
ANP([1, 1], [1, 0, -2], QQ)
>>> K.to_sympy(b)
1 + \sqrt{2}
>>> b ** 2
ANP([2, 3], [1, 0, -2], QQ)
>>> K.to_sympy(b**2)
2*\sqrt{2} + 3
```

The raw printed display immediately shows the internal representation of the elements as `ANP` (page 2650) instances. The field \(\mathbb{Q}(\sqrt{2}) \) consists of numbers of the form \(a\sqrt{2} + b \) where \(a \) and \(b \) are rational numbers. Consequently every number in this field can be represented as a pair \((a, b)\) of elements of \(\mathbb{Q} \) (page 2609). The domain element stores these two in a list and also stores a list representation of the minimal polynomial for the extension element \(\sqrt{2} \).

There is a sympy function `minpoly()` (page 2795) that can compute the minimal polynomial of any algebraic expression over the rationals:

```python
>>> from sympy import minpoly, Symbol
>>> x = Symbol('x')
>>> minpoly(sqrt(2), x)
x**2 - 2
```

In the dense polynomial representation as a list of coefficients this polynomial is represented as \([1, 0, -2]\) as seen in the `ANP` (page 2650) display for the elements of \(\mathbb{Q}<\sqrt{2}> \) above.

It is also possible to create an algebraic number field with multiple generators such as \(\mathbb{Q}(\sqrt{2}, \sqrt{3}) \):
Here the algebraic extension \(\mathbb{Q}(\sqrt{2}, \sqrt{3}) \) is converted to the (isomorphic) \(\mathbb{Q}(\sqrt{2} + \sqrt{3}) \) with a single generator \(\sqrt{2} + \sqrt{3} \). It is always possible to find a single generator like this due to the primitive element theorem. There is a sympy function `primitive_element()` (page 2796) that can compute the minimal polynomial for a primitive element of an extension:

```python
>>> from sympy import primitive_element, minpoly
>>> e = primitive_element([[sqrt(2), sqrt(3)]], x)
>>> e[0]
x**4 - 10*x**2 + 1
>>> e[0].subs(x, sqrt(2) + sqrt(3)).expand()
0
```

The minimal polynomial \(x^4 - 10x^2 + 1 \) has the dense list representation \([1, 0, -10, 0, 1]\) as seen in the ANP (page 2650) output above. What the primitive element theorem means is that all algebraic number fields can be represented as an extension of the rationals by a single generator with some minimal polynomial. Calculations over the algebraic number field only need to take advantage of the minimal polynomial and that makes it possible to compute all arithmetic operations and also to carry out higher level operations like factorisation of polynomials.

Polynomial ring domains

There are also domains implemented to represent a polynomial ring like \(K[x] \) (page 2627) which is the domain of polynomials in the generator \(x \) with coefficients over another domain \(K \):

```python
>>> from sympy import ZZ, symbols
>>> x = symbols('x')
>>> K = ZZ[x]
>>> K
ZZ[x]
>>> x_dom = K(x)
>>> x_dom + K.one
x + 1
```

All the operations discussed before will work with elements of a polynomial ring:

```python
>>> p = x_dom + K.one
>>> p
```

(continues on next page)
The internal representation of elements of \(K[x] \) is different from the way that ordinary sympy (\(\text{Expr} \) (page 999)) expressions are represented. The \(\text{Expr} \) (page 999) representation of any expression is as a tree e.g.:

```python
>>> from sympy import srepr
>>> K = ZZ[x]
>>> p_expr = x**2 + 2*x + 1
>>> p_expr
x**2 + 2*x + 1
>>> srepr(p_expr)
"Add(Pow(Symbol('x'), Integer(2)), Mul(Integer(2), Symbol('x')), Integer(1))"
```

Here the expression is a tree where the top node is an \(\text{Add} \) (page 1062) and its children nodes are \(\text{Pow} \) (page 1055) etc. This tree representation makes it possible to represent equivalent expressions in different ways e.g.:

```python
>>> x = symbols('x')
>>> p_expr = x*(x + 1) + x
>>> p_expr
x*(x + 1) + x
>>> p_expr.expand()
x**2 + 2*x
```

By contrast the domain \(\text{ZZ}[x] \) represents only polynomials and does so by simply storing the non-zero coefficients of the expanded polynomial (the “sparse” polynomial representation). In particular elements of \(\text{ZZ}[x] \) are represented as a Python dict. Their type is \(\text{PolyElement} \) (page 2635) which is a subclass of dict. Converting to a normal dict shows the internal representation:

```python
>>> x = symbols('x')
>>> K = ZZ[x]
>>> x_dom = K(x)
>>> p_dom = K(3)*x_dom**2 + K(2)*x_dom + K(7)
>>> p_dom
3*x**2 + 2*x + 7
>>> dict(p_dom)
{(0,): 7, (1,): 2, (2,): 3}
```

This internal form makes it impossible to represent unexpanded multiplications so any multiplication of elements of \(\text{ZZ}[x] \) will always be expanded:
>>> x = symbols('x')
>>> K = ZZ[x]
>>> x_dom = K(x)
>>> p_expr = x * (x + 1) + x
>>> p_expr
x*(x + 1) + x
>>> p_dom = x_dom * (x_dom + K.one) + x_dom
>>> p_dom
x**2 + 2*x

These same considerations apply to powers:

>>> (x + 1) ** 2
(x + 1)**2
>>> (x_dom + K.one) ** 2
x**2 + 2*x + 1

We can also construct multivariate polynomial rings:

>>> x, y = symbols('x, y')
>>> K = ZZ[x,y]
>>> xk = K(x)
>>> yk = K(y)
>>> xk**2*yk + xk + yk
x**2*y + x + y

It is also possible to construct nested polynomial rings (although it is less efficient). The ring $K[x][y]$ is formally equivalent to $K[x,y]$ although their implementations in sympy are different:

>>> K = ZZ[x][y]
>>> p = K(x**2 + x*y + y**2)
>>> p
y**2 + x*y + x**2
>>> dict(p)
{(0,): x**2, (1,): x, (2,): 1}

Here the coefficients like $x**2$ are instances of PolyElement (page 2635) as well so this is a dict where the values are also dicts. The full representation is more like:

>>> {k: dict(v) for k, v in p.items()}
{(0,): {(2,): 1}, (1,): {(1,): 1}, (2,): {(0,): 1}}

The multivariate ring domain $ZZ[x,y]$ has a more efficient representation as a single flattened dict:

>>> K = ZZ[x,y]
>>> p = K(x**2 + x*y + y**2)
>>> p
x**2 + x*y + y**2
>>> dict(p)
{(0, 2): 1, (1, 1): 1, (2, 0): 1}

The difference in efficiency between these representations grows as the number of generators increases i.e. $ZZ[x,y,z,t,\ldots]$ vs $ZZ[x][y][z][t]$.\ldots
Old (dense) polynomial rings

In the last section we saw that the domain representation of a polynomial ring like \(K[x] \) (page 2627) uses a sparse representation of a polynomial as a dict mapping monomial exponents to coefficients. There is also an older version of \(K[x] \) (page 2627) that uses the dense \textit{DMP representation} (page 2560). We can create these two versions of \(K[x] \) (page 2627) using \texttt{poly_ring()} (page 2596) and \texttt{old_poly_ring()} (page 2596) where the syntax \(K[x] \) is equivalent to \texttt{K.poly_ring(x)}:

```python
>>> K1 = ZZ.poly_ring(x)
>>> K2 = ZZ.old_poly_ring(x)
>>> K1
ZZ[x]
>>> K2
ZZ[x]
>>> K1 == ZZ[x]
True
>>> K2 == ZZ[x]
False
>>> p1 = K1.from_sympy(x**2 + 1)
>>> p2 = K2.from_sympy(x**2 + 1)
>>> p1
x**2 + 1
>>> p2
x**2 + 1
>>> type(K1)
<class 'sympy.polys.domains.polynomialring.PolynomialRing'>
>>> type(p1)
<class 'sympy.polys.rings.PolyElement'>
>>> type(K2)
<class 'sympy.polys.domains.old_polynomialring.GlobalPolynomialRing'>
>>> type(p2)
<class 'sympy.polys.polyclasses.DMP'>
```

The internal representation of the old polynomial ring domain is the \textit{DMP} (page 2643) representation as a list of (lists of) coefficients:

```python
>>> repr(p2)
'DMP([1, 0, 1], ZZ, ZZ[x])'
```

The most notable use of the \textit{DMP} (page 2643) representation of polynomials is as the internal representation used by \texttt{Poly} (page 2453) (this is discussed later in this page of the docs).

\textbf{PolyRing vs PolynomialRing}

You might just want to perform calculations in some particular polynomial ring without being concerned with implementing something that works for arbitrary domains. In that case you can construct the ring more directly with the \texttt{ring()} (page 2632) function:

```python
>>> from sympy import ring
>>> K, xr, yr = ring([x, y], ZZ)
>>> K
```

(continues on next page)
Polynomial ring in x, y over ZZ with lex order

```
>>> xr**2 - yr**2
x**2 - y**2
>>> (xr**2 - yr**2) // (xr - yr)
x + y
```

The object K here represents the ring and is an instance of `PolyRing` (page 2634) but is not a `polys domain` (it is not an instance of a subclass of `Domain` (page 2584) so it cannot be used with `Poly` (page 2453)). In this way the implementation of polynomial rings that is used in the domain system can be used independently of the domain system.

The purpose of the domain system is to provide a unified interface for working with and converting between different representations of expressions. To make the `PolyRing` (page 2634) implementation usable in that context the `PolynomialRing` (page 2627) class is a wrapper around the `PolyRing` (page 2634) class that provides the interface expected in the domain system. That makes this implementation of polynomial rings usable as part of the broader codebase that is designed to work with expressions from different domains. The domain for polynomial rings is a distinct object from the ring returned by `ring()` (page 2632) although both have the same elements:

```
>>> K, xr, yr = ring([x, y], ZZ)
>>> K
Polynomial ring in x, y over ZZ with lex order
>>> K2 = ZZ[x,y]
>>> K2
ZZ[x,y]
>>> K2.ring
Polynomial ring in x, y over ZZ with lex order
>>> K2.ring == K
True
>>> K(x+y)
x + y
>>> K2(x+y)
x + y
>>> type(K(x+y))
<class 'sympy.polys.rings.PolyElement'>
>>> type(K2(x+y))
<class 'sympy.polys.rings.PolyElement'>
>>> K(x+y) == K2(x+y)
True
```

Rational function fields

Some domains are classified as fields and others are not. The principal difference between a field and a non-field domain is that in a field it is always possible to divide any element by any nonzero element. It is usually possible to convert any domain to a field that contains that domain with the `get_field()` (page 2594) method:

```
>>> from sympy import ZZ, QQ, symbols
>>> x, y = symbols('x, y')
>>> ZZ.is_Field
```

(continues on next page)
This introduces a new kind of domain $K(x)$ (page 2629) representing a rational function field in the generator x over another domain K. It is not possible to construct the domain $QQ(x)$ with the ($) syntax so the easiest ways to create it are using the domain methods `frac_field()` (page 2592) ($QQ.frac_field(x)$) or `get_field()` (page 2594) ($QQ[x].get_field()$). The `frac_field()` (page 2592) method is the more direct approach.

The rational function field $K(x)$ (page 2629) is an instance of `RationalField` (page 2610). This domain represents functions of the form $p(x)/q(x)$ for polynomials p and q. The domain elements are represented as a pair of polynomials in $K[x]$ (page 2627):

```python
cancellationbetweenthenumeratoranddenominatorisautomaticinthisfield:
```

Computing this cancellation can be slow which makes rational function fields potentially slower than polynomial rings or algebraic fields.

Just like in the case of polynomial rings there is both a new (sparse) and old (dense) version of fraction fields:
Also just like in the case of polynomials rings the implementation of rational function fields can be used independently of the domain system:

```python
>>> from sympy import field
>>> K, xf, yf = field([x, y], ZZ)
>>> xf / (1 - yf)
-x/(y - 1)
```

Here K is an instance of `FracField` (page 2642) rather than `RationalField` (page 2610) as it would be for the domain $ZZ(x,y)$.

Expression domain

The final domain to consider is the “expression domain” which is known as EX (page 2630). Expressions that cannot be represented using the other domains can be always represented using the expression domain. An element of EX (page 2630) is actually just a wrapper around a `Expr` (page 999) instance:

```python
>>> from sympy import EX
>>> p = EX.from_sympy(1 + x)
>>> p
EX(x + 1)
>>> type(p)
<class 'sympy.polys.domains.expressiondomain.ExpressionDomain.Expression'>
>>> p.ex
x + 1
>>> type(p.ex)
<class 'sympy.core.add.Add'>
```

For other domains the domain representation of expressions is usually more efficient than the tree representation used by `Expr` (page 999). In EX (page 2630) the internal representation is `Expr` (page 999) so it is clearly not more efficient. The purpose of the EX (page 2630) domain is to be able to wrap up arbitrary expressions in an interface that is consistent with the other domains. The EX (page 2630) domain is used as a fallback when an appropriate domain can not be found. Although this does not offer any particular efficiency it does allow the algorithms that are implemented to work over arbitrary domains to be usable when working with expressions that do not have an appropriate domain representation.
Choosing a domain

In the workflow described above the idea is to start with some sympy expressions, choose a domain and convert all the expressions into that domain in order to perform some calculation. The obvious question that arises is how to choose an appropriate domain to represent some sympy expressions. For this there is a function `construct_domain()` (page 2503) which takes a list of expressions and will choose a domain and convert all of the expressions to that domain:

```python
>>> from sympy import construct_domain, Integer
>>> elements_sympy = [Integer(3), Integer(2)]  # elements as Expr instances
>>> elements_sympy
[3, 2]
>>> K, elements_K = construct_domain(elements_sympy)
>>> K
ZZ
>>> elements_K
[3, 2]
>>> type(elements_sympy[0])
<class 'sympy.core.numbers.Integer'>
>>> type(elements_K[0])
<class 'int'>
```

In this example we see that the two integers 3 and 2 can be represented in the domain \(\mathbb{Z} \) (page 2605). The expressions have been converted to elements of that domain which in this case means the int type rather than instances of `Expr` (page 999). It is not necessary to explicitly create `Expr` (page 999) instances when the inputs can be sympified so e.g. `construct_domain([3, 2])` would give the same output as above.

Given more complicated inputs `construct_domain()` (page 2503) will choose more complicated domains:

```python
>>> from sympy import Rational, symbols
>>> x, y = symbols('x, y')
>>> construct_domain([Rational(1, 2), Integer(3)])[0]
QQ
>>> construct_domain([2*x, 3])[0]
ZZ[x]
>>> construct_domain([x/2, 3])[0]
QQ[x]
>>> construct_domain([2/x, 3])[0]
ZZ(x)
>>> construct_domain([x, y])[0]
ZZ[x,y]
```

If any noninteger rational numbers are found in the inputs then the ground domain will be \(\mathbb{Q} \) (page 2609) rather than \(\mathbb{Z} \) (page 2605). If any symbol is found in the inputs then a `PolynomialRing` (page 2627) will be created. A multivariate polynomial ring such as \(\mathbb{Q}[x, y] \) can also be created if there are multiple symbols in the inputs. If any symbols appear in the denominators then a `RationalField` (page 2610) like \(\mathbb{Q}(x) \) will be created instead.

Some of the domains above are fields and others are (non-field) rings. In some contexts it is necessary to have a field domain so that division is possible and for this `construct_domain()` (page 2503) has an option `field=True` which will force the construction of a field domain even if the expressions can all be represented in a non-field ring:
```python
>>> construct_domain([1, 2], field=True)[0]
QQ
>>> construct_domain([2*x, 3], field=True)[0]
ZZ(x)
>>> construct_domain([x/2, 3], field=True)[0]
ZZ(x)
>>> construct_domain([2/x, 3], field=True)[0]
ZZ(x)
>>> construct_domain([-x, y], field=True)[0]
ZZ(x,y)
```

By default, `construct_domain()` (page 2503) will not construct an algebraic extension field and will instead use the `EX` (page 2630) domain (`ExpressionDomain` (page 2630)). The keyword argument `extension=True` can be used to construct an `AlgebraicField` (page 2619) if the inputs are irrational but algebraic:

```python
>>> from sympy import sqrt
def
>>> construct_domain([sqrt(2)][0]
EX
>>> construct_domain([sqrt(2)], extension=True)[0]
QQ<sqrt(2)>
>>> construct_domain([sqrt(2), sqrt(3)], extension=True)[0]
QQ<sqrt(2) + sqrt(3)>
```

When there are algebraically independent transcendents in the inputs a `PolynomialRing` (page 2627) or `RationalField` (page 2610) will be constructed treating those transcendents as generators:

```python
>>> from sympy import sin, cos
```

```python
>>> construct_domain([sin(x), y])[0]
ZZ[y,sin(x)]
```

However, if there is a possibility that the inputs are not algebraically independent then the domain will be `EX` (page 2630):

```python
>>> construct_domain([sin(x), cos(x)])[0]
EX
```

Here `sin(x)` and `cos(x)` are not algebraically independent since `sin(x)**2 + cos(x)**2 = 1`.

Converting elements between different domains

It is often useful to combine calculations performed over different domains. However, just as it is important to avoid mixing domain elements with normal sympy expressions and other Python types it is also important to avoid mixing elements from different domains. The `convert_from()` (page 2588) method is used to convert elements from one domain into elements of another domain:

```python
>>> num_zz = ZZ(3)
>>> ZZ.of_type(num_zz)
True
```

(continues on next page)
The `convert()` (page 2588) method can be called without specifying the source domain as the second argument e.g.:

```python
>>> QQ.convert(ZZ(2))
2
```

This works because `convert()` (page 2588) can check the type of ZZ(2) and can try to work out what domain (ZZ (page 2605)) it is an element of. Certain domains like ZZ (page 2605) and QQ (page 2609) are treated as special cases to make this work. Elements of more complicated domains are instances of subclasses of `DomainElement` (page 2599) which has a `parent()` (page 2599) method that can identify the domain that the element belongs to. For example in the polynomial ring ZZ[x] we have:

```python
>>> from sympy import ZZ, Symbol
>>> x = Symbol('x')
>>> K = ZZ[x]
>>> K
ZZ[x]
>>> p = K(x) + K.one
>>> p
x + 1
>>> type(p)
<class 'sympy.polys.rings.PolyElement'>
>>> p.parent()
ZZ[x]
>>> p.parent() == K
True
```

It is more efficient though to call `convert_from()` (page 2588) with the source domain specified as the second argument:

```python
>>> QQ.convert_from(ZZ(2), ZZ)
2
```

Unifying domains

When we want to combine elements from two different domains and perform mixed calculations with them we need to

1. Choose a new domain that can represent all elements of both.
2. Convert all elements to the new domain.
3. Perform the calculation in the new domain.

The key question arising from point 1. is how to choose a domain that can represent the elements of both domains. For this there is the `unify()` (page 2599) method:
>>> x1, K1 = ZZ(2), ZZ
>>> y2, K2 = QQ(3, 2), QQ
>>> K1
ZZ
>>> K2
QQ
>>> K3 = K1.unify(K2)
>>> K3
QQ
>>> x3 = K3.convert_from(x1, K1)
>>> y3 = K3.convert_from(y2, K2)
>>> x3 + y3
7/2

The `unify()` method will find a domain that encompasses both domains so in this example `ZZ.unify(QQ)` gives `QQ` because every element of `ZZ` can be represented as an element of `QQ`. This means that all inputs (x1 and y2) can be converted to the elements of the common domain K3 (as x3 and y3). Once in the common domain we can safely use arithmetic operations like +. In this example one domain is a superset of the other and we see that `K1.unify(K2) == K2` so it is not actually necessary to convert y2. In general though `K1.unify(K2)` can give a new domain that is not equal to either K1 or K2.

The `unify()` method understands how to combine different polynomial ring domains and how to unify the base domain:

```python
>>> ZZ[x].unify(ZZ[y])
ZZ[x,y]
>>> ZZ[x,y].unify(ZZ[y])
ZZ[x,y]
>>> ZZ[x].unify(QQ)
QQ[x]
```

It is also possible to unify algebraic fields and rational function fields as well:

```python
>>> K1 = QQ.algebraic_field(sqrt(2))[x]
>>> K2 = QQ.algebraic_field(sqrt(3))[y]
>>> K1
QQ<sqrt(2)>[x]
>>> K2
QQ<sqrt(3)>[y]
>>> K1.unify(K2)
QQ<sqrt(2) + sqrt(3)>[x,y]
>>> QQ.frac_field(x).unify(ZZ[y])
ZZ(x,y)
```
Internals of a Poly

We are now in a position to understand how the Poly (page 2453) class works internally. This is the public interface of Poly (page 2453):

```python
>>> from sympy import Poly, symbols, ZZ
>>> x, y, z, t = symbols('x, y, z, t')
>>> p = Poly(x**2 + 1, x, domain=ZZ)
>>> p
Poly(x**2 + 1, x, domain='ZZ')
>>> p.gens
(x,)
>>> p.domain
ZZ
>>> p.all_coeffs()
[1, 0, 1]
>>> p.as_expr()
x**2 + 1
```

This is the internal implementation of Poly (page 2453):

```python
>>> d = p.rep  # internal representation of Poly
>>> d
DMP([1, 0, 1], ZZ, None)
>>> d.rep  # internal representation of DMP
[1, 0, 1]
>>> type(d.rep)
<class 'list'>
>>> type(d.rep[0])
<class 'int'>
>>> d.dom
ZZ
```

The internal representation of a Poly (page 2453) instance is an instance of DMP (page 2643) which is the class used for domain elements in the old polynomial ring domain old_poly_ring() (page 2596). This represents the polynomial as a list of coefficients which are themselves elements of a domain and keeps a reference to their domain (ZZ (page 2605) in this example).

Choosing a domain for a Poly

If the domain is not specified for the Poly (page 2453) constructor then it is inferred using construct_domain() (page 2503). Arguments like field=True are passed along to construct_domain() (page 2503):

```python
>>> from sympy import sqrt
>>> Poly(x**2 + 1, x)
Poly(x**2 + 1, x, domain='ZZ')
>>> Poly(x**2 + 1, x, field=True)
Poly(x**2 + 1, x, domain='QQ')
```

(continues on next page)
It is also possible to use the extension argument to specify generators of an extension even if no extension is required to represent the coefficients although this does not work when using `construct_domain()` (page 2503) directly. A list of extension elements will be passed to `primitive_element()` (page 2796) to create an appropriate `AlgebraicField` (page 2619) domain:

```
>>> from sympy import construct_domain
>>> Poly(x**2 + 1, x)
Poly(x**2 + 1, x, domain='ZZ')
>>> Poly(x**2 + 1, x, extension=sqrt(2))
Poly(x**2 + 1, x, domain='QQ<sqrt(2)>')
>>> Poly(x**2 + 1, x, extension=[sqrt(2), sqrt(3)])
Poly(x**2 + 1, x, domain='QQ<sqrt(2) + sqrt(3)>')
>>> construct_domain([1, 0, 1], extension=sqrt(2))[0]
ZZ
```

(Perhaps `construct_domain()` (page 2503) should do the same as `Poly` (page 2453) here...)

Choosing generators

If there are symbols other than the generators then a polynomial ring or rational function field domain will be created. The domain used for the coefficients in this case is the sparse ("new") polynomial ring:

```
>>> p = Poly(x**2*y + z, x)
>>> p
Poly(y*x**2 + z, x, domain='ZZ[y,z]')
>>> p.gens
(x,)
>>> p.domain
ZZ[y,z]
>>> p.domain == ZZ[y,z]
True
>>> p.domain == ZZ.poly_ring(y, z)
True
>>> p.domain == ZZ.old_poly_ring(y, z)
False
>>> p.rep.rep
[y, 0, z]
>>> p.rep.rep[0]
y
>>> type(p.rep.rep[0])
<class 'sympy.polys.rings.PolyElement'>
>>> dict(p.rep.rep[0])
{(1, 0): 1}
```

What we have here is a strange hybrid of dense and sparse implementations. The `Poly`
(page 2453) instance considers itself to be an univariate polynomial in the generator x but with coefficients from the domain \(\mathbb{Z}[y, z] \). The internal representation of the \texttt{Poly} (page 2453) is a list of coefficients in the “dense univariate polynomial” (DUP) format. However each coefficient is implemented as a sparse polynomial in \(y \) and \(z \).

If we make \(x, y \) and \(z \) all be generators for the \texttt{Poly} (page 2453) then we get a fully dense DMP list of lists representation:

```python
>>> p = Poly(x**2*y + z, x, y, z)
```

```python
def dict(p.rep.rep[0])
{0: 1, (2, 1, 0): 1}
```

On the other hand we can make a \texttt{Poly} (page 2453) with a fully sparse representation by choosing a generator that is not in the expression at all:

```python
>>> p = Poly(x**2*y + z, t)
```

```python
>>> from sympy import pi, exp
```

```python
Poly((exp(x))**2 + (exp(x)) + 1, exp(x), domain='ZZ')
```

If no generators are provided to the \texttt{Poly} (page 2453) constructor then it will attempt to choose generators so that the expression is polynomial in those. In the common case that the expression is a polynomial expression in some symbols then those symbols will be taken as generators. However other non-symbol expressions can also be taken as generators:

```python
Poly(pi*x, x, domain='ZZ')
```

```python
Poly(pi*x, x, domain='ZZ[pi]')
```
Algebraically dependent generators

Taking \(\exp(x) \) or \(\pi \) as generators for a \texttt{Poly} (page 2453) or for its polynomial ring domain is mathematically valid because these objects are transcendental and so the ring extension containing them is isomorphic to a polynomial ring. Since \(x \) and \(\exp(x) \) are algebraically independent it is also valid to use both as generators for the same \texttt{Poly} (page 2453). However some other combinations of generators are invalid such as \(x \) and \(\sqrt{x} \) or \(\sin(x) \) and \(\cos(x) \). These examples are invalid because the generators are not algebraically independent (e.g. \(\sqrt{x} \times 2 = x \) and \(\sin(x) \times 2 + \cos(x) \times 2 = 1 \)). The implementation is not able to detect these algebraic relationships though:

```python
>>> from sympy import sin, cos, sqrt
>>> Poly(x*exp(x))  # fine
Poly(x*(exp(x)), x, exp(x), domain='ZZ')
>>> Poly(sin(x)+cos(x))  # not fine
Poly((cos(x)) + (sin(x)), cos(x), sin(x), domain='ZZ')
>>> Poly(x + sqrt(x))  # not fine
Poly(x + (sqrt(x)), x, sqrt(x), domain='ZZ')
```

Calculations with a \texttt{Poly} (page 2453) such as this are unreliable because zero-testing will not work properly in this implementation:

```python
>>> p1 = Poly(x, x, sqrt(x))
>>> p2 = Poly(sqrt(x), x, sqrt(x))
>>> p1
Poly(x, x, sqrt(x), domain='ZZ')
>>> p2
Poly((sqrt(x)), x, sqrt(x), domain='ZZ')
>>> p3 = p1 - p2**2
>>> p3  # should be zero...
Poly(x - (sqrt(x))**2, x, sqrt(x), domain='ZZ')
>>> p3.as_expr()
0
```

This aspect of \texttt{Poly} (page 2453) could be improved by:

1. Expanding the domain system with new domains that can represent more classes of algebraic extension.
2. Improving the detection of algebraic dependencies in \texttt{construct_domain()} (page 2503).
3. Improving the automatic selection of generators.

Examples of the above are that it would be useful to have a domain that can represent more general algebraic extensions (\texttt{AlgebraicField} (page 2619) is only for extensions of \texttt{QQ} (page 2609)). Improving the detection of algebraic dependencies is harder but at least common cases like \(\sin(x) \) and \(\cos(x) \) could be handled. When choosing generators it should be possible to recognise that \(\sqrt{x} \) can be the only generator for \(x + \sqrt{x} \):

```python
>>> Poly(x + sqrt(x))  # this could be improved!
Poly(x + (sqrt(x)), x, sqrt(x), domain='ZZ')
>>> Poly((sqrt(x)) + x, sqrt(x), domain='ZZ[x]')
```

5.8. Topics
Reference docs for the Poly Domains

This page lists the reference documentation for the domains in the polys module. For a general introduction to the polys module it is recommended to read Basic functionality of the module (page 2416) instead. For an introductory explanation of the what the domain system is and how it is used it is recommended to read Introducing the Domains of the poly module (page 2557). This page lists the reference docs for the Domain (page 2584) class and its subclasses (the specific domains such as ZZ) as well as the classes that represent the domain elements.

Domains

Here we document the various implemented ground domains (see Introducing the Domains of the poly module (page 2557) for more of an explanation). There are three types of Domain (page 2584) subclass: abstract domains, concrete domains, and “implementation domains”. Abstract domains cannot be (usefully) instantiated at all, and just collect together functionality shared by many other domains. Concrete domains are those meant to be instantiated and used in the polynomial manipulation algorithms. In some cases, there are various possible ways to implement the data type the domain provides. For example, depending on what libraries are available on the system, the integers are implemented either using the python built-in integers, or using gmpy. Note that various aliases are created automatically depending on the libraries available. As such e.g. ZZ always refers to the most efficient implementation of the integer ring available.

Abstract Domains

class sympy.polys.domains.domain.Domain

 Superclass for all domains in the polys domains system.

 See Introducing the Domains of the poly module (page 2557) for an introductory explanation of the domains system.

 The Domain (page 2584) class is an abstract base class for all of the concrete domain types. There are many different Domain (page 2584) subclasses each of which has an associated dtype which is a class representing the elements of the domain. The coefficients of a Poly (page 2453) are elements of a domain which must be a subclass of Domain (page 2584).

Examples

The most common example domains are the integers ZZ (page 2605) and the rationals QQ (page 2609).

```python
>>> from sympy import Poly, symbols, Domain
>>> x, y = symbols('x, y')
>>> p = Poly(x**2 + y)
>>> p
Poly(x**2 + y, x, y, domain='ZZ')
>>> p.domain
ZZ
```

(continues on next page)
>>> isinstance(p.domain, Domain)
True
>>> Poly(x**2 + y/2)
Poly(x**2 + 1/2*y, x, y, domain='QQ')

The domains can be used directly in which case the domain object e.g. (ZZ (page 2605) or QQ (page 2609)) can be used as a constructor for elements of dtype.

>>> from sympy import ZZ, QQ
>>> ZZ(2)
2
>>> ZZ.dtype
<class 'int'>
>>> type(ZZ(2))
<class 'int'>
>>> QQ(1, 2)
1/2
>>> type(QQ(1, 2))
<class 'sympy.polys.domains.pythonrational.PythonRational'>

The corresponding domain elements can be used with the arithmetic operations +, -, *, ** and depending on the domain some combination of //, % might be usable. For example in ZZ (page 2605) both // (floor division) and % (modulo division) can be used but / (true division) cannot. Since QQ (page 2609) is a Field (page 2600) its elements can be used with / but // and % should not be used. Some domains have a gcd() (page 2594) method.

>>> ZZ(2) + ZZ(3)
5
>>> ZZ(5) // ZZ(2)
2
>>> ZZ(5) % ZZ(2)
1
>>> QQ(1, 2) / QQ(2, 3)
3/4
>>> ZZ.gcd(ZZ(4), ZZ(2))
2
>>> QQ.gcd(QQ(2,7), QQ(5,3))
1/21
>>> ZZ.is_Field
False
>>> QQ.is_Field
True

There are also many other domains including:
1. GF(p) (page 2602) for finite fields of prime order.
2. RR (page 2626) for real (floating point) numbers.
3. CC (page 2627) for complex (floating point) numbers.
4. QQ<a> (page 2619) for algebraic number fields.
5. K[x] (page 2627) for polynomial rings.
6. $K(x)$ (page 2629) for rational function fields.

7. EX (page 2630) for arbitrary expressions.

Each domain is represented by a domain object and also an implementation class (`dtype`) for the elements of the domain. For example the $K[x]$ (page 2627) domains are represented by a domain object which is an instance of `PolynomialRing` (page 2627) and the elements are always instances of `PolyElement` (page 2635). The implementation class represents particular types of mathematical expressions in a way that is more efficient than a normal SymPy expression which is of type `Expr` (page 999). The domain methods `from_sympy()` (page 2593) and `to_sympy()` (page 2597) are used to convert from `Expr` (page 999) to a domain element and vice versa.

```python
>>> from sympy import Symbol, ZZ, Expr
>>> x = Symbol('x')
>>> K = ZZ[x]  # polynomial ring domain
>>> K
ZZ[x]
>>> type(K)  # class of the domain
<class 'sympy.polys.domains.polynomialring.PolynomialRing'>
>>> K.dtype  # class of the elements
<class 'sympy.polys.rings.PolyElement'>
>>> p_expr = x**2 + 1  # Expr
>>> p_expr
x**2 + 1
>>> type(p_expr)  # Expr
<class 'sympy.core.add.Add'>
>>> isinstance(p_expr, Expr)
True
>>> p_domain = K.from_sympy(p_expr)
>>> p_domain  # domain element
x**2 + 1
>>> type(p_domain)  # PolyElement
<class 'sympy.polys.rings.PolyElement'>
>>> K.to_sympy(p_domain) == p_expr
True
```

The `convert_from()` (page 2588) method is used to convert domain elements from one domain to another.

```python
>>> from sympy import ZZ, QQ
>>> ez = ZZ(2)
>>> eq = QQ.convert_from(ez, ZZ)
>>> type(ez)  # int
<class 'int'>
>>> type(eq)  # PythonRational
<class 'sympy.polys.domains.pythonrational.PythonRational'>
```

Elements from different domains should not be mixed in arithmetic or other operations: they should be converted to a common domain first. The domain method `unify()` (page 2599) is used to find a domain that can represent all the elements of two given domains.

```python
>>> from sympy import ZZ, QQ, symbols
>>> x, y = symbols('x, y')
```

(continues on next page)
If a domain is a Ring (page 2601) then it might have an associated Field (page 2600) and vice versa. The get_field() (page 2594) and get_ring() (page 2594) methods will find or create the associated domain.

See also:

DomainElement (page 2599)
abstract base class for domain elements

construct_domain (page 2503)
construct a minimal domain for some expressions

abs(a)
Absolute value of a, implies __abs__.

add(a, b)
Sum of a and b, implies __add__.

alg_field_from_poly(poly, alias=None, root_index=-1)
Convenience method to construct an algebraic extension on a root of a polynomial, chosen by root index.

Parameters
poly : Poly (page 2453)
The polynomial whose root generates the extension.
alias : str, optional (default=None)
Symbol name for the generator of the extension. E.g. “alpha” or “theta”.
root_index : int, optional (default=-1)
Specifies which root of the polynomial is desired. The ordering is as defined by the `ComplexRootOf` (page 2507) class. The default of -1 selects the most natural choice in the common cases of quadratic and cyclotomic fields (the square root on the positive real or imaginary axis, resp. $e^{2\pi i/n}$).

Examples

```python
>>> from sympy import QQ, Poly
>>> from sympy.abc import x
>>> f = Poly(x**2 - 2)
>>> K = QQ.alg_field_from_poly(f)
>>> K.ext.minpoly == f
True
>>> g = Poly(8*x**3 - 6*x - 1)
>>> L = QQ.alg_field_from_poly(g, "alpha")
>>> L.ext.minpoly == g
True
>>> L.to_sympy(L([1, 1, 1]))
alpha**2 + alpha + 1
```

- `algebraic_field(*extension, alias=None)`
 Returns an algebraic field, i.e. $K(\alpha, \ldots)$.

- `almosteq(a, b, tolerance=None)`
 Check if a and b are almost equal.

- `characteristic()`
 Return the characteristic of this domain.

- `cofactors(a, b)`
 Returns GCD and cofactors of a and b.

- `convert(element, base=None)`
 Convert element to self.dtype.

- `convert_from(element, base)`
 Convert element to self.dtype given the base domain.

- `cyclotomic_field(n, ss=False, alias='zeta', gen=None, root_index=-1)`
 Convenience method to construct a cyclotomic field.

Parameters

- `n` : int
 Construct the nth cyclotomic field.

- `ss` : boolean, optional (default=False)
 If True, append n as a subscript on the alias string.

- `alias` : str, optional (default="zeta")
 Symbol name for the generator.

- `gen` : `Symbol` (page 1028), optional (default=None)
Desired variable for the cyclotomic polynomial that defines the field. If None, a dummy variable will be used.

root_index: int, optional (default=-1)

Specifies which root of the polynomial is desired. The ordering is as defined by the \texttt{ComplexRootOf} (page 2507) class. The default of -1 selects the root $e^{2\pi i/n}$.

Examples

```python
>>> from sympy import QQ, latex
>>> K = QQ.cyclotomic_field(5)
>>> K.to_sympy(K([-1, 1]))
1 - zeta
>>> L = QQ.cyclotomic_field(7, True)
>>> a = L.to_sympy(L([-1, 1]))
>>> print(a)
1 - zeta7
>>> print(latex(a))
1 - \zeta_{7}
```

\texttt{denom(a)}

Returns denominator of a.

\texttt{div(a, b)}

Quotient and remainder for a and b. Analogue of \texttt{divmod(a, b)}

Parameters

- **a**: domain element

 The dividend

- **b**: domain element

 The divisor

Returns

- \((q, r)\): tuple of domain elements

 The quotient and remainder

Raises

- \texttt{ZeroDivisionError}: when the divisor is zero.

Explanation

This is essentially the same as \texttt{divmod(a, b)} except that is more consistent when working over some \texttt{Field} (page 2600) domains such as \texttt{QQ} (page 2609). When working over an arbitrary \texttt{Domain} (page 2584) the \texttt{\texttt{div()}} (page 2589) method should be used instead of \texttt{divmod}.

The key invariant is that if \(q, r = K.\texttt{div(a, b)} \) then \(a = b*q + r \).

The result of \(K.\texttt{div(a, b)} \) is the same as the tuple \((K.\texttt{quo(a, b)}, K.\texttt{rem(a, b)})\) except that if both quotient and remainder are needed then it is more efficient to use \texttt{\texttt{div()}} (page 2589).
Examples

We can use K.div instead of divmod for floor division and remainder.

```python
from sympy import ZZ, QQ

 ZZ.div(ZZ(5), ZZ(2))
(2, 1)
```

If K is a Field (page 2600) then the division is always exact with a remainder of zero (page 2599).

```python
QQ.div(QQ(5), QQ(2))
(5/2, 0)
```

Notes

If gmpy is installed then the gmpy.mpq type will be used as the dtype (page 2590) for QQ (page 2609). The gmpy.mpq type defines divmod in a way that is undesirable so div() (page 2589) should be used instead of divmod.

```python
a = QQ(1)
b = QQ(3, 2)
a mpq(1,1)
b mpq(3,2)
divmod(a, b)
(mpz(0), mpq(1,1))
QQ.div(a, b)
(mpq(2,3), mpq(0,1))
```

Using // or % with QQ (page 2609) will lead to incorrect results so div() (page 2589) should be used instead.

See also:

quo (page 2596)
Analogue of a // b

rem (page 2597)
Analogue of a % b

exquo (page 2591)
Analogue of a / b

drop(*symbols)
Drop generators from this domain.

dtype: type | None = None
The type (class) of the elements of this Domain (page 2584):
Every domain has an associated **dtypes** ("datatype") which is the class of the associated domain elements.

See also:

of_type (page 2596)

evalf(*a*, *prec=None*, **options*)

Returns numerical approximation of *a*.

exquo(*a*, *b*)

Exact quotient of *a* and *b*. Analogue of *a / b*.

Parameters

a: domain element

The dividend

b: domain element

The divisor

Returns

q: domain element

The exact quotient

Raises

ExactQuotientFailed: if exact division is not possible.

ZeroDivisionError: when the divisor is zero.

Explanation

This is essentially the same as *a / b* except that an error will be raised if the division is inexact (if there is any remainder) and the result will always be a domain element. When working in a *Domain* (page 2584) that is not a *Field* (page 2600) (e.g. *ZZ* (page 2605) or *K[x]* (page 2627)) `exquo` should be used instead of `/`.

The key invariant is that if *q = K.exquo(a, b)* (and `exquo` does not raise an exception) then *a == b*q.
Examples

We can use K.exquo instead of / for exact division.

```python
>>> from sympy import ZZ
>>> ZZ.exquo(ZZ(4), ZZ(2))
2
>>> ZZ.exquo(ZZ(5), ZZ(2))
Traceback (most recent call last):
... ExactQuotientFailed: 2 does not divide 5 in ZZ
```

Over a Field (page 2600) such as QQ (page 2609), division (with nonzero divisor) is always exact so in that case / can be used instead of exquo() (page 2591).

```python
>>> from sympy import QQ
>>> QQ.exquo(QQ(5), QQ(2))
5/2
>>> QQ(5) / QQ(2)
5/2
```

Notes

Since the default dtype (page 2590) for ZZ (page 2605) is int (or mpz) division as a / b should not be used as it would give a float.

```python
>>> ZZ(4) / ZZ(2)
2.0
>>> ZZ(5) / ZZ(2)
2.5
```

Using / with ZZ (page 2605) will lead to incorrect results so exquo() (page 2591) should be used instead.

See also:

- quo (page 2596)
 Analogue of a // b
- rem (page 2597)
 Analogue of a % b
- div (page 2589)
 Analogue of divmod(a, b)
- frac_field(*symbols, order=LexOrder())
 Returns a fraction field, i.e. K(X).
- from_AlgebraicField(a, K0)
 Convert an algebraic number to dtype.
- from_ComplexField(a, K0)
 Convert a complex element to dtype.
from _ExpressionDomain \((a, K0)\)
Convert a EX object to dtype.

from _ExpressionRawDomain \((a, K0)\)
Convert a EX object to dtype.

from _FF \((a, K0)\)
Convert ModularInteger(int) to dtype.

from _FF_gmpy \((a, K0)\)
Convert ModularInteger(mpz) to dtype.

from _FF_python \((a, K0)\)
Convert ModularInteger(int) to dtype.

from _FractionField \((a, K0)\)
Convert a rational function to dtype.

from _GlobalPolynomialRing \((a, K0)\)
Convert a polynomial to dtype.

from _MonogenicFiniteExtension \((a, K0)\)
Convert an ExtensionElement to dtype.

from _PolynomialRing \((a, K0)\)
Convert a polynomial to dtype.

from _QQ_gmpy \((a, K0)\)
Convert a GMPY mpq object to dtype.

from _QQ_python \((a, K0)\)
Convert a Python Fraction object to dtype.

from _RealField \((a, K0)\)
Convert a real element object to dtype.

from _ZZ_gmpy \((a, K0)\)
Convert a GMPY mpz object to dtype.

from _ZZ_python \((a, K0)\)
Convert a Python int object to dtype.

from _sympy \((a)\)
Convert a SymPy expression to an element of this domain.

Parameters
expr: Expr
A normal SymPy expression of type Expr (page 999).

Returns
a: domain element
An element of this Domain (page 2584).
Explanation

See to_sympy() (page 2597) for explanation and examples.

See also:
to_sympy (page 2597), convert_from (page 2588)

gcd(a, b)
 Returns GCD of a and b.

gcdex(a, b)
 Extended GCD of a and b.

get_exact()
 Returns an exact domain associated with self.

get_field()
 Returns a field associated with self.

get_ring()
 Returns a ring associated with self.

half_gcdex(a, b)
 Half extended GCD of a and b.

has_assoc_Field = False
 Boolean flag indicating if the domain has an associated Field (page 2600).

 >>> from sympy import ZZ
 >>> ZZ.has_assoc_Field
 True
 >>> ZZ.get_field()
 QQ

See also:
is_Field (page 2594), get_field (page 2594)

has_assoc_Ring = False
 Boolean flag indicating if the domain has an associated Ring (page 2601).

 >>> from sympy import QQ
 >>> QQ.has_assoc_Ring
 True
 >>> QQ.get_ring()
 ZZ

See also:
is_Field (page 2594), get_ring (page 2594)

inject(*symbols)
 Inject generators into this domain.

invert(a, b)
 Returns inversion of a mod b, implies something.
is_Field = False
Boolean flag indicating if the domain is a Field (page 2600).

```python
>>> from sympy import ZZ, QQ
>>> ZZ.is_Field
False
>>> QQ.is_Field
True
```

See also:
is_PID (page 2595), is_Ring (page 2595), get_field (page 2594), has_assoc_Field (page 2594)

is_PID = False
Boolean flag indicating if the domain is a principal ideal domain.

```python
>>> from sympy import ZZ
>>> ZZ.has_assoc_Field
True
>>> ZZ.get_field()
QQ
```

See also:
is_Field (page 2594), get_field (page 2594)

is_Ring = False
Boolean flag indicating if the domain is a Ring (page 2601).

```python
>>> from sympy import ZZ
>>> ZZ.is_Ring
True
```

Basically every Domain (page 2584) represents a ring so this flag is not that useful.

See also:
is_PID (page 2595), is_Field (page 2594), get_ring (page 2594), has_assoc_Ring (page 2594)

is_negative(a)
Returns True if a is negative.

is_nonnegative(a)
Returns True if a is non-negative.

is_nonpositive(a)
Returns True if a is non-positive.

is_one(a)
Returns True if a is one.

is_positive(a)
Returns True if a is positive.

is_zero(a)
Returns True if a is zero.
\texttt{lcm}(a, b) \\
Returns LCM of \(a\) and \(b\).

\texttt{log}(a, b) \\
Returns b-base logarithm of \(a\).

\texttt{map}(\text{seq}) \\
Recursively apply self to all elements of \text{seq}.

\texttt{mul}(a, b) \\
Product of \(a\) and \(b\), implies \texttt{__mul__}.

\texttt{n}(a, \text{prec}={\text{None, **options}}) \\
Returns numerical approximation of \(a\).

\texttt{neg}(a) \\
Returns a negated, implies \texttt{__neg__}.

\texttt{numer}(a) \\
Returns numerator of \(a\).

\texttt{of_type}(\text{element}) \\
Check if \(a\) is of type \texttt{dtype}.

\texttt{old_frac_field}(*\text{symbols}, **\text{kwargs}) \\
Returns a fraction field, i.e. \(K(X)\).

\texttt{old_poly_ring}(*\text{symbols}, **\text{kwargs}) \\
Returns a polynomial ring, i.e. \(K[X]\).

\texttt{one}: \texttt{Any} = \texttt{None} \\
The one element of the \texttt{Domain} (page 2584):

```python
>>> from sympy import QQ
>>> QQ.one
1
>>> QQ.of_type(QQ.one)
True
```

See also:

\texttt{of_type} (page 2596), \texttt{zero} (page 2599)

\texttt{poly_ring}(*\text{symbols, order=LexOrder()}) \\
Returns a polynomial ring, i.e. \(K[X]\).

\texttt{pos}(a) \\
Returns a positive, implies \texttt{__pos__}.

\texttt{pow}(a, b) \\
Raise \(a\) to power \(b\), implies \texttt{__pow__}.

\texttt{quo}(a, b) \\
Quotient of \(a\) and \(b\). Analogue of \(a \div b\).

\(K.quo(a, b)\) is equivalent to \(K.div(a, b)[0]\). See \texttt{div()} (page 2589) for more explanation.

See also:
rem (page 2597)
Analogue of a % b

div (page 2589)
Analogue of divmod(a, b)

exquo (page 2591)
Analogue of a / b

rem(a, b)
Modulo division of a and b. Analogue of a % b.
K.rem(a, b) is equivalent to K.div(a, b)[1]. See div() (page 2589) for more explanation.

See also:

quo (page 2596)
Analogue of a // b

div (page 2589)
Analogue of divmod(a, b)

exquo (page 2591)
Analogue of a / b

revert(a)
Returns a**(-1) if possible.

sqrt(a)
Returns square root of a.

sub(a, b)
Difference of a and b, implies __sub__.

to_sympy(a)
Convert domain element a to a SymPy expression (Expr).

Parameters
a: domain element
An element of this Domain (page 2584).

Returns
expr: Expr
A normal SymPy expression of type Expr (page 999).

Explanation
Convert a Domain (page 2584) element a to Expr (page 999). Most public SymPy functions work with objects of type Expr (page 999). The elements of a Domain (page 2584) have a different internal representation. It is not possible to mix domain elements with Expr (page 999) so each domain has to_sympy() (page 2597) and from_sympy() (page 2593) methods to convert its domain elements to and from Expr (page 999).
Examples

Construct an element of the QQ (page 2609) domain and then convert it to $Expr$ (page 999).

```python
>>> from sympy import QQ, Expr
>>> q_domain = QQ(2)
>>> q_domain
2
>>> q_expr = QQ.to_sympy(q_domain)
>>> q_expr
2
```

Although the printed forms look similar these objects are not of the same type.

```python
>>> isinstance(q_domain, Expr)
False
>>> isinstance(q_expr, Expr)
True
```

Construct an element of $K[x]$ (page 2627) and convert to $Expr$ (page 999).

```python
>>> from sympy import Symbol
>>> x = Symbol('x')
>>> K = QQ[x]
>>> x_domain = K.gens[0]  # generator x as a domain element
>>> p_domain = x_domain**2/3 + 1
>>> p_domain
1/3*x**2 + 1
>>> p_expr = K.to_sympy(p_domain)
>>> p_expr
x**2/3 + 1
```

The $from_sympy()$ (page 2593) method is used for the opposite conversion from a normal SymPy expression to a domain element.

```python
>>> p_domain == p_expr
False
>>> K.from_sympy(p_expr) == p_domain
True
>>> K.to_sympy(p_domain) == p_expr
True
>>> K.from_sympy(K.tosympy(p_domain)) == p_domain
True
>>> K.to_sympy(K.fromsympy(p_expr)) == p_expr
True
```

The $from_sympy()$ (page 2593) method makes it easier to construct domain elements interactively.
from sympy import QQ

>>> QQ.of_type(QQ.zero)
True

See also:

of_type (page 2596), one (page 2596)
Examples

```python
>>> from sympy import ZZ, symbols
>>> x, y = symbols('x, y')
>>> K = ZZ[x,y]
>>> p = K(x)**2 + K(y)**2
>>> p
x**2 + y**2
>>> p.parent()
ZZ[x,y]
```

Notes

This is used by `convert()` (page 2588) to identify the domain associated with a domain element.

```python
class sympy.polys.domains.field.Field
    Represents a field domain.
    div(a, b)
        Division of a and b, implies __truediv__.
    exquo(a, b)
        Exact quotient of a and b, implies __truediv__.
    gcd(a, b)
        Returns GCD of a and b.
        This definition of GCD over fields allows to clear denominators in `primitive()`.
```
\texttt{lcm}(a, b)\\\quad \text{Returns LCM of } a \text{ and } b.

\begin{verbatim}
>>> from sympy.polys.domains import QQ
>>> from sympy import S, lcm

>>> QQ.lcm(QQ(2, 3), QQ(4, 9))
4/3
>>> lcm(S(2)/3, S(4)/9)
4/3
\end{verbatim}

\texttt{quo}(a, b)\\\quad \text{Quotient of } a \text{ and } b, \text{ implies } _\text{truediv}._

\texttt{rem}(a, b)\\\quad \text{Remainder of } a \text{ and } b, \text{ implies nothing.}

\texttt{revert}(a)\\\quad \text{Returns } a**(-1) \text{ if possible.}

class sympy.polys.domains.ring.Ring\\\quad \text{Represents a ring domain.}

\texttt{denom}(a)\\\quad \text{Returns denominator of } a.

\texttt{div}(a, b)\\\quad \text{Division of } a \text{ and } b, \text{ implies } _\text{divmod}._

\texttt{exquo}(a, b)\\\quad \text{Exact quotient of } a \text{ and } b, \text{ implies } _\text{floordiv}._

\texttt{free_module}(rank)\\\quad \text{Generate a free module of rank } rank \text{ over self.}

\begin{verbatim}
>>> from sympy.abc import x
>>> from sympy import QQ
>>> QQ.old_poly_ring(x).free_module(2)
QQ[x]**2
\end{verbatim}

\texttt{get_ring}()\\\quad \text{Returns a ring associated with self.}

\texttt{ideal}(*gens)\\\quad \text{Generate an ideal of self.}

\begin{verbatim}
>>> from sympy.abc import x
>>> from sympy import QQ
>>> QQ.old_poly_ring(x).ideal(x**2)
<x**2>
\end{verbatim}

\texttt{invert}(a, b)\\\quad \text{Returns inversion of } a \text{ mod } b.

\texttt{numer}(a)\\\quad \text{Returns numerator of } a.
\texttt{quo}(a, b)

Quotient of \(a\) and \(b\), implies \texttt{_floordiv_}.

\texttt{quotient_ring}(e)

Form a quotient ring of \texttt{self}.

Here \(e\) can be an ideal or an iterable.

\begin{verbatim}
>>> from sympy.abc import x
>>> from sympy import QQ
>>> QQ.old_poly_ring(x).quotient_ring(QQ.old_poly_ring(x).ideal(x**2))
QQ[x]/<x**2>
>>> QQ.old_poly_ring(x).quotient_ring([x**2])
QQ[x]/<x**2>
\end{verbatim}

The division operator has been overloaded for this:

\begin{verbatim}
>>> QQ.old_poly_ring(x)/[x**2]
QQ[x]/<x**2>
\end{verbatim}

\texttt{rem}(a, b)

Remainder of \(a\) and \(b\), implies \texttt{_mod_}.

\texttt{revert}(a)

Returns \(a**(-1)\) if possible.

\texttt{class} \hspace{1em} \texttt{sympy.polys.domains.simpledomain.SimpleDomain}

Base class for simple domains, e.g. \texttt{ZZ}, \texttt{QQ}.

\texttt{inject}(\ast \texttt{gens})

Inject generators into this domain.

\texttt{class} \hspace{1em} \texttt{sympy.polys.domains.compositedomain.CompositeDomain}

Base class for composite domains, e.g. \texttt{ZZ[x]}, \texttt{ZZ(X)}.

\texttt{drop}(\ast \texttt{symbols})

Drop generators from this domain.

\texttt{inject}(\ast \texttt{symbols})

Inject generators into this domain.

\texttt{GF}(p)

\texttt{class} \hspace{1em} \texttt{sympy.polys.domains.FiniteField}(\texttt{mod}, \texttt{symmetric=True})

Finite field of prime order \texttt{GF}(p) (page 2602)

A \texttt{GF}(p) (page 2602) domain represents a \texttt{finite field \ \mathbb{F}_p} of prime order as \texttt{Domain} (page 2584) in the domain system (see \texttt{Introducing the Domains of the poly module} (page 2557)).

A \texttt{Poly} (page 2453) created from an expression with integer coefficients will have the domain \texttt{ZZ} (page 2605). However, if the \texttt{modulus=p} option is given then the domain will be a finite field instead.
It is possible to factorise a polynomial over $GF(p)$ (page 2602) using the modulus argument to `factor()` (page 2447) or by specifying the domain explicitly. The domain can also be given as a string.

It is also possible to use $GF(p)$ (page 2602) with the `cancel()` (page 2451) and `gcd()` (page 2442) functions.

When using the domain directly $GF(p)$ (page 2602) can be used as a constructor to create instances which then support the operations $+,-,\ast,\div,/\,$
Notes

It is also possible to create a $GF(p)$ (page 2602) domain of non-prime order but the resulting ring is not a field: it is just the ring of the integers modulo n.

```python
>>> K = GF(9)
>>> z = K(3)
>>> z
3 mod 9
>>> z**2
0 mod 9
```

It would be good to have a proper implementation of prime power fields ($GF(p^{**n})$) but these are not yet implemented in SymPy.

```python
 characteristic()
        return the characteristic of this domain.

 from_FF(a, K0=None)
        Convert ModularInteger(int) to dtype.

 from_FF_gmpy(a, K0=None)
        Convert ModularInteger(mpz) to dtype.

 from_FF_python(a, K0=None)
        Convert ModularInteger(int) to dtype.

 from_QQ(a, K0=None)
        Convert Python's Fraction to dtype.

 from_QQ_gmpy(a, K0=None)
        Convert GMPY's mpq to dtype.

 from_QQ_python(a, K0=None)
        Convert Python's Fraction to dtype.

 from_RealField(a, K0)
        Convert mpmath's mpf to dtype.

 from_ZZ(a, K0=None)
        Convert Python's int to dtype.

 from_ZZ_gmpy(a, K0=None)
        Convert GMPY's mpz to dtype.

 from_ZZ_python(a, K0=None)
        Convert Python's int to dtype.
```
from_sympy(a)
Convert SymPy's Integer to SymPy's Integer.

get_field()
Returns a field associated with self.

to_sympy(a)
Convert a to a SymPy object.

class sympy.polys.domains.PythonFiniteField(mod, symmetric=True)
Finite field based on Python’s integers.

class sympy.polys.domains.GMPYFiniteField(mod, symmetric=True)
Finite field based on GMPY integers.

ZZ

The **ZZ** (page 2605) domain represents the integers \mathbb{Z} as a Domain (page 2584) in the domain system (see *Introducing the Domains of the poly module* (page 2557)).

By default a *Poly* (page 2453) created from an expression with integer coefficients will have the domain **ZZ** (page 2605):

```python
>>> from sympy import Poly, Symbol
>>> x = Symbol('x')
>>> p = Poly(x**2 + 1)
>>> p
Poly(x**2 + 1, x, domain='ZZ')
>>> p.domain
ZZ
```

The corresponding field of fractions is the domain of the rationals **QQ** (page 2609). Conversely **ZZ** (page 2605) is the ring of integers of **QQ** (page 2609):

```python
>>> from sympy import ZZ, QQ
>>> ZZ.get_field()
QQ
>>> QQ.get_ring()
ZZ
```

When using the domain directly **ZZ** (page 2605) can be used as a constructor to create instances which then support the operations $+, -, *, **, //, %$ (true division $/$ should not be used with **ZZ** (page 2605) - see the *exquo()* (page 2591) domain method):

```python
>>> x = ZZ(5)
>>> y = ZZ(2)
>>> x // y  # floor division
2
>>> x % y   # modulo division (remainder)
1
```

The *gcd()* (page 2594) method can be used to compute the gcd of any two elements:

```python
>>> ZZ.gcd(ZZ(10), ZZ(2))
2
```
There are two implementations of \texttt{ZZ} (page 2605) in SymPy. If \texttt{gmpy} or \texttt{gmpy2} is installed then \texttt{ZZ} (page 2605) will be implemented by \texttt{GMPYIntegerRing} (page 2608) and the elements will be instances of the \texttt{gmpy.mpz} type. Otherwise if \texttt{gmpy} and \texttt{gmpy2} are not installed then \texttt{ZZ} (page 2605) will be implemented by \texttt{PythonIntegerRing} (page 2608) which uses Python’s standard builtin int type. With larger integers \texttt{gmpy} can be more efficient so it is preferred when available.

\textbf{class} \texttt{sympy.polys.domains.IntegerRing}

The domain \texttt{ZZ} representing the integers \(\mathbb{Z}\).

The \texttt{IntegerRing} (page 2606) class represents the ring of integers as a \texttt{Domain} (page 2584) in the domain system. \texttt{IntegerRing} (page 2606) is a super class of \texttt{PythonIntegerRing} (page 2608) and \texttt{GMPYIntegerRing} (page 2608) one of which will be the implementation for \texttt{ZZ} (page 2605) depending on whether or not \texttt{gmpy} or \texttt{gmpy2} is installed.

\textbf{See also:}

\texttt{Domain} (page 2584)

\textbf{algebraic_field}(*\texttt{extension}, \texttt{alias}=\texttt{None})

Returns an algebraic field, i.e. \(\mathbb{Q}(\alpha,\ldots)\).

\textbf{Parameters}

*\texttt{extension} : One or more \texttt{Expr} (page 999).

Generators of the extension. These should be expressions that are algebraic over \(\mathbb{Q}\).

\texttt{alias} : \texttt{str}, \texttt{Symbol} (page 1028), None, optional (default=\texttt{None})

If provided, this will be used as the alias symbol for the primitive element of the returned \texttt{AlgebraicField} (page 2619).

\textbf{Returns}

\texttt{AlgebraicField} (page 2619)

A \texttt{Domain} (page 2584) representing the algebraic field extension.

\textbf{Examples}

```python
>>> from sympy import ZZ, sqrt
>>> ZZ.algebraic_field(sqrt(2))
QQ<sqrt(2)>
```

\textbf{factorial}(a)

Compute factorial of \(a\).

\textbf{from} \texttt{AlgebraicField}(a, KO)

Convert a \texttt{ANP} (page 2650) object to \texttt{ZZ} (page 2605).

See \texttt{convert()} (page 2588).

\textbf{from} \texttt{FF}(a, KO)

Convert \texttt{ModularInteger(int)} to GMPY’s mpz.

\textbf{from} \texttt{FF_gmpy}(a, KO)

Convert \texttt{ModularInteger(mpz)} to GMPY’s mpz.
from_FF_python(a, K0)
 Convert ModularInteger(int) to GMPY’s mpz.

from_QQ(a, K0)
 Convert Python’s Fraction to GMPY’s mpz.

from_QQ_gmpy(a, K0)
 Convert GMPY mpq to GMPY’s mpz.

from_QQ_python(a, K0)
 Convert Python’s Fraction to GMPY’s mpz.

from_RealField(a, K0)
 Convert mpmath’s mpf to GMPY’s mpz.

from_ZZ(a, K0)
 Convert Python’s int to GMPY’s mpz.

from_ZZ_gmpy(a, K0)
 Convert GMPY’s mpz to GMPY’s mpz.

from_ZZ_python(a, K0)
 Convert Python’s int to GMPY’s mpz.

from_sympy(a)
 Convert SymPy’s Integer to dtype.

gcd(a, b)
 Compute GCD of a and b.

gcdex(a, b)
 Compute extended GCD of a and b.

get_field()
 Return the associated field of fractions QQ (page 2609)

 Returns
 QQ (page 2609):
 The associated field of fractions QQ (page 2609), a Domain
 (page 2584) representing the rational numbers Q.

Examples

>>> from sympy import ZZ
>>> ZZ.get_field()
QQ

lcm(a, b)
 Compute LCM of a and b.

log(a, b)
 Logarithm of a to the base b.

 Parameters
 a: number
 b: number
Returns

$\lfloor \log(a, b) \rfloor$

Floor of the logarithm of a to the base b

Examples

```python
>>> from sympy import ZZ
>>> ZZ.log(ZZ(8), ZZ(2))
3
>>> ZZ.log(ZZ(9), ZZ(2))
3
```

Notes

This function uses `math.log` which is based on float so it will fail for large integer arguments.

`sqrt(a)`

Compute square root of a.

`to_sympy(a)`

Convert a to a SymPy object.

`class sympy.polys.domains.PythonIntegerRing`

Integer ring based on Python's int type.

This will be used as `ZZ` (page 2605) if gmpy and gmpy2 are not installed. Elements are instances of the standard Python int type.

`class sympy.polys.domains.GMPYIntegerRing`

Integer ring based on GMPY's mpz type.

This will be the implementation of `ZZ` (page 2605) if gmpy or gmpy2 is installed. Elements will be of type `gmpy.mpz`.

`factorial(a)`

Compute factorial of a.

`from_FF_gmpy(a, K0)`

Convert ModularInteger(mpz) to GMPY's mpz.

`from_FF_python(a, K0)`

Convert ModularInteger(int) to GMPY's mpz.

`from_QQ(a, K0)`

Convert Python's Fraction to GMPY's mpz.

`from_QQ_gmpy(a, K0)`

Convert GMPY mpq to GMPY's mpz.

`from_QQ_python(a, K0)`

Convert Python's Fraction to GMPY's mpz.
from_RealField\((a, K0)\)

Convert mpmath's \texttt{mpf} to GMPY's \texttt{mpz}.

\texttt{from_ZZ_gmpy}\((a, K0)\)

Convert GMPY's \texttt{mpz} to GMPY's \texttt{mpz}.

\texttt{from_ZZ_python}\((a, K0)\)

Convert Python's \texttt{int} to GMPY's \texttt{mpz}.

\texttt{from_sympy}\((a)\)

Convert SymPy's \texttt{Integer} to \texttt{dtype}.

\texttt{gcd}\((a, b)\)

Compute GCD of \(a\) and \(b\).

\texttt{gcdex}\((a, b)\)

Compute extended GCD of \(a\) and \(b\).

\texttt{lcm}\((a, b)\)

Compute LCM of \(a\) and \(b\).

\texttt{sqrt}\((a)\)

Compute square root of \(a\).

\texttt{to_sympy}\((a)\)

Convert \(a\) to a SymPy object.

QQ

The \texttt{QQ} (page 2609) domain represents the rationals \(\mathbb{Q}\) as a \texttt{Domain} (page 2584) in the domain system (see \textit{Introducing the Domains of the \texttt{poly} module} (page 2557)).

By default a \texttt{Poly} (page 2453) created from an expression with rational coefficients will have the domain \texttt{QQ} (page 2609):

```python
>>> from sympy import Poly, Symbol
>>> x = Symbol('x')
>>> p = Poly(x**2 + x/2)
>>> p
Poly(x**2 + 1/2*x, x, domain='QQ')
>>> p.domain
QQ
```

The corresponding ring of integers is the \texttt{Domain} (page 2584) of the integers \texttt{ZZ} (page 2605). Conversely \texttt{QQ} (page 2609) is the field of fractions of \texttt{ZZ} (page 2605):

```python
>>> from sympy import ZZ, QQ
>>> QQ.get_ring()
ZZ
>>> ZZ.get_field()
QQ
```

When using the domain directly \texttt{QQ} (page 2609) can be used as a constructor to create instances which then support the operations \(+,\,-,\,\ast,\,**,\,\div\) (true division \texttt{\div} is always possible for nonzero divisors in \texttt{QQ} (page 2609)):
There are two implementations of `QQ` (page 2609) in SymPy. If gmpy or gmpy2 is installed then `QQ` (page 2609) will be implemented by `GMPYRationalField` (page 2611) and the elements will be instances of the `gmpy.mpq` type. Otherwise if gmpy and gmpy2 are not installed then `QQ` (page 2609) will be implemented by `PythonRationalField` (page 2611) which is a pure Python class as part of sympy. The gmpy implementation is preferred because it is significantly faster.

class sympy.polys.domains.RationalField
 Abstract base class for the domain `QQ` (page 2609).
 The `RationalField` (page 2610) class represents the field of rational numbers \(\mathbb{Q} \) as a `Domain` (page 2584) in the domain system. `RationalField` (page 2610) is a superclass of `PythonRationalField` (page 2611) and `GMPYRationalField` (page 2611) one of which will be the implementation for `QQ` (page 2609) depending on whether either of gmpy or gmpy2 is installed or not.

See also:
`Domain` (page 2584)

`algebraic_field(*extension, alias=None)`
 Returns an algebraic field, i.e. \(\mathbb{Q}(\alpha, \ldots) \).
 Parameters
 *extension : One or more `Expr` (page 999)
 Generators of the extension. These should be expressions that are algebraic over \(\mathbb{Q} \).
 alias : str, `Symbol` (page 1028), None, optional (default=None)
 If provided, this will be used as the alias symbol for the primitive element of the returned `AlgebraicField` (page 2619).
 Returns
 `AlgebraicField` (page 2619)
 A `Domain` (page 2584) representing the algebraic field extension.

Examples

```python
>>> from sympy import QQ, sqrt
>>> QQ.algebraic_field(sqrt(2))
QQ<sqrt(2)>
```

denom(a)
 Returns denominator of a.

div(a, b)
 Division of a and b, implies `__truediv__`.
exquo(a, b)
 Exact quotient of a and b, implies __truediv__.

from_AlgebraicField(a, K0)
 Convert a ANP (page 2650) object to QQ (page 2609).
 See convert() (page 2588)

from_GaussianRationalField(a, K0)
 Convert a GaussianElement object to dtype.

from_QQ(a, K0)
 Convert a Python Fraction object to dtype.

from_QQ_gmpy(a, K0)
 Convert a GMPY mpq object to dtype.

from_QQ_python(a, K0)
 Convert a Python Fraction object to dtype.

from_RealField(a, K0)
 Convert a mpmath mpf object to dtype.

from_ZZ(a, K0)
 Convert a Python int object to dtype.

from_ZZ_gmpy(a, K0)
 Convert a GMPY mpz object to dtype.

from_ZZ_python(a, K0)
 Convert a Python int object to dtype.

from_sympy(a)
 Convert SymPy’s Integer to dtype.

go_get_ring()
 Returns ring associated with self.

umer(a)
 Returns numerator of a.

quo(a, b)
 Quotient of a and b, implies __truediv__.

rem(a, b)
 Remainder of a and b, implies nothing.

to_sympy(a)
 Convert a to a SymPy object.

class sympy.polys.domains.PythonRationalField
 Rational field based on MPQ (page 2613).
 This will be used as QQ (page 2609) if gmpy and gmpy2 are not installed. Elements are instances of MPQ (page 2613).
class sympy.polys.domains.GMPYRationalField
 Rational field based on GMPY’s mpq type.
 This will be the implementation of QQ (page 2609) if gmpy or gmpy2 is installed. Elements will be of type gmpy.mpq.

denom(a)
 Returns denominator of a.

div(a, b)
 Division of a and b, implies __truediv__.
exquo(a, b)
 Exact quotient of a and b, implies __truediv__.
factorial(a)
 Returns factorial of a.

from_GaussianRationalField(a, K0)
 Convert a GaussianElement object to dtype.

from_QQ_gmpy(a, K0)
 Convert a GMPY mpq object to dtype.

from_QQ_python(a, K0)
 Convert a Python Fraction object to dtype.

from_RealField(a, K0)
 Convert a mpmath mpf object to dtype.

from_ZZ_gmpy(a, K0)
 Convert a GMPY mpz object to dtype.

from_ZZ_python(a, K0)
 Convert a Python int object to dtype.

from_sympy(a)
 Convert SymPy’s Integer to dtype.

get_ring()
 Returns ring associated with self.

numer(a)
 Returns numerator of a.

quo(a, b)
 Quotient of a and b, implies __truediv__.
rem(a, b)
 Remainder of a and b, implies nothing.

to_sympy(a)
 Convert a to a SymPy object.

class sympy.external.pythonmpq.PythonMPQ(numerator, denominator=None)
 Rational number implementation that is intended to be compatible with gmpy2’s mpq.
 Also slightly faster than fractions.Fraction.
 PythonMPQ should be treated as immutable although no effort is made to prevent mutation (since that might slow down calculations).
MPQ

The MPQ type is either PythonMPQ (page 2612) or otherwise the mpq type from gmpy2.

Gaussian domains

The Gaussian domains \mathbb{Z}_I (page 2614) and \mathbb{Q}_I (page 2616) share common superclasses GaussianElement (page 2613) for the domain elements and GaussianDomain (page 2613) for the domains themselves.

```python
class sympy.polys.domains.gaussiandomains.GaussianDomain
    Base class for Gaussian domains.
    
    from_AlgebraicField(a, K0)
        Convert an element from $\mathbb{Z}_I$ or $\mathbb{Q}_I$ to self.dtype.
    from_QQ(a, K0)
        Convert a GMPY mpq to self.dtype.
    from_QQ_gmpy(a, K0)
        Convert a GMPY mpq to self.dtype.
    from_QQ_python(a, K0)
        Convert a QQ_python element to self.dtype.
    from_ZZ(a, K0)
        Convert a ZZ_python element to self.dtype.
    from_ZZ_gmpy(a, K0)
        Convert a GMPY mpz to self.dtype.
    from_ZZ_python(a, K0)
        Convert a ZZ_python element to self.dtype.
    from_sympy(a)
        Convert a to a SymPy object.
    inject(*gens)
        Inject generators into this domain.
    is_negative(element)
        Returns False for any GaussianElement.
    is_nonnegative(element)
        Returns False for any GaussianElement.
    is_nonpositive(element)
        Returns False for any GaussianElement.
    is_positive(element)
        Returns False for any GaussianElement.
    to_sympy(a)
        Convert a to a SymPy object.
```
class sympy.polys.domains.gaussiandomains.GaussianElement(x, y=0)
 Base class for elements of Gaussian type domains.

classmethod new(x, y)
 Create a new GaussianElement of the same domain.

parent()
 The domain that this is an element of (ZZ_I or QQ_I)

quadrant()
 Return quadrant index 0-3.
 0 is included in quadrant 0.

ZZ_I

class sympy.polys.domains.gaussiandomains.GaussianIntegerRing
 Ring of Gaussian integers ZZ_I

The ZZ_I (page 2614) domain represents the Gaussian integers \(\mathbb{Z}[i] \) as a Domain (page 2584) in the domain system (see Introducing the Domains of the poly module (page 2557)).

By default a Poly (page 2453) created from an expression with coefficients that are combinations of integers and \(\sqrt{-1} \) will have the domain ZZ_I (page 2614).

>>> from sympy import Poly, Symbol, I
>>> x = Symbol('x')
>>> p = Poly(x**2 + I)
>>> p
Poly(x**2 + I, x, domain='ZZ_I')
>>> p.domain
ZZ_I

The ZZ_I (page 2614) domain can be used to factorise polynomials that are reducible over the Gaussian integers.

>>> from sympy import factor
>>> factor(x**2 + 1)
\(x^2 + 1\)
>>> factor(x**2 + 1, domain='ZZ_I')
(\(x - \text{i}\))*(\(x + \text{i}\))

The corresponding field of fractions is the domain of the Gaussian rationals QQ_I (page 2616). Conversely ZZ_I (page 2614) is the ring of integers of QQ_I (page 2616).

>>> from sympy import ZZ_I, QQ_I
>>> ZZ_I.get_field()
QQ_I
>>> QQ_I.get_ring()
ZZ_I

When using the domain directly ZZ_I (page 2614) can be used as a constructor.
>>> ZZ_I(3, 4)
(3 + 4*I)
>>> ZZ_I(5)
(5 + 0*I)

The domain elements of \(ZZ_I\) (page 2614) are instances of \(GaussianInteger\) (page 2616) which support the rings operations +, -, *, **.

>>> z1 = ZZ_I(5, 1)
>>> z2 = ZZ_I(2, 3)
>>> z1
(5 + 1*I)
>>> z2
(2 + 3*I)
>>> z1 + z2
(7 + 4*I)
>>> z1 * z2
(7 + 17*I)
>>> z1 ** 2
(24 + 10*I)

Both floor (\(/\)) and modulo (\(\%\)) division work with \(GaussianInteger\) (page 2616) (see the \texttt{div()} (page 2589) method).

>>> z3, z4 = ZZ_I(5), ZZ_I(1, 3)
>>> z3 // z4 # floor division
(1 + -1*I)
>>> z3 % z4 # modulo division (remainder)
(1 + -2*I)
>>> (z3//z4)*z4 + z3%z4 == z3
True

True division (/) in \(ZZ_I\) (page 2614) gives an element of \(QQ_I\) (page 2616). The \texttt{exquo()} (page 2591) method can be used to divide in \(ZZ_I\) (page 2614) when exact division is possible.

>>> z1 / z2
(1 + -1*I)
>>> ZZ_I.exquo(z1, z2)
(1 + -1*I)
>>> z3 / z4
(1/2 + -3/2*I)
>>> ZZ_I.exquo(z3, z4)
Traceback (most recent call last):
...
ExactQuotientFailed: (1 + 3*I) does not divide (5 + 0*I) in ZZ_I

The \texttt{gcd()} (page 2594) method can be used to compute the \texttt{gcd} of any two elements.

>>> ZZ_I.gcd(ZZ_I(10), ZZ_I(2))
(2 + 0*I)
>>> ZZ_I.gcd(ZZ_I(5), ZZ_I(2, 1))
(2 + 1*I)
SymPy Documentation, Release 1.12.1

dtype

 alias of GaussianInteger (page 2616)

from_GaussianIntegerRing(a, K0)
 Convert a ZZ_I element to ZZ_I.

from_GaussianRationalField(a, K0)
 Convert a QQ_I element to ZZ_I.

gcd(a, b)
 Greatest common divisor of a and b over ZZ_I.

get_field()
 Returns a field associated with self.

get_ring()
 Returns a ring associated with self.

lcm(a, b)
 Least common multiple of a and b over ZZ_I.

normalize(d, *args)
 Return first quadrant element associated with d.
 Also multiply the other arguments by the same power of i.

class sympy.polys.domains.gaussiandomains.GaussianInteger(x, y=0)
 Gaussian integer: domain element for ZZ_I (page 2614)

 >>> from sympy import ZZ_I
 >>> z = ZZ_I(2, 3)
 >>> z
 (2 + 3*I)
 >>> type(z)
 <class 'sympy.polys.domains.gaussiandomains.GaussianInteger'>

QQ_I

class sympy.polys.domains.gaussiandomains.GaussianRationalField
 Field of Gaussian rationals QQ_I

 The QQ_I (page 2616) domain represents the Gaussian rationals \(\mathbb{Q}(i) \) as a Domain (page 2584) in the domain system (see Introducing the Domains of the poly module (page 2557)).

 By default a Poly (page 2453) created from an expression with coefficients that are combinations of rationals and I (\(\sqrt{-1} \)) will have the domain QQ_I (page 2616).

 >>> from sympy import Poly, Symbol, I
 >>> x = Symbol('x')
 >>> p = Poly(x**2 + I/2)
 >>> p
 Poly(x**2 + I/2, x, domain='QQ_I')
 >>> p.domain
 QQ_I
The polys option `gaussian=True` can be used to specify that the domain should be \(\text{QQ}_I \) (page 2616) even if the coefficients do not contain I or are all integers.

```python
>>> Poly(x**2)
Poly(x**2, x, domain='ZZ')
>>> Poly(x**2 + I)
Poly(x**2 + I, x, domain='ZZ\_I')
>>> Poly(x**2/2)
Poly(1/2*x**2, x, domain='QQ')
>>> Poly(x**2, gaussian=True)
Poly(x**2, x, domain='QQ\_I')
>>> Poly(x**2 + I, gaussian=True)
Poly(x**2 + I, x, domain='QQ\_I')
>>> Poly(x**2/2, gaussian=True)
Poly(1/2*x**2, x, domain='QQ\_I')
```

The \(\text{QQ}_I \) (page 2616) domain can be used to factorise polynomials that are reducible over the Gaussian rationals.

```python
>>> from sympy import factor, QQ_I
>>> factor(x**2/4 + 1)
(x**2 + 4)/4
>>> factor(x**2/4 + 1, domain='QQ\_I')
(x - 2*I)*(x + 2*I)/4
>>> factor(x**2/4 + 1, domain=QQ_I)
(x - 2*I)*(x + 2*I)/4
```

It is also possible to specify the \(\text{QQ}_I \) (page 2616) domain explicitly with polys functions like `apart()` (page 2522).

```python
>>> from sympy import apart
>>> apart(1/(1 + x**2))
1/(x**2 + 1)
>>> apart(1/(1 + x**2), domain=QQ_I)
I/(2*(x + I)) - I/(2*(x - I))
```

The corresponding ring of integers is the domain of the Gaussian integers \(\text{ZZ}_I \) (page 2614). Conversely \(\text{QQ}_I \) (page 2616) is the field of fractions of \(\text{ZZ}_I \) (page 2614).

```python
>>> from sympy import ZZ_I, QQ_I, QQ
>>> ZZ_I.get_field()
QQ_I
>>> QQ_I.get_ring()
ZZ_I
```

When using the domain directly \(\text{QQ}_I \) (page 2616) can be used as a constructor.

```python
>>> QQ_I(3, 4)
(3 + 4*I)
>>> QQ_I(5)
(5 + 0*I)
>>> QQ_I(QQ(2, 3), QQ(4, 5))
(2/3 + 4/5*I)
```

The domain elements of \(\text{QQ}_I \) (page 2616) are instances of `GaussianRational`
which support the field operations +, -, *, **, /.

```python
>>> z1 = QQ_I(5, 1)
>>> z2 = QQ_I(2, QQ(1, 2))
>>> z1
(5 + 1*I)
>>> z2
(2 + 1/2*I)
>>> z1 + z2
(7 + 3/2*I)
>>> z1 * z2
(19/2 + 9/2*I)
>>> z2 ** 2
(15/4 + 2*I)
```

True division (/) in `QQ_I` (page 2616) gives an element of `QQ_I` (page 2616) and is always exact.

```python
>>> z1 / z2
(42/17 + -2/17*I)
>>> QQ_I.exquo(z1, z2)
(42/17 + -2/17*I)
>>> z1 == (z1/z2)*z2
True
```

Both floor (//) and modulo (%) division can be used with `GaussianRational` (page 2619) (see `div()` (page 2589)) but division is always exact so there is no remainder.

```python
>>> z1 // z2
(42/17 + -2/17*I)
>>> z1 % z2
(0 + 0*I)
>>> QQ_I.div(z1, z2)
((42/17 + -2/17*I), (0 + 0*I))
>>> (z1//z2)*z2 + z1%z2 == z1
True
```

as_AlgebraicField()
Get equivalent domain as an `AlgebraicField`.

denom(a)
Get the denominator of a.

dtype
alias of `GaussianRational` (page 2619)

from_GaussianIntegerRing(a, K0)
Convert a ZZ_I element to QQ_I.

from_GaussianRationalField(a, K0)
Convert a QQ_I element to QQ_I.

get_field()
Returns a field associated with self.
get_ring()

Returns a ring associated with self.

numer(a)

Get the numerator of a.

class sympy.polys.domains.gaussiandomains.GaussianRational(x, y=0)

Gaussian rational: domain element for \(QQ_I \) (page 2616)

```
>>> from sympy import QQ_I, QQ
>>> z = QQ_I(QQ(2, 3), QQ(4, 5))
>>> z
(2/3 + 4/5*I)
>>> type(z)
<class 'sympy.polys.domains.gaussiandomains.GaussianRational'>
```

QQ<a>

class sympy.polys.domains.AlgebraicField(dom, *ext, alias=None)

Algebraic number field \(QQ<a> \) (page 2619)

A \(QQ<a> \) (page 2619) domain represents an algebraic number field \(\mathbb{Q}(a) \) as a Domain (page 2584) in the domain system (see Introducing the Domains of the poly module (page 2557)).

A Poly (page 2453) created from an expression involving algebraic numbers will treat the algebraic numbers as generators if the generators argument is not specified.

```
>>> from sympy import Poly, Symbol, sqrt
>>> x = Symbol('x')
>>> Poly(x**2 + sqrt(2))
Poly(x**2 + (sqrt(2)), x, sqrt(2), domain='ZZ')
```

That is a multivariate polynomial with \(\sqrt{2} \) treated as one of the generators (variables). If the generators are explicitly specified then \(\sqrt{2} \) will be considered to be a coefficient but by default the EX (page 2630) domain is used. To make a Poly (page 2453) with a \(QQ<a> \) (page 2619) domain the argument extension=True can be given.

```
>>> Poly(x**2 + sqrt(2), x)
Poly(x**2 + sqrt(2), x, domain='EX')
>>> Poly(x**2 + sqrt(2), x, extension=True)
Poly(x**2 + sqrt(2), x, domain='QQ<sqrt(2)>')
```

A generator of the algebraic field extension can also be specified explicitly which is particularly useful if the coefficients are all rational but an extension field is needed (e.g. to factor the polynomial).

```
>>> Poly(x**2 + 1)
Poly(x**2 + 1, x, domain='ZZ')
>>> Poly(x**2 + 1, extension=sqrt(2))
Poly(x**2 + 1, x, domain='QQ<sqrt(2)>')
```

It is possible to factorise a polynomial over a \(QQ<a> \) (page 2619) domain using the extension argument to \texttt{factor()} (page 2447) or by specifying the domain explicitly.
>>> from sympy import factor, QQ
>>> factor(x**2 - 2)
x**2 - 2
>>> factor(x**2 - 2, extension=sqrt(2))
(x - sqrt(2))*(x + sqrt(2))
>>> factor(x**2 - 2, domain='QQ<sqrt(2)>')
(x - sqrt(2))*(x + sqrt(2))
>>> factor(x**2 - 2, domain=QQ.algebraic_field(sqrt(2)))
(x - sqrt(2))*(x + sqrt(2))

The extension=True argument can be used but will only create an extension that contains the coefficients which is usually not enough to factorise the polynomial.

>>> p = x**3 + sqrt(2)*x**2 - 2*x - 2*sqrt(2)
>>> factor(p) # treats sqrt(2) as a symbol
(x + sqrt(2))*(x**2 - 2)
>>> factor(p, extension=True) # all rational coefficients
x**2 - 2

It is also possible to use QQ<a> (page 2619) with the cancel() (page 2451) and gcd() (page 2442) functions.

>>> from sympy import cancel, gcd
>>> cancel((x**2 - 2)/(x - sqrt(2)))
(x**2 - 2)/(x - sqrt(2))
>>> cancel((x**2 - 2)/(x - sqrt(2)), extension=sqrt(2))
x + sqrt(2)
>>> gcd(x**2 - 2, x - sqrt(2))
1
>>> gcd(x**2 - 2, x - sqrt(2), extension=sqrt(2))
x - sqrt(2)

When using the domain directly QQ<a> (page 2619) can be used as a constructor to create instances which then support the operations +,-,*,**,/. The algebraic_field() (page 2588) method is used to construct a particular QQ<a> (page 2619) domain. The from_sympy() (page 2593) method can be used to create domain elements from normal SymPy expressions.

>>> K = QQ.algebraic_field(sqrt(2))
>>> K
QQ<sqrt(2)>
>>> xk = K.from_sympy(3 + 4*sqrt(2))
>>> xk
ANP([4, 3], [1, 0, -2], QQ)

Elements of QQ<a> (page 2619) are instances of ANP (page 2650) which have limited printing support. The raw display shows the internal representation of the element as the list [4, 3] representing the coefficients of 1 and sqrt(2) for this element in the form a * sqrt(2) + b * 1 where a and b are elements of QQ (page 2609). The minimal polynomial for the generator (x**2 - 2) is also shown in the DUP representation (page 2559) as the list [1, 0, -2]. We can use to_sympy() (page 2597) to get a better printed form for the elements and to see the results of operations.
Any expression representing an algebraic number can be used to generate a \texttt{QQ<\textit{a}>} (page 2619) domain provided its \textit{minimal polynomial} can be computed. The function \texttt{minpoly()} (page 2795) function is used for this.

It is also possible to make an algebraic field from multiple extension elements.

Multiple extension elements are always combined together to make a single \textit{primitive element}. In the case of \texttt{[sqrt(2), sqrt(3)]} the primitive element chosen is \texttt{sqrt(2) + sqrt(3)} which is why the domain displays as \texttt{QQ<sqrt(2) + sqrt(3)>}. The minimal polynomial for the primitive element is computed using the \texttt{primitive_element()} (page 2796) function.

The extension elements that generate the domain can be accessed from the do-
main using the `ext` (page 2623) and `orig_ext` (page 2626) attributes as instances of `AlgebraicNumber` (page 1039). The minimal polynomial for the primitive element as a `DMP` (page 2643) instance is available as `mod` (page 2625).

```python
>>> K = QQ.algebraic_field(sqrt(2), sqrt(3))
>>> K
QQ<sqrt(2) + sqrt(3)>
>>> K.ext
sqrt(2) + sqrt(3)
>>> K.orig_ext
(sqrt(2), sqrt(3))
>>> K.mod
DMP([1, 0, -10, 0, 1], QQ, None)
```

The discriminant of the field can be obtained from the `discriminant()` (page 2623) method, and an integral basis from the `integral_basis()` (page 2624) method. The latter returns a list of `ANP` (page 2650) instances by default, but can be made to return instances of `Expr` (page 999) or `AlgebraicNumber` (page 1039) by passing a `fmt` argument. The maximal order, or ring of integers, of the field can also be obtained from the `maximal_order()` (page 2625) method, as a `Submodule` (page 2810).

```python
>>> zeta5 = exp(2*I*pi/5)
>>> K = QQ.algebraic_field(zeta5)
>>> K
QQ<exp(2*I*pi/5)>
>>> K.discriminant()
125
>>> K = QQ.algebraic_field(sqrt(5))
>>> K
QQ<sqrt(5)>
>>> K.integral_basis(fmt='sympy')
[1, 1/2 + sqrt(5)/2]
>>> K.maximal_order()
Submodule([2, 0], [1, 1])/2
```

The factorization of a rational prime into prime ideals of the field is computed by the `primes_above()` (page 2626) method, which returns a list of `PrimeIdeal` (page 2788) instances.

```python
>>> zeta7 = exp(2*I*pi/7)
>>> K = QQ.algebraic_field(zeta7)
>>> K
QQ<exp(2*I*pi/7)>
>>> K.primes_above(11)
[(11, _x**3 + 5*_x**2 + 4*_x - 1), (11, _x**3 - 4*_x**2 - 5*_x - 1)]
```

The Galois group of the Galois closure of the field can be computed (when the minimal polynomial of the field is of sufficiently small degree).

```python
>>> K.galois_group(by_name=True)[0]
S6TransitiveSubgroups.C6
```
Notes

It is not currently possible to generate an algebraic extension over any domain other than \(\mathbb{Q} \) (page 2609). Ideally it would be possible to generate extensions like \(\mathbb{Q}(x)(\sqrt{x^2 - 2}) \). This is equivalent to the quotient ring \(\mathbb{Q}(x)[y]/(y^2 - x^2 + 2) \) and there are two implementations of this kind of quotient ring/extension in the QuotientRing (page 2632) and MonogenicFiniteExtension (page 2555) classes. Each of those implementations needs some work to make them fully usable though.

\[
\text{algebraic_field}(\text{extension}, \text{alias}=\text{None})
\]

Returns an algebraic field, i.e. \(\mathbb{Q}(\alpha, \ldots) \).

\[
\text{denom}(a)
\]

Returns denominator of \(a \).

\[
\text{discriminant}()
\]

Get the discriminant of the field.

\[
\text{dtype}
\]

alias of ANP (page 2650)

\[
\text{ext}
\]

Primitive element used for the extension.

```python
>>> from sympy import QQ, sqrt
>>> K = QQ.algebraic_field(sqrt(2), sqrt(3))
>>> K.ext
sqrt(2) + sqrt(3)
```

\[
\text{from_AlgebraicField}(a, K0)
\]

Convert AlgebraicField element ‘a’ to another AlgebraicField

\[
\text{from_GaussianIntegerRing}(a, K0)
\]

Convert a GaussianInteger element ‘a’ to dtype.

\[
\text{from_GaussianRationalField}(a, K0)
\]

Convert a GaussianRational element ‘a’ to dtype.

\[
\text{from_QQ}(a, K0)
\]

Convert a Python Fraction object to dtype.

\[
\text{from_QQ_gmpy}(a, K0)
\]

Convert a GMPY mpq object to dtype.

\[
\text{from_QQ_python}(a, K0)
\]

Convert a Python Fraction object to dtype.

\[
\text{from_RealField}(a, K0)
\]

Convert a mpmath mpf object to dtype.

\[
\text{from_ZZ}(a, K0)
\]

Convert a Python int object to dtype.

\[
\text{from_ZZ_gmpy}(a, K0)
\]

Convert a GMPY mpz object to dtype.
from ZZ_python(a, K0)
 Convert a Python int object to dtype.

from sympy(a)
 Convert SymPy's expression to dtype.

galois_group(by_name=False, max_tries=30, randomize=False)
 Compute the Galois group of the Galois closure of this field.

Examples

If the field is Galois, the order of the group will equal the degree of the field:

```python
>>> from sympy import QQ
>>> from sympy.abc import x
>>> k = QQ.alg_field_from_poly(x**4 + 1)
>>> G, _ = k.galois_group()
>>> G.order()
4
```

If the field is not Galois, then its Galois closure is a proper extension, and the order of the Galois group will be greater than the degree of the field:

```python
>>> k = QQ.alg_field_from_poly(x**4 - 2)
>>> G, _ = k.galois_group()
>>> G.order()
8
```

See also:

sympy.polys.numberfields.galoisgroups.galois_group (page 2792)

get_ring()
 Returns a ring associated with self.

integral_basis(fmt=\text{None})
 Get an integral basis for the field.

Parameters

fmt : str, None, optional (default=None)
 If None, return a list of *ANP* (page 2650) instances. If "sympy", convert each element of the list to an *Expr* (page 999), using self.to_sympy(). If "alg", convert each element of the list to an *AlgebraicNumber* (page 1039), using self.to_alg_num().
Examples

```python
>>> from sympy import QQ, AlgebraicNumber, sqrt
>>> alpha = AlgebraicNumber(sqrt(5), alias='alpha')
>>> k = QQ.algebraic_field(alpha)
>>> B0 = k.integral_basis()
>>> B1 = k.integral_basis(fmt='sympy')
>>> B2 = k.integral_basis(fmt='alg')
>>> print(B0[1])
ANP([mpq(1,2), mpq(1,2)], [mpq(1,1), mpq(0,1), mpq(-5,1)], QQ)
>>> print(B1[1])
1/2 + alpha/2
>>> print(B2[1])
alpha/2 + 1/2
```

In the last two cases we get legible expressions, which print somewhat differently because of the different types involved:

```python
>>> print(type(B1[1]))
<class 'sympy.core.add.Add'>
>>> print(type(B2[1]))
<class 'sympy.core.numbers.AlgebraicNumber'>
```

See also:

- `to_sympy` (page 2626), `to_alg_num` (page 2626), `maximal_order` (page 2625)
- `is_negative(a)`
 Returns True if a is negative.
- `is_nonnegative(a)`
 Returns True if a is non-negative.
- `is_nonpositive(a)`
 Returns True if a is non-positive.
- `is_positive(a)`
 Returns True if a is positive.
- `maximal_order()`
 Compute the maximal order, or ring of integers, of the field.

 Returns
 - `Submodule` (page 2810).

 See also:
 - `integral_basis` (page 2624)

- `mod`
 Minimal polynomial for the primitive element of the extension.

```python
>>> from sympy import QQ, sqrt
>>> K = QQ.algebraic_field(sqrt(2))
>>> K.mod
DMP([1, 0, -2], QQ, None)
```
SymPy Documentation, Release 1.12.1

numer(a)

Returns numerator of a.

orig_ext

Original elements given to generate the extension.

```python
>>> from sympy import QQ, sqrt
>>> K = QQ.algebraic_field(sqrt(2), sqrt(3))
>>> K.orig_ext
(sqrt(2), sqrt(3))
```

primes_above(p)

Compute the prime ideals lying above a given rational prime p.

to_alg_num(a)

Convert a of dtype to an `AlgebraicNumber` (page 1039).

to_sympy(a)

Convert a of dtype to a SymPy object.

RR

class sympy.polys.domains.RealField(prec=53, dps=None, tol=None)

Real numbers up to the given precision.

almosteq(a, b, tolerance=None)

Check if a and b are almost equal.

from_sympy(expr)

Convert SymPy’s number to dtype.

gcd(a, b)

Returns GCD of a and b.

get_exact()

Returns an exact domain associated with self.

get_ring()

Returns a ring associated with self.

lcm(a, b)

Returns LCM of a and b.

to_rational(element, limit=True)

Convert a real number to rational number.

to_sympy(element)

Convert element to SymPy number.

*class sympy.polys.domains.mpelements.RealElement(val=(0, 0, 0, 0), **kwargs)*

An element of a real domain.
class sympy.polys.domains.ComplexField(prec=53, dps=None, tol=None)
 Complex numbers up to the given precision.

almosteq(a, b, tolerance=None)
 Check if a and b are almost equal.

from_sympy(expr)
 Convert SymPy's number to dtype.

gcd(a, b)
 Returns GCD of a and b.

gcd(a, b)
 Returns an exact domain associated with self.

gcd(a, b)
 Returns a ring associated with self.

is_negative(element)
 Returns False for any ComplexElement.

is_nonnegative(element)
 Returns False for any ComplexElement.

is_nonpositive(element)
 Returns False for any ComplexElement.

is_positive(element)
 Returns False for any ComplexElement.

lcm(a, b)
 Returns LCM of a and b.

to_sympy(element)
 Convert element to SymPy number.

class sympy.polys.domains.mpelements.ComplexElement(real=0, imag=0)
 An element of a complex domain.

K[x]

class sympy.polys.domains.PolynomialRing(domain_or_ring, symbols=None, order=None)
 A class for representing multivariate polynomial rings.

factorial(a)
 Returns factorial of a.

from_AlgebraicField(a, K0)
 Convert an algebraic number to dtype.

from_ComplexField(a, K0)
 Convert a mpmath mpf object to dtype.
from \texttt{FractionField}(a, K0)
 Convert a rational function to \texttt{dtype}.

from \texttt{GaussianIntegerRing}(a, K0)
 Convert a \texttt{GaussianInteger} object to \texttt{dtype}.

from \texttt{GaussianRationalField}(a, K0)
 Convert a \texttt{GaussianRational} object to \texttt{dtype}.

from \texttt{GlobalPolynomialRing}(a, K0)
 Convert from old poly ring to \texttt{dtype}.

from \texttt{PolynomialRing}(a, K0)
 Convert a polynomial to \texttt{dtype}.

from \texttt{QQ}(a, K0)
 Convert a Python \texttt{Fraction} object to \texttt{dtype}.

from \texttt{QQ_gmpy}(a, K0)
 Convert a GMPY \texttt{mpq} object to \texttt{dtype}.

from \texttt{QQ_python}(a, K0)
 Convert a Python \texttt{Fraction} object to \texttt{dtype}.

from \texttt{RealField}(a, K0)
 Convert a \texttt{mpmath} \texttt{mpf} object to \texttt{dtype}.

from \texttt{ZZ}(a, K0)
 Convert a Python \texttt{int} object to \texttt{dtype}.

from \texttt{ZZ_gmpy}(a, K0)
 Convert a GMPY \texttt{mpz} object to \texttt{dtype}.

from \texttt{ZZ_python}(a, K0)
 Convert a Python \texttt{int} object to \texttt{dtype}.

from \texttt{sympy}(a)
 Convert SymPy's expression to \texttt{dtype}.

\texttt{gcd}(a, b)
 Returns GCD of \texttt{a} and \texttt{b}.

\texttt{gcdex}(a, b)
 Extended GCD of \texttt{a} and \texttt{b}.

\texttt{get_field()}
 Returns a field associated with \texttt{self}.

\texttt{is_negative}(a)
 Returns True if \texttt{LC(a)} is negative.

\texttt{is_nonnegative}(a)
 Returns True if \texttt{LC(a)} is non-negative.

\texttt{is_nonpositive}(a)
 Returns True if \texttt{LC(a)} is non-positive.
is_positive(a)

Returns True if $LC(a)$ is positive.

is_unit(a)

Returns True if a is a unit of self

lcm(a, b)

Returns LCM of a and b.

to_sympy(a)

Convert a to a SymPy object.

K(x)

```python
class sympy.polys.domains.FractionField(domain_or_field, symbols=None, order=None):
```

A class for representing multivariate rational function fields.

denom(a)

Returns denominator of a.

factorial(a)

Returns factorial of a.

from_AlgebraicField(a, K0)

Convert an algebraic number to dtype.

from_ComplexField(a, K0)

Convert a mpmath mpf object to dtype.

from_FractionField(a, K0)

Convert a rational function to dtype.

from_GaussianIntegerRing(a, K0)

Convert a GaussianInteger object to dtype.

from_GaussianRationalField(a, K0)

Convert a GaussianRational object to dtype.

from_PolynomialRing(a, K0)

Convert a polynomial to dtype.

from QQ(a, K0)

Convert a Python Fraction object to dtype.

from QQ_gmpy(a, K0)

Convert a GMPY mpq object to dtype.

from QQ_python(a, K0)

Convert a Python Fraction object to dtype.

from_RealField(a, K0)

Convert a mpmath mpf object to dtype.

from_ZZ(a, K0)

Convert a Python int object to dtype.
from ZZ_gmpy(a, K0)
 Convert a GMPY mpz object to dtype.
from ZZ_python(a, K0)
 Convert a Python int object to dtype.
from sympy(a)
 Convert SymPy's expression to dtype.
get_ring()
 Returns a field associated with self.
is_negative(a)
 Returns True if LC(a) is negative.
is_nonnegative(a)
 Returns True if LC(a) is non-negative.
is_nonpositive(a)
 Returns True if LC(a) is non-positive.
is_positive(a)
 Returns True if LC(a) is positive.
numer(a)
 Returns numerator of a.
to_sympy(a)
 Convert a to a SymPy object.

EX

class sympy.polys.domains.ExpressionDomain
 A class for arbitrary expressions.
class Expression(ex)
 An arbitrary expression.
denom(a)
 Returns denominator of a.
dtype
 alias of Expression (page 2631)
from ExpressionDomain(a, K0)
 Convert a EX object to dtype.
from FractionField(a, K0)
 Convert a DMF object to dtype.
from GaussianIntegerRing(a, K0)
 Convert a GaussianRational object to dtype.
from GaussianRationalField(a, K0)
 Convert a GaussianRational object to dtype.
from PolynomialRing($a, K0$)
 Convert a DMP object to dtype.
from QQ($a, K0$)
 Convert a Python Fraction object to dtype.
from QQ_gmpy($a, K0$)
 Convert a GMPY mpq object to dtype.
from QQ_python($a, K0$)
 Convert a Python Fraction object to dtype.
from RealField($a, K0$)
 Convert a mpmath mpf object to dtype.
from ZZ($a, K0$)
 Convert a Python int object to dtype.
from ZZ_gmpy($a, K0$)
 Convert a GMPY mpz object to dtype.
from ZZ_python($a, K0$)
 Convert a Python int object to dtype.
from sympy(a)
 Convert SymPy's expression to dtype.

get_field()
 Returns a field associated with self.
get_ring()
 Returns a ring associated with self.

is_negative(a)
 Returns True if a is negative.
is_nonnegative(a)
 Returns True if a is non-negative.
is_nonpositive(a)
 Returns True if a is non-positive.
is_positive(a)
 Returns True if a is positive.

numer(a)
 Returns numerator of a.
to_sympy(a)
 Convert a to a SymPy object.

class ExpressionDomain.Expression(ex)
 An arbitrary expression.
Quotient ring

class sympy.polys.domains.quotientring.QuotientRing(ring, ideal)
Class representing (commutative) quotient rings.

You should not usually instantiate this by hand, instead use the constructor from the base ring in the construction.

```python
>>> from sympy.abc import x
>>> from sympy import QQ
>>> I = QQ.old_poly_ring(x).ideal(x**3 + 1)
>>> QQ.old_poly_ring(x).quotient_ring(I)
QQ[x]/<x**3 + 1>
```

Shorter versions are possible:

```python
>>> QQ.old_poly_ring(x)/I
QQ[x]/<x**3 + 1>
```

```python
>>> QQ.old_poly_ring(x)/[x**3 + 1]
QQ[x]/<x**3 + 1>
```

Attributes:
- ring - the base ring
- base_ideal - the ideal used to form the quotient

Sparse polynomials

Sparse polynomials are represented as dictionaries.

sympy.polys.rings.ring(symbols, domain, order=LexOrder())
Construct a polynomial ring returning (ring, x_1, ..., x_n).

Parameters
- symbols : str
 Symbol/Expr or sequence of str, Symbol/Expr (non-empty)
- domain : Domain (page 2584) or coercible
- order : MonomialOrder (page 2507) or coercible, optional, defaults to lex

Examples

```python
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.orderings import lex

>>> R, x, y, z = ring("x,y,z", ZZ, lex)
>>> R
Polynomial ring in x, y, z over ZZ with lex order
(continues on next page)```
sympy.polys.rings.xring(symbols, domain, order=LexOrder())
Construct a polynomial ring returning (ring, (x_1, ..., x_n)).

Parameters
symbols : str
Symbol/Expr or sequence of str, Symbol/Expr (non-empty)
domain : Domain (page 2584) or coercible
order : MonomialOrder (page 2507) or coercible, optional, defaults to lex

Examples

```python
>>> from sympy.polys.rings import xring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.orderings import lex

>>> R, (x, y, z) = xring("x,y,z", ZZ, lex)
>>> R
Polynomial ring in x, y, z over ZZ with lex order
>>> x + y + z
x + y + z
>>> type(_)
<class 'sympy.polys.rings.PolyElement'>
```

sympy.polys.rings.vring(symbols, domain, order=LexOrder())
Construct a polynomial ring and inject x_1, ..., x_n into the global namespace.

Parameters
symbols : str
Symbol/Expr or sequence of str, Symbol/Expr (non-empty)
domain : Domain (page 2584) or coercible
order : MonomialOrder (page 2507) or coercible, optional, defaults to lex

Examples

```python
>>> from sympy.polys.rings import vring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.orderings import lex

>>> vring("x,y,z", ZZ, lex)
Polynomial ring in x, y, z over ZZ with lex order
>>> x + y + z # noqa:
```

(continues on next page)
sympy.polys.rings.sring(exprs, *symbols, **options)
Construct a ring deriving generators and domain from options and input expressions.

Parameters
- **exprs**: `Expr` (page 999) or sequence of `Expr` (page 999) (sympifiable)
- **symbols**: sequence of `Symbol` (page 1028)/`Expr` (page 999)
- **options**: keyword arguments understood by `Options` (page 2724)

Examples

```python
>>> from sympy import sring, symbols

>>> x, y, z = symbols("x,y,z")
>>> R, f = sring(x + 2*y + 3*z)
>>> R
Polynomial ring in x, y, z over ZZ with lex order
>>> f
x + 2*y + 3*z
>>> type(_)
<class 'sympy.polys.rings.PolyElement'>
```

class sympy.polys.rings.PolyRing(symbols, domain, order=LexOrder())
Multivariate distributed polynomial ring.

**add**(*objs)
Add a sequence of polynomials or containers of polynomials.

Examples

```python
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ

>>> R, x = ring("x", ZZ)
>>> R.add([x**2 + 2*i + 3 for i in range(4)])
4*x**2 + 24
>>> _.factor_list()
(4, [(x**2 + 6, 1)])
```

**add_gens**(symbols)
Add the elements of symbols as generators to self

**compose**(other)
Add the generators of other to self
**drop(***gens**)**
Remove specified generators from this ring.

**drop_to_ground(***gens**)**
Remove specified generators from the ring and inject them into its domain.

**index(***gen*)**
Compute index of gen in self.gens.

**monomial_basis(***i*)**
Return the ith-basis element.

**mul(***objs*)**
Multiply a sequence of polynomials or containers of polynomials.

### Examples

```python
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ

>>> R, x = ring("x", ZZ)
>>> R.mul([x**2 + 2*i + 3 for i in range(4)])
x**8 + 24*x**6 + 206*x**4 + 744*x**2 + 945
>>> _.factor_list()
(1, [(x**2 + 3, 1), (x**2 + 5, 1), (x**2 + 7, 1), (x**2 + 9, 1)])
```

**symmetric_poly(***n*)**
Return the elementary symmetric polynomial of degree \( n \) over this ring’s generators.

### class sympy.polys.rings.PolyElement
Element of multivariate distributed polynomial ring.

**almosteq(***p2*, tolerance=None)**
Approximate equality test for polynomials.

**cancel(***g*)**
Cancel common factors in a rational function \( f/g \).

### Examples

```python
>>> from sympy.polys import ring, ZZ

>>> R, x,y = ring("x,y", ZZ)

>>> (2*x**2 - 2).cancel(x**2 - 2*x + 1)
(2*x + 2, x - 1)
```

**coeff(***element*)**
Returns the coefficient that stands next to the given monomial.

### Parameters
- **element**: PolyElement (with is_monomial = True) or 1
Examples

```python
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ

>>> _, x, y, z = ring("x,y,z", ZZ)
>>> f = 3*x**2*y - x*y*z + 7*z**3 + 23

>>> f.coeff(x**2*y)
3
>>> f.coeff(x*y)
0
>>> f.coeff(1)
23
```

`coeffs(order=None)`

Ordered list of polynomial coefficients.

**Parameters**

- `order`: `MonomialOrder` (page 2507) or coercible, optional

**Examples**

```python
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.orderings import lex, grlex

>>> _, x, y = ring("x, y", ZZ, lex)
>>> f = x*y**7 + 2*x**2*y**3

>>> f.coeffs()
[2, 1]
>>> f.coeffs(grlex)
[1, 2]
```

`const()`

Returns the constant coefficient.

`content()`

Returns GCD of polynomial's coefficients.

`copy()`

Return a copy of polynomial self.

Polynomials are mutable; if one is interested in preserving a polynomial, and one plans to use inplace operations, one can copy the polynomial. This method makes a shallow copy.
Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.rings import ring

>>> R, x, y = ring('x, y', ZZ)
>>> p = (x + y)**2
>>> p1 = p.copy()
>>> p2 = p
>>> p[R.zero_monom] = 3
>>> p
x**2 + 2*x*y + y**2 + 3
>>> p1
x**2 + 2*x*y + y**2
>>> p2
x**2 + 2*x*y + y**2 + 3
```

degree(x=None)
The leading degree in \(x\) or the main variable.
Note that the degree of 0 is negative infinity (the SymPy object -oo).
degrees()A tuple containing leading degrees in all variables.
Note that the degree of 0 is negative infinity (the SymPy object -oo)
diff(x)Computes partial derivative in \(x\).

Examples

```python
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ

>>> _, x, y = ring("x,y", ZZ)
>>> p = x + x**2*y**3
>>> p.diff(x)
2*x*y**3 + 1
```

div(fv)Division algorithm, see [CLO] p64.

fv array of polynomials

return \(qv, r\) such that self = \(\sum(fv[i]*qv[i]) + r\)
All polynomials are required not to be Laurent polynomials.
Examples

```python
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ

>>> _, x, y = ring('x, y', ZZ)
>>> f = x**3
>>> f0 = x - y**2
>>> f1 = x - y
>>> qv, r = f.div((f0, f1))
>>> qv[0]
x**2 + x*y**2 + y**4
>>> qv[1]
0
>>> r
y**6
```

`imul_num(c)`
multiply inplace the polynomial p by an element in the coefficient ring, provided p is not one of the generators; else multiply not inplace

Examples

```python
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ

>>> _, x, y = ring('x, y', ZZ)
>>> p = x + y**2
>>> p1 = p.imul_num(3)
>>> p1
3*x + 3*y**2
>>> p1 is p
True
>>> p = x
>>> p1 = p.imul_num(3)
>>> p1
3*x
>>> p1 is p
False
```

`itercoeffs()`
Iterator over coefficients of a polynomial.

`itermonoms()`
Iterator over monomials of a polynomial.

`iterterms()`
Iterator over terms of a polynomial.

`leading_expv()`
Leading monomial tuple according to the monomial ordering.
Examples

```python
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ

>>> _, x, y, z = ring('x, y, z', ZZ)
>>> p = x**4 + x**3*y + x**2*z**2 + z**7
>>> p.leading_expv()
(4, 0, 0)
```

`leading_monom()`
Leading monomial as a polynomial element.

Examples

```python
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ

>>> _, x, y = ring('x, y', ZZ)
>>> (3*x*y + y**2).leading_monom()
x*y
```

`leading_term()`
Leading term as a polynomial element.

Examples

```python
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ

>>> _, x, y = ring('x, y', ZZ)
>>> (3*x*y + y**2).leading_term()
3*x*y
```

`listcoeffs()`
Unordered list of polynomial coefficients.

`listmonoms()`
Unordered list of polynomial monomials.

`listterms()`
Unordered list of polynomial terms.

`monic()`
Divides all coefficients by the leading coefficient.

`monoms(order=None)`
Ordered list of polynomial monomials.

Parameters

`order : MonomialOrder` (page 2507) or coercible, optional
Examples

```python
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.orderings import lex, grlex

>>> _, x, y = ring("x, y", ZZ, lex)
>>> f = x*y**7 + 2*x**2*y**3

>>> f.monoms()
[(2, 3), (1, 7)]
>>> f.monoms(grlex)
[(1, 7), (2, 3)]
```

**primitive()**

Returns content and a primitive polynomial.

**square()**

Square of a polynomial

Examples

```python
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ

>>> _, x, y = ring('x, y', ZZ)
>>> p = x + y**2
>>> p.square()
```

**strip_zero()**

Eliminate monomials with zero coefficient.

**symmetrize()**

Rewrite `self` in terms of elementary symmetric polynomials.

Returns

Triple `(p, r, m)`

- `p` is a `PolyElement` (page 2635) that represents our attempt to express `self` as a function of elementary symmetric polynomials. Each variable in `p` stands for one of the elementary symmetric polynomials. The correspondence is given by `m`.
- `r` is the remainder.
- `m` is a list of pairs, giving the mapping from variables in `p` to elementary symmetric polynomials.

The triple satisfies the equation `p.compose(m) + r == self`. If the remainder `r` is zero, `self` is symmetric. If it is nonzero, we were not able to represent `self` as symmetric.
Explanation

If this `PolyElement` (page 2635) belongs to a ring of \(n\) variables, we can try to write it as a function of the elementary symmetric polynomials on \(n\) variables. We compute a symmetric part, and a remainder for any part we were not able to symmetrize.

Examples

```python
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> R, x, y = ring("x,y", ZZ)

>>> f = x**2 + y**2
>>> f.symmetrize()
(x**2 - 2*y, 0, [(x, x + y), (y, x*y)])

>>> f = x**2 - y**2
>>> f.symmetrize()
(x**2 - 2*y, -2*y**2, [(x, x + y), (y, x*y)])
```

See also:

`sympy.polys.polyfuncts.symmetrize` (page 2501)

References

[R717]

tail_degree \((x=None)\)
The tail degree in \(x\) or the main variable.

Note that the degree of 0 is negative infinity (the SymPy object -oo)

tail_degrees()
A tuple containing tail degrees in all variables.

Note that the degree of 0 is negative infinity (the SymPy object -oo)

terms \((order=None)\)
Ordered list of polynomial terms.

Parameters

order : `MonomialOrder` (page 2507) or coercible, optional
Examples

```python
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.orderings import lex, grlex

>>> _, x, y = ring("x, y", ZZ, lex)

>>> f = x*y**7 + 2*x**2*y**3

>>> f.terms()
[((2, 3), 2), ((1, 7), 1)]

>>> f.terms(grlex)
[((1, 7), 1), ((2, 3), 2)]
```

Sparse rational functions

Sparse polynomials are represented as dictionaries.

```python
sympy.polys.fields.field(symbols, domain, order=LexOrder())

Construct new rational function field returning (field, x1, ... , xn).

sympy.polys.fields.xfield(symbols, domain, order=LexOrder())

Construct new rational function field returning (field, (x1, ..., xn)).

sympy.polys.fields.vfield(symbols, domain, order=LexOrder())

Construct new rational function field and inject generators into global namespace.

sympy.polys.fields.sfield(exprs, *symbols, **options)

Construct a field deriving generators and domain from options and input expressions.
```

Parameters

- **exprs**: `py:class:Expr` or sequence of `Expr` (page 999) (sympifiable)
- **symbols**: sequence of `Symbol` (page 1028)/`Expr` (page 999)
- **options**: keyword arguments understood by `Options` (page 2724)

Examples

```python
>>> from sympy import exp, log, symbols, sfield

>>> x = symbols("x")

>>> K, f = sfield((x*log(x) + 4*x**2)*exp(1/x + log(x)/3)/x**2)

Rational function field in x, exp(1/x), log(x), x**(1/3) over ZZ with
lex order

>>> f
(4*x**2*(exp(1/x)) + x*(exp(1/x))*(log(x)))/((x**(1/3))**5)
```

```python
class sympy.polys.fields.FracField(symbols, domain, order=LexOrder())

Multivariate distributed rational function field.
```
class sympy.polys.fields.FracElement(numer, denom=None)
Element of multivariate distributed rational function field.

diff(x)
Computes partial derivative in x.

Examples

```python
>>> from sympy.polys.fields import field
>>> from sympy.polys.domains import ZZ

>>> _, x, y, z = field("x,y,z", ZZ)
>>> ((x**2 + y)/(z + 1)).diff(x)
2*x/(z + 1)
```

**Dense polynomials**

class sympy.polys.polyclasses.DMP(rep, dom, lev=None, ring=None)
Dense Multivariate Polynomials over $K$.

LC()
Returns the leading coefficient of $f$.

TC()
Returns the trailing coefficient of $f$.

abs()
Make all coefficients in $f$ positive.

add(g)
Add two multivariate polynomials $f$ and $g$.

add_ground(c)
Add an element of the ground domain to $f$.

all_coeffs()
Returns all coefficients from $f$.

all_monoms()
Returns all monomials from $f$.

all_terms()
Returns all terms from a $f$.

cancel(g, include=True)
Cancel common factors in a rational function $f/g$.

cauych_lower_bound()
Computes the Cauchy lower bound on the nonzero roots of $f$.

cauych_upper_bound()
Computes the Cauchy upper bound on the roots of $f$. 

5.8. Topics
clear_denoms()
    Clear denominators, but keep the ground domain.
coeffs(order=None)
    Returns all non-zero coefficients from f in lex order.
cofactors(g)
    Returns GCD of f and g and their cofactors.
compose(g)
    Computes functional composition of f and g.
content()
    Returns GCD of polynomial coefficients.
convert(dom)
    Convert the ground domain of f.
count_complex_roots(inf=None, sup=None)
    Return the number of complex roots of f in [inf, sup].
count_real_roots(inf=None, sup=None)
    Return the number of real roots of f in [inf, sup].
decompose()
    Computes functional decomposition of f.
deflate()
    Reduce degree of f by mapping $x_i^m$ to $y_i$.
degree(j=0)
    Returns the leading degree of f in x_j.
degree_list()
    Returns a list of degrees of f.
diff(m=1, j=0)
    Computes the m-th order derivative of f in x_j.
discriminant()
    Computes discriminant of f.
div(g)
    Polynomial division with remainder of f and g.
eject(dom, front=False)
    Eject selected generators into the ground domain.
eval(a, j=0)
    Evaluates f at the given point a in x_j.
exclude()
    Remove useless generators from f.
    Returns the removed generators and the new excluded f.
Examples

```python
>>> from sympy.polys.polyclasses import DMP
>>> from sympy.polys.domains import ZZ

>>> DMP([[ZZ(1)]], [[ZZ(1)], [ZZ(2)]], ZZ).exclude()
([2], DMP([[1], [1, 2]], ZZ, None))
```

**exquo**

Computes polynomial exact quotient of \( f \) and \( g \).

**exquo_ground**

Exact quotient of \( f \) by an element of the ground domain.

**factor_list**

Returns a list of irreducible factors of \( f \).

**factor_list_include**

Returns a list of irreducible factors of \( f \).

**classmethod from_dict**

Construct and instance of \( \text{cls} \) from a dict representation.

**classmethod from_list**

Create an instance of \( \text{cls} \) given a list of native coefficients.

**classmethod from_sympy_list**

Create an instance of \( \text{cls} \) given a list of SymPy coefficients.

**gcd**

Returns polynomial GCD of \( f \) and \( g \).

**gcdex**

Extended Euclidean algorithm, if univariate.

**gff_list**

Computes greatest factorial factorization of \( f \).

**half_gcdex**

Half extended Euclidean algorithm, if univariate.

**homogeneous_order**

Returns the homogeneous order of \( f \).

**homogenize**

Return homogeneous polynomial of \( f \)

**inject**

Inject ground domain generators into \( f \).

**integrate**

Computes the \( m \)-th order indefinite integral of \( f \) in \( x_j \).

**intervals**

Compute isolating intervals for roots of \( f \).
invert(g)
    Invert f modulo g, if possible.

property is_cyclotomic
    Returns True if f is a cyclotomic polynomial.

property is_ground
    Returns True if f is an element of the ground domain.

property is_homogeneous
    Returns True if f is a homogeneous polynomial.

property is_irreducible
    Returns True if f has no factors over its domain.

property is_linear
    Returns True if f is linear in all its variables.

property is_monic
    Returns True if the leading coefficient of f is one.

property is_monomial
    Returns True if f is zero or has only one term.

property is_one
    Returns True if f is a unit polynomial.

property is_primitive
    Returns True if the GCD of the coefficients of f is one.

property is_quadratic
    Returns True if f is quadratic in all its variables.

property is_sqf
    Returns True if f is a square-free polynomial.

property is_zero
    Returns True if f is a zero polynomial.

l1_norm()
    Returns l1 norm of f.

l2_norm_squared()
    Return squared l2 norm of f.

lcm(g)
    Returns polynomial LCM of f and g.

lift()
    Convert algebraic coefficients to rationals.

max_norm()
    Returns maximum norm of f.

mignotte_sep_bound_squared()
    Computes the squared Mignotte bound on root separations of f.
monic()
    Divides all coefficients by LC(f).

monoms(order=None)
    Returns all non-zero monomials from f in lex order.

mul(g)
    Multiply two multivariate polynomials f and g.

mul_ground(c)
    Multiply f by a an element of the ground domain.

neg()
    Negate all coefficients in f.

norm()
    Computes Norm(f).

nth(*N)
    Returns the n-th coefficient of f.

pdiv(g)
    Polynomial pseudo-division of f and g.

per(rep, dom=None, kill=False, ring=None)
    Create a DMP out of the given representation.

permute(P)
    Returns a polynomial in K[x_P(1),...,x_P(n)].

Examples

```python
>>> from sympy.polys.polycases import DMP
>>> from sympy.polys.domains import ZZ

>>> DMP([[[ZZ(2)],[ZZ(1), ZZ(0)]],[[]]], ZZ).permute([1, 0, 2])
DMP([[[2], []], [[1, 0], []]], ZZ, None)

>>> DMP([[[ZZ(2)],[ZZ(1), ZZ(0)]],[[]]], ZZ).permute([1, 2, 0])
DMP([[[1], []], [[2, 0], []]], ZZ, None)
```

pexquo(g)
    Polynomial exact pseudo-quotient of f and g.

pow(n)
    Raise f to a non-negative power n.

pquo(g)
    Polynomial pseudo-quotient of f and g.

prem(g)
    Polynomial pseudo-remainder of f and g.

primitive()
    Returns content and a primitive form of f.
quo\( (g) \)
Computes polynomial quotient of \( f \) and \( g \).

quo\_ground\( (c) \)
Quotient of \( f \) by an element of the ground domain.

refine\_root\( (s, t, eps=None, steps=None, fast=False) \)
Refine an isolating interval to the given precision.
\( \text{eps} \) should be a rational number.

rem\( (g) \)
Computes polynomial remainder of \( f \) and \( g \).

resultant\( (g, includePRS=False) \)
Computes resultant of \( f \) and \( g \) via PRS.

revert\( (n) \)
Compute \( f**(-1) \mod x**n \).

shift\( (a) \)
Efficiently compute Taylor shift \( f(x + a) \).

slice\( (m, n, j=0) \)
Take a continuous subsequence of terms of \( f \).

sqf\_list\( (all=False) \)
Returns a list of square-free factors of \( f \).

sqf\_list\_include\( (all=False) \)
Returns a list of square-free factors of \( f \).

sqf\_norm\() \)
Computes square-free norm of \( f \).

sqf\_part() \)
Computes square-free part of \( f \).

sqr() \)
Square a multivariate polynomial \( f \).

sturm() \)
Computes the Sturm sequence of \( f \).

sub\( (g) \)
Subtract two multivariate polynomials \( f \) and \( g \).

sub\_ground\( (c) \)
Subtract an element of the ground domain from \( f \).

subresultants\( (g) \)
Computes subresultant PRS sequence of \( f \) and \( g \).

terms\( (order=\text{None}) \)
Returns all non-zero terms from \( f \) in lex order.

terms\_gcd() \)
Remove GCD of terms from the polynomial \( f \).
to_dict(zero=False)
    Convert f to a dict representation with native coefficients.

to_exact()
    Make the ground domain exact.

to_field()
    Make the ground domain a field.

to_list()
    Convert f to a list representation with native coefficients.

to_ring()
    Make the ground domain a ring.

to_sympy_dict(zero=False)
    Convert f to a dict representation with SymPy coefficients.

to_sympy_list()
    Convert f to a list representation with SymPy coefficients.

to_tuple()
    Convert f to a tuple representation with native coefficients.
    This is needed for hashing.

total_degree()
    Returns the total degree of f.

transform(p, q)
    Evaluate functional transformation q**n * f(p/q).

trunc(p)
    Reduce f modulo a constant p.

unify(g)
    Unify representations of two multivariate polynomials.

class sympy.polys.polyclasses.DMF(rep, dom, lev=None, ring=None)
    Dense Multivariate Fractions over K.

add(g)
    Add two multivariate fractions f and g.

cancel()
    Remove common factors from f.num and f.den.

denom()
    Returns the denominator of f.

exquo(g)
    Computes quotient of fractions f and g.

frac_unify(g)
    Unify representations of two multivariate fractions.

half_per(rep, kill=False)
    Create a DMP out of the given representation.
invert(check=True)
    Computes inverse of a fraction f.

property is_one
    Returns True if f is a unit fraction.

property is_zero
    Returns True if f is a zero fraction.

mul(g)
    Multiply two multivariate fractions f and g.

neg()
    Negate all coefficients in f.

numer()
    Returns the numerator of f.

per(num, den, cancel=True, kill=False, ring=None)
    Create a DMF out of the given representation.

poly_unify(g)
    Unify a multivariate fraction and a polynomial.

pow(n)
    Raise f to a non-negative power n.

quo(g)
    Computes quotient of fractions f and g.

sub(g)
    Subtract two multivariate fractions f and g.

class sympy.polys.polycrlasses.ANP(rep, mod, dom)
    Dense Algebraic Number Polynomials over a field.

LC()
    Returns the leading coefficient of f.

TC()
    Returns the trailing coefficient of f.

property is_ground
    Returns True if f is an element of the ground domain.

property is_one
    Returns True if f is a unit algebraic number.

property is_zero
    Returns True if f is a zero algebraic number.

pow(n)
    Raise f to a non-negative power n.

to_dict()
    Convert f to a dict representation with native coefficients.
to_list()
    Convert f to a list representation with native coefficients.

to_sympy_dict()
    Convert f to a dict representation with SymPy coefficients.

to_sympy_list()
    Convert f to a list representation with SymPy coefficients.

to_tuple()
    Convert f to a tuple representation with native coefficients.
    This is needed for hashing.

unify(g)
    Unify representations of two algebraic numbers.

Internals of the Polynomial Manipulation Module

The implementation of the polynomials module is structured internally in “levels”. There are four levels, called L0, L1, L2 and L3. The levels three and four contain the user-facing functionality and were described in the previous section. This section focuses on levels zero and one.

Level zero provides core polynomial manipulation functionality with C-like, low-level interfaces. Level one wraps this low-level functionality into object oriented structures. These are not the classes seen by the user, but rather classes used internally throughout the polys module.

There is one additional complication in the implementation. This comes from the fact that all polynomial manipulations are relative to a ground domain. For example, when factoring a polynomial like $x^{10} - 1$, one has to decide what ring the coefficients are supposed to belong to, or less trivially, what coefficients are allowed to appear in the factorization. This choice of coefficients is called a ground domain. Typical choices include the integers $\mathbb{Z}$, the rational numbers $\mathbb{Q}$ or various related rings and fields. But it is perfectly legitimate (although in this case uninteresting) to factorize over polynomial rings such as $k[Y]$, where $k$ is some fixed field.

Thus the polynomial manipulation algorithms (both complicated ones like factoring, and simpler ones like addition or multiplication) have to rely on other code to manipulate the coefficients. In the polynomial manipulation module, such code is encapsulated in so-called “domains”. A domain is basically a factory object: it takes various representations of data, and converts them into objects with unified interface. Every object created by a domain has to implement the arithmetic operations $+$, $-$ and $\times$. Other operations are accessed through the domain, e.g. as in $\mathbb{Z}.\text{quo}(\mathbb{Z}(4), \mathbb{Z}(2))$.

Note that there is some amount of circularity: the polynomial ring domains use the level one classes, the level one classes use the level zero functions, and level zero functions use domains. It is possible, in principle, but not in the current implementation, to work in rings like $k[X][Y]$. This would create even more layers. For this reason, working in the isomorphic ring $k[X,Y]$ is preferred.
Level Zero

Level zero contains the bulk code of the polynomial manipulation module.

Manipulation of dense, multivariate polynomials

These functions can be used to manipulate polynomials in $K[X_0, \ldots, X_u]$. Functions for manipulating multivariate polynomials in the dense representation have the prefix `dmp_`. Functions which only apply to univariate polynomials (i.e. $u = 0$) have the prefix `dup__`. The ground domain $K$ has to be passed explicitly. For many multivariate polynomial manipulation functions also the level $u$, i.e. the number of generators minus one, has to be passed. (Note that, in many cases, `dup__` versions of functions are available, which may be slightly more efficient.)

**Basic manipulation:**

```python
sympy.polys.densebasic.dmp_LC(f, K)
```

Return leading coefficient of $f$.

**Examples**

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.densebasic import poly_LC

>>> poly_LC([], ZZ)
0
>>> poly_LC([ZZ(1), ZZ(2), ZZ(3)], ZZ)
1
```

```python
denmp_TC(f, K)
```

Return trailing coefficient of $f$.

**Examples**

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.densebasic import poly_TC

>>> poly_TC([], ZZ)
0
>>> poly_TC([ZZ(1), ZZ(2), ZZ(3)], ZZ)
3
```

```python
denmp_ground_LC(f, u, K)
```

Return the ground leading coefficient.
Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.densebasic import dmp_ground_LC

>>> f = ZZ.map([[1], [2, 3]])
>>> dmp_ground_LC(f, 2, ZZ)
1
```

```
sympy.polys.densebasic.dmp_ground_TC(f, u, K)
Return the ground trailing coefficient.
```

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.densebasic import dmp_ground_TC

>>> f = ZZ.map([[1], [2, 3]])
>>> dmp_ground_TC(f, 2, ZZ)
3
```

```
sympy.polys.densebasic.dmp_true_LT(f, u, K)
Return the leading term \(c \times x_1^{n_1} \ldots x_k^{n_k} \).
```

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.densebasic import dmp_true_LT

>>> f = ZZ.map([[4], [2, 0], [3, 0, 0]])
>>> dmp_true_LT(f, 1, ZZ)
((2, 0), 4)
```

```
sympy.polys.densebasic.dmp_degree(f, u)
Return the leading degree of \(f \) in \(x_0 \) in \(K[X] \).
Note that the degree of 0 is negative infinity (the SymPy object -oo).
```
Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.densebasic import dmp_degree

>>> dmp_degree([[[]]], 2)
-oo

>>> f = ZZ.map([[2], [1, 2, 3]])

>>> dmp_degree(f, 1)
1
```

**sympy.polys.densebasic.dmp_degree_in**

Return the leading degree of \( f \) in \( x_j \) in \( K[X] \).

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.densebasic import dmp_degree_in

>>> f = ZZ.map([[2], [1, 2, 3]])

>>> dmp_degree_in(f, 0, 1)
1
>>> dmp_degree_in(f, 1, 1)
2
```

**sympy.polys.densebasic.dmp_degree_list**

Return a list of degrees of \( f \) in \( K[X] \).

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.densebasic import dmp_degree_list

>>> f = ZZ.map([[1], [1, 2, 3]])

>>> dmp_degree_list(f, 1)
(1, 2)
```

**sympy.polys.densebasic.dmp_strip**

Remove leading zeros from \( f \) in \( K[X] \).
Examples

```python
>>> from sympy.polys.densebasic import dmp_strip

>>> dmp_strip([[], [0, 1, 2], [1]], 1)
[[0, 1, 2], [1]]
```

`sympy.polys.densebasic.dmp_validate(f, K=None)`
Return the number of levels in `f` and recursively strip it.

Examples

```python
>>> from sympy.polys.densebasic import dmp_validate

>>> dmp_validate([[], [0, 1, 2], [1]])
(([[1, 2], [1]], 1)

>>> dmp_validate([[1], 1])
Traceback (most recent call last):
...
ValueError: invalid data structure for a multivariate polynomial
```

`sympy.polys.densebasic.dup_reverse(f)`
Compute \(x^n \cdot f(1/x)\), i.e.: reverse \(f\) in \(K[x]\).

Examples

```python
>>> from sympy.polys.domains import ZZ

>>> from sympy.polys.densebasic import dup_reverse

>>> f = ZZ.map([1, 2, 3, 0])

>>> dup_reverse(f)
[3, 2, 1]
```

`sympy.polys.densebasic.dmp_copy(f, u)`
Create a new copy of a polynomial \(f\) in \(K[X]\).

Examples

```python
>>> from sympy.polys.domains import ZZ

>>> from sympy.polys.densebasic import dmp_copy

>>> f = ZZ.map([[1], [1, 2]])
```
```python
>>> dmp_copy(f, 1)
[[1], [1, 2]]
```

`sympy.polys.densebasic.dmp_to_tuple(f, u)`  
Convert `f` into a nested tuple of tuples.  
This is needed for hashing. This is similar to `dmp_copy()`.

**Examples**

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.densebasic import dmp_to_tuple

>>> f = ZZ.map([[1], [1, 2]])

>>> dmp_to_tuple(f, 1)
((1,), (1, 2))
```

`sympy.polys.densebasic.dmp_normal(f, u, K)`  
Normalize a multivariate polynomial in the given domain.

**Examples**

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.densebasic import dmp_normal

>>> dmp_normal([[], [0, 1.5, 2]], 1, ZZ)
[[[1, 2]]]
```

`sympy.polys.densebasic.dmp_convert(f, u, K0, K1)`  
Convert the ground domain of `f` from `K0` to `K1`.

**Examples**

```python
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.densebasic import dmp_convert

>>> R, x = ring("x", ZZ)

>>> dmp_convert([[R(1)], [R(2)]], 1, R.to_domain(), ZZ)
[[1, 2]]

>>> dmp_convert([[ZZ(1)], [ZZ(2)]], 1, ZZ, R.to_domain())
[[1, 2]]
```

`sympy.polys.densebasic.dmp_from_sympy(f, u, K)`  
Convert the ground domain of `f` from SymPy to `K`.
Examples

```python
>>> from sympy import S
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.densebasic import dmp_from_sympy

>>> dmp_from_sympy([[S(1)], [S(2)]], 1, ZZ) == [[ZZ(1)], [ZZ(2)]]
True
```

dmp_from_sympy([S(1)], [S(2)]), 1, ZZ) == [[ZZ(1)], [ZZ(2)]]

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.densebasic import dmp_nth

>>> f = ZZ.map([[1], [2], [3]])

>>> dmp_nth(f, 0, 1, ZZ)
[3]
>>> dmp_nth(f, 4, 1, ZZ)
[]
```

dmp_nth(f, n, u, K)
Return the n-th coefficient of f in K[x].

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.densebasic import dmp_ground_nth

>>> f = ZZ.map([[1], [2], [3]])

>>> dmp_ground_nth(f, (0, 1), 1, ZZ)
2
```

dmp_ground_nth(f, N, u, K)
Return the ground n-th coefficient of f in K[x].

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.densebasic import dmp_zero_p

>>> dmp_zero_p(f, u)
```

dmp_zero_p(f, u)
Return True if f is zero in K[X].

5.8. Topics
Examples

```python
>>> from sympy.polys.densebasic import dmp_zero_p

>>> dmp_zero_p([[[]]], 4)
True
>>> dmp_zero_p([[[]]], 4)
False
```

`sympy.polys.densebasic.dmp_zero(u)`

Return a multivariate zero.

Examples

```python
>>> from sympy.polys.densebasic import dmp_zero

>>> dmp_zero(4)
[[[[[]]]]]
```

`sympy.polys.densebasic.dmp_one_p(f, u, K)`

Return True if f is one in \( K[X] \).

Examples

```python
>>> from sympy.polys.domains import ZZ

>>> from sympy.polys.densebasic import dmp_one_p

>>> dmp_one_p([[ZZ(1)]], 2, ZZ)
True
```

`sympy.polys.densebasic.dmp_one(u, K)`

Return a multivariate one over \( K \).

Examples

```python
>>> from sympy.polys.domains import ZZ

>>> from sympy.polys.densebasic import dmp_one

>>> dmp_one(2, ZZ)
[[[1]]]
```

`sympy.polys.densebasic.dmp_ground_p(f, c, u)`

Return True if \( f \) is constant in \( K[X] \).
Examples

```python
from sympy.polys.densebasic import dmp_ground_p

>>> dmp_ground_p([[3]], 3, 2)
True
>>> dmp_ground_p([[4]], None, 2)
True
```

`syrpy.polys.densebasic.dmp_ground(c, u)`
Return a multivariate constant.

Examples

```python
from sympy.polys.densebasic import dmp_ground

>>> dmp_ground(3, 5)
[[[[[3]]]]]
>>> dmp_ground(1, -1)
1
```

`syrpy.polys.densebasic.dmp_zeros(n, u, K)`
Return a list of multivariate zeros.

Examples

```python
from sympy.polys.domains import ZZ
from sympy.polys.densebasic import dmp_zeros

>>> dmp_zeros(3, 2, ZZ)
[[[[]]], [[[]]], [[[]]]]
>>> dmp_zeros(3, -1, ZZ)
[0, 0, 0]
```

`syrpy.polys.densebasic.dmp_grounds(c, n, u)`
Return a list of multivariate constants.

Examples

```python
from sympy.polys.domains import ZZ
from sympy.polys.densebasic import dmp_grounds

>>> dmp_grounds(ZZ(4), 3, 2)
[[[[4]]], [[[[4]]]], [[[4]]]]
>>> dmp_grounds(ZZ(4), 3, -1)
[4, 4, 4]
```
SymPy Documentation, Release 1.12.1

sympy.polys.densebasic.dmp_negative_p(f, u, K)

Return True if LC(f) is negative.

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.densebasic import dmp_negative_p

>>> dmp_negative_p([[ZZ(1)], [-ZZ(1)]], 1, ZZ)
False
>>> dmp_negative_p([[-ZZ(1)], [ZZ(1)]], 1, ZZ)
True
```

sympy.polys.densebasic.dmp_positive_p(f, u, K)

Return True if LC(f) is positive.

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.densebasic import dmp_positive_p

>>> dmp_positive_p([[ZZ(1)], [-ZZ(1)]], 1, ZZ)
True
>>> dmp_positive_p([[-ZZ(1)], [ZZ(1)]], 1, ZZ)
False
```

sympy.polys.densebasic.dmp_from_dict(f, u, K)

Create a K[X] polynomial from a dict.

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.densebasic import dmp_from_dict

>>> dmp_from_dict({(0, 0): ZZ(3), (0, 1): ZZ(2), (2, 1): ZZ(1)}, 1, ZZ)
[[1, 0], [], [2, 3]]
>>> dmp_from_dict({}, 0, ZZ)
[]
```

sympy.polys.densebasic.dmp_to_dict(f, u, K=None, zero=False)

Convert a K[X] polynomial to a dict.`"
Examples

```python
>>> from sympy.polys.densebasic import dmp_to_dict

>>> dmp_to_dict([[[1, 0], [1, [2, 3]]], 1])
{(0, 0): 3, (0, 1): 2, (2, 1): 1}
>>> dmp_to_dict([], 0)
{}
```

sympy.polys.densebasic.dmp_swap(f, i, j, u, K)

Transform $K[x_{i}..x_{j}]$ to $K[x_{j}..x_{i}]$.

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.densebasic import dmp_swap

>>> f = ZZ.map([[[2], [1, 0]], []])

>>> dmp_swap(f, 0, 1, 2, ZZ)
[][]
>>> dmp_swap(f, 1, 2, 2, ZZ)
[[], [2, 0]]
>>> dmp_swap(f, 0, 2, 2, ZZ)
[[], [2, 0]]
```

sympy.polys.densebasic.dmp_permute(f, P, u, K)

Return a polynomial in $K[x_{P(1)},..,x_{P(n)}]$.

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.densebasic import dmp_permute

>>> f = ZZ.map([[[2], [1, 0]], []])

>>> dmp_permute(f, [1, 0, 2], 2, ZZ)
[][]
>>> dmp_permute(f, [1, 2, 0], 2, ZZ)
[[], [2, 0]]
```

sympy.polys.densebasic.dmp_nest(f, l, K)

Return a multivariate value nested $l$-levels.
sympy.polys.densebasic.dmp_nest(f, l, u, K)
    Return a multivariate polynomial raised l-levels.

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.densebasic import dmp_nest

>>> dmp_nest([[ZZ(1)]], 2, ZZ)
[[[[1]]]]
```

sympy.polys.densebasic.dmp_raise(f, l, u, K)
    Map \( x_i^{m_i} \) to \( y_i \) in a polynomial in \( K[X] \).

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.densebasic import dmp_raise

>>> f = ZZ.map([[1, 2]])

>>> dmp_raise(f, 2, 1, ZZ)
[[[[1]], [[1]], [[2]]]]
```

sympy.polys.densebasic.dmp_deflate(f, u, K)
    Map \( x_i^{m_i} \) to \( y_i \) in a polynomial in \( K[X] \).

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.densebasic import dmp_deflate

>>> f = ZZ.map([[1, 2], [], [3, 4]])

>>> dmp_deflate(f, 1, ZZ)
((2, 3), [[1, 2], [3, 4]])
```

sympy.polys.densebasic.dmp_multi_deflate(polys, u, K)
    Map \( x_i^{m_i} \) to \( y_i \) in a set of polynomials in \( K[X] \).

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.densebasic import dmp_multi_deflate

>>> f = ZZ.map([[1, 2], [], [3, 4]])

>>> g = ZZ.map([[1, 2], [], [3, 4]])
```
```python
>>> dmp_multi_deflate((f, g), 1, ZZ)
((2, 1), [[[1, 0, 2], [3, 0, 4]], [[1, 2], [3, 4]]])
```
Examples

```python
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.densebasic import dmp_inject

>>> R, x, y = ring(“x,y”, ZZ)

>>> dmp_inject([R(1), x + 2], 0, R.to_domain())
([[1]], [[1], [2]], 2)

>>> dmp_inject([R(1), x + 2], 0, R.to_domain(), front=True)
([[1]], [[1, 2]], 2)
```

sympy.polys.densebasic.dmp_eject(f, u, K, front=False)

Convert f from K[X,Y] to K[X][Y].

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.densebasic import dmp_eject

>>> dmp_eject([[1]], [[1], [2]], 2, ZZ[‘x’, ‘y’])
[1, x + 2]
```

sympy.polys.densebasic.dmp_terms_gcd(f, u, K)

Remove GCD of terms from f in K[X].

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.densebasic import dmp_terms_gcd

>>> f = ZZ.map([[1, 0], [1, 0, 0], [], []])

>>> dmp_terms_gcd(f, 1, ZZ)
((2, 1), [[1], [1, 0]])
```

sympy.polys.densebasic.dmp_list_terms(f, u, K, order=None)

List all non-zero terms from f in the given order order.
Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.densebasic import dmp_list_terms

>>> f = ZZ.map([[1, 1], [2, 3]])

>>> dmp_list_terms(f, 1, ZZ)
[((1, 1), 1), ((1, 0), 1), ((0, 1), 2), ((0, 0), 3)]

>>> dmp_list_terms(f, 1, ZZ, order='grevlex')
[((1, 1), 1), ((1, 0), 1), ((0, 1), 2), ((0, 0), 3)]
```

`sympy.polys.densebasic.dmp_apply_pairs(f, g, h, args, u, K)`
Apply h to pairs of coefficients of f and g.

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.densebasic import dmp_apply_pairs

>>> h = lambda x, y, z: 2*x + y - z

>>> dmp_apply_pairs([[1], [2, 3]], [[3], [2, 1]], h, (1,), 1, ZZ)
[[4], [5, 6]]
```

`sympy.polys.densebasic.dmp_slice(f, m, n, u, K)`
Take a continuous subsequence of terms of f in K[X].

`sympy.polys.densebasic.dup_random(n, a, b, K)`
Return a polynomial of degree n with coefficients in [a, b].

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.densebasic import dup_random

>>> dup_random(3, -10, 10, ZZ)
[-2, -8, 9, -4]
```

Arithmetic operations:

`sympy.polys.densearith.dmp_add_term(f, c, i, u, K)`
Add c(x_2..x_u)*x_0**i to f in K[X].
### Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x,y", ZZ)

>>> R.dmp_add_term(x*y + 1, 2, 2)
2*x**2 + x*y + 1
```

**sympy.polys.densearith.dmp_sub_term**(*f*, *c*, *i*, *u*, *K*)

Subtract \( c(x_{2..u})x_0^i \) from \( f \) in \( K[X] \).

### Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x,y", ZZ)

>>> R.dmp_sub_term(2*x**2 + x*y + 1, 2, 2)
x*y + 1
```

**sympy.polys.densearith.dmp_mul_term**(*f*, *c*, *i*, *u*, *K*)

Multiply \( f \) by \( c(x_{2..u})x_0^i \) in \( K[X] \).

### Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x,y", ZZ)

>>> R.dmp_mul_term(x**2*y + x, 3*y, 2)
3*x**4*y**2 + 3*x**3*y
```

**sympy.polys.densearith.dmp_add_ground**(*f*, *c*, *u*, *K*)

Add an element of the ground domain to \( f \).

### Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x,y", ZZ)

>>> R.dmp_add_ground(x**3 + 2*x**2 + 3*x + 4, ZZ(4))
x**3 + 2*x**2 + 3*x + 8
```

**sympy.polys.densearith.dmp_sub_ground**(*f*, *c*, *u*, *K*)

Subtract an element of the ground domain from \( f \).
Examples

```python
>>> from sympy.polys import ring, ZZ

>>> R, x, y = ring("x,y", ZZ)

>>> R.dmp_sub_ground(x**3 + 2*x**2 + 3*x + 4, ZZ(4))

x**3 + 2*x**2 + 3*x
```

`sympy.polys.densearith.dmp_mul_ground(f, c, u, K)`

Multiply `f` by a constant value in `K[X]`.

Examples

```python
>>> from sympy.polys import ring, ZZ

>>> R, x, y = ring("x,y", ZZ)

>>> R.dmp_mul_ground(2*x + 2*y, ZZ(3))

6*x + 6*y
```

`sympy.polys.densearith.dmp_quo_ground(f, c, u, K)`

Quotient by a constant in `K[X]`.

Examples

```python
>>> from sympy.polys import ring, ZZ, QQ

>>> R, x, y = ring("x,y", ZZ)

>>> R.dmp_quo_ground(2*x**2*y + 3*x, ZZ(2))

x**2*y + x
```

```python
>>> R, x, y = ring("x,y", QQ)

>>> R.dmp_quo_ground(2*x**2*y + 3*x, QQ(2))

x**2*y + 3/2*x
```

`sympy.polys.densearith.dmp_exquo_ground(f, c, u, K)`

Exact quotient by a constant in `K[X]`.

Examples

```python
>>> from sympy.polys import ring, QQ

>>> R, x, y = ring("x,y", QQ)

>>> R.dmp_exquo_ground(x**2*y + 2*x, QQ(2))

1/2*x**2*y + x
```

`sympy.polys.densearith.dup_lshift(f, n, K)`

Efficiently multiply `f` by `x**n` in `K[x]`.

5.8. Topics 2667
**Examples**

```python
>>> from sympy.polys import ring, ZZ
>>> R, x = ring("x", ZZ)

>>> R.dup_lshift(x**2 + 1, 2)
x**4 + x**2
```

`sympy.polys.densearith.dup_rshift(f, n, K)`

Efficiently divide \( f \) by \( x^n \) in \( K[x] \).

**Examples**

```python
>>> from sympy.polys import ring, ZZ

>>> R, x = ring("x", ZZ)

>>> R.dup_rshift(x**4 + x**2, 2)
x**2 + 1
>>> R.dup_rshift(x**4 + x**2 + 2, 2)
x**2 + 1
```

`sympy.polys.densearith.dmp_abs(f, u, K)`

Make all coefficients positive in \( K[X] \).

**Examples**

```python
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x,y", ZZ)

>>> R.dmp_abs(x**2*y - x)
x**2*y + x
```

`sympy.polys.densearith.dmp_neg(f, u, K)`

Negate a polynomial in \( K[X] \).

**Examples**

```python
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x,y", ZZ)

>>> R.dmp_neg(x**2*y - x)
-x**2*y + x
```

`sympy.polys.densearith.dmp_add(f, g, u, K)`

Add dense polynomials in \( K[X] \).
Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x,y = ring("x,y", ZZ)

>>> R.dmp_add(x**2 + y, x**2*y + x)
2*x**2*y + x**2 + x + y
```

sympy.polys.densearith.dmp_sub(f, g, u, K)
Subtract dense polynomials in K[X].

Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x,y = ring("x,y", ZZ)

>>> R.dmp_sub(x**2 + y, x**2*y + x)
-x**2*y + x**2 - x + y
```

sympy.polys.densearith.dmp_add_mul(f, g, h, u, K)
Returns $f + g \cdot h$ where $f$, $g$, $h$ are in $K[X]$.

Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x,y = ring("x,y", ZZ)

>>> R.dmp_add_mul(x**2 + y, x, x + 2)
2*x**2 + 2*x + y
```

sympy.polys.densearith.dmp_sub_mul(f, g, h, u, K)
Returns $f - g \cdot h$ where $f$, $g$, $h$ are in $K[X]$.

Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x,y = ring("x,y", ZZ)

>>> R.dmp_sub_mul(x**2 + y, x, x + 2)
-2*x + y
```

sympy.polys.densearith.dmp_mul(f, g, u, K)
Multiply dense polynomials in $K[X]$. 2669
**Examples**

```python
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x,y", ZZ)

>>> R.dmp_mul(x*y + 1, x)
x**2*y + x
```

`sympy.polys.densearith.dmp_sqr(f, u, K)`

Square dense polynomials in $K[X]$.

**Examples**

```python
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x,y", ZZ)

>>> R.dmp_sqr(x**2 + x*y + y**2)
x**4 + 2*x**3*y + 3*x**2*y**2 + 2*x*y**3 + y**4
```

`sympy.polys.densearith.dmp_pow(f, n, u, K)`

Raise $f$ to the $n$-th power in $K[X]$.

**Examples**

```python
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x,y", ZZ)

>>> R.dmp_pow(x*y + 1, 3)
x**3*y**3 + 3*x**2*y**2 + 3*x*y + 1
```

`sympy.polys.densearith.dmp_pdiv(f, g, u, K)`

Polynomial pseudo-division in $K[X]$.

**Examples**

```python
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x,y", ZZ)

>>> R.dmp_pdiv(x**2 + x*y, 2*x + 2)
(2*x + 2*y - 2, -4*y + 4)
```

`sympy.polys.densearith.dmp_prem(f, g, u, K)`

Polynomial pseudo-remainder in $K[X]$.
Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x,y = ring("x,y", ZZ)

>>> R.dmp_prem(x**2 + x*y, 2*x + 2)
-4*y + 4
```

sympy.polys.densearith.dmp_pquo(f, g, u, K)
Polynomial exact pseudo-quotient in K[X].

Examples

```python
>>> from sympy.polys import ring, ZZ

>>> f = x**2 + x*y
>>> g = 2*x + 2*y
>>> h = 2*x + 2

>>> R.dmp_pquo(f, g)
2*x

>>> R.dmp_pquo(f, h)
2*x + 2*y - 2
```

sympy.polys.densearith.dmp_pexquo(f, g, u, K)
Polynomial pseudo-quotient in K[X].

Examples

```python
>>> from sympy.polys import ring, ZZ

>>> f = x**2 + x*y
>>> g = 2*x + 2*y
>>> h = 2*x + 2

>>> R.dmp_pexquo(f, g)
2*x

>>> R.dmp_pexquo(f, h)
Traceback (most recent call last):
...
ExactQuotientFailed: [[2], [2]] does not divide [[1], [1, 0], []]
```

sympy.polys.densearith.dmp_rr_div(f, g, u, K)
Multivariate division with remainder over a ring.
SymPy Documentation, Release 1.12.1

Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x,y = ring("x,y", ZZ)

>>> R.dmp_rr_div(x**2+x*y, 2*x + 2)
(0, x**2 + x*y)
```

sympy.polys.densearith.dmp_ff_div(f, g, u, K)
Polynomial division with remainder over a field.

Examples

```python
>>> from sympy.polys import ring, QQ
>>> R, x,y = ring("x,y", QQ)

>>> R.dmp_ff_div(x**2 + x*y, 2*x + 2)
(1/2*x + 1/2*y - 1/2, -y + 1)
```

sympy.polys.densearith.dmp_div(f, g, u, K)
Polynomial division with remainder in K[X].

Examples

```python
>>> from sympy.polys import ring, ZZ, QQ
>>> R, x,y = ring("x,y", ZZ)

>>> R.dmp_div(x**2 + x*y, 2*x + 2)
(0, x**2 + x*y)

>>> R, x,y = ring("x,y", QQ)

>>> R.dmp_div(x**2 + x*y, 2*x + 2)
(1/2*x + 1/2*y - 1/2, -y + 1)
```

sympy.polys.densearith.dmp_rem(f, g, u, K)
Returns polynomial remainder in K[X].

Examples

```python
>>> from sympy.polys import ring, ZZ, QQ
>>> R, x,y = ring("x,y", ZZ)

>>> R.dmp_rem(x**2 + x*y, 2*x + 2)
x**2 + x*y
```
```python
>>> R, x, y = ring("x,y", QQ)
>>> R.dmp_rem(x**2 + x*y, 2*x + 2)
-y + 1
```

sympy.polys.densearith.dmp_quo(f, g, u, K)

Returns exact polynomial quotient in K[X].

**Examples**

```python
>>> from sympy.polys import ring, ZZ, QQ

>>> R, x, y = ring("x,y", ZZ)
>>> R.dmp_quo(x**2 + x*y, 2*x + 2)
0

>>> R, x, y = ring("x,y", QQ)
>>> R.dmp_quo(x**2 + x*y, 2*x + 2)
1/2*x + 1/2*y - 1/2
```

sympy.polys.densearith.dmp_exquo(f, g, u, K)

Returns polynomial quotient in K[X].

**Examples**

```python
>>> from sympy.polys import ring, ZZ

>>> R, x, y = ring("x,y", ZZ)

>>> f = x**2 + x*y
>>> g = x + y
>>> h = 2*x + 2

>>> R.dmp_exquo(f, g)
x

>>> R.dmp_exquo(f, h)
Traceback (most recent call last):
...
ExactQuotientFailed: [[2], [2]] does not divide [[1], [1, 0], []]
```

sympy.polys.densearith.dmp_max_norm(f, u, K)

Returns maximum norm of a polynomial in K[X].
Examples

```python
from sympy.polys import ring, ZZ

R, x, y = ring("x,y", ZZ)

R.dmp_max_norm(2*x*y - x - 3)
```

SymPy.polys.densearith.dmp_l1_norm(f, u, K)

Returns l1 norm of a polynomial in K[X].

Examples

```python
from sympy.polys import ring, ZZ

R, x, y = ring("x,y", ZZ)

R.dmp_l1_norm(2*x*y - x - 3)
```

SymPy.polys.densearith.dmp_expand(polys, u, K)

Multiply together several polynomials in K[X].

Examples

```python
from sympy.polys import ring, ZZ

R, x, y = ring("x,y", ZZ)

R.dmp_expand([x**2 + y**2, x + 1])
x**3 + x**2 + x*y**2 + y**2
```

Further tools:

SymPy.polys.densetools.dmp_integrate(f, m, u, K)

Computes the indefinite integral of f in x_0 in K[X].

Examples

```python
from sympy.polys import ring, QQ

R, x, y = ring("x,y", QQ)

R.dmp_integrate(x + 2*y, 1)
1/2*x**2 + 2*x*y
R.dmp_integrate(x + 2*y, 2)
1/6*x**3 + x**2*y
```

SymPy.polys.densetools.dmp_integrate_in(f, m, j, u, K)

Computes the indefinite integral of f in x_j in K[X].
Examples

```python
>>> from sympy.polys import ring, QQ
>>> R, x,y = ring("x,y", QQ)

>>> R.dmp_integrate_in(x + 2*y, 1, 0)
1/2*x**2 + 2*x*y
>>> R.dmp_integrate_in(x + 2*y, 1, 1)
x*y + y**2
```

`sympy.polys.densetools.dmp_diff(f, m, u, K)`

m-th order derivative in x_0 of a polynomial in K[X].

Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x,y = ring("x,y", ZZ)

>>> f = x*y**2 + 2*x*y + 3*x + 2*y**2 + 3*y + 1

>>> R.dmp_diff(f, 1)
y**2 + 2*y + 3
>>> R.dmp_diff(f, 2)
0
```

`sympy.polys.densetools.dmp_diff_in(f, m, j, u, K)`

m-th order derivative in x_j of a polynomial in K[X].

Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x,y = ring("x,y", ZZ)

>>> f = x*y**2 + 2*x*y + 3*x + 2*y**2 + 3*y + 1

>>> R.dmp_diff_in(f, 1, 0)
y**2 + 2*y + 3
>>> R.dmp_diff_in(f, 1, 1)
2*x*y + 2*x + 4*y + 3
```

`sympy.polys.densetools.dmp_eval(f, a, u, K)`

Evaluate a polynomial at x_0 = a in K[X] using the Horner scheme.
SymPy Documentation, Release 1.12.1

Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x,y = ring("x,y", ZZ)

>>> R.dmp_eval(2*x*y + 3*x + y + 2, 2)
5*y + 8
```

sympy.polys.densetools.dmp_eval_in(f, a, j, u, K)

Evaluate a polynomial at x_j = a in K[X] using the Horner scheme.

Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x,y = ring("x,y", ZZ)

>>> f = 2*x*y + 3*x + y + 2

>>> R.dmp_eval_in(f, 2, 0)
5*y + 8
>>> R.dmp_eval_in(f, 2, 1)
7*x + 4
```

sympy.polys.densetools.dmp_eval_tail(f, A, u, K)

Evaluate a polynomial at x_j = a_j, ... in K[X].

Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x,y = ring("x,y", ZZ)

>>> f = 2*x*y + 3*x + y + 2

>>> R.dmp_eval_tail(f, [2])
7*x + 4
>>> R.dmp_eval_tail(f, [2, 2])
18
```

sympy.polys.densetools.dmp_diff_eval_in(f, m, a, j, u, K)

Differentiate and evaluate a polynomial in x_j at a in K[X].
Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x,y = ring("x,y", ZZ)

>>> f = x*y**2 + 2*x*y + 3*x + 2*y**2 + 3*y + 1

>>> R.dmp_diff_eval_in(f, 1, 2, 0)
y**2 + 2*y + 3
>>> R.dmp_diff_eval_in(f, 1, 2, 1)
6*x + 11
```

`sympy.polys.densetools.dmp_trunc(f, p, u, K)`
Reduce a $K[X]$ polynomial modulo a polynomial $p$ in $K[Y]$.

Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x,y = ring("x,y", ZZ)

>>> f = 3*x**2*y + 8*x**2 + 5*x*y + 6*x + 2*y + 3
>>> g = (y - 1).drop(x)

>>> R.dmp_trunc(f, g)
11*x**2 + 11*x + 5
```

`sympy.polys.densetools.dmp_ground_trunc(f, p, u, K)`
Reduce a $K[X]$ polynomial modulo a constant $p$ in $K$.

Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x,y = ring("x,y", ZZ)

>>> f = 3*x**2*y + 8*x**2 + 5*x*y + 6*x + 2*y + 3

>>> R.dup_ground_trunc(f, ZZ(3))
-x**2 - x*y - y
```

`sympy.polys.densetools.dup_monic(f, K)`
Divide all coefficients by $LC(f)$ in $K[x]$.

5.8. Topics 2677
Examples

>>> from sympy.polys import ring, ZZ, QQ

```python
>>> R, x = ring("x", ZZ)
>>> R.dup_monic(3*x**2 + 6*x + 9)
x**2 + 2*x + 3
```

```python
>>> R, x = ring("x", QQ)
>>> R.dup_monic(3*x**2 + 4*x + 2)
x**2 + 4/3*x + 2/3
```

```python
sympy.polys.densetools.dmp_ground_monic(f, u, K)
Divide all coefficients by LC(f) in K[X].
```

Examples

```python
>>> from sympy.polys import ring, ZZ, QQ

>>> R, x, y = ring("x,y", ZZ)
>>> f = 3*x**2*y + 6*x**2 + 3*x*y + 9*y + 3
```

```python
>>> R.dmp_ground_monic(f)
x**2*y + 2*x**2 + x*y + 3*y + 1
```

```python
>>> R, x, y = ring("x,y", QQ)
>>> f = 3*x**2*y + 8*x**2 + 5*x*y + 6*x + 2*y + 3
```

```python
>>> R.dmp_ground_monic(f)
x**2*y + 2/3*x**2 + 5/3*x*y + 2*x + 2/3*y + 1
```

```python
sympy.polys.densetools.dup_content(f, K)
Compute the GCD of coefficients of f in K[x].
```

Examples

```python
>>> from sympy.polys import ring, ZZ, QQ

```python
>>> R, x = ring("x", ZZ)
>>> f = 6*x**2 + 8*x + 12
```

```python
>>> R.dup_content(f)
2
```

```python
>>> R, x = ring("x", QQ)
>>> f = 6*x**2 + 8*x + 12
```
sympy.polys.densetools.dmp_ground_content(f, u, K)
Compute the GCD of coefficients of f in K[X].

Examples

```python
>>> from sympy.polys import ring, ZZ, QQ

>>> R, x,y = ring("x,y", ZZ)
>>> f = 2*x*y + 6*x + 4*y + 12
>>> R.dmp_ground_content(f)
2

>>> R, x,y = ring("x,y", QQ)
>>> f = 2*x*y + 6*x + 4*y + 12
>>> R.dmp_ground_content(f)
2
```

sympy.polys.densetools.dup_primitive(f, K)
Compute content and the primitive form of f in K[x].

Examples

```python
>>> from sympy.polys import ring, ZZ, QQ

>>> R, x = ring("x", ZZ)
>>> f = 6*x**2 + 8*x + 12
>>> R.dup_primitive(f)
(2, 3*x**2 + 4*x + 6)

>>> R, x = ring("x", QQ)
>>> f = 6*x**2 + 8*x + 12
>>> R.dup_primitive(f)
(2, 3*x**2 + 4*x + 6)
```

sympy.polys.densetools.dmp_ground_primitive(f, u, K)
Compute content and the primitive form of f in K[X].
Examples

```python
>>> from sympy import ring, ZZ, QQ

>>> R, x, y = ring("x, y", ZZ)
>>> f = 2*x*y + 6*x + 4*y + 12

>>> R.dmp_ground_primitive(f)
(2, x*y + 3*x + 2*y + 6)

>>> R, x, y = ring("x, y", QQ)
>>> f = 2*x*y + 6*x + 4*y + 12

>>> R.dmp_ground_primitive(f)
(2, x*y + 3*x + 2*y + 6)
```

`sympy.polys.densetools.dup_extract(f, g, K)`

Extract common content from a pair of polynomials in `K[x]`.

Examples

```python
>>> from sympy import ring, ZZ

>>> R, x = ring("x", ZZ)

>>> R.dup_extract(6*x**2 + 12*x + 18, 4*x**2 + 8*x + 12)
(2, 3*x**2 + 6*x + 9, 2*x**2 + 4*x + 6)
```

`sympy.polys.densetools.dmp_ground_extract(f, g, u, K)`

Extract common content from a pair of polynomials in `K[X]`.

Examples

```python
>>> from sympy import ring, ZZ

>>> R, x, y = ring("x, y", ZZ)

>>> R.dmp_ground_extract(6*x*y + 12*x + 18, 4*x*y + 8*x + 12)
(2, 3*x*y + 6*x + 9, 2*x*y + 4*x + 6)
```

`sympy.polys.densetools.dup_real_imag(f, K)`

Return bivariate polynomials f1 and f2, such that f = f1 + f2*I.
Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x, y", ZZ)

>>> R.dup_real_imag(x**3 + x**2 + x + 1)
(x**3 + x**2 - 3*x*y**2 + x - y**2 + 1, 3*x**2*y + 2*x*y - y**3 + y)
```

`sympy.polys.densetools.dup_mirror(f, K)`
Evaluate efficiently the composition \(f(-x) \) in \(K[x] \).

Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x = ring("x", ZZ)

>>> R.dup_mirror(x**3 + 2*x**2 - 4*x + 2)
-x**3 + 2*x**2 + 4*x + 2
```

`sympy.polys.densetools.dup_scale(f, a, K)`
Evaluate efficiently composition \(f(a*x) \) in \(K[x] \).

Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x = ring("x", ZZ)

>>> R.dup_scale(x**2 - 2*x + 1, ZZ(2))
4*x**2 - 4*x + 1
```

`sympy.polys.densetools.dup_shift(f, a, K)`
Evaluate efficiently Taylor shift \(f(x + a) \) in \(K[x] \).

Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x = ring("x", ZZ)

>>> R.dup_shift(x**2 - 2*x + 1, ZZ(2))
x**2 + 2*x + 1
```

`sympy.polys.densetools.dup_transform(f, p, q, K)`
Evaluate functional transformation \(q^n \cdot f(p/q) \) in \(K[x] \).
symy.polys.densetools.dmp_compose(f, g, u, K)
Evaluate functional composition f(g) in K[X].

Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x,y", ZZ)
>>> R.dmp_compose(x*y + 2*x + y, y)
y**2 + 3*y
```

symy.polys.densetools.dup_decompose(f, K)
Computes functional decomposition of f in K[x].

Given a univariate polynomial f with coefficients in a field of characteristic zero, returns list \([f_1, f_2, \ldots, f_n]\), where:

\[
f = f_1 \circ f_2 \circ \ldots \circ f_n = f_1(f_2(\ldots f_n))
\]

and \(f_2, \ldots, f_n\) are monic and homogeneous polynomials of at least second degree. Unlike factorization, complete functional decompositions of polynomials are not unique, consider examples:

1. \(f \circ g = f(x + b) \circ (g - b)\)
2. \(x^{**n} \circ x^{**m} = x^{**m} \circ x^{**n}\)
3. \(T_n \circ T_m = T_m \circ T_n\)

where \(T_n\) and \(T_m\) are Chebyshev polynomials.

Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x = ring("x", ZZ)
>>> R.dup_decompose(x**4 - 2*x**3 + x**2)
[x**2, x**2 - x]
```
References

[R718]
sympy.polys.densetools.dmp_lift(f, u, K)
Convert algebraic coefficients to integers in K[X].

Examples

```python
>>> from sympy.polys import ring, QQ
>>> from sympy import I

>>> K = QQ.algebraic_field(I)
>>> R, x = ring("x", K)

>>> f = x**2 + K([QQ(1), QQ(0)])*x + K([QQ(2), QQ(0)])

>>> R.dmp_lift(f)
x**8 + 2*x**6 + 9*x**4 - 8*x**2 + 16
```

sympy.polys.densetools.dup_sign_variations(f, K)
Compute the number of sign variations of f in K[x].

Examples

```python
>>> from sympy.polys import ring, ZZ

>>> R, x = ring("x", ZZ)

>>> R.dup_sign_variations(x**4 - x**2 - x + 1)
2
```

sympy.polys.densetools.dmp_clear_denoms(f, u, K0, K1=None, convert=False)
Clear denominators, i.e. transform K_0 to K_1.

Examples

```python
>>> from sympy.polys import ring, QQ

>>> R, x,y = ring("x,y", QQ)

>>> f = QQ(1,2)*x + QQ(1,3)*y + 1

>>> R.dmp_clear_denoms(f, convert=False)
(6, 3*x + 2*y + 6)
```

sympy.polys.densetools.dmp_revert(f, g, u, K)
Compute f**(-1) mod x**n using Newton iteration.
Examples

```python
>>> from sympy.polys import ring, QQ
>>> R, x,y = ring("x,y", QQ)
```

Manipulation of dense, univariate polynomials with finite field coefficients

Functions in this module carry the prefix `gf_`, referring to the classical name “Galois Fields” for finite fields. Note that many polynomial factorization algorithms work by reduction to the finite field case, so having special implementations for this case is justified both by performance, and by the necessity of certain methods which do not even make sense over general fields.

```python
sympy.polys.galoistools.gf_crt(U, M, K=None)
```
Chinese Remainder Theorem.

Given a set of integer residues \(u_0,\ldots,u_n \) and a set of co-prime integer moduli \(m_0,\ldots,m_n \), returns an integer \(u \), such that \(u = u_i \mod m_i \) for \(i = 0,\ldots,n \).

Examples

Consider a set of residues \(U = [49, 76, 65] \) and a set of moduli \(M = [99, 97, 95] \). Then we have:

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_crt

>>> gf_crt([49, 76, 65], [99, 97, 95], ZZ)
639985
```

This is the correct result because:

```python
>>> [639985 % m for m in [99, 97, 95]]
[49, 76, 65]
```

Note: this is a low-level routine with no error checking.

See also:

* `sympy.ntheory.modular.crt` (page 1554)
 a higher level crt routine

* `sympy.ntheory.modular.solve_congruence` (page 1556)

* `sympy.polys.galoistools.gf_crt1(M, K)`
 First part of the Chinese Remainder Theorem.
Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_crt1

>>> gf_crt1([99, 97, 95], ZZ)
(912285, [9215, 9405, 9603], [62, 24, 12])
```

```
sympy.polys.galoistools.gf_crt2(U, M, p, E, S, K)
Second part of the Chinese Remainder Theorem.
```

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_crt2

>>> U = [49, 76, 65]
>>> M = [99, 97, 95]
>>> p = 912285
>>> E = [9215, 9405, 9603]
>>> S = [62, 24, 12]

>>> gf_crt2(U, M, p, E, S, ZZ)
639985
```

```
sympy.polys.galoistools.gf_int(a, p)
Coerce a mod p to an integer in the range [-p/2, p/2].
```

```python
>>> from sympy.polys.galoistools import gf_int

>>> gf_int(2, 7)
2
>>> gf_int(5, 7)
-2
```

```
sympy.polys.galoistools.gf_degree(f)
Return the leading degree of f.
```
Examples

```python
>>> from sympy.polys.galoistools import gf_degree

>>> gf_degree([1, 1, 2, 0])
3
>>> gf_degree([])
-1
```

`sympy.polys.galoistools.gf_LC(f, K)`
Return the leading coefficient of \(f \).

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_LC

>>> gf_LC([3, 0, 1], ZZ)
3
```

`sympy.polys.galoistools.gf_TC(f, K)`
Return the trailing coefficient of \(f \).

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_TC

>>> gf_TC([3, 0, 1], ZZ)
1
```

`sympy.polys.galoistools.gf_strip(f)`
Remove leading zeros from \(f \).

Examples

```python
>>> from sympy.polys.galoistools import gf_strip

>>> gf_strip([0, 0, 0, 3, 0, 1])
[3, 0, 1]
```

`sympy.polys.galoistools.gf_trunc(f, p)`
Reduce all coefficients modulo \(p \).
Examples

```python
>>> from sympy.polys.galoistools import gf_trunc

>>> gf_trunc([7, -2, 3], 5)
[2, 3, 3]
```

```python
sympy.polys.galoistools.gf_normal(f, p, K)
Normalize all coefficients in K.
```

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_normal

>>> gf_normal([5, 10, 21, -3], 5, ZZ)
[1, 2]
```

```python
sympy.polys.galoistools.gf_from_dict(f, p, K)
Create a GF(p)[x] polynomial from a dict.
```

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_from_dict

>>> gf_from_dict({10: ZZ(4), 4: ZZ(33), 0: ZZ(-1)}, 5, ZZ)
[4, 0, 0, 0, 0, 0, 3, 0, 0, 0, 4]
```

```python
sympy.polys.galoistools.gf_to_dict(f, p, symmetric=True)
Convert a GF(p)[x] polynomial to a dict.
```

Examples

```python
>>> from sympy.polys.galoistools import gf_to_dict

>>> gf_to_dict([4, 0, 0, 0, 0, 0, 3, 0, 0, 0, 4], 5)
{0: -1, 4: -2, 10: -1}
>>> gf_to_dict([4, 0, 0, 0, 0, 0, 3, 0, 0, 0, 4], 5, symmetric=False)
{0: 4, 4: 3, 10: 4}
```

```python
sympy.polys.galoistools.gf_from_int_poly(f, p)
Create a GF(p)[x] polynomial from Z[x].
```
Examples

```python
>>> from sympy.polys.galoistools import gf_from_int_poly

>>> gf_from_int_poly([7, -2, 3], 5)
[2, 3, 3]
```

`sympy.polys.galoistools.gf_to_int_poly(f, p, symmetric=True)`

Convert a GF(p)[x] polynomial to Z[x].

Examples

```python
>>> from sympy.polys.galoistools import gf_to_int_poly

>>> gf_to_int_poly([2, 3, 3], 5)
[2, -2, -2]

>>> gf_to_int_poly([2, 3, 3], 5, symmetric=False)
[2, 3, 3]
```

`sympy.polys.galoistools.gf_neg(f, p, K)`

Negate a polynomial in GF(p)[x].

Examples

```python
>>> from sympy.polys.domains import ZZ

>>> from sympy.polys.galoistools import gf_neg

>>> gf_neg([3, 2, 1, 0], 5, ZZ)
[2, 3, 4, 0]
```

`sympy.polys.galoistools.gf_add_ground(f, a, p, K)`

Compute \(f + a \) where \(f \) in GF(p)[x] and \(a \) in GF(p).

Examples

```python
>>> from sympy.polys.domains import ZZ

>>> from sympy.polys.galoistools import gf_add_ground

>>> gf_add_ground([3, 2, 4], 2, 5, ZZ)
[3, 2, 1]
```

`sympy.polys.galoistools.gf_sub_ground(f, a, p, K)`

Compute \(f - a \) where \(f \) in GF(p)[x] and \(a \) in GF(p).
Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_sub_ground

>>> gf_sub_ground([3, 2, 4], 2, 5, ZZ)
[3, 2, 2]
```

`sympy.polys.galoistools.gf_sub_ground(f, a, p, K)`
Compute `f * a` where `f` in `GF(p)[x]` and `a` in `GF(p)`.

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_sub

>>> gf_sub([3, 2, 4], [2, 2, 2], 5, ZZ)
[4, 1]
```

`sympy.polys.galoistools.gf_add(f, g, p, K)`
Add polynomials in `GF(p)[x]`.

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_add

>>> gf_add([3, 2, 4], [2, 2, 2], 5, ZZ)
[4, 1]
```

`sympy.polys.galoistools.gf_sub(f, g, p, K)`
Subtract polynomials in `GF(p)[x]`.

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_sub

>>> gf_sub([3, 2, 4], [2, 2, 2], 5, ZZ)
[4, 1]
```
Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_sub

```

```python
>>> gf_sub([3, 2, 4], [2, 2, 2], 5, ZZ)
[1, 0, 2]
```

```
sympy.polys.galoistools.gf_mul(f, g, p, K)
Multiply polynomials in GF(p)[x].

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_mul

```

```python
>>> gf_mul([3, 2, 4], [2, 2, 2], 5, ZZ)
[1, 0, 3, 2, 3]
```

```
sympy.polys.galoistools.gf_sqr(f, p, K)
Square polynomials in GF(p)[x].

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_sqr

```

```python
>>> gf_sqr([3, 2, 4], 5, ZZ)
[4, 2, 3, 1, 1]
```

```
sympy.polys.galoistools.gf_add_mul(f, g, h, p, K)
Returns f + g*h where f, g, h in GF(p)[x].

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_add_mul

```

```python
>>> gf_add_mul([3, 2, 4], [2, 2, 2], [1, 4], 5, ZZ)
[2, 3, 2, 2]
```

```
sympy.polys.galoistools.gf_sub_mul(f, g, h, p, K)
Compute f - g*h where f, g, h in GF(p)[x].

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_sub_mul

```

```python
>>> gf_sub_mul([3, 2, 4], [2, 2, 2], [1, 4], 5, ZZ)
[2, 3, 2, 2]
```
Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_sub_mul

>>> gf_sub_mul([3, 2, 4], [2, 2, 2], [1, 4], 5, ZZ)
[3, 3, -2, 1]
```

`sympy.polys.galoistools.gf_expand(F, p, K)`
Expand results of `factor()` (page 2447) in GF(p)[x].

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_expand

>>> gf_expand([[3, 2, 4], [2, 2], [1, 4]], 5, ZZ)
[4, 3, 0, 3, 0, 1, 4, 1]
```

`sympy.polys.galoistools.gf_div(f, g, p, K)`
Division with remainder in GF(p)[x].

Given univariate polynomials f and g with coefficients in a finite field with p elements, returns polynomials q and r (quotient and remainder) such that \(f = q \cdot g + r \).

Consider polynomials \(x^3 + x + 1 \) and \(x^2 + x \) in GF(2):

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_div, gf_add_mul

>>> gf_div(ZZ.map([1, 0, 1, 1]), ZZ.map([1, 1, 0]), 2, ZZ)
([1, 1], [1])
```

As result we obtained quotient \(x + 1 \) and remainder 1, thus:

```python
>>> gf_add_mul(ZZ.map([1]), ZZ.map([1]), ZZ.map([1, 1, 0]), 2, ZZ)
[1, 0, 1, 1]
```

References

[R719], [R720]

`sympy.polys.galoistools.gf_rem(f, g, p, K)`
Compute polynomial remainder in GF(p)[x].
Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_rem

>>> gf_rem(ZZ.map([1, 0, 1, 1]), ZZ.map([1, 1, 0]), 2, ZZ)
[1]
```

sympy.polys.galoistools.gf_quo(f, g, p, K)
Compute exact quotient in GF(p)[x].

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_quo

>>> gf_quo(ZZ.map([1, 0, 1, 1]), ZZ.map([1, 1, 0]), 2, ZZ)
[1, 1]
>>> gf_quo(ZZ.map([1, 0, 3, 2, 3]), ZZ.map([2, 2, 2]), 5, ZZ)
[3, 2, 4]
```

sympy.polys.galoistools.gf_exquo(f, g, p, K)
Compute polynomial quotient in GF(p)[x].

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_exquo

>>> gf_exquo(ZZ.map([1, 0, 3, 2, 3]), ZZ.map([2, 2, 2]), 5, ZZ)
[3, 2, 4]
>>> gf_exquo(ZZ.map([1, 0, 1, 1]), ZZ.map([1, 1, 0]), 2, ZZ)
Traceback (most recent call last):
...
ExactQuotientFailed: [1, 1, 0] does not divide [1, 0, 1, 1]
```

sympy.polys.galoistools.gf_lshift(f, n, K)
Efficiently multiply f by x**n.
Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_lshift

>>> gf_lshift([3, 2, 4], 4, ZZ)
[3, 2, 4, 0, 0, 0, 0]
```

sympy.polys.galoistools.gf_rshift(f, n, K)
Efficiently divide f by x**n.

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_rshift

>>> gf_rshift([1, 2, 3, 4, 0], 3, ZZ)
([1, 2], [3, 4, 0])
```

sympy.polys.galoistools.gf_pow(f, n, p, K)
Compute f**n in GF(p)[x] using repeated squaring.

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_pow

>>> gf_pow([3, 2, 4], 3, 5, ZZ)
[2, 4, 4, 2, 2, 1, 4]
```

sympy.polys.galoistools.gf_pow_mod(f, n, g, p, K)
Compute f**n in GF(p)[x]/(g) using repeated squaring.
Given polynomials f and g in GF(p)[x] and a non-negative integer n, efficiently computes f**n (mod g) i.e. the remainder of f**n from division by g, using the repeated squaring algorithm.

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_pow_mod

>>> gf_pow_mod(ZZ.map([3, 2, 4]), 3, ZZ.map([1, 1]), 5, ZZ)
[]
```
References

[R721]
sympy.polys.galoistools.gf_gcd(f, g, p, K)
 Euclidean Algorithm in GF(p)[x].

Examples

```python
gf_gcd(ZZ.map([3, 2, 4]), ZZ.map([2, 2, 3]), 5, ZZ)
[1, 3]
```

sympy.polys.galoistools.gf_lcm(f, g, p, K)
 Compute polynomial LCM in GF(p)[x].

Examples

```python
gf_lcm(ZZ.map([3, 2, 4]), ZZ.map([2, 2, 3]), 5, ZZ)
[1, 2, 0, 4]
```

sympy.polys.galoistools.gf_cofactors(f, g, p, K)
 Compute polynomial GCD and cofactors in GF(p)[x].

Examples

```python
gf_cofactors(ZZ.map([3, 2, 4]), ZZ.map([2, 2, 3]), 5, ZZ)
(([1, 3], [3, 3], [2, 1])
```

sympy.polys.galoistools.gf_gcdex(f, g, p, K)
 Extended Euclidean Algorithm in GF(p)[x].
 Given polynomials f and g in GF(p)[x], computes polynomials s, t and h, such that h = gcd(f, g) and s*f + t*g = h. The typical application of EEA is solving polynomial diophantine equations.
 Consider polynomials f = (x + 7) (x + 1), g = (x + 7) (x**2 + 1) in GF(11)[x]. Application of Extended Euclidean Algorithm gives:
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_gcdex, gf_mul, gf_add

>>> s, t, g = gf_gcdex(ZZ.map([1, 8, 7]), ZZ.map([1, 7, 1, 7]), 11, ZZ)
>>> s, t, g
([5, 6], [6], [1, 7])

As result we obtained polynomials \(s = 5x + 6 \) and \(t = 6 \), and additionally \(\text{gcd}(f, g) = x + 7 \). This is correct because:

>>> S = gf_mul(s, ZZ.map([1, 8, 7]), 11, ZZ)
>>> T = gf_mul(t, ZZ.map([1, 7, 1, 7]), 11, ZZ)

>>> gf_add(S, T, 11, ZZ) == [1, 7]
True

References

[R722]
sympy.polys.galoistools.gf_monic\((f, p, K)\)
Compute LC and a monic polynomial in \(\mathbb{F}_p[x] \).

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_monic

>>> gf_monic(ZZ.map([3, 2, 4]), 5, ZZ)
(3, [1, 4, 3])
```

sympy.polys.galoistools.gf_diff\((f, p, K)\)
Differentiate polynomial in \(\mathbb{F}_p[x] \).

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_diff

>>> gf_diff([3, 2, 4], 5, ZZ)
[1, 2]
```

sympy.polys.galoistools.gf_eval\((f, a, p, K)\)
Evaluate \(f(a) \) in \(\mathbb{F}_p \) using Horner scheme.

5.8. Topics
Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_eval

>>> gf_eval([3, 2, 4], 2, 5, ZZ)
0
```

sympy.polys.galoistools.gf_multi_eval(f, A, p, K)
Evaluate \(f(a) \) for \(a \) in \([a_1, \ldots, a_n]\).

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_multi_eval

>>> gf_multi_eval([3, 2, 4], [0, 1, 2, 3, 4], 5, ZZ)
[4, 4, 0, 2, 0]
```

sympy.polys.galoistools.gf_compose(f, g, p, K)
Compute polynomial composition \(f(g) \) in \(GF(p)[x] \).

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_compose

>>> gf_compose([3, 2, 4], [2, 2, 2], 5, ZZ)
[2, 4, 0, 3, 0]
```

sympy.polys.galoistools.gf_compose_mod(g, h, f, p, K)
Compute polynomial composition \(g(h) \) in \(GF(p)[x]/(f) \).

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_compose_mod

>>> gf_compose_mod(ZZ.map([3, 2, 4]), ZZ.map([2, 2, 2]), ZZ.map([4, 3]), ZZ)
[4]
```

sympy.polys.galoistools.gf_trace_map(a, b, c, n, f, p, K)
Compute polynomial trace map in \(GF(p)[x]/(f) \).
Given a polynomial \(f \) in \(GF(p)[x] \), polynomials \(a, b, c \) in the quotient ring \(GF(p)[x]/(f) \) such that \(b = c^{**t} \pmod{f} \) for some positive power \(t \) of \(p \), and a positive integer \(n \), returns a mapping:
In factorization context, \(b = x^p \mod f\) and \(c = x \mod f\). This way we can efficiently compute trace polynomials in equal degree factorization routine, much faster than with other methods, like iterated Frobenius algorithm, for large degrees.

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_trace_map

>>> gf_trace_map([1, 2], [4, 4], [1, 1], 4, [3, 2, 4], 5, ZZ)
((1, 3), (1, 3))
```

References

[R723]

sympy.polys.galoistools.gf_random\((n, p, K)\)
Generate a random polynomial in \(GF(p)[x]\) of degree \(n\).

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_random

>>> gf_random(10, 5, ZZ)
[1, 2, 3, 2, 1, 1, 1, 2, 0, 4, 2]
```

sympy.polys.galoistools.gf_irreducible\((n, p, K)\)
Generate random irreducible polynomial of degree \(n\) in \(GF(p)[x]\).

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_irreducible

>>> gf_irreducible(10, 5, ZZ)
[1, 4, 2, 2, 3, 2, 1, 4, 0, 4]
```

sympy.polys.galoistools.gf_irreducible_p\((f, p, K)\)
Test irreducibility of a polynomial \(f\) in \(GF(p)[x]\).
Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_irreducible_p

>>> gf_irreducible_p(ZZ.map([1, 4, 2, 2, 3, 2, 4, 1, 4, 0, 4]), 5, ZZ)
True
>>> gf_irreducible_p(ZZ.map([3, 2, 4]), 5, ZZ)
False
```

`sympy.polys.galoistools.gf_sqf_p(f, p, K)`
Return True if f is square-free in GF(p)[x].

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_sqf_p

>>> gf_sqf_p(ZZ.map([3, 2, 4]), 5, ZZ)
True
>>> gf_sqf_p(ZZ.map([2, 4, 4, 2, 2, 1, 4]), 5, ZZ)
False
```

`sympy.polys.galoistools.gf_sqf_part(f, p, K)`
Return square-free part of a GF(p)[x] polynomial.

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_sqf_part

>>> gf_sqf_part(ZZ.map([1, 1, 3, 0, 1, 0, 2, 2, 1]), 5, ZZ)
[1, 4, 3]
```

`sympy.polys.galoistools.gf_sqf_list(f, p, K, all=False)`
Return the square-free decomposition of a GF(p)[x] polynomial.

Given a polynomial f in GF(p)[x], returns the leading coefficient of f and a square-free decomposition f_1*e_1 f_2*e_2 ... f_k*e_k such that all f_i are monic polynomials and (f_i, f_j) for i != j are co-prime and e_1 ... e_k are given in increasing order. All trivial terms (i.e. f_i = 1) are not included in the output.

Consider polynomial f = x**11 + 1 over GF(11)[x]:

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import (...
gf_from_dict, gf_diff, gf_sqf_list, gf_pow,
...
)  # (continues on next page)
```
Note that $f'(x) = 0$:

```python
>>> gf_diff(f, 11, ZZ)
[]
```

This phenomenon does not happen in characteristic zero. However we can still compute square-free decomposition of f using `gf_sqf()`:

```python
>>> gf_sqf_list(f, 11, ZZ)
(1, [(1, [1], 11)])
```

We obtained factorization $f = (x + 1)^{11}$. This is correct because:

```python
>>> gf_pow([1, 1], 11, 11, ZZ) == f
True
```

References

[R724]

`sympy.polys.galoistools.gf_Qmatrix(f, p, K)`

Calculate Berlekamp's Q matrix.

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_Qmatrix

>>> gf_Qmatrix([3, 2, 4], 5, ZZ)
[[1, 0],
 [3, 4]]

>>> gf_Qmatrix([1, 0, 0, 0, 1], 5, ZZ)
[[1, 0, 0, 0, 0],
 [0, 4, 0, 0],
 [0, 0, 1, 0],
 [0, 0, 0, 4]]
```

`sympy.polys.galoistools.gf_Qbasis(Q, p, K)`

Compute a basis of the kernel of Q. 5.8. Topics 2699
Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_Qmatrix, gf_Qbasis

>>> gf_Qbasis(gf_Qmatrix([[1, 0, 0, 0, 1], 5, ZZ], 5, ZZ))
[[1, 0, 0, 0], [0, 0, 1, 0]]

>>> gf_Qbasis(gf_Qmatrix([[3, 2, 4], 5, ZZ], 5, ZZ))
[[1, 0]]
```

`sympy.polys.galoistools.gf_berlekamp(f, p, K)`
Factor a square-free `f` in `GF(p)[x]` for small `p`.

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_berlekamp

>>> gf_berlekamp([[1, 0, 0, 0, 1], 5, ZZ])
[[1, 0, 2], [1, 0, 3]]
```

`sympy.polys.galoistools.gf_zassenhaus(f, p, K)`
Factor a square-free `f` in `GF(p)[x]` for medium `p`.

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_zassenhaus

>>> gf_zassenhaus(ZZ.map([1, 4, 3]), 5, ZZ)
[[1, 1], [1, 3]]
```

`sympy.polys.galoistools.gf_shoup(f, p, K)`
Factor a square-free `f` in `GF(p)[x]` for large `p`.

Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_shoup

>>> gf_shoup(ZZ.map([1, 4, 3]), 5, ZZ)
[[1, 1], [1, 3]]
```

`sympy.polys.galoistools.gf_factor_sqf(f, p, K, method=None)`
Factor a square-free polynomial `f` in `GF(p)[x]`.

Examples
Examples

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_factor_sqf

>>> gf_factor_sqf(ZZ.map([3, 2, 4]), 5, ZZ)
(3, [[[1, 1], [1, 3]]])
```

`sympy.polys.galoistools.gf_factor(f, p, K)`

Factor (non square-free) polynomials in GF(p)[x].

Given a possibly non square-free polynomial `f` in GF(p)[x], returns its complete factorization into irreducibles:

```
f_1(x)**e_1 f_2(x)**e_2 ... f_d(x)**e_d
```

where each `f_i` is a monic polynomial and gcd(`f_i`, `f_j`) == 1, for `i` != `j`. The result is given as a tuple consisting of the leading coefficient of `f` and a list of factors of `f` with their multiplicities.

The algorithm proceeds by first computing square-free decomposition of `f` and then iteratively factoring each of square-free factors.

Consider a non square-free polynomial `f = (7*x + 1) (x + 2)**2` in GF(11)[x]. We obtain its factorization into irreducibles as follows:

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_factor

>>> gf_factor(ZZ.map([5, 2, 7, 2]), 11, ZZ)
(5, [[1, 2], [1, 8], 2])
```

We arrived with factorization `f = 5 (x + 2) (x + 8)**2`. We did not recover the exact form of the input polynomial because we requested to get monic factors of `f` and its leading coefficient separately.

Square-free factors of `f` can be factored into irreducibles over GF(p) using three very different methods:

Berlekamp

 efficient for very small values of `p` (usually `p < 25`)

Cantor-Zassenhaus

 efficient on average input and with “typical” `p`

Shoup-Kaltofen-Gathen

 efficient with very large inputs and modulus

If you want to use a specific factorization method, instead of the default one, set `GF_FACTOR_METHOD` with one of berlekamp, zassenhaus or shoup values.
References

[R725] sympy.polys.galoistools.gf_value(f, a)
Value of polynomial ‘f’ at ‘a’ in field R.

Examples

```python
>>> from sympy.polys.galoistools import gf_value

>>> gf_value([1, 7, 2, 4], 11)
2204
```

sympy.polys.galoistools.gf_csolve(f, n)
To solve f(x) congruent 0 mod(n).

n is divided into canonical factors and f(x) cong 0 mod(p**e) will be solved for each factor. Applying the Chinese Remainder Theorem to the results returns the final answers.

Examples

Solve [1, 1, 7] congruent 0 mod(189):

```python
>>> from sympy.polys.galoistools import gf_csolve

>>> gf_csolve([1, 1, 7], 189)
[13, 49, 76, 112, 139, 175]
```

References

[R726]

Manipulation of sparse, distributed polynomials and vectors

Dense representations quickly require infeasible amounts of storage and computation time if the number of variables increases. For this reason, there is code to manipulate polynomials in a *sparse* representation. The Ring object and elements are implemented by the classes `PolyRing` (page 2634) and `PolyElement` (page 2635).

In commutative algebra, one often studies not only polynomials, but also *modules* over polynomial rings. The polynomial manipulation module provides rudimentary low-level support for finitely generated free modules. This is mainly used for Groebner basis computations (see there), so manipulation functions are only provided to the extend needed. They carry the prefix sdm_. Note that in examples, the generators of the free module are called $f_1, f_2, ...$

sympy.polys.distributedmodules.sdm_monomial_mul(M, X)
Multiply tuple X representing a monomial of $K[X]$ into the tuple M representing a monomial of F.

2702 Chapter 5. API Reference
Examples

Multiplying xy^3 into xf_1 yields $x^2y^3f_1$:

```python
>>> from sympy.polys.distributedmodules import sdm_monomial_mul
>>> sdm_monomial_mul((1, 1, 0), (1, 3))
(1, 2, 3)
```

Examples

sympy.polys.distributedmodules.sdm_monomial_deg(M)
Return the total degree of M

Examples

For example, the total degree of x^2yf_5 is 3:

```python
>>> from sympy.polys.distributedmodules import sdm_monomial_deg
>>> sdm_monomial_deg((5, 2, 1))
3
```

Examples

sympy.polys.distributedmodules.sdm_monomial_divides(A, B)
Does there exist a (polynomial) monomial X such that $XA = B$?

Examples

Positive examples:
In the following examples, the monomial is given in terms of x, y and the generator(s), f_1,f_2 etc. The tuple form of that monomial is used in the call to sdm_monomial_divides. Note: the generator appears last in the expression but first in the tuple and other factors appear in the same order that they appear in the monomial expression.

$A = f_1$ divides $B = f_1$

```python
>>> from sympy.polys.distributedmodules import sdm_monomial_divides
>>> sdm_monomial_divides((1, 0, 0), (1, 0, 0))
True
```

$A = f_1$ divides $B = x^2yf_1$

```python
>>> sdm_monomial_divides((1, 0, 0), (1, 2, 1))
True
```

$A = xyf_5$ divides $B = x^2yf_5$

```python
>>> sdm_monomial_divides((5, 1, 1), (5, 2, 1))
True
```

Negative examples:

$A = f_1$ does not divide $B = f_2$

```python
>>> sdm_monomial_divides((1, 0, 0), (2, 0, 0))
False
```
\[A = x f_1 \text{ does not divide } B = f_1 \]

```python
>>> sdm_monomial_divides((1, 1, 0), (1, 0, 0))
False
```

\[A = x y^2 f_5 \text{ does not divide } B = y f_5 \]

```python
>>> sdm_monomial_divides((5, 1, 2), (5, 0, 1))
False
```

`sympy.polys.distributedmodules.sdm_LC(f, K)`

Returns the leading coefficient of \(f \).

`sympy.polys.distributedmodules.sdm_to_dict(f)`

Make a dictionary from a distributed polynomial.

`sympy.polys.distributedmodules.sdm_from_dict(d, O)`

Create an sdm from a dictionary.

Here \(O \) is the monomial order to use.

Examples

```python
>>> from sympy.polys.distributedmodules import sdm_from_dict
>>> from sympy.polys import QQ, lex

>>> dic = {(1, 1, 0): QQ(1), (1, 0, 0): QQ(2), (0, 1, 0): QQ(0)}
>>> sdm_from_dict(dic, lex)
[((1, 1, 0), 1), ((1, 0, 0), 2)]
```

`sympy.polys.distributedmodules.sdm_add(f, g, O, K)`

Add two module elements \(f, g \).

Addition is done over the ground field \(K \), monomials are ordered according to \(O \).

Examples

All examples use lexicographic order.

\[(x y f_1) + (f_2) = f_2 + x y f_1 \]

```python
>>> from sympy.polys.distributedmodules import sdm_add
>>> from sympy.polys import lex, QQ

>>> sdm_add(((1, 1, 1), QQ(1)), ((2, 0, 0), QQ(2)), lex, QQ)
[((2, 0, 0), 1), ((1, 1, 1), 1)]
```

\[(x y f_1) + (-x y f_1) = 0 \]

```python
>>> sdm_add(((1, 1, 1), QQ(1)), [(1, 1, 1), QQ(-1)], lex, QQ)
[]
```

\[(f_1) + (2 f_1) = 3 f_1 \]

```python
>>> sdm_add(((1, 0, 0), QQ(1)), [(1, 0, 0), QQ(2)], lex, QQ)
[((1, 0, 0), 3)]
```
\[(y f_1) + (x f_1) = x f_1 + y f_1\]

```python
>>> sdm.add([[(1, 0, 1), QQ(1)]], [((1, 1, 0), QQ(1))], lex, QQ)
[((1, 1, 0), 1), ((1, 0, 1), 1)]
```

<table>
<thead>
<tr>
<th>sympy.polys.distributedmodules.sdm_LM(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Returns the leading monomial of f.</td>
</tr>
<tr>
<td>Only valid if (f \neq 0).</td>
</tr>
</tbody>
</table>

Examples

```python
>>> from sympy.polys.distributedmodules import sdm_LM, sdm_from_dict
>>> from sympy.polys import QQ, lex
>>> dic = {(1, 2, 3): QQ(1), (4, 0, 0): QQ(1), (4, 0, 1): QQ(1)}
>>> sdm_LM(sdm_from_dict(dic, lex))
((4, 0, 1), 1)
```

<table>
<thead>
<tr>
<th>sympy.polys.distributedmodules.sdm_LT(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Returns the leading term of f.</td>
</tr>
<tr>
<td>Only valid if (f \neq 0).</td>
</tr>
</tbody>
</table>

Examples

```python
>>> from sympy.polys.distributedmodules import sdm_LT, sdm_from_dict
>>> from sympy.polys import QQ, lex
>>> dic = {(1, 2, 3): QQ(1), (4, 0, 0): QQ(2), (4, 0, 1): QQ(3)}
>>> sdm_LT(sdm_from_dict(dic, lex))
((4, 0, 1), 3)
```

<table>
<thead>
<tr>
<th>sympy.polys.distributedmodules.sdm_mul_term(f, term, O, K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiply a distributed module element (f) by a (polynomial) term (\text{term}).</td>
</tr>
<tr>
<td>Multiplication of coefficients is done over the ground field (K), and monomials are ordered according to (O).</td>
</tr>
</tbody>
</table>

Examples

0 \(f_1 = 0 \)

```python
>>> from sympy.polys.distributedmodules import sdm_mul_term
>>> from sympy.polys import lex, QQ
>>> sdm_mul_term([[(1, 0, 0), QQ(1)]], ((0, 0), QQ(0)), lex, QQ)
[]
```

\(x 0 = 0 \)

```python
>>> sdm_mul_term([[]], ((1, 0), QQ(1)), lex, QQ)
[]
```

\((x)(f_1) = x f_1\)
>>> sdm_mul_term([[((1, 0, 0), QQ(1))], ((1, 0), QQ(1)), lex, QQ

```python
[((1, 1, 0), 1)]
```  
\[(2xy)(3xf_1 + 4gf_2) = 8xy^2f_2 + 6x^2yf_1\]

```python
>>> f = [((2, 0, 1), QQ(4)), ((1, 1, 0), QQ(3))]
>>> sdm_mul_term(f, ((1, 1), QQ(2)), lex, QQ

```

```python
[[(2, 1, 2), 8), ((1, 2, 1), 6)]
```  
sympy.polys.distributedmodules.sdm_zero()
Return the zero module element.

sympy.polys.distributedmodules.sdm_deg(f)
Degree of f.
This is the maximum of the degrees of all its monomials. Invalid if f is zero.

Examples

```python
>>> from sympy.polys.distributedmodules import sdm_deg
>>> sdm_deg([[(1, 2, 3), 1], ((10, 0, 1), 1), ((2, 3, 4), 4)]

```

```python
7
```  
sympy.polys.distributedmodules.sdm_from_vector(vec, O, K, **opts)
Create an sdm from an iterable of expressions.

Coefficients are created in the ground field K, and terms are ordered according to monomial order O. Named arguments are passed on to the polys conversion code and can be used to specify for example generators.

Examples

```python
>>> from sympy.polys.distributedmodules import sdm_from_vector
>>> from sympy.abc import x, y, z
>>> from sympy.polys import QQ, lex
>>>
```  
```python
[sdm_from_vector([x**2+y**2, 2*z], lex, QQ

```

```python
[[(1, 0, 0, 1), 2), ((0, 2, 0, 0), 1), ((0, 0, 2, 0), 1)
```  
sympy.polys.distributedmodules.sdm_to_vector(f, gens, K, n=None)
Convert sdm f into a list of polynomial expressions.

The generators for the polynomial ring are specified via gens. The rank of the module is guessed, or passed via n. The ground field is assumed to be K.
Examples

```python
>>> from sympy.polys.distributedmodules import sdm_to_vector
>>> from sympy.abc import x, y, z
>>> from sympy.polys import QQ
>>> f = [((1, 0, 0, 1), QQ(2)), ((0, 2, 0, 0), QQ(1)), ((0, 0, 2, 0), QQ(1))]
>>> sdm_to_vector(f, [x, y, z], QQ)
[x**2 + y**2, 2*z]
```

Polynomial factorization algorithms

Many variants of Euclid’s algorithm:

Classical remainder sequence

Let K be a field, and consider the ring $K[X]$ of polynomials in a single indeterminate X with coefficients in K. Given two elements f and g of $K[X]$ with $g \neq 0$ there are unique polynomials q and r such that $f = qg + r$ and $\deg(r) < \deg(g)$ or $r = 0$. They are denoted by $\text{quo}(f, g)$ (quotient) and $\text{rem}(f, g)$ (remainder), so we have the division identity

$$f = \text{quo}(f, g)g + \text{rem}(f, g).$$

It follows that every ideal I of $K[X]$ is a principal ideal, generated by any element $\neq 0$ of minimum degree (assuming I non-zero). In fact, if g is such a polynomial and f is any element of I, $\text{rem}(f, g)$ belongs to I as a linear combination of f and g, hence must be zero; therefore f is a multiple of g.

Using this result it is possible to find a greatest common divisor (gcd) of any polynomials f, g, \ldots in $K[X]$. If I is the ideal formed by all linear combinations of the given polynomials with coefficients in $K[X]$, and d is its generator, then every common divisor of the polynomials also divides d. On the other hand, the given polynomials are multiples of the generator d; hence d is a gcd of the polynomials, denoted $\gcd(f, g, \ldots)$.

An algorithm for the gcd of two polynomials f and g in $K[X]$ can now be obtained as follows. By the division identity, $r = \text{rem}(f, g)$ is in the ideal generated by f and g, as well as f is in the ideal generated by g and r. Hence the ideals generated by the pairs (f, g) and (g, r) are the same. Set $f_0 = f$, $f_1 = g$, and define recursively $f_i = \text{rem}(f_{i-2}, f_{i-1})$ for $i \geq 2$. The recursion ends after a finite number of steps with $f_{k+1} = 0$, since the degrees of the polynomials are strictly decreasing. By the above remark, all the pairs (f_{i-1}, f_i) generate the same ideal. In particular, the ideal generated by f and g is generated by f_k alone as $f_{k+1} = 0$. Hence $d = f_k$ is a gcd of f and g.

The sequence of polynomials f_0, f_1, \ldots, f_k is called the Euclidean polynomial remainder sequence determined by (f, g) because of the analogy with the classical Euclidean algorithm for the gcd of natural numbers.

The algorithm may be extended to obtain an expression for d in terms of f and g by using the full division identities to write recursively each f_i as a linear combination of f and g. This leads to an equation

$$d = uf + vg \quad (u, v \in K[X])$$

analogous to Bézout’s identity in the case of integers.
sympy.polys.euclidtools.dmp_half_gcdex(f, g, u, K)

Half extended Euclidean algorithm in \(F[X] \).

Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x,y", ZZ)
```

sympy.polys.euclidtools.dmp_gcdex(f, g, u, K)

Extended Euclidean algorithm in \(F[X] \).

Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x,y", ZZ)
```

sympy.polys.euclidtools.dmp_invert(f, g, u, K)

Compute multiplicative inverse of \(f \) modulo \(g \) in \(F[X] \).

Examples

```python
>>> from sympy.polys import ring, QQ
>>> R, x = ring("x", QQ)
```

sympy.polys.euclidtools.dmp_euclidean_prs(f, g, u, K)

Euclidean polynomial remainder sequence (PRS) in \(K[X] \).

Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x,y", ZZ)
```

Simplified remainder sequences

Assume, as is usual, that the coefficient field \(K \) is the field of fractions of an integral domain \(A \). In this case the coefficients (numerators and denominators) of the polynomials in the Euclidean remainder sequence tend to grow very fast.

If \(A \) is a unique factorization domain, the coefficients may be reduced by cancelling common factors of numerators and denominators. Further reduction is possible noting that a gcd of polynomials in \(K[X] \) is not unique: it may be multiplied by any (non-zero) constant factor.

Any polynomial \(f \) in \(K[X] \) can be simplified by extracting the denominators and common factors of the numerators of its coefficients. This yields the representation \(f = cF \) where \(c \in K \) is the content of \(f \) and \(F \) is a primitive polynomial, i.e., a polynomial in \(A[X] \) with coprime coefficients.
It is possible to start the algorithm by replacing the given polynomials \(f \) and \(g \) with their primitive parts. This will only modify \(\text{rem}(f, g) \) by a constant factor. Replacing it with its primitive part and continuing recursively we obtain all the primitive parts of the polynomials in the Euclidean remainder sequence, including the primitive \(\text{gcd}(f, g) \).

This sequence is the **primitive polynomial remainder sequence**. It is an example of **general polynomial remainder sequences** where the computed remainders are modified by constant multipliers (or divisors) in order to simplify the results.

```python
sympy.polys.euclidtools.dmp_primitive_prs(f, g, u, K)
```

Primitive polynomial remainder sequence (PRS) in \(K[X] \).

Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x,y", ZZ)
```

Subresultant sequence

The coefficients of the primitive polynomial sequence do not grow excessively, but the computation of the primitive parts requires extra processing effort. Besides, the method only works with fraction fields of unique factorization domains, excluding, for example, the general number fields.

Collins [Collins67] realized that the so-called **subresultant polynomials** of a pair of polynomials also form a generalized remainder sequence. The coefficients of these polynomials are expressible as determinants in the coefficients of the given polynomials. Hence (the logarithm of) their size only grows linearly. In addition, if the coefficients of the given polynomials are in the subdomain \(A \), so are those of the subresultant polynomials. This means that the subresultant sequence is comparable to the primitive remainder sequence without relying on unique factorization in \(A \).

To see how subresultants are associated with remainder sequences recall that all polynomials \(h \) in the sequence are linear combinations of the given polynomials \(f \) and \(g \)

\[
h = uf + vg
\]

with polynomials \(u \) and \(v \) in \(K[X] \). Moreover, as is seen from the extended Euclidean algorithm, the degrees of \(u \) and \(v \) are relatively low, with limited growth from step to step.

Let \(n = \text{deg}(f) \), and \(m = \text{deg}(g) \), and assume \(n \geq m \). If \(\text{deg}(h) = j < m \), the coefficients of the powers \(X^k \) \((k > j)\) in the products \(uf \) and \(vg \) cancel each other. In particular, the products must have the same degree, say, \(l \). Then \(\text{deg}(u) = l - n \) and \(\text{deg}(v) = l - m \) with a total of \(2l - n - m + 2 \) coefficients to be determined.

On the other hand, the equality \(h = uf + vg \) implies that \(l - j \) linear combinations of the coefficients are zero, those associated with the powers \(X^i \) \((j < i \leq l)\), and one has a given non-zero value, namely the leading coefficient of \(h \).

To satisfy these \(l - j + 1 \) linear equations the total number of coefficients to be determined cannot be lower than \(l - j + 1 \), in general. This leads to the inequality \(l \geq n + m - j - 1 \). Taking \(l = n + m - j - 1 \), we obtain \(\text{deg}(u) = m - j - 1 \) and \(\text{deg}(v) = n - j - 1 \).

In the case \(j = 0 \) the matrix of the resulting system of linear equations is the **Sylvester matrix** \(S(f, g) \) associated to \(f \) and \(g \), an \((n + m) \times (n + m)\) matrix with coefficients of \(f \) and \(g \) as entries.
Its determinant is the resultant \(\text{res}(f, g) \) of the pair \((f, g)\). It is non-zero if and only if \(f \) and \(g \) are relatively prime.

For any \(j \) in the interval from 0 to \(m \) the matrix of the linear system is an \((n+m-2j) \times (n+m-2j)\) submatrix of the Sylvester matrix. Its determinant \(s_j(f, g) \) is called the \(j \) th \emph{scalar subresultant} of \(f \) and \(g \).

If \(s_j(f, g) \) is not zero, the associated equation \(h = uf + vg \) has a unique solution where \(\deg(h) = j \) and the leading coefficient of \(h \) has any given value; the one with leading coefficient \(s_j(f, g) \) is the \(j \) th \emph{subresultant polynomial} or, briefly, \emph{subresultant} of the pair \((f, g)\), and denoted \(S_j(f, g) \). This choice guarantees that the remaining coefficients are also certain subdeterminants of the Sylvester matrix. In particular, if \(f \) and \(g \) are in \(A[X] \), so is \(S_j(f, g) \) as well. This construction of subresultants applies to any \(j \) between 0 and \(m \) regardless of the value of \(s_j(f, g) \); if it is zero, then \(\deg(S_j(f, g)) < j \).

The properties of subresultants are as follows. Let \(n_0 = \deg(f) \), \(n_1 = \deg(g) \), \(n_2, \ldots, n_k \) be the decreasing sequence of degrees of polynomials in a remainder sequence. Let \(0 \leq j \leq n_1 \); then

\begin{itemize}
 \item \(s_j(f, g) \neq 0 \) if and only if \(j = n_i \) for some \(i \).
 \item \(S_j(f, g) \neq 0 \) if and only if \(j = n_i \) or \(j = n_i - 1 \) for some \(i \).
\end{itemize}

Normally, \(n_{i-1} - n_i = 1 \) for \(1 < i \leq k \). If \(n_{i-1} - n_i > 1 \) for some \(i \) (the abnormal case), then \(S_{n_{i-1}}(f, g) \) and \(S_{n_i}(f, g) \) are constant multiples of each other. Hence either one could be included in the polynomial remainder sequence. The former is given by smaller determinants, so it is expected to have smaller coefficients.

Collins defined the \emph{subresultant remainder sequence} by setting

\[f_i = S_{n_{i-1}}(f, g) \quad (2 \leq i \leq k). \]

In the normal case, these are the same as the \(S_{n_i}(f, g) \). He also derived expressions for the constants \(\gamma_i \) in the remainder formulas

\[\gamma_i f_i = \text{rem}(f_{i-2}, f_{i-1}) \]

in terms of the leading coefficients of \(f_1, \ldots, f_{i-1} \), working in the field \(K \).

Brown and Traub [BrownTraub71] later developed a recursive procedure for computing the coefficients \(\gamma_i \). Their algorithm deals with elements of the domain \(A \) exclusively (assuming \(f, g \in A[X] \)). However, in the abnormal case there was a problem, a division in \(A \) which could only be conjectured to be exact.

This was subsequently justified by Brown [Brown78] who showed that the result of the division is, in fact, a scalar subresultant. More specifically, the constant appearing in the computation of \(f_i \) is \(s_{n_{i-2}}(f, g) \) (Theorem 3). The implication of this discovery is that the scalar subresultants are computed as by-products of the algorithm, all but \(s_{n_k}(f, g) \) which is not needed after finding \(f_{k+1} = 0 \). Completing the last step we obtain all non-zero scalar subresultants, including the last one which is the resultant if this does not vanish.

```python
sympy.polys.euclidtools.dmp_inner_subresultants(f, g, u, K)
```

Subresultant PRS algorithm in \(K[X] \).
Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x,y", ZZ)

>>> f = 3*x**2*y - y**3 - 4
>>> g = x**2 + x*y**3 - 9

>>> a = 3*x*y**4 + y**3 - 27*y + 4
>>> b = -3*y**10 - 12*y**7 + y**6 - 54*y**4 + 8*y**3 + 729*y**2 - 216*y + 16

>>> prs = [f, g, a, b]
>>> sres = [[1], [1], [3, 0, 0, 0, 0], [-3, 0, 0, -12, 1, 0, -54, 8, 729, -216, 16]]

>>> R.dmp_inner_subresultants(f, g) == (prs, sres)
True
```

`sympy.polys.euclidtools.dmp_subresultants(f, g, u, K)`
Computes subresultant PRS of two polynomials in \(K[X] \).

Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x,y", ZZ)

>>> f = 3*x**2*y - y**3 - 4
>>> g = x**2 + x*y**3 - 9

>>> a = 3*x*y**4 + y**3 - 27*y + 4
>>> b = -3*y**10 - 12*y**7 + y**6 - 54*y**4 + 8*y**3 + 729*y**2 - 216*y + 16

>>> R.dmp_subresultants(f, g) == [f, g, a, b]
True
```

`sympy.polys.euclidtools.dmp_prs_resultant(f, g, u, K)`
Resultant algorithm in \(K[X] \) using subresultant PRS.

5.8. Topics
Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x,y = ring("x,y", ZZ)

>>> f = 3*x**2*y - y**3 - 4
>>> g = x**2 + x*y**3 - 9

>>> a = 3*x*y**4 + y**3 - 27*y + 4
>>> b = -3*y**10 - 12*y**7 + y**6 - 54*y**4 + 8*y**3 + 729*y**2 - 216*y
+ 16

>>> res, prs = R.dmp_prs_resultant(f, g)

>>> res == b # resultant has n-1 variables
False
>>> res == b.drop(x)
True
>>> prs == [f, g, a, b]
True
```

dmp_zz_modular_resultant(f, g, p, u, K)

Compute resultant of f and g modulo a prime p.

Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x,y = ring("x,y", ZZ)

>>> f = x + y + 2
>>> g = 2*x*y + x + 3

>>> R.dmp_zz_modular_resultant(f, g, 5)
-2*y**2 + 1
```

dmp_zz_collins_resultant(f, g, u, K)

Collins’s modular resultant algorithm in Z[X].

Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x,y = ring("x,y", ZZ)

>>> f = x + y + 2
>>> g = 2*x*y + x + 3

>>> R.dmp_zz_collins_resultant(f, g)
-2*y**2 - 5*y + 1
```
sympy.polys.euclidtools.dmp_qq_collins_resultant\((f, g, u, K0) \)
Collins’s modular resultant algorithm in \(Q[X] \).

Examples

```python
>>> from sympy.polys import ring, QQ
>>> R, x, y = ring("x,y", QQ)

>>> f = QQ(1,2)*x + y + QQ(2,3)
>>> g = 2*x*y + x + 3

>>> R.dmp_qq_collins_resultant(f, g)
-2*y**2 - 7/3*y + 5/6
```

sympy.polys.euclidtools.dmp_resultant\((f, g, u, K, \text{includePRS}=False) \)
Computes resultant of two polynomials in \(K[X] \).

Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x,y", ZZ)

>>> f = 3*x**2*y - y**3 - 4
>>> g = x**2 + x*y**3 - 9

>>> R.dmp_resultant(f, g)
-3*y**10 - 12*y**7 + y**6 - 54*y**4 + 8*y**3 + 729*y**2 - 216*y + 16
```

sympy.polys.euclidtools.dmp_discriminant\((f, u, K) \)
Computes discriminant of a polynomial in \(K[X] \).

Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x, y, z, t = ring("x,y,z,t", ZZ)

>>> R.dmp_discriminant(x**2*y + x*z + t)
-4*y*t + z**2
```

sympy.polys.euclidtools.dmp_rr_prs_gcd\((f, g, u, K) \)
Computes polynomial GCD using subresultants over a ring.
Returns \((h, \text{cff}, \text{cfg}) \) such that \(a = \gcd(f, g), \text{cff} = \text{quo}(f, h), \text{and} \text{cfg} = \text{quo}(g, h) \).
Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x, y, = ring("x,y", ZZ)

>>> f = x**2 + 2*x*y + y**2
>>> g = x**2 + x*y

>>> R.dmp_rr_prs_gcd(f, g)
(x + y, x + y, x)
```

SymPy.polys.euclidtools.dmp_ff_prs_gcd(f, g, u, K)
Computes polynomial GCD using subresultants over a field.
Returns (h, cff, cfg) such that \(a = \gcd(f, g), cff = \text{quo}(f, h), \text{and} \ cfg = \text{quo}(g, h)\).

Examples

```python
>>> from sympy.polys import ring, QQ
>>> R, x, y, = ring("x,y", QQ)

>>> f = QQ(1,2)*x**2 + x*y + QQ(1,2)*y**2
>>> g = x**2 + x*y

>>> R.dmp_ff_prs_gcd(f, g)
(x + y, 1/2*x + 1/2*y, x)
```

SymPy.polys.euclidtools.dmp_zz_heu_gcd(f, g, u, K)
Heuristic polynomial GCD in \(\mathbb{Z}[X]\).
Given univariate polynomials \(f\) and \(g\) in \(\mathbb{Z}[X]\), returns their GCD and cofactors, i.e. polynomials \(h, cff\) and \(cfg\) such that:

\[h = \gcd(f, g), cff = \text{quo}(f, h) \text{ and } cfg = \text{quo}(g, h) \]

The algorithm is purely heuristic which means it may fail to compute the GCD. This will be signaled by raising an exception. In this case you will need to switch to another GCD method.

The algorithm computes the polynomial GCD by evaluating polynomials \(f\) and \(g\) at certain points and computing (fast) integer GCD of those evaluations. The polynomial GCD is recovered from the integer image by interpolation. The evaluation process reduces \(f\) and \(g\) variable by variable into a large integer. The final step is to verify if the interpolated polynomial is the correct GCD. This gives cofactors of the input polynomials as a side effect.
Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x,y, = ring("x,y", ZZ)

>>> f = x**2 + 2*x*y + y**2
>>> g = x**2 + x*y

>>> R.dmp ZZ heu gcd(f, g)
(x + y, x + y, x)
```

References

[R727] sympy.polys.euclidtools.dmp_qq_heu_gcd(f, g, u, K0)
Heuristic polynomial GCD in \(\mathbb{Q}[X] \).

Returns \((h, \text{cff}, \text{cfg})\) such that \(a = \gcd(f, g)\), \(\text{cff} = \text{quo}(f, h)\), and \(\text{cfg} = \text{quo}(g, h)\).

Examples

```python
>>> from sympy.polys import ring, QQ
>>> R, x,y, = ring("x,y", QQ)

>>> f = QQ(1,4)*x**2 + x*y + y**2
>>> g = QQ(1,2)*x**2 + x*y

>>> R.dmp qq heu gcd(f, g)
(x + 2*y, 1/4*x + 1/2*y, 1/2*x)
```

sympy.polys.euclidtools.dmp_inner_gcd(f, g, u, K)
Computes polynomial GCD and cofactors of \(f\) and \(g\) in \(K[X]\).

Returns \((h, \text{cff}, \text{cfg})\) such that \(a = \gcd(f, g)\), \(\text{cff} = \text{quo}(f, h)\), and \(\text{cfg} = \text{quo}(g, h)\).

Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x,y, = ring("x,y", ZZ)

>>> f = x**2 + 2*x*y + y**2
>>> g = x**2 + x*y

>>> R.dmp inner gcd(f, g)
(x + y, x + y, x)
```
sympy.polys.euclidtools.dmp_gcd(f, g, u, K)
Computes polynomial GCD of \(f \) and \(g \) in \(K[X] \).

Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x, y, = ring("x,y", ZZ)

>>> f = x**2 + 2*x*y + y**2
>>> g = x**2 + x*y

>>> R.dmp_gcd(f, g)
x + y
```

sympy.polys.euclidtools.dmp_lcm(f, g, u, K)
Computes polynomial LCM of \(f \) and \(g \) in \(K[X] \).

Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x, y, = ring("x,y", ZZ)

>>> f = x**2 + 2*x*y + y**2
>>> g = x**2 + x*y

>>> R.dmp_lcm(f, g)
x**3 + 2*x**2*y + x*y**2
```

sympy.polys.euclidtools.dmp_content(f, u, K)
Returns GCD of multivariate coefficients.

Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x, y, = ring("x,y", ZZ)

>>> R.dmp_content(2*x*y + 6*x + 4*y + 12)
2*y + 6
```

sympy.polys.euclidtools.dmp_primitive(f, u, K)
Returns multivariate content and a primitive polynomial.
Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x, y, = ring("x,y", ZZ)

>>> R.dmp_primitive(2*x*y + 6*x + 4*y + 12)
(2*y + 6, x + 2)
```

`sympy.polys.euclidtools.dmp_cancel(f, g, u, K, include=True)`
Cancel common factors in a rational function \(f/g \).

Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x,y", ZZ)

>>> R.dmp_cancel(2*x**2 - 2, x**2 - 2*x + 1)
(2*x + 2, x - 1)
```

Polynomial factorization in characteristic zero:

`sympy.polys.factortools.dmp_trial_division(f, factors, u, K)`
Determine multiplicities of factors for a multivariate polynomial using trial division.

`sympy.polys.factortools.dmp_zz_mignotte_bound(f, u, K)`
Mignotte bound for multivariate polynomials in \(K[X] \).

`sympy.polys.factortools.dup_zz_hensel_step(m, f, g, h, s, t, K)`
One step in Hensel lifting in \(Z[x] \).
Given positive integer \(m \) and \(Z[x] \) polynomials \(f, g, h, s \) and \(t \) such that:

\[
\begin{align*}
f &= g*h \pmod{m} \\
sg + th &= 1 \pmod{m} \\
lc(f) & \text{ is not a zero divisor } \pmod{m} \\
lc(h) &= 1 \\
deg(f) &= \deg(g) + \deg(h) \\
deg(s) &< \deg(h) \\
deg(t) &< \deg(g)
\end{align*}
\]

returns polynomials \(G, H, S \) and \(T \), such that:

\[
\begin{align*}
f &= G*H \pmod{m**2} \\
S*G + T*H &= 1 \pmod{m**2}
\end{align*}
\]
References

[R728]
sympy.polys.factortools.dup_zz_hensel_lift(p, f, f_list, l, K)
Multifactor Hensel lifting in \(Z[x] \).
Given a prime \(p \), polynomial \(f \) over \(Z[x] \) such that \(lc(f) \) is a unit modulo \(p \), monic pair-wise coprime polynomials \(f_i \) over \(Z[x] \) satisfying:

\[
f = lc(f) \ f_1 \ldots \ f_r \pmod{p} \]

and a positive integer \(l \), returns a list of monic polynomials \(F_1, F_2, \ldots, F_r \) satisfying:

\[
f = lc(f) \ F_1 \ldots \ F_r \pmod{p^l} \]
\[
F_i = f_i \pmod{p}, \quad i = 1 \ldots r
\]

References

[R729]
sympy.polys.factortools.dup_zz_zassenhaus(f, K)
Factor primitive square-free polynomials in \(Z[x] \).
sympy.polys.factortools.dup_zz_irreducible_p(f, K)
Test irreducibility using Eisenstein’s criterion.
sympy.polys.factortools.dup_cyclotomic_p(f, K, irreducible=False)
Efficiently test if \(f \) is a cyclotomic polynomial.

Examples

```python
>>> from sympy.polys import ring, ZZ
>>> R, x = ring("x", ZZ)

>>> f = x**16 + x**14 - x**10 + x**8 - x**6 + x**2 + 1
>>> R.dup_cyclotomic_p(f)
False

>>> g = x**16 + x**14 - x**10 - x**8 - x**6 + x**2 + 1
>>> R.dup_cyclotomic_p(g)
True
```
References

sympy.polys.factortools.dup_zz_cyclotomic_poly(n, K)
Efficiently generate n-th cyclotomic polynomial.

sympy.polys.factortools.dup_zz_cyclotomic_factor(f, K)
Efficiently factor polynomials $x^n - 1$ and $x^n + 1$ in $\mathbb{Z}[x]$.

Given a univariate polynomial f in $\mathbb{Z}[x]$ returns a list of factors of f, provided that f is in the form $x^n - 1$ or $x^n + 1$ for $n \geq 1$. Otherwise returns None.

Factorization is performed using cyclotomic decomposition of f, which makes this method much faster than any other direct factorization approach (e.g. Zassenhaus’s).

References

[R730]

sympy.polys.factortools.dup_zz_factor_sqf(f, K)
Factor square-free (non-primitive) polynomials in $\mathbb{Z}[x]$.

sympy.polys.factortools.dup_zz_factor(f, K)
Factor (non square-free) polynomials in $\mathbb{Z}[x]$.

Given a univariate polynomial f in $\mathbb{Z}[x]$ computes its complete factorization $f_1, ..., f_n$ into irreducibles over integers:

$$f = \text{content}(f) \cdot f_1^{**k_1} \ldots f_n^{**k_n}$$

The factorization is computed by reducing the input polynomial into a primitive square-free polynomial and factoring it using Zassenhaus algorithm. Trial division is used to recover the multiplicities of factors.

The result is returned as a tuple consisting of:

$$(\text{content}(f), [(f_1, k_1), \ldots, (f_n, k_n))]$$

Examples

Consider the polynomial $f = 2 \cdot x^4 - 2$:

```python
>>> from sympy.polys import ring, ZZ
>>> R, x = ring("x", ZZ)
>>> R.dup_zz_factor(2*x**4 - 2)
(2, [(x - 1, 1), (x + 1, 1), (x**2 + 1, 1)])
```

In result we got the following factorization:

$$f = 2 \cdot (x - 1) \cdot (x + 1) \cdot (x^2 + 1)$$
Note that this is a complete factorization over integers, however over Gaussian integers we can factor the last term.

By default, polynomials \(x^{2n} - 1 \) and \(x^{2n} + 1 \) are factored using cyclotomic decomposition to speedup computations. To disable this behaviour set cyclotomic=False.

References

[R731]
sympy.polys.factortools.dmp_zz_wang_non_divisors\((E, cs, ct, K)\)
Wang/EEZ: Compute a set of valid divisors.
sympy.polys.factortools.dmp_zz_wang_test_points\((f, T, ct, A, u, K)\)
Wang/EEZ: Test evaluation points for suitability.
sympy.polys.factortools.dmp_zz_wang_lead_coeffs\((f, T, cs, E, H, A, u, K)\)
Wang/EEZ: Compute correct leading coefficients.
sympy.polys.factortools.dmp_zz_diophantine\((F, c, A, d, p, u, K)\)
Wang/EEZ: Solve multivariate Diophantine equations.
sympy.polys.factortools.dmp_zz_wang_hensel_lifting\((f, H, LC, A, p, u, K)\)
sympy.polys.factortools.dmp_zz_wang\((f, u, K, mod=None, seed=None)\)
Factor primitive square-free polynomials in \(\mathbb{Z}[X] \).
Given a multivariate polynomial \(f \) in \(\mathbb{Z}[x_1, ..., x_n] \), which is primitive and square-free in \(x_1 \), computes factorization of \(f \) into irreducibles over integers.
The procedure is based on Wang’s Enhanced Extended Zassenhaus algorithm. The algorithm works by viewing \(f \) as a univariate polynomial in \(\mathbb{Z}[x_2, ..., x_n][x_1] \), for which an evaluation mapping is computed:

\[
\begin{align*}
x_2 & \rightarrow a_2, \ldots, x_n & \rightarrow a_n
\end{align*}
\]

where \(a_i \), for \(i = 2, \ldots, n \), are carefully chosen integers. The mapping is used to transform \(f \) into a univariate polynomial in \(\mathbb{Z}[x_1] \), which can be factored efficiently using Zassenhaus algorithm. The last step is to lift univariate factors to obtain true multivariate factors. For this purpose a parallel Hensel lifting procedure is used.
The parameter seed is passed to _randint and can be used to seed randint (when an integer) or (for testing purposes) can be a sequence of numbers.

References

[R732], [R733]
sympy.polys.factortools.dmp_zz_factor\((f, u, K)\)
Factor (non square-free) polynomials in \(\mathbb{Z}[X] \).
Given a multivariate polynomial \(f \) in \(\mathbb{Z}[x] \) computes its complete factorization \(f_1, \ldots, f_n \) into irreducibles over integers:
The factorization is computed by reducing the input polynomial into a primitive square-free polynomial and factoring it using Enhanced Extended Zassenhaus (EEZ) algorithm. Trial division is used to recover the multiplicities of factors.

The result is returned as a tuple consisting of:

```
(content(f), [(f_1, k_1), ..., (f_n, k_n))
```

Consider polynomial \(f = 2(x^2 - y^2) \):

```python
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x,y", ZZ)
>>> R.dmp_zz_factor(2*x**2 - 2*y**2)
(2, [(x - y, 1), (x + y, 1)])
```

In result we got the following factorization:

```
f = 2 (x - y) (x + y)
```

References

[R734] sympy.polys.factortools.dmp_ext_factor(f, u, K)

Factor multivariate polynomials over algebraic number fields.

sympy.polys.factortools.dup gf_factor(f, K)

Factor univariate polynomials over finite fields.

sympy.polys.factortools.dmp factor list(f, u, K0)

Factor multivariate polynomials into irreducibles in \(K[X] \).

sympy.polys.factortools.dmp factor list include(f, u, K)

Factor multivariate polynomials into irreducibles in \(K[X] \).

sympy.polys.factortools.dmp irreducible p(f, u, K)

Returns True if a multivariate polynomial \(f \) has no factors over its domain.

Groebner basis algorithms

Groebner bases can be used to answer many problems in computational commutative algebra. Their computation in rather complicated, and very performance-sensitive. We present here various low-level implementations of Groebner basis computation algorithms; please see the previous section of the manual for usage.

sympy.polys.groebnertools.groebner(seq, ring, method=None)

Computes Groebner basis for a set of polynomials in \(K[X] \).
Wrapper around the (default) improved Buchberger and the other algorithms for computing Groebner bases. The choice of algorithm can be changed via method argument or `sympy.polys.polyconfig.setup()` (page 2725), where method can be either `buchberger` or `f5b`.

```python
sympy.polys.groebnertools.spoly(p1, p2, ring)
```
Compute LCM(LM(p1), LM(p2))/LM(p1)*p1 - LCM(LM(p1), LM(p2))/LM(p2)*p2 This is the S-poly provided p1 and p2 are monic

```python
sympy.polys.groebnertools.red_groebner(G, ring)
```
Compute reduced Groebner basis, from BeckerWeispfenning93, p. 216
Selects a subset of generators, that already generate the ideal and computes a reduced Groebner basis for them.

```python
sympy.polys.groebnertools.is_groebner(G, ring)
```
Check if G is a Groebner basis.

```python
sympy.polys.groebnertools.is_minimal(G, ring)
```
Checks if G is a minimal Groebner basis.

```python
sympy.polys.groebnertools.is_reduced(G, ring)
```
Checks if G is a reduced Groebner basis.

```python
sympy.polys.fglmtools.matrix_fglm(F, ring, O_to)
```
Converts the reduced Groebner basis F of a zero-dimensional ideal w.r.t. 0_from to a reduced Groebner basis w.r.t. 0_to.

References

[R735] Groebner basis algorithms for modules are also provided:

```python
sympy.polys.distributedmodules.sdm_spoly(f, g, O, K, phantom=None)
```
Compute the generalized s-polynomial of f and g.
The ground field is assumed to be K, and monomials ordered according to O.
This is invalid if either of f or g is zero.
If the leading terms of f and g involve different basis elements of F, their s-poly is defined to be zero. Otherwise it is a certain linear combination of f and g in which the leading terms cancel. See [SCA, defn 2.3.6] for details.
If phantom is not None, it should be a pair of module elements on which to perform the same operation(s) as on f and g. The in this case both results are returned.
Examples

```python
>>> from sympy.polys.distributedmodules import sdm_spoly
>>> from sympy.polys import QQ, lex
>>> f = [(2, 1, 1), (1, 0, 1)]
>>> g = [(2, 3, 0), (1, 1)]
>>> h = [(1, 2, 3), (1)]
>>> sdm_spoly(f, h, lex, QQ)
[]
>>> sdm_spoly(f, g, lex, QQ)
[[(1, 2, 1), 1]]
```

`sympy.polys.distributedmodules.sdm_ecart(f)`
Compute the ecart of f.

This is defined to be the difference of the total degree of f and the total degree of the leading monomial of f [SCA, defn 2.3.7].

Invalid if f is zero.

Examples

```python
>>> from sympy.polys.distributedmodules import sdm_ecart
>>> sdm_ecart([(1, 2, 1), (1, 0, 1)])
0
>>> sdm_ecart([(2, 2, 1), (1, 5, 1)])
3
```

`sympy.polys.distributedmodules.sdm_nf_mora(f, G, O, K, phantom=None)`
Compute a weak normal form of f with respect to G and order O.

The ground field is assumed to be K, and monomials ordered according to O.

Weak normal forms are defined in [SCA, defn 2.3.3]. They are not unique. This function deterministically computes a weak normal form, depending on the order of G.

The most important property of a weak normal form is the following: if R is the ring associated with the monomial ordering (if the ordering is global, we just have \(R = K[x_1, \ldots, x_n] \), otherwise it is a certain localization thereof), I any ideal of R and G a standard basis for I, then for any \(f \in R \), we have \(f \in I \) if and only if \(NF(f|G) = 0 \).

This is the generalized Mora algorithm for computing weak normal forms with respect to arbitrary monomial orders [SCA, algorithm 2.3.9].

If phantom is not None, it should be a pair of “phantom” arguments on which to perform the same computations as on f, G, both results are then returned.

`sympy.polys.distributedmodules.sdm_groebner(G, NF, O, K, extended=False)`
Compute a minimal standard basis of G with respect to order O.

The algorithm uses a normal form NF, for example sdm_nf_mora. The ground field is assumed to be K, and monomials ordered according to O.

Let N denote the submodule generated by elements of G. A standard basis for N is a subset S of N, such that \(\text{in}(S) = \text{in}(N) \), where for any subset X of F, \(\text{in}(X) \) denotes the submodule generated by the initial forms of elements of X. [SCA, defn 2.3.2]
A standard basis is called minimal if no subset of it is a standard basis.

One may show that standard bases are always generating sets.

Minimal standard bases are not unique. This algorithm computes a deterministic result, depending on the particular order of G.

If extended=True, also compute the transition matrix from the initial generators to the groebner basis. That is, return a list of coefficient vectors, expressing the elements of the groebner basis in terms of the elements of G.

This functions implements the “sugar” strategy, see

Options

Options manager for Poly (page 2453) and public API functions.

```python
class sympy.polys.polyoptions.Options(gens, args, flags=None, strict=False)
```

Options manager for polynomial manipulation module.

Examples

```python
>>> from sympy.polys.polyoptions import Options
>>> from sympy.polys.polyoptions import build_options

>>> from sympy.abc import x, y, z

>>> Options((x, y, z), {'domain': 'ZZ'})
{'auto': False, 'domain': ZZ, 'gens': (x, y, z)}

>>> build_options((x, y, z), {'domain': 'ZZ'})
{'auto': False, 'domain': ZZ, 'gens': (x, y, z)}
```

Options

- Expand — boolean option
- Gens — option
- Wrt — option
- Sort — option
- Order — option
- Field — boolean option
- Greedy — boolean option
- Domain — option
- Split — boolean option
- Gaussian — boolean option
- Extension — option
• Modulus — option
• Symmetric — boolean option
• Strict — boolean option

Flags
• Auto — boolean flag
• Frac — boolean flag
• Formal — boolean flag
• Polys — boolean flag
• Include — boolean flag
• All — boolean flag
• Gen — flag
• Series — boolean flag

```python
clone(updates={})
```
Clone self and update specified options.

```python
sympy.polys.polyoptions.build_options(gens, args=None)
```
Construct options from keyword arguments or ... options.

Configuration

Configuration utilities for polynomial manipulation algorithms.

```python
sympy.polys.polyconfig.setup(key, value=None)
```
Assign a value to (or reset) a configuration item.

Exceptions

These are exceptions defined by the polynomials module.

TODO sort and explain

```python
class sympy.polys.polyerrors.BasePolynomialError
```
Base class for polynomial related exceptions.

```python
class sympy.polys.polyerrors.ExactQuotientFailed(f, g, dom=None)
```

```python
class sympy.polys.polyerrors.OperationNotSupported(poly, func)
```

```python
class sympy.polys.polyerrors.HeuristicGCDFailed
```

```python
class sympy.polys.polyerrors.HomomorphismFailed
```

```python
class sympy.polys.polyerrors.IsomorphismFailed
```

```python
class sympy.polys.polyerrors.ExtraneousFactors
```

```python
class sympy.polys.polyerrors.EvaluationFailed
```

5.8. Topics
class sympy.polys.polyerrors.RefinementFailed
class sympy.polys.polyerrors.CoercionFailed
class sympy.polys.polyerrors.NotInvertible
class sympy.polys.polyerrors.NotReversible
class sympy.polys.polyerrors.NotAlgebraic
class sympy.polys.polyerrors.DomainError
class sympy.polys.polyerrors.PolynomialError
class sympy.polys.polyerrors.UnificationFailed
class sympy.polys.polyerrors.GeneratorsNeeded
class sympy.polys.polyerrors.ComputationFailed(func, nargs, exc)
class sympy.polys.polyerrors.GeneratorsError
class sympy.polys.polyerrors.UnivariatePolynomialError
class sympy.polys.polyerrors.MultivariatePolynomialError
class sympy.polys.polyerrors.PolificationFailed(opt, origs, exprs, seq=False)
class sympy.polys.polyerrors.OptionError
class sympy.polys.polyerrors.FlagError

Reference

Modular GCD

sympy.polys.modulargcd.modgcd_univariate(f, g)
Computes the GCD of two polynomials in \(\mathbb{Z}[x]\) using a modular algorithm.

The algorithm computes the GCD of two univariate integer polynomials \(f\) and \(g\) by computing the GCD in \(\mathbb{Z}_p[x]\) for suitable primes \(p\) and then reconstructing the coefficients with the Chinese Remainder Theorem. Trial division is only made for candidates which are very likely the desired GCD.

Parameters
- **f**: PolyElement
 - univariate integer polynomial
- **g**: PolyElement
 - univariate integer polynomial

Returns
- **h**: PolyElement
 - GCD of the polynomials \(f\) and \(g\)
- **cfr**: PolyElement
cofactor of \(f \), i.e. \(\frac{f}{h} \)

cfg : PolyElement
cofactor of \(g \), i.e. \(\frac{g}{h} \)

Examples

```python
>> from sympy.polys.modulargcd import modgcd_univariate
>> from sympy.polys import ring, ZZ

>> R, x = ring("x", ZZ)

>> f = x**5 - 1
>> g = x - 1

>> h, cff, cfg = modgcd_univariate(f, g)
>> h, cff, cfg
(x - 1, x**4 + x**3 + x**2 + x + 1, 1)

>> cff * h == f
True
>> cfg * h == g
True

>> f = 6*x**2 - 6
>> g = 2*x**2 + 4*x + 2

>> h, cff, cfg = modgcd_univariate(f, g)
>> h, cff, cfg
(2*x + 2, 3*x - 3, x + 1)

>> cff * h == f
True
>> cfg * h == g
True
```

References

1. [Monagan00]

[Monagan00]
sympy.polys.modulargcd.modgcd_bivariate\((f, g)\)
 Computes the GCD of two polynomials in \(\mathbb{Z}[x,y] \) using a modular algorithm.

The algorithm computes the GCD of two bivariate integer polynomials \(f \) and \(g \) by calculating the GCD in \(\mathbb{Z}_p[x,y] \) for suitable primes \(p \) and then reconstructing the coefficients with the Chinese Remainder Theorem. To compute the bivariate GCD over \(\mathbb{Z}_p \), the polynomials \(f \mod p \) and \(g \mod p \) are evaluated at \(y = a \) for certain \(a \in \mathbb{Z}_p \) and then their univariate GCD in \(\mathbb{Z}_p[x] \) is computed. Interpolating those yields the bivariate GCD in

5.8. Topics 2727
\(\mathbb{Z}_p[x,y] \). To verify the result in \(\mathbb{Z}[x,y] \), trial division is done, but only for candidates which are very likely the desired GCD.

Parameters
- **f**: PolyElement
 - bivariate integer polynomial
- **g**: PolyElement
 - bivariate integer polynomial

Returns
- **h**: PolyElement
 - GCD of the polynomials \(f \) and \(g \)
- **cff**: PolyElement
 - cofactor of \(f \), i.e. \(\frac{f}{h} \)
- **cfg**: PolyElement
 - cofactor of \(g \), i.e. \(\frac{g}{h} \)

Examples

```python
>>> from sympy.polys.modulargcd import modgcd_bivariate
>>> from sympy.polys import ring, ZZ

>>> R, x, y = ring("x, y", ZZ)

>>> f = x**2 - y**2
>>> g = x**2 + 2*x*y + y**2

>>> h, cff, cfg = modgcd_bivariate(f, g)
>>> h, cff, cfg
(x + y, x - y, x + y)

>>> cff * h == f
True
>>> cfg * h == g
True

>>> f = x**2*y - x**2 - 4*y + 4
>>> g = x + 2

>>> h, cff, cfg = modgcd_bivariate(f, g)
>>> h, cff, cfg
(x + 2, x*y - x - 2*y + 2, 1)

>>> cff * h == f
True
>>> cfg * h == g
True
```
References

1. [Monagan00]

[Monagan00]

sympy.polys.modulargcd.modgcd_multivariate(f, g)

Compute the GCD of two polynomials in \(\mathbb{Z}[x_0, \ldots, x_{k-1}]\) using a modular algorithm.

The algorithm computes the GCD of two multivariate integer polynomials \(f\) and \(g\) by calculating the GCD in \(\mathbb{Z}_p[x_0, \ldots, x_{k-1}]\) for suitable primes \(p\) and then reconstructing the coefficients with the Chinese Remainder Theorem. To compute the multivariate GCD over \(\mathbb{Z}_p\), the recursive subroutine _modgcd_multivariate_p() (page 2730) is used. To verify the result in \(\mathbb{Z}[x_0, \ldots, x_{k-1}]\), trial division is done, but only for candidates which are very likely the desired GCD.

Parameters

\(f\) : PolyElement
 multivariate integer polynomial

\(g\) : PolyElement
 multivariate integer polynomial

Returns

\(h\) : PolyElement
 GCD of the polynomials \(f\) and \(g\)

\(\text{cff}\) : PolyElement
 cofactor of \(f\), i.e. \(\frac{f}{h}\)

\(\text{cfg}\) : PolyElement
 cofactor of \(g\), i.e. \(\frac{g}{h}\)

Examples

```python
>>> from sympy.polys.modulargcd import modgcd_multivariate
>>> from sympy.polys import ring, ZZ

>>> R, x, y = ring("x, y", ZZ)

>>> f = x**2 - y**2
>>> g = x**2 + 2*x*y + y**2

>>> h, cff, cfg = modgcd_multivariate(f, g)
>>> h, cff, cfg
(x + y, x - y, x + y)

>>> cff * h == f
True
>>> cfg * h == g
True
```
```python
>>> R, x, y, z = ring("x, y, z", ZZ)

>>> f = x*z**2 - y*z**2
>>> g = x**2*z + z

>>> h, cff, cfg = modgcd_multivariate(f, g)
>>> h, cff, cfg
(z, x*z - y*z, x**2 + 1)

>>> cff * h == f
True
>>> cfg * h == g
True
```

See also:

_modgcd_multivariate_p (page 2730)

References

1. [Monagan00]
2. [Brown71]

[Monagan00], [Brown71]
sympy.polys.modulargcd._modgcd_multivariate_p(f, g, p, degbound, contbound)
Compute the GCD of two polynomials in \(\mathbb{Z}_p[x_0, \ldots, x_{k-1}] \).
The algorithm reduces the problem step by step by evaluating the polynomials \(f \) and \(g \) at \(x_{k-1} = a \) for suitable \(a \in \mathbb{Z}_p \) and then calls itself recursively to compute the GCD in \(\mathbb{Z}_p[x_0, \ldots, x_{k-2}] \). If these recursive calls are successful for enough evaluation points, the GCD in \(k \) variables is interpolated, otherwise the algorithm returns None. Every time a GCD or a content is computed, their degrees are compared with the bounds. If a degree greater then the bound is encountered, then the current call returns None and a new evaluation point has to be chosen. If at some point the degree is smaller, the correspondent bound is updated and the algorithm fails.

Parameters

- **f**: PolyElement
 multivariate integer polynomial with coefficients in \(\mathbb{Z}_p \)
- **g**: PolyElement
 multivariate integer polynomial with coefficients in \(\mathbb{Z}_p \)
- **p**: Integer
 prime number, modulus of \(f \) and \(g \)
- **degbound**: list of Integer objects
 degbound[i] is an upper bound for the degree of the GCD of \(f \) and \(g \)
 in the variable \(x_i \)
- **contbound**: list of Integer objects
contbound[i] is an upper bound for the degree of the content of the GCD in \(\mathbb{Z}_p[x_1, x_0, \ldots, x_{n-1}] \), contbound[0] is not used can therefore be chosen arbitrarily.

Returns

- \(h : \text{PolyElement} \)
 - GCD of the polynomials \(f \) and \(g \) or None

References

1. [Monagan00]
2. [Brown71]

[Monagan00], [Brown71]

```python
sympy.polys.modulargcd.func_field_modgcd(f, g)
```

Compute the GCD of two polynomials \(f \) and \(g \) in \(\mathbb{Q}(\alpha)[x_0, \ldots, x_{n-1}] \) using a modular algorithm.

The algorithm first computes the primitive associate \(\tilde{m}_\alpha(z) \) of the minimal polynomial \(m_\alpha \) in \(\mathbb{Z}[z] \) and the primitive associates of \(f \) and \(g \) in \(\mathbb{Z}[x_1, \ldots, x_{n-1}][z]/(\tilde{m}_\alpha)[x_0] \). Then it computes the GCD in \(\mathbb{Q}(x_1, \ldots, x_{n-1})[z]/(m_\alpha(z))[x_0] \). This is done by calculating the GCD in \(\mathbb{Z}_p[x_1, \ldots, x_{n-1}][z]/(\tilde{m}_\alpha(z))[x_0] \) for suitable primes \(p \) and then reconstructing the coefficients with the Chinese Remainder Theorem and Rational Reconstruction. The GCD over \(\mathbb{Z}_p[x_1, \ldots, x_{n-1}][z]/(\tilde{m}_\alpha(z))[x_0] \) is computed with a recursive subroutine, which evaluates the polynomials at \(x_{n-1} = a \) for suitable evaluation points \(a \in \mathbb{Z}_p \) and then calls itself recursively until the ground domain does no longer contain any parameters. For \(\mathbb{Z}_p[z]/(\tilde{m}_\alpha(z))[x_0] \) the Euclidean Algorithm is used. The results of those recursive calls are then interpolated and Rational Function Reconstruction is used to obtain the correct coefficients. The results, both in \(\mathbb{Q}(x_1, \ldots, x_{n-1})[z]/(m_\alpha(z))[x_0] \) and \(\mathbb{Z}_p[x_1, \ldots, x_{n-1}][z]/(\tilde{m}_\alpha(z))[x_0] \), are verified by a fraction free trial division.

Apart from the above GCD computation some GCDs in \(\mathbb{Q}(\alpha)[x_0, \ldots, x_{n-1}] \) have to be calculated, because treating the polynomials as univariate ones can result in a spurious content of the GCD. For this `func_field_modgcd` is called recursively.

Parameters

- \(f, g : \text{PolyElement} \)
 - polynomials in \(\mathbb{Q}(\alpha)[x_0, \ldots, x_{n-1}] \)

Returns

- \(h : \text{PolyElement} \)
 - monic GCD of the polynomials \(f \) and \(g \)
- \(\text{cff} : \text{PolyElement} \)
 - cofactor of \(f \), i.e. \(\frac{f}{h} \)
- \(\text{cfg} : \text{PolyElement} \)
 - cofactor of \(g \), i.e. \(\frac{g}{h} \)

5.8. Topics 2731
Examples

```python
>>> from sympy.polys.modulargcd import func_field_modgcd
>>> from sympy.polys import AlgebraicField, QQ, ring
>>> from sympy import sqrt

>>> A = AlgebraicField(QQ, sqrt(2))
>>> R, x = ring('x', A)

>>> f = x**2 - 2
>>> g = x + sqrt(2)

>>> h, cff, cfg = func_field_modgcd(f, g)

>>> h == x + sqrt(2)
True
>>> cff * h == f
True
>>> cfg * h == g
True

>>> R, x, y = ring('x, y', A)

>>> f = x**2 + 2*sqrt(2)*x*y + 2*y**2
>>> g = x + sqrt(2)*y

>>> h, cff, cfg = func_field_modgcd(f, g)

>>> h == x + sqrt(2)*y
True
>>> cff * h == f
True
>>> cfg * h == g
True

>>> f = x + sqrt(2)*y
>>> g = x + y

>>> h, cff, cfg = func_field_modgcd(f, g)

>>> h == R.one
True
>>> cff * h == f
True
>>> cfg * h == g
True
```
Undocumented

Many parts of the polys module are still undocumented, and even where there is documentation it is scarce. Please contribute!

Series Manipulation using Polynomials

Any finite Taylor series, for all practical purposes is, in fact a polynomial. This module makes use of the efficient representation and operations of sparse polynomials for very fast multivariate series manipulations. Typical speedups compared to SymPy’s `series` method are in the range 20-100, with the gap widening as the series being handled gets larger.

All the functions expand any given series on some ring specified by the user. Thus, the coefficients of the calculated series depend on the ring being used. For example:

```python
>>> from sympy.polys import ring, QQ, RR
>>> from sympy.polys.ring_series import rs_sin
>>> R, x, y = ring('x, y', QQ)
>>> rs_sin(x*y, x, 5)
-1/6*x**3*y**3 + x*y
```

QQ stands for the Rational domain. Here all coefficients are rationals. It is recommended to use QQ with ring series as it automatically chooses the fastest Rational type.

Similarly, if a Real domain is used:

```python
>>> R, x, y = ring('x, y', RR)
>>> rs_sin(x*y, x, 5)
-0.166666666666667*x**3*y**3 + x*y
```

Though the definition of a polynomial limits the use of Polynomial module to Taylor series, we extend it to allow Laurent and even Puiseux series (with fractional exponents):

```python
>>> from sympy.polys.ring_series import rs_cos, rs_tan
>>> R, x, y = ring('x, y', QQ)
>>> rs_cos(x + x*y, x, 3)/x**3
-1/2*x**(-1)*y**2 - x**(-1)*y - 1/2*x**(-1) + x**(-3)
>>> rs_tan(x**QQ(2, 5)*y**QQ(1, 2), x, 2)
1/3*x**(6/5)*y**(3/2) + x**(2/5)*y**(1/2)
```

By default, PolyElement did not allow non-natural numbers as exponents. It converted a fraction to an integer and raised an error on getting negative exponents. The goal of the ring series module is fast series expansion, and not to use the polys module. The reason we use it as our backend is simply because it implements a sparse representation and most of the

5.8. Topics
basic functions that we need. However, this default behaviour of polys was limiting for ring series.

Note that there is no such constraint (in having rational exponents) in the data-structure used by polys- dict. Sparse polynomials (PolyElement) use the Python dict to store a polynomial term by term, where a tuple of exponents is the key and the coefficient of that term is the value. There is no reason why we can’t have rational values in the dict so as to support rational exponents.

So the approach we took was to modify sparse polys to allow non-natural exponents. And it turned out to be quite simple. We only had to delete the conversion to int of exponents in the __pow__ method of PolyElement. So:

```python
>>> x**QQ(3, 4)
x**(3/4)
```

and not 1 as was the case earlier.

Though this change violates the definition of a polynomial, it doesn’t break anything yet. Ideally, we shouldn’t modify polys in any way. But to have all the series capabilities we want, no other simple way was found. If need be, we can separate the modified part of polys from core polys. It would be great if any other elegant solution is found.

All series returned by the functions of this module are instances of the PolyElement class. To use them with other SymPy types, convert them to Expr:

```python
>>> from sympy.polys.ring_series import rs_exp
>>> from sympy.abc import a, b, c
>>> series = rs_exp(x, x, 5)
>>> a + series.as_expr()
a + x**4/24 + x**3/6 + x**2/2 + x + 1
```

rs_series

Direct use of elementary ring series functions does give more control, but is limiting at the same time. Creating an appropriate ring for the desired series expansion and knowing which ring series function to call, are things not everyone might be familiar with.

rs_series is a function that takes an arbitrary Expr and returns its expansion by calling the appropriate ring series functions. The returned series is a polynomial over the simplest (almost) possible ring that does the job. It recursively builds the ring as it parses the given expression, adding generators to the ring when it needs them. Some examples:

```python
>>> from sympy.polys.ring_series import rs_series
>>> from sympy.functions.elementary.trigonometric import sin
>>> rs_series(sin(a + b), a, 5)
1/24*sin(b)*a**4 - 1/2*sin(b)*a**2 + sin(b) - 1/6*cos(b)*a**3 + cos(b)*a

>>> rs_series(sin(exp(a*b) + cos(a + c)), a, 2)
-sin(c)*cos(cos(c) + 1)*a + cos(cos(c) + 1)*a*b + sin(cos(c) + 1)

>>> rs_series(sin(a + b)*cos(a + c)*tan(a**2 + b), a, 2)
cos(b)*cos(c)*tan(b)*a - sin(b)*sin(c)*tan(b)*a + sin(b)*cos(c)*tan(b)
```

It can expand complicated multivariate expressions involving multiple functions and most importantly, it does so blazingly fast:
rs_series is over 300 times faster. Given an expression to expand, there is some fixed overhead to parse it. Thus, for larger orders, the speed improvement becomes more prominent:

To figure out the right ring for a given expression, rs_series uses the sring function, which in turn uses other functions of polys. As explained above, non-natural exponents are not allowed. But the restriction is on exponents and not generators. So, polys allows all sorts of symbolic terms as generators to make sure that the exponent is a natural number:

rs_series is not fully implemented yet. As of now, it supports only multivariate Taylor expansions of expressions involving sin, cos, exp and tan. Adding the remaining functions is not at all difficult and they will be gradually added. If you are interested in helping, read the comments in ring_series.py. Currently, it does not support Puiseux series (though the elementary functions do). This is expected to be fixed soon.

You can also add more functions to ring_series.py. Only elementary functions are supported currently. The long term goal is to replace SymPy’s current series method with rs_series.
Reference

Functions in this module carry the prefix `rs_`, standing for “ring series”. They manipulate finite power series in the sparse representation provided by `polys.ring.ring`.

Elementary functions

`sympy.polys.ring_series.rs_log(p, x, prec)`

The Logarithm of p modulo $O(x**prec)$.

Notes

Truncation of integral $dx \ p**-1 \cdot d \ p/dx$ is used.

Examples

```python
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_log
>>> R, x = ring('x', QQ)
>>> rs_log(1 + x, x, 8)
1/7*x**7 - 1/6*x**6 + 1/5*x**5 - 1/4*x**4 + 1/3*x**3 - 1/2*x**2 + x
```

`sympy.polys.ring_series.rs_LambertW(p, x, prec)`

Calculate the series expansion of the principal branch of the Lambert W function.

Examples

```python
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_LambertW
>>> R, x, y = ring('x, y', QQ)
>>> rs_LambertW(x + x*y, x, 3)
-x**2*y**2 - 2*x**2*y - x*y**2 + x*y + x
```

See also:

`LambertW` (page 469)

`sympy.polys.ring_series.rs_exp(p, x, prec)`

Exponentiation of a series modulo $O(x**prec)$
Examples

```python
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_exp
>>> R, x = ring('x', QQ)
>>> rs_exp(x**2, x, 7)
1/6*x**6 + 1/2*x**4 + x**2 + 1
```

`sympy.polys.ring_series.rs_atan(p, x, prec)`

The arctangent of a series

Return the series expansion of the atan of p, about 0.

Examples

```python
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_atan
>>> R, x, y = ring('x, y', QQ)
>>> rs_atan(x + x*y, x, 4)
-1/3*x**3*y**3 - x**3*y**2 - x**3*y - 1/3*x**3 + x*y + x
```

See also:

`atan` (page 455)

`sympy.polys.ring_series.rs_asin(p, x, prec)`

Arcsine of a series

Return the series expansion of the asin of p, about 0.

Examples

```python
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_asin
>>> R, x, y = ring('x, y', QQ)
>>> rs_asin(x, x, 8)
5/112*x**7 + 3/40*x**5 + 1/6*x**3 + x
```

See also:

`asin` (page 454)

`sympy.polys.ring_series.rs_tan(p, x, prec)`

Tangent of a series.

Return the series expansion of the tan of p, about 0.
Examples

```python
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_tan
>>> R, x, y = ring('x, y', QQ)
>>> rs_tan(x + x*y, x, 4)
1/3*x**3*y**3 + x**3*y**2 + x**3*y + 1/3*x**3 + x*y + x
```

See also:

- `tan` (page 450)

```
sympy.polys.ring_series._tan1(p, x, prec)
```

Helper function of `rs_tan()` (page 2737).

Return the series expansion of tan of a univariate series using Newton’s method. It takes advantage of the fact that series expansion of atan is easier than that of tan.

Consider \(f(x) = y - \arctan(x) \) Let \(r \) be a root of \(f(x) \) found using Newton’s method. Then \(f(r) = 0 \) or \(y = \arctan(x) \) where \(x = \tan(y) \) as required.

```
sympy.polys.ring_series.rs_cot(p, x, prec)
```

Cotangent of a series

Return the series expansion of the cot of \(p \), about 0.

Examples

```python
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_cot
>>> R, x, y = ring('x, y', QQ)
>>> rs_cot(x, x, 6)
-2/945*x**5 - 1/45*x**3 - 1/3*x + x**(-1)
```

See also:

- `cot` (page 451)

```
sympy.polys.ring_series.rs_sin(p, x, prec)
```

Sine of a series

Return the series expansion of the sin of \(p \), about 0.

Examples

```python
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_sin
>>> R, x, y = ring('x, y', QQ)
>>> rs_sin(x + x*y, x, 4)
-1/6*x**3*y**3 - 1/2*x**3*y**2 - 1/2*x**3*y - 1/6*x**3 + x*y + x
```

(continues on next page)
(continued from previous page)

```python
>>> rs_sin(x**QQ(3, 2) + x*y**QQ(7, 5), x, 4)
-1/2*x**(7/2)*y**(14/5) - 1/6*x**3*y**(21/5) + x**(3/2) + x*y**(7/5)
```

See also:

sin (page 449)

sympy.polys.ring_series.rs_cos(p, x, prec)

Cosine of a series

Return the series expansion of the cos of p, about 0.

Examples

```python
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_cos
>>> R, x, y = ring('x, y', QQ)
>>> rs_cos(x + x*y, x, 4)
-1/2*x**2*y**2 - x**2*y - 1/2*x**2 + 1
>>> rs_cos(x + x*y, x, 4)/x**QQ(7, 5)
-1/2*x**(3/5)*y**2 - x**(3/5)*y - 1/2*x**(3/5) + x**(-7/5)
```

See also:

cos (page 450)

sympy.polys.ring_series.rs_cos_sin(p, x, prec)

Return the tuple (rs_cos(p, x, prec), `rs_sin(p, x, prec)`).

Is faster than calling rs_cos and rs_sin separately

sympy.polys.ring_series.rs_atanh(p, x, prec)

Hyperbolic arctangent of a series

Return the series expansion of the atanh of p, about 0.

Examples

```python
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_atanh
>>> R, x, y = ring('x, y', QQ)
>>> rs_atanh(x + x*y, x, 4)
1/3*x**3*y**3 + x**3*y**2 + x**3*y + 1/3*x**3 + x*y + x
```

See also:

atanh (page 464)

sympy.polys.ring_series.rs_sinh(p, x, prec)

Hyperbolic sine of a series

Return the series expansion of the sinh of p, about 0.

5.8. Topics 2739
Examples

```python
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_sinh
>>> R, x, y = ring('x, y', QQ)
>>> rs_sinh(x + x*y, x, 4)
1/6*x**3*y**3 + 1/2*x**3*y**2 + 1/2*x**3*y + 1/6*x**3 + x*y + x
```

See also:

`sinh` (page 461)

sympy.polys.ring_series.rs_cosh(p, x, prec)

Hyperbolic cosine of a series

Return the series expansion of the cosh of p, about 0.

Examples

```python
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_cosh
>>> R, x, y = ring('x, y', QQ)
>>> rs_cosh(x + x*y, x, 4)
1/2*x**2*y**2 + x**2*y + 1/2*x**2 + 1
```

See also:

`cosh` (page 461)

sympy.polys.ring_series.rs_tanh(p, x, prec)

Hyperbolic tangent of a series

Return the series expansion of the tanh of p, about 0.

Examples

```python
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_tanh
>>> R, x, y = ring('x, y', QQ)
>>> rs_tanh(x + x*y, x, 4)
-1/3*x**3*y**3 - x**3*y**2 - x**3*y - 1/3*x**3 + x*y + x
```

See also:

`tanh` (page 462)

sympy.polys.ring_series.rs_hadamard_exp(p1, inverse=False)

Return sum \(f_i/i!*x**i \) from sum \(f_i*x**i \), where \(x \) is the first variable.

If \(\text{inverse} = \text{True} \) return sum \(f_i*i!*x**i \)
Examples

```python
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_hadamard_exp
>>> R, x = ring('x', QQ)
>>> p = 1 + x + x**2 + x**3
>>> rs_hadamard_exp(p)
1/6*x**3 + 1/2*x**2 + x + 1
```

Operations

sympy.polys.ring_series.rs_mul(p1, p2, x, prec)
Return the product of the given two series, modulo $O(x^{\text{prec}})$.

Examples

```python
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_mul
>>> R, x = ring('x', QQ)
>>> p1 = x**2 + 2*x + 1
>>> p2 = x + 1
>>> rs_mul(p1, p2, x, 3)
3*x**2 + 3*x + 1
```

sympy.polys.ring_series.rs_square(p1, x, prec)
Square the series modulo $O(x^{\text{prec}})$

Examples

```python
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_square
>>> R, x = ring('x', QQ)
>>> p = x**2 + 2*x + 1
>>> rs_square(p, x, 3)
6*x**2 + 4*x + 1
```

sympy.polys.ring_series.rs_pow(p1, n, x, prec)
Return $p1^{n}$ modulo $O(x^{\text{prec}})$
Examples

```python
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_pow

>>> R, x = ring('x', QQ)
>>> p = x + 1
>>> rs_pow(p, 4, x, 3)
6*x**2 + 4*x + 1
```

sympy.polys.ring_series.rs_series_inversion(p, x, prec)

Multivariate series inversion $1/p$ modulo $O(x^{\text{prec}})$.

Examples

```python
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_series_inversion

>>> R, x, y = ring('x, y', QQ)
>>> rs_series_inversion(1 + x*y**2, x, 4)
-x**3*y**6 + x**2*y**4 - x*y**2 + 1
>>> rs_series_inversion(1 + x*y**2, y, 4)
-x*y**2 + 1
>>> rs_series_inversion(x + x**2, x, 4)
x**3 - x**2 + x - 1 + x**(-1)
```

sympy.polys.ring_series.rs_series_reversion(p, x, n, y)

Reversion of a series.

p is a series with $O(x^n)$ of the form $p = ax + f(x)$ where a is a number different from 0.

$f(x) = \sum_{k=2}^{n-1} a_k x_k$

Parameters

- a_k: Can depend polynomially on other variables, not indicated.
 - x: Variable with name x.
 - y: Variable with name y.

Returns

Solve $p = y$, that is, given $ax + f(x) - y = 0$,

find the solution $x = r(y)$ up to $O(y^n)$.

Algorithm

If r_i is the solution at order i, then: $ar_i + f(r_i) - y = O(y^{i+1})$

and if r_{i+1} is the solution at order $i + 1$, then: $ar_{i+1} + f(r_{i+1}) - y = O(y^{i+2})$

We have, $r_{i+1} = r_i + e$, such that, $ae + f(r_i) = O(y^{i+2})$ or $e = -f(r_i)/a$

So we use the recursion relation: $r_{i+1} = r_i - f(r_i)/a$ with the boundary condition: $r_1 = y$
Examples

```python
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_series_reversion, rs_trunc
>>> R, x, y, a, b = ring('x, y, a, b', QQ)
>>> p = x - x**2 - 2*b*x**2 + 2*a*b*x**2
>>> p1 = rs_series_reversion(p, x, 3, y); p1
-2*y**2*a*b + 2*y**2*b + y**2 + y
>>> rs_trunc(p.compose(x, p1), y, 3)
```

sympy.polys.ring_series.rs_nth_root(p, n, x, prec)
Multivariate series expansion of the nth root of p.

Parameters

- **p**: Expr
 The polynomial to computer the root of.
- **n**: integer
 The order of the root to be computed.
- **x**: PolyElement (page 2635)
- **prec**: integer
 Order of the expanded series.

Notes

The result of this function is dependent on the ring over which the polynomial has been defined. If the answer involves a root of a constant, make sure that the polynomial is over a real field. It cannot yet handle roots of symbols.

Examples

```python
>>> from sympy.polys.domains import QQ, RR
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_nth_root
>>> R, x, y = ring('x, y', QQ)
>>> rs_nth_root(1 + x + x*y, -3, x, 3)
2/9*x**2*y**2 + 4/9*x**2*y + 2/9*x**2 - 1/3*x*y - 1/3*x + 1
>>> R, x, y = ring('x, y', RR)
>>> rs_nth_root(3 + x + x*y, 3, x, 2)
0.160249952256379*x*y + 0.160249952256379*x + 1.44224957030741
```

sympy.polys.ring_series.rs_trunc(p1, x, prec)
Truncate the series in the x variable with precision prec, that is, modulo \(O(x^{**\text{prec}})\)
Examples

```python
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_trunc
>>> R, x = ring('x', QQ)
>>> p = x**10 + x**5 + x + 1
>>> rs_trunc(p, x, 12)
\xrightarrow{x^{10} + x^{5} + x + 1}
>>> rs_trunc(p, x, 10)
\xrightarrow{x^{5} + x + 1}
```

`sympy.polys.ring_series.rs_subs(p, rules, x, prec)`
Substitution with truncation according to the mapping in rules.
Return a series with precision prec in the generator x
Note that substitutions are not done one after the other

```python
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_subs
>>> R, x, y = ring('x, y', QQ)
>>> p = x**2 + y**2
>>> rs_subs(p, {x: x+y, y: x+2*y}, x, 3)
6*x**2*y**2 + x**2 + 4*x*y**3 + y**4
>>> rs_subs(rs_subs(p, {x: x+y}, x, 3), {y: x+2*y}, x, 3)
5*x**2 + 12*x*y + 8*y**2
```

Parameters
- `p`: `PolyElement` (page 2635) Input series.
- `rules`: dict with substitution mappings.
- `x`: `PolyElement` (page 2635) in which the series truncation is to be done.
- `prec`: `Integer` (page 1038) order of the series after truncation.

Examples

```python
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_subs
>>> R, x, y = ring('x, y', QQ)
>>> rs_subs(x**2+y**2, {y: (x+y)**2}, x, 3)
6*x**2*y**2 + x**2 + 4*x*y**3 + y**4
```

`sympy.polys.ring_series.rs_diff(p, x)`
Return partial derivative of p with respect to x.
Parameters

\(x: PolyElement\) (page 2635) with respect to which \(p\) is differentiated.

Examples

```python
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_diff
>>> R, x, y = ring('x, y', QQ)
>>> p = x + x**2*y**3
>>> rs_diff(p, x)
2*x*y**3 + 1
```

```
sympy.polys.ring_series.rs_integrate(p, x)
Integrate \(p\) with respect to \(x\).

Parameters

\(x: PolyElement\) (page 2635) with respect to which \(p\) is integrated.

Examples

```python
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_integrate
>>> R, x, y = ring('x, y', QQ)
>>> p = x + x**2*y**3
>>> rs_integrate(p, x)
1/3*x**3*y**3 + 1/2*x**2
```

```
sympy.polys.ring_series.rs_newton(p, x, prec)
Compute the truncated Newton sum of the polynomial \(p\)

Examples

```python
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_newton
>>> R, x = ring('x', QQ)
>>> p = x**2 - 2
>>> rs_newton(p, x, 5)
8*x**4 + 4*x**2 + 2
```

```
sympy.polys.ring_series.rs_compose_add(p1, p2)
compute the composed sum \(\prod(p2(x - \text{beta})\) for beta root of \(p1\)

5.8. Topics
Examples

```python
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_compose_add
>>> R, x = ring('x', QQ)
>>> f = x**2 - 2
>>> g = x**2 - 3
>>> rs_compose_add(f, g)
```
```
x**4 - 10*x**2 + 1
```

References

[R755]

Utility functions

sympy.polys.ring_series.rs_is_puiseux(p, x)

Test if p is Puiseux series in x.

Raise an exception if it has a negative power in x.

Examples

```python
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_is_puiseux
>>> R, x = ring('x', QQ)
>>> p = x**QQ(2,5) + x**QQ(2,3) + x
>>> rs_is_puiseux(p, x)
```
```
True
```

sympy.polys.ring_series.rs_puiseux(f, p, x, prec)

Return the puiseux series for \(f(p, x, \text{prec})\).

To be used when function f is implemented only for regular series.

Examples

```python
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_puiseux, rs_exp
>>> R, x = ring('x', QQ)
>>> p = x**QQ(2,5) + x**QQ(2,3) + x
>>> rs_puiseux(rs_exp, p, x, 1)
```
```
1/2*x**(4/5) + x**(2/3) + x**(2/5) + 1
```

sympy.polys.ring_series.rs_puiseux2(f, p, q, x, prec)

Return the puiseux series for \(f(p, q, x, \text{prec})\).

To be used when function f is implemented only for regular series.
sympy.polys.ring_series.rs_series_from_list(p, c, x, prec, concur=1)

Return a series \( \text{sunc}[n] \ast p \ast n \) modulo \( O(x \ast prec) \).

It reduces the number of multiplications by summing concurrently.

\[
ax = [1, p, p \ast 2, \ldots, p \ast (J - 1)] \quad s = \sum(c[i] \ast ax[i] \text{ for } i \text{ in } \text{range}(r, (r + 1) \ast J)) \ast p \ast ((K - 1) \ast J)
\]

with \( K >= (n + 1)/J \)

Examples

```python
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_series_from_list, rs_trunc
>>> R, x = ring('x', QQ)
>>> p = x**2 + x + 1
>>> c = [1, 2, 3]
>>> rs_series_from_list(p, c, x, 4)
6*x**3 + 11*x**2 + 8*x + 6
>>> rs_trunc(1 + 2*p + 3*p**2, x, 4)
6*x**3 + 11*x**2 + 8*x + 6
>>> pc = R.from_list(list(reversed(c)))
>>> rs_trunc(pc.compose(x, p), x, 4)
6*x**3 + 11*x**2 + 8*x + 6
```

defined as an attributes access.

sympy.polys.ring_series.rs_fun(p, f, *args)

Function of a multivariate series computed by substitution.

The case with f method name is used to compute \( rs\_tan \) and \( rs\_nth\_root \) of a multivariate series:

\[
rs\_fun(p, tan, iv, prec)
\]

tan series is first computed for a dummy variable \( x \), i.e, \( rs\_tan(x, iv, prec) \). Then we substitute \( x \) with \( p \) to get the desired series

Parameters

- **p**: `PolyElement` (page 2635) The multivariate series to be expanded.
- **f**: `ring_series` function to be applied on \( p \).
- **args[-2]**: `PolyElement` (page 2635) with respect to which, the series is to be expanded.
- **args[-1]**: Required order of the expanded series.

Examples

```python
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_fun, _tan1
>>> R, x, y = ring('x, y', QQ)
>>> p = x + x*y + x**2*y + x**3*y**2
>>> rs_fun(p, _tan1, x, 4)
1/3*x**3*y**3 + 2*x**3*y**2 + x**3*y + 1/3*x**3 + x**2*y + x*y + x
```
SymPy Documentation, Release 1.12.1

sympy.polys.ring_series.mul_xin(p, i, n)

Return $p \times x_i \times n$.

$x_i$ is the $i$th variable in $p$.

sympy.polys.ring_series.pow_xin(p, i, n)

```
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import pow_xin
>>> R, x, y = ring('x, y', QQ)
>>> p = x**QQ(2,5) + x + x**QQ(2,3)
>>> index = p.ring.gens.index(x)
>>> pow_xin(p, index, 15)
x**15 + x**10 + x**6
```

Literature

The following is a non-comprehensive list of publications that were used as a theoretical foundation for implementing polynomials manipulation module.

Poly solvers

This module provides functions for solving systems of linear equations that are used internally in sympy. Low-level linear systems solver.

sympy.polys.solvers.solve_lin_sys(eqs, ring, _raw=True)

Solve a system of linear equations from a PolynomialRing

Parameters

  eqs: list[PolyElement]

  The linear equations to be solved as elements of a PolynomialRing (assumed equal to zero).

  ring: PolynomialRing

  The polynomial ring from which eqs are drawn. The generators of this ring are the unknowns to be solved for and the domain of the ring is the domain of the coefficients of the system of equations.

  _raw: bool

  If _raw is False, the keys and values in the returned dictionary will be of type Expr (and the unit of the field will be removed from the keys) otherwise the low-level polys types will be returned, e.g. PolyElement: PythonRational.

Returns

None if the system has no solution.

dict[Symbol, Expr] if _raw=False

dict[Symbol, DomainElement] if _raw=True.
**Explanation**

Solves a system of linear equations given as PolyElement instances of a PolynomialRing. The basic arithmetic is carried out using instance of DomainElement which is more efficient than Expr (page 999) for the most common inputs.

While this is a public function it is intended primarily for internal use so its interface is not necessarily convenient. Users are suggested to use the sympy.solvers.solveset.linsolve() (page 919) function (which uses this function internally) instead.

**Examples**

```python
>>> from sympy import symbols
>>> from sympy.polys.solvers import solve_lin_sys, sympy_eqs_to_ring
>>> x, y = symbols('x, y')
>>> eqs = [x - y, x + y - 2]
>>> eqs_ring, ring = sympy_eqs_to_ring(eqs, [x, y])
>>> solve_lin_sys(eqs_ring, ring)
{y: 1, x: 1}
```

Passing `_raw=False` returns the same result except that the keys are Expr rather than low-level poly types.

```python
>>> solve_lin_sys(eqs_ring, ring, _raw=False)
{x: 1, y: 1}
```

**See also:**

sympy_eqs_to_ring (page 2750)
preparstheinputs to solve_lin_sys.

linsolve (page 919)
linsolve uses solve_lin_sys internally.

sympy.solvers.solvers.solve (page 882)
solve uses solve_lin_sys internally.

sympy.polys.solvers.eqs_to_matrix(eqs_coeffs, eqs_rhs, gens, domain)
Get matrix from linear equations in dict format.

**Parameters**

eqs_coeffs: list[dict[Symbol, DomainElement]]
The left hand sides of the equations as dicts mapping from symbols to coefficients where the coefficients are instances of DomainElement.

eqs_rhs: list[DomainElements]
The right hand sides of the equations as instances of DomainElement.

gens: list[Symbol]
The unknowns in the system of equations.

domain: Domain
The domain for coefficients of both lhs and rhs.
**Returns**

The augmented matrix representation of the system as a DomainMatrix.

**Explanation**

Get the matrix representation of a system of linear equations represented as dicts with low-level DomainElement coefficients. This is an *internal* function that is used by solve_lin_sys.

**Examples**

```python
>>> from sympy import symbols, ZZ
>>> from sympy.polys.solvers import eqs_to_matrix
>>> x, y = symbols('x, y')
>>> eqs_coeff = [{x: ZZ(1), y: ZZ(1)}, {x: ZZ(1), y: ZZ(-1)}]
>>> eqs_rhs = [ZZ(0), ZZ(-1)]
>>> eqs_to_matrix(eqs_coeff, eqs_rhs, [x, y], ZZ)
DomainMatrix([[1, 1, 0], [1, -1, 1]], (2, 3), ZZ)
```

**See also:**

`solve_lin_sys` (page 2748)

Uses `eqs_to_matrix()` (page 2749) internally

sympy.polys.solvers.**sympy_eqs_to_ring**(eqs, symbols)

Convert a system of equations from Expr to a PolyRing

**Parameters**

- **eqs**: List of Expr
  A list of equations as Expr instances

- **symbols**: List of Symbol
  A list of the symbols that are the unknowns in the system of equations.

**Returns**

Tuple[List[PolyElement], Ring]: The equations as PolyElement instances and the ring of polynomials within which each equation is represented.

**Explanation**

High-level functions like solve expect Expr as inputs but can use solve_lin_sys internally. This function converts equations from Expr to the low-level poly types used by the solve_lin_sys function.
Examples

```python
>>> from sympy import symbols
>>> from sympy.polys.solvers import sympy_eqs_to_ring
>>> a, x, y = symbols('a, x, y')
>>> eqs = [x-y, x+a*y]
>>> eqs_ring, ring = sympy_eqs_to_ring(eqs, [x, y])
>>> eqs_ring
[x - y, x + a*y]
>>> type(eqs_ring[0])
<class 'sympy.polys.rings.PolyElement'>
>>> ring
ZZ(a)[x,y]
```

With the equations in this form they can be passed to `solve_lin_sys`:

```python
>>> from sympy.polys.solvers import solve_lin_sys
>>> solve_lin_sys(eqs_ring, ring)
{y: 0, x: 0}
```

`sympy.polys.solvers._solve_lin_sys(eqs_coeffs, eqs_rhs, ring)`
Solve a linear system from dict of PolynomialRing coefficients

Explanation

This is an internal function used by `solve_lin_sys()` (page 2748) after the equations have been preprocessed. The role of this function is to split the system into connected components and pass those to `_solve_lin_sys_component()` (page 2751).

Examples

Setup a system for $x - y = 0$ and $x + y = 2$ and solve:

```python
>>> from sympy import symbols, sring
>>> from sympy.polys.solvers import _solve_lin_sys
>>> x, y = symbols('x, y')
>>> R, (xr, yr) = sring([x, y], [x, y])
>>> eqs = [{xr:R.one, yr:-R.one}, {xr:R.one, yr:R.one}]
>>> eqs_rhs = [R.zero, -2*R.one]
>>> _solve_lin_sys(eqs, eqs_rhs, R)
{y: 1, x: 1}
```

See also:

`solve_lin_sys` (page 2748)
This function is used internally by `solve_lin_sys()` (page 2748).

`sympy.polys.solvers._solve_lin_sys_component(eqs_coeffs, eqs_rhs, ring)`
Solve a linear system from dict of PolynomialRing coefficients
Explanation

This is an internal function used by `solve_lin_sys()` (page 2748) after the equations have been preprocessed. After `solve_lin_sys()` (page 2751) splits the system into connected components this function is called for each component. The system of equations is solved using Gauss-Jordan elimination with division followed by back-substitution.

Examples

Setup a system for \( x - y = 0 \) and \( x + y = 2 \) and solve:

```python
>>> from sympy import symbols, sring
>>> from sympy.polys.solvers import _solve_lin_sys_component
>>> x, y = symbols('x, y')
>>> R, (xr, yr) = sring([x, y], [x, y])
>>> eqs = [{xr: R.one, yr: -R.one}, {xr: R.one, yr: R.one}]
>>> eqs_rhs = [R.zero, -2*R.one]
>>> _solve_lin_sys_component(eqs, eqs_rhs, R)
{y: 1, x: 1}
```

See also:

`solve_lin_sys` (page 2748)

This function is used internally by `solve_lin_sys()` (page 2748).

Introducing the domainmatrix of the poly module

This page introduces the idea behind domainmatrix which is used in SymPy’s `sympy.polys` (page 2435) module. This is a relatively advanced topic so for a better understanding it is recommended to read about `Domain` (page 2584) and `DDM` (page 2772) along with `sympy.matrices` (page 1260) module.

What is domainmatrix?

It is way of associating Matrix with `Domain` (page 2584).

A domainmatrix represents a matrix with elements that are in a particular Domain. Each domainmatrix internally wraps a DDM which is used for the lower-level operations. The idea is that the domainmatrix class provides the convenience routines for converting between Expr and the poly domains as well as unifying matrices with different domains.

In general, we represent a matrix without concerning about the `Domain` (page 2584) as:

```python
>>> from sympy import Matrix
>>> from sympy.polys.matrices import DomainMatrix
>>> A = Matrix([[
... [1, 2],
... [3, 4]])
>>> A
```
class sympy.polys.matrices.domainmatrix.DomainMatrix(rows, shape, domain, *, fmt=None)

Associate Matrix with Domain (page 2584)

Explanation

DomainMatrix uses Domain (page 2584) for its internal representation which makes it faster than the SymPy Matrix class (currently) for many common operations, but this advantage makes it not entirely compatible with Matrix. DomainMatrix are analogous to numpy arrays with “dtype”. In the DomainMatrix, each element has a domain such as ZZ (page 2605) or QQ<a> (page 2619).

Examples

Creating a DomainMatrix from the existing Matrix class:

```python
>>> from sympy import Matrix
>>> from sympy.polys.matrices import DomainMatrix
>>> Matrix1 = Matrix([...
... [1, 2],
... [3, 4]])
>>> A = DomainMatrix.from_Matrix(Matrix1)
>>> A
DomainMatrix({0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}}, (2, 2), ZZ)
```

Directly forming a DomainMatrix:

```python
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([...
... [ZZ(1), ZZ(2)],
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> A
DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ)
```

See also:

DDM (page 2772), SDM (page 2774), Domain (page 2584), Poly (page 2453)

add(B)

Adds two DomainMatrix matrices of the same Domain

Parameters

A, B: DomainMatrix

matrices to add

Returns

DomainMatrix
DomainMatrix after Addition

**Raises**

**DMShapeError**
If the dimensions of the two DomainMatrix are not equal

**ValueError**
If the domain of the two DomainMatrix are not same

**Examples**

```python
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([[
... ZZ(1), ZZ(2)],
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> B = DomainMatrix([[
... ZZ(4), ZZ(3)],
... [ZZ(2), ZZ(1)]], (2, 2), ZZ)
>>> A.add(B)
DomainMatrix([[5, 5], [5, 5]], (2, 2), ZZ)
```

**See also:**

`sub` (page 2769), `matmul` (page 2763)

**charpoly()**

Returns the coefficients of the characteristic polynomial of the DomainMatrix. These elements will be domain elements. The domain of the elements will be same as domain of the DomainMatrix.

**Returns**

list

coefficients of the characteristic polynomial

**Raises**

**DMNonSquareMatrixError**
If the DomainMatrix is not a not Square DomainMatrix

**Examples**

```python
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([[
... ZZ(1), ZZ(2)],
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> A.charpoly()
[1, -5, -2]
```
columnspace()

Returns the columnspace for the DomainMatrix

**Returns**
DomainMatrix

The columns of this matrix form a basis for the column space.

**Examples**

```python
>>> from sympy import QQ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [QQ(1), QQ(-1)],
... [QQ(2), QQ(-2)], (2, 2), QQ)
>>> A.columnspace()
DomainMatrix([[1], [2]], (2, 1), QQ)
```

convert_to(K)

Change the domain of DomainMatrix to desired domain or field

**Parameters**

- **K**: Represents the desired domain or field.

Alternatively, None may be passed, in which case this method just returns a copy of this DomainMatrix.

**Returns**

DomainMatrix

DomainMatrix with the desired domain or field

**Examples**

```python
>>> from sympy import ZZ, ZZ_I
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [ZZ(1), ZZ(2)],
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> A.convert_to(ZZ_I)
DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ_I)
```

det()

Returns the determinant of a Square DomainMatrix

**Returns**

S.Complexes
determinant of Square DomainMatrix

**Raises**

ValueError

If the domain of DomainMatrix not a Field
Examples

```python
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [ZZ(1), ZZ(2)],
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> A.det()
-2
```

**classmethod diag**(diagonal, domain, shape=None)

Return diagonal matrix with entries from diagonal.

Examples

```python
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy import ZZ
>>> DomainMatrix.diag([ZZ(5), ZZ(6)], ZZ)
DomainMatrix({0: {0: 5}, 1: {1: 6}}, (2, 2), ZZ)
```

**classmethod eye**(shape, domain)

Return identity matrix of size n

Examples

```python
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy import QQ
>>> DomainMatrix.eye(3, QQ)
DomainMatrix({0: {0: 1}, 1: {1: 1}, 2: {2: 1}}, (3, 3), QQ)
```

**classmethod from_Matrix**(M, fmt='sparse', **kwargs)

Convert Matrix to DomainMatrix

**Parameters**

M: Matrix

**Returns**

Returns DomainMatrix with identical elements as M

Examples

```python
>>> from sympy import Matrix
>>> from sympy.polys.matrices import DomainMatrix
>>> M = Matrix([)
... [1.0, 3.4],
... [2.4, 1]])
>>> A = DomainMatrix.from_Matrix(M)
```
We can keep internal representation as ddm using fmt='dense'

```python
>>> from sympy import Matrix, QQ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix.from_Matrix(Matrix([[QQ(1, 2), QQ(3, 4)], [QQ(0, 1), QQ(0, 1)]]), fmt='dense')
```

```python
>>> A.rep
\[
\begin{pmatrix}
\frac{1}{2} & \frac{3}{4} \\
0 & 0
\end{pmatrix}
\]
```

See also:
- Matrix (page 1406)

### classmethod from_dict_sympy(nrows, ncols, elemsdict, **kwargs)

**Parameters**
- `nrows`: number of rows
- `ncols`: number of cols
- `elemsdict`: dict of dicts containing non-zero elements of the DomainMatrix

**Returns**
- DomainMatrix containing elements of `elemsdict`

### Examples

```python
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy.abc import x, y, z
>>> elemsdict = {0: {0: x}, 1: {1: y}, 2: {2: z}}
>>> A = DomainMatrix.from_dict_sympy(3, 3, elemsdict)
>>> A
DomainMatrix({0: {0: x}, 1: {1: y}, 2: {2: z}}, (3, 3), ZZ[x,y,z])
```

See also:
- from_list_sympy (page 2758)

### classmethod from_list(rows, domain)

Convert a list of lists into a DomainMatrix

**Parameters**
- `rows`: list of lists

  Each element of the inner lists should be either the single arg, or tuple of args, that would be passed to the domain constructor in order to form an element of the domain. See examples.

**Returns**
- DomainMatrix containing elements defined in rows
Examples

```python
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy import FF, QQ, ZZ
>>> A = DomainMatrix.from_list([[1, 0, 1], [0, 0, 1]], ZZ)
>>> A
DomainMatrix([[1, 0, 1], [0, 0, 1]], (2, 3), ZZ)
>>> B = DomainMatrix.from_list([[1, 0, 1], [0, 0, 1]], FF(7))
>>> B
DomainMatrix([[1 mod 7, 0 mod 7, 1 mod 7], [0 mod 7, 0 mod 7, 1 mod 7]], (2, 3), GF(7))
>>> C = DomainMatrix.from_list([[1, 2], [3, 1]], [[1, 4], [5, 1]], QQ)
>>> C
DomainMatrix([[1/2, 3], [1/4, 5]], (2, 2), QQ)
```

See also:

- `from_list_sympy` (page 2758)

classmethod `from_list_sympy(nrows, ncols, rows, **kwargs)`
Convert a list of lists of Expr into a DomainMatrix using construct_domain

Parameters
  - `nrows`: number of rows
  - `ncols`: number of columns
  - `rows`: list of lists

Returns
  - DomainMatrix containing elements of rows

Examples

```python
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy.abc import x, y, z
>>> A = DomainMatrix.from_list_sympy(1, 3, [[x, y, z]])
>>> A
DomainMatrix([[x, y, z]], (1, 3), ZZ[x,y,z])
```

See also:

- `sympy.polys.constructor.construct_domain` (page 2503), `from_dict_sympy` (page 2757)

classmethod `from_rep(rep)`
Create a new DomainMatrix efficiently from DDM/SDM.

Parameters
  - `rep`: SDM or DDM

The internal sparse or dense representation of the matrix.

Returns
  - DomainMatrix

A `DomainMatrix` (page 2753) wrapping `rep`. 
Examples

Create a `DomainMatrix` (page 2753) with an dense internal representation as `DDM` (page 2772):

```python
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy.polys.matrices.ddm import DDM
>>> drep = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> dM = DomainMatrix.from_rep(drep)
>>> dM
DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ)
```

Create a `DomainMatrix` (page 2753) with a sparse internal representation as `SDM` (page 2774):

```python
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy.polys.matrices.sdm import SDM
>>> from sympy import ZZ
>>> drep = SDM({0: {1: ZZ(1)}, 1: {0: ZZ(2)}}, (2, 2), ZZ)
>>> dM = DomainMatrix.from_rep(drep)
>>> dM
DomainMatrix({0: {1: 1}, 1: {0: 2}}, (2, 2), ZZ)
```

Notes

This takes ownership of `rep` as its internal representation. If `rep` is being mutated elsewhere then a copy should be provided to `from_rep`. Only minimal verification or checking is done on `rep` as this is supposed to be an efficient internal routine.

### hstack(*B)

Horizontally stack the given matrices.

**Parameters**

- **B**: `DomainMatrix`

  Matrices to stack horizontally.

**Returns**

- `DomainMatrix`

  DomainMatrix by stacking horizontally.

Examples

```python
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix

>>> A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> B = DomainMatrix([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ)
>>> A.hstack(B)
DomainMatrix([[1, 2, 5, 6], [3, 4, 7, 8]], (2, 4), ZZ)
```
>>> C = DomainMatrix([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ)
>>> A.hstack(B, C)
DomainMatrix([[1, 2, 5, 6, 9, 10], [3, 4, 7, 8, 11, 12]], (2, 6), ZZ)

See also:
unify (page 2771)

inv()
Finds the inverse of the DomainMatrix if exists

Returns
DomainMatrix
    DomainMatrix after inverse

Raises
ValueError
    If the domain of DomainMatrix not a Field

DMNonSquareMatrixError
    If the DomainMatrix is not a not Square DomainMatrix

Examples

>>> from sympy import QQ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([...
... [QQ(2), QQ(-1), QQ(0)],
... [QQ(-1), QQ(2), QQ(-1)],
... [QQ(0), QQ(0), QQ(2)]], (3, 3), QQ)
>>> A.inv()
DomainMatrix([[-2/3, 1/3, 1/6], [1/3, 2/3, 1/3], [0, 0, 1/2]], (3, 3), QQ)

See also:
neg (page 2764)

property is_lower
    Says whether this matrix is lower-triangular. True can be returned even if the matrix
    is not square.

property is_upper
    Says whether this matrix is upper-triangular. True can be returned even if the matrix
    is not square.

lll(delta=MPQ(3, 4))
    Performs the Lenstra-Lenstra-Lovász (LLL) basis reduction algorithm. See [R713] and
    [R714].

    Parameters
    delta : QQ, optional
The Lovász parameter. Must be in the interval (0.25, 1), with larger values producing a more reduced basis. The default is 0.75 for historical reasons.

**Returns**
The reduced basis as a DomainMatrix over ZZ.

**Throws**
DMValueError: if delta is not in the range (0.25, 1) DMShapeError: if the matrix is not of shape (m, n) with m <= n DMDomainError: if the matrix domain is not ZZ DMRankError: if the matrix contains linearly dependent rows

**Examples**

```python
>>> from sympy.polys.domains import ZZ, QQ
>>> from sympy.polys.matrices import DM
>>> x = DM([[1, 0, 0, 0, -20160],
 ... [0, 1, 0, 0, 33768],
 ... [0, 0, 1, 0, 39578],
 ... [0, 0, 0, 1, 47757]], ZZ)
>>> y = DM([[10, -3, -2, 8, -4],
 ... [3, -9, 8, 1, -11],
 ... [-3, 13, -9, -3, -9],
 ... [-12, -7, -11, 9, -1]], ZZ)
>>> assert x.lll(delta=QQ(5, 6)) == y
```

**Notes**
The implementation is derived from the Maple code given in Figures 4.3 and 4.4 of [R715] (pp.68-69). It uses the efficient method of only calculating state updates as they are required.

**See also:**
lll_transform (page 2761)

**References**

[R713], [R714], [R715]

lll_transform(delta=MPQ(3, 4))
Performs the Lenstra–Lenstra–Lovász (LLL) basis reduction algorithm and returns the reduced basis and transformation matrix.
**Explanation**

Parameters, algorithm and basis are the same as for `lll()` (page 2760) except that the return value is a tuple \((B, T)\) with \(B\) the reduced basis and \(T\) a transformation matrix. The original basis \(A\) is transformed to \(B\) with \(T \cdot A = B\). If only \(B\) is needed then `lll()` (page 2760) should be used as it is a little faster.

**Examples**

```python
>>> from sympy.polys.domains import ZZ, QQ
>>> from sympy.polys.matrices import DM
>>> X = DM([[1, 0, 0, 0, -20160],
 [0, 1, 0, 0, 33768],
 [0, 0, 1, 0, 39578],
 [0, 0, 0, 1, 47757]], ZZ)
>>> B, T = X.lll_transform(delta=QQ(5,6))
>>> T * X == B
True
```

See also:

`lll` (page 2760)

**lu()**

Returns Lower and Upper decomposition of the DomainMatrix

**Returns**

\((L, U, \text{exchange})\)

\(L, U\) are Lower and Upper decomposition of the DomainMatrix, exchange is the list of indices of rows exchanged in the decomposition.

**Raises**

`ValueError`

If the domain of DomainMatrix not a Field

**Examples**

```python
>>> from sympy import QQ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([[QQ(1), QQ(-1)],
 [QQ(2), QQ(-2)]], (2, 2), QQ)
>>> A.lu()
(DomainMatrix([[1, 0], [2, 1]], (2, 2), QQ), DomainMatrix([[1, -1],
 [0, 0]], (2, 2), QQ), [])
```

See also:

`lu_solve` (page 2762)

**lu_solve**(rhs)

Solver for DomainMatrix \(x\) in the \(A\times x = B\)
Parameters
   - `rhs` : DomainMatrix B

Returns
   - DomainMatrix
     - $x$ in $A \times x = B$

Raises
   - `DMShapeError`
     - If the DomainMatrix A and rhs have different number of rows
   - `ValueError`
     - If the domain of DomainMatrix A not a Field

Examples

```python
>>> from sympy import QQ
>>> from sympy.polys.matrices import DomainMatrix

>>> A = DomainMatrix([[
... [QQ(1), QQ(2)],
... [QQ(3), QQ(4)]],
... (2, 2), QQ)

>>> B = DomainMatrix([[
... [QQ(1), QQ(1)],
... [QQ(0), QQ(1)]],
... (2, 2), QQ)

>>> A.lu_solve(B)
DomainMatrix([[[-2, -1], [3/2, 1]], (2, 2), QQ])
```

See also:

- `lu` (page 2762)
- `matmul(B)`
  - Performs matrix multiplication of two DomainMatrix matrices

Parameters
   - `A`, `B` : DomainMatrix
     - to multiply

Returns
   - DomainMatrix
     - DomainMatrix after multiplication
Examples

```python
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([[
... ZZ(1), ZZ(2)],
... ZZ(3), ZZ(4)]), (2, 2), ZZ)
>>> B = DomainMatrix([[
... ZZ(1), ZZ(1)],
... ZZ(0), ZZ(1)]), (2, 2), ZZ)
```

```python
>>> A.matmul(B)
DomainMatrix([[1, 3], [3, 7]], (2, 2), ZZ)
```

See also:

mul (page 2764), pow (page 2766), add (page 2753), sub (page 2769)

**mul(b)**

Performs term by term multiplication for the second DomainMatrix w.r.t first DomainMatrix. Returns a DomainMatrix whose rows are list of DomainMatrix matrices created after term by term multiplication.

**Parameters**

- **A, B: DomainMatrix**

  matrices to multiply term-wise

**Returns**

- **DomainMatrix**

  DomainMatrix after term by term multiplication

Examples

```python
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([[
... ZZ(1), ZZ(2)],
... ZZ(3), ZZ(4)]), (2, 2), ZZ)
>>> B = DomainMatrix([[
... ZZ(1), ZZ(1)],
... ZZ(0), ZZ(1)]), (2, 2), ZZ)
```

```python
>>> A.mul(B)
DomainMatrix([[DomainMatrix([[1, 1], [0, 1]], (2, 2), ZZ),
 DomainMatrix([[2, 2], [0, 2]], (2, 2), ZZ)],
 [DomainMatrix([[3, 3], [0, 3]], (2, 2), ZZ),
 DomainMatrix([[4, 4], [0, 4]], (2, 2), ZZ)]), (2, 2), ZZ)
```

See also:

matmul (page 2763)
neg()

Returns the negative of DomainMatrix

Parameters
A : Represents a DomainMatrix

Returns
DomainMatrix
DomainMatrix after Negation

Examples

```python
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [ZZ(1), ZZ(2)],
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> A.neg()
DomainMatrix([[[-1, -2]], [-3, -4]], (2, 2), ZZ)
```

nullspace()

Returns the nullspace for the DomainMatrix

Returns
DomainMatrix
The rows of this matrix form a basis for the nullspace.

Examples

```python
>>> from sympy import QQ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([[
... [QQ(1), QQ(-1)],
... [QQ(2), QQ(-2)]]], (2, 2), QQ)
>>> A.nullspace()
DomainMatrix([[1, 1]], (1, 2), QQ)
```

classmethod ones(shape, domain)

Returns a DomainMatrix of 1s, of size shape, belonging to the specified domain
Examples

>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy import QQ
>>> DomainMatrix.ones((2,3), QQ)
DomainMatrix([[1, 1, 1], [1, 1, 1]], (2, 3), QQ)

\textit{pow}(n)

Computes $A^n$

\textbf{Parameters}

$A$ : DomainMatrix
$n$ : exponent for $A$

\textbf{Returns}

DomainMatrix

DomainMatrix on computing $A^n$

\textbf{Raises}

\texttt{NotImplementedError}

if $n$ is negative.

Examples

>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([...
... [ZZ(1), ZZ(1)],
... [ZZ(0), ZZ(1)]], (2, 2), ZZ)

>>> A.pow(2)
DomainMatrix([[1, 2], [0, 1]], (2, 2), ZZ)

\textbf{See also:}

\textit{matmul} (page 2763)

\textbf{rowspace}()

Returns the rowspace for the DomainMatrix

\textbf{Returns}

DomainMatrix

The rows of this matrix form a basis for the rowspace.
Examples

```python
>>> from sympy import QQ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([[
... [QQ(1), QQ(-1)],
... [QQ(2), QQ(-2)]], (2, 2), QQ)
>>> A.rowspace()
DomainMatrix([[1, -1]], (1, 2), QQ)
```

**rref()**

Returns reduced-row echelon form and list of pivots for the DomainMatrix

**Returns**

(DomainMatrix, list)

reduced-row echelon form and list of pivots for the DomainMatrix

**Raises**

ValueError

If the domain of DomainMatrix not a Field

Examples

```python
>>> from sympy import QQ
>>> from sympy.polys.matrices import DomainMatrix
>>>
>>> A = DomainMatrix([[
... [QQ(2), QQ(-1), QQ(0)],
... [QQ(-1), QQ(2), QQ(-1)],
... [QQ(0), QQ(0), QQ(2)]], (3, 3), QQ)
>>> rref_matrix, rref_pivots = A.rref()
>>> rref_matrix
DomainMatrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]], (3, 3), QQ)
>>> rref_pivots
(0, 1, 2)
```

**See also:**

convert_to (page 2755), lu (page 2762)

**scc()**

Compute the strongly connected components of a DomainMatrix

**Returns**

List of lists of integers

Each list represents a strongly connected component.
Explanation

A square matrix can be considered as the adjacency matrix for a directed graph where the row and column indices are the vertices. In this graph if there is an edge from vertex \( i \) to vertex \( j \) if \( M[i, j] \) is nonzero. This routine computes the strongly connected components of that graph which are subsets of the rows and columns that are connected by some nonzero element of the matrix. The strongly connected components are useful because many operations such as the determinant can be computed by working with the submatrices corresponding to each component.

Examples

Find the strongly connected components of a matrix:

```python
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> M = DomainMatrix([[ZZ(1), ZZ(0), ZZ(2)],
... [ZZ(0), ZZ(3), ZZ(0)],
... [ZZ(4), ZZ(6), ZZ(5)]], (3, 3), ZZ)
>>> M.scc()
[[1], [0, 2]]
```

Compute the determinant from the components:

```python
>>> MM = M.to_Matrix()
>>> MM
Matrix([[1, 0, 2],
 [0, 3, 0],
 [4, 6, 5]])
>>> MM[[1], [1]].det()
Matrix([[3]])
>>> MM[[0, 2], [0, 2]].det()
Matrix([[1, 2],
 [4, 5]])
```

The components are given in reverse topological order and represent a permutation of the rows and columns that will bring the matrix into block lower-triangular form:

```python
>>> MM[[1, 0, 2], [1, 0, 2]]
Matrix([[3, 0, 0],
 [0, 1, 2],
 [6, 4, 5]])
```

See also:

*sympy.matrices.matrices.MatrixBase.strongly_connected_components*
*(page 1355), sympy.utilities.iterables.strongly_connected_components*
\textbf{\texttt{sub}(\texttt{B})}

Subtracts two \texttt{DomainMatrix} matrices of the same Domain

\textbf{Parameters}

- \texttt{A, B: DomainMatrix}
  matrices to subtract

\textbf{Returns}

- \texttt{DomainMatrix}
  DomainMatrix after Subtraction

\textbf{Raises}

- \texttt{DMShapeError}
  If the dimensions of the two \texttt{DomainMatrix} are not equal

- \texttt{ValueError}
  If the domain of the two \texttt{DomainMatrix} are not same

\textbf{Examples}

```
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix(
... [ZZ(1), ZZ(2)],
... [ZZ(3), ZZ(4)], (2, 2), ZZ)
>>> B = DomainMatrix(
... [ZZ(4), ZZ(3)],
... [ZZ(2), ZZ(1)], (2, 2), ZZ)

>>> A.sub(B)
DomainMatrix([[[-3, -1], [1, 3]], (2, 2), ZZ])
```

\textbf{See also:}

- \texttt{add} (page 2753), \texttt{matmul} (page 2763)

\textbf{\texttt{to\_Matrix}()}

Convert \texttt{DomainMatrix} to Matrix

\textbf{Returns}

- \texttt{Matrix}
  \texttt{MutableDenseMatrix} for the \texttt{DomainMatrix}
Examples

>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([[
...    ZZ(1), ZZ(2)],
...    [ZZ(3), ZZ(4)]], (2, 2), ZZ)

>>> A.to_Matrix()
Matrix([[1, 2], [3, 4]])

See also:

from Matrix (page 2756)

to_dense()

Return a dense DomainMatrix representation of self.

Examples

>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy import QQ
>>> A = DomainMatrix({0: {0: 1}, 1: {1: 2}}, (2, 2), QQ)

>>> A.rep
{0: {0: 1}, 1: {1: 2}}

>>> B = A.to_dense()

>>> B.rep
[[1, 0], [0, 2]]

to_field()

Returns a DomainMatrix with the appropriate field

Returns

DomainMatrix

DomainMatrix with the appropriate field

Examples

>>> from sympy import ZZ

>>> from sympy.polys.matrices import DomainMatrix

>>> A = DomainMatrix([[
...    ZZ(1), ZZ(2)],
...    [ZZ(3), ZZ(4)]], (2, 2), ZZ)

>>> A.to_field()
DomainMatrix([[1, 2], [3, 4]], (2, 2), QQ)

to_sparse()

Return a sparse DomainMatrix representation of self.
Examples

```python
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy import QQ
>>> A = DomainMatrix([[1, 0],[0, 2]], (2, 2), QQ)
>>> A.rep
[[1, 0], [0, 2]]
>>> B = A.to_sparse()
>>> B.rep
{0: {0: 1}, 1: {1: 2}}
```

**transpose()**
Matrix transpose of self

**unify(**others, fmt=None**)
Unifies the domains and the format of self and other matrices.

Parameters
- **others**: DomainMatrix
- **fmt**: string ‘dense’, ‘sparse’ or `None` (default)
  The preferred format to convert to if self and other are not already in the same format. If `None` or not specified then no conversion if performed.

Returns
- **Tuple[DomainMatrix]**
  Matrices with unified domain and format

Examples

Unify the domain of DomainMatrix that have different domains:

```python
>>> from sympy import ZZ, QQ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ)
>>> B = DomainMatrix([[QQ(1, 2), QQ(2)]], (1, 2), QQ)
>>> Aq, Bq = A.unify(B)
>>> Aq
DomainMatrix([[1, 2]], (1, 2), QQ)
>>> Bq
DomainMatrix([[1/2, 2]], (1, 2), QQ)
```

Unify the format (dense or sparse):

```python
>>> A = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ)
>>> B = DomainMatrix({0:{0: ZZ(1)}}, (2, 2), ZZ)
>>> B.rep
{0: {0: 1}}

>>> A2, B2 = A.unify(B, fmt='dense')
>>> B2.rep
[[[1, 0], [0, 0]]
```
See also:

*convert_to* (page 2755), *to_dense* (page 2770), *to_sparse* (page 2770)

**vstack(*B*)**

Vertically stack the given matrices.

**Parameters**

- **B**: *DomainMatrix*
  
  Matrices to stack vertically.

**Returns**

- **DomainMatrix**
  
  DomainMatrix by stacking vertically.

**Examples**

```python
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix

>>> A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> B = DomainMatrix([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ)
>>> A.vstack(B)
DomainMatrix([[1, 2], [3, 4], [5, 6], [7, 8], (4, 2), ZZ])

>>> C = DomainMatrix([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ)
>>> A.vstack(B, C)
DomainMatrix([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], (6, 2), ZZ])
```

See also:

*unify* (page 2771)

**classmethod** **zeros**(shape, domain, *, fmt='sparse')

Returns a zero DomainMatrix of size shape, belonging to the specified domain.

**Examples**

```python
>>> from sympy.polys.matrices import DomainMatrix

>>> from sympy import QQ

>>> DomainMatrix.zeros((2, 3), QQ)
DomainMatrix({}, (2, 3), QQ)
```

**class** `sympy.polys.matrices.ddm.DDM(rowslist, shape, domain)`

Dense matrix based on polys domain elements

This is a list subclass and is a wrapper for a list of lists that supports basic matrix arithmetic +, -, *, .

**add**(b)

a + b
charpoly()
Coefficients of characteristic polynomial of a

det()
Determinant of a

hstack(*B)
Horizontally stacks DDM (page 2772) matrices.

Examples

```python
>>> from sympy import ZZ
>>> from sympy.polys.matrices.sdm import DDM

>>> A = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> B = DDM([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ)
>>> A.hstack(B)
[[[1, 2, 5, 6], [3, 4, 7, 8]]

>>> C = DDM([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ)
>>> A.hstack(B, C)
[[[1, 2, 5, 6, 9, 10], [3, 4, 7, 8, 11, 12]]
```

inv()
Inverse of a

is_lower()
Says whether this matrix is lower-triangular. True can be returned even if the matrix is not square.

is_upper()
Says whether this matrix is upper-triangular. True can be returned even if the matrix is not square.

is_zero_matrix()
Says whether this matrix has all zero entries.

lu()
L, U decomposition of a

lu_solve(b)
x where a\times b

matmul(b)
a \times b (matrix product)

neg()
-a

rref()
Reduced-row echelon form of a and list of pivots

scc()
Strongly connected components of a square matrix a.
Examples

```python
>>> from sympy import ZZ
>>> from sympy.polys.matrices.sdm import DDM
>>> A = DDM([[ZZ(1), ZZ(0)], [ZZ(0), ZZ(1)]], (2, 2), ZZ)
>>> A.scc()
[[0], [1]]
```

See also:

`sympy.polys.matrices.domainmatrix.DomainMatrix.scc` (page 2767)

`sub(b)`

- a - b

`vstack(*B)`

Vertically stacks `DDM` (page 2772) matrices.

Examples

```python
>>> from sympy import ZZ
>>> from sympy.polys.matrices.sdm import DDM
>>> A = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> B = DDM([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ)
>>> A.vstack(B)
[[1, 2], [3, 4], [5, 6], [7, 8]]
```

```python
>>> C = DDM([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ)
>>> A.vstack(B, C)
[[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]]
```

**class** `sympy.polys.matrices.sdm.SDM(elemsdict, shape, domain)`

Sparse matrix based on polys domain elements

This is a dict subclass and is a wrapper for a dict of dicts that supports basic matrix arithmetic `+,-,*,`.

In order to create a new `SDM` (page 2774), a dict of dicts mapping non-zero elements to their corresponding row and column in the matrix is needed.

We also need to specify the shape and `Domain` (page 2584) of our `SDM` (page 2774) object.

We declare a 2x2 `SDM` (page 2774) matrix belonging to QQ domain as shown below. The 2x2 Matrix in the example is

\[
A = \begin{bmatrix}
0 & \frac{1}{2} \\
0 & 0
\end{bmatrix}
\]

```python
>>> from sympy.polys.matrices.sdm import SDM
>>> from sympy import QQ
>>> elemsdict = {0:{1:QQ(1, 2)}}
>>> A = SDM(elemsdict, (2, 2), QQ)
>>> A
{0: {1: 1/2}}
```
We can manipulate SDM (page 2774) the same way as a Matrix class.

```python
>>> from sympy import ZZ
>>> A = SDM({0: {1: ZZ(2)}, 1: {0: ZZ(1)}}, (2, 2), ZZ)
>>> B = SDM({0: {0: ZZ(3)}, 1: {1: ZZ(4)}}, (2, 2), ZZ)
>>> A + B
{0: {0: 3, 1: 2}, 1: {0: 1, 1: 4}}
```

Multiplication

```python
>>> A*B
{0: {0: 8}, 1: {0: 3}}
>>> A*ZZ(2)
{0: {1: 4}, 1: {0: 2}}
```

add(B)

Adds two SDM (page 2774) matrices

```
Examples

>>> from sympy import ZZ
>>> A = SDM({0: {0: ZZ(1)}, 1: {0: ZZ(2)}}, (2, 2), ZZ)
>>> A + B
{0: {0: 3, 1: 2}, 1: {0: 1, 1: 4}}
```

ccharpoly()

Returns the coefficients of the characteristic polynomial of the SDM (page 2774) matrix. These elements will be domain elements. The domain of the elements will be same as domain of the SDM (page 2774).

```
Examples

>>> from sympy import QQ, Symbol
>>> from sympy.polys.matrices.sdm import SDM
>>> A = SDM({0: {0: QQ(1)}, 1: QQ(2)}, (2, 2), QQ)
>>> A.charpoly()
[1, -5, -2]
```

We can create a polynomial using the coefficients using Poly (page 2453)

```python
>>> x = Symbol('x')
>>> p = Poly(A.charpoly(), x, domain=A.domain)
>>> p
Poly(x**2 - 5*x - 2, x, domain='QQ')
```

convert_to(K)

Converts the Domain (page 2584) of a SDM (page 2774) matrix to K
Examples

```python
>>> from sympy import ZZ, QQ
>>> from sympy.polys.matrices.sdm import SDM
>>> A = SDM({0:{1: ZZ(2)}, 1:{0:ZZ(1)}}, (2, 2), ZZ)
>>> A.convert_to(QQ)
{0: {1: 2}, 1: {0: 1}}
```

copy()
Returns the copy of a SDM (page 2774) object

Examples

```python
>>> from sympy.polys.matrices.sdm import SDM
>>> from sympy import QQ
>>> elemsdict = {0:{1:QQ(2)}, 1:{}}
>>> A = SDM(elemsdict, (2, 2), QQ)
>>> B = A.copy()
>>> B
{0: {1: 2}, 1: {}}
```

det()
Returns determinant of A

Examples

```python
>>> from sympy import QQ
>>> from sympy.polys.matrices.sdm import SDM
>>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ)
>>> A.det()
-2
```

classmethod eye(shape, domain)
Returns a identity SDM (page 2774) matrix of dimensions size x size, belonging to the specified domain

Examples

```python
>>> from sympy.polys.matrices.sdm import SDM
>>> from sympy import QQ
>>> I = SDM.eye((2, 2), QQ)
>>> I
{0: {0: 1}, 1: {1: 1}}
```

classmethod from_ddm(ddm)
converts object of DDM (page 2772) to SDM (page 2774)
Examples

```python
>>> from sympy.polys.matrices.ddm import DDM
>>> from sympy.polys.matrices.sdm import SDM
>>> from sympy import QQ

>>> ddm = DDM([[QQ(1, 2), 0], [0, QQ(3, 4)]], (2, 2), QQ)
>>> A = SDM.from_ddm(ddm)
>>> A
{0: {0: 1/2}, 1: {1: 3/4}}
```

classmethod `from_list`(ddm, shape, domain)

Parameters:
- **ddm**: list of lists containing domain elements
- **shape**: Dimensions of SDM (page 2774) matrix
- **domain**: Represents Domain (page 2584) of SDM (page 2774) object

Returns
- SDM (page 2774) containing elements of ddm

Examples

```python
>>> from sympy.polys.matrices.sdm import SDM

>>> from sympy import QQ

>>> ddm = [[QQ(1, 2), QQ(0)], [QQ(0), QQ(3, 4)]]
>>> A = SDM.from_list(ddm, (2, 2), QQ)
>>> A
{0: {0: 1/2}, 1: {1: 3/4}}
```

`hstack(*B)`

Horizontally stacks SDM (page 2774) matrices.

Examples

```python
>>> from sympy import ZZ

>>> from sympy.polys.matrices.sdm import SDM

>>> A = SDM({0: {0: ZZ(1), 1: ZZ(2)}, 1: {0: ZZ(3), 1: ZZ(4)}}, (2, 2), ZZ)
>>> B = SDM({0: {0: ZZ(5), 1: ZZ(6)}, 1: {0: ZZ(7), 1: ZZ(8)}}, (2, 2), ZZ)
>>> A.hstack(B)
{0: {0: 1, 1: 2, 2: 5, 3: 6}, 1: {0: 3, 1: 4, 2: 7, 3: 8}}
```
inv()

Returns inverse of a matrix A

Examples

>>> from sympy import QQ
>>> from sympy.polys.matrices.sdm import SDM
>>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ)
>>> A.inv()
{0: {0: -2, 1: 1}, 1: {0: 3/2, 1: -1/2}}

is_lower()

Says whether this matrix is lower-triangular. True can be returned even if the matrix is not square.

is_upper()

Says whether this matrix is upper-triangular. True can be returned even if the matrix is not square.

is_zero_matrix()

Says whether this matrix has all zero entries.

lu()

Returns LU decomposition for a matrix A

Examples

>>> from sympy import QQ
>>> from sympy.polys.matrices.sdm import SDM
>>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ)
>>> A.lu()
({0: {0: 1}, 1: {0: 3, 1: 1}}, {0: {0: 1, 1: 2}, 1: {1: -2}}, [])

lu_solve(b)

Uses LU decomposition to solve Ax = b,
Examples

```python
>>> from sympy import QQ
>>> from sympy.polys.matrices.sdm import SDM
>>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ)
>>> b = SDM({0:{0:QQ(1), 1:QQ(2)}}, (2, 1), QQ)
>>> A.lu_solve(b)
{1: {0: 1/2}}
```

**matmul(B)**

Performs matrix multiplication of two SDM matrices

**Parameters**

A, B: SDM to multiply

**Returns**

SDM

SDM after multiplication

**Raises**

DomainError

If domain of A does not match with that of B

Examples

```python
>>> from sympy import ZZ
>>> from sympy.polys.matrices.sdm import SDM
>>> A = SDM({0:{1:ZZ(2), 1:ZZ(1)}}, (2, 2), ZZ)
>>> B = SDM({0:{0:ZZ(2), 1:ZZ(3)}}, (2, 2), ZZ)
>>> A.matmul(B)
{0: {0: 8}, 1: {0: 2, 1: 3}}
```

**mul(b)**

Multiplies each element of A with a scalar b

Examples

```python
>>> from sympy import ZZ
>>> from sympy.polys.matrices.sdm import SDM
>>> A = SDM({0:{1:ZZ(2), 1:ZZ(1)}}, (2, 2), ZZ)
>>> A.mul(ZZ(3))
{0: {1: 6}, 1: {0: 3}}
```

**neg()**

Returns the negative of a SDM (page 2774) matrix
Examples

```python
>>> from sympy import ZZ
>>> from sympy.polys.matrices.sdm import SDM
>>> A = SDM({0:{1: ZZ(2)}, 1:{0:ZZ(1)}}, (2, 2), ZZ)
>>> A.neg()
{0: {1: -2}, 1: {0: -1}}
```

classmethod `new`  
```
Parameters
sdm: A dict of dicts for non-zero elements in SDM
shape: tuple representing dimension of SDM
domain: Represents :py:class:`~.Domain` of SDM

Returns
An SDM (page 2774) object
```

Examples

```python
>>> from sympy.polys.matrices.sdm import SDM
>>> from sympy import QQ
>>> elemsdict = {0:{1: QQ(2)}}
>>> A = SDM.new(elemsdict, (2, 2), QQ)
>>> A
{0: {1: 2}}
```

`nullspace`  
```
Returns nullspace for a SDM (page 2774) matrix A
```

Examples

```python
>>> from sympy import QQ
>>> from sympy.polys.matrices.sdm import SDM
>>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0: QQ(2), 1: QQ(4)}}, (2, 2), QQ)
>>> A.nullspace()
({{0: {0: -2, 1: 1}}, [1])
```

`rref`  
```
Returns reduced-row echelon form and list of pivots for the SDM (page 2774)
```
Examples

```python
>>> from sympy import QQ
>>> from sympy.polys.matrices.sdm import SDM
>>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(2), 1:QQ(4)}}, (2, 2), QQ)
>>> A.rref()
({0: {0: 1, 1: 2}}, [0])
```

`scc()`
Strongly connected components of a square matrix A.

Examples

```python
>>> from sympy import ZZ
>>> from sympy.polys.matrices.sdm import SDM
>>> A = SDM({0:{0: ZZ(2)}, 1:{1: ZZ(1)}}, (2, 2), ZZ)
>>> A.scc()
[[0], [1]]
```

See also:
`sympy.polys.matrices.domainmatrix.DomainMatrix.scc` (page 2767)

`sub(B)`
Subtracts two $SDM$ (page 2774) matrices

Examples

```python
>>> from sympy import ZZ
>>> from sympy.polys.matrices.sdm import SDM
>>> A = SDM({0:{1: ZZ(2)}, 1:{0: ZZ(1)}}, (2, 2), ZZ)
>>> B = SDM({0:{0: ZZ(3)}, 1:{1: ZZ(4)}}, (2, 2), ZZ)
>>> A.sub(B)
{0: {0: -3, 1: 2}, 1: {0: 1, 1: -4}}
```

`to_ddm()`
Convert a $SDM$ (page 2774) object to a $DDM$ (page 2772) object

Examples

```python
>>> from sympy.polys.matrices.sdm import SDM
>>> from sympy import QQ
>>> A = SDM({0:{1:QQ(2)}, 1:{}}}, (2, 2), QQ)
>>> A.to_ddm()
[[[0, 2], [0, 0]]
```

`to_list()`
Converts a $SDM$ (page 2774) object to a list
Examples

```python
>>> from sympy.polys.matrices.sdm import SDM
>>> from sympy import QQ
>>> elemsdict = {0:{1:QQ(2)}, 1: {}}
>>> A = SDM(elemsdict, (2, 2), QQ)
>>> A.to_list()
[[0, 2], [0, 0]]
```

**transpose()**

Returns the transpose of a *SDM* (page 2774) matrix

Examples

```python
>>> from sympy.polys.matrices.sdm import SDM
>>> from sympy import QQ
>>> A = SDM({0: {1: QQ(2)}, 1: {}}, (2, 2), QQ)
>>> A.transpose()
{1: {0: 2}}
```

**vstack(*B)**

Vertically stacks *SDM* (page 2774) matrices.

Examples

```python
>>> from sympy import ZZ
>>> from sympy.polys.matrices.sdm import SDM

>>> A = SDM({0: {0: ZZ(1), 1: ZZ(2)}, 1: {0: ZZ(3), 1: ZZ(4)}}, (2, 2), ZZ)
>>> B = SDM({0: {0: ZZ(5), 1: ZZ(6)}, 1: {0: ZZ(7), 1: ZZ(8)}}, (2, 2), ZZ)
>>> A.vstack(B)
{0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}, 2: {0: 5, 1: 6}, 3: {0: 7, 1: 8}}
```

**classmethod zeros(shape, domain)**

Returns a *SDM* (page 2774) of size `shape`, belonging to the specified domain

In the example below we declare a matrix A where,

\[
A := \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]
Return the Smith Normal Form of a matrix $m$ over the ring $domain$. This will only work if the ring is a principal ideal domain.

Examples

```python
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy.polys.matrices.normalforms import smith_normal_form
>>> m = DomainMatrix([[ZZ(12), ZZ(6), ZZ(4)],
 [ZZ(3), ZZ(9), ZZ(6)],
 [ZZ(2), ZZ(16), ZZ(14)]], (3, 3), ZZ)
>>> print(smith_normal_form(m).to_Matrix())
Matrix([[1, 0, 0], [0, 10, 0], [0, 0, -30]])
```

Compute the Hermite Normal Form of $DomainMatrix$ (page 2753) $A$ over $ZZ$ (page 2605).

Parameters

- **A**: $m \times n$ $DomainMatrix$ over $ZZ$ (page 2605).
- **D**: $ZZ$ (page 2605), optional
  
  Let $W$ be the HNF of $A$. If known in advance, a positive integer $D$ being any multiple of $\det(W)$ may be provided. In this case, if $A$ also has rank $m$, then we may use an alternative algorithm that works mod $D$ in order to prevent coefficient explosion.

- **check_rank**: boolean, optional (default=False)
  
  The basic assumption is that, if you pass a value for $D$, then you already believe that $A$ has rank $m$, so we do not waste time checking it for you. If you do want this to be checked (and the ordinary, non-modulo $D$ algorithm to be used if the check fails), then set $check\_rank$ to True.

Returns

- **DomainMatrix** (page 2753)
  
  The HNF of matrix $A$.

Raises

- **DMDomainError**
  
  If the domain of the matrix is not $ZZ$ (page 2605), or if $D$ is given but is not in $ZZ$ (page 2605).

- **DMShapeError**
If the mod $D$ algorithm is used but the matrix has more rows than columns.

Examples

```python
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy.polys.matrices.normalforms import hermite_normal_form
>>> m = DomainMatrix([[ZZ(12), ZZ(6), ZZ(4)],
 [ZZ(3), ZZ(9), ZZ(6)],
 [ZZ(2), ZZ(16), ZZ(14)]], (3, 3), ZZ)
>>> print(hermite_normal_form(m).to_Matrix())
Matrix([[10, 0, 2], [0, 15, 3], [0, 0, 2]])
```

References

[R716]

Number Fields

Introduction

Like many other computations in algebraic number theory, the splitting of rational primes can be treated by rational methods only. This fact is very important if computation by automatic computing machinery is considered. Only the knowledge of the irreducible polynomial $f(x)$, a zero of which generates the field in question, is needed.

—Olga Taussky, 1953

Concepts like number fields and algebraic numbers are essential to our understanding of algebraic number theory, but to the computer the subject is all about polynomials: the ring $\mathbb{Q}[x]$ reduced modulo irreducible polynomials $f(x) \in \mathbb{Q}[x]$. It thus finds a natural home under the `polys` (page 2435) module in SymPy.

Various authors (such as Taussky, Zimmer, Pohst and Zassenhaus, or Cohen) have articulated the main goals of computational algebraic number theory in different ways, but invariably the list centers around a certain essential set of tasks. As a goal for the `numberfields` module in SymPy, we may set the following list, based on [Cohen93], Sec. 4.9.3.

For a number field $K = \mathbb{Q}(\theta)$, whose ring of algebraic integers is denoted $\mathbb{Z}_K$, compute:

1. an integral basis of $\mathbb{Z}_K$
2. the decomposition of rational primes in $\mathbb{Z}_K$
3. $p$-adic valuations for ideals and elements
4. the Galois group of the Galois closure of $K$
5. a system of fundamental units of $K$
6. the regulator $R(K)$
7. the class number
8. the structure of the class group $Cl(K)$
9. decide whether a given ideal is principal, and if so compute a generator.

As a foundation, and to support our basic ability to define and work with number fields and algebraic numbers, we also set the following problems, following [Cohen93], Sec. 4.5.

10. Given an algebraic number – expressed by radicals and rational operations, or even as a special value of a transcendental function – determine its minimal polynomial over $\mathbb{Q}$.
11. The Subfield Problem: Given two number fields $\mathbb{Q}(\alpha)$, $\mathbb{Q}(\beta)$ via the minimal polynomials for their generators $\alpha$ and $\beta$, decide whether one field is isomorphic to a subfield of the other, and if so exhibit an embedding.
12. The Field Membership Problem: Given two algebraic numbers $\alpha, \beta$, decide whether $\alpha \in \mathbb{Q}(\beta)$, and if so write $\alpha = f(\beta)$ for some $f(x) \in \mathbb{Q}[x]$.
13. The Primitive Element Problem: Given several algebraic numbers $\alpha_1, \ldots, \alpha_m$, compute a single algebraic number $\theta$ such that $\mathbb{Q}(\alpha_1, \ldots, \alpha_m) = \mathbb{Q}(\theta)$.

At present only a subset of the tasks enumerated above is yet supported in SymPy, and if you are interested in expanding support, you are encouraged to contribute! An excellent source, providing solutions to all the remaining problems (as well as those already solved) is [Cohen93].

At time of writing, the existing solutions to the above problems are found in the following places:

<table>
<thead>
<tr>
<th>Task</th>
<th>Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) integral basis</td>
<td><code>round_two()</code> (page 2786)</td>
</tr>
<tr>
<td>(2) prime decomposition</td>
<td><code>prime_decomp()</code> (page 2787)</td>
</tr>
<tr>
<td>(3) $p$-adic valuation</td>
<td><code>prime_valuation()</code> (page 2792)</td>
</tr>
<tr>
<td>(4) Galois group</td>
<td><code>galois_group()</code> (page 2792)</td>
</tr>
<tr>
<td>(10) find minimal polynomial</td>
<td><code>minimal_polynomial()</code> (page 2794)</td>
</tr>
<tr>
<td>(11) subfield</td>
<td><code>field_isomorphism()</code> (page 2795)</td>
</tr>
<tr>
<td>(12) field membership</td>
<td><code>to_number_field()</code> (page 2798)</td>
</tr>
<tr>
<td>(13) primitive element</td>
<td><code>primitive_element()</code> (page 2796)</td>
</tr>
</tbody>
</table>
Solving the Main Problems

Integral Basis

sympy.polys.numberfields.basis.round_two\(T, \text{radicals=\textit{None}}\)

Zassenhaus’s “Round 2” algorithm.

**Parameters**

\(T\) : Poly (page 2453), AlgebraicField (page 2619)

Either (1) the irreducible polynomial over ZZ (page 2605) or QQ (page 2609) defining the number field, or (2) an AlgebraicField (page 2619) representing the number field itself.

\(\text{radicals}\) : dict, optional

This is a way for any \(p\)-radicals (if computed) to be returned by reference. If desired, pass an empty dictionary. If the algorithm reaches the point where it computes the nilradical mod \(p\) of the ring of integers \(Z_K\), then an \(\mathbb{F}_p\)-basis for this ideal will be stored in this dictionary under the key \(p\). This can be useful for other algorithms, such as prime decomposition.

**Returns**

Pair \((Z_K, d_K)\), where:

- \(Z_K\) is a Submodule (page 2810) representing the maximal order.
- \(d_K\) is the discriminant of the field \(K = \mathbb{Q}[x]/(T(x))\).

**Explanation**

Carry out Zassenhaus’s “Round 2” algorithm on an irreducible polynomial \(T\) over ZZ (page 2605) or QQ (page 2609). This computes an integral basis and the discriminant for the field \(K = \mathbb{Q}[x]/(T(x))\).

Alternatively, you may pass an AlgebraicField (page 2619) instance, in place of the polynomial \(T\), in which case the algorithm is applied to the minimal polynomial for the field’s primitive element.

Ordinarily this function need not be called directly, as one can instead access the maximal_order() (page 2625), integral_basis() (page 2624), and discriminant() (page 2623) methods of an AlgebraicField (page 2619).

**Examples**

Working through an AlgebraicField:

```python
>>> from sympy import Poly, QQ
>>> from sympy.abc import x
>>> T = Poly(x**3 + x**2 - 2*x + 8)
>>> K = QQ.alg_field_from_poly(T, "theta")
>>> print(K.maximal_order())
Submodule[[2, 0, 0], [0, 2, 0], [0, 1, 1]]/2
>>> print(K.discriminant())
```

(continues on next page)
>>> print(K.integral_basis(fmt='sympy'))
[1, theta, theta/2 + theta**2/2]

Calling directly:

```python
>>> from sympy import Poly
>>> from sympy import x
>>> from sympy.polys.numberfields.basis import round_two
>>> T = Poly(x**3 + x**2 - 2*x + 8)
>>> print(round_two(T))
(Submodule[[2, 0, 0], [0, 2, 0], [0, 1, 1]]/2, -503)
```

The nilradicals mod \( p \) that are sometimes computed during the Round Two algorithm may be useful in further calculations. Pass a dictionary under `radicals` to receive these:

```python
>>> T = Poly(x**3 + 3*x**2 + 5)
>>> rad = {}
>>> ZK, dK = round_two(T, radicals=rad)
>>> print(rad)
{3: Submodule[[-1, 1, 0], [-1, 0, 1]]}
```

See also:

- `AlgebraicField.maximal_order` (page 2625)
- `AlgebraicField.integral_basis` (page 2624)
- `AlgebraicField.discriminant` (page 2623)

References

[R736]

Prime Decomposition

sympy.polys.numberfields.primes.prime_decomp(p, T=None, ZK=None, dK=None, radical=None)

Compute the decomposition of rational prime \( p \) in a number field.

Parameters

- **p**: int
  The rational prime whose decomposition is desired.
- **T**: `Poly` (page 2453), optional
  Monic irreducible polynomial defining the number field \( K \) in which to factor. NOTE: at least one of \( T \) or \( ZK \) must be provided.
- **ZK**: `Submodule` (page 2810), optional
  The maximal order for \( K \), if already known. NOTE: at least one of \( T \) or \( ZK \) must be provided.
- **dK**: int, optional
  The discriminant of the field \( K \), if already known.
### radical

**Submodule** (page 2810), optional

The nilradical mod $p$ in the integers of $K$, if already known.

**Returns**

List of **PrimeIdeal** (page 2788) instances.

#### Explanation

Ordinarily this should be accessed through the *primes_above()* (page 2626) method of an *AlgebraicField* (page 2619).

#### Examples

```python
>>> from sympy import Poly, QQ
>>> from sympy.abc import x, theta

>>> T = Poly(x ** 3 + x ** 2 - 2 * x + 8)
>>> K = QQ.algebraic_field((T, theta))
>>> print(K.primes_above(2))
[[(2, x**2 + 1) e=1, f=1],
 [(2, (x**2 + 3*x + 2)/2) e=1, f=1],
 [(2, (3*x**2 + 3*x)/2) e=1, f=1]]
```

#### References

[R737]

```python
class sympy.polys.numberfields.primes.PrimeIdeal(ZK, p, alpha, f, e=None)
A prime ideal in a ring of algebraic integers.

__init__ (ZK, p, alpha, f, e=None)
```

**Parameters**

- **ZK** : **Submodule** (page 2810)
  The maximal order where this ideal lives.

- **p** : int
  The rational prime this ideal divides.

- **alpha** : **PowerBasisElement** (page 2816)
  Such that the ideal is equal to $p*ZK + alpha*ZK$.

- **f** : int
  The inertia degree.

- **e** : int, None, optional
  The ramification index, if already known. If None, we will compute it here.
__add__(other)
Convert to a Submodule (page 2810) and add to another Submodule (page 2810).

See also:
as_submodule (page 2789)

__mul__(other)
Convert to a Submodule (page 2810) and multiply by another Submodule (page 2810)
or a rational number.

See also:
as_submodule (page 2789)
as_submodule()
Represent this prime ideal as a Submodule (page 2810).

Returns
Submodule (page 2810)
Will be equal to self.p * self.ZK + self.alpha * self.ZK.

Explanation
The PrimeIdeal (page 2788) class serves to bundle information about a prime ideal, such as its inertia degree, ramification index, and two-generator representation, as well as to offer helpful methods like valuation() (page 2791) and test_factor() (page 2791).

However, in order to be added and multiplied by other ideals or rational numbers, it must first be converted into a Submodule (page 2810), which is a class that supports these operations.

In many cases, the user need not perform this conversion deliberately, since it is automatically performed by the arithmetic operator methods __add__() (page 2788) and __mul__() (page 2789).

Raising a PrimeIdeal (page 2788) to a non-negative integer power is also supported.

Examples

```python
>>> from sympy import Poly, cyclotomic_poly, prime_decomp
>>> T = Poly(cyclotomic_poly(7))
>>> P0 = prime_decomp(7, T)[0]
>>> print(P0**6 == 7*P0.ZK)
True
```

Note that, on both sides of the equation above, we had a Submodule (page 2810). In the next equation we recall that adding ideals yields their GCD. This time, we need a deliberate conversion to Submodule (page 2810) on the right:

```python
>>> print(P0 + 7*P0.ZK == P0.as_submodule())
True
```
property is_inert
Say whether the rational prime we divide is inert, i.e. stays prime in our ring of integers.

reduce_ANP(a)
Reduce an ANP (page 2650) to a “small representative” modulo this prime ideal.

Parameters
elt : ANP (page 2650)
The element to be reduced.

Returns
ANP (page 2650)
The reduced element.

reduce_alg_num(a)
Reduce an AlgebraicNumber (page 1039) to a “small representative” modulo this prime ideal.

Parameters
elt : AlgebraicNumber (page 1039)
The element to be reduced.

Returns
AlgebraicNumber (page 1039)
The reduced element.

reduce_element(elt)
Reduce a PowerBasisElement (page 2816) to a “small representative” modulo this prime ideal.

Parameters
elt : PowerBasisElement (page 2816)
The element to be reduced.

Returns
PowerBasisElement (page 2816)
The reduced element.

See also:
reduce_element (page 2790), reduce_alg_num (page 2790), Submodule.
reduce_element (page 2812)
The SymPy documentation for the `repr` function with parameters `field_gen=None, just_gens=False` is as follows:

Print a representation of this prime ideal.

**Parameters**

- **field_gen**: Symbol (default=None), optional
  
The symbol to use for the generator of the field. This will appear in our representation of `self.alpha`. If None, we use the variable of the defining polynomial of `self.ZK`.

- **just_gens**: bool, optional (default=False)
  
If True, just print the “(p, alpha)” part, showing “just the generators” of the prime ideal. Otherwise, print a string of the form “[(p, alpha) \( e=\ldots, f=\ldots \)]”, giving the ramification index and inertia degree, along with the generators.

**Examples**

```python
>>> from sympy import cyclotomic_poly, QQ
>>> from sympy.abc import x, zeta
>>> T = cyclotomic_poly(7, x)
>>> K = QQ.algebraic_field((T, zeta))
>>> P = K.primes_above(11)
>>> print(P[0].repr())
[(11, x**3 + 5*x**2 + 4*x - 1) e=1, f=3]
>>> print(P[0].repr(field_gen=zeta))
[(11, zeta**3 + 5*zeta**2 + 4*zeta - 1) e=1, f=3]
>>> print(P[0].repr(field_gen=zeta, just_gens=True))
(11, zeta**3 + 5*zeta**2 + 4*zeta - 1)
```

test_factor()

Compute a test factor for this prime ideal.

**Explanation**

Write \( p \) for this prime ideal, \( p \) for the rational prime it divides. Then, for computing \( p \)-adic valuations it is useful to have a number \( \beta \in \mathbb{Z}_K \) such that \( p/p = p\mathbb{Z}_K + \beta \mathbb{Z}_K \).

Essentially, this is the same as the number \( \Psi \) (or the “reagent”) from Kummer’s 1847 paper (*Ueber die Zerlegung...,* Crelle vol. 35) in which ideal divisors were invented.

valuation(I)

Compute the \( p \)-adic valuation of integral ideal I at this prime ideal.

**Parameters**

- **I**: Submodule (default=None)

**See also:**

`prime_valuation`
**p-adic Valuation**

sympy.polys.numberfields.primes.prime_valuation(I, P)

Compute the $P$-adic valuation for an integral ideal $I$.

**Parameters**

- **I**: *Submodule* (page 2810)
  An integral ideal whose valuation is desired.
- **P**: *PrimeIdeal* (page 2788)
  The prime at which to compute the valuation.

**Returns**

int

**Examples**

```python
>>> from sympy import QQ
>>> from sympy.polys.numberfields import prime_valuation
>>> K = QQ.cyclotomic_field(5)
>>> P = K.primes_above(5)
>>> ZK = K.maximal_order()
>>> print(prime_valuation(25*ZK, P[0]))
8
```

**See also:**

PrimeIdeal.valuation (page 2791)

**References**

[R738]

**Galois Groups**

sympy.polys.numberfields.galoisgroups.galois_group(f, *gens, by_name=False, max_tries=30, randomize=False, **args)

Compute the Galois group for polynomials $f$ up to degree 6.

**Parameters**

- **f**: Expr
  Irreducible polynomial over $\mathbb{Z}$ (page 2605) or $\mathbb{Q}$ (page 2609), whose Galois group is to be determined.
- **gens**: optional list of symbols
  For converting $f$ to Poly, and will be passed on to the poly_from_expr() (page 2435) function.
- **by_name**: bool, default False
If True, the Galois group will be returned by name. Otherwise it will be returned as a `PermutationGroup` (page 343).

**max_tries**: int, default 30

Make at most this many attempts in those steps that involve generating Tschirnhaus transformations.

**randomize**: bool, default False

If True, then use random coefficients when generating Tschirnhaus transformations. Otherwise try transformations in a fixed order. Both approaches start with small coefficients and degrees and work upward.

**args**: optional

For converting \( f \) to Poly, and will be passed on to the `poly_from_expr` (page 2435) function.

**Returns**

Pair \((G, alt)\)

The first element \(G\) indicates the Galois group. It is an instance of one of the `sympy.combinatorics.galois.S1TransitiveSubgroups` (page 411) `sympy.combinatorics.galois.S2TransitiveSubgroups` (page 411), etc. enum classes if `by_name` was True, and a `PermutationGroup` (page 343) if False.

The second element is a boolean, saying whether the group is contained in the alternating group \(A_n\) (\(n\) the degree of \(T\)).

**Raises**

**ValueError**

if \(f\) is of an unsupported degree.

**MaxTriesException**

if could not complete before exceeding `max_tries` in those steps that involve generating Tschirnhaus transformations.

**Examples**

```python
>>> from sympy import galois_group
>>> from sympy.abc import x
>>> f = x**4 + 1
>>> G, alt = galois_group(f)
>>> print(G)
PermutationGroup([[(0 1)(2 3), (0 2)(1 3)]]
```

The group is returned along with a boolean, indicating whether it is contained in the alternating group \(A_n\), where \(n\) is the degree of \(T\). Along with other group properties, this can help determine which group it is:
Alternatively, the group can be returned by name:

```python
>>> G_name, _ = galois_group(f, by_name=True)
>>> print(G_name)
S4TransitiveSubgroups.V
```

The group itself can then be obtained by calling the name’s `get_perm_group()` method:

```python
>>> G_name.get_perm_group()
PermutationGroup([
 (0 1)(2 3),
 (0 2)(1 3)])
```

Group names are values of the enum classes `sympy.combinatorics.galois.S1TransitiveSubgroups` (page 411), `sympy.combinatorics.galois.S2TransitiveSubgroups` (page 411), etc.

See also:
`Poly.galois_group` (page 2469)

### Finding Minimal Polynomials

`sympy.polys.numberfields.minpoly.minimal_polynomial(ex, x=None, compose=True, polys=False, domain=None)`

Computes the minimal polynomial of an algebraic element.

**Parameters**

- **ex**: Expr
  Element or expression whose minimal polynomial is to be calculated.

- **x**: Symbol, optional
  Independent variable of the minimal polynomial

- **compose**: boolean, optional (default=True)
  Method to use for computing minimal polynomial. If `compose=True` (default) then `_minpoly_compose` is used, if `compose=False` then groebner bases are used.

- **polys**: boolean, optional (default=False)
  If True returns a Poly object else an Expr object.

- **domain**: Domain, optional
  Ground domain
Notes

By default compose=True, the minimal polynomial of the subexpressions of \texttt{ex} are computed, then the arithmetic operations on them are performed using the resultant and factorization. If compose=False, a bottom-up algorithm is used with \texttt{groebner}. The default algorithm stalls less frequently.

If no ground domain is given, it will be generated automatically from the expression.

Examples

```python
>>> from sympy import minimal_polynomial, sqrt, solve, QQ
>>> from sympy.abc import x, y

>>> minimal_polynomial(sqrt(2), x)
x**2 - 2
>>> minimal_polynomial(sqrt(2), x, domain=QQ.algebraic_field(sqrt(2)))
x - sqrt(2)
>>> minimal_polynomial(sqrt(2) + sqrt(3), x)
x**4 - 10*x**2 + 1
>>> minimal_polynomial(solve(x**3 + x + 3)[0], x)
x**3 + x + 3
>>> minimal_polynomial(sqrt(y), x)
x**2 - y
```

\texttt{sympy.polys.numberfields.minpoly.minpoly(\texttt{ex}, \texttt{x=None}, \texttt{compose=True, polys=False, domain=None})}

This is a synonym for \texttt{minimal_polynomial()} (page 2794).

The Subfield Problem

Functions in \texttt{polys.numberfields.subfield} solve the “Subfield Problem” and allied problems, for algebraic number fields.

Following Cohen (see [Cohen93] Section 4.5), we can define the main problem as follows:

- **Subfield Problem:**

  Given two number fields \( \mathbb{Q}(\alpha), \mathbb{Q}(\beta) \) via the minimal polynomials for their generators \( \alpha \) and \( \beta \), decide whether one field is isomorphic to a subfield of the other.

  From a solution to this problem flow solutions to the following problems as well:

- **Primitive Element Problem:**

  Given several algebraic numbers \( \alpha_1, \ldots, \alpha_m \), compute a single algebraic number \( \theta \) such that \( \mathbb{Q}(\alpha_1, \ldots, \alpha_m) = \mathbb{Q}(\theta) \).

- **Field Isomorphism Problem:**

  Decide whether two number fields \( \mathbb{Q}(\alpha), \mathbb{Q}(\beta) \) are isomorphic.

- **Field Membership Problem:**

  Given two algebraic numbers \( \alpha, \beta \), decide whether \( \alpha \in \mathbb{Q}(\beta) \), and if so write \( \alpha = f(\beta) \) for some \( f(x) \in \mathbb{Q}[x] \).
Find an embedding of one number field into another.

**Parameters**

- **a**: `Expr` (page 999)
  
  Any expression representing an algebraic number.

- **b**: `Expr` (page 999)
  
  Any expression representing an algebraic number.

- **fast**: boolean, optional (default=True)
  
  If True, we first attempt a potentially faster way of computing the isomorphism, falling back on a slower method if this fails. If False, we go directly to the slower method, which is guaranteed to return a result.

**Returns**

List of rational numbers, or None

- If $\mathbb{Q}(a)$ is not isomorphic to some subfield of $\mathbb{Q}(b)$, then return None.
- Otherwise, return a list of rational numbers representing an element of $\mathbb{Q}(b)$ to which $a$ may be mapped, in order to define a monomorphism, i.e. an isomorphism from $\mathbb{Q}(a)$ to some subfield of $\mathbb{Q}(b)$. The elements of the list are the coefficients of falling powers of $b$.

**Explanation**

This function looks for an isomorphism from $\mathbb{Q}(a)$ onto some subfield of $\mathbb{Q}(b)$. Thus, it solves the Subfield Problem.

**Examples**

```python
>>> from sympy import sqrt, field_isomorphism, I
>>> print(field_isomorphism(3, sqrt(2)))
[3]
>>> print(field_isomorphism(I*sqrt(3), I*sqrt(3)/2))
[2, 0]
```

Find a single generator for a number field given by several generators.

**Parameters**

- **extension**: list of `Expr` (page 999)
  
  Each expression must represent an algebraic number $\alpha_i$.

- **x**: `Symbol` (page 1028), optional (default=None)
  
  The desired symbol to appear in the computed minimal polynomial for the primitive element $\theta$. If None, we use a dummy symbol.

- **ex**: boolean, optional (default=False)
If and only if True, compute the representation of each $\alpha_i$ as a $\mathbb{Q}$-linear combination over the powers of $\theta$.

**polys** : boolean, optional (default=False)

If True, return the minimal polynomial as a *Poly* (page 2453). Otherwise return it as an *Expr* (page 999).

**Returns**
Pair (f, coeffs) or triple (f, coeffs, reps), where:

- f is the minimal polynomial for the primitive element.
- coeffs gives the primitive element as a linear combination of the given generators.
- reps is present if and only if argument ex=True was passed, and is a list of lists of rational numbers. Each list gives the coefficients of falling powers of the primitive element, to recover one of the original, given generators.

**Explanation**

The basic problem is this: Given several algebraic numbers $\alpha_1, \alpha_2, \ldots, \alpha_n$, find a single algebraic number $\theta$ such that $\mathbb{Q}(\alpha_1, \alpha_2, \ldots, \alpha_n) = \mathbb{Q}(\theta)$.

This function actually guarantees that $\theta$ will be a linear combination of the $\alpha_i$, with non-negative integer coefficients.

Furthermore, if desired, this function will tell you how to express each $\alpha_i$ as a $\mathbb{Q}$-linear combination of the powers of $\theta$.

**Examples**

```python
>>> from sympy import primitive_element, sqrt, S, minpoly, simplify
>>> from sympy.abc import x
>>> f, lincomb, reps = primitive_element([sqrt(2), sqrt(3)], x, ex=True)
```

Then lincomb tells us the primitive element as a linear combination of the given generators $\sqrt{2}$ and $\sqrt{3}$.

```python
>>> print(lincomb)
[1, 1]
```

This means the primitive element is $\sqrt{2} + \sqrt{3}$. Meanwhile f is the minimal polynomial for this primitive element.

```python
>>> print(f)
x**4 - 10*x**2 + 1
>>> print(minpoly(sqrt(2) + sqrt(3), x))
x**4 - 10*x**2 + 1
```

Finally, reps (which was returned only because we set keyword arg ex=True) tells us how to recover each of the generators $\sqrt{2}$ and $\sqrt{3}$ as $\mathbb{Q}$-linear combinations of the powers of the primitive element $\sqrt{2} + \sqrt{3}$.
SymPy Documentation, Release 1.12.1

```python
>>> print([S(r) for r in reps[0]])
[1/2, 0, -9/2, 0]
>>> theta = sqrt(2) + sqrt(3)
>>> print(simplify(theta**3/2 - 9*theta/2))
sqrt(2)
>>> print([S(r) for r in reps[1]])
[-1/2, 0, 11/2, 0]
>>> print(simplify(-theta**3/2 + 11*theta/2))
sqrt(3)
```

```python
sympy.polys.numberfields.subfield.to_number_field(extension, theta=None, *, gen=None, alias=None)
```

Express one algebraic number in the field generated by another.

**Parameters**

- **extension**: `Expr` (page 999) or list of `Expr` (page 999)
  
  Either the algebraic number that is to be expressed in the other field, or else a list of algebraic numbers, a primitive element for which is to be expressed in the other field.

- **theta**: `Expr` (page 999), None, optional (default=None)
  
  If an `Expr` (page 999) representing an algebraic number, behavior is as described under Explanation. If None, then this function reduces to a shorthand for calling `primitive_element()` (page 2796) on extension and turning the computed primitive element into an `AlgebraicNumber` (page 1039).

- **gen**: `Symbol` (page 1028), None, optional (default=None)
  
  If provided, this will be used as the generator symbol for the minimal polynomial in the returned `AlgebraicNumber` (page 1039).

- **alias**: str, `Symbol` (page 1028), None, optional (default=None)
  
  If provided, this will be used as the alias symbol for the returned `AlgebraicNumber` (page 1039).

**Returns**

- `AlgebraicNumber`:
  
  Belonging to \( \mathbb{Q}(\theta) \) and equaling \( \eta \).

**Raises**

- `IsomorphismFailed`
  
  If \( \eta \notin \mathbb{Q}(\theta) \).
Explanation

Given two algebraic numbers $\eta, \theta$, this function either expresses $\eta$ as an element of $\mathbb{Q}(\theta)$, or else raises an exception if $\eta \notin \mathbb{Q}(\theta)$.

This function is essentially just a convenience, utilizing field_isomorphism() (page 2795) (our solution of the Subfield Problem) to solve this, the Field Membership Problem.

As an additional convenience, this function allows you to pass a list of algebraic numbers $\alpha_1, \alpha_2, \ldots, \alpha_n$ instead of $\eta$. It then computes $\eta$ for you, as a solution of the Primitive Element Problem, using primitive_element() (page 2796) on the list of $\alpha_i$.

Examples

```python
>>> from sympy import sqrt, to_number_field
>>> eta = sqrt(2)
>>> theta = sqrt(2) + sqrt(3)
>>> a = to_number_field(eta, theta)
>>> print(type(a))
<class 'sympy.core.numbers.AlgebraicNumber'>
>>> a.root
sqrt(2) + sqrt(3)
>>> print(a)
sqrt(2)
>>> a.coeffs()
[1/2, 0, -9/2, 0]
```

We get an AlgebraicNumber (page 1039), whose .root is $\theta$, whose value is $\eta$, and whose .coeffs() show how to write $\eta$ as a $\mathbb{Q}$-linear combination in falling powers of $\theta$.

See also:

field_isomorphism (page 2795), primitive_element (page 2796)

Internals

Algebraic number fields

Algebraic number fields are represented in SymPy by the AlgebraicField (page 2619) class, which is a part of the polynomial domains system (page 2584).

Representing algebraic numbers

There are several different ways to represent algebraic numbers, and different forms may be preferable for different computational tasks. See [Cohen93], Sec. 4.2.
As number field elements

In SymPy, there is a distinction between number and expression classes defined in the `sympy.core.numbers` (page 1033) module on the one hand, and domains and domain elements defined in the `polys` (page 2435) module on the other. This is explained in more detail here (page 2557).

When it comes to algebraic numbers, the `sympy.core.numbers` (page 1033) module offers the `AlgebraicNumber` (page 1039) class, while the `polys` (page 2435) module offers the `ANP` (page 2650) class. This is the type of domain elements belonging to the `AlgebraicField` (page 2619) domain.

As elements of finitely-generated modules

In computational algebraic number theory, finitely-generated \( \mathbb{Z} \)-modules are of central importance. For example, every order and every ideal is such a module.

In particular, the maximal order - or ring of integers - in a number field is a finitely-generated \( \mathbb{Z} \)-module, whose generators form an integral basis for the field.

Classes allowing us to represent such modules, and their elements, are provided in the `modules` (page 2800) module. Here, the `ModuleElement` (page 2813) class provides another way to represent algebraic numbers.

Finitely-generated modules

Modules in number fields.

The classes defined here allow us to work with finitely generated, free modules, whose generators are algebraic numbers.

There is an abstract base class called `Module` (page 2803), which has two concrete subclasses, `PowerBasis` (page 2809) and `Submodule` (page 2810).

Every module is defined by its basis, or set of generators:

- For a `PowerBasis` (page 2809), the generators are the first \( n \) powers (starting with the zeroth) of an algebraic integer \( \theta \) of degree \( n \). The `PowerBasis` (page 2809) is constructed by passing either the minimal polynomial of \( \theta \), or an `AlgebraicField` (page 2619) having \( \theta \) as its primitive element.

- For a `Submodule` (page 2810), the generators are a set of \( \mathbb{Q} \)-linear combinations of the generators of another module. That other module is then the “parent” of the `Submodule` (page 2810). The coefficients of the \( \mathbb{Q} \)-linear combinations may be given by an integer matrix, and a positive integer denominator. Each column of the matrix defines a generator.

```python
>>> from sympy.polys import Poly, cyclotomic_poly, ZZ
>>> from sympy.abc import x
>>> from sympy.polys.matrices import DomainMatrix, DM
>>> from sympy.polys.numberfields.modules import PowerBasis
>>> T = Poly(cyclotomic_poly(5, x))
>>> A = PowerBasis(T)
>>> print(A)
(continues on next page)```
Thus, every module is either a \texttt{PowerBasis} (page 2809), or a \texttt{Submodule} (page 2810), some ancestor of which is a \texttt{PowerBasis} (page 2809). (If \texttt{S} is a \texttt{Submodule} (page 2810), then its ancestors are \texttt{S.parent}, \texttt{S.parent.parent}, and so on).

The \texttt{ModuleElement} (page 2813) class represents a linear combination of the generators of any module. Critically, the coefficients of this linear combination are not restricted to be integers, but may be any rational numbers. This is necessary so that any and all algebraic integers be representable, starting from the power basis in a primitive element \(\theta \) for the number field in question. For example, in a quadratic field \(\mathbb{Q}(\sqrt{d}) \) where \(d \equiv 1 \mod 4 \), a denominator of 2 is needed.

A \texttt{ModuleElement} (page 2813) can be constructed from an integer column vector and a denominator:

```python
>>> U = Poly(x**2 - 5)
>>> M = PowerBasis(U)
>>> e = M(DM([[1], [1]], ZZ), denom=2)
>>> print(e)
[1, 1]/2
>>> print(e.module)
PowerBasis(x**2 - 5)
```

The \texttt{PowerBasisElement} (page 2816) class is a subclass of \texttt{ModuleElement} (page 2813) that represents elements of a \texttt{PowerBasis} (page 2809), and adds functionality pertinent to elements represented directly over powers of the primitive element \(\theta \).

Arithmetic with module elements

While a \texttt{ModuleElement} (page 2813) represents a linear combination over the generators of a particular module, recall that every module is either a \texttt{PowerBasis} (page 2809) or a descendant (along a chain of \texttt{Submodule} (page 2810) objects) thereof, so that in fact every \texttt{ModuleElement} (page 2813) represents an algebraic number in some field \(\mathbb{Q}(\theta) \), where \(\theta \) is the defining element of some \texttt{PowerBasis} (page 2809). It thus makes sense to talk about the number field to which a given \texttt{ModuleElement} (page 2813) belongs.

This means that any two \texttt{ModuleElement} (page 2813) instances can be added, subtracted, multiplied, or divided, provided they belong to the same number field. Similarly, since \(\mathbb{Q} \) is a subfield of every number field, any \texttt{ModuleElement} (page 2813) may be added, multiplied, etc. by any rational number.

```python
>>> from sympy import QQ
>>> from sympy.polys.numberfields.modules import to_col
>>> T = Poly(cyclotomic_poly(5))
>>> A = PowerBasis(T)
>>> C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
>>> e = A(to_col([0, 2, 0, 0]), denom=3)
```

(continues on next page)
However, care must be taken with arithmetic operations on `ModuleElement` (page 2813), because the module C to which the result will belong will be the nearest common ancestor (NCA) of the modules A, B to which the two operands belong, and C may be different from either or both of A and B.

```
>>> A = PowerBasis(T)
>>> B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
>>> C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
>>> print((B(0) * C(0)).module == A)
True
```

Before the arithmetic operation is performed, copies of the two operands are automatically converted into elements of the NCA (the operands themselves are not modified). This upward conversion along an ancestor chain is easy: it just requires the successive multiplication by the defining matrix of each `Submodule` (page 2810).

Conversely, downward conversion, i.e. representing a given `ModuleElement` (page 2813) in a submodule, is also supported – namely by the `represent()` (page 2813) method – but is not guaranteed to succeed in general, since the given element may not belong to the submodule. The main circumstance in which this issue tends to arise is with multiplication, since modules, while closed under addition, need not be closed under multiplication.

Multiplication

Generally speaking, a module need not be closed under multiplication, i.e. need not form a ring. However, many of the modules we work with in the context of number fields are in fact rings, and our classes do support multiplication.

Specifically, any `Module` (page 2803) can attempt to compute its own multiplication table, but this does not happen unless an attempt is made to multiply two `ModuleElement` (page 2813) instances belonging to it.
>>> A = PowerBasis(T)
>>> print(A._mult_tab is None)
True
>>> a = A(0)*A(1)
>>> print(A._mult_tab is None)
False

Every PowerBasis (page 2809) is, by its nature, closed under multiplication, so instances of PowerBasis (page 2809) can always successfully compute their multiplication table.

When a Submodule (page 2810) attempts to compute its multiplication table, it converts each of its own generators into elements of its parent module, multiplies them there, in every possible pairing, and then tries to represent the results in itself, i.e. as \(\mathbb{Z}\)-linear combinations over its own generators. This will succeed if and only if the submodule is in fact closed under multiplication.

Module Homomorphisms

Many important number theoretic algorithms require the calculation of the kernel of one or more module homomorphisms. Accordingly we have several lightweight classes, ModuleHomomorphism (page 2817), ModuleEndomorphism (page 2818), InnerEndomorphism (page 2818), and EndomorphismRing (page 2818), which provide the minimal necessary machinery to support this.

Class Reference

```python
class sympy.polys.numberfields.modules.Module
    Generic finitely-generated module.

    This is an abstract base class, and should not be instantiated directly. The two concrete subclasses are PowerBasis (page 2809) and Submodule (page 2810).

    Every Submodule (page 2810) is derived from another module, referenced by its parent attribute. If S is a submodule, then we refer to S.parent, S.parent.parent, and so on, as the "ancestors" of S. Thus, every Module (page 2803) is either a PowerBasis (page 2809) or a Submodule (page 2810), some ancestor of which is a PowerBasis (page 2809).

    __call__(spec, denom=1)
    Generate a ModuleElement (page 2813) belonging to this module.

    Parameters
    spec : DomainMatrix (page 2753), int
        Specifies the numerators of the coefficients of the ModuleElement (page 2813). Can be either a column vector over \(\mathbb{Z}\) (page 2605), whose length must equal the number \(n\) of generators of this module, or else an integer \(j\), \(0 \leq j < n\), which is a shorthand for column \(j\) of \(I_n\), the \(n \times n\) identity matrix.

    denom : int, optional (default=1)
        Denominator for the coefficients of the ModuleElement (page 2813).

    Returns
    ModuleElement (page 2813)
```

5.8. Topics 2803
The coefficients are the entries of the `spec` vector, divided by `denom`.

Examples

```python
>>> from sympy.polys import Poly, cyclotomic_poly
>>> from sympy.polys.numberfields.modules import PowerBasis, to_col
>>> T = Poly(cyclotomic_poly(5))
>>> A = PowerBasis(T)
>>> e = A(to_col([1, 2, 3, 4]), denom=3)
>>> print(e)
[1, 2, 3, 4]/3
>>> f = A(2)
>>> print(f)
[0, 0, 1, 0]
```

ancestors(include_self=False)

Return the list of ancestor modules of this module, from the foundational `PowerBasis` (page 2809) downward, optionally including self.

See also:

Module (page 2803)

basis_elements()

Get list of *ModuleElement* (page 2813) being the generators of this module.

element_from_rational(a)

Return a *ModuleElement* (page 2813) representing a rational number.

Parameters

- `a`: int, ZZ (page 2605), QQ (page 2609)

Returns

ModuleElement (page 2813)

Explanation

The returned *ModuleElement* (page 2813) will belong to the first module on this module’s ancestor chain (including this module itself) that starts with unity.

Examples

```python
>>> from sympy.polys import Poly, cyclotomic_poly, QQ
>>> from sympy.polys.numberfields.modules import PowerBasis
>>> T = Poly(cyclotomic_poly(5))
>>> A = PowerBasis(T)
>>> a = A.element_from_rational(QQ(2, 3))
>>> print(a)
[2, 0, 0, 0]/3
```

endomorphism_ring()

Form the *EndomorphismRing* (page 2818) for this module.
is_compat_col(col)

Say whether `col` is a suitable column vector for this module.

mult_tab()

Get the multiplication table for this module (if closed under mult).

Returns

dict of dict of lists

Raises

ClosureFailure

If the module is not closed under multiplication.

Explanation

Computes a dictionary `M` of dictionaries of lists, representing the upper triangular half of the multiplication table.

In other words, if `0 <= i <= j < self.n`, then `M[i][j]` is the list of coefficients such that `g[i] * g[j] = sum(c[k]*g[k], k in range(self.n))`, where `g` is the list of generators of this module.

If `j < i` then `M[i][j]` is undefined.

Examples

```python
>>> from sympy.polys import Poly, cyclotomic_poly
>>> from sympy.polys.numberfields.modules import PowerBasis
>>> T = Poly(cyclotomic_poly(5))
>>> A = PowerBasis(T)
>>> print(A.mult_tab())
{0: {0: [1, 0, 0, 0], 1: [0, 1, 0, 0], 2: [0, 0, 1, 0], 3: [0, 0, 0, 1]},
 1: {1: [0, 0, 1, 0], 2: [0, 0, 0, 1], 3: [-1, -1, -1, -1]},
 2: {2: [-1, -1, -1, -1], 3: [1, 0, 0, 0]},
 3: {3: [0, 1, 0, 0]}}
```

property n

The number of generators of this module.

nearest_common_ancestor(other)

Locate the nearest common ancestor of this module and another.

Returns

`Module` (page 2803), None

See also:
`Module` (page 2803)
property number_field
 Return the associated \textit{AlgebraicField} (page 2619), if any.

 \textbf{Returns}
 \textit{AlgebraicField} (page 2619), \textit{None}

\textbf{Explanation}

A \textit{PowerBasis} (page 2809) can be constructed on a \textit{Poly} (page 2453) \textit{f} or on an \textit{AlgebraicField} (page 2619) \textit{K}. In the latter case, the \textit{PowerBasis} (page 2809) and all its descendant modules will return \textit{K} as their \texttt{.number_field} property, while in the former case they will all return \textit{None}.

\textbf{one()}
 Return a \textit{ModuleElement} (page 2813) representing unity, and belonging to the first ancestor of this module (including itself) that starts with unity.

property parent
 The parent module, if any, for this module.

 \textbf{Returns}
 \textit{Module} (page 2803), \textit{None}

\textbf{Explanation}

For a \textit{Submodule} (page 2810) this is its parent attribute; for a \textit{PowerBasis} (page 2809) this is \textit{None}.

\textbf{See also:}
\textit{Module} (page 2803)

\textbf{power_basis_ancestor()}
 Return the \textit{PowerBasis} (page 2809) that is an ancestor of this module.

 \textbf{See also:}
 \textit{Module} (page 2803)

\textbf{represent(elt)}
 Represent a module element as an integer-linear combination over the generators of this module.

 \textbf{Parameters}
 \texttt{elt : ModuleElement} (page 2813)
 The module element to be represented. Must belong to some ancestor module of this module (including this module itself).

 \textbf{Returns}
 \textit{DomainMatrix} (page 2753) over \textit{ZZ} (page 2605)
 This will be a column vector, representing the coefficients of a linear combination of this module's generators, which equals the given element.

 \textbf{Raises}
 \textit{ClosureFailure}
If the given element cannot be represented as a \(\mathbb{Z} \) (page 2605)-linear combination over this module.

Explanation

In our system, to “represent” always means to write a \textit{ModuleElement} (page 2813) as a \(\mathbb{Z} \) (page 2605)-linear combination over the generators of the present \textit{Module} (page 2803). Furthermore, the incoming \textit{ModuleElement} (page 2813) must belong to an ancestor of the present \textit{Module} (page 2803) (or to the present \textit{Module} (page 2803) itself).

The most common application is to represent a \textit{ModuleElement} (page 2813) in a \textit{Submodule} (page 2810). For example, this is involved in computing multiplication tables.

On the other hand, representing in a \textit{PowerBasis} (page 2809) is an odd case, and one which tends not to arise in practice, except for example when using a \textit{ModuleEndomorphism} (page 2818) on a \textit{PowerBasis} (page 2809).

In such a case, (1) the incoming \textit{ModuleElement} (page 2813) must belong to the \textit{PowerBasis} (page 2809) itself (since the latter has no proper ancestors) and (2) it is “representable” iff it belongs to \(\mathbb{Z}[\theta] \) (although generally a \textit{PowerBasisElement} (page 2816) may represent any element of \(\mathbb{Q}(\theta) \), i.e. any algebraic number).

Examples

```python
>>> from sympy import Poly, cyclotomic_poly
>>> from sympy.polys.numberfields.modules import PowerBasis, to_col
>>> from sympy.abc import zeta

>>> T = Poly(cyclotomic_poly(5))
>>> A = PowerBasis(T)
>>> a = A(to_col([2, 4, 6, 8]))

The \textit{ModuleElement} (page 2813) \( a \) has all even coefficients. If we represent \( a \) in the submodule \( B = 2^*A \), the coefficients in the column vector will be halved:

```python
>>> B = A.submodule_from_gens([2^*A(i) for i in range(4)])
>>> b = B.represent(a)
>>> print(b.transpose())
DomainMatrix([[1, 2, 3, 4]], (1, 4), ZZ)
```

However, the element of \( B \) so defined still represents the same algebraic number:

```python
>>> print(a.poly(zeta).as_expr())
8*zeta**3 + 6*zeta**2 + 4*zeta + 2
>>> print(B(b).over_power_basis().poly(zeta).as_expr())
8*zeta**3 + 6*zeta**2 + 4*zeta + 2
```

**See also:**

\textit{Submodule.represent} (page 2813), \textit{PowerBasis.represent} (page 2809)

\textit{starts_with_unity}()

Say whether the module’s first generator equals unity.
**submodule_from_gens**(\(gens, hnf=True, hnf_modulus=None\))

Form the submodule generated by a list of `ModuleElement` (page 2813) belonging to this module.

**Parameters**
- **gens**: list of `ModuleElement` (page 2813) belonging to this module.
- **hnf**: boolean, optional (default=True)
  - If True, we will reduce the matrix into Hermite Normal Form before forming the `Submodule` (page 2810).
- **hnf_modulus**: int, None, optional (default=None)
  - Modulus for use in the HNF reduction algorithm. See `hermite_normal_form()` (page 2783).

**Returns**
- `Submodule` (page 2810)

**Examples**

```python
>>> from sympy.polys import Poly, cyclotomic_poly
>>> from sympy.polys.numberfields.modules import PowerBasis
>>> T = Poly(cyclotomic_poly(5))
>>> A = PowerBasis(T)
>>> gens = [A(0), 2*A(1), 3*A(2), 4*A(3)/5]
>>> B = A.submodule_from_gens(gens)
>>> print(B)
Submodule[[5, 0, 0, 0], [0, 10, 0, 0], [0, 0, 15, 0], [0, 0, 0, 4]]/5
```

See also:
- `submodule_from_matrix` (page 2808)

**submodule_from_matrix**(\(B, denom=1\))

Form the submodule generated by the elements of this module indicated by the columns of a matrix, with an optional denominator.

**Parameters**
- **B**: `DomainMatrix` (page 2753) over `ZZ` (page 2605)
  - Each column gives the numerators of the coefficients of one generator of the submodule. Thus, the number of rows of \(B\) must equal the number of generators of the present module.
- **denom**: int, optional (default=1)
  - Common denominator for all generators of the submodule.

**Returns**
- `Submodule` (page 2810)

**Raises**
- `ValueError`
  - If the given matrix \(B\) is not over `ZZ` (page 2605) or its number of rows does not equal the number of generators of the present module.
Examples

```python
>>> from sympy.polys import Poly, cyclotomic_poly, ZZ
>>> from sympy.polys.matrices import DM
>>> from sympy.polys.numberfields.modules import PowerBasis
>>> T = Poly(cyclotomic_poly(5))
>>> A = PowerBasis(T)
>>> B = A.submodule_from_matrix(DM([...
 [0, 10, 0, 0],
 [0, 0, 7, 0],
 ...], ZZ).transpose(), denom=15)
>>> print(B)
Submodule[[0, 10, 0, 0], [0, 0, 7, 0]]/15
```

See also:
- `submodule_from_gens` (page 2807)

`whole_submodule()`
Return a submodule equal to this entire module.

Explanation

This is useful when you have a `PowerBasis` (page 2809) and want to turn it into a `Submodule` (page 2810) (in order to use methods belonging to the latter).

`zero()`
Return a `ModuleElement` (page 2813) representing zero.

```python
class sympy.polys.numberfields.modules.PowerBasis(T)
The module generated by the powers of an algebraic integer.
__init__(T)
Parameters
T : `Poly` (page 2453), `AlgebraicField` (page 2619)
Either (1) the monic, irreducible, univariate polynomial over `ZZ`
(page 2605), a root of which is the generator of the power basis, or
(2) an `AlgebraicField` (page 2619) whose primitive element is the
generator of the power basis.

`element_from_ANP(a)`
Convert an ANP into a PowerBasisElement.

`element_from_alg_num(a)`
Convert an AlgebraicNumber into a PowerBasisElement.

`element_from_poly(f)`
Produce an element of this module, representing f after reduction mod our defining
minimal polynomial.

Parameters
f : `Poly` (page 2453) over `ZZ` (page 2605) in same var as our defining poly.

Returns
`PowerBasisElement` (page 2816)```
represent(elt)

Represent a module element as an integer-linear combination over the generators of this module.

See also:

Module.represent (page 2806), Submodule.represent (page 2813)

class sympy.polys.numberfields.modules.Submodule(parent, matrix, denom=1, mult_tab=None)

A submodule of another module.

__init__(parent, matrix, denom=1, mult_tab=None)

Parameters

parent : Module (page 2803)

The module from which this one is derived.

matrix : DomainMatrix (page 2753) over ZZ (page 2605)

The matrix whose columns define this submodule's generators as linear combinations over the parent's generators.

denom : int, optional (default=1)

Denominator for the coefficients given by the matrix.

mult_tab : dict, None, optional

If already known, the multiplication table for this module may be supplied.

property QQ_matrix

DomainMatrix (page 2753) over QQ (page 2609), equal to self.matrix / self.denom, and guaranteed to be dense.

Returns

DomainMatrix (page 2753) over QQ (page 2609)

Explanation

Depending on how it is formed, a DomainMatrix (page 2753) may have an internal representation that is sparse or dense. We guarantee a dense representation here, so that tests for equivalence of submodules always come out as expected.

Examples

```python
>>> from sympy.polys import Poly, cyclotomic_poly, ZZ
>>> from sympy.abc import x
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy.polys.numberfields.modules import PowerBasis
>>> T = Poly(cyclotomic_poly(5, x))
>>> A = PowerBasis(T)
>>> B = A.submodule_from_matrix(3*DomainMatrix.eye(4, ZZ), denom=6)
>>> C = A.submodule_from_matrix(DomainMatrix.eye(4, ZZ), denom=2)
```
from sympy import *

B = Matrix(((1, 0, 0), (0, 1, 0), (0, 0, 1)))
C = Matrix(((1, 0, 0), (0, 1, 0), (0, 0, 1)))

print(B * C)
print(B * C == C * B)

add(other, hnf=True, hnf_modulus=None)

Parameters
other : Submodule (page 2810)

hnf : boolean, optional (default=True)

If True, reduce the matrix of the combined module to its Hermite Normal Form.

hnf_modulus : ZZ (page 2605), None, optional

If a positive integer is provided, use this as modulus in the HNF reduction. See hermite_normal_form() (page 2783).

Returns
Submodule (page 2810)

Explanation
This represents the module generated by the union of the two modules’ sets of generators.

basis_element_pullbacks()

Return list of this submodule’s basis elements as elements of the submodule’s parent module.

discard_before(r)

Produce a new module by discarding all generators before a given index r.

mul(other, hnf=True, hnf_modulus=None)

Multiply this Submodule (page 2810) by a rational number, a ModuleElement (page 2813), or another Submodule (page 2810).

Parameters
other : int, ZZ (page 2605), QQ (page 2609), ModuleElement (page 2813), Submodule (page 2810)

hnf : boolean, optional (default=True)

If True, reduce the matrix of the product module to its Hermite Normal Form.

hnf_modulus : ZZ (page 2605), None, optional

If a positive integer is provided, use this as modulus in the HNF reduction. See hermite_normal_form() (page 2783).

Returns
Submodule (page 2810)
Explanation

To multiply by a rational number or `ModuleElement` (page 2813) means to form the submodule whose generators are the products of this quantity with all the generators of the present submodule.

To multiply by another `Submodule` (page 2810) means to form the submodule whose generators are all the products of one generator from the one submodule, and one generator from the other.

reduce_element(elt)

If this submodule B has defining matrix W in square, maximal-rank Hermite normal form, then, given an element x of the parent module A, we produce an element $y \in A$ such that $x - y \in B$, and the ith coordinate of y satisfies $0 \leq y_i < w_{i,i}$. This representative y is unique, in the sense that every element of the coset $x + B$ reduces to it under this procedure.

Parameters

`elt : ModuleElement` (page 2813)

An element of this submodule’s parent module.

Returns

`elt : ModuleElement` (page 2813)

An element of this submodule’s parent module.

Raises

`NotImplementedError`

If the given `ModuleElement` (page 2813) does not belong to this submodule’s parent module.

`StructureError`

If this submodule’s defining matrix is not in square, maximal-rank Hermite normal form.

Explanation

In the special case where A is a power basis for a number field K, and B is a submodule representing an ideal I, this operation represents one of a few important ways of reducing an element of K modulo I to obtain a “small” representative. See [Cohen00] Section 1.4.3.

Examples

```python
>>> from sympy import QQ, Poly, symbols
>>> t = symbols('t')
>>> k = QQ.alg_field_from_poly(Poly(t**3 + t**2 - 2*t + 8))
>>> Zk = k.maximal_order()
>>> A = Zk.parent
>>> B = (A(2) - 3*A(0))*Zk
>>> B.reduce_element(A(2))
[3, 0, 0]
```
References

[Cohen00]

reduced()

Produce a reduced version of this submodule.

Returns

Submodule (page 2810)

Explanation

In the reduced version, it is guaranteed that 1 is the only positive integer dividing both the submodule’s denominator, and every entry in the submodule’s matrix.

represent(elt)

Represent a module element as an integer-linear combination over the generators of this module.

See also:

Module.represent (page 2806), PowerBasis.represent (page 2809)

class sympy.polys.numberfields.modules.ModuleElement(module, col, denom=1)

Represents an element of a Module (page 2803).

NOTE: Should not be constructed directly. Use the __call__() (page 2803) method or the make_mod_elt() (page 2817) factory function instead.

__init__(module, col, denom=1)

Parameters

module : Module (page 2803)

The module to which this element belongs.

col : DomainMatrix (page 2753) over ZZ (page 2605)

Column vector giving the numerators of the coefficients of this element.

denom : int, optional (default=1)

Denominator for the coefficients of this element.

__add__(other)

A ModuleElement (page 2813) can be added to a rational number, or to another ModuleElement (page 2813).
Explanation

When the other summand is a rational number, it will be converted into a `ModuleElement` (belonging to the first ancestor of this module that starts with unity).

In all cases, the sum belongs to the nearest common ancestor (NCA) of the modules of the two summands. If the NCA does not exist, we return `NotImplemented`.

__mul__(other)

A `ModuleElement` can be multiplied by a rational number, or by another `ModuleElement`.

Explanation

When the multiplier is a rational number, the product is computed by operating directly on the coefficients of this `ModuleElement`.

When the multiplier is another `ModuleElement`, the product will belong to the nearest common ancestor (NCA) of the modules of the two operands, and that NCA must have a multiplication table. If the NCA does not exist, we return `NotImplemented`. If the NCA does not have a mult. table, `ClosureFailure` will be raised.

__mod__(m)

Reduce this `ModuleElement` mod a `Submodule`.

Parameters

- m : int, `ZZ`, `QQ`, `Submodule`

If a `Submodule`, reduce `self` relative to this. If an integer or rational, reduce relative to the `Submodule` that is our own module times this constant.

See also:

- `Submodule.reduce_element`

property `QQ_col`

`DomainMatrix` over `QQ`, equal to `self.col / self.denom`, and guaranteed to be dense.

See also:

- `Submodule.QQ_matrix`

`column(domain=None)`

Get a copy of this element’s column, optionally converting to a domain.

`equiv(other)`

A `ModuleElement` may test as equivalent to a rational number or another `ModuleElement`, if they represent the same algebraic number.

Parameters

- other : int, `ZZ`, `QQ`, `ModuleElement`

Returns

bool
Raises
UnificationFailed

If self and other do not share a common PowerBasis (page 2809) ancestor.

Explanation

This method is intended to check equivalence only in those cases in which it is easy to test; namely, when other is either a ModuleElement (page 2813) that can be unified with this one (i.e. one which shares a common PowerBasis (page 2809) ancestor), or else a rational number (which is easy because every PowerBasis (page 2809) represents every rational number).

classmethod from_int_list(module, coeffs, denom=1)

Make a ModuleElement (page 2813) from a list of ints (instead of a column vector).

is_compat(other)

Test whether other is another ModuleElement (page 2813) with same module.

property n

The length of this element’s column.

over_power_basis()

Transform into a PowerBasisElement (page 2816) over our PowerBasis (page 2809) ancestor.

reduced()

Produce a reduced version of this ModuleElement, i.e. one in which the gcd of the denominator together with all numerator coefficients is 1.

reduced_mod_p(p)

Produce a version of this ModuleElement (page 2813) in which all numerator coefficients have been reduced mod p.

to_ancestor(anc)

Transform into a ModuleElement (page 2813) belonging to a given ancestor of this element’s module.

Parameters
anc : Module (page 2803)

to_parent()

Transform into a ModuleElement (page 2813) belonging to the parent of this element’s module.

unify(other)

Try to make a compatible pair of ModuleElement (page 2813), one equivalent to this one, and one equivalent to the other.

Returns
Pair (e1, e2)

Each ei is a ModuleElement (page 2813), they belong to the same Module (page 2803), e1 is equivalent to self, and e2 is equivalent to other.
Raises
UnificationFailed

If self and other have no common ancestor module.

Explanation

We search for the nearest common ancestor module for the pair of elements, and represent each one there.

class sympy.polys.numberfields.modules.PowerBasisElement(module, col, denom=1)

Subclass for ModuleElement (page 2813) instances whose module is a PowerBasis (page 2809).

property T
Access the defining polynomial of the PowerBasis (page 2809).

as_expr(x=None)
Create a Basic expression from self.

property generator
Return a Symbol (page 1028) to be used when expressing this element as a polynomial.

If we have an associated AlgebraicField (page 2619) whose primitive element has an alias symbol, we use that. Otherwise we use the variable of the minimal polynomial defining the power basis to which we belong.

property is_rational
Say whether this element represents a rational number.

norm(T=None)
Compute the norm of this number.

numerator(x=None)
Obtain the numerator as a polynomial over ZZ (page 2605).

poly(x=None)
Obtain the number as a polynomial over QQ (page 2609).

to_ANP()
Convert to an equivalent ANP (page 2650).

to_alg_num()
Try to convert to an equivalent AlgebraicNumber (page 1039).

Returns
AlgebraicNumber (page 1039)

Raises
StructureError
 If the PowerBasis (page 2809) to which this element belongs does not have an associated AlgebraicField (page 2619).
Explanation

In general, the conversion from an `AlgebraicNumber` (page 1039) to a `PowerBasisElement` (page 2816) throws away information, because an `AlgebraicNumber` (page 1039) specifies a complex embedding, while a `PowerBasisElement` (page 2816) does not. However, in some cases it is possible to convert a `PowerBasisElement` (page 2816) back into an `AlgebraicNumber` (page 1039), namely when the associated `PowerBasis` (page 2809) has a reference to an `AlgebraicField` (page 2619).

```python
from sympy import Poly, cyclotomic_poly
from sympy.polys.numberfields.modules import PowerBasis,
    ModuleHomomorphism

T = Poly(cyclotomic_poly(5))
A = PowerBasis(T)
B = A.submodule_from_gens([2*A(j) for j in range(4)])
phi = ModuleHomomorphism(A, B, lambda x: 6*x)
print(phi.matrix())
```

```
DomainMatrix([[3, 0, 0, 0], [0, 3, 0, 0], [0, 0, 3, 0], [0, 0, 0, 3]],
    (4, 4), ZZ)
```

Examples

```python
>>> from sympy import Poly, cyclotomic_poly
>>> from sympy.polys.numberfields.modules import PowerBasis,
    ModuleHomomorphism
>>> T = Poly(cyclotomic_poly(5))
>>> A = PowerBasis(T)
>>> B = A.submodule_from_gens([2*A(j) for j in range(4)])
>>> phi = ModuleHomomorphism(A, B, lambda x: 6*x)
```

```
Kernel([0, 0, 0, 0])
```

Kernel

Compute a Submodule representing the kernel of this homomorphism.

```python
>>> print(phi.kernel())
```

```
Submodule([0, 0, 0, 0])
```

kernel

Compute a Submodule representing the kernel of this homomorphism.

```python
>>> print(phi.kernel())
```

```
Submodule([0, 0, 0, 0])
```

5.8. Topics
This submodule's generators span the kernel of this homomorphism over \(\mathbb{Z} \) (page 2605), or else over \(GF(p) \) (page 2602) if a modulus was given.

matrix(modulus=None)

Compute the matrix of this homomorphism.

Parameters

- **modulus**: int, optional

 A positive prime number \(p \) if the matrix should be reduced mod \(p \).

Returns

- **DomainMatrix** (page 2753)

 The matrix is over \(\mathbb{Z} \) (page 2605), or else over \(GF(p) \) (page 2602) if a modulus was given.

class sympy.polys.numberfields.modules.ModuleEndomorphism(domain, mapping)

A homomorphism from one module to itself.

__init__(domain, mapping)

Parameters

- **domain**: Module (page 2803)

 The common domain and codomain of the mapping.

- **mapping**: callable

 An arbitrary callable is accepted, but should be chosen so as to represent an actual module endomorphism. In particular, should accept and return elements of \(domain \).

class sympy.polys.numberfields.modules.InnerEndomorphism(domain, multiplier)

An inner endomorphism on a module, i.e. the endomorphism corresponding to multiplication by a fixed element.

__init__(domain, multiplier)

Parameters

- **domain**: Module (page 2803)

 The domain and codomain of the endomorphism.

- **multiplier**: ModuleElement (page 2813)

 The element \(a \) defining the mapping as \(x \mapsto ax \).

class sympy.polys.numberfields.modules.EndomorphismRing(domain)

The ring of endomorphisms on a module.

__init__(domain)

Parameters

- **domain**: Module (page 2803)

 The domain and codomain of the endomorphisms.

inner_endomorphism(multiplier)

Form an inner endomorphism belonging to this endomorphism ring.

Parameters

- **multiplier**: ModuleElement (page 2813)
Element a defining the inner endomorphism $x \mapsto ax$.

Returns

InnerEndomorphism (page 2818)

represent(element)

Represent an element of this endomorphism ring, as a single column vector.

Parameters

element : *ModuleEndomorphism* (page 2818) belonging to this ring.

Returns

DomainMatrix (page 2753)

Column vector equalling the vertical stacking of all the columns of the matrix that represents the given *element* as a mapping.

Explanation

Let M be a module, and E its ring of endomorphisms. Let N be another module, and consider a homomorphism $\varphi : N \to E$. In the event that φ is to be represented by a matrix A, each column of A must represent an element of E. This is possible when the elements of E are themselves representable as matrices, by stacking the columns of such a matrix into a single column.

This method supports calculating such matrices A, by representing an element of this endomorphism ring first as a matrix, and then stacking that matrix’s columns into a single column.

Examples

Note that in these examples we print matrix transposes, to make their columns easier to inspect.

```python
>>> from sympy import Poly, cyclotomic_poly
>>> from sympy.polys.numberfields.modules import PowerBasis
>>> from sympy.polys.numberfields.modules import ModuleHomomorphism
>>> T = Poly(cyclotomic_poly(5))
>>> M = PowerBasis(T)
>>> E = M.endomorphism_ring()
```

Let ζ be a primitive 5th root of unity, a generator of our field, and consider the inner endomorphism τ on the ring of integers, induced by ζ:

```python
>>> zeta = M(1)
>>> tau = E.inner_endomorphism(zeta)
>>> tau.matrix().transpose()
```

```
DomainMatrix([ [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], [-1, -1, -1, -1]], (4, 4), ZZ)
```

The matrix representation of τ is as expected. The first column shows that multiplying by ζ carries 1 to ζ, the second column that it carries ζ to ζ^2, and so forth.

The represent method of the endomorphism ring E stacks these into a single column:
This is useful when we want to consider a homomorphism φ having E as codomain:

```python
>>> phi = ModuleHomomorphism(M, E, lambda x: E.inner_endomorphism(x))
```

and we want to compute the matrix of such a homomorphism:

```python
>>> phi.matrix().transpose()
```

Note that the stacked matrix of τ occurs as the second column in this example. This is because ζ is the second basis element of M, and $\varphi(\zeta) = \tau$.

sympy.polys.numberfields.modules.find_min_poly(alpha, domain, x=None, powers=None)

Find a polynomial of least degree (not necessarily irreducible) satisfied by an element of a finitely-generated ring with unity.

Parameters

- **alpha**: ModuleElement (page 2813)

The element whose min poly is to be found, and whose module has multiplication and starts with unity.

- **domain**: Domain (page 2584)

The desired domain of the polynomial.

- **x**: Symbol (page 1028), optional

The desired variable for the polynomial.

- **powers**: list, optional

If desired, pass an empty list. The powers of $alpha$ (as ModuleElement (page 2813) instances) from the zeroth up to the degree of the min poly will be recorded here, as we compute them.

Returns

- **Poly** (page 2453), None

The minimal polynomial for alpha, or None if no polynomial could be found over the desired domain.

Raises

- **MissingUnityError**

If the module to which alpha belongs does not start with unity.
If the module to which alpha belongs is not closed under multiplication.

Examples

For the nth cyclotomic field, n an odd prime, consider the quadratic equation whose roots are the two periods of length $(n - 1)/2$. Article 356 of Gauss tells us that we should get $x^2 + x - (n - 1)/4$ or $x^2 + x + (n + 1)/4$ according to whether n is 1 or 3 mod 4, respectively.

```python
>>> from sympy import Poly, cyclotomic_poly, primitive_root, QQ
>>> from sympy.abc import x
>>> from sympy.polys.numberfields.modules import PowerBasis, find_min_poly
>>> n = 13
>>> g = primitive_root(n)
>>> C = PowerBasis(Poly(cyclotomic_poly(n, x)))
>>> ee = [g**(2*k+1) % n for k in range((n-1)//2)]
>>> eta = sum(C(e) for e in ee)
>>> print(find_min_poly(eta, QQ, x=x).as_expr())
x**2 + x - 3
>>> n = 19
>>> g = primitive_root(n)
>>> C = PowerBasis(Poly(cyclotomic_poly(n, x)))
>>> ee = [g**(2*k+2) % n for k in range((n-1)//2)]
>>> eta = sum(C(e) for e in ee)
>>> print(find_min_poly(eta, QQ, x=x).as_expr())
x**2 + x + 5
```

Utilities

`sympy.polys.numberfields.utilities.is_rat(c)`

Test whether an argument is of an acceptable type to be used as a rational number.

Explanation

Returns True on any argument of type int, ZZ (page 2605), or QQ (page 2609).

See also:

`is_int` (page 2821)

`sympy.polys.numberfields.utilities.is_int(c)`

Test whether an argument is of an acceptable type to be used as an integer.
Explanation

Returns True on any argument of type int or ZZ (page 2605).

See also:

is_rat (page 2821)
sympy.polys.numberfields.utilities.get_num_denom(c)

Given any argument on which is_rat() (page 2821) is True, return the numerator and denominator of this number.

See also:

is_rat (page 2821)
sympy.polys.numberfields.utilities.extract_fundamental_discriminant(a)

Extract a fundamental discriminant from an integer a.

Parameters

a: int, must be 0 or 1 mod 4

Returns

Pair (D, F) of dictionaries.

Raises

ValueError

If a is not 0 or 1 mod 4.

Explanation

Given any rational integer a that is 0 or 1 mod 4, write \(a = df^2 \), where \(d \) is either 1 or a fundamental discriminant, and return a pair of dictionaries \((D, F) \) giving the prime factorizations of \(d \) and \(f \) respectively, in the same format returned by factorint() (page 1539).

A fundamental discriminant \(d \) is different from unity, and is either 1 mod 4 and square-free, or is 0 mod 4 and such that \(d/4 \) is squarefree and 2 or 3 mod 4. This is the same as being the discriminant of some quadratic field.

Examples

```python
>>> from sympy.polys.numberfields.utilities import extract_fundamental_discriminant
>>> print(extract_fundamental_discriminant(-432))
({3: 1, -1: 1}, {2: 2, 3: 1})
```

For comparison:

```python
>>> from sympy import factorint
>>> print(factorint(-432))
{2: 4, 3: 3, -1: 1}
```
References

[R739]

class sympy.polys.numberfields.utilities.AlgIntPowers(T, modulus=None)
Compute the powers of an algebraic integer.

Explanation

Given an algebraic integer θ by its monic irreducible polynomial T over \mathbb{Z} (page 2605), this class computes representations of arbitrarily high powers of θ, as \mathbb{Z} (page 2605)-linear combinations over $\{1, \theta, \ldots, \theta^{n-1}\}$, where $n = \text{deg}(T)$.

The representations are computed using the linear recurrence relations for powers of θ, derived from the polynomial T. See [1], Sec. 4.2.2.

Optionally, the representations may be reduced with respect to a modulus.

Examples

```python
>>> from sympy import Poly, cyclotomic_poly
>>> from sympy.polys.numberfields.utilities import AlgIntPowers
>>> T = Poly(cyclotomic_poly(5))
>>> zeta_pow = AlgIntPowers(T)
>>> print(zeta_pow[0])
[1, 0, 0, 0]
>>> print(zeta_pow[1])
[0, 1, 0, 0]
>>> print(zeta_pow[4])
[-1, -1, -1, -1]
>>> print(zeta_pow[24])
[-1, -1, -1, -1]
```

References

[R740]

__init__(T, modulus=None)

Parameters

- **T**: Poly (page 2453)

The monic irreducible polynomial over \mathbb{Z} (page 2605) defining the algebraic integer.

- **modulus**: int, None, optional

 If not None, all representations will be reduced w.r.t. this.

sympy.polys.numberfields.utilities.coeff_search(m, R)

Generate coefficients for searching through polynomials.

Parameters

- **m**: int
Length of coeff list.

\[R : \text{int} \]

Initial max abs val for coeffs (will increase as search proceeds).

Returns

- generator

Infinite generator of lists of coefficients.

Explanation

Lead coeff is always non-negative. Explore all combinations with coeffs bounded in absolute value before increasing the bound. Skip the all-zero list, and skip any repeats. See examples.

Examples

```python
>>> from sympy.polys.numberfields.utilities import coeff_search
>>> cs = coeff_search(2, 1)
>>> C = [next(cs) for i in range(13)]
>>> print(C)
[[1, 1], [1, 0], [1, -1], [0, 1], [2, 2], [2, 1], [2, 0], [2, -1], [2, -2],
 [1, 2], [1, -2], [0, 2], [3, 3]]
```

sympy.polys.numberfields.utilities.supplement_a_subspace(M)

Extend a basis for a subspace to a basis for the whole space.

Parameters

- \(M : \text{DomainMatrix} \) (page 2753)

 The columns give the basis for the subspace.

Returns

- DomainMatrix (page 2753)

 This matrix is invertible and its first \(r \) columns equal \(M \).

Raises

- DMRankError

 If \(M \) was not of maximal rank.

Explanation

Given an \(n \times r \) matrix \(M \) of rank \(r \) (so \(r \leq n \)), this function computes an invertible \(n \times n \) matrix \(B \) such that the first \(r \) columns of \(B \) equal \(M \).

This operation can be interpreted as a way of extending a basis for a subspace, to give a basis for the whole space.

To be precise, suppose you have an \(n \)-dimensional vector space \(V \), with basis \(\{v_1, v_2, \ldots, v_n\} \), and an \(r \)-dimensional subspace \(W \) of \(V \), spanned by a basis \(\{w_1, w_2, \ldots, w_r\} \), where the \(w_j \) are given as linear combinations of the \(v_i \). If the columns of \(M \) represent
the w_j as such linear combinations, then the columns of the matrix B computed by this function give a new basis $\{u_1, u_2, \ldots, u_n\}$ for V, again relative to the $\{v_i\}$ basis, and such that $u_j = w_j$ for $1 \leq j \leq r$.

Examples

Note: The function works in terms of columns, so in these examples we print matrix transposes in order to make the columns easier to inspect.

```python
>>> from sympy.polys.matrices import DM
>>> from sympy import QQ, FF
>>> from sympy.polys.numberfields.utilities import supplement_a_subspace

>>> M = DM([[1, 7, 0], [2, 3, 4]], QQ).transpose()
>>> print(supplement_a_subspace(M).to_Matrix().transpose())
Matrix([[1, 7, 0], [2, 3, 4], [1, 0, 0]])

>>> M2 = M.convert_to(FF(7))
>>> print(M2.to_Matrix().transpose())
Matrix([[1, 0, 0], [2, 3, -3]])

>>> print(supplement_a_subspace(M2).to_Matrix().transpose())
Matrix([[1, 0, 0], [2, 3, -3], [0, 1, 0]])
```

References

[R741]

sympy.polys.numberfields.utilities.\texttt{isolate}(\textit{alg, eps=None, fast=False})

Find a rational isolating interval for a real algebraic number.

Parameters

- \textit{alg} : str, int, \texttt{Expr} (page 999)

 The algebraic number to be isolated. Must be a real number, to use this particular function. However, see also \texttt{Poly.intervals} (page 2473), which isolates complex roots when you pass all=True.

- \textit{eps} : positive element of \texttt{QQ} (page 2609), None, optional (default=None)

 Precision to be passed to \texttt{Poly.refine_root} (page 2488).

- \textit{fast} : boolean, optional (default=False)

 Say whether fast refinement procedure should be used. (Will be passed to \texttt{Poly.refine_root} (page 2488).

Returns

Pair of rational numbers defining an isolating interval for the given algebraic number.
Examples

```python
>>> from sympy import isolate, sqrt, Rational
>>> print(isolate(sqrt(2)))
(1, 2)
>>> print(isolate(sqrt(2), eps=Rational(1, 100)))
(24/17, 17/12)
```

See also:

Poly.intervals (page 2473)

Category Theory

Introduction

The category theory module for SymPy will allow manipulating diagrams within a single category, including drawing them in TikZ and deciding whether they are commutative or not.

The general reference work this module tries to follow is

The latest version of this book should be available for free download from

katmat.math.uni-bremen.de/acc/acc.pdf

The module is still in its pre-embryonic stage.

Base Class Reference

This section lists the classes which implement some of the basic notions in category theory: objects, morphisms, categories, and diagrams.

```python
class sympy.categories.Object(name, **assumptions)
    The base class for any kind of object in an abstract category.
```

Explanation

While technically any instance of Basic (page 979) will do, this class is the recommended way to create abstract objects in abstract categories.

```python
class sympy.categories.Morphism(domain, codomain)
    The base class for any morphism in an abstract category.
```
Explanation

In abstract categories, a morphism is an arrow between two category objects. The object where the arrow starts is called the domain, while the object where the arrow ends is called the codomain.

Two morphisms between the same pair of objects are considered to be the same morphisms. To distinguish between morphisms between the same objects use `NamedMorphism` (page 2828).

It is prohibited to instantiate this class. Use one of the derived classes instead.

See also:

- `IdentityMorphism` (page 2830), `NamedMorphism` (page 2828), `CompositeMorphism` (page 2828)

property codomain

Returns the codomain of the morphism.

Examples

```python
>>> from sympy.categories import Object, NamedMorphism
>>> A = Object("A")
>>> B = Object("B")
>>> f = NamedMorphism(A, B, "f")
>>> f.codomain
Object("B")
```

compose(*other*)

Composes self with the supplied morphism.

The order of elements in the composition is the usual order, i.e., to construct \(g \circ f \) use \(g.compose(f) \).

Examples

```python
>>> from sympy.categories import Object, NamedMorphism
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> g * f
CompositeMorphism(((NamedMorphism(Object("A"), Object("B"), "f"), NamedMorphism(Object("B"), Object("C"), "g")))
>>> (g * f).domain
Object("A")
>>> (g * f).codomain
Object("C")
```

property domain

Returns the domain of the morphism.
class sympy.categories.NamedMorphism(domain, codomain, name)

Represents a morphism which has a name.

Examples

```python
from sympy.categories import Object, NamedMorphism
A = Object("A")
B = Object("B")
f = NamedMorphism(A, B, "f")
f.domain
Object("A")
f.name
'f'
```

See also:

Morphism (page 2826)

property name

Returns the name of the morphism.

Examples

```python
from sympy.categories import Object, NamedMorphism
A = Object("A")
B = Object("B")
f = NamedMorphism(A, B, "f")
f.name
'f'
```

class sympy.categories.CompositeMorphism(*components)

Represents a morphism which is a composition of other morphisms.
Explanation

Two composite morphisms are equal if the morphisms they were obtained from (components) are the same and were listed in the same order.

The arguments to the constructor for this class should be listed in diagram order: to obtain the composition $g \circ f$ from the instances of `Morphism` (page 2826) g and f use `CompositeMorphism(f, g)`.

Examples

```python
>>> from sympy.categories import Object, NamedMorphism, CompositeMorphism
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> g * f
CompositeMorphism((NamedMorphism(Object("A"), Object("B"), "f"),
                   NamedMorphism(Object("B"), Object("C"), "g")))
>>> CompositeMorphism(f, g) == g * f
True
```

property codomain

Returns the codomain of this composite morphism.

The codomain of the composite morphism is the codomain of its last component.

Examples

```python
>>> from sympy.categories import Object, NamedMorphism
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> (g * f).codomain
Object("C")
```

property components

Returns the components of this composite morphism.
Examples

```python
>>> from sympy.categories import Object, NamedMorphism
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> (g * f).components
(NamedMorphism(Object("A"), Object("B"), "f"),
 NamedMorphism(Object("B"), Object("C"), "g"))
```

property domain

Returns the domain of this composite morphism.

The domain of the composite morphism is the domain of its first component.

Examples

```python
>>> from sympy.categories import Object, NamedMorphism
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
```

```python
>>> (g * f).domain
Object("A")
```

flatten(new_name)

Forgets the composite structure of this morphism.

Explanation

If new_name is not empty, returns a `NamedMorphism` (page 2828) with the supplied name, otherwise returns a `Morphism` (page 2826). In both cases the domain of the new morphism is the domain of this composite morphism and the codomain of the new morphism is the codomain of this composite morphism.

Examples

```python
>>> from sympy.categories import Object, NamedMorphism
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> (g * f).flatten("h")
NamedMorphism(Object("A"), Object("C"), "h")
```
class sympy.categories.IdentityMorphism(domain)

Represents an identity morphism.

Explanation

An identity morphism is a morphism with equal domain and codomain, which acts as an identity with respect to composition.

Examples

```python
>>> from sympy.categories import Object, NamedMorphism, IdentityMorphism
>>> A = Object("A")
>>> B = Object("B")
>>> f = NamedMorphism(A, B, "f")
>>> id_A = IdentityMorphism(A)
>>> id_B = IdentityMorphism(B)
>>> f * id_A == f
True
>>> id_B * f == f
True
```

See also:

Morphism (page 2826)

class sympy.categories.Category(name, objects=EmptySet,
 commutative_diagrams=EmptySet)

An (abstract) category.

Explanation

A category [JoyOfCats] is a quadruple \(K = (O, \text{hom}, id, \circ) \) consisting of

- a (set-theoretical) class \(O \), whose members are called \(K \)-objects,
- for each pair \((A, B)\) of \(K \)-objects, a set \(\text{hom}(A, B) \) whose members are called \(K \)-morphisms from \(A \) to \(B \),
- for a each \(K \)-object \(A \), a morphism \(id : A \to A \), called the \(K \)-identity of \(A \),
- a composition law \(\circ \) associating with every \(K \)-morphisms \(f : A \to B \) and \(g : B \to C \) a \(K \)-morphism \(g \circ f : A \to C \), called the composite of \(f \) and \(g \).

Composition is associative, \(K \)-identities are identities with respect to composition, and the sets \(\text{hom}(A, B) \) are pairwise disjoint.

This class knows nothing about its objects and morphisms. Concrete cases of (abstract) categories should be implemented as classes derived from this one.

Certain instances of Diagram (page 2833) can be asserted to be commutative in a Category (page 2831) by supplying the argument commutative_diagrams in the constructor.
Examples

```python
>>> from sympy.categories import Object, NamedMorphism, Diagram, Category
>>> from sympy import FiniteSet
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> d = Diagram([f, g])
>>> K = Category("K", commutative_diagrams=[d])
>>> K.commutative_diagrams == FiniteSet(d)
True
```

See also:

`Diagram` (page 2833)

property commutative_diagrams

Returns the `FiniteSet` (page 1241) of diagrams which are known to be commutative in this category.

Examples

```python
>>> from sympy.categories import Object, NamedMorphism, Diagram, Category
>>> from sympy import FiniteSet
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> d = Diagram([f, g])
>>> K = Category("K", commutative_diagrams=[d])
>>> K.commutative_diagrams == FiniteSet(d)
True
```

property name

Returns the name of this category.

Examples

```python
>>> from sympy.categories import Category
>>> K = Category("K")
>>> K.name
'K'
```

property objects

Returns the class of objects of this category.
Examples

```python
>>> from sympy.categories import Object, Category
>>> from sympy import FiniteSet
>>> A = Object("A")
>>> B = Object("B")
>>> K = Category("K", FiniteSet(A, B))
>>> K.objects
Class({Object("A"), Object("B")})
```

class sympy.categories.Diagram(*args)
Represents a diagram in a certain category.

Explanation

Informally, a diagram is a collection of objects of a category and certain morphisms between them. A diagram is still a monoid with respect to morphism composition; i.e., identity morphisms, as well as all composites of morphisms included in the diagram belong to the diagram. For a more formal approach to this notion see [Pare1970].

The components of composite morphisms are also added to the diagram. No properties are assigned to such morphisms by default.

A commutative diagram is often accompanied by a statement of the following kind: “if such morphisms with such properties exist, then such morphisms which such properties exist and the diagram is commutative”. To represent this, an instance of Diagram (page 2833) includes a collection of morphisms which are the premises and another collection of conclusions. premises and conclusions associate morphisms belonging to the corresponding categories with the FiniteSet (page 1241)'s of their properties.

The set of properties of a composite morphism is the intersection of the sets of properties of its components. The domain and codomain of a conclusion morphism should be among the domains and codomains of the morphisms listed as the premises of a diagram.

No checks are carried out of whether the supplied object and morphisms do belong to one and the same category.

Examples

```python
>>> from sympy.categories import Object, NamedMorphism, Diagram
>>> from sympy import pprint, default_sort_key
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> d = Diagram([f, g])
>>> premises_keys = sorted(d.premises.keys(), key=default_sort_key)
>>> pprint(premises_keys, use_unicode=False)
>>> pprint(d.premises, use_unicode=False)
{g*f:A-->C: EmptySet, id:A-->A: EmptySet, id:B-->B: EmptySet, id:C-->C: }
```

References

property conclusions
Returns the conclusions of this diagram.

Examples

```python
>>> from sympy.categories import Object, NamedMorphism
>>> from sympy.categories import IdentityMorphism, Diagram
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> d = Diagram([f, g])
>>> IdentityMorphism(A) in d.premises.keys()
True
>>> g * f in d.premises.keys()
True
>>> d = Diagram([f, g], {g * f: "unique"})
>>> d.conclusions[g * f] == FiniteSet("unique")
True
```

hom(A, B)
Returns a 2-tuple of sets of morphisms between objects A and B: one set of morphisms listed as premises, and the other set of morphisms listed as conclusions.

Examples

```python
>>> from sympy.categories import Object, NamedMorphism, Diagram
>>> from sympy import pretty
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> d = Diagram([f, g])
>>> pretty(d.hom(A, C), use_unicode=False)
({g+f:A-->C}, {g+f:A-->C})
```
See also:

Object (page 2826), Morphism (page 2826)

is_subdiagram(diagram)
Checks whether diagram is a subdiagram of self. Diagram D' is a subdiagram of D if all premises (conclusions) of D' are contained in the premises (conclusions) of D. The morphisms contained both in D' and D should have the same properties for D' to be a subdiagram of D.

Examples

```python
>>> from sympy.categories import Object, NamedMorphism, Diagram
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> d = Diagram([f, g], {g * f: "unique"})
>>> d1 = Diagram([f])
>>> d.is_subdiagram(d1)
True
>>> d1.is_subdiagram(d)
False
```

property objects
Returns the FiniteSet (page 1241) of objects that appear in this diagram.

Examples

```python
>>> from sympy.categories import Object, NamedMorphism, Diagram
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> d = Diagram([f, g])
>>> d.objects
{Object("A"), Object("B"), Object("C"))
```

property premises
Returns the premises of this diagram.
Examples

```python
>>> from sympy.categories import Object, NamedMorphism
>>> from sympy.categories import IdentityMorphism, Diagram
>>> from sympy import pretty

>>> A = Object("A")
>>> B = Object("B")
>>> f = NamedMorphism(A, B, "f")
>>> id_A = IdentityMorphism(A)
>>> id_B = IdentityMorphism(B)
>>> d = Diagram([f])
>>> print(pretty(d.premises, use_unicode=False))
{id:A-->A: EmptySet, id:B-->B: EmptySet, f:A-->B: EmptySet}
```

subdiagram_from_objects(*objects*)

If objects is a subset of the objects of self, returns a diagram which has as premises all those premises of self which have a domains and codomains in objects, likewise for conclusions. Properties are preserved.

Examples

```python
>>> from sympy.categories import Object, NamedMorphism, Diagram
>>> from sympy import FiniteSet

>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> d = Diagram([f, g], {f: "unique", g*f: "veryunique"})
>>> d1 = d.subdiagram_from_objects(FiniteSet(A, B))
>>> d1 == Diagram([f], {f: "unique"})
True
```

Diagram Drawing

This section lists the classes which allow automatic drawing of diagrams.

class sympy.categories.diagram_drawing.DiagramGrid(*diagram, groups=None, **hints*)

Constructs and holds the fitting of the diagram into a grid.
Explanation

The mission of this class is to analyse the structure of the supplied diagram and to place its objects on a grid such that, when the objects and the morphisms are actually drawn, the diagram would be “readable”, in the sense that there will not be many intersections of morphisms. This class does not perform any actual drawing. It does strive nevertheless to offer sufficient metadata to draw a diagram.

Consider the following simple diagram.

```python
from sympy.categories import Object, NamedMorphism
from sympy.categories import Diagram, DiagramGrid
from sympy import pprint

A = Object("A")
B = Object("B")
C = Object("C")
f = NamedMorphism(A, B, "f")
g = NamedMorphism(B, C, "g")
diagram = Diagram([f, g])
```

The simplest way to have a diagram laid out is the following:

```python
grid = DiagramGrid(diagram)
(grid.width, grid.height)
(2, 2)
pprint(grid)
A B
C
```

Sometimes one sees the diagram as consisting of logical groups. One can advise `DiagramGrid` as to such groups by employing the `groups` keyword argument.

Consider the following diagram:

```python
D = Object("D")
f = NamedMorphism(A, B, "f")
g = NamedMorphism(B, C, "g")
h = NamedMorphism(D, A, "h")
k = NamedMorphism(D, B, "k")
diagram = Diagram([f, g, h, k])
```

Lay it out with generic layout:

```python
grid = DiagramGrid(diagram)
pprint(grid)
A B D
C
```

Now, we can group the objects A and D to have them near one another:

```python
grid = DiagramGrid(diagram, groups=[[A, D], B, C])
pprint(grid)
B C
```

(continues on next page)
Note how the positioning of the other objects changes.

Further indications can be supplied to the constructor of `DiagramGrid` using keyword arguments. The currently supported hints are explained in the following paragraphs.

`DiagramGrid` (page 2836) does not automatically guess which layout would suit the supplied diagram better. Consider, for example, the following linear diagram:

```python
>>> E = Object("E")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> h = NamedMorphism(C, D, "h")
>>> i = NamedMorphism(D, E, "i")
>>> diagram = Diagram([f, g, h, i])
```

When laid out with the generic layout, it does not get to look linear:

```plaintext
A B
C D
E
```

To get it laid out in a line, use `layout="sequential"`:

```python
>>> grid = DiagramGrid(diagram, layout="sequential")
>>> pprint(grid)
A B C D E
```

One may sometimes need to transpose the resulting layout. While this can always be done by hand, `DiagramGrid` (page 2836) provides a hint for that purpose:

```python
>>> grid = DiagramGrid(diagram, layout="sequential", transpose=True)
>>> pprint(grid)
A
B
C
D
E
```

Separate hints can also be provided for each group. For an example, refer to `tests/test_drawing.py`, and see the different ways in which the five lemma [FiveLemma] can be laid out.
See also:

Diagram (page 2833)

References

[Five Lemma]

property height

Returns the number of rows in this diagram layout.

Examples

```python
>>> from sympy.categories import Object, NamedMorphism
>>> from sympy.categories import Diagram, DiagramGrid
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> diagram = Diagram([f, g])
>>> grid = DiagramGrid(diagram)
>>> grid.height
2
```

property morphisms

Returns those morphisms (and their properties) which are sufficiently meaningful to be drawn.

Examples

```python
>>> from sympy.categories import Object, NamedMorphism
>>> from sympy.categories import Diagram, DiagramGrid
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> diagram = Diagram([f, g])
>>> grid = DiagramGrid(diagram)
>>> grid.morphisms
{NamedMorphism(Object("A"), Object("B"), "f"): EmptySet,
 NamedMorphism(Object("B"), Object("C"), "g"): EmptySet}
```

property width

Returns the number of columns in this diagram layout.
class sympy.categories.diagram_drawing.ArrowStringDescription(unit, curving, curving_amount, looping_start, looping_end, horizontal_direction, vertical_direction, label_position, label)

Stores the information necessary for producing an Xy-pic description of an arrow.

The principal goal of this class is to abstract away the string representation of an arrow and to also provide the functionality to produce the actual Xy-pic string.

unit sets the unit which will be used to specify the amount of curving and other distances. horizontal_direction should be a string of "r" or "l" specifying the horizontal offset of the target cell of the arrow relatively to the current one. vertical_direction should specify the vertical offset using a series of either "d" or "u". label_position should be either "^", "_", or "|" to specify that the label should be positioned above the arrow, below the arrow or just over the arrow, in a break. Note that the notions “above” and “below” are relative to arrow direction. label stores the morphism label.

This works as follows (disregard the yet unexplained arguments):

```python
>>> from sympy.categories.diagram_drawing import ArrowStringDescription
>>> astr = ArrowStringDescription(
...     unit="mm", curving=None, curving_amount=None,
...     looping_start=None, looping_end=None, horizontal_direction="d",
...     vertical_direction="r", label_position="_", label="f")
>>> print(str(astr))
\ar[dr]_{f}
```

curving should be one of "^", " " to specify in which direction the arrow is going to curve. curving_amount is a number describing how many unit’s the morphism is going to curve:

```python
>>> astr = ArrowStringDescription(
...     unit="mm", curving="^", curving_amount=12,
...     looping_start=None, looping_end=None, horizontal_direction="d",
...     vertical_direction="r", label_position="_", label="f")
>>> print(str(astr))
\ar@/^12mm/[dr]_{f}
```
looping_start and looping_end are currently only used for loop morphisms, those which have the same domain and codomain. These two attributes should store a valid Xy-pic direction and specify, correspondingly, the direction the arrow gets out into and the direction the arrow gets back from:

```python
>>> astr = ArrowStringDescription(
    unit="mm", curving=\texttt{None}, curving_amount=\texttt{None},
    looping_start="u", looping_end="l", horizontal_direction="",
    vertical_direction="", label_position="\_", label="f")
>>> print(str(astr))
\ar@{(u,l)}\{f}
```

label_displacement controls how far the arrow label is from the ends of the arrow. For example, to position the arrow label near the arrow head, use “>”:

```python
>>> astr = ArrowStringDescription(
    unit="mm", curving="^", curving_amount=12,
    looping_start=\texttt{None}, looping_end=\texttt{None}, horizontal_direction="d",
    vertical_direction="r", label_position="\_", label="f")
>>> astr.label_displacement = ">"
>>> print(str(astr))
\ar@/^12mm/[dr]_{f}
```

Finally, arrow_style is used to specify the arrow style. To get a dashed arrow, for example, use “{-->}” as arrow style:

```python
>>> astr = ArrowStringDescription(
    unit="mm", curving="^", curving_amount=12,
    looping_start=\texttt{None}, looping_end=\texttt{None}, horizontal_direction="d",
    vertical_direction="r", label_position="\_", label="f")
>>> astr.arrow_style = "{-->}"
>>> print(str(astr))
\ar@/^12mm/@{-->}[dr]_{f}
```

Notes

Instances of `ArrowStringDescription` (page 2840) will be constructed by `XypicDiagramDrawer` (page 2842) and provided for further use in formatters. The user is not expected to construct instances of `ArrowStringDescription` (page 2840) themselves.

To be able to properly utilise this class, the reader is encouraged to checkout the Xy-pic user guide, available at [Xypic].

See also:

`XypicDiagramDrawer` (page 2842)
Given a `Diagram` (page 2833) and the corresponding `DiagramGrid` (page 2836), produces the Xy-pic representation of the diagram.

The most important method in this class is `draw`. Consider the following triangle diagram:

```python
>>> from sympy.categories import Object, NamedMorphism, Diagram
>>> from sympy.categories import DiagramGrid, XypicDiagramDrawer
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> diagram = Diagram([f, g], {g * f: "unique"})
```

To draw this diagram, its objects need to be laid out with a `DiagramGrid` (page 2836):

```python
>>> grid = DiagramGrid(diagram)
```

Finally, the drawing:

```python
>>> drawer = XypicDiagramDrawer()
>>> print(drawer.draw(diagram, grid))
\xymatrix{
A \ar[d]_{g\circ f} \ar[r]^{f} & B \ar[ld]^{g} \\
C &
}
```

For further details see the docstring of this method.

To control the appearance of the arrows, formatters are used. The dictionary `arrow_formatters` maps morphisms to formatter functions. A formatter accepts an `ArrowStringDescription` (page 2840) and is allowed to modify any of the arrow properties exposed thereby. For example, to have all morphisms with the property `unique` appear as dashed arrows, and to have their names prepended with `∃!`, the following should be done:

```python
>>> def formatter(astr):
...     astr.label = r"\exists !" + astr.label
...     astr.arrow_style = "{-->}"
>>> drawer.arrow_formatters["unique"] = formatter
>>> print(drawer.draw(diagram, grid))
\xymatrix{
A \ar@{-->}[d]_{\exists !g\circ f} \ar[r]^{f} & B \ar[ld]^{{g}} \\
C &
}
```

To modify the appearance of all arrows in the diagram, set `default_arrow_formatter`. For example, to place all morphism labels a little bit farther from the arrow head so that they look more centred, do as follows:
In some diagrams some morphisms are drawn as curved arrows. Consider the following diagram:

```
>>> D = Object("D")
>>> h = NamedMorphism(D, A, "h")
>>> k = NamedMorphism(D, B, "k")
>>> diagram = Diagram([f, g, h, k])
>>> grid = DiagramGrid(diagram)
>>> drawer = XypicDiagramDrawer()
>>> print(drawer.draw(diagram, grid))
\xymatrix{
  A \ar[r]_{f} & B \ar[d]^{g} & D \ar[l]^{k} \ar@/_1cm/[ll]^{h} \ar@/_3mm/[lll]^{h}_{h} \& C &
}\n```

To control how far the morphisms are curved by default, one can use the unit and default_curving_amount attributes:

```
>>> drawer.unit = "cm"
>>> drawer.default_curving_amount = 1
>>> print(drawer.draw(diagram, grid))
\xymatrix{
 A \ar[r]_{f} & B \ar[d]^{g} & D \ar[l]^{k} \ar@/_1cm/[ll]^{h} \& C &
}\n```

In some diagrams, there are multiple curved morphisms between the same two objects. To control by how much the curving changes between two such successive morphisms, use default_curving_step:

```
>>> drawer.default_curving_step = 1
>>> h1 = NamedMorphism(A, D, "h1")
>>> diagram = Diagram([f, g, h, k, h1])
>>> grid = DiagramGrid(diagram)
>>> print(drawer.draw(diagram, grid))
\xymatrix{
  A \ar[r]_{f} \ar@/^1cm/[rr]^{h_{1}} & B \ar[d]^{g} & D \ar[l]^{k} \ar@/_2cm/[lll]^{h}_{h} \& C &
}\n```

The default value of default_curving_step is 4 units.
See also:

draw (page 2844), ArrowStringDescription (page 2840)

draw(diagram, grid, masked=None, diagram_format="")

Returns the Xy-pic representation of diagram laid out in grid.

Consider the following simple triangle diagram.

```python
>>> from sympy.categories import Object, NamedMorphism, Diagram
>>> from sympy.categories import DiagramGrid, XypicDiagramDrawer
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> diagram = Diagram([f, g], {g * f: "unique"})
```

To draw this diagram, its objects need to be laid out with a DiagramGrid (page 2836):

```python
>>> grid = DiagramGrid(diagram)
```

Finally, the drawing:

```python
>>> drawer = XypicDiagramDrawer()
>>> print(drawer.draw(diagram, grid))
\xymatrix{
 A \ar[d]_{g\circ f} \ar[r]^{f} & B \ar[ld]^{g} \\
 C &
}
```

The argument masked can be used to skip morphisms in the presentation of the diagram:

```python
>>> print(drawer.draw(diagram, grid, masked=[g * f]))
\xymatrix{
 A \ar[r]^{f} & B \ar[ld]^{g} \\
 C &
}
```

Finally, the diagram_format argument can be used to specify the format string of the diagram. For example, to increase the spacing by 1 cm, proceeding as follows:

```python
>>> print(drawer.draw(diagram, grid, diagram_format="@+1cm"))
\xymatrix@+1cm{
 A \ar[d]_{g\circ f} \ar[r]^{f} & B \ar[ld]^{g} \\
 C &
}
```

sympy.categories.diagram_drawing.xypic_draw_diagram(diagram, masked=None, diagram_format="", groups=None, **hints)

Provides a shortcut combining DiagramGrid (page 2836) and XypicDiagramDrawer (page 2842). Returns an Xy-pic presentation of diagram. The argument masked is a list of morphisms which will be not be drawn. The argument diagram_format is the
format string inserted after “xymatrix”. groups should be a set of logical groups. The hints will be passed directly to the constructor of DiagramGrid (page 2836).

For more information about the arguments, see the docstrings of DiagramGrid (page 2836) and XypicDiagramDrawer.draw.

Examples

```python
>>> from sympy.categories import Object, NamedMorphism, Diagram
>>> from sympy.categories import xypic_draw_diagram
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> diagram = Diagram([f, g], {g * f: "unique"})
>>> print(xypic_draw_diagram(diagram))
\xymatrix{
 A \ar[d]_{g\circ f} \ar[r]^{f} & B \ar[ld]^{g} \\
 C &
}
```

See also:

XypicDiagramDrawer (page 2842), DiagramGrid (page 2836)

sympy.categories.diagram_drawing.preview_diagram(diagram, masked=None,
diagram_format='',
groups=None, output='png',
viewer=None, euler=True,
**hints)

Combines the functionality of xypic_draw_diagram and sympy.printing.preview. The arguments masked, diagram_format, groups, and hints are passed to xypic_draw_diagram, while output, viewer, and `euler` are passed to preview.

Examples

```python
>>> from sympy.categories import Object, NamedMorphism, Diagram
>>> from sympy.categories import preview_diagram
>>> A = Object("A")
>>> B = Object("B")
>>> C = Object("C")
>>> f = NamedMorphism(A, B, "f")
>>> g = NamedMorphism(B, C, "g")
>>> d = Diagram([f, g], {g * f: "unique"})
>>> preview_diagram(d)
```

See also:

XypicDiagramDrawer (page 2842)
Cryptography

Warning: This module is intended for educational purposes only. Do not use the functions in this module for real cryptographic applications. If you wish to encrypt real data, we recommend using something like the cryptography module.

Encryption is the process of hiding a message and a cipher is a means of doing so. Included in this module are both block and stream ciphers:

- Shift cipher
- Affine cipher
- substitution ciphers
- Vigenere’s cipher
- Hill’s cipher
- Bifid ciphers
- RSA
- Kid RSA
- linear-feedback shift registers (for stream ciphers)
- ElGamal encryption

In a substitution cipher “units” (not necessarily single characters) of plaintext are replaced with ciphertext according to a regular system.

A transposition cipher is a method of encryption by which the positions held by “units” of plaintext are replaced by a permutation of the plaintext. That is, the order of the units is changed using a bijective function on the position of the characters to perform the encryption.

A monoalphabetic cipher uses fixed substitution over the entire message, whereas a polyalphabetic cipher uses a number of substitutions at different times in the message.

sympy.crypto.crypto.AZ(s=None)

Return the letters of s in uppercase. In case more than one string is passed, each of them will be processed and a list of uppercase strings will be returned.

Examples

```python
>>> from sympy.crypto.crypto import AZ
>>> AZ('Hello, world!')
'HELLOWORLD'
>>> AZ('Hello, world!'.split())
['HELLO', 'WORLD']
```

See also:

check_and_join (page 2847)
sympy.crypto.crypto.padded_key(key, symbols)
Return a string of the distinct characters of symbols with those of key appearing first.
A ValueError is raised if a) there are duplicate characters in symbols or b) there are
characters in key that are not in symbols.

Examples

```python
>>> from sympy.crypto.crypto import padded_key
>>> padded_key('PUPPY', 'OPQRSTUWXY')
'PUYOQRSTVWX'
>>> padded_key('RSA', 'ARTIST')
Traceback (most recent call last):
... ValueError: duplicate characters in symbols: T
```

sympy.crypto.crypto.check_and_join(phrase, symbols=None, filter=None)
Joins characters of phrase and if symbols is given, raises an error if any character in
phrase is not in symbols.

Parameters
phrase
String or list of strings to be returned as a string.
symbols
Iterable of characters allowed in phrase.
   If symbols is None, no checking is performed.

Examples

```python
>>> from sympy.crypto.crypto import check_and_join
>>> check_and_join('a phrase')
'a phrase'
>>> check_and_join('a phrase'.upper().split())
'APHRAE'
>>> check_and_join('a phrase!'.upper().split(), 'ARE', filter=True)
'ARAE'
>>> check_and_join('a phrase!'.upper().split(), 'ARE')
Traceback (most recent call last):
... ValueError: characters in phrase but not symbols: "!HPS"
```

sympy.crypto.crypto.cycle_list(k, n)
Returns the elements of the list range(n) shifted to the left by k (so the list starts with
k (mod n)).
sympy.crypto.crypto.encipher_shift(msg, key, symbols=None)

Performs shift cipher encryption on plaintext msg, and returns the ciphertext.

**Parameters**

- **key**: int
  - The secret key.

- **msg**: str
  - Plaintext of upper-case letters.

**Returns**

- **str**: str
  - Ciphertext of upper-case letters.

**Examples**

```python
>>> from sympy.crypto.crypto import encipher_shift, decipher_shift

>>> msg = "GONAVYBEATARMY"

>>> ct = encipher_shift(msg, 1); ct
'HPOBWZCFBUBSNZ'

To decipher the shifted text, change the sign of the key:

```python

>>> encipher_shift(ct, -1)
'GONAVYBEATARMY'
```

There is also a convenience function that does this with the original key:

```python

>>> decipher_shift(ct, 1)
'GONAVYBEATARMY'
```

Notes

ALGORITHM:

STEPS:

1. Number the letters of the alphabet from 0, ..., N
2. Compute from the string msg a list L1 of corresponding integers.
3. Compute from the list L1 a new list L2, given by adding (k mod 26) to each element in L1.
4. Compute from the list L2 a string ct of corresponding letters.
The shift cipher is also called the Caesar cipher, after Julius Caesar, who, according to Suetonius, used it with a shift of three to protect messages of military significance. Caesar’s nephew Augustus reportedly used a similar cipher, but with a right shift of 1.

See also:

decipher_shift (page 2849)

References

[R142], [R143]

sympy.crypto.crypto.decipher_shift(msg, key, symbols=None)

Return the text by shifting the characters of msg to the left by the amount given by key.

Examples

```python
>>> from sympy.crypto.crypto import encipher_shift, decipher_shift
>>> msg = "GONAVYBEATARMY"
>>> ct = encipher_shift(msg, 1); ct
'HPOBWZCFBUBSNZ'

To decipher the shifted text, change the sign of the key:

```python
>>> encipher_shift(ct, -1)
'GONAVYBEATARMY'
```  

Or use this function with the original key:

```python
>>> decipher_shift(ct, 1)
'GONAVYBEATARMY'
```  

sympy.crypto.crypto.encipher_rot13(msg, symbols=None)

Performs the ROT13 encryption on a given plaintext msg.

**Explanation**

ROT13 is a substitution cipher which substitutes each letter in the plaintext message for the letter furthest away from it in the English alphabet.

Equivalently, it is just a Caesar (shift) cipher with a shift key of 13 (midway point of the alphabet).

**See also:**

decipher_rot13 (page 2850), encipher_shift (page 2848)
References

[R144]
sympy.crypto.crypto.decipher_rot13(msg, symbols=None)
PerformstheROT13decryptiononagivenplaintextmsg.

Explanation

Examples

```python
>>> from sympy.crypto.crypto import encipher_rot13, decipher_rot13
>>> msg = 'GONAVYBEATARMY'
>>> ciphertext = encipher_rot13(msg); ciphertext
'TBANILORNGNEZL'
>>> decipher_rot13(ciphertext)
'GONAVYBEATARMY'
>>> encipher_rot13(msg) == decipher_rot13(msg)
True
>>> msg == decipher_rot13(ciphertext)
True
```

sympy.crypto.crypto.encipher_affine(msg, key, symbols=None, _inverse=False)
Performstheaffinecipherencryptiononplaintextmsg,andreturnstheciphertext.

Parameters
msg : str
Charactersthatappearinsymbols.

a, b : int, int
A pairintegers,withgcd(a, N) = 1 (thesecretkey).

symbols
Stringofcharacters(default = uppercaseletters).

Whennosymbolsaregiven, msg is converted to uppercase letters andall othercharacters are ignored.

Returns
c
Stringofcharacters (theciphertextmessage)
Explanation

Encryption is based on the map \( x \rightarrow ax + b \pmod{N} \) where \( N \) is the number of characters in the alphabet. Decryption is based on the map \( x \rightarrow cx + d \pmod{N} \), where \( c = a^{-1} \pmod{N} \) and \( d = -a^{-1}b \pmod{N} \). In particular, for the map to be invertible, we need \( \gcd(a, N) = 1 \) and an error will be raised if this is not true.

Notes

ALGORITHM:

STEPS:

0. Number the letters of the alphabet from 0, ..., \( N \)

1. Compute from the string \( msg \) a list \( L1 \) of corresponding integers.

2. Compute from the list \( L1 \) a new list \( L2 \), given by replacing \( x \) by \( a*x + b \pmod{N} \), for each element \( x \) in \( L1 \).

3. Compute from the list \( L2 \) a string \( ct \) of corresponding letters.

This is a straightforward generalization of the shift cipher with the added complexity of requiring 2 characters to be deciphered in order to recover the key.

See also:

\texttt{decipher_affine} (page 2851)

References

[R145]

\texttt{sympy.crypto.crypto.decipher_affine}(msg, key, symbols=None)

Return the deciphered text that was made from the mapping, \( x \rightarrow ax + b \pmod{N} \), where \( N \) is the number of characters in the alphabet. Deciphering is done by reciphering with a new key: \( x \rightarrow cx + d \pmod{N} \), where \( c = a^{-1} \pmod{N} \) and \( d = -a^{-1}b \pmod{N} \).

Examples

```python
>>> from sympy.crypto.crypto import encipher_affine, decipher_affine
>>> msg = "GO NAVY BEAT ARMY"
>>> key = (3, 1)
>>> encipher_affine(msg, key)
'TROBMVENBGBALV'
>>> decipher_affine(_, key)
'GONAVYBEATARMY'
```

See also:

\texttt{encipher_affine} (page 2850)

\texttt{sympy.crypto.crypto.encipher_atbash}(msg, symbols=None)

Enciphers a given \( msg \) into its Atbash ciphertext and returns it.
**Explanation**

Atbash is a substitution cipher originally used to encrypt the Hebrew alphabet. Atbash works on the principle of mapping each alphabet to its reverse / counterpart (i.e. a would map to z, b to y etc.)

Atbash is functionally equivalent to the affine cipher with $a = 25$ and $b = 25$

**See also:**

decipher_atbash (page 2852)

```python
sympy.crypto.crypto.decipher_atbash(msg, symbols=None)
```

Deciphers a given msg using Atbash cipher and returns it.

**Explanation**

decipher_atbash is functionally equivalent to encipher_atbash. However, it has still been added as a separate function to maintain consistency.

**Examples**

```python
>>> from sympy.crypto.crypto import encipher_atbash, decipher_atbash
>>> msg = 'GONAVYBEATARMY'
>>> encipher_atbash(msg)
'TLMZEBYVZGZINB'
>>> decipher_atbash(msg)
'TLMZEBYVZGZINB'
>>> encipher_atbash(msg) == decipher_atbash(msg)
True
>>> msg == encipher_atbash(encipher_atbash(msg))
True
```

**See also:**

encipher_atbash (page 2851)

**References**

[R146]

```python
sympy.crypto.crypto.encipher_substitution(msg, old, new=None)
```

Returns the ciphertext obtained by replacing each character that appears in old with the corresponding character in new. If old is a mapping, then new is ignored and the replacements defined by old are used.
**Explanation**

This is a more general than the affine cipher in that the key can only be recovered by determining the mapping for each symbol. Though in practice, once a few symbols are recognized the mappings for other characters can be quickly guessed.

**Examples**

```python
>>> from sympy.crypto.crypto import encipher_substitution, AZ
>>> old = 'OEYAG'
>>> new = '034^6'
>>> msg = AZ("go navy! beat army!")
>>> ct = encipher_substitution(msg, old, new); ct
'60N^V4B3^T^RM4'
```

To decrypt a substitution, reverse the last two arguments:

```python
>>> encipher_substitution(ct, new, old)
'GONAVYBEATARMY'
```

In the special case where `old` and `new` are a permutation of order 2 (representing a transposition of characters) their order is immaterial:

```python
>>> old = 'NAVY'
>>> new = 'ANYV'
>>> encipher = lambda x: encipher_substitution(x, old, new)
>>> encipher('NAVY')
'ANYV'
>>> encipher(_)
'NAVY'
```

The substitution cipher, in general, is a method whereby “units” (not necessarily single characters) of plaintext are replaced with ciphertext according to a regular system.

```python
>>> ords = dict(zip('abc', ['\%i' % ord(i) for i in 'abc']))
>>> print(encipher_substitution('abc', ords))
\97\98\99
```

**References**

[R147]
sympy.crypto.crypto.encipher_vigenere(msg, key, symbols=None)

Performs the Vigenere cipher encryption on plaintext `msg`, and returns the ciphertext.
Examples

```python
>>> from sympy.crypto.crypto import encipher_vigenere, AZ
cipher_vigenere(msg, key)
'QRGKKTHRZQEBPR'
```

Section 1 of the Kryptos sculpture at the CIA headquarters uses this cipher and also changes the order of the alphabet [R149]. Here is the first line of that section of the sculpture:

```python
>>> from sympy.crypto.crypto import decipher_vigenere, padded_key
>>> alp = padded_key('KRYPTOS', AZ())
>>> key = 'PALIMPSEST'
>>> msg = 'EMUFPHZLRFAXYUSDJKZLDKRNSHGNFIVJ'
>>> decipher_vigenere(msg, key, alp)
'BETWEENSUBTLESHADINGANDTHEABSENCE'
```

Explanation

The Vigenere cipher is named after Blaise de Vigenere, a sixteenth century diplomat and cryptographer, by a historical accident. Vigenere actually invented a different and more complicated cipher. The so-called Vigenere cipher was actually invented by Giovan Batista Belaso in 1553.

This cipher was used in the 1800’s, for example, during the American Civil War. The Confederacy used a brass cipher disk to implement the Vigenere cipher (now on display in the NSA Museum in Fort Meade) [R148].

The Vigenere cipher is a generalization of the shift cipher. Whereas the shift cipher shifts each letter by the same amount (that amount being the key of the shift cipher) the Vigenere cipher shifts a letter by an amount determined by the key (which is a word or phrase known only to the sender and receiver).

For example, if the key was a single letter, such as “C”, then the so-called Vigenere cipher is actually a shift cipher with a shift of 2 (since “C” is the 2nd letter of the alphabet, if you start counting at 0). If the key was a word with two letters, such as “CA”, then the so-called Vigenere cipher will shift letters in even positions by 2 and letters in odd positions are left alone (shifted by 0, since “A” is the 0th letter, if you start counting at 0).

ALGORITHM:

INPUT:

msg: string of characters that appear in symbols (the plaintext)
key: a string of characters that appear in symbols (the secret key)
symbols: a string of letters defining the alphabet

OUTPUT:

c: string of characters (the ciphertext message)

STEPS:

0. Number the letters of the alphabet from 0, ..., N
1. Compute from the string key a list L1 of corresponding integers. Let n1 = len(L1).
2. Compute from the string msg a list L2 of corresponding integers. Let n2 = len(L2).
3. Break L2 up sequentially into sublists of size n1; the last sublist may be smaller than n1.
4. For each of these sublists L of L2, compute a new list C given by C[i] = L[i] + L1[i] (mod N) to the i-th element in the sublist, for each i.
5. Assemble these lists C by concatenation into a new list of length n2.
6. Compute from the new list a string ct of corresponding letters.

Once it is known that the key is, say, \( n \) characters long, frequency analysis can be applied to every \( n \)-th letter of the ciphertext to determine the plaintext. This method is called Kasiski examination (although it was first discovered by Babbage). If they key is as long as the message and is comprised of randomly selected characters – a one-time pad – the message is theoretically unbreakable.

The cipher Vigenere actually discovered is an “auto-key” cipher described as follows.

**ALGORITHM:**

**INPUT:**
- key: a string of letters (the secret key)
- msg: string of letters (the plaintext message)

**OUTPUT:**
- ct: string of upper-case letters (the ciphertext message)

**STEPS:**

0. Number the letters of the alphabet from 0, ..., N
1. Compute from the string msg a list L2 of corresponding integers. Let n2 = len(L2).
2. Let n1 be the length of the key. Append to the string key the first n2 - n1 characters of the plaintext message. Compute from this string (also of length n2) a list L1 of integers corresponding to the letter numbers in the first step.
3. Compute a new list C given by C[i] = L1[i] + L2[i] (mod N).
4. Compute from the new list a string ct of letters corresponding to the new integers.

To decipher the auto-key ciphertext, the key is used to decipher the first n1 characters and then those characters become the key to decipher the next n1 characters, etc...:
```python
'MCYDWSHKOGAMKZCELYFGAYR'
>>> n1 = len(key)
>>> pt = []
>>> while ct:
... part, ct = ct[:n1], ct[n1:]
... pt.append(decipher_vigenere(part, key))
... key = pt[-1]
...>>> ''.join(pt) == m
True
```

**References**

[R148], [R149]

```python
sympy.crypto.crypto.decipher_vigenere(msg, key, symbols=None)
```

Decode using the Vigenere cipher.

**Examples**

```python
>>> from sympy.crypto.crypto import decipher_vigenere
>>> key = "encrypt"
>>> ct = "QRGK kt HRZQE BPR"
>>> decipher_vigenere(ct, key)
'MEETMEONMONDAY'
```

```python
sympy.crypto.crypto.encypher_hill(msg, key, symbols=None, pad='Q')
```

Return the Hill cipher encryption of `msg`.

**Parameters**

- `msg`
  
  Plaintext message of \( n \) upper-case letters.

- `key`
  
  A \( k \times k \) invertible matrix \( K \), all of whose entries are in \( Z_{26} \) (or whatever number of symbols are being used).

- `pad`
  
  Character (default "Q") to use to make length of text be a multiple of \( k \).

**Returns**

- `ct`
  
  Ciphertext of upper-case letters.
**Explanation**

The Hill cipher [R150], invented by Lester S. Hill in the 1920’s [R151], was the first polygraphic cipher in which it was practical (though barely) to operate on more than three symbols at once. The following discussion assumes an elementary knowledge of matrices.

First, each letter is first encoded as a number starting with 0. Suppose your message `msg` consists of `n` capital letters, with no spaces. This may be regarded as an `n`-tuple `M` of elements of `Z_26` (if the letters are those of the English alphabet). A key in the Hill cipher is a `k x k` matrix `K`, all of whose entries are in `Z_26`, such that the matrix `K` is invertible (i.e., the linear transformation `K : Z^k_N \rightarrow Z^k_N` is one-to-one).

**Notes**

ALGORITHM:

**STEPS:**

0. Number the letters of the alphabet from 0, ..., N
1. Compute from the string `msg` a list `L` of corresponding integers. Let `n = len(L)`.
2. Break the list `L` up into `t = ceiling(n/k)` sublists `L_1`, ..., `L_t` of size `k` (with the last list “padded” to ensure its size is `k`).
3. Compute new list `C_1`, ..., `C_t` given by `C[i] = K*L_i` (arithmetic is done mod `N`), for each `i`.
4. Concatenate these into a list `C = C_1 + ... + C_t`.
5. Compute from `C` a string `ct` of corresponding letters. This has length `k*t`.

See also:

`decipher_hill` (page 2857)

**References**

[R150], [R151]

sympy.crypto.crypto.decipher_hill(msg, key, symbols=None)

Deciphering is the same as enciphering but using the inverse of the key matrix.

**Examples**

```python
>>> from sympy.crypto.crypto import encipher_hill, decipher_hill
>>> from sympy import Matrix

>>> key = Matrix([[1, 2], [3, 5]])
>>> encipher_hill("meet me on monday", key)
'UEQDUEODOTCWQ'
```

(continues on next page)
When the length of the plaintext (stripped of invalid characters) is not a multiple of the key dimension, extra characters will appear at the end of the enciphered and deciphered text. In order to decipher the text, those characters must be included in the text to be deciphered. In the following, the key has a dimension of 4 but the text is 2 short of being a multiple of 4 so two characters will be added.

```python
>>> key = Matrix([[1, 1, 1, 2], [0, 1, 1, 0],
 [2, 2, 3, 4], [1, 1, 0, 1]])
>>> msg = "ST"
>>> encipher_hill(msg, key)
'HJEB'
>>> decipher_hill(_, key)
'STQQ'
>>> encipher_hill(msg, key, pad="Z")
'ISPK'
>>> decipher_hill(_, key)
'STZZ'
```

If the last two characters of the ciphertext were ignored in either case, the wrong plaintext would be recovered:

```python
>>> decipher_hill("HD", key)
'ORMV'
>>> decipher_hill("IS", key)
'UIKY'
```

See also:

- `encipher_hill` (page 2856)
- `sympy.crypto.crypto.encipher_bifid(msg, key, symbols=None)`

Performs the Bifid cipher encryption on plaintext `msg`, and returns the ciphertext.

This is the version of the Bifid cipher that uses an \( n \times n \) Polybius square.

**Parameters**

- `msg`
  - Plaintext string.

- `key`
  - Short string for key.
  - Duplicate characters are ignored and then it is padded with the characters in `symbols` that were not in the short key.

- `symbols`
  - \( n \times n \) characters defining the alphabet.
  - (default is `string.printable`)

**Returns**

- ciphertext
Ciphertext using Bifid5 cipher without spaces.

See also:

decipher_bifid (page 2859), encipher_bifid5 (page 2860), encipher_bifid6 (page 2862)

References

[R152]
sympy.crypto.crypto.decipher_bifid(msg, key, symbols=None)
Performs the Bifid cipher decryption on ciphertext msg, and returns the plaintext.
This is the version of the Bifid cipher that uses the \( n \times n \) Polybius square.

Parameters

msg
Ciphertext string.

key
Short string for key.
Duplicate characters are ignored and then it is padded with the characters in symbols that were not in the short key.

symbols
\( n \times n \) characters defining the alphabet.
(default=string.printable, a 10 \times 10 \) matrix

Returns
deciphered
Deciphered text.

Examples

>>> from sympy.crypto.crypto import (   .... encipher_bifid, decipher_bifid, AZ)

Do an encryption using the bifid5 alphabet:

>>> alp = AZ().replace('J', '')
>>> ct = AZ("meet me on monday!")
>>> key = AZ("gold bug")
>>> encipher_bifid(ct, key, alp)
'IELILHFSTSFQYE'

When entering the text or ciphertext, spaces are ignored so it can be formatted as desired. Re-entering the ciphertext from the preceding, putting 4 characters per line and padding with an extra J, does not cause problems for the deciphering:
When no alphabet is given, all 100 printable characters will be used:

```python
>>> key = ''
>>> encipher_bifid('hello world!', key)
'bmtwmg-bIo*w'
>>> decipher_bifid(_, key)
'hello world'
```

If the key is changed, a different encryption is obtained:

```python
>>> key = 'gold bug'
>>> encipher_bifid('hello world!', 'gold_bug')
'hg2sfuei7t}w'
```

And if the key used to decrypt the message is not exact, the original text will not be perfectly obtained:

```python
>>> decipher_bifid(_, 'gold pug')
'heldo~wor6d!'
```

**sympy.crypto.crypto.bifid5_square(key=None)**

5x5 Polybius square.

Produce the Polybius square for the $5 \times 5$ Bifid cipher.

**Examples**

```python
from sympy.crypto.crypto import bifid5_square
bifid5_square("gold bug")
```

```python
Matrix([G, O, L, D, B],
[U, A, C, E, F],
[H, I, K, M, N],
[P, Q, R, S, T],
[V, W, X, Y, Z])
```

**sympy.crypto.crypto.encipher_bifid5(msg, key)**

Performs the Bifid cipher encryption on plaintext `msg`, and returns the ciphertext.

**Parameters**

- `msg`: str
  - Plaintext string.
  - Converted to upper case and filtered of anything but all letters except J.
- `key`
SymPy Documentation, Release 1.12.1

Short string for key; non-alphabetic letters, J and duplicated characters are ignored and then, if the length is less than 25 characters, it is padded with other letters of the alphabet (in alphabetical order).

Returns

ct

Ciphertext (all caps, no spaces).

Explanation

This is the version of the Bifid cipher that uses the $5 \times 5$ Polybius square. The letter “J” is ignored so it must be replaced with something else (traditionally an “I”) before encryption.

ALGORITHM: (5x5 case)

STEPS:

0. Create the $5 \times 5$ Polybius square $S$ associated to key as follows:
   a) moving from left-to-right, top-to-bottom, place the letters of the key into a $5 \times 5$ matrix,
   b) if the key has less than 25 letters, add the letters of the alphabet not in the key until the $5 \times 5$ square is filled.

1. Create a list $P$ of pairs of numbers which are the coordinates in the Polybius square of the letters in $msg$.

2. Let $L_1$ be the list of all first coordinates of $P$ (length of $L_1 = n$), let $L_2$ be the list of all second coordinates of $P$ (so the length of $L_2$ is also $n$).

3. Let $L$ be the concatenation of $L_1$ and $L_2$ (length $L = 2n$), except that consecutive numbers are paired ($L[2i], L[2i + 1]$). You can regard $L$ as a list of pairs of length $n$.

4. Let $C$ be the list of all letters which are of the form $S[i, j]$, for all $(i, j)$ in $L$. As a string, this is the ciphertext of $msg$.

Examples

```python
>>> from sympy.crypto.crypto import ... encipher_bifid5, decipher_bifid5

“J” will be omitted unless it is replaced with something else:

```
Notes

The Bifid cipher was invented around 1901 by Felix Delastelle. It is a fractional substitution cipher, where letters are replaced by pairs of symbols from a smaller alphabet. The cipher uses a $5 \times 5$ square filled with some ordering of the alphabet, except that “J” is replaced with “I” (this is a so-called Polybius square; there is a $6 \times 6$ analog if you add back in “J” and also append onto the usual 26 letter alphabet, the digits 0, 1, ..., 9). According to Helen Gaines’ book Cryptanalysis, this type of cipher was used in the field by the German Army during World War I.

See also:

- `decipher_bifid5` (page 2862), `encipher_bifid` (page 2858)

sympy.crypto.crypto.decipher_bifid5(msg, key)

Return the Bifid cipher decryption of msg.

Parameters

- **msg**
  
  Ciphertext string.

- **key**
  
  Short string for key; duplicated characters are ignored and if the length is less then 25 characters, it will be padded with other letters from the alphabet omitting “J”. Non-alphabetic characters are ignored.

Returns

- **plaintext**
  
  Plaintext from Bifid5 cipher (all caps, no spaces).

Explanation

This is the version of the Bifid cipher that uses the $5 \times 5$ Polybius square; the letter “J” is ignored unless a key of length 25 is used.

Examples

```python
>>> from sympy.crypto.crypto import encipher_bifid5, decipher_bifid5
>>> key = "gold bug"
>>> encipher_bifid5('meet me on friday', key)
'IIEILEHFSTSFXEE'
>>> encipher_bifid5('meet me on monday', key)
'IIEILHFSTSFQYE'
>>> decipher_bifid5(_, key)
'MEETMEONMONDAY'
```
sympy.crypto.crypto.encipher_bifid6(msg, key)
    Performs the Bifid cipher encryption on plaintext msg, and returns the ciphertext.
    This is the version of the Bifid cipher that uses the $6 \times 6$ Polybius square.

    Parameters
    msg
        Plaintext string (digits okay).

    key
        Short string for key (digits okay).
        If key is less than 36 characters long, the square will be filled with
        letters A through Z and digits 0 through 9.

    Returns
    ciphertext
        Ciphertext from Bifid cipher (all caps, no spaces).

    See also:
    decipher_bifid6 (page 2863), encipher_bifid (page 2858)

sympy.crypto.crypto.decipher_bifid6(msg, key)
    Performs the Bifid cipher decryption on ciphertext msg, and returns the plaintext.
    This is the version of the Bifid cipher that uses the $6 \times 6$ Polybius square.

    Parameters
    msg
        Ciphertext string (digits okay); converted to uppercase

    key
        Short string for key (digits okay).
        If key is less than 36 characters long, the square will be filled with
        letters A through Z and digits 0 through 9. All letters are converted
to uppercase.

    Returns
    plaintext
        Plaintext from Bifid cipher (all caps, no spaces).

Examples

```python
>>> from sympy.crypto.crypto import encipher_bifid6, decipher_bifid6
>>> key = "gold bug"
>>> encipher_bifid6('meet me on monday at 8am', key)
'KFKLIJHFSMMMTFRGPLL'
>>> decipher_bifid6(_, key)
'MEETMEONMONDAYAT8AM'
```
**SymPy Documentation, Release 1.12.1**

```python
sympy.crypto.crypto.bifid6_square(key=None)
```

6x6 Polybius square.

6x6 Polybius square. Produces the Polybius square for the 6 × 6 Bifid cipher. Assumes alphabet of symbols is “A”, …, “Z”, “0”, …, “9”.

**Examples**

```python
>>> from sympy.crypto.crypto import bifid6_square
>>> key = "gold bug"
>>> bifid6_square(key)
Matrix(
 [G, O, L, D, B, U],
 [A, C, E, F, H, I],
 [J, K, M, N, P, Q],
 [R, S, T, V, W, X],
 [Y, Z, 0, 1, 2, 3],
 [4, 5, 6, 7, 8, 9])
```

```python
sympy.crypto.crypto.rsa_public_key(*args, **kwargs)
```

Return the RSA public key pair, (n, e)

**Parameters**

- **args** : naturals

  If specified as p, q, e where p and q are distinct primes and e is a desired public exponent of the RSA, n = pq and e will be verified against the totient \( \phi(n) \) (Euler totient) or \( \lambda(n) \) (Carmichael totient) to be \( \gcd(e, \phi(n)) = 1 \) or \( \gcd(e, \lambda(n)) = 1 \).

  If specified as \( p_1, p_2, \ldots, p_n, e \) where \( p_1, p_2, \ldots, p_n \) are specified as primes, and e is specified as a desired public exponent of the RSA, it will be able to form a multi-prime RSA, which is a more generalized form of the popular 2-prime RSA.

  It can also be possible to form a single-prime RSA by specifying the argument as p, e, which can be considered a trivial case of a multi-prime RSA.

  Furthermore, it can be possible to form a multi-power RSA by specifying two or more pairs of the primes to be same. However, unlike the two-distinct prime RSA or multi-prime RSA, not every numbers in the complete residue system \( \mathbb{Z}_n \) will be decryptable since the mapping \( \mathbb{Z}_n \to \mathbb{Z}_n \) will not be bijective. (Only except for the trivial case when \( e = 1 \) or more generally,

\[
e \in \{1 + k\lambda(n) \mid k \in \mathbb{Z} \land k \geq 0\}
\]

when RSA reduces to the identity.) However, the RSA can still be decryptable for the numbers in the reduced residue system \( \mathbb{Z}_n^\times \), since the mapping \( \mathbb{Z}_n^\times \to \mathbb{Z}_n^\times \) can still be bijective.

If you pass a non-prime integer to the arguments \( p_1, p_2, \ldots, p_n \), the particular number will be prime-factored and it will become either a multi-prime RSA or a multi-power RSA in its canonical form, depending on whether the product equals its radical or not. \( p_1 p_2 \ldots p_n = \text{rad}(p_1 p_2 \ldots p_n) \)
**totient**: bool, optional

If 'Euler', it uses Euler's totient $\phi(n)$ which is `sympy.ntheory.factor_.totient()` (page 1546) in SymPy.

If 'Carmichael', it uses Carmichael's totient $\lambda(n)$ which is `sympy.ntheory.factor_.reduced_totient()` (page 1546) in SymPy.

Unlike private key generation, this is a trivial keyword for public key generation because $\gcd(e, \phi(n)) = 1 \iff \gcd(e, \lambda(n)) = 1$.

**index**: nonnegative integer, optional

Returns an arbitrary solution of a RSA public key at the index specified at 0, 1, 2, .... This parameter needs to be specified along with totient='Carmichael'.

Similarly to the non-uniqueness of a RSA private key as described in the index parameter documentation in `rsa_private_key()` (page 2866), RSA public key is also not unique and there is an infinite number of RSA public exponents which can behave in the same manner.

From any given RSA public exponent $e$, there are can be an another RSA public exponent $e + k\lambda(n)$ where $k$ is an integer; $\lambda$ is a Carmichael's totient function.

However, considering only the positive cases, there can be a principal solution of a RSA public exponent $e_0$ in $0 < e_0 < \lambda(n)$, and all the other solutions can be canonicalized in a form of $e_0 + k\lambda(n)$.

**index** specifies the $k$ notation to yield any possible value an RSA public key can have.

An example of computing any arbitrary RSA public key:

```python
>>> from sympy.crypto.crypto import rsa_public_key
>>> rsa_public_key(61, 53, 17, totient='Carmichael',
 index=0)
(3233, 17)
>>> rsa_public_key(61, 53, 17, totient='Carmichael',
 index=1)
(3233, 797)
>>> rsa_public_key(61, 53, 17, totient='Carmichael',
 index=2)
(3233, 1577)
```

**multipower**: bool, optional

Any pair of non-distinct primes found in the RSA specification will restrict the domain of the cryptosystem, as noted in the explanation of the parameter **args**.

SymPy RSA key generator may give a warning before dispatching it as a multi-power RSA, however, you can disable the warning if you pass True to this keyword.

**Returns**

*(n, e)* : int, int

---

**5.8. Topics** 2865
$n$ is a product of any arbitrary number of primes given as the argument.

$e$ is relatively prime (coprime) to the Euler totient $\phi(n)$.

False

Returned if less than two arguments are given, or $e$ is not relatively prime to the modulus.

Examples

```python
>>> from sympy.crypto.crypto import rsa_public_key
A public key of a two-prime RSA:

```3
>>> p, q, e = 3, 5, 7
>>> rsa_public_key(p, q, e)
(15, 7)
>>> rsa_public_key(p, q, 30)
False
```

A public key of a multiprime RSA:

```python
>>> primes = [2, 3, 5, 7, 11, 13]
>>> e = 7
>>> args = primes + [e]
>>> rsa_public_key(*args)
(30030, 7)
```

Notes

Although the RSA can be generalized over any modulus n, using two large primes had became the most popular specification because a product of two large primes is usually the hardest to factor relatively to the digits of n can have.

However, it may need further understanding of the time complexities of each prime-factoring algorithms to verify the claim.

See also:

rsa_private_key (page 2866), *encipher_rsa* (page 2868), *decipher_rsa* (page 2869)

References

[R153], [R154], [R155], [R156]
totient : bool, optional

If 'Euler', it uses Euler’s totient convention \(\phi(n) \) which is `sympy.ntheory.factor_.totient()` (page 1546) in SymPy.

If 'Carmichael', it uses Carmichael’s totient convention \(\lambda(n) \) which is `sympy.ntheory.factor_.reduced_totient()` (page 1546) in SymPy.

There can be some output differences for private key generation as examples below.

Example using Euler’s totient:

```python
from sympy.crypto.crypto import rsa_private_key
rsa_private_key(61, 53, 17, totient='Euler')
```

Example using Carmichael’s totient:

```python
from sympy.crypto.crypto import rsa_private_key
rsa_private_key(61, 53, 17, totient='Carmichael')
```

index : nonnegative integer, optional

Returns an arbitrary solution of a RSA private key at the index specified at 0, 1, 2, This parameter needs to be specified along with totient='Carmichael'.

RSA private exponent is a non-unique solution of \(ed \mod \lambda(n) = 1 \) and it is possible in any form of \(d + k\lambda(n) \), where \(d \) is an another already-computed private exponent, and \(\lambda \) is a Carmichael’s totient function, and \(k \) is any integer.

However, considering only the positive cases, there can be a principal solution of a RSA private exponent \(d_0 \) in \(0 < d_0 < \lambda(n) \), and all the other solutions can be canonicalized in a form of \(d_0 + k\lambda(n) \).

index specifies the \(k \) notation to yield any possible value an RSA private key can have.

An example of computing any arbitrary RSA private key:

```python
from sympy.crypto.crypto import rsa_private_key
rsa_private_key(61, 53, 17, totient='Carmichael',
                index=0)
rsa_private_key(61, 53, 17, totient='Carmichael',
                index=1)
rsa_private_key(61, 53, 17, totient='Carmichael',
                index=2)
```

multipower : bool, optional

The keyword is identical to the multipower in `rsa_public_key()` (page 2864).
Returns

\((n, d) \) : int, int

\(n \) is a product of any arbitrary number of primes given as the argument.

\(d \) is the inverse of \(e \) (mod \(\phi(n) \)) where \(e \) is the exponent given, and \(\phi \) is a Euler totient.

False

Returned if less than two arguments are given, or \(e \) is not relatively prime to the totient of the modulus.

Examples

```python
>>> from sympy.crypto.crypto import rsa_private_key
```

A private key of a two-prime RSA:

```python
>>> p, q, e = 3, 5, 7
>>> rsa_private_key(p, q, e)
(15, 7)
```

```python
>>> rsa_private_key(p, q, 30)
False
```

A private key of a multiprime RSA:

```python
>>> primes = [2, 3, 5, 7, 11, 13]
>>> e = 7
>>> args = primes + [e]
>>> rsa_private_key(*args)
(30030, 823)
```

See also:

- `rsa_public_key` (page 2864), `encipher_rsa` (page 2868), `decipher_rsa` (page 2869)

References

[R157], [R158], [R159], [R160]

```python
sympy.crypto.crypto.encipher_rsa(i, key, factors=None)
```

Encrypt the plaintext with RSA.

Parameters

- `i` : integer

The plaintext to be encrypted for.

- `key` : (n, e) where n, e are integers

 \(n \) is the modulus of the key and \(e \) is the exponent of the key. The encryption is computed by \(i^e \mod n \).

 The key can either be a public key or a private key, however, the message encrypted by a public key can only be decrypted by a private key, and vice versa, as RSA is an asymmetric cryptography system.
factors : list of coprime integers

This is identical to the keyword factors in \texttt{decipher_rsa()} (page 2869).

Notes

Some specifications may make the RSA not cryptographically meaningful.
For example, 0, 1 will remain always same after taking any number of exponentiation, thus, should be avoided.
Furthermore, if $i^e < n$, i may easily be figured out by taking e th root.
And also, specifying the exponent as 1 or in more generalized form as $1 + k\lambda(n)$ where k is an nonnegative integer, λ is a carmichael totient, the RSA becomes an identity mapping.

Examples

\begin{verbatim}
>>> from sympy.crypto.crypto import encipher_rsa
>>> from sympy.crypto.crypto import rsa_public_key, rsa_private_key

Public Key Encryption:

>>> p, q, e = 3, 5, 7
>>> puk = rsa_public_key(p, q, e)
>>> msg = 12
>>> encipher_rsa(msg, puk)
3

Private Key Encryption:

>>> p, q, e = 3, 5, 7
>>> prk = rsa_private_key(p, q, e)
>>> msg = 12
>>> encipher_rsa(msg, prk)
3

Encryption using chinese remainder theorem:

>>> encipher_rsa(msg, prk, factors=[p, q])
3
\end{verbatim}

\texttt{sympy.crypto.crypto.decipher_rsa(i, key, factors=None)}

Decrypt the ciphertext with RSA.

Parameters

\begin{itemize}
 \item \texttt{i} : integer
 The ciphertext to be decrypted for.
 \item \texttt{key} : (n, d) where n, d are integers
 n is the modulus of the key and d is the exponent of the key. The decryption is computed by $i^d \mod n$.
\end{itemize}
The key can either be a public key or a private key, however, the message encrypted by a public key can only be decrypted by a private key, and vice versa, as RSA is an asymmetric cryptography system.

factors: list of coprime integers

As the modulus \(n \) created from RSA key generation is composed of arbitrary prime factors \(n = p_1^{k_1}p_2^{k_2} \ldots p_n^{k_n} \) where \(p_1, p_2, \ldots, p_n \) are distinct primes and \(k_1, k_2, \ldots, k_n \) are positive integers, Chinese remainder theorem can be used to compute \(i^d \mod n \) from the fragmented modulo operations like

\[
i^d \mod p_1^{k_1}, i^d \mod p_2^{k_2}, \ldots, i^d \mod p_n^{k_n}
\]

or like

\[
i^d \mod p_1^{k_1}p_2^{k_2}, i^d \mod p_3^{k_3}, \ldots, i^d \mod p_n^{k_n}
\]

as long as every moduli does not share any common divisor each other.

The raw primes used in generating the RSA key pair can be a good option.

Note that the speed advantage of using this is only viable for very large cases (Like 2048-bit RSA keys) since the overhead of using pure Python implementation of `sympy.ntheory.modular.crt()` (page 1554) may overcompensate the theoretical speed advantage.

Notes

See the Notes section in the documentation of `encipher_rsa()` (page 2868)

Examples

```python
>>> from sympy.crypto.crypto import decipher_rsa, encipher_rsa
>>> from sympy.crypto.crypto import rsa_public_key, rsa_private_key

Public Key Encryption and Decryption:

```python
>>> p, q, e = 3, 5, 7
>>> prk = rsa_private_key(p, q, e)
>>> puk = rsa_public_key(p, q, e)
>>> msg = 12
>>> new_msg = encipher_rsa(msg, prk)
>>> new_msg
3
>>> decipher_rsa(new_msg, puk)
12
```

Private Key Encryption and Decryption:
```python
>>> p, q, e = 3, 5, 7
>>> prk = rsa_private_key(p, q, e)
>>> puk = rsa_public_key(p, q, e)
>>> msg = 12
>>> new_msg = encipher_rsa(msg, puk)
>>> new_msg
3
>>> decipher_rsa(new_msg, prk)
12
```

Decryption using chinese remainder theorem:
```python
>>> decipher_rsa(new_msg, prk, factors=[p, q])
12
```

See also:

- `encipher_rsa` (page 2868)

`sympy.crypto.crypto.kid_rsa_public_key(a, b, A, B)`

Kid RSA is a version of RSA useful to teach grade school children since it does not involve exponentiation.

**Explanation**

Alice wants to talk to Bob. Bob generates keys as follows. Key generation:

- Select positive integers \(a, b, A, B\) at random.
- Compute \(M = ab - 1\), \(e = AM + a\), \(d = BM + b\), \(n = (ed - 1)/M\).
- The **public key** is \((n, e)\). Bob sends these to Alice.
- The **private key** is \((n, d)\), which Bob keeps secret.

Encryption: If \(p\) is the plaintext message then the ciphertext is \(c = pe \pmod{n}\).

Decryption: If \(c\) is the ciphertext message then the plaintext is \(p = cd \pmod{n}\).

**Examples**

```python
>>> from sympy.crypto.crypto import kid_rsa_public_key
>>> a, b, A, B = 3, 4, 5, 6
>>> kid_rsa_public_key(a, b, A, B)
(369, 58)
```

`sympy.crypto.crypto.kid_rsa_private_key(a, b, A, B)`

Compute \(M = ab - 1\), \(e = AM + a\), \(d = BM + b\), \(n = (ed - 1)/M\). The **private key** is \(d\), which Bob keeps secret.
Examples

```python
>>> from sympy.crypto.crypto import kid_rsa_private_key
>>> a, b, A, B = 3, 4, 5, 6
>>> kid_rsa_private_key(a, b, A, B)
(369, 70)
```

sympy.crypto.crypto.encipher_kid_rsa(msg, key)

Here msg is the plaintext and key is the public key.

Examples

```python
>>> from sympy.crypto.crypto import (
... encipher_kid_rsa, kid_rsa_public_key)
>>> msg = 200
>>> a, b, A, B = 3, 4, 5, 6
>>> key = kid_rsa_public_key(a, b, A, B)
>>> encipher_kid_rsa(msg, key)
161
```

sympy.crypto.crypto.decipher_kid_rsa(msg, key)

Here msg is the plaintext and key is the private key.

Examples

```python
>>> from sympy.crypto.crypto import (
... kid_rsa_public_key, kid_rsa_private_key,
... decipher_kid_rsa, encipher_kid_rsa)
>>> a, b, A, B = 3, 4, 5, 6
>>> d = kid_rsa_private_key(a, b, A, B)
>>> msg = 200
>>> pub = kid_rsa_public_key(a, b, A, B)
>>> pri = kid_rsa_private_key(a, b, A, B)
>>> ct = encipher_kid_rsa(msg, pub)
>>> decipher_kid_rsa(ct, pri)
200
```

sympy.crypto.crypto.encode_morse(msg, sep='|', mapping=None)

Encodes a plaintext into popular Morse Code with letters separated by sep and words by a double sep.
Examples

```python
>>> from sympy.crypto.crypto import encode_morse
>>> msg = 'ATTACK RIGHT FLANK'
>>> encode_morse(msg)
'.-|-|-|.-|-.-.|-.-||.-.|..|--.|....|-||..-.|.-..|.-|-.|-.-'
```

References

[R161]

sympy.crypto.crypto.decode_morse(msg, sep='|', mapping=None)

Decodes a Morse Code with letters separated by sep (default is ‘|’) and words by wordsep (default is ‘|’|) into plaintext.

Examples

```python
>>> from sympy.crypto.crypto import decode_morse
>>> mc = '--|---|...-|.||.|.-|...|-
>>> decode_morse(mc)
'MOVE EAST'
```

References

[R162]

sympy.crypto.crypto.lfsr_sequence(key, fill, n)

This function creates an LFSR sequence.

Parameters

- `key`: list
  A list of finite field elements, \([c_0, c_1, \ldots, c_k]\).
- `fill`: list
  The list of the initial terms of the LFSR sequence, \([x_0, x_1, \ldots, x_k]\).
- `n`
  Number of terms of the sequence that the function returns.

Returns

L
The LFSR sequence defined by \(x_{n+1} = c_k x_n + \ldots + c_0 x_{n-k}\), for \(n \leq k\).
Notes

S. Golomb [G162] gives a list of three statistical properties a sequence of numbers \( a = \{a_n\}_{n=1}^{\infty}, a_n \in \{0,1\} \), should display to be considered “random”. Define the autocorrelation of \( a \) to be

\[
C(k) = C(k,a) = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} (-1)^{a_n + a_{n+k}}.
\]

In the case where \( a \) is periodic with period \( P \) then this reduces to

\[
C(k) = \frac{1}{P} \sum_{n=1}^{P} (-1)^{a_n + a_{n+k}}.
\]

Assume \( a \) is periodic with period \( P \).

- balance:

\[
\left| \sum_{n=1}^{P} (-1)^{a_n} \right| \leq 1.
\]

- low autocorrelation:

\[
C(k) = \begin{cases} 
1, & k = 0, \\
\epsilon, & k \neq 0.
\end{cases}
\]

(For sequences satisfying these first two properties, it is known that \( \epsilon = -1/P \) must hold.)

- proportional runs property: In each period, half the runs have length 1, one-fourth have length 2, etc. Moreover, there are as many runs of 1’s as there are of 0’s.

Examples

```python
>>> from sympy.crypto.crypto import lfsr_sequence
>>> from sympy.polys.domains import FF
>>> F = FF(2)
>>> fill = [F(1), F(1), F(0), F(1)]
>>> key = [F(1), F(0), F(0), F(1)]
>>> lfsr_sequence(key, fill, 10)
[1 mod 2, 1 mod 2, 0 mod 2, 1 mod 2, 0 mod 2,
1 mod 2, 1 mod 2, 0 mod 2, 0 mod 2, 1 mod 2]
```

References

[G162]

sympy.crypto.crypto.lfsr_autocorrelation\((L, P, k)\)

This function computes the LFSR autocorrelation function.
Parameters

L
A periodic sequence of elements of \( GF(2) \). L must have length larger than P.

P
The period of L.

k : int
An integer \( k (0 < k < P) \).

Returns

autocorrelation
The k-th value of the autocorrelation of the LFSR L.

Examples

```python
>>> from sympy.crypto.crypto import ...
 lfsr_sequence, lfsr_autocorrelation)
>>> from sympy.polys.domains import FF
>>> F = FF(2)
>>> fill = [F(1), F(1), F(0), F(1)]
>>> key = [F(1), F(0), F(0), F(1)]
>>> s = lfsr_sequence(key, fill, 20)
>>> lfsr_autocorrelation(s, 15, 7)
-1/15
>>> lfsr_autocorrelation(s, 15, 0)
1
```

`sympy.crypto.crypto.lfsr_connection_polynomial(s)`
This function computes the LFSR connection polynomial.

Parameters

s
A sequence of elements of even length, with entries in a finite field.

Returns

C(x)
The connection polynomial of a minimal LFSR yielding s.

This implements the algorithm in section 3 of J. L. Massey’s article [M163].
Examples

```python
>>> from sympy.crypto.crypto import ...
 lfsr_sequence, lfsr_connection_polynomial
>>> from sympy.polys.domains import FF
>>> F = FF(2)
>>> fill = [F(1), F(1), F(0), F(1)]
>>> key = [F(1), F(0), F(0), F(1)]
>>> s = lfsr_sequence(key, fill, 20)
>>> lfsr_connection_polynomial(s)
\texttt{x}^4 + \texttt{x} + 1
>>> fill = [F(1), F(0), F(0), F(1)]
>>> key = [F(1), F(1), F(0), F(1)]
>>> s = lfsr_sequence(key, fill, 20)
>>> lfsr_connection_polynomial(s)
\texttt{x}^3 + 1
>>> fill = [F(1), F(0), F(1)]
>>> key = [F(1), F(1), F(0)]
>>> s = lfsr_sequence(key, fill, 20)
>>> lfsr_connection_polynomial(s)
\texttt{x}^3 + \texttt{x}^2 + 1
>>> fill = [F(1), F(0), F(1)]
>>> key = [F(1), F(0), F(1)]
>>> s = lfsr_sequence(key, fill, 20)
>>> lfsr_connection_polynomial(s)
\texttt{x}^3 + \texttt{x} + 1
```

References

[M163]  
sympy.crypto.crypto.elgamal_public_key(key)
Return three number tuple as public key.

**Parameters**  
key : (p, r, e)
Tuple generated by elgamal_private_key.

**Returns**  
tuple : (p, r, e)  
\[ e = r \ast d \mod p \]  
\( d \) is a random number in private key.
Examples

```python
>>> from sympy.crypto.crypto import elgamal_public_key
>>> elgamal_public_key((1031, 14, 636))
(1031, 14, 212)
```

sympy.crypto.crypto.elgamal_private_key(*digit=10, seed=None*)

Return three number tuple as private key.

**Parameters**

- **digit**: int
  Minimum number of binary digits for key.

**Returns**

- **tuple**: (p, r, d)
  - p = prime number.
  - r = primitive root.
  - d = random number.

**Explanation**

Elgamal encryption is based on the mathematical problem called the Discrete Logarithm Problem (DLP). For example,

\[ a^b \equiv c \pmod{p} \]

In general, if \(a\) and \(b\) are known, \(ct\) is easily calculated. If \(b\) is unknown, it is hard to use \(a\) and \(ct\) to get \(b\).

**Notes**

For testing purposes, the seed parameter may be set to control the output of this routine. See sympy.core.random._randrange.

**Examples**

```python
>>> from sympy.crypto.crypto import elgamal_private_key
>>> from sympy.ntheory import is_primitive_root, isprime
>>> a, b, _ = elgamal_private_key()
>>> isprime(a)
True
>>> is_primitive_root(b, a)
True
```

sympy.crypto.crypto.encipher_elgamal(*i, key, seed=None*)

Encrypt message with public key.

**Parameters**

- **msg**: int of encoded message.
key

Public key.

Returns
tuple : (c1, c2)

Encipher into two number.

Explanation

i is a plaintext message expressed as an integer. key is public key (p, r, e). In order to encrypt a message, a random number a in range(2, p) is generated and the encrypted message is returned as c1 and c2 where:

\[ c_1 \equiv r^a \pmod{p} \]

\[ c_2 \equiv me^a \pmod{p} \]

Notes

For testing purposes, the seed parameter may be set to control the output of this routine. See sympy.core.random._randrange.

Examples

```python
>>> from sympy.crypto.crypto import encipher_elgamal, elgamal_private_key, elgamal_public_key
>>> pri = elgamal_private_key(5, seed=[3]); pri
(37, 2, 3)
>>> pub = elgamal_public_key(pri); pub
(37, 2, 8)
>>> msg = 36
>>> encipher_elgamal(msg, pub, seed=[3])
(8, 6)
```

sympy.crypto.crypto.decipher_elgamal(msg, key)

Decrypt message with private key.

msg = (c1, c2)

key = (p, r, d)

According to extended Eucliden theorem, \( uc_1^d + pm = 1 \)

\[ u \equiv 1/c_1^d \pmod{p} \]

\[ uc_2 \equiv \frac{1}{c_1}c_2 \equiv \frac{1}{r^a}c_2 \pmod{p} \]

\[ \frac{1}{r^a}me^a \equiv \frac{1}{r^a}mr^da \equiv m \pmod{p} \]
Examples

```python
>>> from sympy.crypto.crypto import decipher_elgamal
>>> from sympy.crypto.crypto import encipher_elgamal
>>> from sympy.crypto.crypto import elgamal_private_key
>>> from sympy.crypto.crypto import elgamal_public_key

>>> pri = elgamal_private_key(5, seed=[3])
>>> pub = elgamal_public_key(pri); pub
(37, 2, 8)
>>> msg = 17
>>> decipher_elgamal(encipher_elgamal(msg, pub), pri) == msg
True
```

**sympy.crypto.crypto.dh_public_key(key)**

Return three number tuple as public key.

This is the tuple that Alice sends to Bob.

**Parameters**

- **key**: (p, g, a)

  A tuple generated by dh_private_key.

**Returns**

- **tuple**: int, int, int

  A tuple of \((p, g, g^a \mod p)\) with \(p, g\) and \(a\) given as parameters.

**Examples**

```python
>>> from sympy.crypto.crypto import dh_private_key, dh_public_key
>>> p, g, a = dh_private_key();
>>> _p, _g, x = dh_public_key((p, g, a))
>>> p == _p and g == _g
True
>>> x == pow(g, a, p)
True
```

**sympy.crypto.crypto.dh_private_key(digit=10, seed=None)**

Return three integer tuple as private key.

**Parameters**

- **digit**: int

  Minimum number of binary digits required in key.

**Returns**

- **tuple**: (p, g, a)

  - \(p\) = prime number.
  - \(g\) = primitive root of \(p\).
  - \(a\) = random number from 2 through \(p - 1\).
**Explanation**

Diffie-Hellman key exchange is based on the mathematical problem called the Discrete Logarithm Problem (see ElGamal).

Diffie-Hellman key exchange is divided into the following steps:

- Alice and Bob agree on a base that consist of a prime $p$ and a primitive root of $p$ called $g$
- Alice choses a number $a$ and Bob choses a number $b$ where $a$ and $b$ are random numbers in range $[2, p)$. These are their private keys.
- Alice then publicly sends Bob $g^a \pmod{p}$ while Bob sends Alice $g^b \pmod{p}$
- They both raise the received value to their secretly chosen number ($a$ or $b$) and now have both as their shared key $g^{ab} \pmod{p}$

**Notes**

For testing purposes, the seed parameter may be set to control the output of this routine. See sympy.core.random._randrange.

**Examples**

```python
>>> from sympy.crypto.crypto import dh_private_key
>>> from sympy.ntheory import isprime, isPrimitive_root
>>> p, g, _ = dh_private_key()
>>> isprime(p)
True
>>> isPrimitive_root(g, p)
True
>>> p, g, _ = dh_private_key(5)
>>> isprime(p)
True
>>> isPrimitive_root(g, p)
True
```

sympy.crypto.crypto.dh_shared_key(key, b)

Return an integer that is the shared key.

This is what Bob and Alice can both calculate using the public keys they received from each other and their private keys.

**Parameters**

- key : (p, g, x)
  
  Tuple $(p, g, x)$ generated by dh_public_key.

- b
  
  Random number in the range of 2 to $p - 1$ (Chosen by second key exchange member (Bob)).

**Returns**

- int
A shared key.

Examples

```python
>>> from sympy.crypto.crypto import ...
 dh_private_key, dh_public_key, dh_shared_key)
>>> prk = dh_private_key();
>>> p, g, x = dh_public_key(prk);
>>> sk = dh_shared_key((p, g, x), 1000)
>>> sk == pow(x, 1000, p)
True
```

`sympy.crypto.crypto.gm_public_key(p, q, a=None, seed=None)`
Compute public keys for p and q. Note that in Goldwasser-Micali Encryption, public keys are randomly selected.

**Parameters**
- `p, q, a`: int, int, int
  Initialization variables.

**Returns**
- `tuple`: (a, N)
  - `a` is the input `a` if it is not `None` otherwise some random integer coprime to `p` and `q`.
  - `N` is the product of `p` and `q`.

`sympy.crypto.crypto.gm_private_key(p, q, a=None)`
Check if `p` and `q` can be used as private keys for the Goldwasser-Micali encryption. The method works roughly as follows.

**Parameters**
- `p, q, a`
  Initialization variables.

**Returns**
- `tuple`: (p, q)
  The input value `p` and `q`.

**Raises**
- `ValueError`
  If `p` and `q` are not distinct odd primes.
**Explanation**

1. Pick two large primes $p$ and $q$.
2. Call their product $N$.
3. Given a message as an integer $i$, write $i$ in its bit representation $b_0, \ldots, b_n$.
4. For each $k$,
   
   ```python
 if b_k = 0:
 let a_k be a random square (quadratic residue) modulo pq such that
 jacobi_symbol(a, p*q) = 1
 if b_k = 1:
 let a_k be a random non-square (non-quadratic residue) modulo pq such that
 jacobi_symbol(a, p*q) = 1
   ```

   returns $[a_1, a_2, \ldots]$

   $b_k$ can be recovered by checking whether or not $a_k$ is a residue. And from the $b_k$'s, the message can be reconstructed.

   The idea is that, while $\text{jacobi_symbol}(a, p*q)$ can be easily computed (and when it is equal to $-1$ will tell you that $a$ is not a square mod $pq$), quadratic residuosity modulo a composite number is hard to compute without knowing its factorization.

   Moreover, approximately half the numbers coprime to $pq$ have $\text{jacobi_symbol}()$ (page 1567) equal to $1$. And among those, approximately half are residues and approximately half are not. This maximizes the entropy of the code.

**sympy.crypto.crypto.encipher_gm(i, key, seed=None)**

Encrypt integer ‘$i$’ using public_key ‘key’ Note that gm uses random encryption.

**Parameters**

- $i$: int
  The message to encrypt.

- $key$: (a, N)
  The public key.

**Returns**

- list: list of int
  The randomized encrypted message.

**sympy.crypto.crypto.decipher_gm(message, key)**

Decrypt message ‘message’ using public_key ‘key’.

**Parameters**

- $message$: list of int
  The randomized encrypted message.

- $key$: (p, q)
  The private key.

**Returns**

- int
  The encrypted message.
**sympy.cryptos.cipher_railfence**(*message, rails*)

Performs Railfence Encryption on plaintext and returns ciphertext

**Parameters**
- **message**: string, the message to encrypt.
- **rails**: int, the number of rails.

**Returns**
The Encrypted string message.

**Examples**

```python
>>> from sympy.crypto.crypto import cipher_railfence
>>> message = "hello world"
>>> cipher_railfence(message, 3)
'horel ollwd'
```

**References**

[R165]

**sympy.cryptos.decipher_railfence**(*ciphertext, rails*)

Decrypt the message using the given rails

**Parameters**
- **message**: string, the message to encrypt.
- **rails**: int, the number of rails.

**Returns**
The Decrypted string message.

**Examples**

```python
>>> from sympy.crypto.crypto import decipher_railfence
>>> decipher_railfence("horel ollwd", 3)
'hello world'
```

**Differential Geometry**

**Introduction**

**Base Class Reference**

```python
class sympy.diffgeom.Manifold(name, dim, **kwargs)
A mathematical manifold.
```

**Parameters**
- **name**: str
The name of the manifold.

```python
dim : int
```

The dimension of the manifold.

**Explanation**

A manifold is a topological space that locally resembles Euclidean space near each point [1]. This class does not provide any means to study the topological characteristics of the manifold that it represents, though.

**Examples**

```python
>>> from sympy.diffgeom import Manifold
>>> m = Manifold('M', 2)
>>> m
M
>>> m.dim
2
```

**References**

[R166]

```python
class sympy.diffgeom.Patch(name, manifold, **kwargs)
```

A patch on a manifold.

**Parameters**

- `name : str`
  
The name of the patch.

- `manifold : Manifold`
  
The manifold on which the patch is defined.

**Explanation**

Coordinate patch, or patch in short, is a simply-connected open set around a point in the manifold [1]. On a manifold one can have many patches that do not always include the whole manifold. On these patches coordinate charts can be defined that permit the parameterization of any point on the patch in terms of a tuple of real numbers (the coordinates).

This class does not provide any means to study the topological characteristics of the patch that it represents.
Examples

```python
>>> from sympy.diffgeom import Manifold, Patch
>>> m = Manifold('M', 2)
>>> p = Patch('P', m)
>>> p
P
>>> p.dim
2
```

References

[R167]

```python
class sympy.diffgeom.CoordSystem(name, patch, symbols=None, relations={}, **kwargs)
```

A coordinate system defined on the patch.

Parameters

- **name**: str
  - The name of the coordinate system.

- **patch**: Patch
  - The patch where the coordinate system is defined.

- **symbols**: list of Symbols, optional
  - Defines the names and assumptions of coordinate symbols.

- **relations**: dict, optional
  - Key is a tuple of two strings, who are the names of the systems where the coordinates transform from and transform to. Value is a tuple of the symbols before transformation and a tuple of the expressions after transformation.

Explanation

Coordinate system is a system that uses one or more coordinates to uniquely determine the position of the points or other geometric elements on a manifold [1].

By passing Symbols to `symbols` parameter, user can define the name and assumptions of coordinate symbols of the coordinate system. If not passed, these symbols are generated automatically and are assumed to be real valued.

By passing `relations` parameter, user can define the transform relations of coordinate systems. Inverse transformation and indirect transformation can be found automatically. If this parameter is not passed, coordinate transformation cannot be done.
Examples

We define two-dimensional Cartesian coordinate system and polar coordinate system.

```python
>>> from sympy import symbols, pi, sqrt, atan2, cos, sin
>>> from sympy.diffgeom import Manifold, Patch, CoordSystem
>>> m = Manifold('M', 2)
>>> p = Patch('P', m)
>>> x, y = symbols('x y', real=True)
>>> r, theta = symbols('r theta', nonnegative=True)
>>> relation_dict = {
... ('Car2D', 'Pol'): [(x, y), (sqrt(x**2 + y**2), atan2(y, x))],
... ('Pol', 'Car2D'): [(r, theta), (r*cos(theta), r*sin(theta))]
... }
>>> Car2D = CoordSystem('Car2D', p, (x, y), relation_dict)
>>> Pol = CoordSystem('Pol', p, (r, theta), relation_dict)
```

symbols property returns CoordinateSymbol instances. These symbols are not same with the symbols used to construct the coordinate system.

```python
>>> Car2D
Car2D
>>> Car2D.dim
2
>>> Car2D.symbols
(x, y)
>>> __[0].func
<class 'sympy.diffgeom.diffgeom.CoordinateSymbol'>
```

transformation() method returns the transformation function from one coordinate system to another. transform() method returns the transformed coordinates.

```python
>>> Car2D.transformation(Pol)
Lambda((x, y), Matrix([[sqrt(x**2 + y**2)], [atan2(y, x)]]))
>>> Car2D.transform(Pol)
Matrix([[sqrt(x**2 + y**2)], [atan2(y, x)]])
>>> Car2D.transform(Pol, [1, 2])
Matrix([[sqrt(5)], [atan(2)]])
```

jacobian() method returns the Jacobian matrix of coordinate transformation between two systems. jacobian_determinant() method returns the Jacobian determinant of coordinate transformation between two systems.

```python
>>> Pol.jacobian(Car2D)
Matrix([[cos(theta), -r*sin(theta)], [sin(theta), r*cos(theta)]])
>>> Pol.jacobian(Car2D, [1, pi/2])
(continues on next page)
```
Matrix([[0, -1],
         [1,  0]])
>>> Car2D.jacobian_determinant(Pol)
1/sqrt(x**2 + y**2)
>>> Car2D.jacobian_determinant(Pol, [1,0])
1

References

[R168]

base_oneform(coord_index)
Return a basis 1-form field. The basis one-form field for this coordinate system. It
is also an operator on vector fields.

base_oneforms()
Returns a list of all base oneforms. For more details see the base_oneform method
of this class.

base_scalar(coord_index)
Return BaseScalarField that takes a point and returns one of the coordinates.

base_scalars()
Returns a list of all coordinate functions. For more details see the base_scalar
method of this class.

base_vector(coord_index)
Return a basis vector field. The basis vector field for this coordinate system. It is
also an operator on scalar fields.

base_vectors()
Returns a list of all base vectors. For more details see the base_vector method of
this class.

coord_function(coord_index)
Return BaseScalarField that takes a point and returns one of the coordinates.

coord_functions()
Returns a list of all coordinate functions. For more details see the base_scalar
method of this class.

coord_tuple_transform_to(to_sys, coords)
Transform coords to coord system to_sys.

jacobian(sys, coordinates=None)
Return the jacobian matrix of a transformation on given coordinates. If coordinates
are not given, coordinate symbols of self are used.

Parameters
- sys : CoordSystem
- coordinates : Any iterable, optional.

Returns
- sympy.ImmutableDenseMatrix
Examples

```python
>>> from sympy.diffgeom.rn import R2_r, R2_p
>>> R2_p.jacobian(R2_r)
Matrix([[cos(theta), -rho*sin(theta)],[sin(theta), rho*cos(theta)]])
>>> R2_p.jacobian(R2_r, [1, 0])
Matrix([[1, 0],[0, 1]])
```

`jacobian_determinant(sys, coordinates=None)`

Return the jacobian determinant of a transformation on given coordinates. If coordinates are not given, coordinate symbols of `self` are used.

**Parameters**
- `sys`: CoordSystem
- `coordinates`: Any iterable, optional.

**Returns**
sympy.Expr

**Examples**

```python
>>> from sympy.diffgeom.rn import R2_r, R2_p
>>> R2_r.jacobian_determinant(R2_p)
1/sqrt(x**2 + y**2)
>>> R2_r.jacobian_determinant(R2_p, [1, 0])
1
```

`jacobian_matrix(sys, coordinates=None)`

Return the jacobian matrix of a transformation on given coordinates. If coordinates are not given, coordinate symbols of `self` are used.

**Parameters**
- `sys`: CoordSystem
- `coordinates`: Any iterable, optional.

**Returns**
sympy.ImmutableDenseMatrix

**Examples**

```python
>>> from sympy.diffgeom.rn import R2_r, R2_p
>>> R2_p.jacobian(R2_r)
Matrix([[cos(theta), -rho*sin(theta)],[sin(theta), rho*cos(theta)]])
>>> R2_p.jacobian(R2_r, [1, 0])
```

(continues on next page)
Matrix([[1, 0], [0, 1]])

point(coords)
Create a Point with coordinates given in this coord system.

point_to_coords(point)
Calculate the coordinates of a point in this coord system.

transform(sys, coordinates=None)
Return the result of coordinate transformation from self to sys. If coordinates are not given, coordinate symbols of self are used.

Parameters
sys : CoordSystem
coordinates : Any iterable, optional.

Returns
sympy.ImmutableDenseMatrix containing CoordinateSymbol

Examples

```python
>>> from sympy.diffgeom.rn import R2_r, R2_p
>>> R2_r.transform(R2_p)
Matrix([[sqrt(x**2 + y**2)], [atan2(y, x)]])
>>> R2_r.transform(R2_p, [0, 1])
Matrix([[1], [pi/2]])
```

transformation(sys)
Return coordinate transformation function from self to sys.

Parameters
sys : CoordSystem

Returns
sympy.Lambda

Examples

```python
>>> from sympy.diffgeom.rn import R2_r, R2_p
>>> R2_r.transformation(R2_p)
Lambda((x, y), Matrix([[sqrt(x**2 + y**2)], [atan2(y, x)]]))
```
**class sympy.diffgeom.CoordinateSymbol**

A symbol which denotes an abstract value of i-th coordinate of the coordinate system with given context.

- **Parameters**
  - `coord_sys`: CoordSystem
  - `index`: integer

**Explanation**

Each coordinate in coordinate system are represented by unique symbol, such as x, y, z in Cartesian coordinate system.

You may not construct this class directly. Instead, use `symbols` method of CoordSystem.

**Examples**

```python
>>> from sympy import symbols, Lambda, Matrix, sqrt, atan2, cos, sin
>>> from sympy.diffgeom import Manifold, Patch, CoordSystem
>>> m = Manifold('M', 2)
>>> p = Patch('P', m)
>>> x, y = symbols('x y', real=True)
>>> r, theta = symbols('r theta', nonnegative=True)
>>> relation_dict = {
... ('Car2D', 'Pol'): Lambda((x, y), Matrix([sqrt(x**2 + y**2), atan2(y, -x)])),
... ('Pol', 'Car2D'): Lambda((r, theta), Matrix([r*cos(theta), -r*sin(theta)]))
... }
>>> Car2D = CoordSystem('Car2D', p, [x, y], relation_dict)
>>> Pol = CoordSystem('Pol', p, [r, theta], relation_dict)
>>> x, y = Car2D.symbols

CoordinateSymbol contains its coordinate symbol and index.

```python
>>> x.name
'x'
>>> x.coord_sys == Car2D
True
>>> x.index
0
>>> x.is_real
True
```

You can transform CoordinateSymbol into other coordinate system using `rewrite()` method.

```python
>>> x.rewrite(Pol)
r*cos(theta)
```

```python
>>> sqrt(x**2 + y**2).rewrite(Pol).simplify()
r
```
class sympy.diffgeom.Point(coord_sys, coords, **kwargs)
Point defined in a coordinate system.

Parameters
 coord_sys : CoordSystem
 coords : list
 The coordinates of the point.

Explanation
Mathematically, point is defined in the manifold and does not have any coordinates by itself. Coordinate system is what imbues the coordinates to the point by coordinate chart. However, due to the difficulty of realizing such logic, you must supply a coordinate system and coordinates to define a Point here.

The usage of this object after its definition is independent of the coordinate system that was used in order to define it, however due to limitations in the simplification routines you can arrive at complicated expressions if you use inappropriate coordinate systems.

Examples

```python
>>> from sympy import pi
>>> from sympy.diffgeom import Point
>>> from sympy.diffgeom.rn import R2, R2_r, R2_p
>>> rho, theta = R2_p.symbols
>>> p = Point(R2_p, [rho, 3*pi/4])
>>> p.manifold == R2
True
>>> p.coords()
Matrix(
   [rho],
   [3*pi/4])
>>> p.coords(R2_r)
Matrix(
   [-sqrt(2)*rho/2],
   [ sqrt(2)*rho/2])
```

coords(sys=None)
Coordinates of the point in given coordinate system. If coordinate system is not passed, it returns the coordinates in the coordinate system in which the point was defined.

class sympy.diffgeom.BaseScalarField(coord_sys, index, **kwargs)
Base scalar field over a manifold for a given coordinate system.

Parameters
 coord_sys : CoordSystem
 index : integer
Explanation

A scalar field takes a point as an argument and returns a scalar. A base scalar field of a coordinate system takes a point and returns one of the coordinates of that point in the coordinate system in question.

To define a scalar field you need to choose the coordinate system and the index of the coordinate.

The use of the scalar field after its definition is independent of the coordinate system in which it was defined, however due to limitations in the simplification routines you may arrive at more complicated expression if you use unappropriate coordinate systems. You can build complicated scalar fields by just building up SymPy expressions containing BaseScalarField instances.

Examples

```python
>>> from sympy import Function, pi
>>> from sympy.diffgeom import BaseScalarField
>>> from sympy.diffgeom.rn import R2_r, R2_p
>>> rho, _ = R2_p.symbols
>>> point = R2_p.point([rho, 0])
>>> fx, fy = R2_r.base_scalars()
>>> ftheta = BaseScalarField(R2_r, 1)

>>> fx(point)
rho
>>> fy(point)
0

>>> (fx**2+fy**2).rcall(point)
rho**2

>>> g = Function('g')
>>> fg = g(ftheta-pi)
>>> fg.rcall(point)
g(-pi)
```

```python
class sympy.diffgeom.BaseVectorField(coord_sys, index, **kwargs)
```

Base vector field over a manifold for a given coordinate system.

Parameters

- **coord_sys** : CoordSystem
- **index** : integer
Explanation

A vector field is an operator taking a scalar field and returning a directional derivative (which is also a scalar field). A base vector field is the same type of operator, however the derivation is specifically done with respect to a chosen coordinate.

To define a base vector field you need to choose the coordinate system and the index of the coordinate.

The use of the vector field after its definition is independent of the coordinate system in which it was defined, however due to limitations in the simplification routines you may arrive at more complicated expression if you use unappropriate coordinate systems.

Examples

```python
>>> from sympy import Function
>>> from sympy.diffgeom import R2_p, R2_r
>>> from sympy.diffgeom import BaseVectorField
>>> from sympy import pprint

>>> x, y = R2_r.symbols
>>> rho, theta = R2_p.symbols
>>> fx, fy = R2_r.base_scalars()
>>> point_p = R2_p.point([rho, theta])
>>> point_r = R2_r.point([x, y])

>>> g = Function('g')
>>> s_field = g(fx, fy)

>>> v = BaseVectorField(R2_r, 1)
>>> pprint(v(s_field))
\frac{\partial}{\partial x}\left(\frac{\partial g(x, y)}{\partial x}\right)
\frac{\partial}{\partial y}\left(\frac{\partial g(x, y)}{\partial y}\right)

>>> pprint(v(s_field).rcall(point_r).doit())
\frac{\partial}{\partial y}\left(\frac{\partial g(x, y)}{\partial y}\right)

>>> pprint(v(s_field).rcall(point_p))
\frac{\partial}{\partial x}\left(\frac{\partial g(rho*\cos(theta), xi)}{\partial x}\right)
\frac{\partial}{\partial y}\left(\frac{\partial g(rho*\cos(theta), xi)}{\partial y}\right)
```

class `sympy.diffgeom.Combinator(v1, v2)`

Commutator of two vector fields.
Explanation

The commutator of two vector fields v_1 and v_2 is defined as the vector field $[v_1, v_2]$ that evaluated on each scalar field f is equal to $v_1(v_2(f)) - v_2(v_1(f))$.

Examples

```python
from sympy.diffgeom import R2_p, R2_r
from sympy.diffgeom import Commutator
from sympy import simplify

fx, fy = R2_r.base_scalars()
e_x, e_y = R2_r.base_vectors()
e_r = R2_p.base_vector(0)

c_xy = Commutator(e_x, e_y)
c_xr = Commutator(e_x, e_r)
c_xy

Unfortunately, the current code is not able to compute everything:

```python
>>> c_xr
Commutator(e_x, e_rho)
```

```python
>>> simplify(c_xr(fy**2))
-2*cos(theta)*y**2/(x**2 + y**2)
```

**class** sympy.diffgeom.Differential(form_field)

Return the differential (exterior derivative) of a form field.

**Explanation**

The differential of a form (i.e. the exterior derivative) has a complicated definition in the general case. The differential $df$ of the 0-form $f$ is defined for any vector field $v$ as $df(v) = v(f)$.

**Examples**

```python
from sympy import Function
from sympy.diffgeom.rn import R2_r
from sympy.diffgeom import Differential
from sympy import pprint

fx, fy = R2_r.base_scalars()
e_x, e_y = R2_r.base_vectors()
g = Function('g')
s_field = g(fx, fy)
dg = Differential(s_field)
```
Applying the exterior derivative operator twice always results in:

```python
dg = d(g(x, y))
pprint(dg(e_x))
/ d \\| |---(g(xi, y))| dx |xi=x
```

```python
dg = d(g(x, y))
pprint(dg(e_y))
/ d \\| |---(g(x, xi))| dx |xi=y
```

```python
Differential(dg)
```

```python
0
```

```
class sympy.diffgeom.TensorProduct(*args)
Tensor product of forms.
```

**Explanation**

The tensor product permits the creation of multilinear functionals (i.e. higher order tensors) out of lower order fields (e.g. 1-forms and vector fields). However, the higher tensors thus created lack the interesting features provided by the other type of product, the wedge product, namely they are not antisymmetric and hence are not form fields.

**Examples**

```python
from sympy.diffgeom import R2_r
from sympy.diffgeom import TensorProduct
```

```python
fx, fy = R2_r.base Scalars()
e_x, e_y = R2_r.base_vectors()
dx, dy = R2_r.base oneforms()
```

```python
TensorProduct(dx, dy)(e_x, e_y)
1
```

```python
TensorProduct(dx, dy)(e_y, e_x)
0
```

```python
TensorProduct(dx, fx*dy)(fx*e_x, e_y)
x**2
```

```python
TensorProduct(e_x, e_y)(fx**2, fy**2)
4*x*y
```

```python
TensorProduct(e_y, dx)(fy)
dx
```

You can nest tensor products.

5.8. Topics 2895
You can make partial contraction for instance when ‘raising an index’. Putting None in the second argument of rcall means that the respective position in the tensor product is left as it is.

Or automatically pad the args with None without specifying them.

You can nest wedge products.

Explanation

In the context of integration only completely antisymmetric forms make sense. The wedge product permits the creation of such forms.

Examples
class sympy.diffgeom.LieDerivative(v_field, expr)
    Lie derivative with respect to a vector field.

Explanation

The transport operator that defines the Lie derivative is the pushforward of the field to be derived along the integral curve of the field with respect to which one derives.

Examples

```python
>>> from sympy.diffgeom.rn import R2_r, R2_p
>>> from sympy.diffgeom import (LieDerivative, TensorProduct)

>>> fx, fy = R2_r.base_scalars()
>>> e_x, e_y = R2_r.base_vectors()
>>> e_rho, e_theta = R2_p.base_vectors()
>>> dx, dy = R2_r.base_oneforms()

>>> LieDerivative(e_x, fy)
0
>>> LieDerivative(e_x, fx)
1
>>> LieDerivative(e_x, e_x)
0

The Lie derivative of a tensor field by another tensor field is equal to their commutator:

```python
>>> LieDerivative(e_x, e_rho)
Commutator(e_x, e_rho)
>>> LieDerivative(e_x + e_y, fx)
1

>>> tp = TensorProduct(dx, dy)
>>> LieDerivative(e_x, tp)
LieDerivative(e_x, TensorProduct(dx, dy))
>>> LieDerivative(e_x, tp)
LieDerivative(e_x, TensorProduct(dx, dy))
```

class sympy.diffgeom.BaseCovarDerivativeOp(coord_sys, index, christoffel)
 Covariant derivative operator with respect to a base vector.
Examples

```python
>>> from sympy.diffgeom import R2_r
>>> from sympy.diffgeom import BaseCovarDerivativeOp
>>> from sympy.diffgeom import metric_to_Christoffel_2nd, TensorProduct

>>> TP = TensorProduct
>>> fx, fy = R2_r.base_scalars()
>>> e_x, e_y = R2_r.base_vectors()
>>> dx, dy = R2_r.base_oneforms()

>>> ch = metric_to_Christoffel_2nd(TP(dx, dx) + TP(dy, dy))
>>> ch
[[[0, 0], [0, 0]], [[0, 0], [0, 0]]]
>>> cvd = BaseCovarDerivativeOp(R2_r, 0, ch)
>>> cvd(fx)
1
>>> cvd(fx*e_x)
e_x
class sympy.diffgeom.CovarDerivativeOp(wrt, christoffel)
Covariant derivative operator.

Examples

```python
>>> from sympy.diffgeom import R2_r
>>> from sympy.diffgeom import CovarDerivativeOp
>>> from sympy.diffgeom import metric_to_Christoffel_2nd, TensorProduct

>>> TP = TensorProduct
>>> fx, fy = R2_r.base_scalars()
>>> e_x, e_y = R2_r.base_vectors()
>>> dx, dy = R2_r.base_oneforms()

>>> ch = metric_to_Christoffel_2nd(TP(dx, dx) + TP(dy, dy))
>>> ch
[[[0, 0], [0, 0]], [[0, 0], [0, 0]]]
>>> cvd = CovarDerivativeOp(fx*e_x, ch)
>>> cvd(fx)
x
>>> cvd(fx*e_x)
x*e_x
```
sympy.diffgeom.intcurve_series(vector_field, param, start_point, n=6, coord_sys=None, coeff=False)

Return the series expansion for an integral curve of the field.

Parameters

vector_field
the vector field for which an integral curve will be given

param
the argument of the function $\gamma$ from $\mathbb{R}$ to the curve

**start_point**

the point which corresponds to $\gamma(0)$

**n**

the order to which to expand

**coord_sys**

the coordinate system in which to expand coeffs (default False) - if True return a list of elements of the expansion

**Explanation**

Integral curve is a function $\gamma$ taking a parameter in $\mathbb{R}$ to a point in the manifold. It verifies the equation:

$$V(f)(\gamma(t)) = \frac{d}{dt} f(\gamma(t))$$

where the given vector_field is denoted as $V$. This holds for any value $t$ for the parameter and any scalar field $f$.

This equation can also be decomposed of a basis of coordinate functions $V(f_i)(\gamma(t)) = \frac{d}{dt} f_i(\gamma(t)) \forall i$.

This function returns a series expansion of $\gamma(t)$ in terms of the coordinate system coord_sys. The equations and expansions are necessarily done in coordinate-system-dependent way as there is no other way to represent movement between points on the manifold (i.e. there is no such thing as a difference of points for a general manifold).

**Examples**

Use the predefined R2 manifold:

```python
>>> from sympy.abc import t, x, y
>>> from sympy.diffgeom.rn import R2_p, R2_r
>>> from sympy.diffgeom import intcurve_series
```

Specify a starting point and a vector field:

```python
>>> start_point = R2_r.point([x, y])
>>> vector_field = R2_r.e_x
```

Calculate the series:

```python
>>> intcurve_series(vector_field, t, start_point, n=3)
Matrix([[t + x], [y]])
```

Or get the elements of the expansion in a list:
```python
>>> series = intcurve_series(vector_field, t, start_point, n=3,
 ... coeffs=True)
```
```
>>> series[0]
Matrix([x], [y])
```
```
>>> series[1]
Matrix([t], [0])
```
```
>>> series[2]
Matrix([0], [0])
```

The series in the polar coordinate system:

```python
>>> series = intcurve_series(vector_field, t, start_point,
 ... n=3, coord_sys=R2_p, coeffs=True)
```
```
>>> series[0]
Matrix([sqrt(x**2 + y**2)], [atan2(y, x)])
```
```
>>> series[1]
Matrix([t*x/sqrt(x**2 + y**2)], [-t*y/(x**2 + y**2)])
```
```
>>> series[2]
Matrix([t**2*(-x**2/(x**2 + y**2)**(3/2) + 1/sqrt(x**2 + y**2))/2],
 ... t**2*x*y/(x**2 + y**2)**2])
```

See also:

`intcurve_diffequ` (page 2900)

```
sympy.diffgeom.intcurve_diffequ(vector_field, param, start_point, coord_sys=None)
```

Return the differential equation for an integral curve of the field.

**Parameters**

- `vector_field`
  the vector field for which an integral curve will be given

- `param`
  the argument of the function $\gamma$ from $\mathbb{R}$ to the curve

- `start_point`
  the point which corresponds to $\gamma(0)$

- `coord_sys`
  the coordinate system in which to give the equations

**Returns**

- a tuple of (equations, initial conditions)
**Explanation**

Integral curve is a function $\gamma$ taking a parameter in $\mathbb{R}$ to a point in the manifold. It verifies the equation:

$$V(f)(\gamma(t)) = \frac{d}{dt}f(\gamma(t))$$

where the given vector field is denoted as $V$. This holds for any value $t$ for the parameter and any scalar field $f$.

This function returns the differential equation of $\gamma(t)$ in terms of the coordinate system `coord_sys`. The equations and expansions are necessarily done in coordinate-system-dependent way as there is no other way to represent movement between points on the manifold (i.e. there is no such thing as a difference of points for a general manifold).

**Examples**

Use the predefined R2 manifold:

```python
>>> from sympy.abc import t
>>> from sympy.diffgeom import R2, R2_p, R2_r
>>> from sympy.diffgeom import intcurve_diffequ
```

Specify a starting point and a vector field:

```python
>>> start_point = R2_r.point([0, 1])
>>> vector_field = -R2.y*R2.e_x + R2.x*R2.e_y
```

Get the equation:

```python
>>> equations, init_cond = intcurve_diffequ(vector_field, t, start_point)
>>> equations
[f_1(t) + Derivative(f_0(t), t), -f_0(t) + Derivative(f_1(t), t)]
>>> init_cond
[f_0(0), f_1(0) - 1]
```

The series in the polar coordinate system:

```python
>>> equations, init_cond = intcurve_diffequ(vector_field, t, start_point, R2_p)
>>> equations
[Derivative(f_0(t), t), Derivative(f_1(t), t) - 1]
>>> init_cond
[f_0(0) - 1, f_1(0) - pi/2]
```

**See also:**

`intcurve_series` (page 2898)

`sympy.diffgeom.vectors_in_basis` (expr, to_sys)

Transform all base vectors in base vectors of a specified coord basis. While the new base vectors are in the new coordinate system basis, any coefficients are kept in the old system.
Examples

```python
>>> from sympy.diffgeom import vectors_in_basis
>>> from sympy.diffgeom.rn import R2_r, R2_p

>>> vectors_in_basis(R2_r.e_x, R2_p)
-y*e_theta/(x**2 + y**2) + x*e_rho/sqrt(x**2 + y**2)
```

```python
>>> vectors_in_basis(R2_p.e_r, R2_r)
sin(theta)*e_y + cos(theta)*e_x
```

**sympy.diffgeom.twoform_to_matrix(expr)**

Return the matrix representing the twoform.

For the twoform \( w \) return the matrix \( M \) such that \( M[i,j] = w(e_i,e_j) \), where \( e_i \) is the i-th base vector field for the coordinate system in which the expression of \( w \) is given.

Examples

```python
>>> from sympy.diffgeom.rn import R2

>>> TP = TensorProduct

>>> twoform_to_matrix(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
Matrix([[1, 0], [0, 1]]
```

```python
>>> twoform_to_matrix(R2.x*TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
Matrix([[x, 0], [0, 1]])
```

```python
>>> twoform_to_matrix(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy) - TP(R2.dx, R2.dy)/2)
Matrix([[1, 0], [-1/2, 1]])
```

**sympy.diffgeom.metric_to_Christoffel_1st(expr)**

Return the nested list of Christoffel symbols for the given metric. This returns the Christoffel symbol of first kind that represents the Levi-Civita connection for the given metric.

Examples

```python
>>> from sympy.diffgeom.rn import R2

>>> TP = TensorProduct

>>> metric_to_Christoffel_1st(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
[[[0, 0], [0, 0]], [[0, 0], [0, 0]]]
```

(continues on next page)
sympy.diffgeom.metric_to_Christoffel_2nd(expr)
return the nested list of Christoffel symbols for the given metric. This returns the
Christoffel symbol of second kind that represents the Levi-Civita connection for the given
metric.

Examples

```python
>>> from sympy.diffgeom import R2
data = metric_to_Christoffel_2nd(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
[[[0, 0], [0, 0]], [[0, 0], [0, 0]]]
```

sympy.diffgeom.metric_to_Riemann_components(expr)
Return the components of the Riemann tensor expressed in a given basis.
Given a metric it calculates the components of the Riemann tensor in the canonical basis
of the coordinate system in which the metric expression is given.

Examples

```python
>>> from sympy import exp
data = metric_to_Riemann_components(non_trivial_metric)
```

sympy.diffgeom.metric_to_Ricci_components(expr)
Return the components of the Ricci tensor expressed in a given basis.
Given a metric it calculates the components of the Ricci tensor in the canonical basis of the coordinate system in which the metric expression is given.

**Examples**

```python
>>> from sympy import exp
>>> from sympy.diffgeom.rn import R2
>>> from sympy.diffgeom import metric_to_Ricci_components, TensorProduct

>>> TP = TensorProduct

>>> metric_to_Ricci_components(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
[[0, 0], [0, 0]]

>>> non_trivial_metric = exp(2*R2.r)*TP(R2.dr, R2.dr) +
 R2.r**2*TP(R2.dtheta, R2.dtheta)

>>> metric_to_Ricci_components(non_trivial_metric)
[[1/rho, 0], [0, exp(-2*rho)*rho]]
```

**Plotting**

**Introduction**

The plotting module allows you to make 2-dimensional and 3-dimensional plots. Presently the plots are rendered using *matplotlib* as a backend. It is also possible to plot 2-dimensional plots using a *TextBackend* (page 2953) if you do not have *matplotlib*.

The plotting module has the following functions:

- `plot()` (page 2909): Plots 2D line plots.
- `plot_parametric()` (page 2912): Plots 2D parametric plots.
- `plot_implicit()` (page 2931): Plots 2D implicit and region plots.
- `plot3d()` (page 2922): Plots 3D plots of functions in two variables.
- `plot3d_parametric_line()` (page 2923): Plots 3D line plots, defined by a parameter.
- `plot3d_parametric_surface()` (page 2930): Plots 3D parametric surface plots.

The above functions are only for convenience and ease of use. It is possible to plot any plot by passing the corresponding `Series` class to `Plot` (page 2905) as argument.
Plot Class

```python
class sympy.plotting.plot.Plot(*args, title=None, xlabel=None, ylabel=None, zlabel=None, aspect_ratio='auto', xlim=None, ylim=None, axis_center='auto', axis=True, xscale='linear', yscale='linear', legend=False, autoscale=True, margin=0, annotations=None, markers=None, rectangles=None, fill=None, backend='default', size=None, **kwargs)
```

The central class of the plotting module.

Explanation

For interactive work the function `plot()` (page 2909) is better suited.

This class permits the plotting of SymPy expressions using numerous backends (matplotlib, textplot, the old pyglet module for SymPy, Google charts api, etc).

The figure can contain an arbitrary number of plots of SymPy expressions, lists of coordinates of points, etc. Plot has a private attribute _series that contains all data series to be plotted (expressions for lines or surfaces, lists of points, etc (all subclasses of BaseSeries)). Those data series are instances of classes not imported by `from sympy import *`.

The customization of the figure is on two levels. Global options that concern the figure as a whole (e.g. title, xlabel, scale, etc) and per-data series options (e.g. name) and aesthetics (e.g. color, point shape, line type, etc.).

The difference between options and aesthetics is that an aesthetic can be a function of the coordinates (or parameters in a parametric plot). The supported values for an aesthetic are:

- None (the backend uses default values)
- a constant
- a function of one variable (the first coordinate or parameter)
- a function of two variables (the first and second coordinate or parameters)
- a function of three variables (only in nonparametric 3D plots)

Their implementation depends on the backend so they may not work in some backends.

If the plot is parametric and the arity of the aesthetic function permits it the aesthetic is calculated over parameters and not over coordinates. If the arity does not permit calculation over parameters the calculation is done over coordinates.

Only cartesian coordinates are supported for the moment, but you can use the parametric plots to plot in polar, spherical and cylindrical coordinates.

The arguments for the constructor Plot must be subclasses of BaseSeries.

Any global option can be specified as a keyword argument.

The global options for a figure are:

- title : str
- xlabel : str or Symbol
• ylabel : str or Symbol
• zlabel : str or Symbol
• legend : bool
• xscale : {'linear', 'log'}
• yscale : {'linear', 'log'}
• axis : bool
• axis_center : tuple of two floats or {'center', 'auto'}
• xlim : tuple of two floats
• ylim : tuple of two floats
• aspect_ratio : tuple of two floats or {'auto'}
• autoscale : bool
• margin : float in [0, 1]
• backend : {'default', 'matplotlib', 'text'} or a subclass of BaseBackend
• size : optional tuple of two floats, (width, height); default: None

The per data series options and aesthetics are: There are none in the base series. See below for options for subclasses.

Some data series support additional aesthetics or options:

* LineOver1DRangeSeries (page 2950), Parametric2DLineSeries (page 2950), and Parametric3DLineSeries (page 2951) support the following:

Aesthetics:

• **line_color**
  [string, or float, or function, optional] Specifies the color for the plot, which depends on the backend being used.

  For example, if MatplotlibBackend is being used, then Matplotlib string colors are acceptable ("red", "r", "cyan", "c", ...). Alternatively, we can use a float number, 0 < color < 1, wrapped in a string (for example, line_color="0.5") to specify grayscale colors. Alternatively, We can specify a function returning a single float value: this will be used to apply a color-loop (for example, line_color=lambda x: math.cos(x)).

  Note that by setting line_color, it would be applied simultaneously to all the series.

Options:

• label : str
• steps : bool
• integers_only : bool

* SurfaceOver2DRangeSeries (page 2951) and ParametricSurfaceSeries (page 2951) support the following:

Aesthetics:

• surface_color : function which returns a float.
append\((arg)\)

Adds an element from a plot’s series to an existing plot.

**Examples**

Consider two Plot objects, p1 and p2. To add the second plot’s first series object to the first, use the append method, like so:

```python
>>> from sympy import symbols
>>> from sympy.plotting import plot
>>> x = symbols('x')
>>> p1 = plot(x*x, show=False)
>>> p2 = plot(x, show=False)
>>> p1.append(p2[0])
>>> p1
Plot object containing:
[0]: cartesian line: x**2 for x over (-10.0, 10.0)
[1]: cartesian line: x for x over (-10.0, 10.0)
```

See also:

extend (page 2907)
extend\( \text{(arg)} \)

 Adds all series from another plot.

**Examples**

Consider two Plot objects, p1 and p2. To add the second plot to the first, use the extend method, like so:

```python
>>> from sympy import symbols
>>> from sympy.plotting import plot
>>> x = symbols('x')
>>> p1 = plot(x**2, show=False)
>>> p2 = plot(x, -x, show=False)
>>> p1.extend(p2)
>>> p1
Plot object containing:
[0]: cartesian line: x**2 for x over (-10.0, 10.0)
[1]: cartesian line: x for x over (-10.0, 10.0)
[2]: cartesian line: -x for x over (-10.0, 10.0)
>>> p1.show()
```

![Plot example](image)
Plotting Function Reference

```python
sympy.plotting.plot.plot(*args, show=True, **kwargs)
```

Plots a function of a single variable as a curve.

**Parameters**

- `args`:
  - The first argument is the expression representing the function of single-variable to be plotted.
  - The last argument is a 3-tuple denoting the range of the free variable. e.g. `(x, 0, 5)`
  - Typical usage examples are in the following:
    - **Plotting a single expression with a single range.**
      ```python
 plot(expr, range, **kwargs)
      ```
    - **Plotting a single expression with the default range (-10, 10).**
      ```python
 plot(expr, **kwargs)
      ```
    - **Plotting multiple expressions with a single range.**
      ```python
 plot(expr1, expr2, ..., range, **kwargs)
      ```
    - **Plotting multiple expressions with multiple ranges.**
      ```python
 plot((expr1, range1), (expr2, range2), ..., **kwargs)
      ```
  - It is best practice to specify range explicitly because default range may change in the future if a more advanced default range detection algorithm is implemented.

- `show`: bool, optional
  - The default value is set to True. Set show to False and the function will not display the plot. The returned instance of the Plot class can then be used to save or display the plot by calling the `save()` and `show()` methods respectively.

- `line_color`: string, or float, or function, optional
  - Specifies the color for the plot. See `Plot` to see how to set color for the plots. Note that by setting `line_color`, it would be applied simultaneously to all the series.

- `title`: str, optional
  - Title of the plot. It is set to the latex representation of the expression, if the plot has only one expression.

- `label`: str, optional
  - The label of the expression in the plot. It will be used when called with legend. Default is the name of the expression. e.g. `sin(x)`

- `xlabel`: str or expression, optional
  - Label for the x-axis.

- `ylabel`: str or expression, optional
  - Label for the y-axis.

- `xscale`: ‘linear’ or ‘log’, optional
Sets the scaling of the x-axis.

**yscale** : ‘linear’ or ‘log’, optional

Sets the scaling of the y-axis.

**axis_center** : (float, float), optional

Tuple of two floats denoting the coordinates of the center or {'center', 'auto'}

**xlim** : (float, float), optional

Denotes the x-axis limits, (min, max)\).

**ylim** : (float, float), optional

Denotes the y-axis limits, (min, max)\).

**annotations** : list, optional

A list of dictionaries specifying the type of annotation required. The keys in the dictionary should be equivalent to the arguments of the *matplotlib*’s *annotate()* method.

**markers** : list, optional

A list of dictionaries specifying the type the markers required. The keys in the dictionary should be equivalent to the arguments of the *matplotlib*’s *plot()* function along with the marker related keyworded arguments.

**rectangles** : list, optional

A list of dictionaries specifying the dimensions of the rectangles to be plotted. The keys in the dictionary should be equivalent to the arguments of the *matplotlib*’s *Rectangle* class.

**fill** : dict, optional

A dictionary specifying the type of color filling required in the plot. The keys in the dictionary should be equivalent to the arguments of the *matplotlib*’s *fill_between()* method.

**adaptive** : bool, optional

The default value is set to True. Set adaptive to False and specify *nb_of_points* if uniform sampling is required.

The plotting uses an adaptive algorithm which samples recursively to accurately plot. The adaptive algorithm uses a random point near the midpoint of two points that has to be further sampled. Hence the same plots can appear slightly different.

**depth** : int, optional

Recursion depth of the adaptive algorithm. A depth of value \( n \) samples a maximum of \( 2^n \) points.

If the adaptive flag is set to False, this will be ignored.

**nb_of_points** : int, optional

Used when the adaptive is set to False. The function is uniformly sampled at nb_of_points number of points.
If the adaptive flag is set to True, this will be ignored.

**size**: (float, float), optional

A tuple in the form (width, height) in inches to specify the size of the overall figure. The default value is set to None, meaning the size will be set by the default backend.

### Examples

```python
>>> from sympy import symbols
>>> from sympy.plotting import plot
>>> x = symbols('x')
```

Single Plot

```python
>>> plot(x**2, (x, -5, 5))
Plot object containing:
[0]: cartesian line: x**2 for x over (-5.0, 5.0)
```

Multiple plots with single range.
>>> plot(x, x**2, x**3, (x, -5, 5))
Plot object containing:
[0]: cartesian line: x for x over (-5.0, 5.0)
[1]: cartesian line: x**2 for x over (-5.0, 5.0)
[2]: cartesian line: x**3 for x over (-5.0, 5.0)

Multiple plots with different ranges.

>>> plot((x**2, (x, -6, 6)), (x, (x, -5, 5)))
Plot object containing:
[0]: cartesian line: x**2 for x over (-6.0, 6.0)
[1]: cartesian line: x for x over (-5.0, 5.0)

No adaptive sampling.

>>> plot(x**2, adaptive=False, nb_of_points=400)
Plot object containing:
[0]: cartesian line: x**2 for x over (-10.0, 10.0)

See also:

Plot (page 2905), LineOver1DRangeSeries (page 2950)
sympy.plotting.plot.plot_parametric(*args, show=True, **kwargs)
Plots a 2D parametric curve.
The graph shows a parabolic function $f(x)$ plotted over a range of $x$ values from $-10.0$ to $10.0$. The function appears to be $f(x) = ax^2$, where $a$ is a constant, and the vertex of the parabola is at the origin $(0,0)$. The graph is symmetric about the y-axis.
Parameters

args

Common specifications are:

- **Plotting a single parametric curve with a range**
  plot_parametric((expr_x, expr_y), range)

- **Plotting multiple parametric curves with the same range**
  plot_parametric((expr_x, expr_y), ..., range)

- **Plotting multiple parametric curves with different ranges**
  plot_parametric((expr_x, expr_y, range), ...)

expr_x is the expression representing $x$ component of the parametric function.

expr_y is the expression representing $y$ component of the parametric function.

range is a 3-tuple denoting the parameter symbol, start and stop. For example, $(u, 0, 5)$.

If the range is not specified, then a default range of (-10, 10) is used.

However, if the arguments are specified as $(expr_x, expr_y, range), ...$, you must specify the ranges for each expressions manually.

Default range may change in the future if a more advanced algorithm is implemented.

**adaptive** : bool, optional

Specifies whether to use the adaptive sampling or not.

The default value is set to True. Set adaptive to False and specify nb_of_points if uniform sampling is required.

**depth** : int, optional

The recursion depth of the adaptive algorithm. A depth of value $n$ samples a maximum of $2^n$ points.

**nb_of_points** : int, optional

Used when the adaptive flag is set to False.

Specifies the number of the points used for the uniform sampling.

**line_color** : string, or float, or function, optional

Specifies the color for the plot. See Plot to see how to set color for the plots. Note that by setting line_color, it would be applied simultaneously to all the series.

**label** : str, optional

The label of the expression in the plot. It will be used when called with legend. Default is the name of the expression. e.g. $\sin(x)$

**xlabel** : str, optional

Label for the x-axis.

**ylabel** : str, optional
Label for the y-axis.

**xscale**: ‘linear’ or ‘log’, optional
Sets the scaling of the x-axis.

**yscale**: ‘linear’ or ‘log’, optional
Sets the scaling of the y-axis.

**axis_center**: (float, float), optional
Tuple of two floats denoting the coordinates of the center or {'center', 'auto'}

**xlim**: (float, float), optional
Denotes the x-axis limits, (min, max).

**ylim**: (float, float), optional
Denotes the y-axis limits, (min, max).

**size**: (float, float), optional
A tuple in the form (width, height) in inches to specify the size of the overall figure. The default value is set to None, meaning the size will be set by the default backend.

**Examples**

```python
code
from sympy import plot_parametric, symbols, cos, sin

u = symbols('u')

Plot object containing:
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0)

Plot object containing:
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-10.0, 10.0)
[1]: parametric cartesian line: (u, cos(u)) for u over (-10.0, 10.0)

Plot object containing:
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0)
[1]: parametric cartesian line: (cos(u), u) for u over (-5.0, 5.0)
```
Notes

The plotting uses an adaptive algorithm which samples recursively to accurately plot the curve. The adaptive algorithm uses a random point near the midpoint of two points that has to be further sampled. Hence, repeating the same plot command can give slightly different results because of the random sampling.

If there are multiple plots, then the same optional arguments are applied to all the plots drawn in the same canvas. If you want to set these options separately, you can index the returned `Plot` object and set it.

For example, when you specify `line_color` once, it would be applied simultaneously to both series.

```python
>>> from sympy import pi
>>> expr1 = (u, cos(2*pi*u)/2 + 1/2)
>>> expr2 = (u, sin(2*pi*u)/2 + 1/2)
>>> p = plot_parametric(expr1, expr2, (u, 0, 1), line_color='blue')
```

If you want to specify the line color for the specific series, you should index each item and apply the property manually.

```python
>>> p[0].line_color = 'red'
>>> p.show()
```
See also:

*Plot* (page 2905), *Parametric2DLineSeries* (page 2950)

```
sympy.plotting.plot.plot3d(*args, show=True, **kwargs)
```

Plots a 3D surface plot.

**Usage**

Single plot

```
plot3d(expr, range_x, range_y, **kwargs)
```

If the ranges are not specified, then a default range of (-10, 10) is used.

Multiple plot with the same range.

```
plot3d(expr1, expr2, range_x, range_y, **kwargs)
```

If the ranges are not specified, then a default range of (-10, 10) is used.

Multiple plots with different ranges.

```
plot3d((expr1, range_x, range_y), (expr2, range_x, range_y), ..., **kwargs)
```

Ranges have to be specified for every expression.

Default range may change in the future if a more advanced default range detection algorithm is implemented.

**Arguments**

`expr` : Expression representing the function along `x`.

`range_x` : A 3-tuple denoting the range of the `x` variable, e.g. `(x, 0, 5)`.  

`range_y` : A 3-tuple denoting the range of the `y` variable, e.g. `(y, 0, 5)`.

**Keyword Arguments**

Arguments for `SurfaceOver2DRangeSeries` class:

`nb_of_points_x` : [int] The `x` range is sampled uniformly at `nb_of_points_x` of points.

`nb_of_points_y` : [int] The `y` range is sampled uniformly at `nb_of_points_y` of points.

Aesthetics:

`surface_color` : [Function which returns a float] Specifies the color for the surface of the plot. See *Plot* (page 2905) for more details.
If there are multiple plots, then the same series arguments are applied to all the plots. If you want to set these options separately, you can index the returned `Plot` object and set it.

Arguments for `Plot` class:

- **title**
  
  [str] Title of the plot.

- **size**
  
  [(float, float), optional] A tuple in the form (width, height) in inches to specify the size of the overall figure. The default value is set to `None`, meaning the size will be set by the default backend.

**Examples**

```python
>>> from sympy import symbols
>>> from sympy.plotting import plot3d
>>> x, y = symbols('x y')
```

Single plot

```python
>>> plot3d(x*y, (x, -5, 5), (y, -5, 5))
```

Plot object containing:

- `[0]`: cartesian surface: \(x*y\) for \(x\) over \((-5.0, 5.0)\) and \(y\) over \((-5.0, 5.0)\)

Multiple plots with same range

```python
>>> plot3d(x*y, -x*y, (x, -5, 5), (y, -5, 5))
```

Plot object containing:

- `[0]`: cartesian surface: \(x*y\) for \(x\) over \((-5.0, 5.0)\) and \(y\) over \((-5.0, 5.0)\)
- `[1]`: cartesian surface: \(-x*y\) for \(x\) over \((-5.0, 5.0)\) and \(y\) over \((-5.0, 5.0)\)

Multiple plots with different ranges.

```python
>>> plot3d((x**2 + y**2, (x, -5, 5), (y, -5, 5)),
... (x*y, (x, -3, 3), (y, -3, 3)))
```

Plot object containing:

- `[0]`: cartesian surface: \(x^2 + y^2\) for \(x\) over \((-5.0, 5.0)\) and \(y\) over \((-5.0, 5.0)\)
- `[1]`: cartesian surface: \(x*y\) for \(x\) over \((-3.0, 3.0)\) and \(y\) over \((-3.0, 3.0)\)

See also:

- `Plot` (page 2905), `SurfaceOver2DRangeSeries` (page 2951)
- `sympy.plotting.plot.plot3d_parametric_line(*args, show=True, **kwargs)`
  
  Plots a 3D parametric line plot.
$f(x, y)$
Usage

Single plot:

```python
plot3d_parametric_line(expr_x, expr_y, expr_z, range, **kwargs)
```

If the range is not specified, then a default range of (-10, 10) is used.

Multiple plots.

```python
plot3d_parametric_line((expr_x, expr_y, expr_z, range), ..., **kwargs)
```

Ranges have to be specified for every expression.

Default range may change in the future if a more advanced default range detection algorithm is implemented.

Arguments

- `expr_x`: Expression representing the function along `x`.
- `expr_y`: Expression representing the function along `y`.
- `expr_z`: Expression representing the function along `z`.
- `range`: A 3-tuple denoting the range of the parameter variable, e.g., `(u, 0, 5)`.

Keyword Arguments

Arguments for `Parametric3DLineSeries` class.

- `nb_of_points`: The range is uniformly sampled at `nb_of_points` number of points.

Aesthetics:

- `line_color`: Specifies the color for the plot. See Plot to see how to set color for the plots. Note that by setting `line_color`, it would be applied simultaneously to all the series.

- `label`: The label to the plot. It will be used when called with `legend=True` to denote the function with the given label in the plot.

If there are multiple plots, then the same series arguments are applied to all the plots. If you want to set these options separately, you can index the returned `Plot` object and set it.

Arguments for `Plot` class.

- `title`: Title of the plot.
- `size`: A tuple in the form `(width, height)` in inches to specify the size of the overall figure. The default value is set to `None`, meaning the size will be set by the default backend.
Examples

```python
>>> from sympy import symbols, cos, sin
>>> from sympy.plotting import plot3d_parametric_line
>>> u = symbols('u')

Single plot.

```python
>>> plot3d_parametric_line(cos(u), sin(u), u, (u, -5, 5))
```
Plot object containing:
[0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, →5.0)

Multiple plots.

```python
>>> plot3d_parametric_line((cos(u), sin(u), u, (u, -5, 5)), ...
  ...  (sin(u), u**2, u, (u, -5, 5)))
```
Plot object containing:
[0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, →5.0)
[1]: 3D parametric cartesian line: (sin(u), u**2, u) for u over (-5.0, 5. →0)
See also:

Plot (page 2905), Parametric3DLineSeries (page 2951)

sympy.plotting.plot.plot3d_parametric_surface(*args, show=True, **kwargs)

Plots a 3D parametric surface plot.

Explanation

Single plot.

```
plot3d_parametric_surface(expr_x, expr_y, expr_z, range_u, range_v, **kwargs)
```

If the ranges is not specified, then a default range of (-10, 10) is used.

Multiple plots.

```
plot3d_parametric_surface((expr_x, expr_y, expr_z, range_u, range_v), ..., **kwargs)
```

Ranges have to be specified for every expression.

Default range may change in the future if a more advanced default range detection algorithm is implemented.

Arguments

`expr_x` : Expression representing the function along x.
`expr_y` : Expression representing the function along y.
`expr_z` : Expression representing the function along z.

`range_u`

```
[(Symbol (page 1028), float, float)] A 3-tuple denoting the range of the u variable, e.g. (u, 0, 5).
```

`range_v`

```
[(Symbol (page 1028), float, float)] A 3-tuple denoting the range of the v variable, e.g. (v, 0, 5).
```

Keyword Arguments

Arguments for ParametricSurfaceSeries class:

`nb_of_points_u`

```
[int] The u range is sampled uniformly at nb_of_points_v of points
```

`nb_of_points_v`

```
[int] The v range is sampled uniformly at nb_of_points_y of points
```

Aesthetics:

`surface_color`

```
[Function which returns a float] Specifies the color for the surface of the plot. See Plot (page 2905) for more details.
```
If there are multiple plots, then the same series arguments are applied for all the plots. If you want to set these options separately, you can index the returned Plot object and set it.

Arguments for Plot class:

- **title**: [str] Title of the plot.
- **size**: [(float, float), optional] A tuple in the form (width, height) in inches to specify the size of the overall figure. The default value is set to None, meaning the size will be set by the default backend.

Examples

```python
>>> from sympy import symbols, cos, sin
>>> from sympy.plotting import plot3d_parametric_surface
>>> u, v = symbols('u v')
```

Single plot.

```python
>>> plot3d_parametric_surface(cos(u + v), sin(u - v), u - v,
...                           (u, -5, 5), (v, -5, 5))
```

Plot object containing:

- [0]: parametric cartesian surface: (cos(u + v), sin(u - v), u - v) for u over (-5.0, 5.0) and v over (-5.0, 5.0)

See also:

- `Plot` (page 2905), `ParametricSurfaceSeries` (page 2951)
- `sympy.plotting.plot_implicit.plot_implicit`:
  ```python
  expr, x_var=None, y_var=None, adaptive=True, depth=0, points=300, line_color='blue', show=True, **kwargs
  ```

A plot function to plot implicit equations / inequalities.

Arguments

- **expr**: The equation / inequality that is to be plotted.
- **x_var** (optional): symbol to plot on x-axis or tuple giving symbol and range as (symbol, xmin, xmax)
- **y_var** (optional): symbol to plot on y-axis or tuple giving symbol and range as (symbol, ymin, ymax)

If neither x_var nor y_var are given then the free symbols in the expression will be assigned in the order they are sorted.

The following keyword arguments can also be used:

- **adaptive**: Boolean. The default value is set to True. It has to be set to False if you want to use a mesh grid.
- **depth**: integer. The depth of recursion for adaptive mesh grid.
 Default value is 0. Takes value in the range (0, 4).
• **points** integer. The number of points if adaptive mesh grid is not used. Default value is 300.

• **show** Boolean. Default value is True. If set to False, the plot will not be shown. See Plot for further information.

• **title** string. The title for the plot.

• **xlabel** string. The label for the x-axis

• **ylabel** string. The label for the y-axis

Aesthetics options:

• **line_color**: float or string. Specifies the color for the plot. See Plot to see how to set color for the plots. Default value is “Blue”

plot_implicit, by default, uses interval arithmetic to plot functions. If the expression cannot be plotted using interval arithmetic, it defaults to a generating a contour using a mesh grid of fixed number of points. By setting adaptive to False, you can force plot_implicit to use the mesh grid. The mesh grid method can be effective when adaptive plotting using interval arithmetic, fails to plot with small line width.

Examples

Plot expressions:

```python
>>> from sympy import plot_implicit, symbols, Eq, And
>>> x, y = symbols('x y')
```

Without any ranges for the symbols in the expression:

```python
>>> p1 = plot_implicit(Eq(x**2 + y**2, 5))
```

With the range for the symbols:

```python
>>> p2 = plot_implicit(Eq(x**2 + y**2, 3), (x, -3, 3), (y, -3, 3))
```

With depth of recursion as argument:

```python
>>> p3 = plot_implicit(Eq(x**2 + y**2, 5), (x, -4, 4), (y, -4, 4), depth=2)
```

Using mesh grid and not using adaptive meshing:

```python
>>> p4 = plot_implicit(Eq(x**2 + y**2, 5), (x, -5, 5), (y, -2, 2), adaptive=False)
```

Using mesh grid without using adaptive meshing with number of points specified:

```python
>>> p5 = plot_implicit(Eq(x**2 + y**2, 5), (x, -5, 5), (y, -2, 2), adaptive=False, points=400)
```

Plotting regions:
5.8. Topics
Plotting Using boolean conjuctions:

```python
>>> p7 = plot_implicit(And(y > x, y > -x))
```

When plotting an expression with a single variable (y - 1, for example), specify the x or the y variable explicitly:

```python
>>> p8 = plot_implicit(y - 1, y_var=y)
>>> p9 = plot_implicit(x - 1, x_var=x)
```

PlotGrid Class

```python
class sympy.plotting.plot.PlotGrid(nrows, ncolumns, *args, show=True, size=None, **kwargs)
```

This class helps to plot subplots from already created SymPy plots in a single figure.
Examples

```python
>>> from sympy import symbols
>>> from sympy.plotting import plot, plot3d, PlotGrid
>>> x, y = symbols('x, y')
>>> p1 = plot(x, x**2, x**3, (x, -5, 5))
>>> p2 = plot((x**2, (x, -6, 6)), (x, (x, -5, 5)))
>>> p3 = plot(x**3, (x, -5, 5))
>>> p4 = plot3d(x*y, (x, -5, 5), (y, -5, 5))

Plotting vertically in a single line:

```python
>>> PlotGrid(2, 1, p1, p2)
PlotGrid object containing:
Plot[0]: Plot object containing:
 [0]: cartesian line: x for x over (-5.0, 5.0)
 [1]: cartesian line: x**2 for x over (-5.0, 5.0)
 [2]: cartesian line: x**3 for x over (-5.0, 5.0)
Plot[1]: Plot object containing:
 [0]: cartesian line: x**2 for x over (-6.0, 6.0)
 [1]: cartesian line: x for x over (-5.0, 5.0)
```

Plotting horizontally in a single line:
5.8. Topics
>>> PlotGrid(1, 3, p2, p3, p4)
PlotGrid object containing:
Plot[0]: Plot object containing:
 [0]: cartesian line: x**2 for x over (-6.0, 6.0)
 [1]: cartesian line: x for x over (-5.0, 5.0)
Plot[1]: Plot object containing:
 [0]: cartesian line: x**3 for x over (-5.0, 5.0)
Plot[2]: Plot object containing:
 [0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)

Plotting in a grid form:

>>> PlotGrid(2, 2, p1, p2, p3, p4)
PlotGrid object containing:
Plot[0]: Plot object containing:
 [0]: cartesian line: x for x over (-5.0, 5.0)
 [1]: cartesian line: x**2 for x over (-5.0, 5.0)
 [2]: cartesian line: x**3 for x over (-5.0, 5.0)
Plot[1]: Plot object containing:
 [0]: cartesian line: x**2 for x over (-6.0, 6.0)
 [1]: cartesian line: x for x over (-5.0, 5.0)
Plot[2]: Plot object containing:
 [0]: cartesian line: x**3 for x over (-5.0, 5.0)
Plot[3]: Plot object containing:
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)

---

Series Classes

class sympy.plotting.plot.BaseSeries

Base class for the data objects containing stuff to be plotted.

Explanation

The backend should check if it supports the data series that is given. (e.g. TextBackend supports only LineOver1DRangeSeries). It is the backend responsibility to know how to use the class of data series that is given.

Some data series classes are grouped (using a class attribute like is_2Dline) according to the api they present (based only on convention). The backend is not obliged to use that api (e.g. LineOver1DRangeSeries belongs to the is_2Dline group and presents the get_points method, but the TextBackend does not use the get_points method).
class sympy.plotting.plot.Line2DBaseSeries
A base class for 2D lines.
  • adding the label, steps and only_integers options
  • making is_2Dline true
  • defining get_segments and get_color_array

get_data()
  Return lists of coordinates for plotting the line.

  Returns
  x : list
      List of x-coordinates

  y
      [list] List of y-coordinates

  z
      [list] List of z-coordinates in case of Parametric3DLineSeries

class sympy.plotting.plot.LineOver1DRangeSeries(expr, var_start_end, **kwargs)
Representation for a line consisting of a SymPy expression over a range.

get_points()
  Return lists of coordinates for plotting. Depending on the adaptive option, this function will either use an adaptive algorithm or it will uniformly sample the expression over the provided range.

  Returns
  x : list
      List of x-coordinates

  y
      [list] List of y-coordinates

Explanation
The adaptive sampling is done by recursively checking if three points are almost collinear. If they are not collinear, then more points are added between those points.

References
[R711]
class sympy.plotting.plot.Parametric2DLineSeries(expr_x, expr_y, var_start_end, **kwargs)
Representation for a line consisting of two parametric SymPy expressions over a range.
get_points()

Return lists of coordinates for plotting. Depending on the adaptive option, this function will either use an adaptive algorithm or it will uniformly sample the expression over the provided range.

**Returns**

- **x**: list
  - List of x-coordinates

- **y**: list
  - List of y-coordinates

**Explanation**

The adaptive sampling is done by recursively checking if three points are almost collinear. If they are not collinear, then more points are added between those points.

**References**

[R712]

class sympy.plotting.plot.Line3DBaseSeries

A base class for 3D lines.

Most of the stuff is derived from Line2DBaseSeries.

class sympy.plotting.plot_Parametric3DLineSeries(expr_x, expr_y, expr_z, var_start_end, **kwargs)

Representation for a 3D line consisting of three parametric SymPy expressions and a range.

class sympy.plotting.plot_SurfaceBaseSeries

A base class for 3D surfaces.

class sympy.plotting.plot_SurfaceOver2DRangeSeries(expr, var_start_end_x, var_start_end_y, **kwargs)

Representation for a 3D surface consisting of a SymPy expression and 2D range.

class sympy.plotting.plot_ParametricSurfaceSeries(expr_x, expr_y, expr_z, var_start_end_u, var_start_end_v, **kwargs)

Representation for a 3D surface consisting of three parametric SymPy expressions and a range.

class sympy.plotting.plot_implicit.ImplicitSeries(expr, var_start_end_x, var_start_end_y, has_equality, use_interval_math, depth, nb_of_points, line_color)

Representation for Implicit plot
Backends

class symy.plotting.plot.BaseBackend(parent)

Base class for all backends. A backend represents the plotting library, which implements the necessary functionalities in order to use SymPy plotting functions.

How the plotting module works:

1. Whenever a plotting function is called, the provided expressions are processed and a list of instances of the BaseSeries (page 2949) class is created, containing the necessary information to plot the expressions (e.g. the expression, ranges, series name, ...). Eventually, these objects will generate the numerical data to be plotted.

2. A Plot (page 2905) object is instantiated, which stores the list of series and the main attributes of the plot (e.g. axis labels, title, ...).

3. When the show command is executed, a new backend is instantiated, which loops through each series object to generate and plot the numerical data. The backend is also going to set the axis labels, title, ..., according to the values stored in the Plot instance.

The backend should check if it supports the data series that it is given (e.g. TextBackend (page 2953) supports only LineOver1DRangeSeries (page 2950)).

It is the backend responsibility to know how to use the class of data series that it’s given. Note that the current implementation of the *Series classes is “matplotlib-centric”: the numerical data returned by the get_points and get_meshes methods is meant to be used directly by Matplotlib. Therefore, the new backend will have to pre-process the numerical data to make it compatible with the chosen plotting library. Keep in mind that future SymPy versions may improve the *Series classes in order to return numerical data “non-matplotlib-centric”, hence if you code a new backend you have the responsibility to check if its working on each SymPy release.

Please explore the MatplotlibBackend (page 2952) source code to understand how a backend should be coded.

See also:

MatplotlibBackend (page 2952)

class symy.plotting.plot.MatplotlibBackend(parent)

This class implements the functionalities to use Matplotlib with SymPy plotting functions.

static get_segments(x, y, z=None)

Convert two list of coordinates to a list of segments to be used with Matplotlib’s LineCollection.

Parameters

- x : list
  
  List of x-coordinates

- y
  
  [list] List of y-coordinates

- z
  
  [list] List of z-coordinates for a 3D line.
process_series()
Iterates over every Plot object and further calls_process_series()

class sympy.plotting.plot.TextBackend(parent)

Pyglet Plotting

This is the documentation for the old plotting module that uses pyglet. This module has some limitations and is not actively developed anymore. For an alternative you can look at the new plotting module.

The pyglet plotting module can do nice 2D and 3D plots that can be controlled by console commands as well as keyboard and mouse, with the only dependency being pyglet.

Here is the simplest usage:

```python
>>> from sympy import var
>>> from sympy.plotting.pygletplot import PygletPlot as Plot
>>> var('x y z')
>>> Plot(x*y**3-y*x**3)
```

To see lots of plotting examples, see examples/pyglet_plotting.py and try running it in interactive mode (python -i plotting.py):

```
$ python -i examples/pyglet_plotting.py
```

And type for instance example(7) or example(11).

See also the Plotting Module wiki page for screenshots.

Plot Window Controls

<table>
<thead>
<tr>
<th>Camera</th>
<th>Keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity Modifier</td>
<td>SHIFT</td>
</tr>
<tr>
<td>Zoom</td>
<td>R and F, Page Up and Down, Numpad + and -</td>
</tr>
<tr>
<td>Rotate View X,Y axis</td>
<td>Arrow Keys, A,S,D,W, Numpad 4,6,8,2</td>
</tr>
<tr>
<td>Rotate View Z axis</td>
<td>Q and E, Numpad 7 and 9</td>
</tr>
<tr>
<td>Rotate Ordinate Z axis</td>
<td>Z and C, Numpad 1 and 3</td>
</tr>
<tr>
<td>View XY</td>
<td>F1</td>
</tr>
<tr>
<td>View XZ</td>
<td>F2</td>
</tr>
<tr>
<td>View YZ</td>
<td>F3</td>
</tr>
<tr>
<td>View Perspective</td>
<td>F4</td>
</tr>
<tr>
<td>Reset</td>
<td>X, Numpad 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Axes</th>
<th>Keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toggle Visible</td>
<td>F5</td>
</tr>
<tr>
<td>Toggle Colors</td>
<td>F6</td>
</tr>
</tbody>
</table>
The mouse can be used to rotate, zoom, and translate by dragging the left, middle, and right mouse buttons respectively.

**Coordinate Modes**

Plot supports several curvilinear coordinate modes, and they are independent for each plotted function. You can specify a coordinate mode explicitly with the ‘mode’ named argument, but it can be automatically determined for cartesian or parametric plots, and therefore must only be specified for polar, cylindrical, and spherical modes.

Specifically, `Plot(function arguments)` and `Plot._setitem_(i, function arguments)` (accessed using array-index syntax on the `Plot` instance) will interpret your arguments as a cartesian plot if you provide one function and a parametric plot if you provide two or three functions. Similarly, the arguments will be interpreted as a curve is one variable is used, and a surface if two are used.

Supported mode names by number of variables:

- 1 (curves): parametric, cartesian, polar
- 2 (surfaces): parametric, cartesian, cylindrical, spherical

```python
>>> Plot(1, 'mode=spherical; color=zsfade4')
```

Note that function parameters are given as option strings of the form "key1=value1; key2 = value2" (spaces are truncated). Keyword arguments given directly to `plot` apply to the `plot` itself.

**Specifying Intervals for Variables**

The basic format for variable intervals is [var, min, max, steps]. However, the syntax is quite flexible, and arguments not specified are taken from the defaults for the current coordinate mode:

```python
>>> Plot(x**2) # implies [x,-5,5,100]
>>> Plot(x**2, [], []) # [x,-1,1,40], [y,-1,1,40]
>>> Plot(x**2-y**2, [100], [100]) # [x,-1,1,100], [y,-1,1,100]
>>> Plot(x**2, [x,-13,13,100])
>>> Plot(x**2, [-13,13]) # [x,-13,13,100]
>>> Plot(x**2, [x,-13,13]) # [x,-13,13,100]
>>> Plot(1*x, [], [x], 'mode=cylindrical') # [unbound_theta,0,2*Pi,40], [x,-1, -1,20]
```
Using the Interactive Interface

```python
>>> p = Plot(visible=False)
>>> f = x**2
>>> p[1] = f
>>> p[2] = f.diff(x)
>>> p[3] = f.diff(x).diff(x)
``` 

When not specified explicitly, the default color gradient is $f(0.0) = (0.4, 0.4, 0.4) \to f(1.0) = (0.9, 0.9, 0.9)$. In our case, everything is gray-scale because we have applied the default color gradient uniformly for each color component. When defining a color scheme in this way, you might want to supply a color gradient as well:

```python
>>> p[1].color = (Fx**2 + Fy**2 + Fz**2)**(0.5), (0.1,0.1,0.9), (0.9,0.1,0.1)
``` 

5.8. Topics
The other way to specify a color scheme is to give a separate function for each component r, g, b. With this syntax, the default color scheme is defined:

```python
>>> p[1].color = z, y, x, (0.4, 0.4, 0.4), (0.9, 0.9, 0.9)
```

This maps z->red, y->green, and x->blue. In some cases, you might prefer to use the following alternative syntax:

```python
>>> p[1].color = z, (0.4, 0.9), y, (0.4, 0.9), x, (0.4, 0.9)
```

You can still use multi-step gradients with three-function color schemes.

**Plotting Geometric Entities**

The plotting module is capable of plotting some 2D geometric entities like line, circle and ellipse. The following example plots a circle centred at origin and of radius 2 units.

```python
>>> from sympy import *
>>> x, y = symbols('x y')
>>> plot_implicit(Eq(x**2 + y**2, 4))
```

Similarly, `plot_implicit()` (page 2931) may be used to plot any 2-D geometric structure from its implicit equation.

Plotting polygons (Polygon, RegularPolygon, Triangle) are not supported directly.

**Plotting with ASCII art**

`sympy.plotting.textplot.textplot(expr, a, b, W=55, H=21)`

Print a crude ASCII art plot of the SymPy expression `expr` (which should contain a single symbol, e.g. x or something else) over the interval [a, b].

**Examples**

```python
>>> from sympy import Symbol, sin
>>> from sympy.plotting import textplot
>>> t = Symbol('t')
>>> textplot(sin(t)*t, 0, 15)
```

(continues on next page)
Stats

SymPy statistics module

Introduces a random variable type into the SymPy language.

Random variables may be declared using prebuilt functions such as Normal, Exponential, Coin, Die, etc... or built with functions like FiniteRV.

Queries on random expressions can be made using the functions

<table>
<thead>
<tr>
<th>Expression</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(condition)</td>
<td>Probability</td>
</tr>
<tr>
<td>E(expression)</td>
<td>Expected value</td>
</tr>
<tr>
<td>H(expression)</td>
<td>Entropy</td>
</tr>
<tr>
<td>variance(expression)</td>
<td>Variance</td>
</tr>
<tr>
<td>density(expression)</td>
<td>Probability Density Function</td>
</tr>
<tr>
<td>sample(expression)</td>
<td>Produce a realization</td>
</tr>
<tr>
<td>where(condition)</td>
<td>Where the condition is true</td>
</tr>
</tbody>
</table>

Examples

```python
>>> from sympy.stats import P, E, variance, Die, Normal
>>> from sympy import simplify
>>> X, Y = Die('X', 6), Die('Y', 6) # Define two six sided dice
>>> Z = Normal('Z', 0, 1) # Declare a Normal random variable with mean 0, std 1

>>> P(X>3) # Probability X is greater than 3
1/2

>>> E(X+Y) # Expectation of the sum of two dice
7

>>> variance(X+Y) # Variance of the sum of two dice
35/6

>>> simplify(P(Z>1)) # Probability of Z being greater than 1
1/2 - erf(sqrt(2)/2)/2
```

One could also create custom distribution and define custom random variables as follows:

1. If you want to create a Continuous Random Variable:
```python
from sympy.stats import ContinuousRV, P, E
from sympy import exp, Symbol, Interval, oo

x = Symbol('x')
pdf = exp(-x) # pdf of the Continuous Distribution
Z = ContinuousRV(x, pdf, set=Interval(0, oo))
E(Z)
1
P(Z > 5)
ex(-5)
```

1.1 To create an instance of Continuous Distribution:

```python
from sympy.stats import ContinuousDistributionHandmade
from sympy import Lambda

dist = ContinuousDistributionHandmade(Lambda(x, pdf), set=Interval(0, oo))
dist.pdf(x)
ex(-x)
```

2. If you want to create a Discrete Random Variable:

```python
from sympy.stats import DiscreteRV, P, E
from sympy import Symbol, S

p = S(1)/2
x = Symbol('x', integer=True, positive=True)
pdf = p*(1 - p)**(x - 1)
D = DiscreteRV(x, pdf, set=S.Naturals)
E(D)
2
P(D > 3)
1/8
```

2.1 To create an instance of Discrete Distribution:

```python
from sympy.stats import DiscreteDistributionHandmade
from sympy import Lambda

dist = DiscreteDistributionHandmade(Lambda(x, pdf), set=S.Naturals)
dist.pdf(x)
2**(1 - x)/2
```

3. If you want to create a Finite Random Variable:

```python
from sympy.stats import FiniteRV, P, E
from sympy import Rational, Eq

pmf = {1: Rational(1, 3), 2: Rational(1, 6), 3: Rational(1, 4), 4: Rational(1, 4)}
X = FiniteRV('X', pmf)
E(X)
29/12
P(X > 3)
1/4
```

3.1 To create an instance of Finite Distribution:
Random Variable Types

Finite Types

sympy.stats.DiscreteUniform(name, items)
Create a Finite Random Variable representing a uniform distribution over the input set.

Parameters
items : list/tuple
Items over which Uniform distribution is to be made

Returns
RandomSymbol

Examples

```python
>>> from sympy.stats import DiscreteUniform, density
>>> from sympy import symbols

>>> X = DiscreteUniform('X', symbols('a b c')) # equally likely over a, b, c
>>> density(X).dict
{a: 1/3, b: 1/3, c: 1/3}

>>> Y = DiscreteUniform('Y', list(range(5))) # distribution over a range
>>> density(Y).dict
{0: 1/5, 1: 1/5, 2: 1/5, 3: 1/5, 4: 1/5}
```

References

[R828], [R829]

sympy.stats.Die(name, sides=6)
Create a Finite Random Variable representing a fair die.

Parameters
sides : Integer
Represents the number of sides of the Die, by default is 6

Returns
RandomSymbol
Examples

```python
>>> from sympy.stats import Die, density
>>> from sympy import Symbol

>>> D6 = Die('D6', 6) # Six sided Die
>>> density(D6).dict
{1: 1/6, 2: 1/6, 3: 1/6, 4: 1/6, 5: 1/6, 6: 1/6}

>>> D4 = Die('D4', 4) # Four sided Die
>>> density(D4).dict
{1: 1/4, 2: 1/4, 3: 1/4, 4: 1/4}

>>> n = Symbol('n', positive=True, integer=True)
>>> Dn = Die('Dn', n) # n sided Die
>>> density(Dn).dict
Density(DieDistribution(n))
>>> density(Dn).dict.subs(n, 4).doit()
{1: 1/4, 2: 1/4, 3: 1/4, 4: 1/4}
```

**sympy.stats.Bernoulli**(name, p, succ=1, fail=0)

Create a Finite Random Variable representing a Bernoulli process.

**Parameters**

- **p**: Rational number between 0 and 1
  - Represents probability of success
- **succ**: Integer/symbol/string
  - Represents event of success
- **fail**: Integer/symbol/string
  - Represents event of failure

**Returns**

RandomSymbol

Examples

```python
>>> from sympy.stats import Bernoulli, density
>>> from sympy import S

>>> X = Bernoulli('X', S(3)/4) # 1-0 Bernoulli variable, probability = 3/4
>>> density(X).dict
{0: 1/4, 1: 3/4}

>>> X = Bernoulli('X', S.Half, 'Heads', 'Tails') # A fair coin toss
>>> density(X).dict
{Heads: 1/2, Tails: 1/2}
```
References

[R830], [R831]
sympy.stats.Coin(name, p=1/2)
Create a Finite Random Variable representing a Coin toss.

Parameters
- **p**: Rational Number between 0 and 1
  Represents probability of getting “Heads”, by default is Half

Returns
RandomSymbol

Examples

```python
>>> from sympy.stats import Coin, density
>>> from sympy import Rational

>>> C = Coin('C') # A fair coin toss
>>> density(C).dict
{H: 1/2, T: 1/2}

>>> C2 = Coin('C2', Rational(3, 5)) # An unfair coin
>>> density(C2).dict
{H: 3/5, T: 2/5}
```

See also:
sympy.stats.Binomial (page 2961)

References

[R832]
sympy.stats.Binomial(name, n, p, succ=1, fail=0)
Create a Finite Random Variable representing a binomial distribution.

Parameters
- **n**: Positive Integer
  Represents number of trials
- **p**: Rational Number between 0 and 1
  Represents probability of success
- **succ**: Integer/symbol/string
  Represents event of success, by default is 1
- **fail**: Integer/symbol/string
  Represents event of failure, by default is 0

Returns
RandomSymbol
Examples

```python
>>> from sympy.stats import Binomial, density
>>> from sympy import S, Symbol

>>> X = Binomial('X', 4, S.Half) # Four “coin flips”
>>> density(X).dict
{0: 1/16, 1: 1/4, 2: 3/8, 3: 1/4, 4: 1/16}

>>> n = Symbol('n', positive=True, integer=True)
>>> p = Symbol('p', positive=True)
>>> X = Binomial('X', n, S.Half) # n ”coin flips”
>>> density(X).dict
Density(BinomialDistribution(n, 1/2, 1, 0))
>>> density(X).dict.subs(n, 4).doit()
{0: 1/16, 1: 1/4, 2: 3/8, 3: 1/4, 4: 1/16}
```

References

[R833], [R834]

sympy.stats.BetaBinomial(name, n, alpha, beta)

Create a Finite Random Variable representing a Beta-binomial distribution.

Parameters

- **n**: Positive Integer
  - Represents number of trials
- **alpha**: Real positive number
- **beta**: Real positive number

Returns

RandomSymbol

Examples

```python
>>> from sympy.stats import BetaBinomial, density

>>> X = BetaBinomial('X', 2, 1, 1)
>>> density(X).dict
{0: 1/3, 1: 2*beta(2, 2), 2: 1/3}
```
**References**

[R835], [R836]

sympy.stats.Hypergeometric(name, N, m, n)
Create a Finite Random Variable representing a hypergeometric distribution.

**Parameters**

- **N**: Positive Integer
  Represents finite population of size N.
- **m**: Positive Integer
  Represents number of trials with required feature.
- **n**: Positive Integer
  Represents numbers of draws.

**Returns**

RandomSymbol

**Examples**

```python
>>> from sympy.stats import Hypergeometric, density

>>> X = Hypergeometric('X', 10, 5, 3) # 10 marbles, 5 white (success), 3 draws
>>> density(X).dict
{0: 1/12, 1: 5/12, 2: 5/12, 3: 1/12}
```

**References**

[R837], [R838]

sympy.stats.FiniteRV(name, density, **kwargs)
Create a Finite Random Variable given a dict representing the density.

**Parameters**

- **name**: Symbol
  Represents name of the random variable.
- **density**: dict
  Dictionary containing the pdf of finite distribution
- **check**: bool
  If True, it will check whether the given density integrates to 1 over the given set. If False, it will not perform this check. Default is False.

**Returns**

RandomSymbol
Examples

```python
>>> from sympy.stats import FiniteRV, P, E

>>> density = {0: .1, 1: .2, 2: .3, 3: .4}
>>> X = FiniteRV('X', density)

>>> E(X)
2.00000000000000
>>> P(X >= 2)
0.700000000000000
```

sympy.stats.Rademacher(name)

Create a Finite Random Variable representing a Rademacher distribution.

Returns
RandomSymbol

Examples

```python
>>> from sympy.stats import Rademacher, density

>>> X = Rademacher('X')
>>> density(X).dict
{-1: 1/2, 1: 1/2}
```

See also:

sympy.stats.Bernoulli (page 2960)

References

[R839]

Discrete Types

sympy.stats.Geometric(name, p)

Create a discrete random variable with a Geometric distribution.

Parameters
   p : A probability between 0 and 1

Returns
RandomSymbol
Explanation

The density of the Geometric distribution is given by

\[ f(k) := p(1 - p)^{k-1} \]

Examples

```python
>>> from sympy.stats import Geometric, density, E, variance
>>> from sympy import Symbol, S

>>> p = S.One / 5
>>> z = Symbol("z")

>>> X = Geometric("x", p)

>>> density(X)(z)
(5/4)**(1 - z)/5

>>> E(X)
5

>>> variance(X)
20
```

References

[R840], [R841]

`sympy.stats.Hermite(name, a1, a2)`

Create a discrete random variable with a Hermite distribution.

**Parameters**

- `a1` : A Positive number greater than equal to 0.
- `a2` : A Positive number greater than equal to 0.

**Returns**

RandomSymbol

Explanation

The density of the Hermite distribution is given by

\[ f(x) := e^{-a_1-a_2} \sum_{j=0}^{[x/2]} \frac{a_{1}^{x-2j}a_{2}^{j}}{(x-2j)!j!} \]
Examples

```python
>>> from sympy.stats import Hermite, density, E, variance
>>> from sympy import Symbol

>>> a1 = Symbol("a1", positive=True)
>>> a2 = Symbol("a2", positive=True)
>>> x = Symbol("x")

>>> H = Hermite("H", a1=5, a2=4)

>>> density(H)(2)
33*exp(-9)/2

>>> E(H)
13

>>> variance(H)
21
```

References

[R842] sympy.stats.Poisson(name, lamda)

Create a discrete random variable with a Poisson distribution.

Parameters

- lamda : Positive number, a rate

Returns

RandomSymbol

Explanation

The density of the Poisson distribution is given by

\[ f(k) := \frac{\lambda^k e^{-\lambda}}{k!} \]

Examples

```python
>>> from sympy.stats import Poisson, density, E, variance
>>> from sympy import Symbol, simplify

>>> rate = Symbol("lambda", positive=True)
>>> z = Symbol("z")
```
SymPy Documentation, Release 1.12.1

```python
>>> X = Poisson("x", rate)

>>> density(X)(z)
lambda**z*exp(-lambda)/factorial(z)

>>> E(X)
lambda

>>> simplify(variance(X))
lambda
```

References

[R843], [R844]

sympy.stats.Logarithmic(name, p)
Create a discrete random variable with a Logarithmic distribution.

**Parameters**
- p : A value between 0 and 1

**Returns**
- RandomSymbol

**Explanation**

The density of the Logarithmic distribution is given by

\[ f(k) := \frac{-p^k}{k \ln(1 - p)} \]

**Examples**

```python
>>> from sympy.stats import Logarithmic, density, E, variance
>>> from sympy import Symbol, S

>>> p = S.One / 5
>>> z = Symbol("z")

>>> X = Logarithmic("x", p)

>>> density(X)(z)
-1/(5**z*z*log(4/5))

>>> E(X)
-1/(-4*log(5) + 8*log(2))
```
sympy.stats.NegativeBinomial(name, r, p)
Create a discrete random variable with a Negative Binomial distribution.

Parameters
- **r**: A positive value
- **p**: A value between 0 and 1

Returns
RandomSymbol

Explanation
The density of the Negative Binomial distribution is given by

\[ f(k) := \binom{k + r - 1}{k} (1 - p)^r p^k \]

Examples

```python
>>> from sympy.stats import NegativeBinomial, density, E, variance
>>> from sympy import Symbol, S

>>> r = 5
>>> p = S.One / 5
>>> z = Symbol("z")

>>> X = NegativeBinomial("x", r, p)

>>> density(X)(z)
1024*binomial(z + 4, z)/(3125*5**z)

>>> E(X)
5/4

>>> variance(X)
25/16
```
References

[R847], [R848]
sympy.stats.Skellam(name, mu1, mu2)
Create a discrete random variable with a Skellam distribution.

Parameters

- mu1 : A non-negative value
- mu2 : A non-negative value

Returns

RandomSymbol

Explanation

The Skellam is the distribution of the difference $N_1 - N_2$ of two statistically independent random variables $N_1$ and $N_2$ each Poisson-distributed with respective expected values $\mu_1$ and $\mu_2$.

The density of the Skellam distribution is given by

$$f(k) := e^{-\frac{\mu_1 + \mu_2}{\mu_2}} \frac{(\frac{\mu_1}{\mu_2})^{k/2}}{I_k(2\sqrt{\mu_1 \mu_2})}$$

Examples

```python
>>> from sympy.stats import Skellam, density, E, variance
>>> from sympy import Symbol, pprint

>>> z = Symbol("z", integer=True)
>>> mu1 = Symbol("mu1", positive=True)
>>> mu2 = Symbol("mu2", positive=True)
>>> X = Skellam("x", mu1, mu2)

>>> pprint(density(X)(z), use_unicode=False)
 z - 2
 / \ -mu1 - mu2 /---\ *e *besseli[z, 2*\ mu1 */ mu2 / \
 \mu2/
>>> E(X)
mu1 - mu2
>>> variance(X).expand()
mu1 + mu2
```
sympy.stats.YuleSimon(name, rho)
Create a discrete random variable with a Yule-Simon distribution.

Parameters
rho : A positive value

Returns
RandomSymbol

Explanation
The density of the Yule-Simon distribution is given by

\[ f(k) := \rho B(k, \rho + 1) \]

Examples

```python
>>> from sympy.stats import YuleSimon, density, E, variance
>>> from sympy import Symbol, simplify

>>> p = 5
>>> z = Symbol("z")

>>> X = YuleSimon("x", p)

>>> density(X)(z)
5*beta(z, 6)

>>> simplify(E(X))
5/4

>>> simplify(variance(X))
25/48
```

References

[R849] sympy.stats.Zeta(name, s)
Create a discrete random variable with a Zeta distribution.

Parameters
s : A value greater than 1

Returns
RandomSymbol
**Explanation**

The density of the Zeta distribution is given by

\[ f(k) := \frac{1}{k^s \zeta(s)} \]

**Examples**

```python
>>> from sympy.stats import Zeta, density, E, variance
>>> from sympy import Symbol

>>> s = 5
>>> z = Symbol("z")

>>> X = Zeta("x", s)

>>> density(X)(z)
1/(z**5*zeta(5))

>>> E(X)
pi**4/(90*zeta(5))

>>> variance(X)
-pi**8/(8100*zeta(5)**2) + zeta(3)/zeta(5)
```

**References**

[R851]

**Continuous Types**

`sympy.stats.Arcsin(name, a=0, b=1)`

Create a Continuous Random Variable with an arcsin distribution.

The density of the arcsin distribution is given by

\[ f(x) := \frac{1}{\pi \sqrt{(x-a)(b-x)}} \]

with \( x \in (a, b) \). It must hold that \(-\infty < a < b < \infty\).

**Parameters**

- **a**: Real number, the left interval boundary
- **b**: Real number, the right interval boundary

**Returns**

RandomSymbol
Examples

```python
>>> from sympy.stats import Arcsin, density, cdf
>>> from sympy import Symbol

>>> a = Symbol("a", real=True)
>>> b = Symbol("b", real=True)
>>> z = Symbol("z")

>>> X = Arcsin("x", a, b)

>>> density(X)(z)
1/(pi*sqrt((-a + z)*(b - z)))

>>> cdf(X)(z)
Piecewise((0, a > z),
(2*asin(sqrt((-a + z)/(-a + b)))/pi, b >= z),
(1, True))
```

References

[R852] sympy.stats.Benini(name, alpha, beta, sigma)
Create a Continuous Random Variable with a Benini distribution.

The density of the Benini distribution is given by

\[ f(x) := e^{-\alpha \log x - \beta \log^2 x} \left( \frac{\alpha}{x} + \frac{2\beta \log x}{x^2} \right) \]

This is a heavy-tailed distribution and is also known as the log-Rayleigh distribution.

Parameters
- **alpha**: Real number, \( \alpha > 0 \), a shape
- **beta**: Real number, \( \beta > 0 \), a shape
- **sigma**: Real number, \( \sigma > 0 \), a scale

Returns
RandomSymbol

Examples

```python
>>> from sympy.stats import Benini, density, cdf
>>> from sympy import Symbol, pprint

>>> alpha = Symbol("alpha", positive=True)
>>> beta = Symbol("beta", positive=True)
>>> sigma = Symbol("sigma", positive=True)
>>> z = Symbol("z")
```
>>> X = Benini("x", alpha, beta, sigma)

```python
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
```

\[
\frac{\alpha - 1}{\sigma^2} \log\frac{z}{\sigma} - \frac{\beta - 1}{\sigma^2} \log\left(\frac{z}{\sigma}\right)^2 + \left(1 - \exp\left(-\alpha \log\frac{z}{\sigma} - \beta \log\left(\frac{z}{\sigma}\right)^2\right), \sigma \leq \frac{z}{\sigma}, \left(0, \text{True})\right)
```

References

[R853], [R854]

`sympy.stats.Beta(name, alpha, beta)`

Create a Continuous Random Variable with a Beta distribution.

The density of the Beta distribution is given by

\[
f(x) := \frac{x^{\alpha - 1}(1-x)^{\beta - 1}}{B(\alpha, \beta)}
\]

with \(x \in [0, 1] \).

Parameters

- `alpha` : Real number, \(\alpha > 0 \), a shape
- `beta` : Real number, \(\beta > 0 \), a shape

Returns

RandomSymbol

Examples

```python
>>> from sympy.stats import Beta, density, E, variance
>>> from sympy import Symbol, simplify, pprint, factor

>>> alpha = Symbol("alpha", positive=True)
>>> beta = Symbol("beta", positive=True)
>>> z = Symbol("z")

>>> X = Beta("x", alpha, beta)

>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
```

(continues on next page)
z * (1 - z) ---------------------- B(alpha, beta)

>>> simplify(E(X))
alpha/(alpha + beta)

>>> factor(simplify(variance(X)))
alpha*beta/((alpha + beta)**2*(alpha + beta + 1))

References

[R855], [R856]
sympy.stats.BetaNoncentral(name, alpha, beta, lamda)
Create a Continuous Random Variable with a Type I Noncentral Beta distribution.
The density of the Noncentral Beta distribution is given by

\[f(x) := \sum_{k=0}^{\infty} e^{-\lambda/2} \left(\frac{\lambda}{2}\right)^k \frac{x^{\alpha+k-1}(1-x)^{\beta-1}}{k! B(\alpha + k; \beta)} \]

with \(x \in [0, 1] \).

Parameters
- **alpha**: Real number, \(\alpha > 0 \), a shape
- **beta**: Real number, \(\beta > 0 \), a shape
- **lamda**: Real number, \(\lambda \geq 0 \), noncentrality parameter

Returns
RandomSymbol

Examples

```python
>>> from sympy.stats import BetaNoncentral, density, cdf
>>> from sympy import Symbol, pprint

>>> alpha = Symbol("alpha", positive=True)
>>> beta = Symbol("beta", positive=True)
>>> lamda = Symbol("lamda", nonnegative=True)
>>> z = Symbol("z")

>>> X = BetaNoncentral("x", alpha, beta, lamda)

>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
```

(continues on next page)
Compute cdf with specific ‘x’, ‘alpha’, ‘beta’ and ‘lamda’ values as follows:

```python
>>> cdf(BetaNoncentral("x", 1, 1, 1), evaluate=False)(2).doit()
2*exp(1/2)
```

The argument `evaluate=False` prevents an attempt at evaluation of the sum for general `x`, before the argument 2 is passed.

References

[R857], [R858]

`sympy.stats.BetaPrime(name, alpha, beta)`

Create a continuous random variable with a Beta prime distribution.

The density of the Beta prime distribution is given by

\[
f(x) = \frac{x^{\alpha-1}(1+x)^{-\alpha-\beta}}{B(\alpha, \beta)}
\]

with \(x > 0\).

Parameters

- `alpha`: Real number, \(\alpha > 0\), a shape
- `beta`: Real number, \(\beta > 0\), a shape

Returns

RandomSymbol

Examples

```python
>>> from sympy.stats import BetaPrime, density
>>> from sympy import Symbol, pprint

>>> alpha = Symbol("alpha", positive=True)
>>> beta = Symbol("beta", positive=True)
>>> z = Symbol("z")

>>> X = BetaPrime("x", alpha, beta)
```
D = density(X)(z)
pprint(D, use_unicode=False)

\[
\frac{\alpha - 1}{\zeta (\alpha - \beta) z (z + 1)}
\]

References

[R859], [R860]

sympy.stats.BoundedPareto(name, alpha, left, right)

Create a continuous random variable with a Bounded Pareto distribution.

The density of the Bounded Pareto distribution is given by

\[
f(x) := \frac{\alpha L^x - \alpha - 1}{1 - (\frac{L}{H})^\alpha}
\]

Parameters

alpha : Real Number, \(\alpha > 0 \)
Shape parameter
left : Real Number, \(\text{left} > 0 \)
Location parameter
right : Real Number, \(\text{right} > \text{left} \)
Location parameter

Returns

RandomSymbol

Examples

>>> from sympy.stats import BoundedPareto, density, cdf, E
>>> from sympy import symbols
>>> L, H = symbols('L, H', positive=True)
>>> X = BoundedPareto('X', 2, L, H)
>>> x = symbols('x')
>>> density(X)(x)
\(2*L^2/(x**3*(1 - L**2/H**2))\)
>>> cdf(X)(x)
Piecewise((-H**2*L**2/(x**2*(H**2 - L**2)) + H**2/(H**2 - L**2), L <= x), (-\infty, True))
>>> E(X).simplify()
\(2*H*L/(H + L)\)
References

[R861]
sympy.stats.Cauchy(name, x0, gamma)

Create a continuous random variable with a Cauchy distribution.

The density of the Cauchy distribution is given by

$$f(x) := \frac{1}{\pi \gamma \left[1 + \left(\frac{x-x_0}{\gamma}\right)^2\right]}$$

Parameters

- \(x_0\) : Real number, the location
- \(\text{gamma}\) : Real number, \(\gamma > 0\), a scale

Returns

RandomSymbol

Examples

```python
>>> from sympy.stats import Cauchy, density
>>> from sympy import Symbol

>>> x0 = Symbol("x0")
>>> gamma = Symbol("gamma", positive=True)
>>> z = Symbol("z")

>>> X = Cauchy("x", x0, gamma)

>>> density(X)(z)
1/(pi*gamma*(1 + (-x0 + z)**2/gamma**2))
```

References

[R862], [R863]
sympy.stats.Chi(name, k)

Create a continuous random variable with a Chi distribution.

The density of the Chi distribution is given by

$$f(x) := \frac{2^{k/2} x^{k-1} e^{-x^2/2}}{\Gamma(k/2)}$$

with \(x \geq 0\).

Parameters

- \(k\) : Positive integer, The number of degrees of freedom

Returns

RandomSymbol
Examples

```python
>>> from sympy.stats import Chi, density, E
>>> from sympy import Symbol, simplify

>>> k = Symbol("k", integer=True)
>>> z = Symbol("z")

>>> X = Chi("x", k)

>>> density(X)(z)
2**(1 - k/2)*z**(k - 1)*exp(-z**2/2)/gamma(k/2)

>>> simplify(E(X))
sqrt(2)*gamma(k/2 + 1/2)/gamma(k/2)
```

References

[R864], [R865]
sympy.stats.ChNoncentral(name, k, l)
Create a continuous random variable with a non-central Chi distribution.

Parameters

- **k**: A positive Integer, \(k > 0\)
 - The number of degrees of freedom.
- **lambda**: Real number, \(\lambda > 0\)
 - Shift parameter.

Returns

RandomSymbol

Explanation

The density of the non-central Chi distribution is given by

\[
f(x) = \frac{e^{-(x^2+\lambda^2)/2}x^k\lambda}{(\lambda x)^{k/2}}I_{k/2-1}(\lambda x)
\]

with \(x \geq 0\). Here, \(I_\nu(x)\) is the modified Bessel function of the first kind (page 556).
Examples

```python
>>> from sympy.stats import ChiNoncentral, density
>>> from sympy import Symbol

>>> k = Symbol("k", integer=True)
>>> l = Symbol("l")
>>> z = Symbol("z")

>>> X = ChiNoncentral("x", k, l)

>>> density(X)(z)
l*z**k*exp(-l**2/2 - z**2/2)*besseli(k/2 - 1, l*z)/(l*z)**(k/2)
```

References

[R866] sympy.stats.Chisquared(name, k)
Create a continuous random variable with a Chi-squared distribution.

Parameters

- **k**: Positive integer

 The number of degrees of freedom.

Returns

RandomSymbol

Explanation

The density of the Chi-squared distribution is given by

\[
f(x) := \frac{1}{2^{k/2}\Gamma(k/2)} x^{k/2 - 1} e^{-x/2}
\]

with \(x \geq 0 \).

Examples

```python
>>> from sympy.stats import Chisquared, density, E, variance, moment
>>> from sympy import Symbol

>>> k = Symbol("k", integer=True, positive=True)
>>> z = Symbol("z")

>>> X = Chisquared("x", k)

>>> density(X)(z)
z**(k/2 - 1)*exp(-z/2)/(2**(k/2)*gamma(k/2))
```
>>> E(X)

k

>>> variance(X)

2*k

>>> moment(X, 3)

k**3 + 6*k**2 + 8*k

References

[R867], [R868]
sympy.stats.Dagum(name, p, a, b)
Create a continuous random variable with a Dagum distribution.

Parameters

- `p`: Real number

 $p > 0$, a shape.

- `a`: Real number

 $a > 0$, a shape.

- `b`: Real number

 $b > 0$, a scale.

Returns

RandomSymbol

Explanation

The density of the Dagum distribution is given by

$$f(x) := \frac{ap}{x} \left(\frac{\left(\frac{x}{b} \right)^a}{\left(\frac{x}{b} \right)^a + 1} \right)^{p+1}$$

with $x > 0$.

Examples

```python
>>> from sympy.stats import Dagum, density, cdf
>>> from sympy import Symbol

>>> p = Symbol("p", positive=True)
>>> a = Symbol("a", positive=True)
>>> b = Symbol("b", positive=True)
>>> z = Symbol("z")
```
\[
X = \text{Dagum}("x", p, a, b)
\]

\[
density(X)(z)
= a \cdot p \cdot (z/b)^{(a \cdot p)} \cdot ((z/b)^{a} + 1)^{(-p - 1)}/z
\]

\[
cdf(X)(z)
= \text{Piecewise}(((1 + (z/b)^{-a})^{(-p)}, z \geq 0), (0, \text{True}))
\]

References

[R869]
sympy.stats.Erlang(name, k, l)
Create a continuous random variable with an Erlang distribution.

Parameters

- \(k\) : Positive integer
- \(l\) : Real number, \(\lambda > 0\), the rate

Returns

RandomSymbol

Explanation

The density of the Erlang distribution is given by

\[
f(x) := \frac{\lambda^{k} x^{k-1} e^{-\lambda x}}{(k-1)!}
\]

with \(x \in [0, \infty)\).

Examples

```python
>>> from sympy.stats import Erlang, density, cdf, E, variance
>>> from sympy import Symbol, simplify, pprint

>>> k = Symbol("k", integer=True, positive=True)
>>> l = Symbol("l", positive=True)
>>> z = Symbol("z")

>>> X = Erlang("x", k, l)

>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
\[\frac{\lambda^{k} \cdot x^{k-1} \cdot e^{-\lambda x}}{(k-1)!}\]

>>> Gamma(k)
```
SymPy Documentation, Release 1.12.1

```python
>>> C = cdf(X)(z)
>>> pprint(C, use_unicode=False)
/\lowergamma(k, l*z)
\|------------------ for z > 0
\| \Gamma(k)
\| \0 otherwise

>>> E(X)
k/l

>>> simplify(variance(X))
k/l**2
```

References

[R870], [R871]

sympy.stats.ExGaussian(name, mean, std, rate)

Create a continuous random variable with an Exponentially modified Gaussian (EMG) distribution.

Parameters

- `name` : A string giving a name for this distribution
- `mean` : A Real number, the mean of Gaussian component
- `std` : A positive Real number,
 - `math` \(\sigma^2 > 0 \) the variance of Gaussian component
- `rate` : A positive Real number,
 - `math` \(\lambda > 0 \) the rate of Exponential component

Returns

RandomSymbol

Explanation

The density of the exponentially modified Gaussian distribution is given by

\[
f(x) := \frac{\lambda}{2} e^{\frac{1}{2}(2\mu + \lambda \sigma^2 - 2x)} \text{erfc}\left(\frac{\mu + \lambda \sigma^2 - x}{\sqrt{2\sigma}}\right)
\]

with \(x > 0 \). Note that the expected value is \(1/\lambda \).
Examples

```python
>>> from sympy.stats import ExGaussian, density, cdf, E
>>> from sympy.stats import variance, skewness
>>> from sympy import Symbol, pprint, simplify

>>> mean = Symbol("mu")
>>> std = Symbol("sigma", positive=True)
>>> rate = Symbol("lamda", positive=True)
>>> z = Symbol("z")
>>> X = ExGaussian("x", mean, std, rate)

>>> pprint(density(X)(z), use_unicode=False)
2
\lamda*\lamda*sigma + 2*mu - 2*z/
--------------------------------- / ___ / 2
\lamda*e \erfc|---------------------------| 2
\lamda*sigma + mu - z/2*sigma

>>> cdf(X)(z)
-(erf(sqrt(2)*(-lamda**2*sigma**2 + lamda*(-mu + z))/(2*lamda*sigma))/2
+ 1/2)*exp(lamda**2*sigma**2/2 - lamda*(-mu + z)) + erf(sqrt(2)*(-mu +
-z)/(2*sigma))/2 + 1/2

>>> E(X)
(lamda*mu + 1)/lamda

>>> simplify(variance(X))
sigma**2 + lamda**(-2)

>>> simplify(skewness(X))
2/(lamda**2*sigma**2 + 1)**(3/2)
```
SymPy Documentation, Release 1.12.1

References

[R872]
sympy.stats.**Exponential**(name, rate)

Create a continuous random variable with an Exponential distribution.

Parameters

rate : A positive Real number, \(\lambda > 0 \), the rate (or inverse scale/inverse mean)

Returns

RandomSymbol

Explanation

The density of the exponential distribution is given by

\[
f(x) := \lambda \exp(-\lambda x)
\]

with \(x > 0 \). Note that the expected value is \(1/\lambda \).

Examples

```python
>>> from sympy.stats import Exponential, density, cdf, E
>>> from sympy.stats import variance, std, skewness, quantile
>>> from sympy import Symbol

>>> l = Symbol("lambda", positive=True)
>>> z = Symbol("z")
>>> p = Symbol("p")
>>> X = Exponential("x", l)

>>> density(X)(z)
lambda*exp(-lambda*z)

>>> cdf(X)(z)
Piecewise((1 - exp(-lambda*z), z >= 0), (0, True))

>>> quantile(X)(p)
-log(1 - p)/lambda

>>> E(X)
1/lambda

>>> variance(X)
lambda**(-2)

>>> skewness(X)
2
```
```python
>>> X = Exponential('x', 10)
```
```python
>>> density(X)(z)
10*exp(-10*z)
```
```python
>>> E(X)
1/10
```
```python
>>> std(X)
1/10
```

References

[R873], [R874]
sympy.stats.FDistribution(name, d1, d2)
Create a continuous random variable with a F distribution.

Parameters

d1 : $d_1 > 0$, where d_1 is the degrees of freedom $(n_1 - 1)$
d2 : $d_2 > 0$, where d_2 is the degrees of freedom $(n_2 - 1)$

Returns

RandomSymbol

Explanation

The density of the F distribution is given by

$$f(x) := \frac{(d_1 x)^{d_1/2} (d_2 x)^{-d_2/2}}{x B\left(\frac{d_1}{2}, \frac{d_2}{2}\right)}$$

with $x > 0$.

Examples

```python
>>> from sympy.stats import FDistribution, density
>>> from sympy import Symbol, pprint
```
```python
>>> d1 = Symbol("d1", positive=True)
>>> d2 = Symbol("d2", positive=True)
>>> z = Symbol("z")
```
```python
>>> X = FDistribution("x", d1, d2)
```
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
 2 /d1 -d1 - d2
 d2 *\ (d1*z) *(d1*z + d2)

 /d1 d2\
 z*B|--, --|
 \2 2 /

References

[R875], [R876]
sympy.stats.FisherZ(name, d1, d2)
Create a Continuous Random Variable with an Fisher's Z distribution.

Parameters

- **d1**: \(d_1 \gt 0 \)
 Degree of freedom.
- **d2**: \(d_2 \gt 0 \)
 Degree of freedom.

Returns

RandomSymbol

Explanation

The density of the Fisher's Z distribution is given by

\[
f(x) := \frac{2^{d_1/2} d_2^{d_2/2} e^{d_1 z}}{B(d_1/2, d_2/2) (d_1 e^{2z} + d_2)^{(d_1+d_2)/2}}
\]

Examples

```python
>>> from sympy.stats import FisherZ, density
>>> from sympy import Symbol, pprint

>>> d1 = Symbol("d1", positive=True)
>>> d2 = Symbol("d2", positive=True)
>>> z = Symbol("z")

>>> X = FisherZ("x", d1, d2)
```
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
\[
\frac{d1 \cdot d2}{-d1 - d2} - \frac{\frac{2}{2} \cdot 2}{d1 \cdot 2^2} - \frac{2}{2} \cdot 2^2 \\
\frac{2 \cdot d1 \cdot d2}{-d1 \cdot d2} - \frac{\frac{2}{d1 \cdot 2^2} \cdot \frac{2}{2} + d2}{e} - \frac{1}{d1 \cdot d2} - \frac{\frac{2}{2} \cdot 2}{d1 \cdot 2^2} - \frac{2}{d1 \cdot d2}
\]

References

[R877], [R878]

sympy.stats.Frechet(name, a, s=1, m=0)

Create a continuous random variable with a Frechet distribution.

Parameters

- **a**: Real number, \(a \in (0, \infty) \) the shape
- **s**: Real number, \(s \in (0, \infty) \) the scale
- **m**: Real number, \(m \in (-\infty, \infty) \) the minimum

Returns

RandomSymbol

Explanation

The density of the Frechet distribution is given by

\[
f(x) := \frac{\alpha}{s} \left(\frac{x - m}{s} \right)^{-1-\alpha} e^{-\left(\frac{x - m}{s} \right)^{-\alpha}}
\]

with \(x \geq m \).

Examples

```python
>>> from sympy.stats import Frechet, density, cdf
>>> from sympy import Symbol

>>> a = Symbol("a", positive=True)
>>> s = Symbol("s", positive=True)
>>> m = Symbol("m", real=True)
>>> z = Symbol("z")

>>> X = Frechet("x", a, s, m)
```
>>> density(X)(z)
a*((-m + z)/s)**(-a - 1)*exp(-1/((-m + z)/s)**a)/s

>>> cdf(X)(z)
Piecewise((exp(-1/((-m + z)/s)**a), m <= z), (0, True))

References

[R879]
`sympy.stats.Gamma(name, k, theta)`
Create a continuous random variable with a Gamma distribution.

Parameters

- **k**: Real number, \(k > 0 \), a shape
- **theta**: Real number, \(\theta > 0 \), a scale

Returns

RandomSymbol

Explanation

The density of the Gamma distribution is given by

\[
f(x) := \frac{1}{\Gamma(k)\theta^k} x^{k-1} e^{-\frac{x}{\theta}}
\]

with \(x \in [0, 1] \).

Examples

```python
>>> from sympy.stats import Gamma, density, cdf, E, variance
>>> from sympy import Symbol, pprint, simplify

>>> k = Symbol("k", positive=True)
>>> theta = Symbol("theta", positive=True)
>>> z = Symbol("z")

>>> X = Gamma("x", k, theta)

>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
- -z
-----
\(-k\) \(k - 1\) \(\theta\)
\(\theta\) *\(z\) *\(e\)
-----------------------------
\(\Gamma(k)\)
```
```python
>>> C = cdf(X, meijerg=True)(z)
>>> pprint(C, use_unicode=False)
| k*lowergamma[k, ----] | z |
| \theta/              |
\---------------------- for z >= 0 | Gamma(k + 1) | 0 otherwise

>>> E(X)
k*theta

>>> V = simplify(variance(X))
>>> pprint(V, use_unicode=False)
2
k*theta
```

References

[R880], [R881]

`sympy.stats.GammaInverse(name, a, b)`
Create a continuous random variable with an inverse Gamma distribution.

Parameters
- a : Real number, $a > 0$, a shape
- b : Real number, $b > 0$, a scale

Returns
RandomSymbol

Explanation

The density of the inverse Gamma distribution is given by

$$f(x) := \frac{\beta^{a}}{\Gamma(a)} x^{-a-1} \exp \left(\frac{-\beta}{x}\right)$$

with $x > 0$.

Examples

```python
>>> from sympy.stats import GammaInverse, density, cdf
>>> from sympy import Symbol, pprint

>>> a = Symbol("a", positive=True)
>>> b = Symbol("b", positive=True)
>>> z = Symbol("z")
```
```python
>>> X = GammaInverse("x", a, b)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
-b
---
a -a - 1 z
b *z *e
-------------------
Gamma(a)
```

```python
>>> cdf(X)(z)
Piecewise((uppergamma(a, b/z)/gamma(a), z > 0), (0, True))
```

References

[R882]
sympy.stats.Gompertz(name, b, eta)
Create a Continuous Random Variable with Gompertz distribution.

Parameters
- **b**: Real number, $b > 0$, a scale
- **eta**: Real number, $\eta > 0$, a shape

Returns
RandomSymbol

Explanation
The density of the Gompertz distribution is given by

$$f(x) := b\eta e^{bx}e^{\eta \exp(-\eta e^{bx})}$$

with $x \in [0, \infty)$.

Examples

```python
>>> from sympy.stats import Gompertz, density
>>> from sympy import Symbol

>>> b = Symbol("b", positive=True)
>>> eta = Symbol("eta", positive=True)
>>> z = Symbol("z")

>>> X = Gompertz("x", b, eta)

>>> density(X)(z)
b*eta*exp(eta)*exp(b*z)*exp(-eta*exp(b*z))
```
References

[R883]
sympy.stats.Gumbel(name, beta, mu, minimum=False)
Create a Continuous Random Variable with Gumbel distribution.

Parameters
 mu : Real number, \(\mu \), a location
 beta : Real number, \(\beta > 0 \), a scale
 minimum : Boolean, by default False, set to True for enabling minimum distribution

Returns
 RandomSymbol

Explanation

The density of the Gumbel distribution is given by

For Maximum

\[f(x) := \frac{1}{\beta} \exp \left(-\frac{x - \mu}{\beta} - \exp \left(-\frac{x - \mu}{\beta} \right) \right) \]

with \(x \in [-\infty, \infty] \).

For Minimum

\[f(x) := \exp \left(-\frac{-\mu + x}{\beta} \right) \]

with \(x \in [-\infty, \infty] \).

Examples

```python
>>> from sympy.stats import Gumbel, density, cdf
>>> from sympy import Symbol
>>> x = Symbol("x")
>>> mu = Symbol("mu")
>>> beta = Symbol("beta", positive=True)
>>> X = Gumbel("x", beta, mu)
>>> density(X)(x)
exp(-exp(-(-mu + x)/beta) - (-mu + x)/beta)/beta
>>> cdf(X)(x)
exp(-exp(-(-mu + x)/beta))
```
References

[R884], [R885], [R886], [R887]

sympy.stats.Kumaraswamy(name, a, b)
Create a Continuous Random Variable with a Kumaraswamy distribution.

Parameters
- a : Real number, \(a > 0 \), a shape
- b : Real number, \(b > 0 \), a shape

Returns
RandomSymbol

Explanation
The density of the Kumaraswamy distribution is given by
\[
 f(x) := abx^{a-1}(1 - x^a)^{b-1}
\]
with \(x \in [0, 1] \).

Examples

```python
>>> from sympy.stats import Kumaraswamy, density, cdf
>>> from sympy import Symbol, pprint

>>> a = Symbol("a", positive=True)
>>> b = Symbol("b", positive=True)
>>> z = Symbol("z")

>>> X = Kumaraswamy("x", a, b)

>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
    b - 1
a - 1 / a\n    a*b*z *\1 - z /

>>> cdf(X)(z)
Piecewise((0, z < 0), (1 - (1 - z**a)**b, z <= 1), (1, True))
```
References

[R888]
sympy.stats.Laplace(name, mu, b)
Create a continuous random variable with a Laplace distribution.

Parameters
- **mu**: Real number or a list/matrix, the location (mean) or the location vector
- **b**: Real number or a positive definite matrix, representing a scale or the covariance matrix.

Returns
RandomSymbol

Explanation

The density of the Laplace distribution is given by

\[f(x) := \frac{1}{2b} \exp\left(- \frac{|x - \mu|}{b} \right) \]

Examples

```python
>>> from sympy.stats import Laplace, density, cdf
>>> from sympy import Symbol, pprint

>>> mu = Symbol("\textcolor{mu}")
>>> b = Symbol("\textcolor{b}", positive=True)
>>> z = Symbol("\textcolor{z}")

>>> X = Laplace("x", mu, b)

>>> density(X)(z)
exp(-Abs(mu - z)/b)/(2*b)

>>> cdf(X)(z)
Piecewise((exp((-mu + z)/b)/2, mu > z), (1 - exp((mu - z)/b)/2, True))

>>> L = Laplace('L', [1, 2], [[1, 0], [0, 1]])
>>> pprint(density(L)(1, 2), use_unicode=False)
5 / e *besselk\0, \sqrt{35} / \pi
```

5.8. Topics 2993
References

[R889], [R890]

\texttt{sympy.stats.Levy(name, mu, c)}

Create a continuous random variable with a Levy distribution.

The density of the Levy distribution is given by

\[
f(x) := \sqrt{\frac{c}{2\pi}} \frac{\exp\left(-\frac{c}{2(x-\mu)}\right)}{(x-\mu)^{3/2}}
\]

Parameters

- \texttt{mu} : Real number
 - The location parameter.
- \texttt{c} : Real number, \(c > 0 \)
 - A scale parameter.

Returns

RandomSymbol

Examples

```python
>>> from sympy.stats import Levy, density, cdf
>>> from sympy import Symbol

>>> mu = Symbol("mu", real=True)
>>> c = Symbol("c", positive=True)
>>> z = Symbol("z")

>>> X = Levy("x", mu, c)

>>> density(X)(z)
sqrt(2)*sqrt(c)*exp(-c/(-2*mu + 2*z))/(2*sqrt(pi)*(-mu + z)**(3/2))

>>> cdf(X)(z)
erfc(sqrt(c)*sqrt(1/(-2*mu + 2*z)))
```

References

[R891], [R892]

\texttt{sympy.stats.Logistic(name, mu, s)}

Create a continuous random variable with a logistic distribution.

Parameters

- \texttt{mu} : Real number, the location (mean)
- \texttt{s} : Real number, \(s > 0 \), a scale

Returns

RandomSymbol
Explanation

The density of the logistic distribution is given by

\[
f(x) := \frac{e^{-(x-\mu)/s}}{s \left(1 + e^{-(x-\mu)/s}\right)^2}
\]

Examples

```python
>>> from sympy.stats import Logistic, density, cdf
>>> from sympy import Symbol

>>> mu = Symbol("mu", real=True)
>>> s = Symbol("s", positive=True)
>>> z = Symbol("z")

>>> X = Logistic("x", mu, s)

>>> density(X)(z)
exp((mu - z)/s)/(s*(exp((mu - z)/s) + 1)**2)

>>> cdf(X)(z)
1/(exp((mu - z)/s) + 1)
```

References

[R893], [R894]

sympy.stats.LogLogistic(name, alpha, beta)

Create a continuous random variable with a log-logistic distribution. The distribution is unimodal when beta > 1.

Parameters
- `alpha`: Real number, \(\alpha > 0 \), scale parameter and median of distribution
- `beta`: Real number, \(\beta > 0 \), a shape parameter

Returns
- RandomSymbol

Explanation

The density of the log-logistic distribution is given by

\[
f(x) := \frac{(\frac{\beta}{\alpha})(\frac{x}{\alpha})^{\beta-1}}{(1+(\frac{x}{\alpha})^{\beta})^2}
\]
Examples

```python
>>> from sympy.stats import LogLogistic, density, cdf, quantile
>>> from sympy import Symbol, pprint

>>> alpha = Symbol("alpha", positive=True)
>>> beta = Symbol("beta", positive=True)
>>> p = Symbol("p")
>>> z = Symbol("z", positive=True)

>>> X = LogLogistic("x", alpha, beta)

>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
\[ \frac{\beta - 1}{\beta^{2} \alpha^{\frac{\beta\left(1 + \frac{z}{\alpha}\right)^{-\beta}}{\alpha^{\beta} + 1}}} \]

>>> cdf(X)(z)
\[ \frac{1}{1 + \left(\frac{z}{\alpha}\right)^{-\beta}} \]

>>> quantile(X)(p)
\[ \alpha \left(\frac{p}{1 - p}\right)^{\frac{1}{\beta}} \]
```

References

[R895]
`sympy.stats.LogNormal(name, mean, std)`
Create a continuous random variable with a log-normal distribution.

Parameters

- `mu` : Real number
 The log-scale.

- `sigma` : Real number
 A shape. \((\sigma^2 > 0)\)

Returns

- RandomSymbol
Explanation

The density of the log-normal distribution is given by

\[f(x) := \frac{1}{x\sqrt{2\pi\sigma^2}} e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}} \]

with \(x \geq 0 \).

Examples

```python
given
>>> from sympy.stats import LogNormal, density
>>> from sympy import Symbol, pprint

>>> mu = Symbol("mu", real=True)
>>> sigma = Symbol("sigma", positive=True)
>>> z = Symbol("z")

>>> X = LogNormal("x", mu, sigma)

>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
  2
-(-mu + log(z))
    ____________
   \___________
   \  2*sigma
    \___________
      \  2*e
       \  \\
     ____________
    2*\sqrt{2*\pi*sigma*z}

>>> X = LogNormal('x', 0, 1) # Mean 0, standard deviation 1

>>> density(X)(z)
sqrt(2)*exp(-log(z)**2/2)/(2*sqrt(pi)*z)
```

References

[R896], [R897]

`sympy.stats.Lomax(name, alpha, lamda)`

Create a continuous random variable with a Lomax distribution.

Parameters

- **alpha** : Real Number, \(\alpha > 0 \)

 Shape parameter

- **lamda** : Real Number, \(\lambda > 0 \)

 Scale parameter
Returns
RandomSymbol

Explanation

The density of the Lomax distribution is given by

\[f(x) := \frac{\alpha}{\lambda} \left[1 + \frac{x}{\lambda} \right]^{-(\alpha+1)} \]

Examples

```python
>>> from sympy.stats import Lomax, density, cdf, E
>>> from sympy import symbols
>>> a, l = symbols('a, l', positive=True)
>>> X = Lomax('X', a, l)
>>> x = symbols('x')
>>> density(X)(x)
a*(1 + x/l)**(-a - 1)/l
>>> cdf(X)(x)
Piecewise((1 - 1/(1 + x/l)**a, x >= 0), (0, True))
>>> a = 2
>>> X = Lomax('X', a, l)
>>> E(X)
l
References

[R898]
sympy.stats.Maxwell(name, a)
Create a continuous random variable with a Maxwell distribution.

Parameters
a: Real number, \( a > 0 \)

Returns
RandomSymbol

Explanation

The density of the Maxwell distribution is given by

\[ f(x) := \sqrt{\frac{2}{\pi}} \frac{x^2 e^{-x^2/(2a^2)}}{a^3} \]

with \( x \geq 0 \).
Examples

```python
>>> from sympy.stats import Maxwell, density, E, variance
>>> from sympy import Symbol, simplify

>>> a = Symbol("a", positive=True)
>>> z = Symbol("z")

>>> X = Maxwell("x", a)

>>> density(X)(z)
sqrt(2)*z**2*exp(-z**2/(2*a**2))/(sqrt(pi)*a**3)

>>> E(X)
2*sqrt(2)*a/sqrt(pi)

>>> simplify(variance(X))
a**2*(-8 + 3*pi)/pi
```

References

[R899], [R900]
sympy.stats.Moyal(name, mu, sigma)
Create a continuous random variable with a Moyal distribution.

**Parameters**

- **mu**: Real number
  Location parameter
- **sigma**: Real positive number
  Scale parameter

**Returns**

RandomSymbol

**Explanation**

The density of the Moyal distribution is given by

\[ f(x) := \exp \left( \frac{1}{2} \exp \left( -\frac{x-\mu}{\sigma} - \frac{x-\mu}{2\sigma} \right) \right) \]

with \( x \in \mathbb{R} \).
Examples

```python
>>> from sympy.stats import Moyal, density, cdf
>>> from sympy import Symbol, simplify

>>> mu = Symbol("mu", real=True)
>>> sigma = Symbol("sigma", positive=True, real=True)
>>> z = Symbol("z")
>>> X = Moyal("x", mu, sigma)

>>> density(X)(z)
sqrt(2)*exp(-exp((mu - z)/sigma)/2 - (-mu + z)/(2*sigma))/(
 2*sqrt(pi)*sigma)

>>> simplify(cdf(X)(z))
1 - erf(sqrt(2)*exp((mu - z)/(2*sigma))/2)
```

References

[R901], [R902]

sympy.stats.Nakagami(name, mu, omega)

Create a continuous random variable with a Nakagami distribution.

Parameters

- **mu**: Real number, \( \mu \geq \frac{1}{2} \), a shape
- **omega**: Real number, \( \omega > 0 \), the spread

Returns

RandomSymbol

Explanation

The density of the Nakagami distribution is given by

\[
f(x) := \frac{2^{\mu} \mu^\mu}{\Gamma(\mu)\omega^\mu} x^{2\mu-1} \exp\left(-\frac{\mu}{\omega} x^2\right)
\]

with \( x > 0 \).

Examples

```python
>>> from sympy.stats import Nakagami, density, E, variance, cdf
>>> from sympy import Symbol, simplify, pprint

>>> mu = Symbol("mu", positive=True)
>>> omega = Symbol("omega", positive=True)
>>> z = Symbol("z")

>>> X = Nakagami("x", mu, omega)
```
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
\[
\frac{-\mu z}{\mu^2 - 2\mu \omega - 1} \frac{1}{\Gamma(\mu)}
\]

>>> simplify(E(X))
\[
\sqrt{\mu} \sqrt{\omega} \frac{\Gamma(\mu + \frac{1}{2})}{\Gamma(\mu + 1)}
\]

>>> V = simplify(variance(X))
>>> pprint(V, use_unicode=False)
\[
\frac{\omega \Gamma(\mu + \frac{1}{2})}{\Gamma(\mu) \Gamma(\mu + 1)}
\]

>>> cdf(X)(z)
Piecewise((lowergamma(mu, mu*z**2/omega)/gamma(mu), z > 0), (0, True))

References

[R903]
sympy.stats.Normal(name, mean, std)
Create a continuous random variable with a Normal distribution.

Parameters

mu : Real number or a list representing the mean or the mean vector

sigma : Real number or a positive definite square matrix, \(\sigma^2 > 0\), the variance

Returns

RandomSymbol

Explanation

The density of the Normal distribution is given by
\[
f(x) := \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
\]
Examples

```python
from sympy.stats import Normal, density, E, std, cdf, skewness, quantile, marginal_distribution
from sympy import Symbol, simplify, pprint

mu = Symbol("mu")
sigma = Symbol("sigma", positive=True)
z = Symbol("z")
y = Symbol("y")
p = Symbol("p")
X = Normal("x", mu, sigma)

density(X)(z)
sqrt(2)*exp(-(-mu + z)**2/(2*sigma**2))/(2*sqrt(pi)*sigma)

C = simplify(cdf(X))(z) # it needs a little more help...
pprint(C, use_unicode=False)
/ ___
|\ 2 *(-mu + z)|
| erf-------------|
\ 2*sigma / 1
------------------- + -
 2 2

quantile(X)(p)
mu + sqrt(2)*sigma*erfinv(2*p - 1)

simplify(skewness(X))
0

X = Normal("x", 0, 1) # Mean 0, standard deviation 1
density(X)(z)
sqrt(2)*exp(-z**2/2)/(2*sqrt(pi))

E(2*X + 1)
1

simplify(std(2*X + 1))
2

m = Normal('X', [1, 2], [[2, 1], [1, 2]])
pprint(density(m)(y, z), use_unicode=False)
2 2
y y*z z
- -- + --- - --- + z - 1
3 3 3
\/ 3 *e

6*pi
```
marginal_distribution(m, m[0])(1)
1/(2*sqrt(pi))

References

[R904], [R905]
sympy.stats.Pareto(name, xm, alpha)
Create a continuous random variable with the Pareto distribution.

Parameters
xm : Real number, \( x_m > 0 \), a scale
alpha : Real number, \( \alpha > 0 \), a shape

Returns
RandomSymbol

Explanation

The density of the Pareto distribution is given by

\[ f(x) := \frac{\alpha x_m^\alpha}{x^\alpha + 1} \]

with \( x \in [x_m, \infty] \).

Examples

```python
>>> from sympy.stats import Pareto, density
>>> from sympy import Symbol

>>> xm = Symbol("xm", positive=True)
>>> beta = Symbol("beta", positive=True)
>>> z = Symbol("z")

>>> X = Pareto("x", xm, beta)

>>> density(X)(z)
beta*xm**beta*z**(-beta - 1)
```

References

[R906], [R907]
sympy.stats.PowerFunction(name, alpha, a, b)
Create a continuous random variable with a Power Function Distribution.
**Parameters**

- **alpha**: Positive number, $0 < \alpha$, the shape parameter
- **a**: Real number, $-\infty < a$, the left boundary
- **b**: Real number, $a < b < \infty$, the right boundary

**Returns**

RandomSymbol

**Explanation**

The density of PowerFunction distribution is given by

$$f(x) := \frac{\alpha (x-a)^{\alpha-1}}{(b-a)^\alpha}$$

with $x \in [a,b]$.

**Examples**

```python
>>> from sympy.stats import PowerFunction, density, cdf, E, variance
>>> from sympy import Symbol
>>> alpha = Symbol("alpha", positive=True)
>>> a = Symbol("a", real=True)
>>> b = Symbol("b", real=True)
>>> z = Symbol("z")

>>> X = PowerFunction("X", 2, a, b)

>>> density(X)(z)
(-2*a + 2*z)/(-a + b)**2

>>> cdf(X)(z)
Piecewise((a**2/(a**2 - 2*a*b + b**2) - 2*a*z/(a**2 - 2*a*b + b**2) + z**2/(a**2 - 2*a*b + b**2), a <= z), (0, True))

>>> alpha = 2
>>> a = 0
>>> b = 1
>>> Y = PowerFunction("Y", alpha, a, b)

>>> E(Y)
2/3

>>> variance(Y)
1/18
```
References

[R908]
sympy.stats.QuadraticU(name, a, b)
Create a Continuous Random Variable with a U-quadratic distribution.

Parameters
- a : Real number
- b : Real number, \( a < b \)

Returns
RandomSymbol

Explanation
The density of the U-quadratic distribution is given by

\[
f(x) := \alpha(x - \beta)^2
\]

with \( x \in [a, b] \).

Examples

```python
>>> from sympy.stats import QuadraticU, density
>>> from sympy import Symbol, pprint

>>> a = Symbol("a", real=True)
>>> b = Symbol("b", real=True)
>>> z = Symbol("z")

>>> X = QuadraticU("x", a, b)

>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
/ 2 \ \
| 12*|--- - - + z|
| \ \ 2 2 |
\<-------------- for And(b >= z, a <= z)
| 3
| (-a + b)
\ 0 otherwise
```

5.8. Topics
SymPy Documentation, Release 1.12.1

References

[R909]
sympy.stats.RaisedCosine(name, mu, s)
Create a Continuous Random Variable with a raised cosine distribution.

Parameters

mu : Real number
s : Real number, s > 0

Returns

RandomSymbol

Explanation

The density of the raised cosine distribution is given by

\[ f(x) := \frac{1}{2s} \left( 1 + \cos \left( \frac{x - \mu}{s} \pi \right) \right) \]

with \( x \in [\mu - s, \mu + s] \).

Examples

```python
>>> from sympy.stats import RaisedCosine, density
>>> from sympy import Symbol, pprint

>>> mu = Symbol("mu", real=True)
>>> s = Symbol("s", positive=True)
>>> z = Symbol("z")

>>> X = RaisedCosine("x", mu, s)

>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
/ \pi*(-mu + z)\n|cos|-------------| + 1
| \ s /

<--------------------- for And(z >= mu - s, z <= mu + s)
| \ 2*s
| |
\ 0 otherwise
```
References

[R910]
sympy.stats.Rayleigh(name, sigma)
Create a continuous random variable with a Rayleigh distribution.

- **Parameters**
  - `sigma`: Real number, $\sigma > 0$

- **Returns**
  - RandomSymbol

**Explanation**

The density of the Rayleigh distribution is given by

$$f(x) := \frac{x}{\sigma^2} e^{-x^2/2\sigma^2}$$

with $x > 0$.

**Examples**

```python
>>> from sympy.stats import Rayleigh, density, E, variance
>>> from sympy import Symbol

>>> sigma = Symbol("sigma", positive=True)
>>> z = Symbol("z")

>>> X = Rayleigh("x", sigma)

>>> density(X)(z)
z*exp(-z**2/(2*sigma**2))/sigma**2

>>> E(X)
sqrt(2)*sqrt(pi)*sigma/2

>>> variance(X)
-pi*sigma**2/2 + 2*sigma**2
```

References

[R911], [R912]
sympy.stats.Reciprocal(name, a, b)
Creates a continuous random variable with a reciprocal distribution.

- **Parameters**
  - `a`: Real number, $0 < a$
  - `b`: Real number, $a < b`
Returns
RandomSymbol

Examples

```python
>>> from sympy.stats import Reciprocal, density, cdf
>>> from sympy import symbols

>>> a, b, x = symbols('a, b, x', positive=True)

>>> R = Reciprocal('R', a, b)

>>> density(R)(x)
1/(x*(-log(a) + log(b)))

>>> cdf(R)(x)
Piecewise((log(a)/(log(a) - log(b)) - log(x)/(log(a) - log(b)), a <= x), (0, True))
```

Reference

sympy.stats.StudentT(name, nu)

Create a continuous random variable with a student’s t distribution.

Parameters

- **nu**: Real number, \( \nu > 0 \), the degrees of freedom

Returns
RandomSymbol

Explanation

The density of the student’s t distribution is given by

\[
f(x) := \frac{\Gamma\left(\frac{\nu + 1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}
\]

Examples

```python
>>> from sympy.stats import StudentT, density, cdf
>>> from sympy import Symbol, pprint

>>> nu = Symbol("nu", positive=True)

>>> z = Symbol("z")

>>> X = StudentT("x", nu)

>>> D = density(X)(z)

>>> pprint(D, use_unicode=False)

nu 1
```

(continues on next page)
\[
\begin{align*}
&\frac{1}{2 - \sqrt{\nu}} - \frac{1}{2} + z\frac{\sqrt{\pi}}{\sqrt{n}} - \frac{1}{\sqrt{\nu}} \frac{\sqrt{\nu} B\left(\frac{1}{2}, \frac{n + 1}{2}\right)}{\gamma\left(\frac{n}{2}\right)} \\
&\text{CDF} = \frac{1}{2} + z\frac{\sqrt{\pi}}{\sqrt{n}} - \frac{1}{\sqrt{\nu}} \frac{\sqrt{\nu} B\left(\frac{1}{2}, \frac{n + 1}{2}\right)}{\gamma\left(\frac{n}{2}\right)}
\end{align*}
\]

References

[R914], [R915]

sympy.stats.ShiftedGompertz(name, b, eta)

Create a continuous random variable with a Shifted Gompertz distribution.

Parameters

- **b**: Real number, \(b > 0\), a scale
- **eta**: Real number, \(\eta > 0\), a shape

Returns

RandomSymbol

Explanation

The density of the Shifted Gompertz distribution is given by

\[
f(x) := b e^{-bx} e^{-\eta \exp(-bx)} \left[ 1 + \eta (1 - e^x - bx) \right]
\]

with \(x \in [0, \infty)\).

Examples

```python
>>> from sympy.stats import ShiftedGompertz, density
>>> from sympy import Symbol

>>> b = Symbol("b", positive=True)
>>> eta = Symbol("eta", positive=True)
>>> x = Symbol("x")

>>> X = ShiftedGompertz("x", b, eta)
```
density(X)(x)

\[ b \cdot \eta \cdot (1 - \exp(-b \cdot x)) + 1 \cdot \exp(-b \cdot x) \cdot \exp(-\eta \cdot \exp(-b \cdot x)) \]

References

[R916]

sympy.stats.Trapezoidal(name, a, b, c, d)

Create a continuous random variable with a trapezoidal distribution.

Parameters

- a : Real number, \( a < d \)
- b : Real number, \( a \leq b < c \)
- c : Real number, \( b < c \leq d \)
- d : Real number

Returns

RandomSymbol

Explanation

The density of the trapezoidal distribution is given by

\[
f(x) := \begin{cases} 
0 & \text{for } x < a, \\
\frac{2(x-a)}{(b-a)(d+c-a-b)} & \text{for } a \leq x < b, \\
\frac{2b}{2(d-x)} & \text{for } b \leq x < c, \\
\frac{d+c-a-b}{(d-c)(d+c-a-b)} & \text{for } c \leq x < d, \\
0 & \text{for } d < x.
\end{cases}
\]

Examples

```python
>>> from sympy.stats import Trapezoidal, density
>>> from sympy import Symbol, pprint

>>> a = Symbol("a")
>>> b = Symbol("b")
>>> c = Symbol("c")
>>> d = Symbol("d")
>>> z = Symbol("z")

>>> X = Trapezoidal("x", a,b,c,d)

>>> pprint(density(X)(z), use_unicode=False)
/ -2*a + 2*z
|------------------------- for And(a <= z, b > z)
|(-a + b)*(-a - b + c + d)```

(continues on next page)
\[
\begin{align*}
\text{for } \text{And}(b \leq z, c > z) & : & 2 \cdot \frac{-a - b + c + d}{-a - b + c + d} \\
\text{for } \text{And}(d \geq z, c \leq z) & : & 2 \cdot \frac{d - 2z}{-c + d} \cdot \frac{-a - b + c + d}{(-c + d) \cdot (-a - b + c + d)} \\
\text{otherwise} & : & 0
\end{align*}
\]

References

[R917] sympy.stats.Triangular\(\textit{name}, a, b, c\)
Create a continuous random variable with a triangular distribution.

Parameters
\begin{itemize}
\item \textit{a} : Real number, \(a \in (-\infty, \infty)\)
\item \textit{b} : Real number, \(a < b\)
\item \textit{c} : Real number, \(a \leq c \leq b\)
\end{itemize}

Returns
RandomSymbol

Explanation

The density of the triangular distribution is given by

\[
f(x) := \begin{cases}
0 & \text{for } x < a, \\
\frac{2(x - a)}{(b - a)(c - a)} & \text{for } a \leq x < c, \\
\frac{2}{b - a} \cdot \frac{2(b - x)}{(b - a)(b - c)} & \text{for } c < x \leq b, \\
0 & \text{for } b < x.
\end{cases}
\]

Examples

```python
>>> from sympy.stats import Triangular, density
>>> from sympy import Symbol, pprint

>>> a = Symbol("a")
>>> b = Symbol("b")
>>> c = Symbol("c")
>>> z = Symbol("z")
```
```python
>>> X = Triangular("x", a, b, c)

>>> pprint(density(X)(z), use_unicode=False)
/  -2*a + 2*z
|----------------- for And(a <= z, c > z)
|((-a + b)*(-a + c)
| 2
| ------ for c = z
< -a + b
| 2*b - 2*z
|---------------- for And(b >= z, c < z)
|(-a + b)*(b - c)
\ 0 otherwise
```

References

[R918], [R919]

`sympy.stats.Uniform(name, left, right)`
Create a continuous random variable with a uniform distribution.

Parameters
- **a**: Real number, $-\infty < a$, the left boundary
- **b**: Real number, $a < b < \infty$, the right boundary

Returns
- `RandomSymbol`

Explanation

The density of the uniform distribution is given by

$$f(x) := \begin{cases} \frac{1}{b-a} & \text{for } x \in [a, b] \\ 0 & \text{otherwise} \end{cases}$$

with $x \in [a, b]$.

Examples

```python
>>> from sympy.stats import Uniform, density, cdf, E, variance
>>> from sympy import Symbol, simplify

>>> a = Symbol("a", negative=True)
>>> b = Symbol("b", positive=True)
>>> z = Symbol("z")
```
>>> X = Uniform("x", a, b)

```python
>>> density(X)(z)
Piecewise((1/(-a + b), (b >= z) & (a <= z)), (0, True))
```  
```python
>>> cdf(X)(z)
Piecewise((0, a > z), ((-a + z)/(-a + b), b >= z), (1, True))
```  
```python
>>> E(X)
a/2 + b/2
```  
```python
>>> simplify(variance(X))
a**2/12 - a*b/6 + b**2/12
```  
References

[R920], [R921]
sympy.stats.UniformSum(name, n)

Create a continuous random variable with an Irwin-Hall distribution.

Parameters

- `n`: A positive integer, `n > 0`

Returns

RandomSymbol

Explanation

The probability distribution function depends on a single parameter `n` which is an integer. The density of the Irwin-Hall distribution is given by

\[
f(x) := \frac{1}{(n-1)!} \sum_{k=0}^{\lfloor x \rfloor} (-1)^k \binom{n}{k} (x-k)^{n-1}
\]

Examples

```python
>>> from sympy.stats import UniformSum, density, cdf
>>> from sympy import Symbol, pprint
```  
```python
>>> n = Symbol("n", integer=True)
>>> z = Symbol("z")
```  
```python
>>> X = UniformSum("x", n)
```
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
floor(z)
\[\begin{array}{l}
\quad \, (-1)^{k} (-k + z)^{n} \frac{n - 1}{n} \\
\quad \, \frac{(-1)^{k} (-k + z)^{n} \text{binomial}(n, k)}{(n - 1)!} \\
\end{array}\]

>>> cdf(X)(z)
Piecewise((0, z < 0), (Sum((-1)**_k*(-_k + z)**n*binomial(n, _k), (_k, 0, floor(z)))/factorial(n), n >= z), (1, True))

Compute cdf with specific ‘x’ and ‘n’ values as follows: >>> cdf(UniformSum("x", 5), evaluate=False)(2).doit() 9/40

The argument evaluate=False prevents an attempt at evaluation of the sum for general n, before the argument 2 is passed.

References

[R922], [R923]
sympy.stats.VonMises(name, mu, k)
Create a Continuous Random Variable with a von Mises distribution.

Parameters

mu : Real number
Measure of location.

k : Real number
Measure of concentration.

Returns
RandomSymbol

Explanation
The density of the von Mises distribution is given by

\[f(x) := \frac{e^{\kappa \cos(x-\mu)}}{2\pi I_0(\kappa)}\]

with \(x \in [0, 2\pi]\).
Examples

```python
>>> from sympy.stats import VonMises, density
>>> from sympy import Symbol, pprint

>>> mu = Symbol("\mu")
>>> k = Symbol("k", positive=True)
>>> z = Symbol("z")

>>> X = VonMises("x", mu, k)

>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
\kappa \cos (\mu - z)
\frac{e}{2 \pi \text{besseli}(0, \kappa)}
```

References

[R924], [R925]

sympy.stats.Wald(name, mean, shape)
Create a continuous random variable with an Inverse Gaussian distribution. Inverse Gaussian distribution is also known as Wald distribution.

Parameters

- mu : Positive number representing the mean.
- lambda : Positive number representing the shape parameter.

Returns

RandomSymbol

Explanation

The density of the Inverse Gaussian distribution is given by

\[f(x) := \frac{\lambda^{\lambda/2} e^{-\lambda(x-\mu)^2/2\mu^2}}{2\pi \mu^3} \]
Examples

```python
>>> from sympy.stats import GaussianInverse, density, E, std, skewness
>>> from sympy import Symbol, pprint

>>> mu = Symbol("mu", positive=True)
>>> lamda = Symbol("lambda", positive=True)
>>> z = Symbol("z", positive=True)
>>> X = GaussianInverse("x", mu, lamda)

>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
2
-\lambda*(-\mu + z)
---------------------
2\sqrt{2*\mu*z}
\sqrt{2*\lambda*e}

2\sqrt{2*\pi*z}

>>> E(X)
mu

>>> std(X).expand()
mu**(3/2)/sqrt(lamda)

>>> skewness(X).expand()
3*sqrt(mu)/sqrt(lamda)
```

References

[R926], [R927]

sympy.stats.Weibull(name, alpha, beta)
Create a continuous random variable with a Weibull distribution.

Parameters

- **lambda**: Real number, \(\lambda > 0 \), a scale
- **k**: Real number, \(k > 0 \), a shape

Returns

RandomSymbol
Explanation

The density of the Weibull distribution is given by

\[
 f(x) := \begin{cases}
 \left(\frac{z}{\lambda}\right)^{k-1} e^{-(z/\lambda)^k} & x \geq 0 \\
 0 & x < 0
 \end{cases}
\]

Examples

```python
>>> from sympy.stats import Weibull, density, E, variance
>>> from sympy import Symbol, simplify

>>> l = Symbol("lambda", positive=True)
>>> k = Symbol("k", positive=True)
>>> z = Symbol("z")

>>> X = Weibull("x", l, k)

>>> density(X)(z)
\left(\frac{z}{\lambda}\right)^{k - 1} e^{-\left(\frac{z}{\lambda}\right)^k} / \lambda

>>> simplify(E(X))
\lambda \gamma(1 + \frac{1}{k})

>>> simplify(variance(X))
\lambda^2 \left(\gamma\left(1 + \frac{1}{k}\right)^2 - \gamma\left(1 + \frac{2}{k}\right)\right)
```

References

[R928], [R929]

`sympy.stats.WignerSemicircle(name, R)`

Create a continuous random variable with a Wigner semicircle distribution.

Parameters

- `R`: Real number, \(R > 0 \), the radius

Returns

A RandomSymbol.

Explanation

The density of the Wigner semicircle distribution is given by

\[
 f(x) := \frac{2}{\pi R^2} \sqrt{R^2 - x^2}
\]

with \(x \in [-R, R] \).
Examples

```python
>>> from sympy.stats import WignerSemicircle, density, E
>>> from sympy import Symbol

>>> R = Symbol("R", positive=True)
>>> z = Symbol("z")

>>> X = WignerSemicircle("x", R)

>>> density(X)(z)
2*sqrt(R**2 - z**2)/(pi*R**2)

>>> E(X)
0
```

References

[R930], [R931]

`sympy.stats.ContinuousRV(symbol, density, set=Interval(-oo, oo), **kwargs)`
Create a Continuous Random Variable given the following:

Parameters
- **symbol**: Symbol
 Represents name of the random variable.
- **density**: Expression containing symbol
 Represents probability density function.
- **set**: set/Interval
 Represents the region where the pdf is valid, by default is real line.
- **check**: bool
 If True, it will check whether the given density integrates to 1 over the given set. If False, it will not perform this check. Default is False.

Returns
RandomSymbol
Many common continuous random variable types are already implemented.
This function should be necessary only very rarely.
Examples

```python
>>> from sympy import Symbol, sqrt, exp, pi
>>> from sympy.stats import ContinuousRV, P, E

```

```python
>>> x = Symbol("x")
```

```python
>>> pdf = sqrt(2)*exp(-x**2/2)/(2*sqrt(pi)) # Normal distribution
>>> X = ContinuousRV(x, pdf)
```

```python
>>> E(X)
0
>>> P(X>0)
1/2
```

Joint Types

```python
sympy.stats.JointRV(symbol, pdf, _set=None)
``` Create a Joint Random Variable where each of its component is continuous, given the following:

Parameters

- **symbol**: Symbol
 Represents name of the random variable.
- **pdf**: A PDF in terms of indexed symbols of the symbol given as the first argument

Returns

RandomSymbol

Note

As of now, the set for each component for a JointRV is equal to the set of all integers, which cannot be changed.

Examples

```python
>>> from sympy import exp, pi, Indexed, S
>>> from sympy.stats import density, JointRV
>>> x1, x2 = (Indexed('x', i) for i in (1, 2))
>>> pdf = exp(-x1**2/2 + x1 - x2**2/2 - S(1)/2)/(2*pi)
>>> N1 = JointRV('x', pdf) # Multivariate Normal distribution
>>> density(N1)(1, 2)
exp(-2)/(2*pi)
```
sympy.stats.marginal_distribution(rv, *indices)
Marginal distribution function of a joint random variable.

Parameters
- **rv**: A random variable with a joint probability distribution.
- **indices**: Component indices or the indexed random symbol for which the joint distribution is to be calculated

Returns
A Lambda expression in *sym*.

Examples
```python
>>> from sympy.stats import MultivariateNormal, marginal_distribution
>>> m = MultivariateNormal('X', [1, 2], [[2, 1], [1, 2]])
>>> marginal_distribution(m, m[0])(1)
1/(2*sqrt(pi))
```

sympy.stats.MultivariateNormal(name, mu, sigma)
Creates a continuous random variable with Multivariate Normal Distribution.
The density of the multivariate normal distribution can be found at [1].

Parameters
- **mu**: List representing the mean or the mean vector
- **sigma**: Positive semidefinite square matrix
 - Represents covariance Matrix. If σ is noninvertible then only sampling is supported currently

Returns
RandomSymbol

Examples
```python
>>> from sympy.stats import MultivariateNormal, density, marginal_distribution
>>> from sympy import symbols, MatrixSymbol
>>> X = MultivariateNormal('X', [3, 4], [[2, 1], [1, 2]])
>>> y, z = symbols('y z')
>>> density(X)(y, z)
sqrt(3)*exp(-y**2/3 + y*z/3 + 2*y/3 - z**2/3 + 5*z/3 - 13/3)/(6*pi)
>>> density(X)(1, 2)
sqrt(3)*exp(-4/3)/(6*pi)
>>> marginal_distribution(X, X[1])(y)
exp(-(y - 4)**2/4)/(2*sqrt(pi))
>>> marginal_distribution(X, X[0])(y)
exp(-(y - 3)**2/4)/(2*sqrt(pi))
```

The example below shows that it is also possible to use symbolic parameters to define the MultivariateNormal class.
```python
>>> n = symbols('n', integer=True, positive=True)
>>> Sg = MatrixSymbol('Sg', n, n)
>>> mu = MatrixSymbol('mu', n, 1)
>>> obs = MatrixSymbol('obs', n, 1)
>>> X = MultivariateNormal('X', mu, Sg)
```

The density of a multivariate normal can be calculated using a matrix argument, as shown below:

```python
>>> density(X)(obs)
(exp(((1/2)*mu.T - (1/2)*obs.T)*Sg**(-1)*(-mu + obs))/
→sqrt((2*pi)**n*Determinant(Sg)))[0, 0]
```

References

[R932] sympy.stats.MultivariateLaplace(name, mu, sigma)

Creates a continuous random variable with Multivariate Laplace Distribution.

The density of the multivariate Laplace distribution can be found at [1].

Parameters

- **mu**: List representing the mean or the mean vector
- **sigma**: Positive definite square matrix
 Represents covariance Matrix

Returns

RandomSymbol

Examples

```python
>>> from sympy.stats import MultivariateLaplace, density
>>> from sympy import symbols
>>> y, z = symbols('y z')
>>> X = MultivariateLaplace('X', [2, 4], [[3, 1], [1, 3]])
>>> density(X)(y, z)
sqrt(2)*exp(y/4 + 5*z/4)*besselk(0, sqrt(15*y*(3*y/8 - z/8)/2 + 15*z*(-y/ →8 + 3*z/8)/2))/(4*pi)
```
References

[R933]
sympy.stats.GeneralizedMultivariateLogGamma(syms, delta, v, lamda, mu)
Creates a joint random variable with generalized multivariate log gamma distribution. The joint pdf can be found at [1].

Parameters
syms : list/tuple/set of symbols for identifying each component
delta : A constant in range [0, 1]
v : Positive real number
lamda : List of positive real numbers
mu : List of positive real numbers

Returns
RandomSymbol

Examples

```python
>>> from sympy.stats import density
>>> from sympy.stats.joint_rv_types import GeneralizedMultivariateLogGamma
>>> from sympy import symbols, S
>>> v = 1
>>> l, mu = [1, 1, 1], [1, 1, 1]
>>> d = S.Half
>>> y = symbols('y_1:4', positive=True)
>>> Gd = GeneralizedMultivariateLogGamma('G', d, v, l, mu)
>>> density(Gd)(y[0], y[1], y[2])
Sum(exp((n + 1)*(y_1 + y_2 + y_3) - exp(y_1) - exp(y_2) - exp(y_3))/(2**n*gamma(n + 1)**3), (n, 0, oo))/2
```

Note

If the GeneralizedMultivariateLogGamma is too long to type use,

```python
>>> from sympy.stats.joint_rv_types import GeneralizedMultivariateLogGamma as GMVLG
>>> Gd = GMVLG('G', d, v, l, mu)
```

If you want to pass the matrix omega instead of the constant delta, then use GeneralizedMultivariateLogGammaOmega.
sympy.stats.\texttt{GeneralizedMultivariateLogGammaOmega}(\texttt{syms}, \texttt{omega}, \texttt{v}, \texttt{lamda}, \texttt{mu})

Extends GeneralizedMultivariateLogGamma.

Parameters

- \texttt{syms} : list/tuple/set of symbols
 For identifying each component
- \texttt{omega} : A square matrix
 Every element of square matrix must be absolute value of square root of correlation coefficient
- \texttt{v} : Positive real number
- \texttt{lamda} : List of positive real numbers
- \texttt{mu} : List of positive real numbers

Returns

RandomSymbol

Examples

```python
>>> from sympy.stats import density
>>> from sympy.stats.joint_rv_types import GeneralizedMultivariateLogGammaOmega
>>> from sympy import Matrix, symbols, S

>>> omega = Matrix([[1, S.Half, S.Half], [S.Half, 1, S.Half], [S.Half, S.Half, 1]])
>>> v = 1
>>> l, mu = [1, 1, 1], [1, 1, 1]
>>> G = GeneralizedMultivariateLogGammaOmega('G', omega, v, l, mu)
>>> y = symbols('y_1:4', positive=True)
>>> density(G)(y[0], y[1], y[2])
\sqrt{2}\sum_{n=0}^{\infty} \frac{(1 - \sqrt{2}/2)^n \exp((n + 1) (y_1 + y_2 + y_3) - \exp(y_1) - \exp(y_2) - \exp(y_3))/\gamma(n + 1)^3, (n, 0, \infty)}/2
```

Notes

If the \texttt{GeneralizedMultivariateLogGammaOmega} is too long to type use,

```python
>>> from sympy.stats.joint_rv_types import GeneralizedMultivariateLogGammaOmega as GMVLGO
>>> G = GMVLGO('G', omega, v, l, mu)
```
sympy.stats.Multinomial(syms, n, *p)

Creates a discrete random variable with Multinomial Distribution.

The density of the said distribution can be found at [1].

Parameters

- **n**: Positive integer
 - Represents number of trials
- **p**: List of event probabilities
 - Must be in the range of [0, 1].

Returns

RandomSymbol

Examples

```python
>>> from sympy.stats import density, Multinomial, marginal_distribution
>>> from sympy import symbols
>>> x1, x2, x3 = symbols('x1, x2, x3', nonnegative=True, integer=True)
>>> p1, p2, p3 = symbols('p1, p2, p3', positive=True)
>>> M = Multinomial('M', 3, p1, p2, p3)
>>> density(M)(x1, x2, x3)
Piecewise((6*p1**x1*p2**x2*p3**x3/factorial(x1)*factorial(x2)*factorial(x3),
           Eq(x1 + x2 + x3, 3)), (0, True))
>>> marginal_distribution(M, M[0])(x1).subs(x1, 1)
3*p1*p2**2 + 6*p1*p2*p3 + 3*p1*p3**2
```

References

[R938], [R939]

sympy.stats.MultivariateBeta(syms, *alpha)

Creates a continuous random variable with Dirichlet/Multivariate Beta Distribution.

The density of the Dirichlet distribution can be found at [1].

Parameters

- **alpha**: Positive real numbers
 - Signifies concentration numbers.

Returns

RandomSymbol
Examples

```python
>>> from sympy.stats import density, MultivariateBeta, marginal_distribution
>>> from sympy import Symbol
>>> a1 = Symbol('a1', positive=True)
>>> a2 = Symbol('a2', positive=True)
>>> B = MultivariateBeta('B', [a1, a2])
>>> C = MultivariateBeta('C', a1, a2)
>>> x = Symbol('x')
>>> y = Symbol('y')
>>> density(B)(x, y)

x**(a1 - 1)*y**(a2 - 1)*gamma(a1 + a2)/(gamma(a1)*gamma(a2))
```

```
>>> marginal_distribution(C, C[0])(x)

x**(a1 - 1)*gamma(a1 + a2)/(a2*gamma(a1)*gamma(a2))
```

References

[R940], [R941]
sympy.stats.MultivariateEwens(syms, n, theta)

Creates a discrete random variable with Multivariate Ewens Distribution.

The density of the said distribution can be found at [1].

Parameters

- **n**: Positive integer

 Size of the sample or the integer whose partitions are considered

- **theta**: Positive real number

 Denotes Mutation rate

Returns

RandomSymbol

Examples

```python
>>> from sympy.stats import density, marginal_distribution, MultivariateEwens
>>> from sympy import Symbol
>>> a1 = Symbol('a1', positive=True)
>>> a2 = Symbol('a2', positive=True)
>>> ed = MultivariateEwens('E', 2, 1)
>>> density(ed)(a1, a2)

Piecewise((1/(2**a2*factorial(a1)*factorial(a2)), Eq(a1 + 2*a2, 2)), (0, True))
```

```
>>> marginal_distribution(ed, ed[0])(a1)

Piecewise((1/factorial(a1), Eq(a1, 2)), (0, True))
```
References

[R942], [R943]
sympy.stats.MultivariateT(syms, mu, sigma, v)
 Creates a joint random variable with multivariate T-distribution.

 Parameters
 - **syms**: A symbol/str
 For identifying the random variable.
 - **mu**: A list/matrix
 Representing the location vector
 - **sigma**: The shape matrix for the distribution

 Returns
 RandomSymbol

 Examples

```python
>>> from sympy.stats import density, MultivariateT
>>> from sympy import Symbol

>>> x = Symbol("x")
>>> X = MultivariateT("x", [1, 1], [[1, 0], [0, 1]], 2)

>>> density(X)(1, 2)
2/(9*pi)
```

sympy.stats.NegativeMultinomial(syms, k0, *p)
 Creates a discrete random variable with Negative Multinomial Distribution.

 The density of the said distribution can be found at [1].

 Parameters
 - **k0**: positive integer
 Represents number of failures before the experiment is stopped
 - **p**: List of event probabilities
 Must be in the range of [0, 1]

 Returns
 RandomSymbol
Examples

```python
>>> from sympy.stats import density, NegativeMultinomial, marginal_distribution
>>> from sympy import symbols

>>> x1, x2, x3 = symbols('x1, x2, x3', nonnegative=True, integer=True)
>>> p1, p2, p3 = symbols('p1, p2, p3', positive=True)

>>> N = NegativeMultinomial('M', 3, p1, p2, p3)
>>> N_c = NegativeMultinomial('M', 3, 0.1, 0.1, 0.1)

>>> density(N)(x1, x2, x3)
p1**x1*p2**x2*p3**x3*(-p1 - p2 - p3 + 1)**3*gamma(x1 + x2 + x3 + 3)/(2*factorial(x1)*factorial(x2)*factorial(x3))

>>> marginal_distribution(N_c, N_c[0])(1).evalf().round(2)
0.25
```

References

[R944], [R945]

sympy.stats.NormalGamma(*sym*, *mu*, *lamda*, *alpha*, *beta*)

Creates a bivariate joint random variable with multivariate Normal gamma distribution.

Parameters

- **sym**: A symbol/str
 - For identifying the random variable.
- **mu**: A real number
 - The mean of the normal distribution
- **lamda**: A positive integer
 - Parameter of joint distribution
- **alpha**: A positive integer
 - Parameter of joint distribution
- **beta**: A positive integer
 - Parameter of joint distribution

Returns

RandomSymbol

Examples

```python
>>> from sympy.stats import density, NormalGamma

>>> from sympy import symbols

>>> X = NormalGamma('x', 0, 1, 2, 3)
>>> y, z = symbols('y z')

>>> density(X)(y, z)
9*sqrt(2)*z**(3/2)*exp(-3*z)*exp(-y**2*z/2)/(2*sqrt(pi))
```
References

[R946]

Stochastic Processes

class sympy.stats.DiscreteMarkovChain(sym, state_space=None, trans_probs=None)
 Represents a finite discrete time-homogeneous Markov chain.
 This type of Markov Chain can be uniquely characterised by its (ordered) state space and its one-step transition probability matrix.

Parameters
 sym:
 The name given to the Markov Chain

state_space:
 Optional, by default, Range(n)

trans_probs:
 Optional, by default, MatrixSymbol('_T', n, n)

Examples

```python
>>> from sympy.stats import DiscreteMarkovChain, TransitionMatrixOf, P, E
>>> from sympy import Matrix, MatrixSymbol, Eq, symbols

>>> T = Matrix([[0.5, 0.2, 0.3], [0.2, 0.5, 0.3], [0.2, 0.3, 0.5]])
>>> Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
>>> YS = DiscreteMarkovChain("Y")

>>> Y.state_space
{0, 1, 2}
>>> Y.transition_probabilities
Matrix([0.5, 0.2, 0.3], [0.2, 0.5, 0.3], [0.2, 0.3, 0.5])
>>> TS = MatrixSymbol('T', 3, 3)
>>> P(Eq(YS[3], 2), Eq(YS[1], 1) & TransitionMatrixOf(YS, TS))
T[0, 2]*T[1, 0] + T[1, 1]*T[1, 2] + T[1, 2]*T[2, 2]
>>> P(Eq(Y[3], 2), Eq(Y[1], 1)).round(2)
0.36
```

Probabilities will be calculated based on indexes rather than state names. For example, with the Sunny-Cloudy-Rainy model with string state names:

```python
>>> from sympy.core.symbol import Str
>>> Y = DiscreteMarkovChain("Y", [Str('Sunny'), Str('Cloudy'), Str('Rainy')], T)
>>> P(Eq(Y[3], 2), Eq(Y[1], 1)).round(2)
0.36
```
This gives the same answer as the $[0, 1, 2]$ state space. Currently, there is no support for state names within probability and expectation statements. Here is a work-around using Str:

```python
>>> P(Eq(Str('Rainy'), Y[3]), Eq(Y[1], Str('Cloudy'))).round(2)
0.36
```

Symbol state names can also be used:

```python
>>> sunny, cloudy, rainy = symbols('Sunny, Cloudy, Rainy')
>>> Y = DiscreteMarkovChain("Y", [sunny, cloudy, rainy], T)
>>> P(Eq(Y[3], rainy), Eq(Y[1], cloudy)).round(2)
0.36
```

Expectations will be calculated as follows:

```python
>>> E(Y[3], Eq(Y[1], cloudy))
0.38*Cloudy + 0.36*Rainy + 0.26*Sunny
```

Probability of expressions with multiple RandomIndexedSymbols can also be calculated provided there is only 1 RandomIndexedSymbol in the given condition. It is always better to use Rational instead of floating point numbers for the probabilities in the transition matrix to avoid errors.

```python
>>> from sympy import Gt, Le, Rational
>>> T = Matrix([[Rational(5, 10), Rational(3, 10), Rational(2, 10)],
              [Rational(2, 10), Rational(7, 10), Rational(1, 10)],
              [Rational(3, 10), Rational(4, 10)]])
>>> Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
>>> P(Eq(Y[3], Y[1]), Eq(Y[0], 0)).round(3)
0.409
>>> P(Gt(Y[3], Y[1]), Eq(Y[0], 0)).round(2)
0.36
>>> P(Le(Y[15], Y[10]), Eq(Y[8], 2)).round(7)
0.693328
```

Symbolic probability queries are also supported

```python
>>> a, b, c, d = symbols('a b c d')
>>> T = Matrix([[Rational(1, 10), Rational(4, 10), Rational(5, 10)],
              [Rational(3, 10), Rational(4, 10), Rational(3, 10)],
              [Rational(2, 10), Rational(1, 10)]])
>>> Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
>>> query = P(Eq(Y[a], b), Eq(Y[c], d))
>>> query.subs({a:10, b:2, c:5, d:1}).round(4)
0.3096
>>> P(Eq(Y[10], 2), Eq(Y[5], 1)).evalf().round(4)
0.3096
>>> query_gt = P(Gt(Y[a], b), Eq(Y[c], d))
>>> query_gt.subs({a:21, b:0, c:5, d:0}).evalf().round(5)
0.64705
>>> P(Gt(Y[21], 0), Eq(Y[5], 0)).round(5)
0.64705
```

There is limited support for arbitrarily sized states.
>>> n = symbols('n', nonnegative=True, integer=True)
>>> T = MatrixSymbol('T', n, n)
>>> Y = DiscreteMarkovChain("Y", trans_probs=T)
>>> Y.state_space
Range(0, n, 1)
>>> query = P(Eq(Y[a], b), Eq(Y[c], d))
(T**5)[1, 2]

References

[R947], [R948]

absorbing_probabilities()

Computes the absorbing probabilities, i.e. the ij-th entry of the matrix denotes the probability of Markov chain being absorbed in state j starting from state i.

canonical_form() → Tuple[List[Basic (page 979)], ImmutableDenseMatrix (page 1413)]

Reorders the one-step transition matrix so that recurrent states appear first and transient states appear last. Other representations include inserting transient states first and recurrent states last.

Returns

states, P_new

states is the list that describes the order of the new states in the matrix so that the ith element in states is the state of the ith row of A. P_new is the new transition matrix in canonical form.

Examples

>>> from sympy.stats import DiscreteMarkovChain
>>> from sympy import Matrix, S

You can convert your chain into canonical form:

>>> T = Matrix([[S(1)/2, S(1)/2, 0, 0, 0],
... [S(2)/5, S(1)/5, S(2)/5, 0, 0],
... [0, 0, 1, 0, 0],
... [0, 0, S(1)/2, S(1)/2, 0],
... [S(1)/2, 0, 0, 0, S(1)/2]])
>>> X = DiscreteMarkovChain('X', list(range(1, 6)), trans_probs=T)
>>> states, new_matrix = X.canonical_form()
>>> states
[3, 1, 2, 4, 5]

>>> new_matrix
Matrix([[1, 0, 0, 0, 0],
 [0, 1/2, 1/2, 0, 0],
 [0, 0, 0, 1, 0],
 [0, 0, 0, 0, 1],
 [0, 0, 0, 0, 0]], [2, 2, 2, 2, 2], [2, 2, 2, 2, 2])

(continues on next page)
The new states are \([3, 1, 2, 4, 5]\) and you can create a new chain with this and its canonical form will remain the same (since it is already in canonical form).

```python
>>> X = DiscreteMarkovChain('X', states, new_matrix)
>>> states, new_matrix = X.canonical_form()
>>> states
[3, 1, 2, 4, 5]
```

```python
>>> new_matrix
Matrix([ 1, 0, 0, 0, 0],
[ 0, 1/2, 1/2, 0, 0],
[2/5, 2/5, 1/5, 0, 0],
[1/2, 0, 0, 1/2, 0],
[ 0, 1/2, 0, 0, 1/2])
```

This is not limited to absorbing chains:

```python
>>> T = Matrix([[0, 5, 5, 0, 0],
              ...             [0, 0, 0, 10, 0],
              ...             [5, 0, 5, 0, 0],
              ...             [0, 10, 0, 0, 0],
              ...             [0, 3, 3, 0, 4]])/10
>>> X = DiscreteMarkovChain('X', trans_probs=T)
>>> states, new_matrix = X.canonical_form()
>>> states
[1, 3, 0, 2, 4]
```

```python
>>> new_matrix
Matrix([ 0, 1, 0, 0, 0],
[ 1, 0, 0, 0, 0],
[1/2, 0, 0, 1/2, 0],
[ 0, 0, 1/2, 1/2, 0],
[3/10, 3/10, 0, 0, 2/5])
```

See also:

- `sympy.stats.DiscreteMarkovChain.communication_classes` (page 3032)
- `sympy.stats.DiscreteMarkovChain.decompose` (page 3033)
communication_classes() → List[Tuple[List[Basic (page 979)], Boolean (page 1207), Integer (page 1038)]]

Returns the list of communication classes that partition the states of the Markov chain.

A communication class is defined to be a set of states such that every state in that set is reachable from every other state in that set. Due to its properties, this forms a class in the mathematical sense. Communication classes are also known as recurrence classes.

Returns

classes

The classes are a list of tuples. Each tuple represents a single communication class with its properties. The first element in the tuple is the list of states in the class, the second element is whether the class is recurrent and the third element is the period of the communication class.

Examples

```python
>>> from sympy.stats import DiscreteMarkovChain
>>> from sympy import Matrix
>>> T = Matrix([[0, 1, 0],
              ... [1, 0, 0],
              ... [1, 0, 0]])
>>> X = DiscreteMarkovChain('X', [1, 2, 3], T)
>>> classes = X.communication_classes()
>>> for states, is_recurrent, period in classes:
...     states, is_recurrent, period
([1, 2], True, 2)
([3], False, 1)
```

From this we can see that states 1 and 2 communicate, are recurrent and have a period of 2. We can also see state 3 is transient with a period of 1.

Notes

The algorithm used is of order $O(n^2 + 2)$ where n is the number of states in the Markov chain. It uses Tarjan’s algorithm to find the classes themselves and then it uses a breadth-first search algorithm to find each class’s periodicity. Most of the algorithm’s components approach $O(n)$ as the matrix becomes more and more sparse.
decompose() \rightarrow \text{Tuple}[ext{List}[\text{Basic (page 979)}], \text{ImmutableDenseMatrix (page 1413)}, \\
\text{ImmutableDenseMatrix (page 1413)}, \text{ImmutableDenseMatrix (page 1413)}]

Decomposes the transition matrix into submatrices with special properties.

The transition matrix can be decomposed into 4 submatrices: - A - the submatrix from recurrent states to recurrent states. - B - the submatrix from transient to recurrent states. - C - the submatrix from transient to transient states. - O - the submatrix of zeros for recurrent to transient states.

Returns
states, A, B, C

states - a list of state names with the first being the recurrent states and the last being the transient states in the order of the row names of A and then the row names of C. A - the submatrix from recurrent states to recurrent states. B - the submatrix from transient to recurrent states. C - the submatrix from transient to transient states.

Examples

```python
>>> from sympy.stats import DiscreteMarkovChain
>>> from sympy import Matrix, S
```

One can decompose this chain for example:

```python
>>> T = Matrix([[S(1)/2, S(1)/2, 0, 0, 0],  
...             [S(2)/5, S(1)/5, S(2)/5, 0, 0],  
...             [0, 0, 1, 0, 0],  
...             [0, 0, S(1)/2, S(1)/2, 0],  
...             [S(1)/2, 0, 0, 0, S(1)/2]])
>>> X = DiscreteMarkovChain('X', trans_probs=T)
>>> states, A, B, C = X.decompose()

>>> states
[2, 0, 1, 3, 4]
```

```python
>>> A  # recurrent to recurrent
Matrix([[1]])
```

```python
>>> B  # transient to recurrent
Matrix([  
[0],  
[2/5],  
[1/2],  
[0]])
```

```python
>>> C  # transient to transient
Matrix([  
[1/2, 1/2, 0, 0],  
[2/5, 1/5, 0, 0],  
```

(continues on next page)
This means that state 2 is the only absorbing state (since \(A\) is a 1x1 matrix). \(B\) is a 4x1 matrix since the 4 remaining transient states all merge into recurrent state 2. And \(C\) is the 4x4 matrix that shows how the transient states 0, 1, 3, 4 all interact.

See also:
sympy.stats.DiscreteMarkovChain.communication_classes (page 3032), sympy.stats.DiscreteMarkovChain.canonical_form (page 3030)

References

[R955], [R956]

fixed_row_vector()

A wrapper for stationary_distribution().

fundamental_matrix()

Each entry fundamental matrix can be interpreted as the expected number of times the chains is in state \(j\) if it started in state \(i\).

References

[R957]

property limiting_distribution

The fixed row vector is the limiting distribution of a discrete Markov chain.

sample()

Returns

\(\text{sample}: \text{iterator object}\)

\(\text{iterator object containing the sample}\)

stationary_distribution()

\(\text{condition_set= False} \rightarrow \text{ImmutableDenseMatrix}\)

The stationary distribution is any row vector, \(p\), that solves \(p = pP\), is row stochastic and each element in \(p\) must be nonnegative. That means in matrix form: \((P-I)^T p^T = 0\) and \((1, \ldots, 1)p = 1\) where \(P\) is the one-step transition matrix.

All time-homogeneous Markov Chains with a finite state space have at least one stationary distribution. In addition, if a finite time-homogeneous Markov Chain is irreducible, the stationary distribution is unique.

Parameters

\(\text{condition_set}\) : bool

If the chain has a symbolic size or transition matrix, it will return a Lambda if False and return a ConditionSet if True.
Examples

```python
>>> from sympy.stats import DiscreteMarkovChain
>>> from sympy import Matrix, S

An irreducible Markov Chain

```python
>>> T = Matrix([[S(1)/2, S(1)/2, 0],
 ... [S(4)/5, S(1)/5, 0],
 ... [1, 0, 0]])
>>> X = DiscreteMarkovChain('X', trans_probs=T)
>>> X.stationary_distribution()
Matrix([[8/13, 5/13, 0]])
``` 

A reducible Markov Chain

```python
>>> T = Matrix([[S(1)/2, S(1)/2, 0],
 ... [S(4)/5, S(1)/5, 0],
 ... [0, 0, 1]])
>>> X = DiscreteMarkovChain('X', trans_probs=T)
>>> X.stationary_distribution()
Matrix([[8/13 - 8*tau0/13, 5/13 - 5*tau0/13, tau0]])
``` 

```python
>>> Y = DiscreteMarkovChain('Y')
>>> Y.stationary_distribution()
Lambda((wm, _T), Eq(wm*_T, wm))
>>> Y.stationary_distribution(condition_set=True)
ConditionSet(wm, Eq(wm*_T, wm))
``` 

See also:

- `sympy.stats.DiscreteMarkovChain.limiting_distribution` (page 3034)

References

[R958], [R959]

property transition_probabilities

Transition probabilities of discrete Markov chain, either an instance of Matrix or MatrixSymbol.

class sympy.stats.ContinuousMarkovChain(sym, state_space=None, gen_mat=None)

Represents continuous time Markov chain.

Parameters

- `sym`: Symbol/str
- `state_space`: Set
  Optional, by default, S.Reals
- `gen_mat`: Matrix/ImmutableMatrix/MatrixSymbol
  Optional, by default, None
Examples

```python
>>> from sympy.stats import ContinuousMarkovChain, P
>>> from sympy import Matrix, S, Eq, Gt

>>> G = Matrix([[-S(1), S(1)], [S(1), -S(1)]])
>>> C = ContinuousMarkovChain('C', state_space=[0, 1], gen_mat=G)
>>> C.limiting_distribution()
Matrix([[1/2, 1/2]])

>>> C.state_space
{0, 1}

>>> C.generator_matrix
Matrix([[1, -1], [-1, 1]])

Probability queries are supported

```python
>>> P(Eq(C(1.96), 0), Eq(C(0.78), 1)).round(5)
0.45279

>>> P(Gt(C(1.7), 0), Eq(C(0.82), 1)).round(5)
0.58602
```

Probability of expressions with multiple RandomIndexedSymbols can also be calculated provided there is only 1 RandomIndexedSymbol in the given condition. It is always better to use Rational instead of floating point numbers for the probabilities in the generator matrix to avoid errors.

```python
>>> from sympy import Gt, Le, Rational

>>> G = Matrix([[-S(1), Rational(1, 10), Rational(9, 10)], [Rational(2, 5), S(1), Rational(3, 5)], [Rational(1, 2), Rational(1, 2), -S(1)]])
>>> C = ContinuousMarkovChain('C', state_space=[0, 1, 2], gen_mat=G)
>>> P(Eq(C(3.92), C(1.75)), Eq(C(0.46), 0)).round(5)
0.37933

>>> P(Gt(C(3.92), C(1.75)), Eq(C(0.46), 0)).round(5)
0.34211

>>> P(Le(C(1.57), C(3.14)), Eq(C(1.22), 1)).round(4)
0.7143
```

Symbolic probability queries are also supported

```python
>>> from sympy import symbols

>>> a, b, c, d = symbols('a b c d')

>>> G = Matrix([[-S(1), Rational(1, 10), Rational(9, 10)], [Rational(2, 5), S(1), Rational(3, 5)], [Rational(1, 2), Rational(1, 2), -S(1)]])
>>> C = ContinuousMarkovChain('C', state_space=[0, 1, 2], gen_mat=G)

>>> query = P(Eq(C(a), b), Eq(C(c), d))
>>> query.subs({a:3.65, b:2, c:1.78, d:1}).evalf().round(10)
0.4002723175

>>> P(Eq(C(3.65), 2), Eq(C(1.78), 1)).round(10)
0.4002723175
>>> query.gt = P(Gt(C(a), b), Eq(C(c), d))
>>> query.gt.subs({a:43.2, b:0, c:3.29, d:2}).evalf().round(10)
0.6832579186
```

(continues on next page)
References

[R960], [R961]

class sympy.stats.BernoulliProcess(sym, p, success=1, failure=0)
The Bernoulli process consists of repeated independent Bernoulli process trials with the same parameter p. It’s assumed that the probability p applies to every trial and that the outcomes of each trial are independent of all the rest. Therefore Bernoulli Process is Discrete State and Discrete Time Stochastic Process.

Parameters

- **sym**: Symbol/str

- **success**: Integer/str

The event which is considered to be success. Default: 1.

- **failure**: Integer/str

The event which is considered to be failure. Default: 0.

- **p**: Real Number between 0 and 1

 Represents the probability of getting success.

Examples

```python
>>> from sympy.stats import BernoulliProcess, P, E
>>> from sympy import Eq, Gt
>>> B = BernoulliProcess("B", p=0.7, success=1, failure=0)
>>> B.state_space
{0, 1}
>>> (B.p).round(2)
0.70
>>> B.success
1
>>> B.failure
0
>>> P(Eq(X, 0)).round(2)
0.03
>>> P(Eq(X, 2)).round(2)
0.44
>>> P(Eq(X, 4)).round(2)
0
>>> P(Gt(X, 1)).round(2)
0.78
>>> P(Eq(B[1], 0) & Eq(B[2], 1) & Eq(B[3], 0) & Eq(B[4], 1)).round(2)
0.04
>>> B.joint_distribution(B[1], B[2])
```
JointDistributionHandmade(Lambda((B[1], B[2]), Piecewise((0.7, Eq(B[1], 1)), (0.3, Eq(B[1], 0)), (0, True))*Piecewise((0.7, Eq(B[2], 1)), (0.3, Eq(B[2], 0)), (0, True))))

2.10

>>> P(B[1] < 1).round(2)
0.30

References

[R962], [R963]

expectation(expr, condition=None, evaluate=True, **kwargs)
Computes expectation.

Parameters

- **expr**: RandomIndexedSymbol, Relational, Logic
 Condition for which expectation has to be computed. Must contain a
 RandomIndexedSymbol of the process.

- **condition**: Relational, Logic
 The given conditions under which computations should be done.

Returns

Expectation of the RandomIndexedSymbol.

probability(condition, given_condition=None, evaluate=True, **kwargs)
Computes probability.

Parameters

- **condition**: Relational
 Condition for which probability has to be computed. Must contain a
 RandomIndexedSymbol of the process.

- **given_condition**: Relational, Logic
 The given conditions under which computations should be done.

Returns

Probability of the condition.

class sympy.stats.PoissonProcess(sym, lamda)
The Poisson process is a counting process. It is usually used in scenarios where we are
counting the occurrences of certain events that appear to happen at a certain rate, but
completely at random.

Parameters

- **sym**: Symbol/str

- **lamda**: Positive number
 Rate of the process, lamda > 0
Examples

```python
>>> from sympy.stats import PoissonProcess, P, E
>>> from sympy import symbols, Eq, Ne, Contains, Interval

>>> X = PoissonProcess("X", lamda=3)
>>> X.state_space
Naturals0
>>> X.lamda
3
>>> t1, t2 = symbols('t1 t2', positive=True)
>>> P(X(t1) < 4)
(9*t1**3/2 + 9*t1**2/2 + 3*t1 + 1)*exp(-3*t1)
>>> P(Eq(X(t1), 2) | Ne(X(t1), 4), Contains(t1, Interval.Ropen(2, 4)))
1 - 36*exp(-6)
>>> P(Eq(X(t1), 2) & Eq(X(t2), 3), Contains(t1, Interval.Lopen(0, 2)) & Contains(t2, Interval.Lopen(2, 4)))
648*exp(-12)
>>> E(X(t1))
3*t1
>>> E(X(t1)**2 + 2*X(t2), Contains(t1, Interval.Lopen(0, 1)) & Contains(t2, Interval.Lopen(1, 2)))
18
>>> P(X(3) < 1, Eq(X(1), 0))
exp(-6)
>>> P(Eq(X(4), 3), Eq(X(2), 3))
exp(-6)
>>> P(X(2) <= 3, X(1) > 1)
5*exp(-3)
```

Merging two Poisson Processes

```python
>>> Y = PoissonProcess("Y", lamda=4)
>>> Z = X + Y
>>> Z.lamda
7
```

Splitting a Poisson Process into two independent Poisson Processes

```python
>>> N, M = Z.split(l1=2, l2=5)
>>> N.lamda, M.lamda
(2, 5)
```

References

[R964], [R965]

class sympy.stats.WienerProcess(sym)

The Wiener process is a real valued continuous-time stochastic process. In physics it is used to study Brownian motion and it is often also called Brownian motion due to its historical connection with physical process of the same name originally observed by Scottish botanist Robert Brown.
Parameters

sym: Symbol/str

Examples

```python
>>> from sympy.stats import WienerProcess, P, E
>>> from sympy import symbols, Contains, Interval
>>> X = WienerProcess("X")
>>> X.state_space
Reals
>>> t1, t2 = symbols('t1 t2', positive=True)
>>> P(X(t1) < 7).simplify()  
    erf(7*sqrt(2)/(2*sqrt(t1)))/2 + 1/2
>>> P((X(t1) > 2) | (X(t1) < 4), Contains(t1, Interval.Ropen(2, 4))).simplify()
    -erf(1)/2 + erf(2)/2 + 1
>>> E(X(t1))
0
>>> E(X(t1) + 2*X(t2), Contains(t1, Interval.Lopen(0, 1)) & Contains(t2, Interval.Lopen(1, 2)))
0
```

References

[R966], [R967]

class sympy.stats.GammaProcess(sym, lamda, gamma)
A Gamma process is a random process with independent gamma distributed increments. It is a pure-jump increasing Levy process.

Parameters

sym: Symbol/str

lamda: Positive number

Jump size of the process, lamda > 0

gamma: Positive number

Rate of jump arrivals, γ > 0

Examples

```python
>>> from sympy.stats import GammaProcess, E, P, variance
>>> from sympy import symbols, Contains, Interval, Not
>>> t, d, x, l, g = symbols('t d x l g', positive=True)
>>> X = GammaProcess("X", l, g)
>>> E(X(t))
g*t/l
>>> variance(X(t)).simplify()
g*t/l**2
>>> X = GammaProcess('X', 1, 2)
```

(continues on next page)
>>> P(X(t) < 1).simplify()
lowergamma(2*t, 1)/gamma(2*t)
>>> P(Not((X(t) < 5) & (X(d) > 3)), Contains(t, Interval.Ropen(2, 4)) &
... Contains(d, Interval.Lopen(7, 8))).simplify()
-4*exp(-3) + 472*exp(-8)/3 + 1
>>> E(X(2) + x*E(X(5)))
10*x + 4

References

[R968]

Matrix Distributions

sympy.stats.MatrixGamma(symbol, alpha, beta, scale_matrix)

Creates a random variable with Matrix Gamma Distribution.

The density of the said distribution can be found at [1].

Parameters

alpha: Positive Real number

Shape Parameter

beta: Positive Real number

Scale Parameter

scale_matrix: Positive definite real square matrix

Scale Matrix

Returns

RandomSymbol

Examples

>>> from sympy.stats import density, MatrixGamma
>>> from sympy import MatrixSymbol, symbols
>>> a, b = symbols('a b', positive=True)
>>> M = MatrixGamma('M', a, b, [[2, 1], [1, 2]])
>>> X = MatrixSymbol('X', 2, 2)
>>> density(M)(X).doit()
exp(Trace(Matrix([[[-2/3, 1/3],
[1/3, -2/3]])*X])/b)*Determinant(X)**(a - 3/2)/
(-3**a*sqrt(pi)*b**(2*a)*gamma(a)*gamma(a - 1/2))
>>> density(M)([[1, 0], [0, 1]]).doit()
exp(-4/(3*b))/(3**a*sqrt(pi)*b**(2*a)*gamma(a)*gamma(a - 1/2))
References

[R969]
sympy.stats.Wishart(symbol, n, scale_matrix)
creates a random variable with Wishart Distribution.
The density of the said distribution can be found at [1].

Parameters
- **n**: Positive Real number
 - Represents degrees of freedom
- **scale_matrix**: Positive definite real square matrix
 - Scale Matrix

Returns
- RandomSymbol

Examples

```python
>>> from sympy.stats import density, Wishart
>>> from sympy import MatrixSymbol, symbols
>>> n = symbols('n', positive=True)
>>> W = Wishart('W', n, [[2, 1], [1, 2]])
>>> X = MatrixSymbol('X', 2, 2)
>>> density(W)(X).doit()
exp(Trace(Matrix([-1/3, 1/6],
                 [1/6, -1/3])*X))*Determinant(X)**(n/2 - 3/2)/(2**n*3**(n/2)*sqrt(pi)*gamma(n/2)*gamma(n/2 - 1/2))
```

References

[R970]
sympy.stats.MatrixNormal(symbol, location_matrix, scale_matrix_1, scale_matrix_2)
creates a random variable with Matrix Normal Distribution.
The density of the said distribution can be found at [1].

Parameters
- **location_matrix**: Real `n x p` matrix
 - Represents degrees of freedom
- **scale_matrix_1**: Positive definite matrix
 - Scale Matrix of shape n x n
- **scale_matrix_2**: Positive definite matrix
 - Scale Matrix of shape p x p
Returns
RandomSymbol

Examples

```python
>>> from sympy import MatrixSymbol
>>> from sympy.stats import density, MatrixNormal
>>> M = MatrixNormal('M', [[1, 2]], [1], [[1, 0], [0, 1]])
>>> X = MatrixSymbol('X', 1, 2)
>>> density(M)(X).doit()
exp(-Trace(Matrix([[-1], [-2]]) + X.T)*(Matrix([[-1, -2]]) + X))/2)/(2*pi)
>>> density(M)([[3, 4]]).doit()
exp(-4)/(2*pi)
```

References

[R971]

Compound Distribution

```python
class sympy.stats.compound_rv.CompoundDistribution(dist)
```
Class for Compound Distributions.

Parameters

- **dist**: Distribution
 Distribution must contain a random parameter

Examples

```python
>>> from sympy.stats.compound_rv import CompoundDistribution
>>> from sympy.stats.crv_types import NormalDistribution
>>> from sympy.stats import Normal
>>> from sympy.abc import x
>>> X = Normal('X', 2, 4)
>>> N = NormalDistribution(X, 4)
>>> C = CompoundDistribution(N)
>>> C.set(Interval(-oo, oo)
>>> C.pdf(x, evaluate=True).simplify()
exp(-x**2/64 + x/16 - 1/16)/(8*sqrt(pi))
```
Interface

sympy.stats.P(condition, given_condition=None, numsamples=None, evaluate=True, **kwargs)

Probability that a condition is true, optionally given a second condition.

Parameters

condition : Combination of Relationals containing RandomSymbols

The condition of which you want to compute the probability

given_condition : Combination of Relationals containing RandomSymbols

A conditional expression. P(X > 1, X > 0) is expectation of X > 1 given X > 0

numsamples : int

Enables sampling and approximates the probability with this many samples

evaluate : Bool (defaults to True)

In case of continuous systems return unevaluated integral

Examples

```python
>>> from sympy.stats import P, Die
>>> from sympy import Eq
>>> X, Y = Die('X', 6), Die('Y', 6)
>>> P(X > 3)
1/2
>>> P(Eq(X, 5), X > 2)  # Probability that X == 5 given that X > 2
1/4
>>> P(X > Y)
5/12
```

class sympy.stats.Probability(prob, condition=None, **kwargs)

Symbolic expression for the probability.

Examples

```python
>>> from sympy.stats import Probability, Normal
>>> from sympy import Integral
>>> X = Normal("X", 0, 1)
>>> prob = Probability(X > 1)
>>> prob
Probability(X > 1)
```
Integral representation:

```python
>>> prob.rewrite(Integral)
Integral(sqrt(2)*exp(-_z**2/2)/(2*sqrt(pi)), (_z, 1, oo))
```

Evaluation of the integral:

```python
>>> prob.evaluate_integral()
sqrt(2)*(-sqrt(2)*sqrt(pi)*erf(sqrt(2)/2) + sqrt(2)*sqrt(pi))/
->(4*sqrt(pi))
```

```python
sympy.stats.E(expr, condition=None, numsamples=None, evaluate=True, **kwargs)
```

Returns the expected value of a random expression.

Parameters

- **expr**: Expr containing RandomSymbols
 The expression of which you want to compute the expectation value
- **given**: Expr containing RandomSymbols
 A conditional expression. \(E(X, X>0) \) is expectation of \(X \) given \(X > 0 \)
- **numsamples**: int
 Enables sampling and approximates the expectation with this many samples
- **evalf**: Bool (defaults to True)
 If sampling return a number rather than a complex expression
- **evaluate**: Bool (defaults to True)
 In case of continuous systems return unevaluated integral

Examples

```python
>>> from sympy.stats import E, Die
>>> X = Die('X', 6)
>>> E(X)
7/2
>>> E(2*X + 1)
8
```

```python
>>> E(X, X > 3) # Expectation of X given that it is above 3
5
```

class sympy.stats.Expectation(expr, condition=None, **kwargs)

Symbolic expression for the expectation.
Examples

```python
>>> from sympy.stats import Expectation, Normal, Probability, Poisson
>>> from sympy import symbols, Integral, Sum

>>> mu = symbols("mu")
>>> sigma = symbols("sigma", positive=True)
>>> X = Normal("X", mu, sigma)

>>> Expectation(X)
Expectation(X)

>>> Expectation(X).evaluate_integral().simplify()
mu
```

To get the integral expression of the expectation:

```python
>>> Expectation(X).rewrite(Integral)
Integral(sqrt(2)*X*exp(-(X - mu)**2/(2*sigma**2))/(2*sqrt(pi)*sigma), (X, -oo, oo))
```

The same integral expression, in more abstract terms:

```python
>>> Expectation(X).rewrite(Probability)
Integral(x*Probability(Eq(X, x)), (x, -oo, oo))
```

To get the Summation expression of the expectation for discrete random variables:

```python
>>> lamda = symbols('lamda', positive=True)
>>> Z = Poisson('Z', lamda)
>>> Expectation(Z).rewrite(Sum)
Sum(Z*lamda**Z*exp(-lamda)/factorial(Z), (Z, 0, oo))
```

This class is aware of some properties of the expectation:

```python
>>> from sympy.abc import a

>>> Y = Normal("Y", 1, 2)

>>> Expectation(a*X)
Expectation(a*X)

>>> Expectation(a*X + Y)
Expectation(a*X + Y)

To expand the Expectation into its expression, use expand():
```

```python
>>> Expectation(X + Y).expand()
Expectation(X) + Expectation(Y)
```

```python
>>> Expectation(a*X + Y).expand()
a*Expectation(X) + Expectation(Y)
```

```python
>>> Expectation((X + Y)*(X - Y)).expand()
Expectation(X**2) - Expectation(Y**2)
```

To evaluate the Expectation, use doit():

```python
>>> Expectation(X + Y).doit()
mu + 1
```

(continues on next page)
To prevent evaluating nested \texttt{Expectation}, use \texttt{doit(\text{deep=False})}

\begin{verbatim}
>>> Expectation(X + Expectation(Y)).doit(\text{deep=False})
mu + Expectation(Expectation(Y))

>>> Expectation(X + Expectation(Y + Expectation(2*X))).doit(\text{deep=False})
mu + Expectation(Expectation(Y + Expectation(2*X)))
\end{verbatim}

\textbf{sympy.stats.density} \texttt{(expr, condition=None, evaluate=True, numsamples=None, **kwargs)}

Probability density of a random expression, optionally given a second condition.

\textbf{Parameters}

- \texttt{expr} : \texttt{Expr} containing RandomSymbols
 - The expression of which you want to compute the density value
- \texttt{condition} : \texttt{Relational} containing RandomSymbols
 - A conditional expression. \texttt{density(X > 1, X > 0)} is density of \texttt{X > 1} given \texttt{X > 0}
- \texttt{numsamples} : \texttt{int}
 - Enables sampling and approximates the density with this many samples

\textbf{Explanation}

This density will take on different forms for different types of probability spaces. Discrete variables produce Dicts. Continuous variables produce Lambdas.

\textbf{Examples}

\begin{verbatim}
>>> from sympy.stats import density, Die, Normal
>>> from sympy import Symbol

>>> x = Symbol('x')
>>> D = Die('D', 6)
>>> X = Normal(x, 0, 1)

>>> density(D).dict
{1: 1/6, 2: 1/6, 3: 1/6, 4: 1/6, 5: 1/6, 6: 1/6}

>>> density(2*D).dict
{2: 1/6, 4: 1/6, 6: 1/6, 8: 1/6, 10: 1/6, 12: 1/6}

>>> density(X)(x)
\sqrt{2} \cdot \exp(-x^2/2)/(2\sqrt{\pi})
\end{verbatim}

\textbf{sympy.stats.entropy} \texttt{(expr, condition=None, **kwargs)}

Calculates entropy of a probability distribution.
Parameters

expression : the random expression whose entropy is to be calculated
condition : optional, to specify conditions on random expression
b : base of the logarithm, optional
 By default, it is taken as Euler’s number

Returns

result : Entropy of the expression, a constant

Examples

```python
>>> from sympy.stats import Normal, Die, entropy
>>> X = Normal('X', 0, 1)
>>> entropy(X)
log(2)/2 + 1/2 + log(pi)/2

>>> D = Die('D', 4)
>>> entropy(D)
log(4)
```

References

[R973], [R974], [R975]
sympy.stats.given(expr, condition=None, **kwargs)
Conditional Random Expression.

Explanation

From a random expression and a condition on that expression creates a new probability space from the condition and returns the same expression on that conditional probability space.

Examples

```python
>>> from sympy.stats import given, density, Die
>>> X = Die('X', 6)
>>> Y = given(X, X > 3)
>>> density(Y).dict
{4: 1/3, 5: 1/3, 6: 1/3}
```

Following convention, if the condition is a random symbol then that symbol is considered fixed.
```python
>>> X = Normal('X', 0, 1)
>>> Y = Normal('Y', 0, 1)
>>> pprint(density(X + Y, Y)(z), use_unicode=False)
\frac{2}{\sqrt{2}} \frac{\exp\left(-\frac{1}{2}(-Y + z)^2\right)}{2 \pi}
```

`sympy.stats.where(condition, given_condition=None, **kwargs)`

Returns the domain where a condition is True.

Examples

```python
>>> from sympy.stats import where, Die, Normal
>>> from sympy import And

>>> D1, D2 = Die('a', 6), Die('b', 6)
>>> a, b = D1.symbol, D2.symbol
>>> X = Normal('x', 0, 1)

>>> where(X**2<1)
Domain: (-1 < x) & (x < 1)

>>> where(X**2<1).set
Interval.open(-1, 1)

>>> where(And(D1<=D2, D2<3))
Domain: (Eq(a, 1) & Eq(b, 1)) | (Eq(a, 1) & Eq(b, 2)) | (Eq(a, 2) & Eq(b, 2))
```

`sympy.stats.variance(X, condition=None, **kwargs)`

Variance of a random expression.

\[
\text{variance}(X) = \mathbb{E}((X - \mathbb{E}(X))^2)
\]

Examples

```python
>>> from sympy.stats import Die, Bernoulli, variance
>>> from sympy import simplify, Symbol

>>> X = Die('X', 6)
>>> p = Symbol('p')
>>> B = Bernoulli('B', p, 1, 0)
```
```python
>>> variance(2*X)
35/3

>>> simplify(variance(B))
p*(1 - p)
```

```python
class sympy.stats.Variance(arg, condition=None, **kwargs)
Symbolic expression for the variance.
```

Examples

```python
>>> from sympy import symbols, Integral
>>> from sympy.stats import Normal, Expectation, Variance, Probability
>>> mu = symbols("mu", positive=True)
>>> sigma = symbols("sigma", positive=True)
>>> X = Normal("X", mu, sigma)
>>> Variance(X)
Variance(X)
```

Integral representation of the underlying calculations:

```python
>>> Variance(X).rewrite(Integral)
Integral(sqrt(2)*(X - Integral(sqrt(2)*X*exp(-(X - mu)**2/(2*sigma**2))/
→(2*sqrt(pi)*sigma), (X, -oo, oo)))**2*exp(-(X - mu)**2/(2*sigma**2))/
→(2*sqrt(pi)*sigma), (X, -oo, oo))
```

Integral representation, without expanding the PDF:

```python
>>> Variance(X).rewrite(Probability)
-Integral(x*Probability(Eq(X, x)), (x, -oo, oo))**2 +
→Integral(x**2*Probability(Eq(X, x)), (x, -oo, oo))
```

Rewrite the variance in terms of the expectation

```python
>>> Variance(X).rewrite(Expectation)
-Expectation(X)**2 + Expectation(X**2)
```

Some transformations based on the properties of the variance may happen:

```python
>>> from sympy.abc import a
>>> Y = Normal("Y", 0, 1)
>>> Variance(a*X)
Variance(a*X)
```

To expand the variance in its expression, use expand():

```python
>>> Variance(a*X).expand()
a**2*Variance(X)
```

(continues on next page)
>>> Variance(X + Y).expand()
2*Covariance(X, Y) + Variance(X) + Variance(Y)

sympy.stats.covariance(X, Y, condition=None, **kwargs)
Covariance of two random expressions.

Explanation

The expectation that the two variables will rise and fall together

\[\text{covariance}(X, Y) = E((X - E(X))(Y - E(Y))) \]

Examples

```python
>>> from sympy.stats import Exponential, covariance
>>> from sympy import Symbol

>>> rate = Symbol('lambda', positive=True, real=True)
>>> X = Exponential('X', rate)
>>> Y = Exponential('Y', rate)

>>> covariance(X, X)
lambda**(-2)
>>> covariance(X, Y)
0
>>> covariance(X, Y + rate*X)
1/lambda
```

class sympy.stats.Covariance(arg1, arg2, condition=None, **kwargs)
Symbolic expression for the covariance.

Examples

```python
>>> from sympy.stats import Covariance
>>> from sympy.stats import Normal

>>> X = Normal("X", 3, 2)
>>> Y = Normal("Y", 0, 1)
>>> Z = Normal("Z", 0, 1)
>>> W = Normal("W", 0, 1)
>>> cexpr = Covariance(X, Y)
```

Evaluate the covariance, \(X \) and \(Y \) are independent, therefore zero is the result:

```python
>>> cexpr.evaluate_integral()
0
```
Rewrite the covariance expression in terms of expectations:

```python
>>> from sympy.stats import Expectation
>>> cexpr.rewrite(Expectation)
Expectation(X*Y) - Expectation(X)*Expectation(Y)
```

In order to expand the argument, use `expand()`:

```python
>>> from sympy.abc import a, b, c, d
>>> Covariance(a*X + b*Y, c*Z + d*W)
Covariance(a*X + b*Y, c*Z + d*W)
>>> Covariance(a*X + b*Y, c*Z + d*W).expand()
a*c*Covariance(X, Z) + a*d*Covariance(W, X) + b*c*Covariance(Y, Z) + b*d*Covariance(W, Y)
```

This class is aware of some properties of the covariance:

```python
>>> Covariance(X, X).expand()
Variance(X)
>>> Covariance(a*X, b*Y).expand()
a*b*Covariance(X, Y)
```

`sympy.stats.coskewness(X, Y, Z, condition=None, **kwargs)`
Calculates the co-skewness of three random variables.

Parameters

- **X** : RandomSymbol
 - Random Variable used to calculate coskewness
- **Y** : RandomSymbol
 - Random Variable used to calculate coskewness
- **Z** : RandomSymbol
 - Random Variable used to calculate coskewness
- **condition** : Expr containing RandomSymbols
 - A conditional expression

Returns

coskewness : The coskewness of the three random variables

Explanation

Mathematically Coskewness is defined as

\[
\text{coskewness}(X, Y, Z) = \frac{E[(X - E[X]) \cdot (Y - E[Y]) \cdot (Z - E[Z])]}{\sigma_X \sigma_Y \sigma_Z}
\]
Examples

```python
>>> from sympy.stats import coskewness, Exponential, skewness
>>> from sympy import symbols
>>> p = symbols('p', positive=True)
>>> X = Exponential('X', p)
>>> Y = Exponential('Y', 2*p)
>>> coskewness(X, Y, Y)
0
>>> coskewness(X, Y + X, Y + 2*X)
16*sqrt(5)/85
>>> coskewness(X + 2*Y, Y + X, Y + 2*X, X > 3)
9*sqrt(170)/85
>>> coskewness(Y, Y, Y) == skewness(Y)
True
>>> coskewness(X, Y + p*X, Y + 2*p*X)
4/(sqrt(1 + 1/(4*p**2))*sqrt(4 + 1/(4*p**2)))
```

References

[R976] sympy.stats.median(X, evaluate=True, **kwargs)
Calculates the median of the probability distribution.

Parameters

X: The random expression whose median is to be calculated.

Returns

The FiniteSet or an Interval which contains the median of the
random expression.

Explanation

Mathematically, median of Probability distribution is defined as all those values of \(m \) for
which the following condition is satisfied

\[
P(X \leq m) \geq \frac{1}{2} \text{ and } P(X \geq m) \geq \frac{1}{2}
\]

Examples

```python
>>> from sympy.stats import Normal, Die, median
>>> N = Normal('N', 3, 1)
>>> median(N)
{3}
>>> D = Die('D')
>>> median(D)
{3, 4}
```
References

[R977]
sympy.stats.std(X, condition=None, **kwargs)
Standard Deviation of a random expression

\[\text{std}(X) = \sqrt{E((X - E(X))^2)} \]

Examples

```python
>>> from sympy.stats import Bernoulli, std
>>> from sympy import Symbol, simplify

>>> p = Symbol('p')
>>> B = Bernoulli('B', p, 1, 0)

>>> simplify(std(B))
sqrt(p*(1 - p))
```

sympy.stats.quantile(expr, evaluate=True, **kwargs)
Return the \(p^{th} \) order quantile of a probability distribution.

Explanation

Quantile is defined as the value at which the probability of the random variable is less than or equal to the given probability.

\[Q(p) = \inf\{x \in (-\infty, \infty) : p \leq F(x)\} \]

Examples

```python
>>> from sympy.stats import quantile, Die, Exponential
>>> from sympy import Symbol, pprint

>>> p = Symbol("p")

>>> l = Symbol("lambda", positive=True)
>>> X = Exponential("x", l)
>>> quantile(X)(p)
-log(1 - p)/lambda

>>> D = Die("d", 6)
>>> pprint(quantile(D)(p), use_unicode=False)
/nan for Or(p > 1, p < 0)
| 1 for p <= 1/6
| 2 for p <= 1/3
```

(continues on next page)
sympy.stats.sample(expr, condition=None, size=(), library='scipy', numsamples=1, seed=None, **kwargs)

A realization of the random expression.

Parameters

- `expr`: Expression of random variables
 Expression from which sample is extracted
- `condition`: Expr containing RandomSymbols
 A conditional expression
- `size`: int, tuple
 Represents size of each sample in numsamples
- `library`: str
 - 'scipy': Sample using scipy
 - 'numpy': Sample using numpy
 - 'pymc': Sample using PyMC
 Choose any of the available options to sample from as string, by default is 'scipy'
- `numsamples`: int
 Number of samples, each with size as `size`.
 Deprecated since version 1.9.

The `numsamples` parameter is deprecated and is only provided for compatibility with v1.8. Use a list comprehension or an additional dimension in `size` instead. See `sympy.stats.sample(numsamples=n)` (page 220) for details.

- `seed`: An object to be used as seed by the given external library for sampling `expr`. Following is the list of possible types of object for the supported libraries,
 - 'scipy': int, numpy.random.RandomState, numpy.random.Generator
 - 'numpy': int, numpy.random.RandomState, numpy.random.Generator
 - 'pymc': int
Optional, by default None, in which case seed settings related to the given library will be used. No modifications to environment’s global seed settings are done by this argument.

Returns

- sample: float/list/numpy.ndarray
 - one sample or a collection of samples of the random expression.
 - sample(X) returns float/numpy.float64/numpy.int64 object.
 - sample(X, size=int/tuple) returns numpy.ndarray object.

Examples

```python
>>> from sympy.stats import Die, sample, Normal, Geometric
>>> X, Y, Z = Die('X', 6), Die('Y', 6), Die('Z', 6) # Finite Random Variable
>>> die_roll = sample(X + Y + Z)
>>> die_roll
3
>>> N = Normal('N', 3, 4) # Continuous Random Variable
>>> samp = sample(N)
>>> samp in N.pspace.domain.set
True
>>> samp = sample(N, N>0)
>>> samp > 0
True
>>> samp_list = sample(N, size=4)
>>> [sam in N.pspace.domain.set for sam in samp_list]
[True, True, True, True]
>>> sample(N, size = (2,3))
array([[5.42519758, 6.40207856, 4.94991743],
       [1.85819627, 6.83403519, 1.9412172 ]])
>>> G = Geometric('G', 0.5) # Discrete Random Variable
>>> samp_list = sample(G, size=3)
>>> samp_list
[1, 3, 2]
>>> [sam in G.pspace.domain.set for sam in samp_list]
[True, True, True]
>>> MN = Normal("MN", [3, 4], [[2, 1], [1, 2]]) # Joint Random Variable
>>> samp_list = sample(MN, size=4)
>>> samp_list
[array([2.85768055, 3.38954165]),
 array([4.1163337, 4.3176591 ]),
 array([0.79115232, 1.63232916]),
 array([4.01747268, 3.96716083])]
>>> [tuple(sam) in MN.pspace.domain.set for sam in samp_list]
[True, True, True, True]
```

Changed in version 1.7.0: sample used to return an iterator containing the samples instead of value.

Changed in version 1.9.0: sample returns values or array of values instead of an iterator and numsamples is deprecated.
sympy.stats.sample_iter(expr, condition=None, size=(), library='scipy',
numsamples=oo, seed=None, **kwargs)

Returns an iterator of realizations from the expression given a condition.

Parameters
- **expr**: Expr
 Random expression to be realized

- **condition**: Expr, optional
 A conditional expression

- **size**: int, tuple
 Represents size of each sample in numsamples

- **numsamples**: integer, optional
 Length of the iterator (defaults to infinity)

- **seed**: An object to be used as seed by the given external library for sampling
 expr. Following is the list of possible types of object for the supported
 libraries,

 - 'scipy': int, numpy.random.RandomState, numpy.random.Generator
 - 'numpy': int, numpy.random.RandomState, numpy.random.Generator
 - 'pymc': int

 Optional, by default None, in which case seed settings related to the
 given library will be used. No modifications to environment’s global
 seed settings are done by this argument.

Returns
- **sample_iter**: iterator object
 iterator object containing the sample/samples of given expr

Examples

```python
>>> from sympy.stats import Normal, sample_iter
>>> X = Normal('X', 0, 1)
>>> expr = X*X + 3
>>> iterator = sample_iter(expr, numsamples=3)
>>> list(iterator)
[12, 4, 7]
```

See also:

- `sample` (page 3055), `sampling_P` (page 3060), `sampling_E` (page 3060)

sympy.stats.factorial_moment(X, n, condition=None, **kwargs)

The factorial moment is a mathematical quantity defined as the expectation or average
of the falling factorial of a random variable.

\[
factorial-moment(X, n) = E(X(X - 1)(X - 2)...(X - n + 1))
\]
Parameters
- \(n \): A natural number, \(n \)-th factorial moment.
- **condition**: Expr containing RandomSymbols
 A conditional expression.

Examples
```python
>>> from sympy.stats import factorial_moment, Poisson, Binomial
>>> from sympy import Symbol, S
>>> lamda = Symbol('lamda')
>>> X = Poisson('X', lamda)
>>> factorial_moment(X, 2)
lamda**2
>>> Y = Binomial('Y', 2, S.Half)
>>> factorial_moment(Y, 2)
1/2
>>> factorial_moment(Y, 2, Y > 1) # find factorial moment for Y > 1
2
```

References
[R978], [R979]

`sympy.stats.kurtosis`(X, condition=None, **kwargs)
Characterizes the tails/outliers of a probability distribution.

Parameters
- **condition**: Expr containing RandomSymbols
 A conditional expression. kurtosis(X, X>0) is kurtosis of X given X > 0

Explanation
Kurtosis of any univariate normal distribution is 3. Kurtosis less than 3 means that the distribution produces fewer and less extreme outliers than the normal distribution.

\[
kurtosis(X) = E(((X - E(X))/\sigma_X)^4)
\]

Examples
```python
>>> from sympy.stats import kurtosis, Exponential, Normal
>>> X = Normal('X', 0, 1)
>>> kurtosis(X)
3
>>> kurtosis(X, X > 0) # find kurtosis given X > 0
(-4/pi - 12/pi**2 + 3)/(1 - 2/pi)**2
```
```python
rate = Symbol('lambda', positive=True, real=True)
Y = Exponential('Y', rate)
kurtosis(Y)
9
```

References

[R980], [R981]

```python
sympy.stats.skewness(X, condition=None, **kwargs)
Measure of the asymmetry of the probability distribution.

Parameters:
condition : Expr containing RandomSymbols
A conditional expression. skewness(X, X>0) is skewness of X given X > 0

Explanation

Positive skew indicates that most of the values lie to the right of the mean.

\[
skewness(X) = E(((X - E(X))/\sigma_X)^3)
\]

Examples

```python
from sympy.stats import skewness, Exponential, Normal
from sympy import Symbol
X = Normal('X', 0, 1)
skewness(X)
0
skewness(X, X > 0) # find skewness given X > 0
(-sqrt(2)/sqrt(pi) + 4*sqrt(2)/pi**2/3)/(1 - 2/pi)**2
```

```python
rate = Symbol('lambda', positive=True, real=True)
Y = Exponential('Y', rate)
skewness(Y)
2
```

```python
sympy.stats.correlation(X, Y, condition=None, **kwargs)
Correlation of two random expressions, also known as correlation coefficient or Pearson’s correlation.
```
**Explanation**

The normalized expectation that the two variables will rise and fall together

\[ \text{correlation}(X, Y) = E((X - E(X))(Y - E(Y)))/\sigma_x \sigma_y \]

**Examples**

```python
>>> from sympy.stats import Exponential, correlation
>>> from sympy import Symbol

>>> rate = Symbol('lambda', positive=True, real=True)
>>> X = Exponential('X', rate)
>>> Y = Exponential('Y', rate)

>>> correlation(X, X)
1
>>> correlation(X, Y)
0
>>> correlation(X, Y + rate*X)
1/sqrt(1 + lambda**(-2))
```

`sympy.stats.rv.sampling_density(expr, given_condition=None, library='scipy', numsamples=1, seed=None, **kwargs)`

Sampling version of density.

**See also:**
- `density` (page 3047), `sampling_P` (page 3060), `sampling_E` (page 3060)

`sympy.stats.rv.sampling_P(condition, given_condition=None, library='scipy', numsamples=1, ev alf=True, seed=None, **kwargs)`

Sampling version of P.

**See also:**
- `P` (page 3044), `sampling_E` (page 3060), `sampling_density` (page 3060)

`sympy.stats.rv.sampling_E(expr, given_condition=None, library='scipy', numsamples=1, evalf=True, seed=None, **kwargs)`

Sampling version of E.

**See also:**
- `P` (page 3044), `sampling_P` (page 3060), `sampling_density` (page 3060)

`class sympy.stats.Moment(X, n, c=0, condition=None, **kwargs)`

Symbolic class for Moment
Examples

```python
>>> from sympy import Symbol, Integral
>>> from sympy.stats import Normal, Expectation, Probability, Moment
>>> mu = Symbol('mu', real=True)
>>> sigma = Symbol('sigma', positive=True)
>>> X = Normal('X', mu, sigma)
>>> M = Moment(X, 3, 1)

To evaluate the result of Moment use `doit`:

```python
>>> M.doit()
```

mu**3 - 3*mu**2 + 3*mu*sigma**2 + 3*mu - 3*sigma**2 - 1

Rewrite the Moment expression in terms of Expectation:

```python
>>> M.rewrite(Expectation)
```

Expectation((X - 1)**3)

Rewrite the Moment expression in terms of Probability:

```python
>>> M.rewrite(Probability)
```

Integral((x - 1)**3*Probability(Eq(X, x)), (x, -oo, oo))

Rewrite the Moment expression in terms of Integral:

```python
>>> M.rewrite(Integral)
```

Integral(sqrt(2)*(X - 1)**3*exp(-(X - mu)**2/(2*sigma**2))/
→(2*sqrt(pi)*sigma), (X, -oo, oo))

```

sympy.stats.moment(X, n, c=0, condition=None, *, evaluate=True, **kwargs)
```

Return the nth moment of a random expression about c.

\[
moment(X, n, c) = E((X - c)^n)
\]

Default value of c is 0.

Examples

```python
>>> from sympy.stats import Die, moment, E
>>> X = Die('X', 6)
>>> moment(X, 1, 6)
-5/2
>>> moment(X, 2)
91/6
>>> moment(X, 1) == E(X)
True
```

class sympy.stats.CentralMoment(X, n, condition=None, **kwargs)

Symbolic class Central Moment
Examples

```python
>>> from sympy import Symbol, Integral
>>> from sympy.stats import Normal, Expectation, Probability,
    CentralMoment
>>> mu = Symbol('mu', real=True)
>>> sigma = Symbol('sigma', positive=True)
>>> X = Normal('X', mu, sigma)
>>> CM = CentralMoment(X, 4)

To evaluate the result of CentralMoment use `doit`:

```python
>>> CM.doit().simplify()
```

3*sigma**4

Rewrite the CentralMoment expression in terms of Expectation:

```python
>>> CM.rewrite(Expectation)
```

```
Expectation((X - Expectation(X))**4)
```

Rewrite the CentralMoment expression in terms of Probability:

```python
>>> CM.rewrite(Probability)
```

```
Integral((x - Integral(x*Probability(True), (x, -oo,
 oo))))**4*Probability(Eq(X, x)), (x, -oo, oo))
```

Rewrite the CentralMoment expression in terms of Integral:

```python
>>> CM.rewrite(Integral)
```

```
Integral(sqrt(2)*(X - Integral(sqrt(2)*X*exp(-(X - mu)**2/(2*sigma**2))/
 (2*sqrt(pi)*sigma), (X, -oo, oo)))**4*exp(-(X - mu)**2/(2*sigma**2))/
 (2*sqrt(pi)*sigma), (X, -oo, oo))
```

**sympy.stats.cmoment**(X, n, condition=None, *, evaluate=True, **kwargs)

Return the nth central moment of a random expression about its mean.

\[ cmoment(X, n) = E((X - E(X))^n) \]

Examples

```python
>>> from sympy.stats import Die, cmoment, variance
>>> X = Die('X', 6)
>>> cmoment(X, 3)
0
>>> cmoment(X, 2)
35/12
>>> cmoment(X, 2) == variance(X)
```

```
True
```

**class sympy.stats.ExpectationMatrix**(expr, condition=None)

Expectation of a random matrix expression.
Examples

```python
from sympy.stats import ExpectationMatrix, Normal
from sympy.stats.rv import RandomMatrixSymbol
from sympy import symbols, MatrixSymbol, Matrix

k = symbols("k")
A, B = MatrixSymbol("A", k, k), MatrixSymbol("B", k, k)
X, Y = RandomMatrixSymbol("X", k, 1), RandomMatrixSymbol("Y", k, 1)

ExpectationMatrix(X)
ExpectationMatrix(A*X).shape

>>> ExpectationMatrix(A*X).shape
(k, 1)
```

To expand the expectation in its expression, use `expand()`:

```python
ExpectationMatrix(A*X + B*Y).expand()
```

To evaluate the `ExpectationMatrix`, use `doit()`:

```python
N11, N12 = Normal('N11', 11, 1), Normal('N12', 12, 1)
N21, N22 = Normal('N21', 21, 1), Normal('N22', 22, 1)
M11, M12 = Normal('M11', 1, 1), Normal('M12', 2, 1)
M21, M22 = Normal('M21', 3, 1), Normal('M22', 4, 1)
x1 = Matrix([[N11, N12], [N21, N22]])
x2 = Matrix([[M11, M12], [M21, M22]])
ExpectationMatrix(x1 + x2).doit()
```

```python
Matrix([[12, 14], [24, 26]])
```

**class sympy.stats.VarianceMatrix(arg, condition=None)**

Variance of a random matrix probability expression. Also known as Covariance matrix, auto-covariance matrix, dispersion matrix, or variance-covariance matrix.

Examples

```python
from sympy.stats import VarianceMatrix
from sympy.stats.rv import RandomMatrixSymbol
from sympy import symbols, MatrixSymbol, Matrix

k = symbols("k")
A, B = MatrixSymbol("A", k, k), MatrixSymbol("B", k, k)
X, Y = RandomMatrixSymbol("X", k, 1), RandomMatrixSymbol("Y", k, 1)

VarianceMatrix(X)
VarianceMatrix(X).shape

>>> VarianceMatrix(X).shape
(k, k)
```

To expand the variance in its expression, use `expand()`:
class `sympy.stats.CrossCovarianceMatrix`(arg1, arg2, condition=None)

Covariance of a random matrix probability expression.

Examples

```python
>>> from sympy.stats import CrossCovarianceMatrix
>>> from sympy.stats.rv import RandomMatrixSymbol
>>> from sympy import symbols, MatrixSymbol
>>> k = symbols("k")
>>> A, B = MatrixSymbol("A", k, k), MatrixSymbol("B", k, k)
>>> C, D = MatrixSymbol("C", k, k), MatrixSymbol("D", k, k)
>>> X, Y = RandomMatrixSymbol("X", k, 1), RandomMatrixSymbol("Y", k, 1)
>>> Z, W = RandomMatrixSymbol("Z", k, 1), RandomMatrixSymbol("W", k, 1)
>>> CrossCovarianceMatrix(X, Y)
CrossCovarianceMatrix(X, Y)
>>> CrossCovarianceMatrix(X, Y).shape
(k, k)
```

To expand the covariance in its expression, use `expand()`:

```python
>>> CrossCovarianceMatrix(X + Y, Z).expand()
CrossCovarianceMatrix(X, Z) + CrossCovarianceMatrix(Y, Z)
>>> CrossCovarianceMatrix(A*X, Y).expand()
A*CrossCovarianceMatrix(X, Y)
>>> CrossCovarianceMatrix(A*X, B.T*Y).expand()
A*CrossCovarianceMatrix(X, Y)*B
```

Mechanics

SymPy Stats employs a relatively complex class hierarchy.

RandomDomains are a mapping of variables to possible values. For example, we might say that the symbol `Symbol('x')` can take on the values `{1, 2, 3, 4, 5, 6}`.

```python
class sympy.stats.rv.RandomDomain
```

A PSpace, or Probability Space, combines a RandomDomain with a density to provide probabilistic information. For example the above domain could be enhanced by a finite density `{1:1/6, 2:1/6, 3:1/6, 4:1/6, 5:1/6, 6:1/6}` to fully define the roll of a fair die named `x`.

```python
class sympy.stats.rv.PSpace
```
A RandomSymbol represents the PSpace’s symbol ‘x’ inside of SymPy expressions.

```python
class sympy.stats.rv.RandomSymbol
```

The RandomDomain and PSpace classes are almost never directly instantiated. Instead they are subclassed for a variety of situations.

RandomDomains and PSpaces must be sufficiently general to represent domains and spaces of several variables with arbitrarily complex densities. This generality is often unnecessary. Instead we often build SingleDomains and SinglePSpaces to represent single, univariate events and processes such as a single die or a single normal variable.

```python
class sympy.stats.rv.SinglePSpace
class sympy.stats.rv.SingleDomain
```

Another common case is to collect together a set of such univariate random variables. A collection of independent SinglePSpaces or SingleDomains can be brought together to form a ProductDomain or ProductPSpace. These objects would be useful in representing three dice rolled together for example.

```python
class sympy.stats.rv.ProductDomain
class sympy.stats.rv.ProductPSpace
```

The Conditional adjective is added whenever we add a global condition to a RandomDomain or PSpace. A common example would be three independent dice where we know their sum to be greater than 12.

```python
class sympy.stats.rv.ConditionalDomain
```

We specialize further into Finite and Continuous versions of these classes to represent finite (such as dice) and continuous (such as normals) random variables.

```python
class sympy.stats.frv.FiniteDomain
class sympy.stats.frv.FinitePSpace
class sympy.stats.crv.ContinuousDomain
class sympy.stats.crv.ContinuousPSpace
```

Additionally there are a few specialized classes that implement certain common random variable types. There is for example a DiePSpace that implements SingleFinitePSpace and a NormalPSpace that implements SingleContinuousPSpace.

```python
class sympy.stats.frv_types.DiePSpace
class sympy.stats.crv_types.NormalPSpace
```

RandomVariables can be extracted from these objects using the PSpace.values method.

As previously mentioned SymPy Stats employs a relatively complex class structure. Inheritance is widely used in the implementation of end-level classes. This tactic was chosen to balance between the need to allow SymPy to represent arbitrarily defined random variables and optimizing for common cases. This complicates the code but is structured to only be important to those working on extending SymPy Stats to other random variable types.

Users will not use this class structure. Instead these mechanics are exposed through variable creation functions Die, Coin, FiniteRV, Normal, Exponential, etc.... These build the appropriate SinglePSpaces and return the corresponding RandomVariable. Conditional and Product
spaces are formed in the natural construction of SymPy expressions and the use of interface functions E, Given, Density, etc....

```python
sympy.stats.Die()

sympy.stats.Normal()
```

There are some additional functions that may be useful. They are largely used internally.

```python
sympy.stats.rv.random_symbols(expr)

 Returns all RandomSymbols within a SymPy Expression.

sympy.stats.rv.pspace(expr)

 Returns the underlying Probability Space of a random expression.

 For internal use.
```

**Examples**

```python
>>> from sympy.stats import pspace, Normal

>>> X = Normal('X', 0, 1)

>>> pspace(2*X + 1) == X.pspace
True
```

```python
sympy.stats.rv.rs_swap(a, b)

 Build a dictionary to swap RandomSymbols based on their underlying symbol.

 i.e. if X = ('x', pspace1) and Y = ('x', pspace2) then X and Y match and the key, value pair {X:Y} will appear in the result

 Inputs: collections a and b of random variables which share common symbols
 Output: dict mapping RVs in a to RVs in b
```
The contributing guide goes over the details necessary to contribute to SymPy. See also the full Development Workflow guide on the SymPy wiki.

Content

6.1 Development Environment Setup

The first step to contributing to the code base is creating your development environment.

6.1.1 Git Setup

SymPy is available on GitHub and uses Git for source control. The workflow is such that code is pulled and pushed to and from the main repository. Install the respective version of Git for your operating system to start development.

Note: Refer to the installation instructions in the Git installation instructions. Learn about the basic git commands in this Git Handbook or any other sources on the internet.

6.1.2 Get the SymPy Code

It is recommended practice to create a fork of the SymPy project for your development purposes. Create your own fork of the SymPy project (if you have not yet). Go to the SymPy GitHub repository:

https://github.com/sympy/sympy

You will now have a fork at <https://github.com/<your-user-name>/sympy>. Then, on your machine browse to where you would like to store SymPy, and clone (download) the latest code from SymPy’s original repository (about 77 MiB):

$ git clone https://github.com/<your-user-name>/sympy

You must configure the remote repositories for collaboration with the upstream project:
$ cd sympy
$ git remote add upstream https://github.com/sympy/sympy

After the configuration, your setup should be similar to this:

$ git remote -v
origin https://github.com/<your-user-name>/sympy (fetch)
origin https://github.com/<your-user-name>/sympy (push)
upstream https://github.com/sympy/sympy (fetch)
upstream https://github.com/sympy/sympy (push)

For further development, it is recommended to create a development branch.

$ git checkout -b dev-branch

The new branch can be of any name.

### 6.1.3 Virtual Environment Setup

You may want to take advantage of using virtual environments to isolate your development version of SymPy from any system wide installed versions, e.g. from `apt-get install python-sympy`.

We recommend using `conda` to create a virtual environment:

$ conda create -n sympy-dev python=3 mpmath flake8 flake8-comprehensions

You now have a environment that you can use for testing your development copy of SymPy. For example, clone your SymPy fork from Github:

$ git clone git@github.com:<your-github-username>/sympy.git
$ cd sympy

Now activate the environment:

$ conda activate sympy-dev

### 6.1.4 Run the Tests

There are several ways of running SymPy tests but the easiest is to use the `bin/test` script, consult the wiki details on running tests.

The script takes a number of options and arguments and then passes them to `sympy.test(*paths, **kwargs)`. Run `bin/test --help` for all supported arguments.

Run all tests by using the command:

$ bin/test

To run tests for a specific file, use:

$ bin/test test_basic
Where test_basic is from file sympy/core/basic.py.

To run tests for modules, use:

$ bin/test /core /utilities

This will run tests for the core and utilities modules.

Similarly, run quality tests with:

$ bin/test code_quality

### 6.2 Dependencies

This page lists the hard and optional dependencies of SymPy.

There are several packages that, when installed, can enable certain additional SymPy functionality. Most users and contributors will not need to install any of the packages mentioned below (except for the hard dependencies), unless they intend to use or contribute to the parts of SymPy that can use those packages.

Every dependency listed below can be installed with conda via conda-forge, and most can also be installed with pip.

This page does not list packages which themselves depend on SymPy, only those packages that SymPy depends on. An incomplete list of packages that depend on SymPy can be found on the [main SymPy webpage](https://docs.sympy.org/latest/install.html), and a more complete list can be found on GitHub or libraries.io.

#### 6.2.1 Hard Dependencies

SymPy only has one hard dependency, which is required for it to work: mpmath.

- **mpmath**: mpmath is a pure Python package for arbitrary precision arithmetic. It is used under the hood whenever SymPy calculates the floating-point value of a function, e.g., when using `evalf` (page 1111).

  SymPy cannot function without mpmath and will fail to import if it is not installed. If you get an error like

  ```
 ImportError: SymPy now depends on mpmath as an external library. See https://docs.sympy.org/latest/install.html#mpmath for more information.
  ```

  this means that you did not install mpmath correctly. *This page* (page 2) explains how to install it.

  Most methods of installing SymPy, such as the ones outlined in the *installation* (page 1) guide, will install mpmath automatically. You typically only need to install mpmath manually if you did not actually install SymPy, e.g., if you are developing directly on SymPy in the git repository.
6.2.2 Optional Dependencies

These dependencies are not required to use SymPy. The vast majority of SymPy functions do not require them, however, a few functions such as plotting and automatic wrapping of code generated functions require additional dependencies to function.

Additionally, as a contributor, when running the SymPy tests, some tests will be skipped if a dependency they require is not installed. The GitHub Actions CI which is run on every SymPy pull request will automatically install these dependencies in the “optional-dependencies” build, but you may wish to install them locally if you are working on a part of SymPy that uses them.

Recommended Optional Dependencies

These dependencies are not required for SymPy to function, but it is recommended that all users install them if they can, as they will improve the general performance of SymPy.

- **gmpy2**: gmpy2 is a Python wrapper for the GMP multiple-precision library. It provides large integers that are faster than the built-in Python int. When gmpy2 is installed, it is used automatically by certain core functions that operate on integers, such as the polys (page 2416). See Reference docs for the Poly Domains (page 2584) for more details. SymPy uses gmpy2 automatically when it is installed. No further action is required to enable it.

  The polys themselves are used by many parts of SymPy, such as the integration algorithms, simplification algorithms like collect() and factor(), the matrices, and some parts of the core. Thus, installing gmpy2 can speed up many parts of SymPy. It is not a required dependency of SymPy because it makes use of a non-Python library (GMP), which is also non-BSD licensed. However, we recommended all users who are able to to install gmpy2 to get a better SymPy experience.

Interactive Use

SymPy is designed to be used both interactively and as a library. When used interactively, SymPy is able to interface with IPython and Jupyter notebooks.

- **IPython**: The init_session() (page 2189) function and isymy command will automatically start IPython if it is installed. In addition to the usual benefits of using IPython, this enables interactive plotting with matplotlib. Also some flags such as auto_symbols and auto_int_to_Integer will only work in IPython.

  The IPython package is required to run some of the tests in sympy/interactive.

- **Jupyter Notebook and Qt Console**: SymPy expressions automatically print using MathJax in the Jupyter Notebook and with LaTeX Qt Console (if LaTeX (page 3071) is installed).
Printing

The `preview()` (page 2256) function automatically converts SymPy expressions into images rendered with LaTeX. `preview()` can either save the image to a file or show it with a viewer.

- **LaTeX**: A LaTeX distributions such as TeXLive or MiKTeX is required for `preview()` (page 2256) to function.

Parsing

Several functions in the `sympy.parsing` (page 2195) submodule require external dependencies to function. Note that not all parsers require external modules at this time. The Python (`parse_expr()` (page 2195)), Mathematca (`parse_mathematica()` (page 2198)), and Maxima (`parse_maxima()` (page 2198)) parsers do not require any external dependencies.

- **antlr-python-runtime**: Antlr is used for the LaTeX parser (page 2202) and Autolev (page 1771) parsers. They both require the Antlr Python runtime to be installed. The package for this is called antlr-python-runtime with conda and antlr4-python3-runtime with pip. Also be aware that the version of the Antlr Python runtime must match the version that was used to compile the LaTeX and Autolev parsers (4.10).

- **Clang Python Bindings**: The C parser (sympy.parsing.c.parse_c) requires the Clang Python bindings. The package for this is called python-clang with conda and clang with pip.

- **lfortran**: The Fortran parser (in sympy.parsing.fortran) requires LFortran.

Logic

The `satisfiable()` (page 1228) function includes a pure Python implementation of the DPLL satisfiability algorithm. But it can optionally use faster C SAT solvers if they are installed. Note that `satisfiable()` is also used by `ask()` (page 249).

- **pycosat**: Pycosat is used automatically if it is installed. The use of pycosat can be forced by using `satisfiable(algorithm='pycosat')`.

- **pysat**: Pysat is a library which wraps many SAT solvers. It can also be used as a backend to `satisfiable()`. Presently, only Minisat is implemented, using `satisfiable(algorithm=minisat22')`.

Plotting

The `sympy.plotting.plot` (page 2904) module makes heavy use of external plotting libraries to render plots. The primarily plotting module that is supported is Matplotlib.

- **matplotlib**: Most plotting functionality requires the Matplotlib plotting library. Without Matplotlib installed, most plotting functions will either fail or give rudimentary text plots (page 2956).

- **pyglet**: SymPy has a submodule `sympy.plotting.pygletplot` (page 2953) that can be used to interface with the pyglet module to do 2D and 3D plotting.
lambdify

`lambdify()` (page 2173) is a function that converts SymPy expressions into functions that can be evaluated numerically using various libraries as backends. `lambdify` is the primary vehicle by which users interface between SymPy and these libraries. It is the standard way to convert a symbolic SymPy expression into an evaluable numeric function.

In principle, `lambdify` can interface with any external library if the user passes in an appropriate namespace dictionary as the third argument, but by default, `lambdify` is aware of several popular numeric Python libraries. These libraries are enabled as backends in `lambdify` with built-in translations to convert SymPy expressions into the appropriate functions for those libraries.

- **NumPy**: By default, if it is installed, `lambdify` creates functions using NumPy (if NumPy is not installed, `lambdify` produces functions using the standard library `math` module, although this behavior is primarily provided for backwards compatibility).
- **SciPy**: If SciPy is installed, `lambdify` will use it automatically. SciPy is needed to `lambdify` certain special functions that are not included in NumPy.
- **CuPy**: CuPy is a library that provides a NumPy compatible interface for CUDA GPUs. `lambdify` can produce CuPy compatible functions using `lambdify(modules='cupy')`.
- **Jax**: JAX is a library that uses XLA to compile and run NumPy programs on GPUs and TPUs. `lambdify` can produce JAX compatibly functions using `lambdify(modules='jax')`.
- **TensorFlow**: TensorFlow is a popular machine learning library. `lambdify` can produce TensorFlow compatible functions using `lambdify(modules='tensorflow')`.
- **NumExpr**: NumExpr is a fast numerical expression evaluator for NumPy. `lambdify` can produce NumExpr compatible functions using `lambdify(modules='numexpr')`.
- **mpmath**: `lambdify` can also produce mpmath compatible functions. Note that mpmath is already a required dependency (page 3069) of SymPy. This functionality is useful for converting a SymPy expression to a function for use with pure mpmath.

**Code Generation**

SymPy can generate code (page 1153) for a large number of languages by converting SymPy expressions into valid code for those languages. It also has functionality for some languages to automatically compile and run the code.

Note that the dependencies below are not a list of supported languages that SymPy can generate code for. Rather it is a list of packages that SymPy can interface with in some way. For most languages that SymPy supports code generation, it simply generates a string representing the code for that language, so no dependency on that language is required to use the code generation functionality. A dependency is typically only required for features that automatically take the generated code and compile it to a function that can be used within Python. Note that `lambdify()` (page 2173) is a special case of this, but its dependencies are listed above (page 3072).
**Autowrap**

- **NumPy**: NumPy and, optionally, its subpackage `f2py`, can be used to generate Python functions using the `autowrap()` (page 2112) or `ufuncify()` (page 2114) functions.
- **Cython**: Cython can be used as a backend for `autowrap()` (page 2112) or `ufuncify()` (page 2114). Cython is also used in some of the `sympy.codegen` tests to compile some examples.
- **Compilers**: `autowrap()` (page 2112), `ufuncify()` (page 2114), and related functions rely on a compiler to compile the generated code to a function. Most standard C, C++, and Fortran compilers are supported, including Clang/LLVM, GCC, and ifort.

**Code Printers**

Most code printers generate Python strings, and therefore do not require the given library or language compiler as a dependency. However, a few code printers generate Python functions instead of strings:

- **Aesara**: The `sympy.printing.aesaracode` (page 2241) module contains functions to convert SymPy expressions into a functions using the Aesara (previously Theano) library. The Aesara code generation functions return Aesara graph objects.
- **llvmlite**: The `sympy.printing.llvmjitcode` module supports generating LLVM Jit from a SymPy expression. The functions make use of `llvmlite`, a Python wrapper around LLVM. The `llvm_callable()` function generates callable functions.
- **TensorFlow**: The `sympy.printing.tensorflow` module supports generating functions using the TensorFlow, a popular machine learning library. Unlike the above two examples, `tensorflow_code()` function does generate Python strings. However, `tensorflow` is imported if available in order to automatically detect the TensorFlow version. If it is not installed, the `tensorflow_code()` function assumes the latest supported version of TensorFlow.

**Testing-Only Dependencies**

- **Wurlitzer**: Wurlitzer is a Python package that allows capturing output from C extensions. It is used by some of the tests in the `sympy.codegen` submodule. It is only used by the test suite. It is not used by any end-user functionality. If it is not installed, some tests will be skipped.
- **Cython**: Cython is also used in some of the `sympy.codegen` tests to compile some examples.
- **Compilers**: The various compilers (page 3073) mentioned above are used in some of the codegen and autowrap tests if they are installed.
Statistics

The `sympy.stats.sample()` function uses an external library to produce samples from the given distribution. At least one of the following libraries is required to use the sampling functionality of `sympy.stats`.

- **SciPy**: `sample(library='scipy')` is the default. This uses `scipy.stats`.
- **NumPy**: `sample(library='numpy')` uses the NumPy random module.
- **pymc**: `sample(library='pymc')` uses PyMC to do sampling.

Optional SymEngine Backend

- **python-symengine**: SymEngine is a fast symbolic manipulation library, written in C++. The SymEngine Python bindings may be used as an optional backend for SymPy core. To do this, first install the SymEngine Python bindings (with `pip install symengine`) and run SymPy with the `USE_SYMENGINE=1` environment variable.

Presently, the SymEngine backend is only used by the `sympy.physics.mechanics` (page 1721) and `sympy.liealgebras` (page 2400) modules, although you can also interface with SymPy’s SymEngine backend directly by importing things from `sympy.core.backend`:

```python
>>> from sympy.core.backend import Symbol
>>> # This will create a SymEngine Symbol object if the USE_SYMENGINE environment variable is configured. Otherwise it will be an ordinary SymPy Symbol object.
>>> x = Symbol('x')
```

SymEngine backend support is still experimental, so certain SymPy functions may not work correctly when it is enabled.

Sage

Sage is an open source mathematics software that incorporates a large number of open source mathematics libraries. SymPy is one of the libraries used by Sage.

Most of the code that interfaces between SymPy and Sage is in Sage itself, but a few `_sage_` methods in SymPy that do some very basic setting up of the Sage/SymPy wrappers. These methods should typically only be called by Sage itself.
6.2.3 Development Dependencies

Typical development on SymPy does not require any additional dependencies beyond Python and mpmath.

Getting the Source Code

- **git**: The SymPy source code uses the git version control system. See the installation guide (page 1) and development workflow for instructions on how to get the development version of SymPy from git.

Running the Tests

The base SymPy tests do not require any additional dependencies, however most of the above dependencies may be required for some tests to run. Tests that depend on optional dependencies should be skipped when they are not installed, either by using the sympy.testing.pytest.skip() function or by setting skip = True to skip the entire test file. Optional modules in tests and SymPy library code should be imported with import_module().

- **pytest**: Pytest is not a required dependency for the SymPy test suite. SymPy has its own test runner, which can be accessed via the bin/test script in the SymPy source directory or the test() (page 2106) function.

  However, if you prefer to use pytest, you can use it to run the tests instead of the SymPy test runner. Tests in SymPy should use the wrappers in sympy.testing.pytest (page 2098) instead of using pytest functions directly.

- **Cloudpickle**: The cloudpickle package can be used to more effectively pickle SymPy objects than the built-in Python pickle. Some tests in sympy.utilities.tests.test_pickling.py depend on cloudpickle to run. It is not otherwise required for any SymPy function.

Building the Documentation

Building the documentation requires several additional dependencies. This page (page 3076) outlines these dependencies and how to install them. It is only necessary to install these dependencies if you are contributing documentation to SymPy and want to check that the HTML or PDF documentation renders correctly. If you only want to view the documentation for the development version of SymPy, development builds of the docs are hosted online at https://docs.sympy.org/dev/index.html.

Running the Benchmarks

The benchmarks for SymPy are hosted at https://github.com/sympy/sympy_benchmarks. The README in that repository explains how to run the benchmarks.

Note that the benchmarks are also run automatically on the GitHub Actions CI, so it is generally not necessary to run them yourself as a contributor unless you want to reproduce the benchmarks results on your computer or add a new benchmark to the suite.

- **asv**: Airspeed Velocity is the package used for running the benchmarks. Note that the package name that you install is called asv.
6.3 Build the Documentation

Start by installing the required dependencies for the documentation.

6.3.1 Required dependencies

You can either install the dependencies locally on your machine, or you can build a Docker image containing them.

**Docker**

If you have Docker, then instead of following the OS-specific installation instructions below, you may choose to build a Docker image:

```bash
cd doc
docker build -f Dockerfile.html -t sympy_html_doc .
```

If you choose this option, you can now skip down to the “Build the Docs” section below.

**Debian/Ubuntu**

For Debian/Ubuntu:

```bash
apt-get install python3-sphinx texlive-latex-recommended dvipng librsvg2-bin imagemagick docbook2x graphviz
```

Install pip using:

```bash
sudo apt install python3-pip
```

However, you can also create a virtual environment and use pip in it using:

```bash
python3 -m venv /path/to/my/venv # create the venv
```

Then activate it using:

```bash
source /path/to/my/venv/bin/activate # need to rerun this each time you open a new terminal
```

After installing pip through either of the two methods given above, run:

```bash
python -m pip install -r doc/requirements.txt
```

If you get mpmath error, install python-mpmath package:

```bash
apt-get install python-mpmath
```

If you get matplotlib error, install python-matplotlib package:
apt-get install python-matplotlib

**Fedora**

For Fedora (and maybe other RPM-based distributions), install the prerequisites:

```bash
dnf install python3-sphinx librsvg2 ImageMagick docbook2X texlive-dvipng-bin
texlive-scheme-medium librsvg2-tools
python -m pip install -r doc/requirements.txt
```

If you get mpmath error, install python3-mpmath package:

```bash
dnf install python3-mpmath
```

If you get matplotlib error, install python3-matplotlib package:

```bash
dnf install python3-matplotlib
```

**Mac**

For Mac, first install homebrew: https://brew.sh/

Then install these packages with homebrew:

```bash
brew install imagemagick graphviz docbook librsvg
```

Install the docs dependencies with either pip or conda:

```bash
python -m pip install -r requirements.txt
```

Or:

```bash
conda install -c conda-forge --file requirements.txt
```

Making your Sphinx build successful on the Windows system is tricky because some dependencies like dvipng or docbook2x are not available.

**Windows 10**

For Windows 10, however, the Windows Subsystem for Linux can be a possible workaround solution, and you can install Ubuntu shell on your Windows system after following the tutorial below:


In your command prompt, run ubuntu to transfer to Linux terminal, and follow the Debian/Ubuntu tutorial above to install the dependencies, and then you can run make html to build. (Note that you also have to install make via apt-get install make.)
If you want to change the directory in your prompt to your working folder of SymPy in the Windows file system, you can prepend `cd /mnt/` to your file path in Windows, and run in your shell to navigate to the folder. (Also note that Linux uses `/` instead of `\` for file paths.)

This method provides better compatibility than Cygwin or MSYS2 and more convenience than a virtual machine if you partially need a Linux environment for your workflow, however this method is only viable for Windows 10 64-bit users.

or

Follow instruction to install Chocolatey

Install make and other dependencies:

```
choco install make graphviz rsvg-convert imagemagick
```

Install python dependencies:

```
pip install -r doc/requirements.txt
```

## 6.3.2 Build the Docs

### Docker

If you chose to build using Docker, and followed the instructions above to build the `sympy_htmldoc` image, then you can build the docs with:

```
docker run --rm -v /absolute/path/to/sympy:/sympy sympy_htmldoc
```

(Be sure to substitute the actual absolute filesystem path to sympy!) This command can be run from any directory.

### Local Installation

If you chose to follow OS-specific instructions above and installed the required dependencies locally, the documentation can be built by running the `makefile` in the `doc` subdirectory:

```
cd doc
make html
```

### SymPy Logos

SymPy has a collection of official logos, which can be generated from `sympy.svg` in your local copy of SymPy by:

```
$ cd doc
$ make logo # will be stored in the _build/logo subdirectory
```

The license of all the logos is the same as SymPy: BSD. See the LICENSE file for more information.
### 6.3.3 View the Docs

Once you have built the docs, the generated files will be found under `doc/_build/html`. To view them in your preferred web browser, use the drop down menu and select “open file”, navigate into the `sympy/doc/_build/html` folder, and open the `index.html` file.

### 6.3.4 Auto-Rebuild with the Live Server

The instructions given above told you how to build the docs once, and load them in the browser. After you make changes to the document sources, you’ll have to manually repeat the build step, and reload the pages in the browser.

There is an alternative approach that sets up a live server, which will monitor the docs directory, automatically rebuild when changes are detected, and automatically reload the page you are viewing in the browser.

If you want to use this option, the procedure again depends on whether you are using Docker, or a local installation.

**Docker**

To start the live server with Docker, you can use:

```
docker run --rm -it \
 -v /absolute/path/to/sympy:/sympy \
 -p 8000:80 \
 sympy_htmldoc live
```

and then navigate your browser to `localhost:8000`. You can use a different port by changing the `8000` in the command. Again, be sure to substitute the actual absolute filesystem path to sympy.

When finished, you can stop the server with `ctrl-c` in the terminal.

Alternatively, you may run the server in detached mode, using:

```
docker run --rm -d --name=sympy-livehtml \
 -v /absolute/path/to/sympy:/sympy \
 -p 8000:80 \
 sympy_htmldoc live
```

and then stop it with:

```
docker stop sympy-livehtml
```
Local Installation

If you installed the build dependencies locally, then simply use:

```bash
cd doc
make livehtml
```

to start the server. Your web browser should then automatically open a new tab, showing the index page of the SymPy docs.

When you are finished, you can use `ctrl-c` in the terminal to stop the server.

6.3.5 PDF Documentation

**Note:** It is not necessary for the majority of contributors to build the PDF documentation. The PDF documentation will be built automatically on GitHub Actions on pull requests. PDF documentation for each release is included on the [GitHub releases page](https://github.com/sympy/sympy/releases).

If the PDF documentation build fails on GitHub Actions, 99% of the time this is due to bad LaTeX math formatting. Double check that any math you have added is formatted correctly, and make sure you use ``double backticks`` for code (`single backticks` will render as math, not code). See the resources in the [style guide](https://github.com/sympy/sympy/blob/master/doc/styleguide.md) (page 3098) for tips on formatting LaTeX math.

Building the PDF documentation requires a few extra dependencies. First you will need to have a TeXLive installation that includes XeLaTeX and latexmk. You will also need to have Chrome or Chromium installed, as it is used to convert some SVG files for the PDF.

On Ubuntu, you can install these with:

```bash
apt-get install chromium-browser texlive texlive-xetex texlive-fonts-recommended texlive-latex-extra latexmk lmodern
```

On Mac, you can use:

```bash
brew install texlive
brew install --cask chromium
brew tap homebrew/cask-fonts
brew install font-dejavu
```

On Windows 10, you can use:

```bash
choco install chromium strawberryperl miktex dejavufonts
```

If DejaVu fonts are not installed in `C:\Windows\Fonts`, then open `\AppData\Local\Microsoft\Windows\Fonts`, select all DejaVu fonts, right-click and click `Install for all users`.

To build the pdf docs run:
cd doc
make pdf

The resulting PDF will be in:

_build/latex/sympy-<version>.pdf

where <version> is the SymPy version (e.g., sympy-1.10.dev.pdf).

## 6.4 Debugging

To start sympy in debug mode set the SYMPY_DEBUG variable. For instance in a unix-like system you would do

$ SYMPY_DEBUG=True bin/isympy

or in Windows

> set SYMPY_DEBUG=True > python bin/isympy

Now just use for example the `limit()` function. You will get a nice printed tree, which is very useful for debugging.

### 6.5 SymPy Docstrings Style Guide

#### 6.5.1 General Guidelines

To contribute to SymPy’s docstrings, please read these guidelines in full.

A documentation string (docstring) is a string literal that occurs as the first statement in a module, function, class, or method definition. Such a docstring becomes the `__doc__` special attribute of that object.

**Example**

Here is a basic docstring:

```python
def fdiff(self, argindex=1):
 """
 Returns the first derivative of a Heaviside Function.

 Examples
 ========

 >>> from sympy import Heaviside, diff
 >>> from sympy.abc import x

 >>> Heaviside(x).fdiff()
 DiracDelta(x)
 >>> Heaviside(x**2 - 1).fdiff()
 (continues on next page)```
Every public function, class, method, and module should have a docstring that describes what it does. Documentation that is specific to a function or class in the module should be in the docstring of that function or class. The module level docstring should discuss the purpose and scope of the module, and give a high-level example of how to use the functions or classes in the module. A module docstring is the docstring at the very top of the file, for example, the docstring for `solvers.ode`.

A public function is one that is intended to be used by the end-user, or the public. Documentation is important for public functions because they will be seen and used by many people.

A private function, on the other hand, is one that is only intended to be used in the code in SymPy itself. Although it is less important to document private functions, it also helps to have docstrings on private functions to help other SymPy developers understand how to use the function.

It may not always be clear what is a public function and what is a private function. If a function begins with an underscore, it is private, and if a function is included in `__init__.py` it is public, but the converse is not always true, so sometimes you have to decide based on context. In general, if you are unsure, having documentation on a function is better than not having documentation, regardless if it is public or private.

Docstrings should contain information aimed at users of the function. Comments specific to the code or other notes that would only distract users should go in comments in the code, not in docstrings.

Every docstring should have examples that show how the function works. Examples are the most important part of a docstring. A single example showing input and output to a function can be more helpful than a paragraph of descriptive text.

Remember that the primary consumers of docstrings are other human beings, not machines, so it is important to describe what the function does in plain English. Likewise, examples of how to use the function should be designed for human readers, not just for the doctest machinery.

Keep in mind that while Sphinx is the primary way users consume docstrings, and therefore the first platform to keep in mind while writing docstrings (especially for public functions), it is not the only way users consume docstrings. You can also view docstrings using `help()` or `?` in IPython. When using `help()`, for instance, it will show you all of the docstrings on private methods. Additionally, anyone reading the source code directly will see every docstring.

All public functions, classes, and methods and their corresponding docstrings should be imported into the Sphinx docs, instructions on which can be found at the end of this guide.
6.5.2 Formatting

Docstrings are written in reStructuredText format extended by Sphinx. Here is a concise guide to Quick reStructuredText. More in-depth information about using reStructuredText can be found in the Sphinx Documentation.

In order for Sphinx to render docstrings nicely in the HTML documentation, some formatting guidelines should be followed when writing docstrings:

- Always use """triple double quotes"""" around docstrings. Use r""""raw triple double quotes"""" if you use any backslashes in your docstrings.
- Include a blank line before the docstring’s closing quotes.
- Lines should not be longer than 80 characters.
- Always write class-level docstrings under the class definition line, as that is better to read in the source code.
- The various methods on the class can be mentioned in the docstring or examples if they are important, but details on them should go in the docstring for the method itself.
- Be aware that :: creates code blocks, which are rarely used in the docstrings. Any code example with example Python should be put in a doctest. Always check that the final version as rendered by Sphinx looks correct in the HTML.
- In order to make section underlining work nicely in docstrings, numpydoc Sphinx extension is used.
- Always double check that you have formatted your docstring correctly:
 1. Make sure that your docstring is imported into Sphinx.
 2. Build the Sphinx docs (cd doc; make html).
 3. Make sure that Sphinx doesn’t output any errors.
 4. Open the page in _build/html and make sure that it is formatted correctly.

6.5.3 Sections

In SymPy’s docstrings, it is preferred that function, class, and method docstrings consist of the following sections in this order:

1. Single-Sentence Summary
2. Explanation
3. Examples
4. Parameters
5. See Also
6. References

The Single-Sentence Summary and Examples sections are required for every docstring. Docstrings will not pass review if these sections are not included.

Do not change the names of these supported sections, for example, the heading “Examples” as a plural should be used even if there is only one example.

SymPy will continue to support all of the section headings listed in the NumPy Docstring Guide.
Headings should be underlined with the same length in equals signs.

If a section is not required and that information for the function in question is unnecessary, do not use it. Unnecessary sections and cluttered docstrings can make a function harder to understand. Aim for the minimal amount of information required to understand the function.

1. Single-Sentence Summary

This section is **required** for every docstring. A docstring will not pass review if it is not included. No heading is necessary for this section.

This section consists of a one-line sentence ending in a period that describes the function, class, or method’s effect.

Deprecation warnings should go directly after the Single-Sentence Summary, so as to notify users right away. Deprecation warnings should be written as a deprecated in the Sphinx directive:

```
.. deprecated:: 1.1

The `simplify_this` function is deprecated. Use :func:`simplify` instead. See its documentation for more information.
```

See *Documenting a deprecation* (page 3107) for more details.

2. Explanation Section

This section is encouraged. If you choose to include an Explanation section in your docstring, it should be labeled with the heading “Explanation” underlined with the same length in equals signs.

```
Explanation

This section consists of a more elaborate description of what the function, class, or method does when the concise Single-Sentence Summary will not suffice. This section should be used to clarify functionality in several sentences or paragraphs.
```

3. Examples Section

This section is **required** for every docstring. A docstring will not pass review if it is not included. It should be labeled with the heading “Examples” (even if there is only one example) underlined with the same length in equals signs.

```
Examples

This section consists of examples that show how the function works, called doctests. Doctests should be complicated enough that they fully demonstrate the API and functionality of the function, but simple enough that a user can understand them without too much thought. The perfect doctest tells the user exactly what they need to know about the function without reading any other part of the docstring.
```
There should always be a blank line before the doctest. When multiple examples are provided, they should be separated by blank lines. Comments explaining the examples should have blank lines both above and below them.

Do not think of doctests as tests. Think of them as examples that happen to be tested. They should demonstrate the API of the function to the user (i.e., what the input parameters look like, what the output looks like, and what it does). If you only want to test something, add a test to the relevant test_*.py file.

You can use the ./bin/coverage_doctest.py script to test the doctest coverage of a file or module. Run the doctests with ./bin/doctest.

You should only skip the testing of an example if it is impossible to test it. If necessary, testing of an example can be skipped by adding a special comment.

Example

```python
>>> import random
>>> random.random()
0.6868680200532414
```

If an example is longer than 80 characters, it should be line wrapped. Examples should be line wrapped so that they are still valid Python code, using ... continuation as in a Python prompt. For example, from the ODE module documentation:

Example

```python
>>> from sympy import Function, dsolve, cos, sin
>>> from sympy.abc import x
>>> f = Function('f')
>>> dsolve(cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x),
... f(x), hint='1st_exact')
Eq(x*cos(f(x)) + f(x)**3/3, C1)
```

Here `dsolve(cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x), f(x), hint='1st_exact')` is too long, so we line break it after a comma so that it is readable, and put ... on the continuation lines. If this is not done correctly, the doctests will fail.

The output of a command can also be line wrapped. No ... should be used in this case. The doctester automatically accepts output that is line wrapped.

Example

```python
>>> list(range(30))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29]
```

In a doctest, write imports like `sympy import ...` instead of `import sympy` or from `sympy import *`. To define symbols, use `from sympy.abc import x`, unless the name is not in `sympy.abc` (for instance, if it has assumptions), in which case use `symbols('x y')`.

In general, you should run ./bin/doctest to make sure your examples run correctly, and fix them if they do not.
4. Parameters Section

This section is encouraged. If you choose to include a Parameters section in your docstring, it should be labeled with the heading “Parameters” underlined with the same length in equals signs.

If you have parameters listed in parentheses after a function, class, or method name, you must include a parameters section.

This section consists of descriptions of the function arguments, keywords, and their respective types.

Enclose variables in double backticks. The colon must be preceded by a space, or omitted if the type is absent. For the parameter types, be as precise as possible. If it is not necessary to specify a keyword argument, use optional. Optional keyword parameters have default values, which are displayed as part of the function signature. They can also be detailed in the description.

When a parameter can only assume one of a fixed set of values, those values can be listed in braces, with the default appearing first. When two or more input parameters have exactly the same type, shape, and description, they can be combined.

If the Parameters section is not formatted correctly, the documentation build will render incorrectly.

If you wish to include a Returns section, write it as its own section with its own heading.

Example

Here is an example of a correctly formatted Parameters section:

```python
def opt_cse(exprs, order='canonical'):
    """
    Find optimization opportunities in Adds, Muls, Pows and negative
coefficient Muls.

    Parameters
    =========

    exprs : list of sympy expressions
        The expressions to optimize.
    order : string, 'none' or 'canonical'
        The order by which Mul and Add arguments are processed. For large
        expressions where speed is a concern, use the setting order='none'.
    """
```
5. See Also Section

This section is encouraged. If you choose to include a See Also section in your docstring, it should be labeled with the heading “See Also” underlined with the same length in equals signs.

See Also
========

This section consists of a listing of related functions, classes, and methods. The related items can be described with a concise fragment (not a full sentence) if desired, but this is not required. If the description spans more than one line, subsequent lines must be indented.

The See Also section should only be used to reference other SymPy objects. Anything that is a link should be embedded as a hyperlink in the text of the docstring instead; see the References section for details.

Do not reference classes with `class:Classname`, `class:`Classname`, or `:class:`Classname`, but rather only by their class name.

Examples

Here is a correctly formatted See Also section with concise descriptions:

```python
class erf(Function):
    
    """
    The Gauss error function.
    
    See Also
    ========
    
    erfc: Complementary error function.
    erfi: Imaginary error function.
    erf2: Two-argument error function.
    erfinv: Inverse error function.
    erfcinv: Inverse Complementary error function.
    erf2inv: Inverse two-argument error function.
    """
```

Here is a correctly formatted See Also section with just a list of names:

```python
class besselj(BesselBase):
    
    """
    Bessel function of the first kind.
    
    See Also
    ========
    
    bessely, besseli, besselk
    """
```
6. References Section

This section is encouraged. If you choose to include a References section in your docstring, it should be labeled with the heading “References” underlined with the same length in equals signs.

References

This section consists of a list of references cited anywhere in the previous sections. Any reference to other SymPy objects should go in the See Also section instead.

The References section should include online resources, paper citations, and/or any other printed resource giving general information about the function. References are meant to augment the docstring, but should not be required to understand it. References are numbered, starting from one, in the order in which they are cited.

For online resources, only link to freely accessible and stable online resources such as Wikipedia, Wolfram MathWorld, and the NIST Digital Library of Mathematical Functions (DLMF), which are unlikely to suffer from hyperlink rot. References for papers should include, in this order: reference citation, author name, title of work, journal or publication, year published, page number.

If there is a DOI (Digital Object Identifier), include it in the citation and make sure it is a clickable hyperlink.

Examples

Here is a References section that cites a printed resource:

References

Here is a References section that cites printed and online resources:

References

.. [1] Abramowitz, Milton; Stegun, Irene A., "Chapter 9," Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, eds. (1965)
.. [4] https://functions.wolfram.com/Bessel-TypeFunctions/BesselJ/
6.5.4 Sample Docstring

Here is an example of a correctly formatted docstring:

```python
class gamma(Function):
    r""
    The gamma function
    .. math::
        \Gamma(x) := \int^\infty_0 t^{x-1} e^{-t} \, dt.
    Explanation
    ===========
    The \`gamma\` function implements the function which passes through the
    values of the factorial function (i.e., $\Gamma(n) = (n - 1)!$), when $n$
    is an integer. More generally, $\Gamma(z)$ is defined in the whole
    complex plane except at the negative integers where there are simple
    poles.
    Examples
    ========
    >>> from sympy import S, I, pi, oo, gamma
    >>> from sympy.abc import x
    Several special values are known:
    >>> gamma(1)
    1
    >>> gamma(4)
    6
    >>> gamma(S(3)/2)
    sqrt(pi)/2
    The \`gamma\` function obeys the mirror symmetry:
    >>> from sympy import conjugate
    >>> conjugate(gamma(x))
    gamma(conjugate(x))
    Differentiation with respect to $x$ is supported:
    >>> from sympy import diff
    >>> diff(gamma(x), x)
    gamma(x)*polygamma(0, x)
    Series expansion is also supported:
    >>> from sympy import series
    >>> series(gamma(x), x, 0, 3)
    1/x - EulerGamma + x*(EulerGamma**2/2 + pi**2/12) +
    x**2*(-EulerGamma*pi**2/12 - zeta(3)/3 - EulerGamma**3/6) + O(x**3)
```

(continues on next page)
We can numerically evaluate the \`\`gamma\`\` function to arbitrary precision on the whole complex plane:

```python
>>> gamma(pi).evalf(40)
2.288037795340032417959588909060233922890
>>> gamma(1+I).evalf(20)
0.49801566811835604271 - 0.15494982830181068512*I
```

See Also
=======

lowergamma: Lower incomplete gamma function.
uppergamma: Upper incomplete gamma function.
polygamma: Polygamma function.
loggamma: Log Gamma function.
digamma: Digamma function.
trigamma: Trigamma function.
beta: Euler Beta function.

References
==========

6.5.5 Docstrings for Classes that are Mathematical Functions

SymPy is unusual in that it also has classes that are mathematical functions. The docstrings for classes that are mathematical functions should include details specific to this kind of class, as noted below:

- The Explanation section should include a mathematical definition of the function. This should use LaTeX math. Use $$ for inline math (page 3097) and .. math:: for display math, which should be used for the main definition. The variable names in the formulas should match the names of the parameters, and the LaTeX formatting should match the LaTeX pretty printing used by SymPy. As relevant, the mathematical definitions should mention their domain of definition, especially if the domain is different from the complex numbers.

- If there are multiple conventions in the literature for a function, make sure to clearly specify which convention SymPy uses.

- The Explanation section may also include some important mathematical facts about the function. These can alternately be demonstrated in the Examples section. Mathematical discussions should not be too long, as users can check the references for more details.

- The docstring does not need to discuss every implementation detail such as at which operations are defined on the function or at which points it evaluates in the “eval” method.
Important or illuminating instances of these can be shown in the Examples section.

- The docstring should go on the class level (right under the line that has “class”). The “eval” method should not have a docstring.
- Private methods on the class, that is, any method that starts with an underscore, do not need to be documented. They can still be documented if you like, but note that these docstrings are not pulled into the Sphinx documentation, so they will only be seen by developers who are reading the code, so if there is anything very important that you want to mention here, it should go in the class-level docstring as well.

6.5.6 Best Practices for Writing Docstrings

When writing docstrings, please follow all of the same formatting, style, and tone preferences as when writing narrative documentation. For guidelines, see Best Practices for Writing Documentation (page 3097), Formatting, Style, and Tone.

6.5.7 Importing Docstrings into the Sphinx Documentation

Here are excerpts from the doc/src/modules/geometry directory that imports the relevant docstrings from geometry module into documentation:

```plaintext
Utils
=====
.. module:: sympy.geometry.util

.. autofunction:: intersection

.. autofunction:: convex_hull

.. autofunction:: are_similar

Points
=====

.. module:: sympy.geometry.point

.. autoclass:: Point
   :members:

Lines
=====

.. module:: sympy.geometry.line

.. autoclass:: LinearEntity
   :members:

.. autoclass:: Line
   :members:
```

(continues on next page)
.. autoclass:: Ray
 :members:

.. autoclass:: Segment
 :members:

Curves
======

.. module:: sympy.geometry.curve

.. autoclass:: Curve
 :members:

Ellipses
=======

.. module:: sympy.geometry.ellipse

.. autoclass:: Ellipse
 :members:

.. autoclass:: Circle
 :members:

Polygons
========

.. module:: sympy.geometry.polygon

.. autoclass:: Polygon
 :members:

.. autoclass:: RegularPolygon
 :members:

.. autoclass:: Triangle
 :members:

First namespace is set to particular submodule (file) with .. module:: directive, then docstrings are imported with .. autoclass:: or .. autofunction:: relative to that submodule (file). Other methods are either cumbersome to use (using full paths for all objects) or break something (importing relative to main module using .. module:: sympy.geometry breaks viewcode Sphinx extension). All files in doc/src/modules/ should use this format.
Cross-Referencing

Any text that references another SymPy function should be formatted so that a cross-reference link to that function’s documentation is created automatically. This is done using the RST cross-reference syntax. There are two different kinds of objects that have conventions here:

1. Objects that are included in `from sympy import *`, for example, `sympy.acos()`.
 For these, use `:obj:`~.acos()`. The ~ makes it so that the text in the rendered HTML only shows `acos` instead of the fully qualified name `sympy.functions.elementary.trigonometric.acos`. (This will encourage importing names from the global sympy namespace instead of a specific submodule.) The . makes it so that the function name is found automatically. (If Sphinx gives a warning that there are multiple names found, replace the . with the full name. For example, `:obj:`~sympy.solvers.solvers.solve()`. Adding a trailing pair of parentheses is a convention for indicating the name is a function, method, or class.

 You may also use a more specific type indicator instead of `obj` (see https://www.sphinx-doc.org/en/master/usage/restructuredtext/domains.html#cross-referencing-python-objects). However, `obj` will always work, and sometimes SymPy names are not the type you might expect them to be. For example, mathematical function objects such as `sin` are not actually a Python function, rather they are a Python class, therefore `:func:`~.sin` will not work.

2. Objects that are not included in `from sympy import *`, for example, `sympy.physics.vector.dynamicsymbols()`.
 This can be public API objects from submodules that are not included in the main `sympy/__init__.py`, such as the physics submodule, or private API objects that are not necessarily intended to be used by end-users (but should still be documented). In this case, you must show the fully qualified name, so do not use the ~. syntax. For example, `:obj:`~sympy.physics.vector.dynamicsymbols()`.

 You may also write custom text that links to the documentation for something using the following syntax `:obj:`custom text<object>``. For example, `:obj:`the sine function <. sin>` produces the text “the sine function” that links to the documentation for `sin`. Note that the ~ character should not be used here.

 Note that references in the See Also (page 3087) section of the docstrings do not require the :obj: syntax.

 If the resulting cross reference is written incorrectly, Sphinx will error when building the docs with an error like:

 WARNING: py:obj reference target not found: expand

Here are some troubleshooting tips to fix the errors:

- Make sure you have used the correct syntax, as described above.
- Make sure you spelled the function name correctly.
- Check if the function you are trying to cross-reference is actually included in the Sphinx documentation. If it is not, Sphinx will not be able to create a reference for it. In that case, you should add it to the appropriate RST file as described in the Docstring Guidelines (page 3081).
- If the function or object is not included in `from sympy import *`, you will need to use the fully qualified name, like `sympy.submodule.submodule.function` instead of just function.
• A fully qualified name must include the full submodule for a function all the way down to the file. For example, sympy.physics.vector.ReferenceFrame will not work (even though you can access it that way in code). It has to be sympy.physics.vector.frame.ReferenceFrame.

• If the thing you are referring to does not actually have somewhere to link to, do not use the :obj: syntax. Instead, mark it as code using double backticks. Examples of things that cannot be linked to are Python built in functions like int or NotImplementedError, functions from other modules outside of SymPy like matplotlib.plot, and variable or parameter names that are specific to the text at hand. In general, if the object cannot be accessed as sympy.something.something.object, it cannot be cross-referenced and you should not use the :obj: syntax.

• If you are using are using one of the type specific identifiers like :func:, be sure that the type for it is correct. :func: only refers to Python functions. For classes, you need to use :class:, and for methods on a class you need to use :method:. In general, it is recommended to use :obj:, as this will work for any type of object.

• If you cannot get the cross-referencing syntax to work, go ahead and submit the pull request as is and ask the reviewers for help.

You may also see errors like:

```
WARNING: more than one target found for cross-reference 'subs()':
sympy.core.basic.Basic.subs, sympy.matrices.common.MatrixCommon.subs,
sympy.physics.vector.vector.Vector.subs,
sympy.physics.vector.dyadic.Dyadic.subs
```

for instance, from using :obj:`~.subs`. This means that the . is not sufficient to find the function, because there are multiple names in SymPy named subs. In this case, you need to use the fully qualified name. You can still use ~ to make it shortened in the final text, like :obj:`~sympy.core.basic.Basic.subs`.

The line numbers for warnings in Python files are relative to the top of the docstring, not the file itself. The line numbers are often not completely correct, so you will generally have to search the docstring for the part that the warning is referring to. This is due to a bug in Sphinx.

6.6 Docstring Style Guide

6.6.1 General Guidelines

Documentation is one of the most highly valued aspects of an open source project. Documentation teaches users and contributors how to use a project, how to contribute, and the standards of conduct within an open source community. But according to GitHub’s [Open Source Survey](https://github.com/open-source-survey), incomplete or confusing documentation is the most commonly encountered problem in open source. This style guide aims to change that.

The purpose of this style guide is to provide the SymPy community with a set of style and formatting guidelines that can be utilized and followed when writing SymPy documentation. Adhering to the guidelines offered in this style guide will bring greater consistency and clarity to SymPy’s documentation, supporting its mission to become a full-featured, open source computer algebra system (CAS).
The SymPy documentation found at docs.sympy.org is generated from docstrings in the source code and dedicated narrative documentation files in the doc/src directory. Both are written in reStructuredText format extended by Sphinx.

The documentation contained in the doc/src directory and the docstrings embedded in the Python source code are processed by Sphinx and various Sphinx extensions. This means that the documentation source format is specified by the documentation processing tools. The SymPy Documentation Style Guide provides both the essential elements for writing SymPy documentation as well as any deviations in style we specify relative to these documentation processing tools. The following lists the processing tools:

- reStructuredText: Narrative documentation files and documentation strings embedded in Python code follow the reStructuredText format. Advanced features not described in this document can be found at https://docutils.sourceforge.io/rst.html.

- Sphinx: Sphinx includes additional default features for the reStructuredText specification that are described at: https://www.sphinx-doc.org/en/master.

- Sphinx extensions included with Sphinx that we enable:
 - sphinx.ext.linkcode: Causes links to source code to direct to the related files on Github. More information is at: https://www.sphinx-doc.org/en/master/usage/extensions/linkcode.html. No bearing on documentation source format.

- Sphinx extensions that are not included with Sphinx that we enable:
 - numpydoc: Processes docstrings written in the “numpydoc” format, see https://numpydoc.readthedocs.io/en/stable/. We recommend the subset of numpydoc formatting features in this document. (Note that we currently use an older modified fork of numpydoc, which is included in the SymPy source code.)
 - sphinx_math_dollar: Allows math to be delimited with dollar signs instead of reStructuredText directives (e.g., a^2 instead of :math:`a^2`). See https://www.sympy.org/sphinx-math-dollar/ for more info.
 - matplotlib.sphinxext.plot_directive: Provides directives for included matplotlib generated figures in reStructuredText. See https://matplotlib.org/devel/plot_directive.html for more info.

Everything supported by the above processing tools is available for use in the SymPy documentation, but this style guide supersedes any recommendations made in the above documents. Note that we do not follow PEP 257 or the www.python.org documentation recommendations.

If you are contributing to SymPy for the first time, please read our Introduction to Contributing page as well as this guide.
6.6.2 Types of Documentation

There are four main locations where SymPy’s documentation can be found:

SymPy Website https://www.sympy.org/

The SymPy website’s primary function is to advertise the software to users and developers. It also serves as an initial location to point viewers to other relevant resources on the web. The SymPy website has basic information on SymPy and how to obtain it, as well as examples to advertise it to users, but it does not have technical documentation. The source files are located in the SymPy webpage directory. Appropriate items for the website are:

- General descriptions of what SymPy and the SymPy community are
- Explanations/demonstrations of major software features
- Listings of other major software that uses SymPy
- Getting started info for users (download and install instructions)
- Getting started info for developers
- Where users can get help and support on using SymPy
- News about SymPy

SymPy Documentation https://docs.sympy.org

This is the main place where users go to learn how to use SymPy. It contains a tutorial for SymPy as well as technical documentation for all of the modules. The source files are hosted in the main SymPy repository in the doc directory and are built using the Sphinx site generator and uploaded to the docs.sympy.org site automatically. There are two primary types of pages that are generated from different source files in the docs directory:

- Narrative Pages: reStructuredText files that correspond to manually written documentation pages not present in the Python source code. Examples are the tutorial RST files. In general, if your documentation is not API documentation it belongs in a narrative page.
- API Documentation Pages: reStructuredText files that contain directives that generate the Application Programming Interface documentation. These are automatically generated from the SymPy Python source code.

SymPy Source Code https://github.com/sympy/sympy

Most functions and classes have documentation written inside it in the form of a docstring, which explains the function and includes examples called doctests. The purpose of these docstrings is to explain the API of that class or function. The doctests examples are tested as part of the test suite, so that we know that they always produce the output that they say that they do. Here is an example docstring. Most docstrings are also automatically included in the Sphinx documentation above, so that they appear on the SymPy Documentation website. Here is that same docstring (page 443) on the SymPy website. The docstrings are formatted in a specific way so that Sphinx can render them correctly for the docs website. The SymPy sources all contain sparse technical documentation in the form of source code comments, although this does not generally constitute anything substantial and is not displayed on the documentation website.

SymPy Wiki https://github.com/sympy/sympy/wiki

The SymPy Wiki can be edited by anyone without review. It contains various types of documentation, including:

- High-level developer documentation (for example: https://github.com/sympy/sympy/wiki/Args-Invariant)
6.6.3 Narrative Documentation Guidelines

Extensive documentation, or documentation that is not centered around an API reference, should be written as a narrative document in the Sphinx docs (located in the doc/src directory). The narrative documents do not reside in the Python source files, but as standalone restructured files in the doc/src directory. SymPy’s narrative documentation is defined as the collective documents, tutorials, and guides that teach users how to use SymPy. Reference documentation should go in the docstrings and be pulled into the RST with autodoc. The RST itself should only have narrative style documentation that is not a reference for a single specific function.

6.6.4 Documentation using Markdown

Narrative documentation can be written using either Restructured Text (.rst) or Markdown (.md). Markdown documentation uses MyST. See this guide for more information on how to write documents in MArkdown. Markdown is only supported for narrative documentation. Docstrings should continue to use RST syntax. Any part of this style guide that is not specific to RST syntax should still apply to Markdown documents.

6.6.5 Best Practices for Writing Documentation

Please follow these formatting, style, and tone preferences when writing documentation.

Formatting Preferences

In order for math and code to render correctly on the SymPy website, please follow these formatting guidelines.

Math

Text that is surrounded by dollar signs $ _ $ will be rendered as LaTeX math. Any text that is meant to appear as LaTeX math should be written as $math$. In the HTML version of the docs, MathJax will render the math.

Example

The Bessel J function of order ν is defined to be the function satisfying Bessel’s differential equation.
LaTeX Recommendations

• If a docstring has any LaTeX, be sure to make it “raw.” See the Docstring Formatting (page 3083) section for details.

• If you are not sure how to render something, you can use the SymPy latex() (page 2245) function. But be sure to strip out the unimportant parts (the bullet points below).

• Avoid unnecessary \left and \right (but be sure to use them when they are required).

• Avoid unnecessary {}. (For example, write x^2 instead of x^{2}).

• Use whitespace in a way that makes the equation easiest to read.

• Always check the final rendering to make sure it looks the way you expect it to.

• The HTML documentation build will not fail if there is invalid math, but rather it will show as an error on the page. However, the PDF build, which is run on GitHub Actions on pull requests, will fail. If the LaTeX PDF build fails on CI, there is likely an issue with LaTeX math somewhere.

Examples

Correct:

\[\int \sin(x) \, dx \]

Incorrect:

\[\int \sin{\left(x \right)} \, dx \]

For more in-depth resources on how to write math in LaTeX, see:

• https://math.meta.stackexchange.com/questions/5020/mathjax-basic-tutorial-and-quick-reference

• https://en.wikibooks.org/wiki/LaTeX/Mathematics

• https://www.overleaf.com/learn/latex/Mathematical_expressions

Code

Text that should be printed verbatim, such as code, should be surrounded by a set of double backticks like this.

Example

To use this class, define the ``_rewrite()`` and ``_expand()`` methods.

Sometimes a variable will be the same in both math and code, and can even appear in the same paragraph, making it difficult to know if it should be formatted as math or code. If the sentence in question is discussing mathematics, then LaTeX should be used, but if the sentence is discussing the SymPy implementation specifically, then code should be used.

In general, the rule of thumb is to consider if the variable in question were something that rendered differently in code and in math. For example, the Greek letter α would be written as alpha in code and α in LaTeX. The reason being that α cannot be used in contexts referring to Python code because it is not valid Python, and conversely alpha would be incorrect in a math context because it does not render as the Greek letter (α).
class loggamma(Function):

 The ```loggamma``` function implements the logarithm of the gamma function (i.e., $\log\Gamma(x)$).

Variables listed in the parameters after the function name should, in written text, be italicized using Sphinx emphasis with asterisks like *this*.

Example

def stirling(n, k, d=None, kind=2, signed=False):

 The first kind of Stirling number counts the number of permutations of *n* distinct items that have *k* cycles; the second kind counts the ways in which *n* distinct items can be partitioned into *k* parts. If *d* is given, the "reduced Stirling number of the second kind" is returned: $S^d(n, k) = S(n - d + 1, k - d + 1)$ with $\ge k \ge d$. This counts the ways to partition n consecutive integers into k groups with no pairwise difference less than d.

Note that in the above example, the first instances of n and k are referring to the input parameters of the function `stirling`. Because they are Python variables but also parameters listed by themselves, they are formatted as parameters in italics. The last instances of n and k are talking about mathematical expressions, so they are formatted as math.

If a variable is code, but is also a parameter written by itself, the parameter formatting takes precedence and it should be rendered in italics. However, if a parameter appears in a larger code expression it should be within double backticks to be rendered as code. If a variable is only code and not a parameter as well, it should be in double backticks to be rendered as code.

Please note that references to other functions in SymPy are handled differently from parameters or code. If something is referencing another function in SymPy, the cross-reference reStructuredText syntax should be used. See the section on Cross-Referencing (page 3093) for more information.

Headings

Section headings in reStructuredText files are created by underlining (and optionally overlining) the section title with a punctuation character at least as long as the text.

Normally, there are no heading levels assigned to certain characters as the structure is determined from the succession of headings. However, for SymPy’s documentation, here is a suggested convention:

```
=== with overline: title (top level heading)
=== heading 1
--- heading 2
```
Style Preferences

Spelling and Punctuation

All narrative writing in SymPy follows American spelling and punctuation standards. For example, “color” is preferred over “colour” and commas should be placed inside of quotation marks.

Examples

If the `line_color` aesthetic is a function of arity 1, then the coloring is a function of the x value of a point.

The term "unrestricted necklace," or "bracelet," is used to imply an object that can be turned over or a sequence that can be reversed.

If there is any ambiguity about the spelling of a word, such as in the case of a function named after a person, refer to the spelling of the actual SymPy function.

For example, Chebyshev polynomials are named after Pafnuty Lvovich Tchebychev, whose name is sometimes transliterated from Russian to be spelled with a “T,” but in SymPy it should always be spelled “Chebyshev” to refer to the SymPy function.

Example

```python
class chebyshevt(OrthogonalPolynomial):
    r""
    Chebyshev polynomial of the first kind, $T_n(x)$
    ...""
```

Capitalization

Title case capitalization is preferred in all SymPy headings.

Example

What is Symbolic Computation?

.................................
Tone Preferences

Across SymPy documentation, please write in:

- The present tense (e.g., In the following section, we are going to learn...)
- The first-person inclusive plural (e.g., We did this the long way, but now we can try it the short way...)
- Use the generic pronoun “you” instead of “one.” Or use “the reader” or “the user.” (e.g., You can access this function by... The user can then access this function by...)
- Use the gender-neutral pronoun “they” instead of “he” or “she.” (e.g., A good docstring tells the user exactly what they need to know.)

Avoid extraneous or belittling words such as “obviously,” “easily,” “simply,” “just,” or “straightforward.”

Avoid unwelcoming or judgement-based phrases like “That is wrong.” Instead use friendly and inclusive language like “A common mistake is...”

Avoid extraneous phrases like, “we just have to do one more thing.”

6.7 Making a Contribution

For in-depth instructions on how to contribute to SymPy’s code base including coding conventions, creating your environment, picking an issue to fix, and opening a pull request, please read our full Development Workflow guide.

6.8 Deprecation Policy

This page outlines SymPy’s policy on doing deprecations, and describes the steps developers should take to properly deprecate code.

A list of all currently active deprecations in SymPy can be found at [List of active deprecations](#) (page 214).

6.8.1 What is a deprecation?

A deprecation is a way to make backwards incompatible changes in a way that allows users to update their code. Deprecated code continues to work as it used to, but whenever someone uses it, it prints a warning to the screen indicating that it will be removed in a future version of SymPy, and indicating what the user should be using instead.

This allows users a chance to update their code without it completely breaking. It also gives SymPy an opportunity to give users an informative message on how to update their code, rather than making their code simply error or start giving wrong answers.
6.8.2 Try to avoid backwards incompatible changes in the first place

Backwards incompatible API changes should not be made lightly. Any backwards compatibility break means that users will need to fix their code. Whenever you want to make a breaking change, you should consider whether this is worth the pain for users. Users who have to update their code to match new APIs with every SymPy release will become frustrated with the library, and may go seek a more stable alternative. Consider whether the behavior you want can be done in a way that is compatible with existing APIs. New APIs do not necessarily need to completely supplant old ones. It is sometimes possible for old APIs to exist alongside newer, better designed ones without removing them. For example, the newer solveset (page 905) API was designed to be a superior replacement for the older solve (page 882) API. But the older solve() function remains intact and is still supported.

It is important to try to be cognizant of API design whenever adding new functionality. Try to consider what a function may do in the future, and design the API in a way that it can do so without having to make a breaking change. For example, if you add a property to an object A.attr, it is impossible to later convert that property into a method A.attr() so that it can take arguments, except by doing so in a backwards incompatible way. If you are unsure about your API design for a new functionality, one option is to mark the new functionality as explicitly private or as experimental.

With that being said, it may be decided that the API of SymPy must change in some incompatible way. Some reasons APIs are changed can include:

- The existing API is confusing.
- There is unnecessary redundancy in the API.
- The existing API limits what is possible.

Because one of the core use-cases of SymPy is to be usable as a library, we take API breakage very seriously. Whenever an API breakage is necessary, the following steps should be taken:

- Discuss the API change with the community. Be sure that the improved API is indeed better, and worth a breakage. It is important to get API right so that we will not need to break the API again to “fix” it a second time.
- If it is possible, deprecate the old API. The technical steps for doing this are described below (page 3105).
- Document the change so that users know how to update their code. The documentation that should added is described below (page 3107).

6.8.3 When does a change require deprecation?

When considering whether a change requires a deprecation, two things must be considered:

- Is the change backwards incompatible?
- Is the behavior changing public API?

A change is backwards incompatible if user code making use of it would stop working after the change.

What counts as “public API” needs to be considered on a case-by-case basis. The exact rules for what does and doesn’t constitute public API for SymPy are still not yet fully codified. Cleaning up the distinction between public and private APIs, as well as the categorization in the reference documentation is currently an open issue for SymPy.
Here are some things that constitute public API. Note: these are just general guidelines. This list is not exhaustive, and there are always exceptions to the rules.

Public API

- Function names.
- Keyword argument names.
- Keyword argument default values.
- Positional argument order.
- Submodule names.
- The mathematical conventions used to define a function.

And here are some things that generally aren’t public API, and therefore don’t require deprecations to change (again, this list is only a general set of guidelines).

Not Public API

- The precise form of an expression. In general, functions may be changed to return a different but mathematically equivalent form of the same expression. This includes a function returning a value which it was not able to compute previously.
- Functions and methods that are private, i.e., for internal use only. Such things should generally be prefixed with an underscore _, although this convention is not currently universally adhered to in the SymPy codebase.
- Anything explicitly marked as “experimental”.
- Changes to behavior that were mathematically incorrect previously (in general, bug fixes are not considered breaking changes, because despite the saying, bugs in SymPy are not features).
- Anything that was added before the most recent release. Code that has not yet made it into a release does not need to be deprecated. If you are going to change the API of new code, it is best to do it before a release is made so that no deprecations are necessary for future releases.

Note: both public and private API functions are included in the reference documentation (page 243), and many functions are not included there which should be, or are not documented at all which should be, so this should not be used to determine whether something public or not.

If you’re unsure, there is no harm in deprecating something even if it might not actually be “public API.”
The purpose of deprecation

Deprecation has several purposes:

- To allow existing code to continue to work for a while, giving people a chance to upgrade SymPy without fixing all deprecation issues immediately.

- To warn users that their code will break in a future version.

- To inform users how to fix their code so that it will continue work in future versions.

All deprecation warnings should be something that users can remove by updating their code. Deprecation warnings that fire unconditionally, even when using the “correct” newer APIs, should be avoided.

This also means all deprecated code must have a completely functioning replacement. If there is no way for users to update their code, then this means API in question is not yet ready to be deprecated. The deprecation warning should inform users of a way to change their code so that it works in the same version of SymPy, as well as all future versions, and, if possible, previous versions of SymPy as well. See below (page 3107).

Deprecations should always

1. Allow users to continue to use the existing APIs unchanged during the deprecation period (with a warning, which can be silenced (page 214) with warnings.filterwarnings).

2. Allow users to always fix their code so that it stops giving the warning.

3. After users fix their code, it should continue to work after the deprecated code is removed.

The third point is important. We do not want the “new” method to itself cause another API break when the deprecation period is over. Doing this would completely defeat the purpose of doing a deprecation.

When it is not technically possible to deprecate

In some cases, this is not technically possible to make a deprecation that follows the above three rules. API changes of this nature should be considered the most heavily, as they will break people’s code immediately without warning. Consideration into how easy it will be for users to support multiple versions of SymPy, one with the change and one without, should also be taken into account.

If you decide that the change is nonetheless worth making, there are two options:

- Make the non-deprecatable change immediately, with no warnings. This will break user code.

- Warn that the code will change in the future. There won’t be a way for users to fix their code until a version is released with the breaking change, but they will at least be aware that changes are coming.

Which of the two to make should decided on a case-by-case basis.
6.8.5 How long should deprecations last?

Deprecations should remain intact for at least 1 year after the first major release is made with the deprecation. This is only a minimum period: deprecations are allowed to remain intact for longer than this. If a change is especially hard for users to migrate, the deprecation period should be lengthened. The period may also be lengthened for deprecated features that do not impose a significant maintenance burden to keep around.

The deprecation period policy is time-based rather than release-based for a few reasons. Firstly, SymPy does not have a regular release schedule. Sometimes multiple releases will be made in a year, and some years only a single release will be made. Being time-based assures that users have sufficient opportunity to update their code regardless of how often releases happen to be made.

Secondly, SymPy does not make use of a rigorous versioning scheme like semantic versioning. The API surface of SymPy and number of contributions are both large enough that virtually every major release has some deprecations and backwards incompatible changes made in some submodule. Encoding this into the version number would be virtually impossible. The development team also does not backport changes to prior major releases, except in extreme cases. Thus a time-based deprecation scheme is more accurate to SymPy’s releasing model than a version-based one would be.

Finally, a time-based scheme removes any temptation to “fudge” a deprecation period down by releasing early. The best way for the developers to accelerate the removal of deprecated functionality is to make a release containing the deprecation as early as possible.

6.8.6 How to deprecate code

Checklist

Here is a checklist for doing a deprecation. See below for details on each step.

Discuss the backwards incompatible change with the community. Ensure the change is really worth making as per the discussion above.

Remove all instance of the deprecated code from everywhere in the codebase (including doctest examples).

Add `sympy_deprecation_warning()` (page 2138) to the code.

Write a descriptive message for the `sympy_deprecation_warning()` (page 2138). Make sure the message explains both what is deprecated and what to replace it with. The message may be a multiline string and contain examples.

Set `deprecated_since_version` to the version in `sympy/release.py` (without the .dev).

Set `active_deprecations_target` to the target used in the `active-deprecations.md` file.

Make sure `stacklevel` is set to the right value so that the deprecation warning shows the user line of code.

Visually confirm the deprecation warning looks good in the console.

Add a .. deprecated:: <version> note to the top of the relevant docstring(s).

Add a section to the `doc/src/explanation/active-deprecations.md` file.

Add a cross-reference target (deprecation-xyz)= before the section header (this is the same reference used by `active_deprecations_target` above).
Explain what is deprecated and what to replace it with.

Explain why the given thing is deprecated.

Add a test using `warns_deprecated_sympy()` (page 2100) that tests that the deprecation warning is issued properly. This test should be the only place in the code that actually uses the deprecated functionality.

Run the test suite to ensure the above test works and that no other code uses the deprecated code, which will cause the tests to fail.

In your PR, add a BREAKING CHANGE entry to the release notes for the deprecation.

Once the PR is merged, manually add the change to the “Backwards compatibility breaks and deprecations” section of the release notes on the wiki.

Adding the deprecation to the code

All deprecations should use `sympy.utilities.exceptions.sympy_deprecation_warning()` (page 2138). If an entire function or method is deprecated, you can use the `sympy.utilities.decorator.deprecated()` (page 2128) decorator. The `deprecated_since_version` and `active_deprecations_target` flags are required. Do not use the SymPyDeprecationWarning class directly to issue a deprecation warning. Please see the docstring of `sympy_deprecation_warning()` (page 2138) for more information. See below (page 3107) for an example.

Add a test for the deprecated behavior. Use the `sympy.testing.pytest.warns_deprecated_sympy()` (page 2100) context manager.

```python
from sympy.testing.pytest import warns_deprecated_sympy

with warns_deprecated_sympy():
    <deprecated behavior>
```

Note: `warns_deprecated_sympy` is only intended to be used internally by the SymPy test suite. Users of SymPy should use the `warnings` module directly to filter SymPy deprecation warnings. See *Silencing SymPy Deprecation Warnings* (page 214).

This has two purposes: to test that the warning is emitted correctly, and to test that the deprecated behavior still actually functions.

If you want to test multiple things and assert that each emits a warning then use separate with blocks for each:

```python
with warns_deprecated_sympy():
    <deprecated behavior1>

with warns_deprecated_sympy():
    <deprecated behavior2>
```

This should be the only part of the codebase and test suite that uses the deprecated behavior. Everything else should be changed to use the new, non-deprecated behavior. The SymPy test suite is configured to fail if a SymPyDeprecationWarning is issued anywhere except in a `warns_deprecated_sympy()` block. You should not use this function or a `warnings.filterwarnings(SymPyDeprecationWarning)` anywhere except in the test for the deprecation. This includes the documentation examples. The documentation for a deprecated func-
tion should just have a note pointing to the non-deprecated alternative. If you want to show a deprecated function in a doctest use `# doctest: +SKIP`. The only exception to this rule is that you may use `ignore_warnings(SymPyDeprecationWarning)` to prevent the exact same warning from triggering twice, i.e., if a deprecated function calls another function that issues the same or a similar warning.

If it is not possible to remove the deprecated behavior somewhere, that is a sign that it is not ready to be deprecated yet. Consider that users may not be able to replace the deprecated behavior for exact same reason.

Documenting a deprecation

All deprecations should be documented. Every deprecation needs to be documented in three primary places:

- The `sympy_deprecation_warning()` warning text. This text is allowed to be long enough to describe the deprecation, but it should not be more than one paragraph. The primary purpose of the warning text should be to inform users how to update their code. The warning text should not discuss why a feature was deprecated or unnecessary internal technical details. This discussion can go in the other sections mentioned below. Do not include information in the message that is already part of the metadata provided to the keyword arguments to `sympy_deprecation_warning()`, like the version number or a link to the active deprecations document. Remember that the warning text will be shown in plain-text, so do not use RST or Markdown markup in the text. Code blocks should be clearly delineated with newlines so that they are easy to read. All text in the warning message should be wrapped to 80 characters, except for code examples that cannot be wrapped.

 Always include full context of what is deprecated in the message. For example, write “the abc keyword to func() is deprecated” instead of just “the abc keyword is deprecated”. That way if a user has a larger line of code that is using the deprecated functionality, it will be easier for them to see exactly which part is causing the warning.

- A deprecation note in the relevant docstring(s). This should use the `deprecated` Sphinx directive. This uses the syntax `.. deprecated:: <version>`. If the entire function is deprecated, this should be placed at the top of the docstring, right below the first line. Otherwise, if only part of a function is deprecated (e.g., a single keyword argument), it should be placed near the part of the docstring that discusses that feature, e.g., in the parameters list.

 The text in the deprecation should be short (no more than a paragraph), explaining what is deprecated and what users should use instead. If you want, you may use the same text here as in the `sympy_deprecation_warning()` (page 2138). Be sure to use RST formatting, including cross-references to the new function if relevant, and a cross-reference to the longer description in the `active-deprecations.md` document (see below (page 3108)).

 If the documentation for the feature is otherwise the same as the replaced feature (i.e., the deprecation is just a renaming of a function or argument), you may replace the rest of the documentation with a note like “see the documentation for `<new feature>`”. Otherwise, the documentation for the deprecated functionality should be left intact.

 Here are some (imaginary) examples:

```{}
@deprecated
The simplify_this(expr) function is deprecated. Use simplify(expr)
```

(continues on next page)
instead."

```python
def simplify_this(expr):
    
    Simplify `expr`.
    .. deprecated:: 1.1
        The `simplify_this` function is deprecated. Use :func:`simplify`
        instead. See its documentation for more information. See
        :ref:`simplify-this-deprecation` for details.
    
    return simplify(expr)
```

```python
def is_this_zero(x, y=0):
    
    Determine if x = 0.
    
    Parameters
    =========
    x : Expr
        The expression to check.
    y : Expr, optional
        If provided, check if x = y.
    
    .. deprecated:: 1.1
        The `y` argument to `is_zero()` is deprecated. Use `is_zero(x - y)` instead. See
        :ref:`is-this-zero-y-deprecated` for more details.
    
    if y != 0:
        sympy_deprecation_warning("""
        The `y` argument to `is_zero()` is deprecated. Use `is_zero(x - y)` instead.""
        
        deprecated_since_version="1.1",
        active_deprecations_target='is-this-zero-y-deprecated')
    return simplify(x - y) == 0
```

• A longer description of the deprecation should be added to the page listing all currently active deprecations (page 214) in the documentation (in doc/src/explanation/active-deprecations.md).

This page is where you can go into more detail about the technical details of a deprecation. Here you should also list why a feature was deprecated. You may link to relevant issues, pull requests, and mailing list discussions about the deprecation, but these discussion should be summarized so that users can get the basic idea of why the deprecation without having to read through pages of old discussions. You may also give longer examples here that would not fit in the `sympy_deprecation_warning()` (page 2138) message.
or .. deprecated:: text.

Every deprecation should have a cross-reference target (using (target-name)= above
the section header) so that the .. deprecated:: note in the relevant docstring can
refer to it. This target should also be passed to the active_deprecations_target option
of sympy_deprecation_warning() (page 2138) or @deprecated (page 2128). This will
automatically put a link to the page in the documentation in the warning message. The
target name should include the word “deprecation” or “deprecated” (target names are
global in Sphinx, so the target name needs to be unique across the entire documentation).

The section header name should be the thing that is deprecated, and should be a level
3 header under the corresponding version (typically it should be added to the top of the
file).

If multiple deprecations are related to one another, they can all share a single section
on this page.

If the deprecated function is not included in the top-level sympy/__init__.py be sure
to clearly indicate which submodule the object is referring to. If you refer to anything
that is documented in the Sphinx module reference, cross-reference it, like {func}`~.
func_name`.

Note that examples here are helpful, but you generally should not use doctests to show
the deprecated functionality, as this will itself raise the deprecation warning and fail the
doctest. Instead you may use # doctest: +SKIP, or just show the example as a code
block instead of a doctest.

Here are examples corresponding to the (imaginary) examples above:

```py
(simplify-this-deprecation)=
### `simplify_this()`

The `sympy.simplify.simplify_this()` function is deprecated. It has been
replaced with the {func}`~.simplify` function. Code using `simplify_
this()`
can be fixed by replacing `simplify_this(expr)` with `simplify(expr)`.

The behavior of the two functions is otherwise identical.

This change was made because `simplify` is a much more Pythonic name than
`simplify_this`.
```

```py
(is-this-zero-y-deprecation)=
### `is_this_zero()` second argument

The second argument to {func}`~.is_this_zero()` is deprecated. Previously
`is_this_zero(x, y)` would check if x = y. However, this was removed
because
it is trivially equivalent to `is_this_zero(x - y)`. Furthermore,
allowing
to check $x=y$ in addition to just $x=0$ is is confusing given the
function
is named “is this zero”.

In particular, replace
```
In addition to the above examples, there are dozens of examples of existing deprecations which can be found by searching for sympy_deprecation_warning in the SymPy codebase.

Release notes entry

In the pull request, document the breaking change in the release notes section with BREAKING CHANGE.

Once the PR is merged, you should also add it to the “Backwards compatibility breaks and deprecations” section of the release notes for the upcoming release. This needs to be done manually, in addition to the change from the bot. See https://github.com/sympy/sympy/wiki/Writing-Release-Notes#backwards-compatibility-breaks-and-deprecations

Whenever a deprecated functionality is removed entirely after its deprecation period, this also needs to be marked as a BREAKING CHANGE and added to the “Backwards compatibility breaks and deprecations” section of the release notes.
[complex] https://en.wikipedia.org/wiki/Complex_number
[algebraic] https://en.wikipedia.org/wiki/Algebraic_number
[transcendental] https://en.wikipedia.org/wiki/Transcendental_number
[extended_real] https://en.wikipedia.org/wiki/Extended_real_number_line
[real] https://en.wikipedia.org/wiki/Real_number
[prime] https://en.wikipedia.org/wiki/Prime_number
[composite] https://en.wikipedia.org/wiki/Composite_number
[zero] https://en.wikipedia.org/wiki/0
[positive] https://en.wikipedia.org/wiki/Positive_real_numbers
[negative] https://en.wikipedia.org/wiki/Negative_number
[R7] https://en.wikipedia.org/wiki/Predicate_%28mathematical_logic%29
[R5] https://en.wikipedia.org/wiki/Predicate_%28mathematical_logic%29
https://en.wikipedia.org/wiki/Lehmer_code
https://en.wikipedia.org/wiki/Commutator
https://en.wikipedia.org/wiki/Flavius_Josephus
https://en.wikipedia.org/wiki/Transposition_%28mathematics%29#Properties
Seress, A. “Permutation Group Algorithms”
https://en.wikipedia.org/wiki/Nielsen_transformation#ProductReplacementAlgorithm
https://en.wikipedia.org/wiki/Block_%28permutation_group_theory%29
https://algorithmist.com/wiki/Union_find
https://en.wikipedia.org/wiki/Multiply_transitive_group#Multiply_transitive_groups
https://en.wikipedia.org/wiki/Center_%28group_theory%29
Holt, D., Eick, B., O’Brien, E. “Handbook of computational group theory”
https://algorithmist.com/wiki/Union_find
https://algorithmist.com/wiki/Union_find
1978: John S. Rose: A Course on Group Theory, Introduction to Finite Group Theory: 1.4
https://math.stackexchange.com/a/827273
https://kconrad.math.uconn.edu/blurbs/grouptheory/dihedral.pdf
https://kconrad.math.uconn.edu/blurbs/grouptheory/dihedral2.pdf
https://en.wikipedia.org/wiki/Dihedral_group
https://mathworld.wolfram.com/PolyhedralGroup.html
https://mathworld.wolfram.com/LabeledTree.html
[R51] https://en.wikipedia.org/wiki/Symmetric_group#Generators_and_relations
[R52] https://en.wikipedia.org/wiki/Dihedral_group
[R53] Armstrong, M. “Groups and Symmetry”
[R54] https://groupprops.subwiki.org/wiki/Structure_theorem_for_finitely_generated_abelian_groups
[R43] https://en.wikipedia.org/wiki/Projective_linear_group#Exceptional_isomorphisms
[R44] https://en.wikipedia.org/wiki/Automorphisms_of_the_symmetric_and_alternating_groups#PGL(2,5)
[R249] https://en.wikipedia.org/wiki/Trigonometric_functions
[R250] https://dlmf.nist.gov/4.14
[R251] https://functions.wolfram.com/ElementaryFunctions/Sin
[R253] https://en.wikipedia.org/wiki/Trigonometric_functions
[R254] https://dlmf.nist.gov/4.14
[R210] https://functions.wolfram.com/GammaBetaErf/CatalanNumber/
[R212] https://en.wikipedia.org/wiki/Euler_numbers
[R213] https://mathworld.wolfram.com/EulerNumber.html
[R214] https://en.wikipedia.org/wiki/Alternating_permutation
[R219] https://mathworld.wolfram.com/FallingFactorial.html
[R222] https://en.wikipedia.org/wiki/Fibonacci_number
[R223] https://mathworld.wolfram.com/FibonacciNumber.html
[R225] https://mathworld.wolfram.com/TribonacciNumber.html
[R226] https://oeis.org/A000073
[R228] https://functions.wolfram.com/GammaBetaErf/HarmonicNumber/
[R229] https://functions.wolfram.com/GammaBetaErf/HarmonicNumber2/
[R230] https://en.wikipedia.org/wiki/Lucas_number
[R231] https://mathworld.wolfram.com/LucasNumber.html
[R233] https://mathworld.wolfram.com/GenocchiNumber.html
[R235] https://en.wikipedia.org/wiki/Partition_(number_theory%29
[R236] https://en.wikipedia.org/wiki/Pentagonal_number_theorem
[R238] https://en.wikipedia.org/wiki/Pochhammer_symbol
[R343] https://en.wikipedia.org/wiki/Incomplete_gamma_function#Lower_incomplete_gamma_function
[R344] Abramowitz, Milton; Stegun, Irene A., eds. (1965), Chapter 6, Section 5, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
[R345] https://dlmf.nist.gov/8
[R346] https://functions.wolfram.com/GammaBetaErf/Gamma2/
[R347] https://functions.wolfram.com/GammaBetaErf/Gamma3/
[R348] https://en.wikipedia.org/wiki/Multivariate_gamma_function
[R349] https://en.wikipedia.org/wiki/Beta_function
[R351] https://dlmf.nist.gov/5.12
[R353] https://dlmf.nist.gov/7
[R354] https://mathworld.wolfram.com/Erf.html
[R355] https://functions.wolfram.com/GammaBetaErf/Erf
[R357] https://dlmf.nist.gov/7
[R359] https://functions.wolfram.com/GammaBetaErf/Erfc
[R360] https://en.wikipedia.org/wiki/Error_function
[R361] https://mathworld.wolfram.com/Erfi.html
[R362] https://functions.wolfram.com/GammaBetaErf/Erfi
[R363] https://functions.wolfram.com/GammaBetaErf/Erf2/
[R364] https://en.wikipedia.org/wiki/Error_function#Inverse_functions
[R365] https://functions.wolfram.com/GammaBetaErf/InverseErf/
[R366] https://en.wikipedia.org/wiki/Error_function#Inverse_functions
[R367] https://functions.wolfram.com/GammaBetaErf/InverseErfc/
[R368] https://functions.wolfram.com/GammaBetaErf/InverseErf2/
[R370] https://dlmf.nist.gov/7
[R371] https://mathworld.wolfram.com/FresnelIntegrals.html
[R372] https://functions.wolfram.com/GammaBetaErf/FresnelS
[R373] The converging factors for the fresnel integrals by John W. Wrench Jr. and Vicki Alley
[R375] https://dlmf.nist.gov/7
[R376] https://mathworld.wolfram.com/FresnelIntegrals.html
[R411] https://encyclopediaofmath.org/wiki/Airy_functions
[R412] https://mathworld.wolfram.com/AiryFunctions.html
[R413] https://en.wikipedia.org/wiki/Airy_function
[R414] https://dlmf.nist.gov/9
[R415] https://encyclopediaofmath.org/wiki/Airy_functions
[R416] https://mathworld.wolfram.com/AiryFunctions.html
[R417] https://en.wikipedia.org/wiki/Airy_function
[R418] https://dlmf.nist.gov/9
[R419] https://encyclopediaofmath.org/wiki/Airy_functions
[R420] https://mathworld.wolfram.com/AiryFunctions.html
[R421] https://en.wikipedia.org/wiki/Airy_function
[R422] https://dlmf.nist.gov/9
[R423] https://encyclopediaofmath.org/wiki/Airy_functions
[R424] https://mathworld.wolfram.com/AiryFunctions.html
[R426] https://dlmf.nist.gov/25.11

[R431] https://dlmf.nist.gov/25.14
[R432] https://en.wikipedia.org/wiki/Lerch_transcendent
[R439] https://functions.wolfram.com/HypergeometricFunctions/AppellF1/
[R441] https://functions.wolfram.com/EllipticIntegrals/EllipticK
[R443] https://functions.wolfram.com/EllipticIntegrals/EllipticF
[R446] https://functions.wolfram.com/EllipticIntegrals/EllipticE
[R448] https://functions.wolfram.com/EllipticIntegrals/EllipticPi3
[R449] https://functions.wolfram.com/EllipticIntegrals/EllipticPi
[R450] https://en.wikipedia.org/wiki/Mathieu_function
[R451] https://dlmf.nist.gov/28
[R452] https://mathworld.wolfram.com/MathieuFunction.html
[R453] https://functions.wolfram.com/MathieuandSpheroidalFunctions/MathieuS/
[R454] https://en.wikipedia.org/wiki/Mathieu_function
[R455] https://dlmf.nist.gov/28
[R456] https://mathworld.wolfram.com/MathieuFunction.html
[R457] https://functions.wolfram.com/MathieuandSpheroidalFunctions/MathieuC/
[R458] https://en.wikipedia.org/wiki/Mathieu_function
[R459] https://dlmf.nist.gov/28
[R460] https://mathworld.wolfram.com/MathieuFunction.html
[R461] https://functions.wolfram.com/MathieuandSpheroidalFunctions/MathieuSPrime/
[R462] https://en.wikipedia.org/wiki/Mathieu_function
[R463] https://dlmf.nist.gov/28
[R464] https://mathworld.wolfram.com/MathieuFunction.html
[R465] https://functions.wolfram.com/MathieuandSpheroidalFunctions/ MathieuCPrime/
[R466] https://en.wikipedia.org/wiki/Jacobi_polynomials
[R467] https://mathworld.wolfram.com/JacobiPolynomial.html
[R468] https://functions.wolfram.com/Polynomials/JacobiP/
[R470] https://mathworld.wolfram.com/JacobiPolynomial.html
[R471] https://functions.wolfram.com/Polynomials/JacobiP/
[R473] https://mathworld.wolfram.com/GegenbauerPolynomial.html
[R474] https://functions.wolfram.com/Polynomials/GegenbauerC3/
[R476] https://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html
[R478] https://functions.wolfram.com/Polynomials/ChebyshevT/
[R479] https://functions.wolfram.com/Polynomials/ChebyshevU/
Bibliography 3123

[R481] https://mathworld.wolfram.com/Chebyshev PolynomialoftheFirstKind.html
[R483] https://functions.wolfram.com/Polynomials/ChebyshevT/
[R484] https://functions.wolfram.com/Polynomials/ChebyshevU/
[R485] https://en.wikipedia.org/wiki/Legendre_polynomial
[R486] https://mathworld.wolfram.com/LegendrePolynomial.html
[R487] https://functions.wolfram.com/Polynomials/LegendreP/
[R488] https://functions.wolfram.com/Polynomials/LegendreP2/
[R489] https://en.wikipedia.org/wiki/Associated_Legendre_polynomials
[R490] https://mathworld.wolfram.com/LegendrePolynomial.html
[R491] https://functions.wolfram.com/Polynomials/LegendreP/
[R492] https://functions.wolfram.com/Polynomials/LegendreP2/
[R494] https://mathworld.wolfram.com/HermitePolynomial.html
[R495] https://functions.wolfram.com/Polynomials/HermiteH/
[R496] https://en.wikipedia.org/wiki/Hermite_polynomial
[R498] https://en.wikipedia.org/wiki/Laguerre_polynomial
[R499] https://mathworld.wolfram.com/LaguerrePolynomial.html
[R500] https://functions.wolfram.com/Polynomials/LaguerreL/
[R501] https://functions.wolfram.com/Polynomials/LaguerreL3/
[R503] https://mathworld.wolfram.com/AssociatedLaguerrePolynomial.html
[R504] https://functions.wolfram.com/Polynomials/LaguerreL/
[R505] https://functions.wolfram.com/Polynomials/LaguerreL3/
[R508] https://functions.wolfram.com/Polynomials/SphericalHarmonicY/
[R509] https://dlmf.nist.gov/14.30
[R511] https://mathworld.wolfram.com/SphericalHarmonic.html
[R512] https://functions.wolfram.com/Polynomials/SphericalHarmonicY/
[R514] https://mathworld.wolfram.com/SphericalHarmonic.html
[R515] https://functions.wolfram.com/Polynomials/SphericalHarmonicY/
[R565] https://people.sc.fsu.edu/~jburkardt/cpp_src/gegenbauer_rule/gegenbauer_rule.html
[R767] Big O notation
[R764] https://mathworld.wolfram.com/FourierSeries.html
[R758] Formal Power Series - Dominik Gruntz, Wolfram Koepf
[R759] Power Series in Computer Algebra - Wolfram Koepf
[R761] Power Series in Computer Algebra - Wolfram Koepf
[R766] Computing Limits of Sequences - Manuel Kauers
[R784] https://en.wikipedia.org/wiki/Morrie%27s_law
SymPy Documentation, Release 1.12.1

[R790] Methods to solve \(Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0\), [online], Available: https://www.alpertron.com.ar/METHODS.HTM

[R793] A. Nitaj, “L’algorithme de Cornacchia”

[R794] Solving the diophantine equation \(ax^2 + by^2 = m\) by Cornacchia’s method, [online], Available: http://www.numbertheory.org/php/cornacchia.html

[R798] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin, Mathematics of Computation, Volume 00, Number 0.

[R799] Representing an integer as a sum of three squares, [online], Available: https://www.proofwiki.org/wiki/Integer_as_Sum_of_Three_Squares

[R800] Representing a number as a sum of three squares, [online], Available: https://schorn.ch/lagrange.html

[R801] Representing a number as a sum of four squares, [online], Available: https://schorn.ch/lagrange.html

[R808] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin, Mathematics of Computation, Volume 00, Number 0.

[R809] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin, Mathematics of Computation, Volume 00, Number 0.

[R811] Representing a number as a sum of four squares, [online], Available: https://schorn.ch/lagrange.html

[R813] Methods to solve $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$, [online], Available: https://www.alpertron.com.ar/METHODS.HTM

[R815] Representing an integer as a sum of three squares, [online], Available: https://www.proofwiki.org/wiki/Integer_as_Sum_of_Three_Squares

[R816] https://en.wikipedia.org/wiki/Matrix_differential_equation

[R821] https://en.wikipedia.org/wiki/Matrix_exponential

[R1] https://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/

[R2] https://en.wikipedia.org/wiki/Quaternion

[R3] https://doi.org/10.1371/journal.pone.0276302

[R93] https://en.wikipedia.org/wiki/Summation#Capital-sigma_notation

This implementation detail is that Python provides no reliable method to determine that a chained inequality is being built. Chained comparison operators are evaluated pairwise, using “and” logic (see https://docs.python.org/3/reference/expressions.html#not-in). This is done in an efficient way, so that each object being compared is only evaluated once and the comparison can short-circuit. For example, \(1 > 2 > 3 \) is evaluated by Python as \((1 > 2) \text{ and } (2 > 3)\). The and operator coerces each side into a bool, returning the object itself when it short-circuits. The bool of the –Than operators will raise TypeError on purpose, because SymPy cannot determine the mathematical ordering of symbolic expressions. Thus, if we were to compute \(x > y > z \), with \(x \), \(y \), and \(z \) being Symbols, Python converts the statement (roughly) into these steps:

1. \(x > y > z \)
2. \((x > y) \text{ and } (y > z)\)
3. \((\text{GreaterThanObject}) \text{ and } (y > z)\)
4. \((\text{GreaterThanObject.__bool__})() \text{ and } (y > z)\)
5. TypeError

Because of the and added at step 2, the statement gets turned into a weak ternary statement, and the first object’s __bool__ method will raise TypeError. Thus, creating a chained inequality is not possible.

In Python, there is no way to override the and operator, or to control how it short circuits, so it is impossible to make something like \(x > y > z \) work. There was a PEP to change this, PEP 335, but it was officially closed in March, 2012.

This implementation detail is that Python provides no reliable method to determine that a chained inequality is being built. Chained comparison operators are evaluated pairwise, using “and” logic (see https://docs.python.org/3/reference/expressions.html#not-in). This is done in an efficient way, so that each object being compared is only evaluated once and the comparison can short-circuit. For example, \(1 > 2 > 3 \) is evaluated by Python as \((1 > 2) \text{ and } (2 > 3)\). The and operator coerces each side into a bool, returning the object itself when it short-circuits. The bool of the –Than operators will raise TypeError on purpose, because SymPy cannot determine the mathematical ordering of symbolic expressions. Thus, if we were to compute \(x > y > z \), with \(x \), \(y \), and \(z \) being Symbols, Python converts the statement (roughly) into these steps:

1. \(x > y > z \)
Because of the and added at step 2, the statement gets turned into a weak ternary statement, and the first object’s __bool__ method will raise TypeError. Thus, creating a chained inequality is not possible.

In Python, there is no way to override the and operator, or to control how it short circuits, so it is impossible to make something like $x > y > z$ work. There was a PEP to change this, PEP 335, but it was officially closed in March, 2012.

This implementation detail is that Python provides no reliable method to determine that a chained inequality is being built. Chained comparison operators are evaluated pairwise, using “and” logic (see https://docs.python.org/3/reference/expressions.html#not-in). This is done in an efficient way, so that each object being compared is only evaluated once and the comparison can short-circuit. For example, $1 > 2 > 3$ is evaluated by Python as $(1 > 2)$ and $(2 > 3)$. The and operator coerces each side into a bool, returning the object itself when it short-circuits. The bool of the -Than operators will raise TypeError on purpose, because SymPy cannot determine the mathematical ordering of symbolic expressions. Thus, if we were to compute $x > y > z$, with x, y, and z being Symbols, Python converts the statement (roughly) into these steps:

1. $x > y > z$
2. $(x > y)$ and $(y > z)$
3. (GreaterThanObject) and $(y > z)$
4. (GreaterThanObject.__bool__()) and $(y > z)$
5. TypeError

Because of the and added at step 2, the statement gets turned into a weak ternary statement, and the first object’s __bool__ method will raise TypeError. Thus, creating a chained inequality is not possible.

In Python, there is no way to override the and operator, or to control how it short circuits, so it is impossible to make something like $x > y > z$ work. There was a PEP to change this, PEP 335, but it was officially closed in March, 2012.
(2) `(x > y) and (y > z)`

(3) `(GreaterThanObject) and (y > z)`

(4) `(GreaterThanObject.__bool__()) and (y > z)`

(5) `TypeError`

Because of the `and` added at step 2, the statement gets turned into a weak ternary statement, and the first object’s `__bool__` method will raise `TypeError`. Thus, creating a chained inequality is not possible.

In Python, there is no way to override the `and` operator, or to control how it short circuits, so it is impossible to make something like `x > y > z` work. There was a PEP to change this, **PEP 335**, but it was officially closed in March, 2012.

[R141] https://reference.wolfram.com/legacy/v5_2/Built-inFunctions/AlgebraicComputation/Calculus/D.html

[R174] https://mathworld.wolfram.com/NumberTheoreticTransform.html

[R175] https://en.wikipedia.org/wiki/Discrete_Fourier_transform_(general%29

[R177] https://mathworld.wolfram.com/NumberTheoreticTransform.html

[R180] https://en.wikipedia.org/wiki/Fast_Walsh%E2%80%93Hadamard_transform

[R182] https://en.wikipedia.org/wiki/Fast_Walsh%E2%80%93Hadamard_transform

[R183] https://en.wikipedia.org/wiki/M%C3%B6bius_inversion_formula

[R186] https://en.wikipedia.org/wiki/M%C3%B6bius_inversion_formula

Algorithm 5.4.2, Matrix computations by Golub and Van Loan, 4th edition

Complex Matrix Bidiagonalization : https://github.com/vslobody/Householder-Bidiagonalization

https://mathworld.wolfram.com/PositiveDefiniteMatrix.html

https://mathworld.wolfram.com/PositiveDefiniteMatrix.html

W. Zhou & D.J. Jeffrey, “Fraction-free matrix factors: new forms for LU and QR

https://en.wikipedia.org/wiki/Gaussian_elimination

https://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse

https://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse#Obtaining_all_solutions_of_a_linear_system

https://en.wikipedia.org/wiki/Rank_factorization

https://en.wikipedia.org/wiki/Hessian_matrix

https://en.wikipedia.org/wiki/Gram%26E2%80%93Schmidt_process

https://en.wikipedia.org/wiki/Givens_rotation

Cohen, H. A Course in Computational Algebraic Number Theory. (See Algorithms 2.4.5 and 2.4.8.)

Kane, T., Levinson, D. Dynamics Theory and Applications. 1985 McGraw-Hill

Cohen, H. A Course in Computational Algebraic Number Theory. (See Algorithms 2.4.5 and 2.4.8.)

https://en.wikipedia.org/wiki/Del

https://en.wikipedia.org/wiki/Dyadic_tensor

Kane, T., Levinson, D. Dynamics Theory and Applications. 1985 McGraw-Hill

https://en.wikipedia.org/wiki/Del

https://www.cs.toronto.edu/~yuvalf/Factorization.pdf

https://mathworld.wolfram.com/UnitaryDivisor.html

https://mathworld.wolfram.com/UnitaryDivisorFunction.html

definition is described in https://oeis.org/A066272/a066272a.html

formula from https://oeis.org/A066272

https://en.wikipedia.org/wiki/Euler%27s_totient_function

https://mathworld.wolfram.com/TotientFunction.html

https://en.wikipedia.org/wiki/Carmichael_function

https://mathworld.wolfram.com/CarmichaelFunction.html

https://mathworld.wolfram.com/UnitaryDivisorFunction.html

https://en.wikipedia.org/wiki/Square-free_integer#Squarefree_core
[R640] https://mathworld.wolfram.com/PrimeFactor.html
[R641] https://mathworld.wolfram.com/PrimeFactor.html
[R642] https://mathworld.wolfram.com/PerfectNumber.html
[R643] https://en.wikipedia.org/wiki/Perfect_number
[R644] https://mathworld.wolfram.com/MersennePrime.html
[R645] https://mathworld.wolfram.com/AbundantNumber.html
[R646] https://mathworld.wolfram.com/DeficientNumber.html
[R647] https://en.wikipedia.org/wiki/Amicable_numbers
[R648] https://mathworld.wolfram.com/PartitionFunctionP.html
[R652] https://oeis.org/wiki/Gaussian_primes
[R654] P. Hackman “Elementary Number Theory” (2009), Chapter C
[R655] P. Hackman “Elementary Number Theory” (2009), page 76
[R659] https://en.wikipedia.org/wiki/Periodic_continued_fraction
[R661] https://en.wikipedia.org/wiki/M%C3%B6bius_function
[R662] Thomas Koshy “Elementary Number Theory with Applications”
[R664] https://en.wikipedia.org/wiki/Greedy_algorithm_for_Egyptian_fractions
[R668] https://pdfs.semanticscholar.org/5c52/8a975c1405bd35c65993abf5a4ed667c1db.pdf
[R669] https://www.rieselprime.de/ziki/Self-initializing_quadratic_sieve
[R678] https://en.wikipedia.org/wiki/Pauli_matrices
[R710] https://en.wikipedia.org/wiki/Kronecker_delta

[NIST] NIST reference on constants, units and uncertainties.

https://en.wikipedia.org/wiki/Commutator

https://en.wikipedia.org/wiki/Planck_constant

https://en.wikipedia.org/wiki/Hermitian_adjoint

https://en.wikipedia.org/wiki/Hermitian_transpose

https://en.wikipedia.org/wiki/Hilbert_space#Direct_sums

https://en.wikipedia.org/wiki/Fock_space

https://en.wikipedia.org/wiki/Hilbert_space

https://en.wikipedia.org/wiki/Hilbert_space#Tensor_products

https://en.wikipedia.org/wiki/Hilbert_space#Tensor_products

https://en.wikipedia.org/wiki/Observable

https://en.wikipedia.org/wiki/Bra-ket_notation

https://en.wikipedia.org/wiki/Bra-ket_notation

https://en.wikipedia.org/wiki/Complex_beam_parameter

https://en.wikipedia.org/wiki/Gaussian_beam

https://en.wikipedia.org/wiki/Optical_medium

https://en.wikipedia.org/wiki/Jones_calculus

https://en.wikipedia.org/wiki/Mueller_calculus

https://en.wikipedia.org/wiki/Stokes_parameters

https://en.wikipedia.org/wiki/Fresnel_equations

https://en.wikipedia.org/wiki/Transfer_function

https://en.wikipedia.org/wiki/Laplace_transform

https://www.mathworks.com/help/control/ref/lti.impulse.html

https://en.wikipedia.org/wiki/Ramp_function

https://homes.civil.aau.dk/jc/FemteSemester/Beams3D.pdf
Algorithm 7.1.2.5M in Volume 4A, Combinatorial Algorithms, Part 1, of The Art of Computer Programming, by Donald Knuth.

TAOCP 4, section 7.2.1.5, problem 64

Generating involutions, derangements, and relatives by ECO Vincent Vajnovszki, DMTCS vol 1 issue 12, 2010

Generating Integer Partitions, [online], Available: https://jeromekelleher.net/generating-integer-partitions.html

modified from Tim Peter’s version to allow for k and m values: https://code.activestate.com/recipes/218332-generator-for-integer-partitions/

Generating in involutions, derangements, and relatives by ECO Vincent Vajnovszki, DMTCS vol 1 issue 12, 2010

Generating Integer Partitions, [online], Available: https://jeromekelleher.net/generating-integer-partitions.html

modified from Tim Peter’s version to allow for k and m values: https://code.activestate.com/recipes/218332-generator-for-integer-partitions/

Generating Integer Partitions, [online], Available: https://jeromekelleher.net/generating-integer-partitions.html

modified from Tim Peter’s version to allow for k and m values: https://code.activestate.com/recipes/218332-generator-for-integer-partitions/

Generating Integer Partitions, [online], Available: https://jeromekelleher.net/generating-integer-partitions.html

modified from Tim Peter’s version to allow for k and m values: https://code.activestate.com/recipes/218332-generator-for-integer-partitions/

Generating Integer Partitions, [online], Available: https://jeromekelleher.net/generating-integer-partitions.html

modified from Tim Peter’s version to allow for k and m values: https://code.activestate.com/recipes/218332-generator-for-integer-partitions/
<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[R746]</td>
<td>[Bronstein93]</td>
</tr>
<tr>
<td>[R747]</td>
<td>[ManWright94]</td>
</tr>
<tr>
<td>[R748]</td>
<td>[Koepf98]</td>
</tr>
<tr>
<td>[R749]</td>
<td>[Abramov71]</td>
</tr>
<tr>
<td>[R750]</td>
<td>[Man93]</td>
</tr>
<tr>
<td>[R751]</td>
<td>[ManWright94]</td>
</tr>
<tr>
<td>[R752]</td>
<td>[Koepf98]</td>
</tr>
<tr>
<td>[R753]</td>
<td>[Abramov71]</td>
</tr>
<tr>
<td>[R754]</td>
<td>[Man93]</td>
</tr>
<tr>
<td>[R718]</td>
<td>[Kozen89]</td>
</tr>
<tr>
<td>[R719]</td>
<td>[Monagan93]</td>
</tr>
<tr>
<td>[R720]</td>
<td>[Gathen99]</td>
</tr>
<tr>
<td>[R721]</td>
<td>[Gathen99]</td>
</tr>
<tr>
<td>[R722]</td>
<td>[Gathen99]</td>
</tr>
<tr>
<td>[R723]</td>
<td>[Gathen92]</td>
</tr>
<tr>
<td>[R724]</td>
<td>[Geddes92]</td>
</tr>
<tr>
<td>[R725]</td>
<td>[Gathen99]</td>
</tr>
<tr>
<td>[R727]</td>
<td>[Liao95]</td>
</tr>
<tr>
<td>[R728]</td>
<td>[Gathen99]</td>
</tr>
<tr>
<td>[R729]</td>
<td>[Gathen99]</td>
</tr>
<tr>
<td>[R730]</td>
<td>[Weisstein09]</td>
</tr>
<tr>
<td>[R731]</td>
<td>[Gathen99]</td>
</tr>
<tr>
<td>[R732]</td>
<td>[Wang78]</td>
</tr>
<tr>
<td>[R733]</td>
<td>[Geddes92]</td>
</tr>
<tr>
<td>[R734]</td>
<td>[Gathen99]</td>
</tr>
</tbody>
</table>
SymPy Documentation, Release 1.12.1

[Giovini91] A. Giovini, T. Mora, “One sugar cube, please” or Selection strategies in Buchberger algorithm, ISSAC ’91, ACM

Bibliography 3141

[R715] Murray R. Bremner, "Lattice Basis Reduction: An Introduction to the LLL Algorithm and Its Applications"

[R716] Cohen, H. *A Course in Computational Algebraic Number Theory*. (See Algorithms 2.4.5 and 2.4.8.)

[R736] Cohen, H. *A Course in Computational Algebraic Number Theory*.

[R737] Cohen, H. *A Course in Computational Algebraic Number Theory*. (See Algorithm 6.2.9.)

[R738] Cohen, H. *A Course in Computational Algebraic Number Theory*. (See Algorithm 4.8.17.)

[Cohen00] Cohen, H. *Advanced Topics in Computational Number Theory*.

[R739] Cohen, H. *A Course in Computational Algebraic Number Theory*. (See Prop. 5.1.3)

[R740] Cohen, H. *A Course in Computational Algebraic Number Theory*.

[R741] Cohen, H. *A Course in Computational Algebraic Number Theory* (See Sec. 2.3.2.)

[Xypic] https://xy-pic.sourceforge.net/

[R143] https://mathworld.wolfram.com/CaesarsMethod.html

[R145] https://en.wikipedia.org/wiki/Affine_cipher

[R146] https://en.wikipedia.org/wiki/Atbash

[R152] https://en.wikipedia.org/wiki/Bifid_cipher

[R155] https://link.springer.com/content/pdf/10.1007/BFb0055738.pdf

[R156] https://www.itis.org/digital-library/manuscript/1381

[R159] https://link.springer.com/content/pdf/10.1007/BFb0055738.pdf

Bibliography 3143
[R160] https://www.itis.org/digital-library/manuscript/1381
[R161] https://en.wikipedia.org/wiki/Morse_code
[R162] https://en.wikipedia.org/wiki/Morse_code
[R165] https://en.wikipedia.org/wiki/Rail_fence_cipher
[R166] https://en.wikipedia.org/wiki/Manifold
[R830] https://en.wikipedia.org/wiki/Bernoulli_distribution
[R831] https://mathworld.wolfram.com/BernoulliDistribution.html
[R832] https://en.wikipedia.org/wiki/Coin_flipping
[R841] https://mathworld.wolfram.com/GeometricDistribution.html
[R843] https://en.wikipedia.org/wiki/Poisson_distribution
[R844] https://mathworld.wolfram.com/PoissonDistribution.html
[R845] https://en.wikipedia.org/wiki/Logarithmic_distribution
[R846] https://mathworld.wolfram.com/LogarithmicDistribution.html
[R847] https://en.wikipedia.org/wiki/Negative_binomial_distribution
[R848] https://mathworld.wolfram.com/NegativeBinomialDistribution.html
Python Module Index

S

sympy, ??
sympy.abc, 931
sympy.algebras, 932
sympy.assumptions, 244
sympy.assumptions.ask, 249
sympy.assumptions.assume, 251
sympy.assumptions.predicates, 259
sympy.assumptions.refine, 255
sympy.calculus, 288
sympy.calculus.euler, 288
sympy.calculus.finite_diff, 294
sympy.calculus.singularities, 289
sympy.calculus.util, 299
sympy.categories, 2826
sympy.categories.diagram_drawing, 2836
sympy.codegen.algorithms, 1201
sympy.codegen.approximations, 1166
sympy.codegen.ast, 1168
sympy.codegen.cfunctions, 1187
sympy.codegen.cnodes, 1192
sympy.codegen.cutils, 1203
sympy.codegen.cxxnodes, 1193
sympy.codegen.fnodes, 1193
sympy.codegen.futils, 1203
sympy.codegen.matrix_nodes, 1165
sympy.codegen.pyutils, 1203
sympy.codegen.rewriting, 1162
sympy.combinatorics.galois, 411
sympy.combinatorics.generators, 342
sympy.combinatorics.graycode, 403
sympy.combinatorics.group_constructs, 423
sympy.combinatorics.group_numbers, 415
sympy.combinatorics.named_groups, 408
sympy.combinatorics.partitions, 306
sympy.combinatorics.perm_groups, 343
sympy.combinatorics.permutations, 312
sympy.combinatorics.polyhedron, 387
sympy.combinatorics.pruefer, 391
sympy.combinatorics.subsets, 395
sympy.combinatorics.tensor_can, 425

sympy.combinatorics.testutil, 423
sympy.combinatorics.util, 416
sympy.core.add, 1062
sympy.core.assumptions, 975
sympy.core.basic, 979
sympy.core.cache, 979
sympy.core.containers, 1114
sympy.core.evalf, 1111
sympy.core.expr, 999
sympy.core.exprtools, 1116
sympy.core.function, 1087
sympy.core.kind, 1118
sympy.core.mod, 1066
sympy.core.mul, 1058
sympy.core.multidimensional, 1086
sympy.core.numbers, 1033
sympy.core.power, 1055
sympy.core.random, 1122
sympy.core.relation, 1067
sympy.core.singleton, 997
sympy.core.symbol, 1028
sympy.core.sympify, 970
sympy.core.traversal, 1124
sympy.crypto.crypto, 2846
sympy.diffgeom, 2883
sympy.discrete, 1127
sympy.discrete.convolution, 1133
sympy.discrete.transforms, 1127
sympy.functions, 441
sympy.functions.special.bessel, 554
sympy.functions.special.beta_functions, 526
sympy.functions.special.elliptic_integrals, 583
sympy.functions.special.error_functions, 528
sympy.functions.special.gamma_functions, 515
sympy.functions.special.mathieu_functions, 586
sympy.functions.special.polynomials, 589

3149
SymPy Documentation, Release 1.12.1

sympy.functions.special.singularity_functions
 513
sympy.functions.special.zeta_functions, 571
sympy.geometry.curve, 2323
sympy.geometry.ellipse, 2328
sympy.geometry.entity, 2269
sympy.geometry.line, 2291
sympy.geometry.plane, 2378
sympy.geometry.point, 2277
sympy.geometry.polygon, 2348
sympy.geometry.util, 2272
sympy.holonomic, 2387
sympy.integrals, 633
sympy.integrals.intpoly, 676
sympy.integrals.meijerint, 626
sympy.integrals.meijerint_doc, 622
sympy.integrals.transforms, 634
sympy.interactive, 2189
sympy.interactive.printing, 2192
sympy.interactive.session, 2189
sympy.liealgebras, 2400
sympy.logic, 1204
sympy.logic.inference, 1228
sympy.matrices, 1260
sympy.matrices.common, 1373
sympy.matrices.expressions, 1414
sympy.matrices.expressions.blockmatrix, 1424
sympy.matrices.immutable, 1413
sympy.matrices.matrices, 1260
sympy.matrices.sparse, 1409
sympy.matrices.sparsetools, 1410
sympy.ntheory.bbp_pi, 1576
sympy.ntheory.continued_fraction, 1568
sympy.ntheory.digits, 1571
sympy.ntheory.ecm, 1576
sympy.ntheory.egyptian_fraction, 1574
sympy.ntheory.factor_.factor, 1532
sympy.ntheory.generate, 1522
sympy.ntheory.modular, 1554
sympy.ntheory.multinomial, 1556
sympy.ntheory.partitions_, 1558
sympy.ntheory.primefactors, 1558
sympy.ntheory.qs, 1577
sympy.ntheory.residue_ntheory, 1563
sympy.parsing, 2195
sympy.parsing.sym_expr, 2203
sympy.physics, 1578
sympy.physics.continuum_mechanics.beam, 2022
sympy.physics.continuum_mechanics.truss, 2091
sympy.physics.control, 1962
sympy.physics.control.lti, 1963
sympy.physics.hep.gamma_matrices, 1637
sympy.physics.hydrogen, 1578
sympy.physics.matrices, 1582
sympy.physics.mechanics, 1721
sympy.physics.mechanics.body, 1802
sympy.physics.mechanics.joint, 1818
sympy.physics.mechanics.jointsmethod, 1849
sympy.physics.mechanics.kane, 1810
sympy.physics.mechanics.lagrange, 1814
sympy.physics.mechanics.linearize, 1856
sympy.physics.mechanics.particle, 1790
sympy.physics.mechanics.rigidbody, 1793
sympy.physics.mechanics.system, 1852
sympy.physics.optics.gausssopt, 1926
sympy.physics.optics.medium, 1939
sympy.physics.optics.polarization, 1940
sympy.physics.optics.utils, 1952
sympy.physics.optics.waves, 1959
sympy.physics.paulialgebra, 1584
sympy.physics.qho_1d, 1584
sympy.physics.quantum.anticommutator, 1860
sympy.physics.quantum.cartesian, 1870
sympy.physics.quantum.cg, 1861
sympy.physics.quantum.circuitplot, 1909
sympy.physics.quantum.commutator, 1864
sympy.physics.quantum.constants, 1865
sympy.physics.quantum.dagger, 1866
sympy.physics.quantum.dot, 1911
sympy.physics.quantum.grover, 1916
sympy.physics.quantum.hilbert, 1871
sympy.physics.quantum.innerproduct, 1867
sympy.physics.quantum.operator, 1876
sympy.physics.quantum.orbital, 1881
sympy.physics.quantum.piab, 1926
sympy.physics.quantum.qapply, 1883
sympy.physics.quantum.qft, 1919
sympy.physics.quantum.qubit, 1919
sympy.physics.quantum.qutrit, 1884
sympy.physics.quantum.shor, 1925
sympy.physics.quantum.spin, 1889
sympy.physics.quantum.state, 1901
sympy.physics.quantum.tensorproduct, 1868
sympy.physics.secondquant, 1587
sympy.physics.sho, 1586
sympy.physics.units.dimensions, 1631
sympy.physics.units.prefixes, 1634
sympy.physics.units.quantities, 1635
sympy.physics.units.unitsystem, 1634
sympy.physics.units.util, 1636
<table>
<thead>
<tr>
<th>Module</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>sympy.physics.physics.functions</td>
<td>1707</td>
</tr>
<tr>
<td>sympy.physics.physics.point</td>
<td>1700</td>
</tr>
<tr>
<td>sympy.physics.wigner</td>
<td>1611</td>
</tr>
<tr>
<td>sympy.plotting.plot</td>
<td>2904</td>
</tr>
<tr>
<td>sympy.plotting.pygletplot</td>
<td>2953</td>
</tr>
<tr>
<td>sympy.polys.numberfields.numberfields</td>
<td>2800</td>
</tr>
<tr>
<td>sympy.polys.numberfields.subfield</td>
<td>2795</td>
</tr>
<tr>
<td>sympy.plotting.plot.ode</td>
<td>807</td>
</tr>
<tr>
<td>sympy.plotting.plot.ode.ode</td>
<td>869</td>
</tr>
<tr>
<td>sympy.plotting.plot.pde</td>
<td>881</td>
</tr>
<tr>
<td>sympy.plotting.plot.recurr</td>
<td>900</td>
</tr>
<tr>
<td>sympy.plotting.plot.solve_expression</td>
<td>905</td>
</tr>
<tr>
<td>sympy.stats.crv</td>
<td>3065</td>
</tr>
<tr>
<td>sympy.stats.cr_types</td>
<td>3065</td>
</tr>
<tr>
<td>sympy.stats.frv</td>
<td>3065</td>
</tr>
<tr>
<td>sympy.stats.frv_types</td>
<td>3065</td>
</tr>
<tr>
<td>sympy.stats.rv</td>
<td>3064</td>
</tr>
<tr>
<td>sympy.tensor.tensors</td>
<td>1432</td>
</tr>
<tr>
<td>sympy.tensor.array</td>
<td>1432</td>
</tr>
<tr>
<td>sympy.tensor.array.expressions</td>
<td>1441</td>
</tr>
<tr>
<td>sympy.tensor.index_methods</td>
<td>1454</td>
</tr>
<tr>
<td>sympy.tensor.indexed</td>
<td>1446</td>
</tr>
<tr>
<td>sympy.tensor.tensors</td>
<td>1457</td>
</tr>
<tr>
<td>sympy.tensor.tensors.toperators</td>
<td>1471</td>
</tr>
<tr>
<td>sympy.testing</td>
<td>2098</td>
</tr>
<tr>
<td>sympy.testing.pytest</td>
<td>2098</td>
</tr>
<tr>
<td>sympy.testing.randtest</td>
<td>2101</td>
</tr>
<tr>
<td>sympy.testing.runtest</td>
<td>2101</td>
</tr>
<tr>
<td>sympy.utilities.autowrap</td>
<td>2110</td>
</tr>
<tr>
<td>sympy.utilities.codegen</td>
<td>2117</td>
</tr>
<tr>
<td>sympy.utilities.decorator</td>
<td>2128</td>
</tr>
<tr>
<td>sympy.utilities.enumerative</td>
<td>2131</td>
</tr>
<tr>
<td>sympy.utilities.exceptions</td>
<td>2137</td>
</tr>
<tr>
<td>sympy.utilities.iterables</td>
<td>2141</td>
</tr>
<tr>
<td>sympy.utilities.lambdify</td>
<td>2172</td>
</tr>
<tr>
<td>sympy.utilities.memoization</td>
<td>2183</td>
</tr>
<tr>
<td>sympy.utilities.misc</td>
<td>2183</td>
</tr>
<tr>
<td>sympy.utilities.pkgdata</td>
<td>2188</td>
</tr>
<tr>
<td>sympy.utilities.source</td>
<td>2189</td>
</tr>
<tr>
<td>sympy.utilities.timeutils</td>
<td>2189</td>
</tr>
<tr>
<td>sympy.vector</td>
<td>1473</td>
</tr>
</tbody>
</table>
Index 3155

module sympy.combinatorics.util), 419

sympy.integrals.meijerint), 629

_is_analytic() (in module sympy.integrals.meijerint), 629

_is_exponential() (in module sympy.solvers.solve_module), 927

_is_logarithmic() (in module sympy.solvers.solve_module), 930

_linear_2eq_order1_type6() (in module sympy.solvers.ode.ode), 853

_linear_2eq_order1_type7() (in module sympy.solvers.ode.ode), 853

_meijerint_definite_2() (in module sympy.integrals.meijerint), 629

_meijerint_definite_3() (in module sympy.integrals.meijerint), 630

_meijerint_definite_4() (in module sympy.integrals.meijerint), 630

_meijerint_indfinite_1() (in module sympy.integrals.meijerint), 630

_modgcd_multivariate_p() (in module sympy.polys.modulargcd), 2730

_mul_args() (in module sympy.integrals.meijerint), 630

_mul_as_two_parts() (in module sympy.integrals.meijerint), 630

_my_principal_branch() (in module sympy.integrals.meijerint), 630

_mytype() (in module sympy.integrals.meijerint), 630

_naive_list_centralizer() (in module sympy.combinatorics.util), 423

_new() (in module sympy.polys.rootoftools.ComplexRootOf reset) (in module sympy.polys.rootoftools.ComplexRootOf class method), 2511

_nonlinear_2eq_order1_type1() (in module sympy.solvers.ode.ode), 865

_nonlinear_2eq_order1_type2() (in module sympy.solvers.ode.ode), 865

_nonlinear_2eq_order1_type3() (in module sympy.solvers.ode.ode), 865

_nonlinear_2eq_order1_type4() (in module sympy.solvers.ode.ode), 865

_nonlinear_2eq_order1_type5() (in module sympy.solvers.ode.ode), 865

_nonlinear_3eq_order1_type1() (in module sympy.solvers.ode.ode), 866

_nonlinear_3eq_order1_type2() (in module sympy.solvers.ode.ode), 866

_nonlinear_3eq_order1_type3() (in module sympy.solvers.ode.ode), 867

_nonlinear_3eq_order1_type4() (in module sympy.solvers.ode.ode), 867

_nonlinear_3eq_order1_type5() (in module sympy.solvers.ode.ode), 868

_orbits_transversals_from_bsgs() (in module sympy.combinatorics.perm_groups.PermutationGroup method), 346

_postprocess_root() (in module sympy.polys.rootoftools.ComplexRootOf class method), 2511

_preprocess_root() (in module sympy.polys.rootoftools.ComplexRootOf class method), 2511

_print() (in module sympy.printing.printer.Printer method), 2211

_randint() (in module sympy.core.random), 1124

_random_pr_init() (in module sympy.combinatorics.perm_groups.PermutationGroup method), 346

_randrange() (in module sympy.core.random), 1123

_real_roots() (in module sympy.polys.rootoftools.ComplexRootOf class method), 2511

_reals_index() (in module sympy.polys.rootoftools.ComplexRootOf class method), 2511

_reals_sorted() (in module sympy.polys.rootoftools.ComplexRootOf class method), 2511

_refine_complexes() (in module sympy.polys.rootoftools.ComplexRootOf class method), 2511

_remove_gens() (in module sympy.combinatorics.util), 420

_rewrite1() (in module sympy.integrals.meijerint), 631

_rewrite2() (in module sympy.integrals.meijerint), 631

_rewrite_inversion() (in module sympy.integrals.meijerint), 631

_rewrite_saxena() (in module sympy.integrals.meijerint), 631

_rewrite_saxena_1() (in module sympy.integrals.meijerint), 631

_rewrite_single() (in module sympy.integrals.meijerint), 631

_roots_trivial() (in module sympy.polys.rootoftools.ComplexRootOf class method), 2511

_set_interval() (in module sympy.polys.rootoftools.ComplexRootOf class method), 2511

_solve_exponential() (in module sympy.solvers.solve_module), 928

_solve_lin_sys() (in module sympy.solvers.solve_module), 2751

_solve_lin_sys_component() (in module sympy.solvers.solve_module), 2751

...
SymPy Documentation, Release 1.12.1

sympy.solvers.ode.single, 840
alternating() (sympy.combinatorics.generators method), 342
AlternatingGroup() (in module sympy.combinatorics.named_groups), 410
altitudes (sympy.geometry.polygon.Triangle property), 2369
ambient_dimension (sympy.geometry.curve.Curve property), 2323
ambient_dimension (sympy.geometry.entity.GeometryEntity property), 2269
ambient_dimension (sympy.geometry.line.LinearEntity property), 2291
ambient_dimension (sympy.geometry.point.Point property), 2278
amplitude (sympy.physics.optics.waves.TWave property), 1960
an (sympy.functions.special.hyper.meijerg property), 581
analytic_func() (sympy.matrices.matrices.MatrixBase method), 1332
ancestors() (sympy.polys.numberfields.modules.Module method), 2804
And (class in sympy.logic.boolalg), 1210
andre (class in sympy.functions.combinatorial.numbertuples), 499
andre_poly() (in module sympy.polys.appellseqs), 2520
anf_coeffs() (in module sympy.logic.boolalg), 1227
ang_acc_in() (sympy.physics.vector.frame.ReferenceFrame method), 1677
ang_vel_in() (sympy.physics.mechanics.body.Body method), 1804
ang_vel_in() (sympy.physics.vector.frame.ReferenceFrame method), 1677
angle (sympy.physics.optics.gaussopt.GeometricRay property), 1932
angle() (sympy.algebras.Quaternion method), 934
angle_between() (sympy.geometry.line.LinearEntity method), 2291
angle_between() (sympy.geometry.plane.Plane method), 2379
angle_between() (sympy.physics.vector.vector.Vector method), 1690
angles (sympy.geometry.polygon.Polygon property), 2349
angles (sympy.geometry.polygon.RegularPolygon property), 2360
angular_deflection() (sympy.physics.continuum_mechanics.beam.Beam3D method), 2052
angular_momentum() (in module sympy.physics.mechanics.functions), 1799
angular_momentum() (sympy.physics.mechanics.particle.Particle method), 1790
angular_momentum() (sympy.physics.mechanics.rigidbody.RigidBody method), 1794
angular_velocity (sympy.physics.optics.waves.TWave property), 1960
Anhari (class in sympy.polys.polyclasses), 2650
AnnihilateBoson (in module sympy.physics.secondquant), 1587
AnnihilateFermion (in module sympy.physics.secondquant), 1588
annotated() (in module sympy.printing.pretty.pretty_symbology), 2261
antiderivative, 233
antidivisor_count() (in module sympy.ntheory.factor_.factor_count), 1545
antidivisors() (in module sympy.ntheory.factor_.factor_divisors), 1545
antihermitian, 977
AntiSymmetricTensor (class in sympy.physics.secondquant), 1590
Apothem (class in sympy.geometry.polygon), 2361
analytic_func() (sympy.matrices.matrices.MatrixBase method), 1332
antiderivative, 233
antidivisor_count() (in module sympy.ntheory.factor_.factor_count), 1545
antidivisors() (in module sympy.ntheory.factor_.factor_divisors), 1545
antihermitian, 977
AntiSymmetricTensor (class in sympy.physics.secondquant), 1590
Apothem (class in sympy.geometry.polygon), 2361
approximation(), applyfunc(), apply_torque(), apply_support(), apply_operators(), apply_operator(), apply_moment_load(), apply_load(), apply_grover(), apply_force(), apply_finite_diff()
<table>
<thead>
<tr>
<th>Property/Argument/Method/Class</th>
<th>Module/Class/Method</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>property</td>
<td>sympy.functions.special.hyper.meijerg</td>
<td>579</td>
</tr>
<tr>
<td>arguments</td>
<td>sympy.assumptions.assume.AppliedPredicate</td>
<td>581</td>
</tr>
<tr>
<td>array()</td>
<td>sympy.codegen.fnodes</td>
<td>1197</td>
</tr>
<tr>
<td>array_form</td>
<td>sympy.combinatorics.polyhedron.Polyhedron</td>
<td>319</td>
</tr>
<tr>
<td>ArrayConstructor</td>
<td>sympy.codegen.fnodes</td>
<td>1193</td>
</tr>
<tr>
<td>ArrayDiagonal</td>
<td>sympy.tensor.array.expressions</td>
<td>1444</td>
</tr>
<tr>
<td>ArrayTensorProduct</td>
<td>sympy.tensor.array.expressions</td>
<td>1444</td>
</tr>
<tr>
<td>ArrowStringDescription</td>
<td>sympy.categories.diagram_drawing</td>
<td>2840</td>
</tr>
<tr>
<td>as_AlgebraicField()</td>
<td>sympy.polys.domains.gaussiandomains.GaussianRationalField</td>
<td>2618</td>
</tr>
<tr>
<td>as_base_exp()</td>
<td>sympy.core.function.Function</td>
<td>1097</td>
</tr>
<tr>
<td>as_base_exp()</td>
<td>sympy.core.power.Pow</td>
<td>1056</td>
</tr>
<tr>
<td>as_base_exp()</td>
<td>sympy.functions.elementary.exponential.log</td>
<td>470</td>
</tr>
<tr>
<td>as_coeff_Add()</td>
<td>sympy.core.add.Add</td>
<td>1063</td>
</tr>
<tr>
<td>as_coeff_add()</td>
<td>sympy.core.add.Add</td>
<td>1063</td>
</tr>
<tr>
<td>as_coeff_Add()</td>
<td>sympy.core.expr.Expr</td>
<td>1000</td>
</tr>
<tr>
<td>as_coeff_Mul()</td>
<td>sympy.core.expr.Expr</td>
<td>1000</td>
</tr>
<tr>
<td>as_coeff_add()</td>
<td>sympy.core.numbers.Number</td>
<td>1033</td>
</tr>
<tr>
<td>as_coeff_Mul()</td>
<td>sympy.core.numbers.Rational</td>
<td>1038</td>
</tr>
<tr>
<td>as_coeff_Mul()</td>
<td>sympy.matrices.expressions.MatrixExpr</td>
<td>1415</td>
</tr>
<tr>
<td>as_coefficient()</td>
<td>sympy.core.expr.Expr</td>
<td>1001</td>
</tr>
<tr>
<td>as_coefficients_dict()</td>
<td>sympy.core.expressions.Piecewise</td>
<td>1002</td>
</tr>
<tr>
<td>as_content_primitive()</td>
<td>sympy.core.add.Add</td>
<td>980</td>
</tr>
<tr>
<td>as_content_primitive()</td>
<td>sympy.core.basic.Basic</td>
<td>1002</td>
</tr>
<tr>
<td>as_content_primitive()</td>
<td>sympy.core.expr.Expr</td>
<td>1002</td>
</tr>
<tr>
<td>as_content_primitive()</td>
<td>sympy.core.mul.Mul</td>
<td>1059</td>
</tr>
<tr>
<td>as_content_primitive()</td>
<td>sympy.core.numbers.Rational</td>
<td>1038</td>
</tr>
<tr>
<td>as_content_primitive()</td>
<td>sympy.core.power.Pow</td>
<td>1185</td>
</tr>
<tr>
<td>as_dict()</td>
<td>sympy.combinatorics.partitions.IntegerPartition</td>
<td>309</td>
</tr>
<tr>
<td>as_dict()</td>
<td>sympy.polys.polytools.Poly</td>
<td>2457</td>
</tr>
<tr>
<td>as_dummy()</td>
<td>sympy.core.basic.Basic</td>
<td>980</td>
</tr>
<tr>
<td>as_explicit()</td>
<td>sympy.matrices.expressions.MatrixExpr</td>
<td>1415</td>
</tr>
<tr>
<td>as_expr()</td>
<td>sympy.core.expr.Expr</td>
<td>1003</td>
</tr>
<tr>
<td>as_expr()</td>
<td>sympy.core.numbers.AlgebraicNumber</td>
<td>1042</td>
</tr>
<tr>
<td>as_expr()</td>
<td>sympy.polys.monomials.Monomial</td>
<td>2505</td>
</tr>
<tr>
<td>as_expr()</td>
<td>sympy.polys.numberfields.modules.PowerBasisElement</td>
<td>2816</td>
</tr>
<tr>
<td>as_expr()</td>
<td>sympy.polys.polytools.Poly</td>
<td>2457</td>
</tr>
<tr>
<td>as_expr_set_pairs()</td>
<td>sympy.functions.elementary.piecewise.Piecewise</td>
<td>473</td>
</tr>
<tr>
<td>as_ferrers()</td>
<td>sympy.combinatorics.partitions.IntegerPartition</td>
<td>309</td>
</tr>
<tr>
<td>as_finite_difference()</td>
<td>sympy.core.function.Derivative</td>
<td>1197</td>
</tr>
</tbody>
</table>
as_immutable() (sympy.matrices.dense.DenseMatrix method), 1244
as_independent() (sympy.core.expr.Expr method), 1241
as_int() (in module sympy.utilities.misc), 2183
as_leading_term() (sympy.core.expr.Expr method), 1242
as_list() (sympy.polys.polytools.Poly method), 2458
as_mutable() (sympy.matrices.dense.DenseMatrix method), 1407
as_mutable() (sympy.matrices.expressions.MatrixExpr method), 1415
as_numer_denom() (sympy.core.add.Add method), 1064
as_numer_denom() (sympy.core.expr.Expr method), 1007
as_ordered_factors() (sympy.core.expr.Expr method), 1007
as_ordered_factors() (sympy.core.mul.Mul method), 1059
as_ordered_terms() (sympy.core.expr.Expr method), 1007
as_ordered_terms() (sympy.core.expr.Expr method), 1007
as_poly() (sympy.core.add.Add method), 1065
as_poly() (sympy.core.mul.Mul method), 1060
as_poly() (sympy.core.reational.Equality method), 1007
as_power() (sympy.polys.polytools.Poly method), 2458
as_powers_dict() (sympy.core.expr.Expr method), 1008
as_sum() (sympy.integrals.integrals.Integral method), 660
as_terms() (sympy.core.expr.Expr method), 1008
as_two_terms() (sympy.core.add.Add method), 1065
as_two_terms() (sympy.core.mul.Mul method), 1060
ascents() (sympy.combinatorics.permutations.Permutation method), 319
asec (class in sympy.functions.elementary.trigonometric), 457
asech (class in sympy.functions.elementary.hyperbolic), 465
aseries() (sympy.core.expr.Expr method), 1008
asin (class in sympy.functions.elementary.trigonometric), 454
asinh (class in sympy.functions.elementary.hyperbolic), 463
ask() (in module sympy.assumptions.ask), 249
assemble_partfrac_list() (in module sympy.polys.partfrac), 2525
AssignmentBase (class in sympy.codegen.ast), 1171
AssignmentError, 2258
assoc_laguerre (class in sympy.functions.special.polynomials), 601
assoc_legendre (class in sympy.functions.special.polynomials), 1251
as_relational() (sympy.sets.sets.Complement method), 1244
as_relational() (sympy.sets.sets.FiniteSet method), 1241
as_relational() (sympy.sets.sets.Intersection method), 1242
as_relational() (sympy.sets.sets.SymmetricDifference method), 1245
as_relational() (sympy.sets.sets.Union method), 1239
as_set() (sympy.logic.boolalg.Boolean method), 1207
as_set() (sympy.logic.boolalg.BooleanFalse method), 1210
as_set() (sympy.logic.boolalg.BooleanTrue method), 1209
as_submodule() (sympy.polys.numberfields.primes.Primed method), 2789
as_sum() (sympy.integrals.integrals.Integral method), 660
Index 3161
Basic (class in sympy.core.basic), 979
BasicOrbits (sympy.combinatorics.perm_groups.PermutationGroup
property), 352
basic_root() (sympy.combinatorics.perm_groups.PermutationGroup
method), 2403
basic_root() (sympy.liealgebras.type_a.TypeABending_moment() (sympy.physics.continuum_mechanics.beam
method), 2027
basic_root() (sympy.liealgebras.type_b.TypeBBending_moment() (sympy.physics.continuum_mechanics.beam
method), 2044
basic_root() (sympy.liealgebras.type_c.TypeCBenini() (in module sympy.stats), 2972
bernoulli (class in sympy.functions.combinatorial.numbers), 485
basic_root() (sympy.liealgebras.type_d.TypeDbernoulli() (in module
sympy.liealgebras.type_e.TypeEBernoulli (class in sympy.solvers.ode.single), 829
basic_root() (sympy.liealgebras.type_f.TypeF
Bernoulli() (in module sympy.stats), 2960
Bernoulli_c_poly() (in module
sympy.polys.appellseqs), 2519
bernoulli_c_poly() (in module
sympy.polys.appellseqs), 2518
basic_stabilizers (sympy.combinatorics.perm_groups.PermutationGroup
property), 352
basic_transversals (sympy.combinatorics.perm_groups.PermutationGroup
property), 353
basis() (sympy.liealgebras.type_a.TypeA
sympy.functions.special.bessel), 554
basis() (sympy.liealgebras.type_b.TypeB
sympy.functions.special.bessel), 556
basis() (sympy.liealgebras.type_c.TypeC
sympy.functions.special.bessel), 556
basis() (sympy.liealgebras.type_d.TypeD
sympy.functions.special.bessel), 554
basis() (sympy.liealgebras.type_e.TypeE
sympy.functions.special.bessel), 556
basis() (sympy.liealgebras.type_f.TypeF
sympy.simplify.simplify), 723
bessely (class in sympy.functions.special.bessel), 555
basis_element_pullbacks() (sympy.polys.numberfields.modules.FreeModule
method), 2811
basis_elements() (sympy.polys.numberfields.modules.Submodule
method), 2804
BBra (in module sympy.physics.secondquant), 1591
Bd (in module sympy.physics.secondquant), 1591
Beta() (in module sympy.stats), 2973
Bifid5_square() (in module sympy.crypto.crypto), 2860
Bifid6_square() (in module sympy.crypto.crypto), 2863
Bell (class in sympy.functions.combinatorial.numbers), 2860
BellPrimes (class in sympy.stats), 2975
bidiagonalize() (sympy.matrices.mutricies.MatrixEigen
method), 1280
bidiagonalize() (sympy.matrices.mutricies.MatrixEigen
method), 1280
Basis (class in sympy.physics.continuum_mechanics.beam
sympy.matrices.matrices.MatrixEigen
method), 1280
Beam3D (class in sympy.physics.continuum_mechanics.beam
sympy.matrices.mutricies.MatrixEigen
method), 1280
BeamParameter (class in sympy.physics.optics.gaussopt), 1926
biffi5_square() (in module sympy.crypto.crypto), 2860
biffi6_square() (in module sympy.crypto.crypto), 2863
bilinear() (in module sympy.physics.control.lti), 2005
bin_to_gray() (sympy.combinatorics.graycode method), 2005
binary_function() (in module sympy.utilities.autowrap), 2113
binary_partitions() (in module sympy.utilities.iterables), 2141
BinaryQuadratic (class in sympy.solvers.diophantine.diophantine), 799
bind_C() (in module sympy.codegen.fnodes), 1197
binomial (class in sympy.functions.combinatorial.factorials), 486
Binomial() (in module sympy.stats), 2961
binomial_coefficients() (in module sympy.ntheory.multinomial), 1556
binomial_coefficients_list() (in module sympy.ntheory.multinomial), 1557
bisectors() (sympy.geometry.line.LinearEntity method), 2294
bisectors() (sympy.geometry.polygon.Polygon method), 2351
bisectors() (sympy.geometry.polygon.Triangle method), 2369
bitlist_from_subset() (sympy.combinatorics.subsets.Subset class method), 395
BKet (in module sympy.physics.secondquant), 1591
block_collapse() (in module sympy.matrices.expressions.blockmatrix), 1430
BlockDiagMatrix (class in sympy.matrices.expressions.blockmatrix), 1429
BlockMatrix (class in sympy.matrices.expressions.blockmatrix), 1424
bm (sympy.functions.special.hyper.meijerg property), 582
bode_magnitude_numerical_data() (sympy.physics.control.control_plots method), 2009
bode_magnitude_plot() (sympy.physics.control.control_plots method), 2008
bode_phase_numerical_data() (sympy.physics.control.control_plots method), 2011
bode_phase_plot() (sympy.physics.control.control_plots method), 2009
bodies (sympy.physics.mechanics.jointsystem.JointsMethod property), 1850
bodies (sympy.physics.mechanics.system.SymbolicSystem property), 1855
Body (class in sympy.physics.mechanics.body), 1802
BodyOrienter (class in sympy.vector.orienters), 1513
bool_map() (in module sympy.logic.boolalg), 1222
bool_maxterm() (in module sympy.logic.boolalg), 1226
bool_minterm() (in module sympy.logic.boolalg), 1227
boolean (class in sympy.logic.boolalg), 1207
Booleans (class in sympy.logic.boolalg), 1207
boolean (class in sympy.logic.boolalg), 1209
BooleanFalse (class in sympy.logic.boolalg), 1207
BooleanKind (in module sympy.core.kind), 1119
BooleanTrue (class in sympy.logic.boolalg), 1208
bottom_up() (in module sympy.core.traversal), 1124
BosonicBasis (class in sympy.physics.secondquant), 1208
bother (sympy.functions.special.hyper.meijerg property), 582
boundary (sympy.core.traversal), 1124
symbols, 235
bound_symbols (sympy.concrete.expr_with_limits.ExprWithLimits property), 665
bound_symbols (sympy.core.function.Lambda property), 1087
bound_symbols (sympy.core.function.Subs property), 1099
boundary (sympy.sets.sets.Set property), 1230
boundary_conditions (sympy.physics.continuum_mechanics.beam.beam property), 2028
boundary_conditions (sympy.physics.continuum_mechanics.beam(Beam3D property), 2053
BoundedPareto() (in module sympy.stats), 2976
bounds (sympy.geometry.ellipse.Ellipse property), 2330
bounds (sympy.geometry.entity.GeometryEntity property), 2269
<table>
<thead>
<tr>
<th>Function/Property</th>
<th>Module/Class</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>bounds</td>
<td>sympy.geometry.line.LinearEntity2D</td>
<td>2312</td>
</tr>
<tr>
<td>bounds</td>
<td>sympy.geometry.point.Point2D property</td>
<td>2284</td>
</tr>
<tr>
<td>bounds</td>
<td>sympy.geometry.polygon.Polygon property</td>
<td>2351</td>
</tr>
<tr>
<td>bq</td>
<td>sympy.functions.special.hyper.hyper property</td>
<td>579</td>
</tr>
<tr>
<td>bq</td>
<td>sympy.functions.special.hyper.meijer property</td>
<td>582</td>
</tr>
<tr>
<td>Bra</td>
<td>in sympy.physics.quantum.state</td>
<td>1901</td>
</tr>
<tr>
<td>bra</td>
<td>(sympy.physics.quantum.operator.OuterProduct property)</td>
<td>1881</td>
</tr>
<tr>
<td>bra</td>
<td>(sympy.physics.secondquant.InnerProduct property)</td>
<td>1598</td>
</tr>
<tr>
<td>BraBase</td>
<td>in sympy.physics.quantum.state</td>
<td>1902</td>
</tr>
<tr>
<td>bracelets()</td>
<td>(in module sympy.utilities.iterables)</td>
<td>2141</td>
</tr>
<tr>
<td>brewster_angle()</td>
<td>in sympy.physics.optics.utils</td>
<td>1952</td>
</tr>
<tr>
<td>bsgs_direct_product()</td>
<td>in module sympy.combinatorics.tensor_can</td>
<td>430</td>
</tr>
<tr>
<td>bspline_basis()</td>
<td>in module sympy.functions.special.bsplines</td>
<td>568</td>
</tr>
<tr>
<td>bspline_basis_set()</td>
<td>in module sympy.functions.special.bsplines</td>
<td>569</td>
</tr>
<tr>
<td>build_expression_tree()</td>
<td>in module sympy.series.gruntz</td>
<td>682</td>
</tr>
<tr>
<td>build_options()</td>
<td>in module sympy.polys.polynomials</td>
<td>2725</td>
</tr>
<tr>
<td>C</td>
<td>sympy.matrices.common.MatrixCommon property</td>
<td>1373</td>
</tr>
<tr>
<td>C</td>
<td>sympy.physics.optics.gaussopt.RayTransferMatrix property</td>
<td>1934</td>
</tr>
<tr>
<td>C89CodePrinter</td>
<td>(class in sympy.printing.c)</td>
<td>2214</td>
</tr>
<tr>
<td>C99CodePrinter</td>
<td>(class in sympy.printing.c)</td>
<td>2214</td>
</tr>
<tr>
<td>calculate_series()</td>
<td>in module sympy.series.gruntz</td>
<td>683</td>
</tr>
<tr>
<td>can_transf_matrix</td>
<td>(sympy.physics.units.dimensions.DimensionSystem property)</td>
<td>1632</td>
</tr>
<tr>
<td>canberra_distance()</td>
<td>(sympy.geometry.point.Point property)</td>
<td>1373</td>
</tr>
<tr>
<td>cancel()</td>
<td>(in module sympy.polys.polytools)</td>
<td>2451</td>
</tr>
<tr>
<td>cancel()</td>
<td>(sympy.core.expr.Expr method)</td>
<td>1010</td>
</tr>
<tr>
<td>cancel()</td>
<td>(sympy.polys.polynomials.DMF method)</td>
<td>2649</td>
</tr>
<tr>
<td>cancel()</td>
<td>(sympy.polys.polynomials.DMP method)</td>
<td>2643</td>
</tr>
<tr>
<td>cancel()</td>
<td>(sympy.polys.polytools.Poly method)</td>
<td>2458</td>
</tr>
<tr>
<td>canon_bp()</td>
<td>(in module sympy.tensor.tensor)</td>
<td>1467</td>
</tr>
<tr>
<td>canonical_vars</td>
<td>(in module sympy.core.relational.Relational property)</td>
<td>1068</td>
</tr>
<tr>
<td>Canonicalize</td>
<td>in module sympy.combinatorics.tensor_can</td>
<td>425</td>
</tr>
<tr>
<td>capture()</td>
<td>(in module sympy.utilities.iterables)</td>
<td>2141</td>
</tr>
<tr>
<td>cardinality</td>
<td>(sympy.polys.combinatorics.permutations.Permutation property)</td>
<td>320</td>
</tr>
<tr>
<td>cardinality</td>
<td>(sympy.combinatorics.subsets.Subset property)</td>
<td>395</td>
</tr>
<tr>
<td>cartan_matrix()</td>
<td>(sympy.liealgebras.root_system.RootSystem method)</td>
<td>2401</td>
</tr>
<tr>
<td>cartan_matrix()</td>
<td>(sympy.liealgebras.type_a.TypeA method)</td>
<td>2403</td>
</tr>
<tr>
<td>cartan_matrix()</td>
<td>(sympy.liealgebras.type_b.TypeB method)</td>
<td>2404</td>
</tr>
<tr>
<td>cartan_matrix()</td>
<td>(sympy.liealgebras.type_c.TypeC method)</td>
<td>2406</td>
</tr>
<tr>
<td>cartan_matrix()</td>
<td>(sympy.liealgebras.type_d.TypeD method)</td>
<td>2407</td>
</tr>
<tr>
<td>cartan_matrix()</td>
<td>(sympy.liealgebras.type_e.TypeE method)</td>
<td>2409</td>
</tr>
<tr>
<td>cartan_matrix()</td>
<td>(sympy.liealgebras.type_f.TypeF method)</td>
<td>2410</td>
</tr>
<tr>
<td>cartan_matrix()</td>
<td>(sympy.liealgebras.type_g.TypeG method)</td>
<td>2411</td>
</tr>
<tr>
<td>Class/Method</td>
<td>Module/Package</td>
<td>Line</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>------</td>
</tr>
<tr>
<td>CartanMatrix()</td>
<td>sympy.liealgebras.cartan_matrix</td>
<td>2412</td>
</tr>
<tr>
<td>CartanType_generator</td>
<td>sympy.liealgebras.cartan_type</td>
<td>2415</td>
</tr>
<tr>
<td>CartesianComplexRegion</td>
<td>sympy.sets.fancysets</td>
<td>1254</td>
</tr>
<tr>
<td>cast_check()</td>
<td>sympy.codegen.ast.Type</td>
<td>1183</td>
</tr>
<tr>
<td>cast_nocheck()</td>
<td>sympy.codegen.ast.FloatBaseType</td>
<td>1175</td>
</tr>
<tr>
<td>Catalan</td>
<td>sympy.core.numbers</td>
<td>1051</td>
</tr>
<tr>
<td>catalan</td>
<td>sympy.functions.combinatorial.numbers</td>
<td>488</td>
</tr>
<tr>
<td>Category</td>
<td>sympy.categories</td>
<td>2831</td>
</tr>
<tr>
<td>Cauchy()</td>
<td>sympy.stats</td>
<td>2977</td>
</tr>
<tr>
<td>cauchy_lower_bound()</td>
<td>sympy.polys.polyclasses.DMP</td>
<td>2643</td>
</tr>
<tr>
<td>cauchy_upper_bound()</td>
<td>sympy.polys.polyclasses.DMP</td>
<td>2643</td>
</tr>
<tr>
<td>Cbrt</td>
<td>sympy.codegen.cfunctions</td>
<td>1187</td>
</tr>
<tr>
<td>cbrt()</td>
<td>sympy.functions.elementary.miscellaneous</td>
<td>482</td>
</tr>
<tr>
<td>ccode()</td>
<td>sympy.printing.c</td>
<td>2214</td>
</tr>
<tr>
<td>CCodeGen</td>
<td>sympy.utilities.codegen</td>
<td>2118</td>
</tr>
<tr>
<td>ceiling</td>
<td>sympy.functions.elementary.integers</td>
<td>466</td>
</tr>
<tr>
<td>center</td>
<td>sympy.geometry.ellipse.Ellipse</td>
<td>2331</td>
</tr>
<tr>
<td>center</td>
<td>sympy.geometry.polygon.RegularPolygon</td>
<td>2362</td>
</tr>
<tr>
<td>centralizer()</td>
<td>sympy.combinatorics.perm_groups</td>
<td>354</td>
</tr>
<tr>
<td>CentralMoment</td>
<td>sympy.stats</td>
<td>3061</td>
</tr>
<tr>
<td>centroid</td>
<td>sympy.geometry.polygon.Polygon</td>
<td>2351</td>
</tr>
</tbody>
</table>
checkpdesol() (in module sympy.solvers.pde), 876
 classify_pde() (in module sympy.solvers.ode), 812
checksol() (in module sympy.solvers.solvers), 897
classify_ocp() (in module sympy.solvers.ode), 875
Chi (class in sympy.functions.special.error_functions), 552
clear() (sympy.tensor.tensor _TensorManager method), 1470
Chi() (in module sympy.stats), 2977
clear_cache() (sympy.polys.rootofTools.ComplexRootOf class method), 2511
child (sympy.physics.mechanics.joint.Joint property), 1820
clear_denoms() (sympy.polys.polyclasses.DMP method), 2643
child_axis (sympy.physics.mechanics.joint.Joint.property), 1820
clear_denoms() (sympy.polys.polytools.Poly method), 2458
child_point (sympy.physics.mechanics.joint.Joint.property), 1820
ChiNoncentral() (in module sympy.stats), 2978
clebsch_gordan() (in module sympy.physics.wigner), 1612
ChiSquared() (in module sympy.stats), 2979
close() (sympy.polys.polyoptions.Options method)
cholesky() (sympy.matrices.dense.DenseMatrix method), 1407
closing_angle() (sympy.geometry.line.Ray2D method), 2316
cholesky() (sympy.matrices.matrices.MatrixBase method), 1332
closure (sympy.sets.sets.Set property), 1230
cholesky_solve() (sympy.matrices.matrices.MatrixBase in sympy.physics.quantum.shor), 1925
Chi() (class in sympy.functions.special.error_functions), 549
coeff_denom() (in module sympy.stats), 3062
cmplx (class in sympy.codegen.fnodes), 1912
Circle (class in sympy.geometry.ellipse), 2344
CNOT (in module sympy.physics.quantum.gate), 1912
circuit_plot() (in module sympy.physics.quantum.circuitplot), 1910
codegen() (class in sympy.codegen.codegen), 2119
CircuitPlot (class in sympy.physics.quantum.circuitplot), 1909
codemodule (class in sympy.utilities.codegen), 2119
circumcenter (sympy.geometry.polygon.RegularPolygon property), 2362
codemodule (class in sympy.utilities.codegen), 2124
circumcenter (sympy.geometry.polygon.Triangle property), 2370
codemodule (class in sympy.printing.codeprinter), 2258
circumcircle (sympy.geometry.polygon.RegularPolygon property), 2363
codemodule (class in sympy.utilities.autowrap), 2111
circumcircle (sympy.geometry.polygon.Triangle property), 2370
codemodule (class in sympy.categories.CompositeMorphism property), 2829
circumference (sympy.geometry.ellipse.Circle property), 2345
codemodule (class in sympy.categories.Morphism property), 2827
circumference (sympy.geometry.ellipse.Ellipse property), 2331
codemodule (sympy.polys.rings.PolyElement method), 2635
circumradius (sympy.geometry.polygon.RegularPolygon property), 2363
codemodule (sympy.series.sequences.SeqBase method), 691
circumradius (sympy.geometry.polygon.Triangle property), 2371
class_key() (sympy.core.basic.Basic class method), 983
coeff_bell() (sympy.series.formal.FormalPowerSeries method), 705
classify_diop() (in module sympy.solvers.diophantine.diophantine), 776
coeff_monomial() (sympy.polys.polytools.Poly method), 2459
classify_ode() (in module sympy.solvers.pde), 875
<table>
<thead>
<tr>
<th>Function</th>
<th>Module/Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>coeff_mul()</td>
<td>sympy.series.sequences.SeqBase method, 691</td>
</tr>
<tr>
<td>coeff_mul()</td>
<td>sympy.series.sequences.SeqFormula method, 693</td>
</tr>
<tr>
<td>coeff_mul()</td>
<td>sympy.series.sequences.SeqPer method, 694</td>
</tr>
<tr>
<td>coeff_search()</td>
<td>(in module sympy.polys.numberfields.utilities), 2823</td>
</tr>
<tr>
<td>coefficients()</td>
<td>sympy.geometry.line.Line2D property, 2314</td>
</tr>
<tr>
<td>coeffs()</td>
<td>sympy.polys.polycalsses.DMP method, 2644</td>
</tr>
<tr>
<td>coeffs()</td>
<td>(sympy.polys.polytools.Poly method), 2459</td>
</tr>
<tr>
<td>coeffs()</td>
<td>(sympy.polys.rings.PolyElement method), 2636</td>
</tr>
<tr>
<td>CoercionFailed</td>
<td>(class in sympy.polys.polyerrors), 2726</td>
</tr>
<tr>
<td>cofactor()</td>
<td>(sympy.matrices.matrices.MatrixDeterminant method), 1271</td>
</tr>
<tr>
<td>cofactor_matrix()</td>
<td>(sympy.matrices.matrices.MatrixDeterminant method), 1272</td>
</tr>
<tr>
<td>cofactors()</td>
<td>(in module sympy.polys.polytools), 2442</td>
</tr>
<tr>
<td>cofactors()</td>
<td>(sympy.core.numbers.Number method), 1033</td>
</tr>
<tr>
<td>cofactors()</td>
<td>(sympy.polys.domains.domain.Domain method), 2588</td>
</tr>
<tr>
<td>cofactors()</td>
<td>(sympy.polys.polycalsses.DMP method), 2644</td>
</tr>
<tr>
<td>cofactors()</td>
<td>(sympy.polys.polytools.Poly method), 2460</td>
</tr>
<tr>
<td>coherent_state()</td>
<td>(in module sympy.physics.qho_1d), 1585</td>
</tr>
<tr>
<td>Coin()</td>
<td>(in module sympy.stats), 2961</td>
</tr>
<tr>
<td>column()</td>
<td>(in module sympy.polys.numberfields.modules.ModuleElement method), 2814</td>
</tr>
<tr>
<td>columnspace()</td>
<td>(sympy.matrices.matrices.MatrixSubspaces method), 1278</td>
</tr>
<tr>
<td>columnspace()</td>
<td>(sympy.polys.matrices.domainmatrix.DomainMatrix method), 2754</td>
</tr>
<tr>
<td>comb_explicit_rhs</td>
<td>(sympy.physics.mechanics.system.SymbolicSystem property), 1855</td>
</tr>
<tr>
<td>comb_implicit_mat</td>
<td>(sympy.physics.mechanics.system.SymbolicSystem property), 1856</td>
</tr>
<tr>
<td>combsimp()</td>
<td>(in module sympy.combinatorics.perm_groups.Permutation method), 355</td>
</tr>
<tr>
<td>commutative</td>
<td>sympy.stats.DiscreteMarkovChain method, 3032</td>
</tr>
<tr>
<td>commutative_diagrams</td>
<td>(sympy.categories.Category property), 2832</td>
</tr>
<tr>
<td>CommutativePredicate</td>
<td>(class in sympy.assumptions.pdicates.common), 260</td>
</tr>
<tr>
<td>Commutator</td>
<td>(class in sympy.combinatorics.permutations.Permutation method), 320</td>
</tr>
<tr>
<td>Commutator</td>
<td>(class in sympy.combinatorics.permutations.Permutation method), 321</td>
</tr>
<tr>
<td>Commutator</td>
<td>(class in sympy.physics.secondquant), 1591</td>
</tr>
<tr>
<td>Commutator</td>
<td>(class in sympy.combinatorics.permutations.Permutation method), 355</td>
</tr>
<tr>
<td>Commutator</td>
<td>(class in sympy.combinatorics.permutations.Permutation method), 320</td>
</tr>
<tr>
<td>Commutator</td>
<td>(class in sympy.combinatorics.permutations.Permutation method), 321</td>
</tr>
</tbody>
</table>
method), 1461
companion() (sympy.matrices.common.MatrixCommon class method), 1376
CompanionMatrix (class in sympy.matrices.expressions), 1424
compare() (in module sympy.series.gruntz), 682
compare() (sympy.core.basic.Basic method), 1376
Complement (class in sympy.sets.sets), 1244
complement() (sympy.sets.sets.Set method), 1230
complex, 976
ComplexElement (class in sympy.polys.domains.mpelements), 2627
ComplexElementsPredicate (class in sympy.assumptions.predicates.matrices), 269
Complexes (class in sympy.sets.fancysets), 1248
ComplexField (class in sympy.polys.domains), 2627
ComplexInfinity (class in sympy.core.numbers), 1048
ComplexPredicate (class in sympy.assumptions.predicates.sets), 284
ComplexRegion (class in sympy.sets.fancysets), 1251
ComplexSpace (class in sympy.physics.quantum.hilbert), 1871
ComplexType (class in sympy.codegen.ast), 1174
components (sympy.categories.CompositeMorphism property), 2829
components (sympy.vector.dyadic.Dyadic property), 1506
components (sympy.vector.vector.Vector property), 1502
components() (in module sympy.integrals.heurisch), 656
compose() (in module sympy.polys.polytools), 2444
compose() (sympy.categories.Morphism method), 2827
compose() (sympy.series.formal.FormalPowerSeries method), 705
compose() (sympy.series.gruntz.Series method), 1461
CompositeDomain (class in sympy.polys.domains.compositedomain), 2602
CompositeMorphism (class in sympy.categories), 2828
composite() (in module sympy.ntheory.generate), 1531
composite() (sympy.functions.elementary.complexes.ComplexPredicate (class in sympy.assumptions.predicates.ntheory), 274
CompositionFailed (class in sympy.polys.polyerrors), 2726
composition() (sympy.holonomic.holonomic.HolonomicFunction method), 2393
composition() (sympy.combinatorics.perm_groups.PermutationGroup method), 355
composition_series() (sympy.combinatorics.perm_groups.PermutationGroup method), 355
compute_explicit_form() (sympy.physics.mechanics.system.SymbolicSystem method), 1856
compute_fps() (in module sympy.series.formal), 710
compute_leading_term() (sympy.core.expr.Expr method), 1012
compute_m_ybar() (in module sympy.solvers.ode.riccati), 852
conclusions (sympy.categories.Diagram property), 2834
condition_number() (sympy.matrices.matrices.MatrixBase method), 1333
ConditionalDomain (class in sympy.stats.rv), 3065
ConditionSet (class in sympy.sets.conditionset), 1257
conjugacy_class() (sympy.combinatorics.perm_groups.PermutationGroup method), 356
conjugacy_classes() (sympy.combinatorics.perm_groups.PermutationGroup method), 357
conjugate (class in sympy.functions.elementary.complexes),
<table>
<thead>
<tr>
<th>Method/Property</th>
<th>Module/Class/Method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>conjugate()</td>
<td>sympy.combinatorics.partitions.IntegerPartition</td>
<td>446</td>
</tr>
<tr>
<td>conjugate()</td>
<td>sympy.core.expr.Expr</td>
<td>1012</td>
</tr>
<tr>
<td>conjugate()</td>
<td>sympy.matrices.common.MatrixCommon</td>
<td>1377</td>
</tr>
<tr>
<td>conjugate_gauss_beams()</td>
<td>sympy.physics.optics.gaussopt</td>
<td>1935</td>
</tr>
<tr>
<td>connected_components()</td>
<td>sympy.utilities.iterables</td>
<td>2142</td>
</tr>
<tr>
<td>connected_components()</td>
<td>sympy.matrices.matrices.MatrixBase</td>
<td>1333</td>
</tr>
<tr>
<td>connected_components_decomposition()</td>
<td>sympy.matrices.matrices.MatrixBase</td>
<td>1334</td>
</tr>
<tr>
<td>const()</td>
<td>sympy.polys.rings.PolyElement</td>
<td>820</td>
</tr>
<tr>
<td>construct_c()</td>
<td>sympy.solvers.ode.ode</td>
<td>817</td>
</tr>
<tr>
<td>construct_d()</td>
<td>sympy.solvers.ode.riccati</td>
<td>851</td>
</tr>
<tr>
<td>construct_domain()</td>
<td>ContinuousDomain</td>
<td>1174</td>
</tr>
<tr>
<td>construct_domain()</td>
<td>sympy.stats.crv</td>
<td>3065</td>
</tr>
<tr>
<td>contains()</td>
<td>sympy.combinatorics.perm_group</td>
<td>1258</td>
</tr>
<tr>
<td>contains()</td>
<td>sympy.geometry.line.Line</td>
<td>2304</td>
</tr>
<tr>
<td>contains()</td>
<td>sympy.geometry.line.LinearEntity</td>
<td>2294</td>
</tr>
<tr>
<td>contains()</td>
<td>sympy.geometry.line.Range</td>
<td>2306</td>
</tr>
<tr>
<td>contains()</td>
<td>sympy.geometry.line.Range</td>
<td>2309</td>
</tr>
<tr>
<td>contains()</td>
<td>sympy.poly.agca.ideal.ideal</td>
<td>2542</td>
</tr>
<tr>
<td>contains()</td>
<td>sympy.poly.agca.modules.Module</td>
<td>2533</td>
</tr>
<tr>
<td>contains()</td>
<td>sympy.polytools.GroebnerBasics</td>
<td>2499</td>
</tr>
<tr>
<td>contains()</td>
<td>sympy.series.order.Order</td>
<td>3170</td>
</tr>
</tbody>
</table>

For more information, please refer to the SymPy Documentation, Release 1.12.1.
cosh (class in sympy.functions.elementary.hyperbolic), sympy.physics.quantum.circuitplot), 461

cosine_transform() (in module sympy.integrals.transforms), 641

CosineTransform (class in sympy.integrals.transforms), 642

coskewness() (in module sympy.stats), 3052
cross() (in module sympy.physics.vector.dyadic.Dyadic method), 1715
cross() (in module sympy.physics.vector.vector.Vector method), 1690
cross() (in module sympy.vector.deloperator.Del method), 1507
cross() (in module sympy.vector.dyadic.Dyadic method), 1506
cross() (in module sympy.vector.Vector method), 1503
cross() (in module sympy.physics.quantum.spin), 1696
cross() (in module sympy.physics.vector.dyadic.Dyadic method), 1696

coth (class in sympy.functions.elementary.hyperbolic), 462
count() (sympy.core.basic.Basic method), 983
count() (sympy.core.basic.Basic method), 1105
count() (sympy.core.func)s, 983
count() (sympy.core.basic.Basic method), 1105
count() (sympy.core.basic.Basic method), 983
count() (sympy.core.func)s, 983
count() (sympy.core.basic.Basic method), 1105
count() (sympy.core.basic.Basic method), 983
count() (sympy.core.func)s, 983
count() (sympy.core.basic.Basic method), 1105
SymPy Documentation, Release 1.12.1

decompose() (sympy.physics.quantum.gate.SwapGate class in sympy.physics.quantum.gate), 1914
decompose() (sympy.polys.domains.domain.Domain class in sympy.polys.domains.domain), 2589
decompose() (sympy.physics.quantum.qft.IQFT decom() (sympy.polys.domains.ExpressionDomain method), 2199
decompose() (sympy.physics.quantum.qft.QFT decom() (sympy.polys.domains.FractionField method), 2629
decompose() (sympy.polys.polycalculates.DMP dens() (sympy.polys.domains.gaussiandomains.GaussianRationalField method), 2618
decompose() (sympy.polys.polytools.Poly dense() (sympy.polys.domains.GMPYRationalField method), 2612
decompose() (sympy.stats.DiscreteMarkovChain dense() (sympy.polys.domains.RationalField method), 2610
deduced() (sympy.codegen.ast.Variable class sympy.core.sorting, 1119

default_sort_key() (in module sympy.core.sorting), 1119
deflate() (sympy.polys.polycalculates.DMP DenseMatrix (class in sympy.matrices.dense), 1406
deflate() (sympy.polys.polytools.Poly density() (in module sympy.stats), 3047
ndeflection() (sympy.physics.continuum_mechanics.beam.Beam3D deprecated() (in module sympy.utilities.decorator), 2128
deflection() (sympy.physics.continuum_mechanics.beam.Beam3D depth() (sympy.polys.agca.ideals.Ideal meet (Basering), 3D12
degree (sympy.combinatorics.perm_groups.PermutationGroup Derived (class in sympy.core.function), 2053
degree() (in module sympy.polys.polytools), deriva_by_array() (in module sympy.tensor.array), 1437
degree() (sympy.polys.polycalculates.DMP derived_series() (sympy.combinatorics.perm_groups.PermutationGroup method), 361
degree() (sympy.polys.polytools.Poly derived_subgroup() (sympy.combinatorics.perm_groups.PermutationGroup method), 361
degree() (sympy.polys.rings.PolyElement derivative (in module sympy.core.function), 360
degree_list() (in module sympy.polys.polytools), 2435
degree_list() (sympy.polys.polycalculates.DMP derivative_series() (sympy.combinatorics.perm_groups.PermutationGroup method), 361
degree_list() (sympy.polys.polycalculates.DMP derivative_subgroup() (sympy.combinatorics.perm_groups.PermutationGroup method), 361
degrees() (sympy.polys.rings.PolyElement derive_by_array() (in module sympy.tensor.array), 1437
del (class in sympy.vector.deloperator), 1507
delete_doubles() (sympy.linalgoperators.weyl_group.WeylGroup method), 2413
delta (sympy.functions.special.hyper.meijerg deviation() (in module sympy.physics.optics.utils), 1953
deltaintegrate() (in module sympy.integrals.deltafunctions), 649
den (sympy.physics.control.lti.TransferFunction df() (in module sympy.crypto.crypto), 2879
den() (sympy.polys.domains.AlgebraicField dh_private_key() (in module sympy.crypto.crypto), 2879
det() (sympy.matrices.matrices.MatrixDeterminant dh_public_key() (in module sympy.crypto.crypto), 2879
det() (sympy.polys.matrices.ddm.DDM dh_shared_key() (in module sympy.crypto.crypto), 2880
deh() (sympy.polys.domains.ring.Ring diag() (in module sympy.matrices.dense),
diop_DN() (in module sympy.solvers.diophantine.diophantine, method), 2288

diop_general_pythagorean() (in module sympy.solvers.diophantine.diophantine, DirectProduct() (in module sympy.combinatorics.group_constructs), 2331

diop_general_sum_of_even_powers() (in module DirectSumHilbertSpace (class in sympy.solvers.diophantine.diophantine), sympy.physics.quantum.hilbert, 573

diop_general_sum_of_squares() (in module dirichlet_eta (class in sympy.functions.special.zeta_functions), 2331

diop_linear() (in module discard_before() (sympy.polys.numberfields.modules.Submodule, method), 2811

diop_quadratic() (in module sympy.ntheory.residue_ntheory), 1567

diop_solve() (in module sympy.solvers.diophantine.diophantine) DiscreteUniform() (in module sympy.stats), 2959

diop_ternary_quadratic() (in module discriminant() (sympy.polys.domains.AlgebraicField method), 2440

diop_ternary_quadratic_normal() (in module discriminant() (sympy.polys.polycalsses.DMP method), 2644

diophantine() (in module sympy.solvers.diophantine.diophantine) DisjointUnion (class in sympy.sets.sets), 1245

DiophantineEquationType (class in dispersion() (in module sympy.solvers.diophantine.diophantine), sympy.polys.dispersion), 2527

DiophantineSolutionSet (class in dispersion() (sympy.polys.polytools.Poly method), 2462

discrete_log() (in module sympy.solvers.diophantine.diophantine), method), 2623

discrete_log() (sympy.polys.polyclasses.DMP method), 2644

discriminant() (sympy.polys.domains.AlgebraicField method), 2440

discriminant() (sympy.polys.domains.AlgebraicField method), 2462

discriminant() (sympy.polys.polytools.Poly method), 2464

DiracDelta (class in dispersionset() (sympy.polys.polytools.Poly sympy.functions.special.delta_functions), method), 2464

Index
Index 3179

SymPy Documentation, Release 1.12.1

dmp_qq_heu_gcd() (in module sympy.polys.euclitools), 2715
dmp_zero_p() (in module sympy.polys.densebasic), 2657
dmp_quo() (in module sympy.polys.densearith), 2673
dmp_zeros() (in module sympy.polys.densebasic), 2659
dmp_quo_ground() (in module sympy.polys.densearith), 2673
dmp_zz_collins_resultant() (in module sympy.polys.euclitools), 2712
dmp_raise() (in module sympy.polys.densebasic), 2662
dmp_zz_diophantine() (in module sympy.polys.factoritools), 2720
dmp_rem() (in module sympy.polys.densearith), 2672
dmp_zz_factor() (in module sympy.polys.factoritools), 2720
dmp_resultant() (in module sympy.polys.euclitools), 2713
dmp_zz_heu_gcd() (in module sympy.polys.euclitools), 2714
dmp_revert() (in module sympy.polys.densetools), 2683
dmp_zz_modular_resultant() (in module sympy.polys.euclitools), 2712
dmp_rr_div() (in module sympy.polys.densearith), 2671
dmp_zz_wang() (in module sympy.polys.factoritools), 2720
dmp_rr_prs_gcd() (in module sympy.polys.euclitools), 2713
dmp_zz_wang_hensel_lifting() (in module sympy.polys.factoritools), 2720
dmp_slice() (in module sympy.polys.densebasic), 2665
dmp_zz_wang_lead_coeffs() (in module sympy.polys.factoritools), 2720
dmp_sqrt() (in module sympy.polys.densearith), 2670
dmp_zz_wang_non_divisors() (in module sympy.polys.factoritools), 2720
dmp_sub() (in module sympy.polys.densearith), 2699
dmp_zz_wang_test_points() (in module sympy.polys.factoritools), 2720
dmp_sub_ground() (in module sympy.polys.densearith), 2666
Do (class in sympy.core.function), 1194
dmp_sub_mul() (in module sympy.polys.densearith), 2666
d_sub() (in module sympy.series.gruntz.SubsSet method), 684
doctest() (in module sympy.testing.runtests), 2102
doctest_depends_on() (in module sympy.utilities.decorator), 2129
doit() (in module sympy.core.basic.Basic method), 983
doit() (in module sympy.functions.elementary.piecewise.Piecewise method), 474
doit() (in module sympy.integrals.integrals.Integral method), 662
doit() (in module sympy.integrals.transforms.IndicatorTransform method), 645
doit() (in module sympy.integrals.transforms.InverseLaplaceTransform method), 638
doit() (in module sympy.integrals.transforms.LaplaceTransform method), 637
doit() (in module sympy.physics.control.lti.Feedback method), 1980
doit() (in module sympy.physics.control.lti.MIMOFeedback method), 2001
doit() (in module sympy.physics.control.lti.MIMOParallel method), 1998
doit() (in module sympy.physics.control.lti.MIMOSeries method), 1996
doit() (in module sympy.physics.control.lti.Parallel method), 1976
doit() (sympy.physics.control.lti.Series method), 1973
doit() (sympy.physics.quantum.anticommutator method), 1861
doit() (sympy.physics.quantum.commutator method), 1865
doit() (sympy.physics.secondquant.Commutator method), 1592
doit() (sympy.physics.secondquant.NO method), 1603
doit() (sympy.physics.vector.dyadic.Dyadic method), 1696
doit() (sympy.physics.vector.vector.Vector method), 1692
doit() (sympy.series.limits.Limit method), 680
doit_numerically() (sympy.core.function.Derivative method), 1094
domain (class in sympy.polys.domains.domain), 2584
domain (sympy.categories.CompositeMorphism property), 2830
domain (sympy.categories.Morphism property), 2827
domain (sympy.polys.polytools.Poly property), 2466
domain_check() (in module sympy.solvers.solveset), 916
domainElement (class in sympy.polys.domains.domainelement), 2599
domainError (class in sympy.polys.polyerrors), 2726
domainMatrix (class in sympy.polys.matrices.domainmatrix), 2753
dominant() (in module sympy.series.limitseq), 718
doprint() (sympy.printing.aesaracode.AesaraPrinter method), 2241
doprint() (sympy.printing.codeprinter.CodePrinter method), 2258
doprint() (sympy.printing.mathml.MathMLPrinter method), 2250
doprint() (sympy.printing.printer.Printer method), 2212
dot() (in module sympy.physics.vector.functions), 1714
dot() (sympy.geometry.point.Point method), 2279
dot() (sympy.matrices.matrices.MatrixBase method), 1336
dot() (sympy.physics.vector.dyadic.Dyadic method), 1696
dot() (sympy.physics.vector.vector.Vector method), 1503
dot() (sympy.physics.quantum.anticommutator method), 1861
dot() (sympy.physics.quantum.commutator method), 1865
dot() (sympy.physics.secondquant.Commutator method), 1592
dot() (sympy.physics.secondquant.NO method), 1603
dot() (sympy.physics.vector.dyadic.Dyadic method), 1696
dot() (sympy.physics.vector.vector.Vector method), 1692
dot() (sympy.physics.vector.deloperator.Del method), 1507
dot() (sympy.physics.quantum.commutator method), 1603
dot() (sympy.physics.secondquant.NO method), 1603

dot() (sympy.physics.secondquant.NO method), 1603
E_nl_dirac() (in module sympy.physics.hydrogen), 1579
EC() (sympy.polys.polytools.Poly method), elements (sympy.combinatorics.perm_groups.PermutationGroup property), 362
eccentricity (sympy.geometry.ellipse.Ellipse property), 2332
echelon_form() (sympy.matrices.matrices.MatrixReductions method), 1275
ecm() (in module sympy.ntheory.ecm), 1576
edges (sympy.combinatorics.polyhedron.Polyhedron property), 388
edges() (sympy.combinatorics.prufer.Prufer static method), 391
egyptian_fraction() (in module sympy.ntheory.egyptian_fraction), 1574
Ei (class in sympy.functions.special.error_functions), 540
eigenvals() (sympy.matrices.matrices.MatrixEigenvectors (class in sympy.functions.special.elliptic_integrals), 583
Eijk() (in module sympy.functions.special.tensor_functions), 606
eject() (sympy.polys.polynomials.DMP method), 2454
electron() (sympy.polys.polytools.Polymethod), 2466
elastic_modulus (sympy.physics.continuum_mechanics.beam.Beam property), 2030
elem_poles() (sympy.physics.control.lti.TransferFunctionMatrix method), 1990
elem_zeros() (sympy.physics.control.lti.TransferFunctionMatrix method), 1991
Element (class in sympy.codegen.ast), 1174
encipher_affine() (sympy.crypto.crypto, 2850
encipher_atbash() (sympy.crypto.crypto), 2851
encipher_bifid() (in module sympy.crypto.crypto), 2858
encipher_bifid5() (in module sympy.crypto.crypto), 2860
encipher_bifid6() (in module sympy.crypto.crypto), 2862
encipher_elgamal() (in module sympy.crypto.crypto), 2877
encipher_grp() (in module sympy.crypto.crypto), 2882
encipher_hill() (in module sympy.crypto.crypto), 2856
encipher_kid_rsa() (in module sympy.crypto.crypto), 2872
expand() (in module sympy.core.function), 1099
expand() (sympy.core.expr.Expr method), 1013
expand() (sympy.matrices.common.MatrixCompanion method), 1379
expand() (sympy.physics.control.lti.TransferFunction method), 1697
expand() (sympy.physics.control.lti.TransferFunctionMatrix method), 1692
expand_complex() (in module sympy.core.function), 1108
expand_func() (in module sympy.core.function), 1107
expand_log() (in module sympy.core.function), 1107
expand_mul() (in module sympy.core.function), 1107
expand_multinomial() (in module sympy.core.function), 1108
expand_power_base() (in module sympy.core.function), 1109
expand_power_exp() (in module sympy.core.function), 1108
expand_trig() (in module sympy.core.function), 1107
Expectation (class in sympy.stats), 3045
expectation() (sympy.stats.BernoulliProcess method), 3038
ExpectationMatrix (class in sympy.stats), 3062
expint (class in sympy.functions.special.error_functions), 541
expm1 (class in sympy.codegen.cfunctions), 1189
Exponential() (in module sympy.stats), 2984
Expr, 236
Expr (class in sympy.core.expr), 999
expr (sympy.core.function.Lambda property), 1087
expr (sympy.core.function.Subs property), 1099
expr (sympy.functions.elementary.piecewise.ExprCondPair.property), 472
expr (sympy.physics.quantum.operator.DifferentialOperator.property), 1876
expr (sympy.physics.quantum.state.Wavefunction.property), 1907
expr_free_symbols (sympy.core.expr.Expr property), 1013
expr_to_holonomic() (in module sympy.functions.elementary.piecewise), 2398
Expression, 236
Expression Tree, 236
ExpressionDomain (class in sympy.polys.domains), 2630
ExpressionDomain.Expression (class in sympy.polys.domains), 2630
ExpressionDomain.Expression (class in sympy.polys.domains.expressiondomain), 2631
ExprWithIntLimits (class in sympy.concrete.expr_with_intlimits), 963
ExprWithLimits (class in sympy.concrete.expr_with_limits), 665
exquo() (in module sympy.polys.polytools), 2438
exquo() (sympy.polys.domains.domain.Domain method), 2591
exquo() (sympy.polys.domains.field.Field method), 2600
exquo() (sympy.polys.domains.GMPYRationalField method), 2612
exquo() (sympy.polys.domains.RationalField method), 2610
exquo() (sympy.polys.domains.ring.Ring method), 2601
exquo() (sympy.polys.polycrals.DMF method), 2649
exquo() (sympy.polys.polycrals.DMP method), 2645
exquo() (sympy.polys.polytools.Polymethod), 2467
exquo() (sympy.polys.polytools.Poly method), 2467
exquo() (sympy.polys.polytools.Polymethod), 2465
exquo() (sympy.polys.polytools.Polymethod), 2468
exquo() (sympy.geometry.polygon.Triangle property), 2372
ext (sympy.polys.domains.AlgebraicField attribute), 2623
extend() (sympy.ntheory.generate.Sieve method), 1522
extend() (sympy.physics.units.unitsystem.UnitSystem method), 1634
extend() (sympy.plotting.plot.Plot method), 2907
extend_to_no() (sympy.ntheory.generate.Sieve factor() (in module sympy.polys.polytools), 2447
extended_negative, 977
extended_nonnegative, 977
extended_nonpositive, 977
extended_nonzero, 977
extended_positive, 977
extended_real, 976
ExtendedPredicate (class in sympy.assumptions.predicates.sets), 283
ExtensionElement (class in sympy.polys.agca.extensions), 2556
Extent (class in sympy.codegen.fnodes), 1194
exterior_angle (sympy.geometry.polygon.RegularPolygon property), 2364
extract() (sympy.matrices.common.MatrixCommon method), 1380
extract_additively() (sympy.core.expr.Expr method), 1014
extract_branch_factor() (sympy.core.expr.Expr method), 1014
extract_fundamental_discriminant() (in module sympy.polys.numberfields.utilities), 2822
extract_leading_order() (sympy.core.add.Add method), 1065
extract_multiplicatively() (sympy.core.expr.Expr method), 1015
extract_type_tens() (in module sympy.physics.hep.gamma_matrices), 2556
ExtraneousFactors (class in sympy.polys.polyerrors), 2725
eye() (in module sympy.matrices.dense), 1360
eye() (sympy.matrices.common.MatrixCommon class method), 1381
eye() (sympy.polys.matrices.domainmatrix.DomainMatrix class method), 2756
eye() (sympy.polys.matrices.sdm.SDM class method), 2776
F
F (in module sympy.physics.secondquant), 1595
F2PyCodeWrapper (class in sympy.utilities.autowrap), 2111
faces (sympy.combinatorics.polyhedron.Polyhedron property), 389
factor() (sympy.core.exp.Expr method), 1015
factor_list() (in module sympy.polys.polytools), 2447
factor_list() (sympy.polys.polyclasses.DMP method), 2645
factor_list() (sympy.polys.polytools.Poly method), 2468
factor_list_include() (sympy.polys.polyclasses.DMP method), 2645
Factorable (class in sympy.solvers.ode.single), 822
factorial (class in sympy.functions.combinatorial.factorials), 490
factorial() (sympy.polys.domains.FractionField method), 2629
factorial() (sympy.polys.domains.GMPYIntegerRing method), 2608
factorial() (sympy.polys.domains.GMPYRationalField method), 2612
factorial2 (class in sympy.functions.combinatorial.factorials), 492
factorial_moment() (in module sympy.stats), 3057
factorial_notation() (in module sympy.parsing.sympy_parser), 2202
factorizing_visitor() (in module sympy.utilities.enumerative), 2132
factorinit() (in module sympy.ntheory.factor_), 1539
factorrat() (in module sympy.ntheory.factor_), 1541
factors() (sympy.core.numbers.Rational method), 1038
failed (sympy.testing.runtests.SymPyTestResults attribute), 2102
FallingFactorial (class in sympy.functions.combinatorial.factorials), 3186
FirstLinear (class in symy.solvers.ode.ode_results), 827
FisherZ() (in module symy.stats), 2986
fixed_row_vector() (symy.stats.DiscreteMarkovChain method), 3034
FixedBosonicBasis (class in symy.physics.secondquant), 1595
FKet (in module symy.physics.secondquant), 1595
FlagError (class in symy.polys.polyerrors), 2726
FlatMirror (class in symy.physics.optics.elliptical), 1930
FlatRefraction (class in symy.physics.optics.elliptical), 1930
flaten() (in module symy.utilities.iterables), 2144
flaten() (symy.categories.CompositeMorphism method), 2830
flaten() (symy.core.add.Add class method), 1065
flaten() (symy.core.mul.Mul class method), 1060
Float (class in symy.core.numbers), 1033
FloatBaseType (class in symy.codegen.ast), 1175
FloateType (class in symy.codegen.ast), 1175
floor (class in symy.functions.elementary.integers), 467
fma (class in symy.codegen.cfunctions), 1189
foci (symy.geometry.ellipse.Ellipse property), 2334
FockSpace (class in symy.physics.quantum.hilbert), 1872
FockState (class in symy.physics.secondquant), 1596
FockStateBosonBra (class in symy.physics.secondquant), 1596
FockStateBosonKet (class in symy.physics.secondquant), 1597
FockStateBra (class in symy.physics.secondquant), 1597
FockStateFermionBra (class in symy.physics.secondquant), 1597
FockStateFermionKet (class in symy.physics.secondquant), 1597
FockStateKet (class in symy.physics.secondquant), 1598
focus_distance (symy.geometry.ellipse.Ellipse property), 2334
For (class in symy.codegen.ast), 1176
forcing (symy.physics.mechanics.joints.jointsMethod.jointsMethod method), 1850
forcing (symy.physics.mechanics.kane.KanesMethod property), 1850
forcing (symy.physics.mechanics.lagrange.LagrangesMethod property), 1812
forcing (symy.physics.mechanics.lagrange.LagrangesMethod property), 1812
forcing (symy.physics.mechanics.lagrange.LagrangesMethod property), 1812
forcing (symy.physics.mechanics.lagrange.LagrangesMethod property), 1812
form_eoms() (symy.physics.mechanics.joints.jointsMethod.jointsMethod method), 1851
form_lagranges_equations() (symy.physics.mechanics.lagrange.LagrangesMethod method), 1816
FormalPowerSeries (class in symy.series.formal), 705
FormalPowerSeriesComposition (class in symy.series.formal), 711
FormalPowerSeriesInverse (class in symy.series.formal), 711
FormalPowerSeriesProduct (class in symy.series.formal), 711
FortranReturn (class in symy.codegen.fnodes), 1194
four_group() (in module sympy.combinatorics.galois), 411
fourier_series() (in module sympy.series.fourier), 701
fourier_series() (symy.core.expr.Expr method), 1015
fourier_transform() (in module sympy.integrals.transforms), 638
FourierSeries (class in symy.series.fourier), 698
FourierTransform (class in sympy.integrals.transforms), 639
fps() (in module symy.series.formal), 708
fps() (symy.core.expr.Expr method), 1015
frac (class in symy.functions.elementary.integers), 467
frac_field() (symy.polys.domains.domain.Domain method), 2592
frac_unify() (symy.polys.polyclasses.DMF method), 2649
FracElement (class in symy.polys.fields),
from ExpressionDomain()
 (sympy.polys.domains.domain.Domain method), 2592
from ExpressionDomain()
 (sympy.polys.domains.ExpressionDomain method), 2630
from ExpressionRawDomain()
 (sympy.polys.domains.domain.Domain method), 2593
from FF()
 (sympy.polys.domains.domain.Domain method), 2593
from FF()
 (sympy.polys.domains.FractionField method), 2604
from FF()
 (sympy.polys.domains.IntegerRing method), 2606
from FF_gmpy()
 (sympy.polys.domains.domain.Domain method), 2593
from FF_gmpy()
 (sympy.polys.domains.FiniteField method), 2604
from FF_gmpy()
 (sympy.polys.domains.GMPYIntegerRing method), 2608
from FF_gmpy()
 (sympy.polys.domains.IntegerRing method), 2606
from FractionField()
 (sympy.polys.domains.domain.Domain method), 2593
from FractionField()
 (sympy.polys.domains.ExpressionDomain method), 2630
from FractionField()
 (sympy.polys.domains.FractionField method), 2629
from FractionField()
 (sympy.polys.domains.PolynomialRing method), 2627
from GaussianIntegerRing()
 (sympy.polys.domainsANNEL.field.GaussianIntegerRing method), 2623
from GaussianIntegerRing()
 (sympy.polys.domains.gaussiandomains.GaussianIntegerRing method), 2616
from GaussianIntegerRing()
 (sympy.polys.domains.gaussiandomains.GaussianRationalField method), 2618
from GaussianIntegerRing()
 (sympy.polys.domains.PolynomialRing method), 2628
from GaussianRationalField()
 (sympy.polys.domains.gaussiandomains.GaussianIntegerRing method), 2616
from GaussianRationalField()
 (sympy.polys.domains.gaussiandomains.GaussianRationalField method), 2618
from GaussianRationalField()
 (sympy.polys.domains.PolynomialRing method), 2628
from GlobalPolynomialRing()
 (sympy.polys.domains.domain.Domain method), 2593
from GlobalPolynomialRing()
 (sympy.polys.domains.ExpressionDomain method), 2630
from GlobalPolynomialRing()
 (sympy.matrices.expressions.MatrixExpr static method), 1416
from hyper() (in module sympy.holonomic.holonomic), 2397
from int_list() (sympy.polys.numberfields.modules.ModuleElement class method), 2831
from inverted_vector() (sympy.combinatorics.permutations.Permutation class method), 322
from list() (sympy.polys.matrices.sdm.SDM class method), 2777
from list() (sympy.polys.polyclasses.DMP class method), 2645
from list() (sympy.polytools.Poly class method), 2659
from RealField()
from RationalField
from IntegerRing
from PolynomialRing
from FractionField
from DomainMatrix
from GaussianDomain
from AlgebraicField
from Domain
from ExpressionDomain
from GMPYIntegerRing
from GMPYRationalField
from GMPYRationalField
from FractionField
from FiniteField
from ExpressionDomain
from domain
from AlgebraicField
from FractionField
from ZZ_gmpy()
from ZZ_python()
from ZZ_python()
from ZZ_python()
from ZZ_python()
from ZZ_python()
SymPy Documentation, Release 1.12.1

get_indices() (in module sympy.tensor.index_methods), 1455
get_indices() (sympy.tensor.tensor.TensMul method), 1466
get_interface() (sympy.utilities.codegen.FCodeGen method), 2121
get_matrix() (sympy.tensor.tensor.TensExpr method), 1461
get_mod_func() (in module sympy.utilities.source), 2189
get_modulus() (sympy.polys.polytools.Poly method), 2471
get_motion_params() (in module sympy.physics.vector.functions), 1707
get_num_denom() (in module sympy.polys.numberfields.utilities), 2822
get_period() (sympy.functions.special.hyper.meijerg method), 582
get_permuted() (sympy.physics.secondquant.PermutationOperator method), 1605
get_points() (sympy.plotting.plot.LineOver1DRangeSeries method), 2950
get_points() (sympy.plotting.plot.Parametric2DLineSeries method), 2950
get_positional_distance() (sympy.combinatorics.permutations.Permutation method), 324
get_precedence_distance() (sympy.combinatorics.permutations.Permutation method), 325
get_precedence_matrix() (sympy.combinatorics.permutations.Permutation method), 325
get_prototype() (sympy.utilities.codegen.CCodeGen method), 2119
get_prototype() (sympy.utilities.codegen.RustCodeGen method), 2124
get_resource() (in module sympy.utilities.pkgdata), 2188
get_ring() (sympy.polys.domains.gaussiandomains.GaussianIntegerRing method), 2616
get_ring() (sympy.polys.domains.gaussiandomains.GaussianRationalField method), 2618
get_ring() (sympy.polys.domains.GMYPYRationalField method), 2612
get_ring() (sympy.polys.domains.RationalField method), 2611
get_ring() (sympy.polys.domains.RealField method), 2626
get_ring() (sympy.polys.domainsRING.Ring method), 2601
get_segments() (sympy.plotting.plot.MatplotlibBackend static method), 2952
get_subNO() (sympy.physics.secondquant.NO method), 1603
get_subset_from_bitstring() (sympy.combinatorics.graycode method), 407
get_symmetric_group_sgs() (in module sympy.combinatorics.tensor_can),
get_sym_dir() (in module sympy),
get_target_matrix() (sympy.physics.quantum.gate.Gate method), 1912
get_target_matrix() (sympy.physics.quantum.gate.UGate method), 1914
get_units_non_prefixed() (sympy.physics.units.unitsystem.UnitSystem method), 1634
getn() (sympy.core.expr.Expr method), 1016
get() (sympy.core.exp.Expr method), 1016
gf_add() (in module sympy.polys.galoistools), 2689
gf_add_ground() (in module sympy.polys.galoistools), 2688
gf_add_mul() (in module sympy.polys.galoistools), 2690
sympy.galois.galoistools), 2700
sympy.galois.galoistools), 2694
sympy.polys.galoistools), 2696
<table>
<thead>
<tr>
<th>Function</th>
<th>Module</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>gf_csolve()</td>
<td>sympy.polys.galoistools</td>
<td>2685</td>
</tr>
<tr>
<td>gf_degree()</td>
<td>sympy.polys.galoistools</td>
<td>2685</td>
</tr>
<tr>
<td>gf_diff()</td>
<td>sympy.polys.galoistools</td>
<td>2695</td>
</tr>
<tr>
<td>gf_div()</td>
<td>sympy.polys.galoistools</td>
<td>2691</td>
</tr>
<tr>
<td>gf_eval()</td>
<td>sympy.polys.galoistools</td>
<td>2695</td>
</tr>
<tr>
<td>gf_expand()</td>
<td>sympy.polys.galoistools</td>
<td>2691</td>
</tr>
<tr>
<td>gf_exquo()</td>
<td>sympy.polys.galoistools</td>
<td>2691</td>
</tr>
<tr>
<td>gf_factor()</td>
<td>sympy.polys.galoistools</td>
<td>2692</td>
</tr>
<tr>
<td>gf_factor_sqf()</td>
<td>sympy.polys.galoistools</td>
<td>2701</td>
</tr>
<tr>
<td>gf_from_dict()</td>
<td>sympy.polys.galoistools</td>
<td>2687</td>
</tr>
<tr>
<td>gf_from_int_poly()</td>
<td>sympy.polys.galoistools</td>
<td>2687</td>
</tr>
<tr>
<td>gf_gcd()</td>
<td>sympy.polys.galoistools</td>
<td>2687</td>
</tr>
<tr>
<td>gf_gcdex()</td>
<td>sympy.polys.galoistools</td>
<td>2694</td>
</tr>
<tr>
<td>gf_int()</td>
<td>sympy.polys.galoistools</td>
<td>2694</td>
</tr>
<tr>
<td>gf_irreducible()</td>
<td>sympy.polys.galoistools</td>
<td>2685</td>
</tr>
<tr>
<td>gf_irreducible_p()</td>
<td>sympy.polys.galoistools</td>
<td>2697</td>
</tr>
<tr>
<td>gf_LC()</td>
<td>sympy.polys.galoistools</td>
<td>2686</td>
</tr>
<tr>
<td>gf_lcm()</td>
<td>sympy.polys.galoistools</td>
<td>2694</td>
</tr>
<tr>
<td>gf_lshift()</td>
<td>sympy.polys.galoistools</td>
<td>2692</td>
</tr>
<tr>
<td>gf_monic()</td>
<td>sympy.polys.galoistools</td>
<td>2695</td>
</tr>
<tr>
<td>gf_mul()</td>
<td>sympy.polys.galoistools</td>
<td>2690</td>
</tr>
<tr>
<td>gf_mul_ground()</td>
<td>sympy.polys.galoistools</td>
<td>2690</td>
</tr>
<tr>
<td>gf_multi_eval()</td>
<td>sympy.polys.galoistools</td>
<td>2696</td>
</tr>
<tr>
<td>gf_neg()</td>
<td>sympy.polys.galoistools</td>
<td>2688</td>
</tr>
<tr>
<td>gf_normal()</td>
<td>sympy.polys.galoistools</td>
<td>2688</td>
</tr>
<tr>
<td>gf_pow()</td>
<td>sympy.polys.galoistools</td>
<td>2693</td>
</tr>
<tr>
<td>gf_pow_mod()</td>
<td>sympy.polys.galoistools</td>
<td>2693</td>
</tr>
<tr>
<td>gf_Qbasis()</td>
<td>sympy.polys.galoistools</td>
<td>2693</td>
</tr>
<tr>
<td>gf_Qmatrix()</td>
<td>sympy.polys.galoistools</td>
<td>2699</td>
</tr>
<tr>
<td>gf_quo()</td>
<td>sympy.polys.galoistools</td>
<td>2692</td>
</tr>
<tr>
<td>gf_quo_ground()</td>
<td>sympy.polys.galoistools</td>
<td>2692</td>
</tr>
<tr>
<td>gf_random()</td>
<td>sympy.polys.galoistools</td>
<td>2689</td>
</tr>
<tr>
<td>gf_rem()</td>
<td>sympy.polys.galoistools</td>
<td>2691</td>
</tr>
<tr>
<td>gf_rshift()</td>
<td>sympy.polys.galoistools</td>
<td>2693</td>
</tr>
<tr>
<td>gf_shoup()</td>
<td>sympy.polys.galoistools</td>
<td>2700</td>
</tr>
<tr>
<td>gf_sqf_list()</td>
<td>sympy.polys.galoistools</td>
<td>2698</td>
</tr>
<tr>
<td>gf_sqf_part()</td>
<td>sympy.polys.galoistools</td>
<td>2698</td>
</tr>
<tr>
<td>gf_sqr()</td>
<td>sympy.polys.galoistools</td>
<td>2698</td>
</tr>
<tr>
<td>gf_sub()</td>
<td>sympy.polys.galoistools</td>
<td>2686</td>
</tr>
<tr>
<td>gf_sub_ground()</td>
<td>sympy.polys.galoistools</td>
<td>2689</td>
</tr>
<tr>
<td>gf_sub_mul()</td>
<td>sympy.polys.galoistools</td>
<td>2690</td>
</tr>
<tr>
<td>gf_TC()</td>
<td>sympy.polys.galoistools</td>
<td>2686</td>
</tr>
<tr>
<td>gf_to_dict()</td>
<td>sympy.polys.galoistools</td>
<td>2687</td>
</tr>
<tr>
<td>gf_to_int_poly()</td>
<td>sympy.polys.galoistools</td>
<td>2687</td>
</tr>
<tr>
<td>gf_trace_map()</td>
<td>sympy.polys.galoistools</td>
<td>2688</td>
</tr>
<tr>
<td>gf_trunc()</td>
<td>sympy.polys.galoistools</td>
<td>2696</td>
</tr>
<tr>
<td>gf_value()</td>
<td>sympy.polys.galoistools</td>
<td>2686</td>
</tr>
<tr>
<td>gf_zassenhaus()</td>
<td>sympy.polys.galoistools</td>
<td>2700</td>
</tr>
<tr>
<td>gff()</td>
<td>sympy.polys.polytools</td>
<td>2446</td>
</tr>
<tr>
<td>gff_list()</td>
<td>sympy.polys.polytools</td>
<td>2445</td>
</tr>
<tr>
<td>gff_list()</td>
<td>sympy.polys.polytools.DMP</td>
<td>2645</td>
</tr>
<tr>
<td>gff_list()</td>
<td>sympy.polys.polytools.Poly</td>
<td>3197</td>
</tr>
</tbody>
</table>
Index
invert() (sympy.polys.domains.domain.Dominmethod), 535
invert() (sympy.polys.agca.extensions.ExtensionElementmethod), 2594
invert() (sympy.polys.domains.ring.Ringmethod), 2556
invert() (sympy.series.formal.FormalPowerSeriesmethod), 2601
invert() (sympy.matrices.matrices.MatrixBase method), 2649
invert() (sympy.polycalsses.DMmethod), 1342
invert() (sympy.polycalsses.DMPmethod), 1342
invert() (sympy.polycalsses.DMFmethod), 2645
invert() (sympy.matrices.matrices.MatrixBase method), 2474
invert_comlex() (in module sympy.integrals.transforms), 642
invert_real() (in module sympy.integrals.transforms), 639
invert() (in module sympy.solvers.solve), 915
invert() (in module sympy.solvers.solve), 915
InvertiblePredicate (class in sympy.assumptions.predicates.matrices), method), 1342
IrRationalPredicate (class in sympy.assumptions.predicates.sets), method), 262
irregular() (sympy.matrices.matrices.MatrixBase class method), 1343
is_*, 237
is_abelian (sympy.combinatorics.perm_groups.Permutation), method), 1342
is_abelian_number() (in module sympy.combinatorics.group_numbers), method), 415
is_above_fermi (sympy.functions.special.tensor_functions.KroneckerDelta property), 609
is_above_fermi (sympy.physics.secondquant.KroneckerDelta property), 1600
is_abundant() (in module sympy.core.numbers.AlgebraicNumber property), 1043
is_algebraic_expr() (sympy.core.expr.Expr method), 1016
is_aliased (sympy.core.numbers.AlgebraicNumber property), 1043
is_abelian (sympy.combinatorics.perm_groups.Permutation), method), 365
is_above_fermi (sympy.functions.special.tensor_functions.KroneckerDelta property), 609
is_abundant() (in module sympy.core.numbers.AlgebraicNumber property), 1043
is_abelian (sympy.combinatorics.perm_groups.Permutation), method), 365
is_above_fermi (sympy.functions.special.tensor_functions.KroneckerDelta property), 609
is_abundant() (in module sympy.core.numbers.AlgebraicNumber property), 1043

<table>
<thead>
<tr>
<th>Method</th>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>is_positive_definite</code></td>
<td><code>sympy.matrices.matrices.MatrixEigen</code></td>
</tr>
<tr>
<td><code>is_positive_semidefinite</code></td>
<td><code>sympy.matrices.matrices.MatrixEigen</code></td>
</tr>
<tr>
<td><code>is_prefix</code></td>
<td><code>sympy.physics.units.quantities.Quantity</code></td>
</tr>
<tr>
<td><code>is_primary</code></td>
<td><code>sympy.polys.agca.ideals.Ideal</code></td>
</tr>
<tr>
<td><code>is_prime</code></td>
<td><code>sympy.polys.agca.ideals.Ideal</code></td>
</tr>
<tr>
<td><code>is_primitive</code></td>
<td><code>sympy.polys.polyclasses.DMP</code></td>
</tr>
<tr>
<td><code>is_primitive</code></td>
<td><code>sympy.polys.polytools.Poly</code></td>
</tr>
<tr>
<td><code>is_primitive</code></td>
<td><code>sympy.combinatorics.perm_groups.PermutationGroup</code></td>
</tr>
<tr>
<td><code>is_principal</code></td>
<td><code>sympy.polys.agca.ideals.Ideal</code></td>
</tr>
<tr>
<td><code>is_proper</code></td>
<td><code>sympy.physics.control.lti.Parallel</code></td>
</tr>
<tr>
<td><code>is_proper</code></td>
<td><code>sympy.physics.control.lti.Series</code></td>
</tr>
<tr>
<td><code>is_proper</code></td>
<td><code>sympy.physics.control.lti.TransferFunction</code></td>
</tr>
<tr>
<td><code>is_proper_subset</code></td>
<td><code>sympy.sets.sets.Set</code></td>
</tr>
<tr>
<td><code>is_proper_superset</code></td>
<td><code>sympy.sets.sets.Set</code></td>
</tr>
<tr>
<td><code>is_pure</code></td>
<td><code>sympy.algebras.Quaternion</code></td>
</tr>
<tr>
<td><code>is_q_annihilator</code></td>
<td><code>sympy.physics.secondquant.AnnihilateFermion</code></td>
</tr>
<tr>
<td><code>is_q_annihilator</code></td>
<td><code>sympy.physics.secondquant.CreateFermion</code></td>
</tr>
<tr>
<td><code>is_q_creator</code></td>
<td><code>sympy.physics.secondquant.AnnihilateFermion</code></td>
</tr>
<tr>
<td><code>is_q_creator</code></td>
<td><code>sympy.physics.secondquant.CreateFermion</code></td>
</tr>
<tr>
<td><code>is_quad_residue</code></td>
<td><code>sympy.ntheory.residue_ntheory</code></td>
</tr>
<tr>
<td><code>is_quadratic</code></td>
<td><code>sympy.polys.polyclasses.DMP</code></td>
</tr>
<tr>
<td><code>is_quad_residue</code></td>
<td><code>sympy.polys.polytools.Poly</code></td>
</tr>
<tr>
<td><code>is_radical</code></td>
<td><code>sympy.polys.agca.ideals.Ideal</code></td>
</tr>
<tr>
<td><code>is_rational</code></td>
<td><code>sympy.polys.numberfields.modules.PowerBasisElement</code></td>
</tr>
<tr>
<td><code>is_reduced</code></td>
<td><code>sympy.polys.groebnertools</code></td>
</tr>
<tr>
<td><code>is_right</code></td>
<td><code>sympy.geometry.polygon.Triangle</code></td>
</tr>
<tr>
<td><code>is_right_unbounded</code></td>
<td><code>sympy.sets.sets.Interval</code></td>
</tr>
<tr>
<td><code>is_rational</code></td>
<td><code>sympy.polys.numberfields.modules.PowerBasisElement</code></td>
</tr>
<tr>
<td><code>is_reduced</code></td>
<td><code>sympy.polys.groebnertools</code></td>
</tr>
<tr>
<td><code>is_right</code></td>
<td><code>sympy.geometry.polygon.Triangle</code></td>
</tr>
<tr>
<td><code>is_scalar_multiple</code></td>
<td><code>sympy.geometry.point.Point</code></td>
</tr>
<tr>
<td><code>is_sequence</code></td>
<td><code>sympy.utilities.iterables</code></td>
</tr>
<tr>
<td><code>is_similar</code></td>
<td><code>sympy.geometry.polygon.Triangle</code></td>
</tr>
<tr>
<td><code>is_similar</code></td>
<td><code>sympy.geometry.polygon.Triangle</code></td>
</tr>
<tr>
<td><code>is_similar</code></td>
<td><code>sympy.geometry.polygon.Triangle</code></td>
</tr>
<tr>
<td><code>is_simple</code></td>
<td><code>sympy.functions.special.delta_functions.DiracDelta</code></td>
</tr>
<tr>
<td><code>is_solenoidal</code></td>
<td><code>sympy.physics.vector.fieldfunctions</code></td>
</tr>
<tr>
<td><code>is_solenoidal</code></td>
<td><code>sympy.physics.vector.fieldfunctions</code></td>
</tr>
<tr>
<td><code>is_solvable</code></td>
<td><code>sympy.combinatorics.perm_groups.PermutationGroup</code></td>
</tr>
<tr>
<td><code>is_sqf</code></td>
<td><code>sympy.polys.polyclasses.DMP</code></td>
</tr>
<tr>
<td><code>is_sqf</code></td>
<td><code>sympy.polys.polytools.Poly</code></td>
</tr>
<tr>
<td><code>is_square</code></td>
<td><code>sympy.ntheory.primefactors</code></td>
</tr>
<tr>
<td><code>is_square</code></td>
<td><code>sympy.ntheory.primefactors</code></td>
</tr>
</tbody>
</table>
JuliaCodeGen (class in sympy.utilities.codegen), 2121
JuliaCodePrinter (class in sympy.printing.julia), 2233
JxBra (class in sympy.physics.quantum.spin), 1889
JxBraCoupled (class in sympy.physics.quantum.spin), 1889
JxKet (class in sympy.physics.quantum.spin), 1889
JxKetCoupled (class in sympy.physics.quantum.spin), 1889
JyBra (class in sympy.physics.quantum.spin), 1889
JyBraCoupled (class in sympy.physics.quantum.spin), 1889
JyKet (class in sympy.physics.quantum.spin), 1890
JyKetCoupled (class in sympy.physics.quantum.spin), 1890
JzBra (class in sympy.physics.quantum.spin), 1890
JzBraCoupled (class in sympy.physics.quantum.spin), 1890
JzKet (class in sympy.physics.quantum.spin), 1890
JzKetCoupled (class in sympy.physics.quantum.spin), 1890
JzOp (class in sympy.physics.quantum.spin), 1894

K
kahane_simplify() (in module sympy.physics.hep.gamma_matrices), 1638
kanes_equations() (sympy.physics.mechanics.kane.KanesMethod method), 1812
KanesMethod (class in sympy.physics.mechanics.kane), 1810
kbins() (in module sympy.utilities.iterables), 2151
kdes (sympy.physics.mechanics.joint.Joint property), 1820
kdes (sympy.physics.mechanics.joints method, 1851)
kernl() (sympy.polys.agca.homomorphisms.ModuleHomomorphism method), 2553
kernl() (sympy.polys.numberfields.modules.ModuleHomomorphism method), 2817
Ket (class in sympy.physics.quantum.state), 1902
ket (sympy.physics.quantum.operator.OuterProduct property), 1881
ket (sympy.physics.secondquant.InnerProduct property), 1598
KetBase (class in sympy.physics.quantum.state), 1903
key2bounds() (sympy.matrices.matrices.MatrixBase method), 1343
key2ij() (sympy.matrices.matrices.MatrixBase method), 1343
keys() (sympy.core.containers.Dict method), 1116
kid_rsa_private_key() (in module sympy.crypto.crypto, 2871
kid_rsa_public_key() (in module sympy.crypto.crypto), 2871
killable_index (sympy.functions.special.tensor_functions.KroneckerDelta property), 610
killable_index (sympy.physics.secondquant.KroneckerDelta property), 1601
kin _explicit_rhs (sympy.physics.mechanics.system.SymbolicSystem method), 1856
Kind, 238
kind (class in sympy.codegen.fnodes), 1198
Kind (class in sympy.core.kind), 1118
kind (sympy.core.containers.Tuple property), 1114
kind (sympy.sets.sets.Set property), 1234
kindiffdict() (sympy.physics.mechanics.kane.KanesMethod method), 1813
kinematic_equations() (in module sympy.physics.vector.functions), 1708
kinetic_ene (sympy.physics.mechanics.functions), 1800
kinetic_ene (sympy.physics.mechanics.body.Body method), 1808
kinetic_ene (sympy.physics.mechanics.particle.Particle method), 1791
kinetic_ene (sympy.physics.mechanics.rigidbody.Rigidbody method), 1795
known_fcn (in module sympy.printing.julia), 2232
known_fcn (in module sympy.printing.octave), 2235
known_fcn (in module sympy.printing.jscode), 2230
known_fcn (in module sympy.printing.mathematica), 2227
<table>
<thead>
<tr>
<th>Function/Class</th>
<th>Module/Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>known_functions</td>
<td>sympy.printing.rcode</td>
<td>2217</td>
</tr>
<tr>
<td>known_functions</td>
<td>sympy.printing.rust</td>
<td>2239</td>
</tr>
<tr>
<td>known_functions_C99</td>
<td>sympy.printing.c</td>
<td>2213</td>
</tr>
<tr>
<td>known_functions_C99</td>
<td>sympy.printing.c</td>
<td>2213</td>
</tr>
<tr>
<td>KroneckerDelta</td>
<td>sympy.functions.special.tensor_functions</td>
<td>607</td>
</tr>
<tr>
<td>KroneckerDelta</td>
<td>sympy.physics.secondquant</td>
<td>1598</td>
</tr>
<tr>
<td>kroneckersimp()</td>
<td>sympy.simplify.simplify</td>
<td>723</td>
</tr>
<tr>
<td>ksubsets()</td>
<td>sympy.combinatorics.subsets</td>
<td>402</td>
</tr>
<tr>
<td>Kumaraswamy()</td>
<td>sympy.stats</td>
<td>2992</td>
</tr>
<tr>
<td>kurtosis()</td>
<td>sympy.stats</td>
<td>3058</td>
</tr>
<tr>
<td>kwargs()</td>
<td>sympy.codegen.ast.Token</td>
<td>1181</td>
</tr>
<tr>
<td>l1_norm()</td>
<td>sympy.polys.polyclasses.DMP</td>
<td>2646</td>
</tr>
<tr>
<td>l2_norm_squared()</td>
<td>sympy.polys.polyclasses.DMP</td>
<td>2646</td>
</tr>
<tr>
<td>Label</td>
<td>sympy.codegen.cnodes</td>
<td>1192</td>
</tr>
<tr>
<td>label</td>
<td>sympy.physics.quantum.state.TimeDepState</td>
<td>1905</td>
</tr>
<tr>
<td>label</td>
<td>sympy.tensor.indexed.Idx</td>
<td>1448</td>
</tr>
<tr>
<td>label</td>
<td>sympy.tensor.indexed.IndexedBase</td>
<td>1452</td>
</tr>
<tr>
<td>labeller()</td>
<td>sympy.physics.quantum.circuitplot</td>
<td>1910</td>
</tr>
<tr>
<td>LagrangesMethod</td>
<td>sympy.physics.mechanics.lagrange</td>
<td>1814</td>
</tr>
<tr>
<td>Lagrangian()</td>
<td>sympy.physics.mechanics.functions</td>
<td>1801</td>
</tr>
<tr>
<td>laguerre</td>
<td>sympy.functions.special.polynomials</td>
<td>600</td>
</tr>
<tr>
<td>laguerre_poly()</td>
<td>sympy.polys.orthopolys</td>
<td>2517</td>
</tr>
<tr>
<td>Lambda</td>
<td>sympy.core.function</td>
<td>1087</td>
</tr>
<tr>
<td>lambda_notation()</td>
<td>sympy.parsing.sympy_parser</td>
<td>2201</td>
</tr>
<tr>
<td>LambdaPrinter</td>
<td>sympy.printing.lambdarepr</td>
<td>2245</td>
</tr>
<tr>
<td>lambdarepr()</td>
<td>sympy.printing.lambdarepr</td>
<td>2245</td>
</tr>
<tr>
<td>lambdastr()</td>
<td>sympy.utilities.lambdify</td>
<td>2173</td>
</tr>
<tr>
<td>lambdify()</td>
<td>sympy.utilities.lambdify</td>
<td>2173</td>
</tr>
<tr>
<td>LambertW</td>
<td>sympy.functions.elementary.exponential</td>
<td>469</td>
</tr>
<tr>
<td>Laplace()</td>
<td>sympy.stats</td>
<td>2993</td>
</tr>
<tr>
<td>laplace_transform()</td>
<td>sympy.integrals.transforms</td>
<td>635</td>
</tr>
<tr>
<td>LaplaceTransform</td>
<td>sympy.integrals.transforms</td>
<td>637</td>
</tr>
<tr>
<td>latex()</td>
<td>sympy.printing.latex</td>
<td>2245</td>
</tr>
<tr>
<td>LaTeXParsingError</td>
<td>sympy.parsing.latex</td>
<td>2203</td>
</tr>
<tr>
<td>LatexPrinter</td>
<td>sympy.printing.latex</td>
<td>2245</td>
</tr>
<tr>
<td>lbound()</td>
<td>sympy.codegen.fnodes</td>
<td>1198</td>
</tr>
<tr>
<td>LC()</td>
<td>sympy.polys.polyclasses.ANP</td>
<td>2436</td>
</tr>
<tr>
<td>LC()</td>
<td>sympy.polys.polyclasses.DMP</td>
<td>2643</td>
</tr>
<tr>
<td>LC()</td>
<td>sympy.polys.polyclasses.DMP</td>
<td>2650</td>
</tr>
<tr>
<td>LC()</td>
<td>sympy.polys.polyclasses.DMP</td>
<td>2663</td>
</tr>
<tr>
<td>Lagrange()</td>
<td>sympy.polys.polytools.Poly</td>
<td>2454</td>
</tr>
<tr>
<td>lcm()</td>
<td>sympy.calculus.util</td>
<td>301</td>
</tr>
<tr>
<td>lcm()</td>
<td>sympy.polys.polytools</td>
<td>2443</td>
</tr>
<tr>
<td>lcm()</td>
<td>sympy.core.numbers.Number</td>
<td>1033</td>
</tr>
<tr>
<td>lcm()</td>
<td>sympy.polys.domains.ComplexField</td>
<td>2627</td>
</tr>
<tr>
<td>lcm()</td>
<td>sympy.polys.domains.domain.Domain</td>
<td>2595</td>
</tr>
<tr>
<td>lcm()</td>
<td>sympy.polys.domains.field.Field</td>
<td>2600</td>
</tr>
<tr>
<td>lcm()</td>
<td>sympy.polys.domains.gaussiandomains.GaussianIntegerRing</td>
<td>2616</td>
</tr>
<tr>
<td>lcm()</td>
<td>sympy.polys.domains.GMPYIntegerRing</td>
<td>2609</td>
</tr>
<tr>
<td>lcm()</td>
<td>sympy.polys.domains.IntegerRing</td>
<td>2607</td>
</tr>
<tr>
<td>lcm()</td>
<td>sympy.polys.domains.PolynomialRing</td>
<td>2629</td>
</tr>
</tbody>
</table>
SymPy Documentation, Release 1.12.1

property), 1633
list_visitor() (in module sympy.utilities.enumerative), 2133
listcoefs() (sympy.polys.rings.PolyElement method), 2639
listmonoms() (sympy.polys.rings.PolyElement method), 2639
listterms() (sympy.polys.rings.PolyElement method), 2639
literal_dp (class in sympy.codegen.fnodes), 1199
literal_sp (class in sympy.codegen.fnodes), 1199
lll() (sympy.polys.matrices.domainmatrix.DomainMatrix method), 2760
lll_transform() (sympy.polys.matrices.domainmatrix.DomainMatrix method), 2761
LM() (in module sympy.polys.polytools), 2436
LM() (sympy.polys.polytools.Poly method), 2454
load (sympy.physics.continuum_mechanics.beam.Beam property), 2031
load_vector (sympy.physics.continuum_mechanics.beam.Beam property), 2053
loads (sympy.physics.continuum_mechanics.truss.Truss property), 2094
loads (sympy.physics.mechanics.jointsmethod.JointsMethod property), 2185
loads (sympy.physics.mechanics.system.SymbolicSystem property), 1022
locate_new() (sympy.vector.coordsysrect.CoordSys3D method), 1496
locatenew() (sympy.physics.vector.point.Point method), 1702
log (class in sympy.functions.elementary.exponential), 470
log() (sympy.matrices.matrices.MatrixBase method), 1344
log() (sympy.polysdomains.domain Domain method), 2596
log() (sympy.polys.domains.ring.IntegerRing method), 2607
log10 (class in sympy.codegen.cfns), 1190
log1p (class in sympy.codegen.cfns), 1191
log2 (class in sympy.codegen.cfns), 1191
Logarithmic() (in module sympy.stats), 2967
logcombine() (module sympy.simplify.simplify), 726
loggamma (class in sympy.functions.special.gamma_functions), 517
Logistic() (in module sympy.stats), 2994
LogLogistic() (in module sympy.stats), 2995
LogNormal() (in module sympy.stats), 2996
Lomax() (in module sympy.stats), 2997
Lopen() (sympy.sets.sets.Interval class method), 1239
lower (sympy.physics.secondquant.AntiSymmetricTensor property), 1449
lower (sympy.tensor.indexed.Idx property), 1449
lower_central_series() (sympy.combinatorics.perm_groups.PermutationGroup method), 373
LowerTriangular() (sympy.matrices.common.MatrixCommon method), 1344
lu() (sympy.matrices.ddm/DDM method), 2773
lu() (sympy.matrices.domains.domains Matrix method), 2762
lu() (sympy.matrices.domains.domains MatrixD method), 2762
lu() (sympy.matrices.domains.domains MatrixS method), 2762
lu_solve() (sympy.matrices.ddm/DDM method), 2773
lu_solve() (sympy.matrices.domains.domains Matrix method), 2762
lu_solve() (sympy.matrices.domains.domains MatrixS method), 2762
Ldecomposition() (sympy.matrices.expressions.blockmatrix.BlockMatrix method), 1426
Ldecomposition() (sympy.matrices.expressions.blockmatrix.BlockMatrix method), 1426
(sympy.matrices.matrices.MatrixBase method), 1323
LUdecomposition_Simple() (sympy.matrices.matrices.MatrixBase method), 1324
LUdecompositionFF() (sympy.matrices.matrices.MatrixBase method), 1324
LUsolve() (sympy.matrices.matrices.MatrixBase method), 1328
M
M20() (in module sympy.combinatorics.galois), 412
magnitude() (sympy.physics.vector.vector.Vector method), 1693
magnitude() (sympy.vector.vector.Vector method), 1504
major (sympy.geometry.ellipse.Ellipse property), 2336
make_mod_elt() (in module sympy.polys.numberfields.modules), 2817
make_monic_over_integers_by_scaling_roots() (sympy.polys.polytools.Poly method), 2480
make_perm() (sympy.combinatorics.perm_groups.PermutationGroup method), 373
make_routine() (in module sympy.utilities.codegen), 2126
Manifold (class in sympy.diffgeom), 2883
manualintegrate() (in module sympy.integrals.manualintegrate), 653
map() (sympy.polys.domains.domain.Domain method), 2596
maple_code() (in module sympy.printing.maple), 2229
MapleCodePrinter (class in sympy.printing.maple), 2229
marcumq (class in sympy.functions.special.bessel), 560
marginal_distribution() (in module sympy.stats), 3019
mass (sympy.physics.mechanics.particle.Particle property), 1792
mass (sympy.physics.mechanics.rigidbody.RigidBody property), 1796
mass_matrix (sympy.physics.mechanics.lagrange.LagrangesMethod property), 1816
mass_matrix (sympy.physics.mechanics.joints_method.joints_method property), 1851
mass_matrix_full (sympy.physics.mechanics.kane.KanesMethod property), 1813
mass_matrix_full (sympy.physics.mechanics.lagrange.LagrangesMethod property), 1817
mass_matrix_kin (sympy.physics.mechanics.kane.KanesMethod property), 1814
masscenter (sympy.physics.mechanics.rigidbody.RigidBody property), 1796
masscenter_vel() (sympy.physics.mechanics.body.Body method), 1809
MatAdd (class in sympy.matrices.expressions), 1417
match() (sympy.core.basic.Basic method), 987
match() (sympy.polys.polytools.Poly method), 2480
matches() (sympy.core.basic.Basic method), 988
matches() (sympy.solvers.diophantine.diophantine.DiophantineEquationType method), 799
mathematica_code() (in module sympy.printing.mathematica), 2229
mathieu_base (class in sympy.functions.special.mathieu_functions), 586
mathieuc (class in sympy.functions.special.mathieu_functions), 587
mathieucprime (class in sympy.functions.special.mathieu_functions), 588
mathieux (class in sympy.functions.special.mathieu_functions), 586
mathieuxprime (class in sympy.functions.special.mathieu_functions), 588
mathml() (in module sympy.printing.mathml), 2251
mathml_tag() (sympy.printing.mathml.MathMLContentPrinter method), 2250
mathml_tag() (sympy.printing.mathml.MathMLPresentationPrinter method), 2250
MatMul (class in sympy.matrices.expressions), 1813
<table>
<thead>
<tr>
<th>Method</th>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>measure_all()</td>
<td>sympy.physics.quantum.qubit, 1922</td>
</tr>
<tr>
<td>measure_all_oneshot()</td>
<td>sympy.physics.quantum.qubit, 1923</td>
</tr>
<tr>
<td>measure_partial()</td>
<td>sympy.physics.quantum.qubit, 1923</td>
</tr>
<tr>
<td>measure_partial_oneshot()</td>
<td>sympy.physics.quantum.qubit, 1924</td>
</tr>
<tr>
<td>medial</td>
<td>sympy.geometry.polygon.Triangle property, 2376</td>
</tr>
<tr>
<td>median()</td>
<td>sympy.stats, 3053</td>
</tr>
<tr>
<td>medians</td>
<td>sympy.geometry.polygon.Triangle property, 2376</td>
</tr>
<tr>
<td>Medium</td>
<td>sympy.physics.optics.medium, 1939</td>
</tr>
<tr>
<td>meets()</td>
<td>sympy.series.gruntz.SubsSet method, 684</td>
</tr>
<tr>
<td>meijer</td>
<td>sympy.functions.special.hyper, 579</td>
</tr>
<tr>
<td>meijerint_definite()</td>
<td>sympy.integrals.meijerint, 632</td>
</tr>
<tr>
<td>meijerint_indefinite()</td>
<td>sympy.integrals.meijerint, 632</td>
</tr>
<tr>
<td>meijerint_inversion()</td>
<td>sympy.integrals.meijerint, 632</td>
</tr>
<tr>
<td>mellin_transform()</td>
<td>sympy.integrals.transforms, 634</td>
</tr>
<tr>
<td>MellinTransform</td>
<td>sympy.integrals.transforms, 634</td>
</tr>
<tr>
<td>member_labels</td>
<td>sympy.physics.continuum_mechanics.truss, 2094</td>
</tr>
<tr>
<td>members</td>
<td>sympy.physics.continuum_mechanics.truss, 2094</td>
</tr>
<tr>
<td>memoize_property()</td>
<td>sympy.utilities.decorator, 2130</td>
</tr>
<tr>
<td>mgamma()</td>
<td>sympy.physics.matrices, 1582</td>
</tr>
<tr>
<td>midpoint</td>
<td>sympy.geometry.line.Segment property, 2310</td>
</tr>
<tr>
<td>midpoint()</td>
<td>sympy.geometry.point.Point method, 2282</td>
</tr>
<tr>
<td>mignotte_bound_squared()</td>
<td>sympy.polys.polyclasses.DMP method, 2646</td>
</tr>
<tr>
<td>MIMOFeedback</td>
<td>sympy.physics.control.lti, 1999</td>
</tr>
<tr>
<td>MIMOParallel</td>
<td>sympy.physics.control.lti, 1997</td>
</tr>
<tr>
<td>MIMOSeries</td>
<td>sympy.physics.control.lti, 1994</td>
</tr>
<tr>
<td>Min</td>
<td>sympy.functions.elementary/miscellaneous, 477</td>
</tr>
<tr>
<td>min()</td>
<td>sympy.combinatorics.permutations.Permutation method, 331</td>
</tr>
<tr>
<td>min_exponent</td>
<td>sympy.codegen.ast.FloatType property, 1176</td>
</tr>
<tr>
<td>min_qubits</td>
<td>sympy.physics.quantum.gate.CGGate property, 1916</td>
</tr>
<tr>
<td>min_qubits</td>
<td>sympy.physics.quantum.gate.CNotGate property, 1912</td>
</tr>
<tr>
<td>min_qubits</td>
<td>sympy.physics.quantum.gate.Gate property, 1913</td>
</tr>
<tr>
<td>minimal_block()</td>
<td>sympy.combinatorics.perm_groups.PermutationGroup method, 374</td>
</tr>
<tr>
<td>minimal_blocks()</td>
<td>sympy.combinatorics.perm_groups.PermutationGroup method, 374</td>
</tr>
<tr>
<td>minimal_polynomial()</td>
<td>sympy.polys.numberfields.minpoly, 2794</td>
</tr>
<tr>
<td>memoize_property()</td>
<td>sympy.calculus.util, 303</td>
</tr>
<tr>
<td>minlex()</td>
<td>sympy.utilities.iterables, 2153</td>
</tr>
<tr>
<td>minor</td>
<td>sympy.geometry.ellipse.Ellipse property, 2337</td>
</tr>
<tr>
<td>minor()</td>
<td>sympy.matrices.matrices.MatrixDeterminant method, 1273</td>
</tr>
<tr>
<td>minor_submatrix()</td>
<td>sympy.matrices.matrices.MatrixDeterminant method, 1273</td>
</tr>
<tr>
<td>mirror_formula()</td>
<td>sympy.physics.optics.utils, 1956</td>
</tr>
<tr>
<td>mobius</td>
<td>sympy.ntheory, 1573</td>
</tr>
</tbody>
</table>

Index
mobius_transform() (in module sympy.discrete.transforms), 1131
mobiusrange() (sympy.ntheory.generate.Sieve method), 1123
Mod (class in sympy.core.mod), 1066
mod (sympy.polys.domains.AlgebraicField attribute), 2625
mod_inverse() (in module sympy.core.numbers), 1053
modgcd_bivariate() (in module sympy.polys.modulargcd), 2727
modgcd_multivariate() (in module sympy.polys.modulargcd), 2729
modgcd_univariate() (in module sympy.polys.modulargcd), 2726
module
 sympy.abc, 931
 sympy.algebras, 932
 sympy.assumptions, 244
 sympy.assumptions.ask, 249
 sympy.assumptions.assume, 251
 sympy.assumptions.predicates, 258
 sympy.assumptions.refine, 255
 sympy.calculus, 288
 sympy.calculus.euler, 288
 sympy.calculus.finite_diff, 294
 sympy.calculus.singularities, 289
 sympy.calculus.util, 299
 sympy.categories, 2826
 sympy.categories.diagram_drawing, 2836
 sympy.codegen.algorithms, 1201
 sympy.codegen.approximations, 1166
 sympy.codegen.ast, 1168
 sympy.codegen.cfunctions, 1187
 sympy.codegen.cnodes, 1192
 sympy.codegen.cutils, 1203
 sympy.codegen.cxxnodes, 1193
 sympy.codegen.fnodes, 1193
 sympy.codegen.futils, 1203
 sympy.codegen.matrix_nodes, 1165
 sympy.codegen.pyutils, 1203
 sympy.codegen.rewriting, 1162
 sympy.combinatorics.galois, 411
 sympy.combinatorics.generators, 342
 sympy.combinatorics.graycode, 403
 sympy.combinatorics.group_constructions, 423
 sympy.combinatorics.group_numbers, 415
 sympy.combinatorics.named_groups, 408
 sympy.combinatorics.partitions, 306
 sympy.combinatorics.perm_groups, 343
 sympy.combinatorics.permutations, 312
 sympy.combinatorics.polyhedron, 387
 sympy.combinatorics.prufer, 391
 sympy.combinatorics.subsets, 395
 sympy.combinatorics.tensor_can, 425
 sympy.combinatorics.testutil, 423
 sympy.combinatorics.util, 416
 sympy.core.add, 1062
 sympy.core.assumptions, 975
 sympy.core.basic, 979
 sympy.core.cache, 979
 sympy.core.containers, 1114
 sympy.core.evalf, 1111
 sympy.core.expr, 999
 sympy.core.expptools, 1116
 sympy.core.function, 1087
 sympy.core.kind, 1118
 sympy.core.mod, 1066
 sympy.core.mul, 1058
 sympy.core.multidimensional, 1086
 sympy.core.numbers, 1033
 sympy.core.power, 1055
 sympy.core.random, 1122
 sympy.core.relational, 1067
 sympy.core.singleton, 997
 sympy.core.symbol, 1028
 sympy.core.sympify, 970
 sympy.core.traversal, 1124
 sympy.crypto.crypto, 2846
 sympy.diffgeom, 2883
 sympy.discrete, 1127
 sympy.discrete.convolutions, 1133
 sympy.discrete.transforms, 1127
 sympy.functions, 441
 sympy.functions.special.bessel, 554
 sympy.functions.special.beta_functions, 526
 sympy.functions.special.elliptic_integrals, 583
 sympy.functions.special.error_functions, 528
 sympy.functions.special.gamma_functions, 515
 sympy.functions.special.mathieu_functions, 586
 sympy.functions.special.polynomials, 589
 sympy.functions.special.singularity_functions, 513
 sympy.functions.special.zeta_functions, 571
Index 3221
<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>sympy.physics.quantum.shor</td>
<td>1925</td>
</tr>
<tr>
<td>sympy.physics.quantum.spin</td>
<td>1889</td>
</tr>
<tr>
<td>sympy.physics.quantum.state</td>
<td>1901</td>
</tr>
<tr>
<td>sympy.physics.quantum.tensorproduct</td>
<td>1868</td>
</tr>
<tr>
<td>sympy.physics.secondquant</td>
<td>1587</td>
</tr>
<tr>
<td>sympy.physics.sho</td>
<td>1586</td>
</tr>
<tr>
<td>sympy.physics.units.dimensions</td>
<td>1631</td>
</tr>
<tr>
<td>sympy.physics.units.prefixes</td>
<td>1634</td>
</tr>
<tr>
<td>sympy.physics.units.quantities</td>
<td>1635</td>
</tr>
<tr>
<td>sympy.physics.units.unitsystem</td>
<td>1634</td>
</tr>
<tr>
<td>sympy.physics.vector.functions</td>
<td>1707</td>
</tr>
<tr>
<td>sympy.physics.wigner</td>
<td>1611</td>
</tr>
<tr>
<td>sympy.plotting.plot</td>
<td>2904</td>
</tr>
<tr>
<td>sympy.plotting.pygletplot</td>
<td>2953</td>
</tr>
<tr>
<td>sympy.polys</td>
<td>2435</td>
</tr>
<tr>
<td>sympy.polys.numberfields.modules</td>
<td>2800</td>
</tr>
<tr>
<td>sympy.polys.numberfields.subfield</td>
<td>2795</td>
</tr>
<tr>
<td>sympy.polys.polyconfig</td>
<td>2725</td>
</tr>
<tr>
<td>sympy.polys.polyoptions</td>
<td>2724</td>
</tr>
<tr>
<td>sympy.polys.solvers</td>
<td>2748</td>
</tr>
<tr>
<td>sympy.printing.aesaracode</td>
<td>2241</td>
</tr>
<tr>
<td>sympy.printing.c</td>
<td>2213</td>
</tr>
<tr>
<td>sympy.printing.codeprinter</td>
<td>2258</td>
</tr>
<tr>
<td>sympy.printing.conventions</td>
<td>2258</td>
</tr>
<tr>
<td>sympy.printing.cxx</td>
<td>2217</td>
</tr>
<tr>
<td>sympy.printing.dot</td>
<td>2220</td>
</tr>
<tr>
<td>sympy.printing.gtk</td>
<td>2245</td>
</tr>
<tr>
<td>sympy.printing.jscode</td>
<td>2230</td>
</tr>
<tr>
<td>sympy.printing.julia</td>
<td>2232</td>
</tr>
<tr>
<td>sympy.printing.lambdarepr</td>
<td>2245</td>
</tr>
<tr>
<td>sympy.printing.latex</td>
<td>2245</td>
</tr>
<tr>
<td>sympy.printing.maple</td>
<td>2229</td>
</tr>
<tr>
<td>sympy.printing.mathemtica</td>
<td>2227</td>
</tr>
<tr>
<td>sympy.printing.mathml</td>
<td>2250</td>
</tr>
<tr>
<td>sympy.printing.octave</td>
<td>2235</td>
</tr>
<tr>
<td>sympy.printing.precedence</td>
<td>2259</td>
</tr>
<tr>
<td>sympy.printing.pretty</td>
<td>2212</td>
</tr>
<tr>
<td>sympy.printing.pretty.pretty</td>
<td>2212</td>
</tr>
<tr>
<td>sympy.printing.pretty.pretty_symbology</td>
<td>2259</td>
</tr>
<tr>
<td>sympy.printing.pretty.stringpict</td>
<td>2261</td>
</tr>
<tr>
<td>sympy.printing.preview</td>
<td>2256</td>
</tr>
<tr>
<td>sympy.printing.printer</td>
<td>2208</td>
</tr>
<tr>
<td>sympy.printing.pycode</td>
<td>2251</td>
</tr>
<tr>
<td>sympy.printing.python</td>
<td>2252</td>
</tr>
<tr>
<td>sympy.printing.rcode</td>
<td>2217</td>
</tr>
<tr>
<td>sympy.printing.repr</td>
<td>2252</td>
</tr>
<tr>
<td>sympy.printing.rust</td>
<td>2239</td>
</tr>
<tr>
<td>sympy.printing.smtlib</td>
<td>2224</td>
</tr>
<tr>
<td>sympy.printing.str</td>
<td>2253</td>
</tr>
<tr>
<td>sympy.printing.tree</td>
<td>2253</td>
</tr>
<tr>
<td>sympy.sets.conditionset</td>
<td>1257</td>
</tr>
<tr>
<td>sympy.sets.fancysets</td>
<td>1246</td>
</tr>
<tr>
<td>sympy.sets.powerset</td>
<td>1256</td>
</tr>
<tr>
<td>sympy.sets.sets</td>
<td>1229</td>
</tr>
<tr>
<td>sympy.simplify.combsimp</td>
<td>740</td>
</tr>
<tr>
<td>sympy.simplify.cse_main</td>
<td>741</td>
</tr>
<tr>
<td>sympy.simplify.epathtools</td>
<td>744</td>
</tr>
<tr>
<td>sympy.simplify.hyperexpand</td>
<td>743</td>
</tr>
<tr>
<td>sympy.simplify.hyperexpand_doc</td>
<td>754</td>
</tr>
<tr>
<td>sympy.simplify.powsimp</td>
<td>736</td>
</tr>
<tr>
<td>sympy.simplify.radsimp</td>
<td>727</td>
</tr>
<tr>
<td>sympy.simplify.ratsimp</td>
<td>734</td>
</tr>
<tr>
<td>sympy.simplify.simplify</td>
<td>202</td>
</tr>
<tr>
<td>sympy.simplify.sqrtdenest</td>
<td>740</td>
</tr>
<tr>
<td>sympy.simplify.trigsimp</td>
<td>735</td>
</tr>
<tr>
<td>sympy.solvers</td>
<td>882</td>
</tr>
<tr>
<td>sympy.solvers.inequalities</td>
<td>803</td>
</tr>
<tr>
<td>sympy.solvers.ode</td>
<td>807</td>
</tr>
<tr>
<td>sympy.solvers.ode.ode</td>
<td>869</td>
</tr>
<tr>
<td>sympy.solvers.pde</td>
<td>881</td>
</tr>
<tr>
<td>sympy.solvers.recurr</td>
<td>900</td>
</tr>
<tr>
<td>sympy.solvers.solve_set</td>
<td>905</td>
</tr>
<tr>
<td>sympy.stats</td>
<td>2957</td>
</tr>
<tr>
<td>sympy.stats.crv</td>
<td>3065</td>
</tr>
<tr>
<td>sympy.stats.crv_types</td>
<td>3065</td>
</tr>
<tr>
<td>sympy.stats.frv</td>
<td>3065</td>
</tr>
<tr>
<td>sympy.stats.frv_types</td>
<td>3065</td>
</tr>
<tr>
<td>sympy.stats.rv</td>
<td>3064</td>
</tr>
<tr>
<td>sympy.tensor</td>
<td>1432</td>
</tr>
<tr>
<td>sympy.tensor.array</td>
<td>1432</td>
</tr>
<tr>
<td>sympy.tensor.array.expressions</td>
<td>1441</td>
</tr>
<tr>
<td>sympy.tensor.index_methods</td>
<td>1454</td>
</tr>
<tr>
<td>sympy.tensor.indexed</td>
<td>1446</td>
</tr>
<tr>
<td>sympy.tensor.tensor</td>
<td>1457</td>
</tr>
<tr>
<td>sympy.tensor.toperators</td>
<td>1471</td>
</tr>
<tr>
<td>sympy.testing</td>
<td>2098</td>
</tr>
<tr>
<td>sympy.testing.pytest</td>
<td>2098</td>
</tr>
<tr>
<td>sympy.testing.randtest</td>
<td>2101</td>
</tr>
<tr>
<td>sympy.testing.runtests</td>
<td>2101</td>
</tr>
<tr>
<td>sympy.utilities</td>
<td>2109</td>
</tr>
<tr>
<td>sympy.utilities.autowrap</td>
<td>2110</td>
</tr>
<tr>
<td>sympy.utilities.codegen</td>
<td>2117</td>
</tr>
<tr>
<td>sympy.utilities.decorator</td>
<td>2128</td>
</tr>
<tr>
<td>sympy.utilities.enumerative</td>
<td>2131</td>
</tr>
</tbody>
</table>
nargs (sympy.core.function.FunctionClass property), 1096
native_coeffs() (sympy.core.numbers.AlgebraicElement method), 1043
Naturals (class in sympy.sets.fancysets), 1246
Naturals0 (class in sympy.sets.fancysets), 1247
nC() (in module sympy.functions.combinatorial.gammaspecial, 503
Ne (in module sympy.core.relational), 1070
nearest_common_ancestor() (sympy.polys.numberfields.modules.Module method), 2805
necklaces() (in module sympy.utilities.iterables), 2156
neg() (sympy.polys.domains.domain.Domain method), 2596
neg() (sympy.polys.matrices.dmm.DDM method), 2773
neg() (sympy.polys.matrices.domainmatrix.DomainMatrix method), 2764
neg() (sympy.polys.matrices.sdm.SDM method), 2779
neg() (sympy.polys.polyclasses.DMF method), 2650
neg() (sympy.polys.polyclasses.DMP method), 2647
neg() (sympy.polys.polytools.Poly method), 2482
negated (sympy.core.relation.Relational property), 1069
negative, 977
NegativeBinomial() (in module sympy.stats), 2968
NegativeInfinity (class in sympy.core.numbers), 1048
NegativeMultinomial() (in module sympy.stats), 3026
NegativeOne (class in sympy.core.numbers), 1046
NegativePredicate (class in sympy.assumptions.predicates.order), 276
new() (sympy.polys.domains.gaussiandomains.GaussianElement method), 2614
new() (sympy.polys.matrices.sdm.SDM class method), 2780
new() (sympy.polys.polytools.Poly class method), 2482
new() (sympy.polys.rootoftools.RootSum class method), 2512
newtons_method() (in module sympy.codegen.algorithms), 1201
newtons_method_function() (in module sympy.codegen.algorithms), 1202
nocache_fail() (in module sympy.combinatorics.graycode.GrayCode method), 404
next() (sympy.combinatorics.pruefer.Pruefer method), 391
next() (sympy.printing.pretty.stringpict.StringPict static method), 2262
next_binary() (sympy.combinatorics.subsets.Subset method), 398
next() (sympy.combinatorics.permutations.Permutation method), 309
next_lex() (sympy.combinatorics.permutations.Permutation method), 331
next_lexicographic() (sympy.combinatorics.subsets.Subset method), 397
next_nonlex() (sympy.combinatorics.permutations.Permutation method), 331
next_trotterjohnson() (sympy.combinatorics.permutations.Permutation method), 332
nextprime() (in module sympy.ntheory.generate), 1526
nfloat() (in module sympy.core.function), 1110
nine_point_circle (sympy.geometry.polygon.Triangle property), 2377
N0 (class in sympy.physics.secondquant), 1602
no_attrs_in_subclass (class in sympy.utilities.decorator), 2130
no_symmetry() (sympy.tensor.tensor.TensorSymmetry class method), 1486
nocache_fail() (in module sympy.testing.pytest), 2098
node (class in sympy.codegen.ast), 1178
node_labels (sympy.physics.continuum_mechanics.truss.Truss property), 2095
node_positions (sympy.physics.continuum_mechanics.truss.Truss property), 2095
nodes (sympy.physics.continuum_mechanics.truss.Truss property), 391
NonElementaryIntegral (class in sympy.integrals.risch), 652
NoneToken (class in sympy.codegen.ast), 1179
nonlinsolve() (in module sympy.solvers.solve), 921
nonnegative, 977
<table>
<thead>
<tr>
<th>Function/Property</th>
<th>Module/Data Type</th>
<th>Line Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>NonNegativePredicate</td>
<td>sympy.assumptions.predicates.order</td>
<td>279</td>
</tr>
<tr>
<td>nonpositive</td>
<td>977</td>
<td></td>
</tr>
<tr>
<td>NonPositivePredicate</td>
<td>sympy.assumptions.predicates.order</td>
<td>278</td>
</tr>
<tr>
<td>NonSquareMatrixError</td>
<td>sympy.matrices.matrices</td>
<td>1359</td>
</tr>
<tr>
<td>nonzero</td>
<td>976</td>
<td></td>
</tr>
<tr>
<td>NonZeroPredicate</td>
<td>sympy.assumptions.predicates.order</td>
<td>277</td>
</tr>
<tr>
<td>Nor</td>
<td>sympy.logic.boolalg</td>
<td>1213</td>
</tr>
<tr>
<td>norm()</td>
<td>sympy.physics.quantum.state.Wavefunction</td>
<td>1908</td>
</tr>
<tr>
<td>norm()</td>
<td>sympy.algebras.Quaternion</td>
<td>941</td>
</tr>
<tr>
<td>norm()</td>
<td>sympy.matrices.matrices.MatrixBase</td>
<td>1345</td>
</tr>
<tr>
<td>norm()</td>
<td>sympy.polys.numberfields.modules.PowerBasisElement</td>
<td>2816</td>
</tr>
<tr>
<td>norm()</td>
<td>sympy.polys.polyclasses.DMP</td>
<td>2647</td>
</tr>
<tr>
<td>norm()</td>
<td>sympy.polys.polytools.Poly</td>
<td>2482</td>
</tr>
<tr>
<td>Normal()</td>
<td>sympy.stats</td>
<td>3001</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.physics.quantum.state.Wavefunction</td>
<td>1908</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.algebras.Quaternion</td>
<td>941</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.mathematics.matrices.MatrixBase</td>
<td>1345</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.numberfields.modules.PowerBasisElement</td>
<td>2816</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.polyclasses.DMP</td>
<td>2647</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.polytools.Poly</td>
<td>2482</td>
</tr>
<tr>
<td>Normal()</td>
<td>sympy.stats</td>
<td>3001</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.physics.quantum.state.Wavefunction</td>
<td>1908</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.algebras.Quaternion</td>
<td>941</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.mathematics.matrices.MatrixBase</td>
<td>1345</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.numberfields.modules.PowerBasisElement</td>
<td>2816</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.polyclasses.DMP</td>
<td>2647</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.polytools.Poly</td>
<td>2482</td>
</tr>
<tr>
<td>Normal()</td>
<td>sympy.stats</td>
<td>3001</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.physics.quantum.state.Wavefunction</td>
<td>1908</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.algebras.Quaternion</td>
<td>941</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.mathematics.matrices.MatrixBase</td>
<td>1345</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.numberfields.modules.PowerBasisElement</td>
<td>2816</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.polyclasses.DMP</td>
<td>2647</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.polytools.Poly</td>
<td>2482</td>
</tr>
<tr>
<td>Normal()</td>
<td>sympy.stats</td>
<td>3001</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.physics.quantum.state.Wavefunction</td>
<td>1908</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.algebras.Quaternion</td>
<td>941</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.mathematics.matrices.MatrixBase</td>
<td>1345</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.numberfields.modules.PowerBasisElement</td>
<td>2816</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.polyclasses.DMP</td>
<td>2647</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.polytools.Poly</td>
<td>2482</td>
</tr>
<tr>
<td>Normal()</td>
<td>sympy.stats</td>
<td>3001</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.physics.quantum.state.Wavefunction</td>
<td>1908</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.algebras.Quaternion</td>
<td>941</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.mathematics.matrices.MatrixBase</td>
<td>1345</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.numberfields.modules.PowerBasisElement</td>
<td>2816</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.polyclasses.DMP</td>
<td>2647</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.polytools.Poly</td>
<td>2482</td>
</tr>
<tr>
<td>Normal()</td>
<td>sympy.stats</td>
<td>3001</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.physics.quantum.state.Wavefunction</td>
<td>1908</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.algebras.Quaternion</td>
<td>941</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.mathematics.matrices.MatrixBase</td>
<td>1345</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.numberfields.modules.PowerBasisElement</td>
<td>2816</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.polyclasses.DMP</td>
<td>2647</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.polytools.Poly</td>
<td>2482</td>
</tr>
<tr>
<td>Normal()</td>
<td>sympy.stats</td>
<td>3001</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.physics.quantum.state.Wavefunction</td>
<td>1908</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.algebras.Quaternion</td>
<td>941</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.mathematics.matrices.MatrixBase</td>
<td>1345</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.numberfields.modules.PowerBasisElement</td>
<td>2816</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.polyclasses.DMP</td>
<td>2647</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.polytools.Poly</td>
<td>2482</td>
</tr>
<tr>
<td>Normal()</td>
<td>sympy.stats</td>
<td>3001</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.physics.quantum.state.Wavefunction</td>
<td>1908</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.algebras.Quaternion</td>
<td>941</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.mathematics.matrices.MatrixBase</td>
<td>1345</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.numberfields.modules.PowerBasisElement</td>
<td>2816</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.polyclasses.DMP</td>
<td>2647</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.polytools.Poly</td>
<td>2482</td>
</tr>
<tr>
<td>Normal()</td>
<td>sympy.stats</td>
<td>3001</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.physics.quantum.state.Wavefunction</td>
<td>1908</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.algebras.Quaternion</td>
<td>941</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.mathematics.matrices.MatrixBase</td>
<td>1345</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.numberfields.modules.PowerBasisElement</td>
<td>2816</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.polyclasses.DMP</td>
<td>2647</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.polytools.Poly</td>
<td>2482</td>
</tr>
<tr>
<td>Normal()</td>
<td>sympy.stats</td>
<td>3001</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.physics.quantum.state.Wavefunction</td>
<td>1908</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.algebras.Quaternion</td>
<td>941</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.mathematics.matrices.MatrixBase</td>
<td>1345</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.numberfields.modules.PowerBasisElement</td>
<td>2816</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.polyclasses.DMP</td>
<td>2647</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.polytools.Poly</td>
<td>2482</td>
</tr>
<tr>
<td>Normal()</td>
<td>sympy.stats</td>
<td>3001</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.physics.quantum.state.Wavefunction</td>
<td>1908</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.algebras.Quaternion</td>
<td>941</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.mathematics.matrices.MatrixBase</td>
<td>1345</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.numberfields.modules.PowerBasisElement</td>
<td>2816</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.polyclasses.DMP</td>
<td>2647</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.polytools.Poly</td>
<td>2482</td>
</tr>
<tr>
<td>Normal()</td>
<td>sympy.stats</td>
<td>3001</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.physics.quantum.state.Wavefunction</td>
<td>1908</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.algebras.Quaternion</td>
<td>941</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.mathematics.matrices.MatrixBase</td>
<td>1345</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.numberfields.modules.PowerBasisElement</td>
<td>2816</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.polyclasses.DMP</td>
<td>2647</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.polytools.Poly</td>
<td>2482</td>
</tr>
<tr>
<td>Normal()</td>
<td>sympy.stats</td>
<td>3001</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.physics.quantum.state.Wavefunction</td>
<td>1908</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.algebras.Quaternion</td>
<td>941</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.mathematics.matrices.MatrixBase</td>
<td>1345</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.numberfields.modules.PowerBasisElement</td>
<td>2816</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.polyclasses.DMP</td>
<td>2647</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.polytools.Poly</td>
<td>2482</td>
</tr>
<tr>
<td>Normal()</td>
<td>sympy.stats</td>
<td>3001</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.physics.quantum.state.Wavefunction</td>
<td>1908</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.algebras.Quaternion</td>
<td>941</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.mathematics.matrices.MatrixBase</td>
<td>1345</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.numberfields.modules.PowerBasisElement</td>
<td>2816</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.polyclasses.DMP</td>
<td>2647</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.polytools.Poly</td>
<td>2482</td>
</tr>
<tr>
<td>Normal()</td>
<td>sympy.stats</td>
<td>3001</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.physics.quantum.state.Wavefunction</td>
<td>1908</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.algebras.Quaternion</td>
<td>941</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.mathematics.matrices.MatrixBase</td>
<td>1345</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.numberfields.modules.PowerBasisElement</td>
<td>2816</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.polyclasses.DMP</td>
<td>2647</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.polytools.Poly</td>
<td>2482</td>
</tr>
<tr>
<td>Normal()</td>
<td>sympy.stats</td>
<td>3001</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.physics.quantum.state.Wavefunction</td>
<td>1908</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.algebras.Quaternion</td>
<td>941</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.mathematics.matrices.MatrixBase</td>
<td>1345</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.numberfields.modules.PowerBasisElement</td>
<td>2816</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.polyclasses.DMP</td>
<td>2647</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.polytools.Poly</td>
<td>2482</td>
</tr>
<tr>
<td>Normal()</td>
<td>sympy.stats</td>
<td>3001</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.physics.quantum.state.Wavefunction</td>
<td>1908</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.algebras.Quaternion</td>
<td>941</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.mathematics.matrices.MatrixBase</td>
<td>1345</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.numberfields.modules.PowerBasisElement</td>
<td>2816</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.polyclasses.DMP</td>
<td>2647</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.polytools.Poly</td>
<td>2482</td>
</tr>
<tr>
<td>Normal()</td>
<td>sympy.stats</td>
<td>3001</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.physics.quantum.state.Wavefunction</td>
<td>1908</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.algebras.Quaternion</td>
<td>941</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.mathematics.matrices.MatrixBase</td>
<td>1345</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.numberfields.modules.PowerBasisElement</td>
<td>2816</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.polyclasses.DMP</td>
<td>2647</td>
</tr>
<tr>
<td>normalize()</td>
<td>sympy.polys.polytools.Poly</td>
<td>2482</td>
</tr>
</tbody>
</table>
SymPy Documentation, Release 1.12.1

NthLinearConstantCoeffVariationOfParameters (class in sympy.solvers.ode.single), 835

NthLinearEulerEqHomogeneous (class in sympy.solvers.ode.single), 836

NthLinearEulerEqNonhomogeneousUndeterminedCoefficients (class in sympy.solvers.ode.single), 838

NthLinearEulerEqNonhomogeneousVariationOfParameters (class in sympy.solvers.ode.single), 837

NthOrderReducible (class in sympy.solvers.ode.single), 839

nthroot() (in module sympy.solvers.ode.single), 839

nthroot_mod() (in module sympy.ntheory.residue_ntheory), 1565

nullspace() (sympy.matrices.matrices.MatrixSubspaces method), 1278

nullspace() (sympy.matrices.domainmatrix.DomainMatrix method), 2765

nullspace() (sympy.polys.matrices.sdm.SDM method), 2780

nullspace() (sympy.matrices.matrices.MatrixProperty), 1278

tt() (in module sympy.discrete.transforms), 1129

num (sympy.functions.special.hyper.meijerg property), 582

nullspace() (sympy.matrices.matrices.MatrixSubspaces method), 1278

nullspace() (sympy.polys.matrices.domainmatrix.DomainMatrix method), 2765

nullspace() (sympy.polys.matrices.sdm.SDM method), 2780

num (sympy.physics.control.lti.TransferFunction property), 1970

num_inputs (sympy.physics.control.lti.MIMOParallel property), 1999

num_inputs (sympy.physics.control.lti.MIMOSeries property), 1996

num_outputs (sympy.physics.control.lti.MIMOParallel property), 1999

num_outputs (sympy.physics.control.lti.MIMOSeries property), 1996

num_outputs (sympy.physics.control.lti.TransferFunction property), 1992

num_outputs (sympy.physics.control.lti.TransferFunction property), 1993

Number, 239

Number (class in sympy.core.numbers), 1033

number_field (sympy.polys.numberfields.modules.PowerBasisElement property), 2805

numbered_symbols() (in module sympy.utilities.iterables), 2157

NumberKind (in module sympy.core.kind), 1118

NumberSymbol (class in sympy.core.numbers), 1044

numer() (sympy.polys.domains.AlgebraicField method), 2596

taum() (sympy.polys.domains.domain.Domain method), 2596

numer() (sympy.polys.domains.ExpressionDomain method), 2631

numer() (sympy.polys.domains.gaussiandomains.GaussianRing method), 2619

numer() (sympy.polys.domains.GMPYRationalField method), 2612

numer() (sympy.polys.domains.RationalField method), 2611

numer() (sympy.polys.domains.gaussiandomains.RationalRing method), 2650

numer() (sympy.polys.numberfields.modules.PowerBasisElement method), 2816

Numeric, 238

Object (class in sympy.categories), 2826

objects (sympy.categories.Category property), 2832

objects (sympy.categories.Diagram property), 2835

octave_code() (in module sympy.printing.octave), 2236

OctaveCodeGen (class in sympy.utilities.codegen), 2122

OctavePrinter (class in sympy.printing.octave), 2236

OddPredicate (class in sympy.assumptions.predicates.ntheory), 273

eode1st_power_series() (in module sympy.solvers.ode.ode), 845

eode2nd_power_series_ordinary() (in module sympy.solvers.ode.ode), 846

eode2nd_power_series_regular() (in module sympy.solvers.ode.ode), 846

eode_order() (in module sympy.solvers.deutils), 899

eode_num_simplicity() (in module sympy.solvers.ode.ode), 821

eodesimp() (in module sympy.solvers.ode), 819

of_type() (sympy.polys.domains.domain.Domain method), 2596

offset (sympy.tensor.indexed.IndexedBase property), 1453

old_frac_field() (sympy.polys.domains.domain.Domain method), 2596
old_poly_ring\(\) (sympy.polys.domains.domain.Domain\(\), 2596

One (class in sympy.core.numbers), 1046

one (sympy.polys.domains.domain.Domain\(\) attribute), 2596

one (sympy.polys.polytools.Poly\(\) property), 2484

one\(\) (sympy.polys.numberfields.modules.Module\(\) method), 2806

one_qubit_box (sympy.physics.quantum.circuitplot.CircuitPlot\(\), 1910

OneQubitGate (class in sympy.physics.quantum.grover), 1916

ones\(\) (in module sympy.physics.quantum.gate), 1913

ones\(\) (in module sympy.matrices.dense), 1359

ones\(\) (sympy.matrices.common.MatrixCommon\(\) class method), 1393

ones\(\) (sympy.polys.matrices.domainmatrix.DomainMatrix\(\) class method), 2765

oo, 239

open\(\) (class in sympy.sets.sets.Interval\(\), 1240

OperationNotSupported (class in sympy.polys.polyerrors), 2725

Operator (class in sympy.physics.quantum.operator), 1878

operators (sympy.physics.quantum.state.StateBase\(\) property), 1903

operators_to_state\(\) (in module sympy.physics.quantum.operatorset), 1881

opt_cse\(\) (in module sympy.simplify.cse_main), 742

Optimization\(\) (class in sympy.codegen.rewriting), 1163

optimize\(\) (in module sympy.codegen.rewriting), 1165

OptionError (class in sympy.polys.polyerrors), 2726

Options (class in sympy.polys.polyoptions), 2724

Or (class in sympy.logic.boolalg), 1211

OracleGate (class in sympy.physics.quantum.grover), 1916

orbit\(\) (sympy.combinatorics.perm_groups.PermutationGroup\(\), 376

orbit_rep\(\) (sympy.combinatorics.perm_groups.permutations.Permutation\(\) method), 376

orbit_transversal\(\) (sympy.combinatorics.perm_groups.Permutation\(\) method), 377

orbits\(\) (sympy.combinatorics.perm_groups.Permutation\(\) method), 2377

Order (class in sympy.series.order), 686

order (sympy.functions.special.bessel.BesselBase\(\) property), 554

order\(\) (sympy.combinatorics.perm_groups.PermutationGroup\(\) method), 376

order\(\) (sympy.combinatorics.permutations.Permutation\(\) method), 332

oriented\(\) (in module sympy.core.sorting), 2157

ordinal\(\) (in module sympy.utilities.iterables), 2185

orient\(\) (sympy.physics.vector.frame.ReferenceFrame\(\) method), 1678

orient_axis\(\) (sympy.physics.vector.frame.ReferenceFrame\(\) method), 1497

orient_new\(\) (sympy.vector.coordsysrect.CoordSys3D\(\) method), 1498

orient_new_axis\(\) (sympy.vector.coordsysrect.CoordSys3D\(\) method), 1498

orient_new_body\(\) (sympy.vector.coordsysrect.CoordSys3D\(\) method), 1498

orient_new_quaternion\(\) (sympy.vector.coordsysrect.CoordSys3D\(\) method), 1498

orient_new_space\(\) (sympy.vector.coordsysrect.CoordSys3D\(\) method), 1499

orient_space_fixed\(\) (sympy.physics.vector.frame.ReferenceFrame\(\) method), 1683

orient_space_fixed\(\) (sympy.physics.vector.frame.ReferenceFrame\(\) method), 1683

orient\(\) (sympy.physics.vector.frame.ReferenceFrame\(\) method), 1684

orient\(\) (sympy.physics.vector.frame.ReferenceFrame\(\) method), 1684

Orienter (class in sympy.vector.orienters), 1513

orbit\(\) (sympy.combinatorics.perm_groups.PermutationGroup\(\), 1686

orbit_rep\(\) (sympy.combinatorics.perm_groups.permutations.Permutation\(\) method), 2626

orbit_transversal\(\) (sympy.combinatorics.perm_groups.Permutation\(\) method), 282

orthocenter (sympy.geometry.polygon.Triangle\(\) property), 2377

3228

Index
orthogonal() (sympy.algebras.Quaternion method), 941
orthogonal_direction (sympy.geometry.point.Point property), 2282
OrthogonalBra (class in sympy.physics.quantum.state), 1903
orthogonalize() (sympy.matrices.matrices.MatrixSubspacesclassmethod), 1279
OrthogonalKet (class in sympy.physics.quantum.state), 1903
OrthogonalPredicate (class in sympy.assumptions.predicates.matrices), 263
OrthogonalState (class in sympy.physics.quantum.state), 1903
outer() (in module sympy.physics.vector.functions), 1715
outer() (sympy.physics.vector.vector.Vector method), 1693
OuterProduct (class in sympy.physics.quantum.operator), 1880
OutputArgument (class in sympy.utilities.codegen), 2123
over_power_basis() (sympy.polys.numberfields.modules.ModuleElementmethod), 2815
P() (in module sympy.stats), 3044
p1 (sympy.geometry.line.LinearEntity property), 2298
p1 (sympy.geometry.plane.Plane property), 2383
p2 (sympy.geometry.line.LinearEntity property), 2298
padded_key() (in module sympy.crypto.crypto), 2846
Parallel (class in sympy.physics.control.lti), 1975
parallel() (sympy.algebras.Quaternion method), 942
parallel_axis() (sympy.physics.mechanics.body.Body method), 1809
parallel_axis() (sympy.physics.mechanics.particle.Particle method), 1792
parallel_axis() (sympy.physics.mechanics.rigidbody.RigidBody method), 1796
parallel_line() (sympy.geometry.line.LinearEntity method), 2298
parallel_plane() (sympy.geometry.plane.Plane method), 2385
parallel_poly_from_expr() (in module sympy.polys.polytools), 2435
parameter (sympy.geometry.curve.Curve property), 2326
parameter_value() (sympy.geometry.plane.Plane method), 2344
parameter_value() (sympy.geometry.plane.Plane method), 2384
Parametric2DLineSeries (class in sympy.plotting.plot), 2950
Parametric3DLineSeries (class in sympy.plotting.plot), 2951
ParametricIntegral (class in sympy.vector.integrals), 1512
ParametricRegion (class in sympy.vector.parametricregion), 1508
ParametricSurfaceSeries (class in sympy.plotting.plot), 2951
parametrize_ternary_quadratic() (in module sympy.solvers.diophantine.diophantine), 793
parens() (sympy.printing.pretty.stringpict.stringPict method), 2262
parent (sympy.polys.numberfields.modules.Module property), 2806
parent() (sympy.polys.domains.domainelement.DomainElement method), 2599
parent() (sympy.polys.domains.gaussiandomains.GaussianElement method), 2614
parent_axis (sympy.physics.mechanics.joint.Joint property), 1820
parent_point (sympy.physics.mechanics.joint.Joint property), 1820
parenthesize_super() (sympy.printing.latex.LatexPrinter method), 2245
Pareto() (in module sympy.stats), 3003
pargs (sympy.functions.special.delta_functions.Heaviside property), 513
parity() (sympy.combinatorics.permutations.Permutation method), 333
parse_expr() (in module sympy.parsing.sympy_parser), 2195
parse_latex() (in module sympy.parsing.latex), 2202
parse_mathematica() (in module sympy.parsing.mathematica), 2203

Index 3229
SymPy Documentation, Release 1.12.1

sympy.parsing.mathematica), 2198
parse_maxima() (in module sympy.parsing.maxima), 2198
partial_velocity() (in module sympy.physics.vector.functions), 1709
partial_velocity()
 (sympy.physics.vector.frame.ReferenceFrame method), 1687
partial_velocity()
 (sympy.physics.vector.point.Point method), 1703
PartialDerivative (class in sympy.tensor.toperators), 1471
Particle (class in sympy.physics.mechanics.particle), 1790
Partition (class in sympy.combinatorics.partitions), 306
partition (class in sympy.functions.combinatorial.numbers), 500
partition (sympy.combinatorics.partitions.Partition property), 307
partition() (in module sympy.solvers.diophantine.diophantine), 788
partitions() (in module sympy.utilities.iterables), 2159
pat_matrix() (in module sympy.physics.matrices), 1583
Patch (class in sympy.diffgeom), 2884
pde_1st_linear_constant_coeff() (in module sympy.solvers.pde), 878
pde_1st_linear_constant_coeff_homogeneous()
 (in module sympy.solvers.pde), 877
pde_1st_linear_variable_coeff() (in module sympy.solvers.pde), 880
pde_separate()
 (in module sympy.solvers.pde), 872
pde_separate_add()
 (in module sympy.solvers.pde), 873
pde_separate_mul()
 (in module sympy.solvers.pde), 873
pdiv() (in module sympy.polys.polytools), 2436
pdiv() (sympy.polys.polyclasses.DMP method), 2647
pdiv() (sympy.polys.polytools.Poly method), 2484
pdsolve() (in module sympy.solvers.pde), 874
per() (sympy.matrices.matrices.MatrixDeterminant method), 1274
per() (sympy.polys.polyclasses.DMF method), 2650
per() (sympy.polys.polyclasses.DMP method), 2647
per() (sympy.polys.polytools.Poly method), 2485
perfect_power() (in module sympy.ntheory.factor_), 1534
periapsis (sympy.geometry.ellipse.Ellipse property), 2338
perimeter (sympy.geometry.polygon.Polygon property), 2356
period_find() (in module sympy.physics.quantum.shor), 1925
periodic_argument (class in sympy.functions.elementary.complexes), 447
Permutation (class in sympy.combinatorics.permutations), 312
PermutationGroup (class in sympy.combinatorics.perm_groups), 343
PermutationMatrix (class in sympy.matrices.expressions), 1421
PermutationOperator (class in sympy.physics.secondquant), 1605
permute() (sympy.matrices.common.MatrixCommon method), 1393
permute() (sympy.polys.polyclasses.DMP method), 2647
permute() (sympy.matrices.common.MatrixCommon method), 1395
permute_cols() (sympy.matrices.common.MatrixCommon method), 1395
permute_rows() (sympy.matrices.common.MatrixCommon method), 1395
permute_signs() (in module sympy.utilities.iterables), 2160
Permutedims (class in sympy.tensor.array.expressions), 1444
permutedims() (in module sympy.tensor.array), 1437
perpendicular_bisector() (sympy.geometry.line.Segment method), 2311
perpendicular_line() (sympy.geometry.line.LinearEntity method), 2299
perpendicular_line()
<table>
<thead>
<tr>
<th>Function/Class</th>
<th>Python Class/Module</th>
<th>Code Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyhedron</td>
<td>sympy.combinatorics.polyhedron</td>
<td>387</td>
</tr>
<tr>
<td>polylog</td>
<td>sympy.functions.special.zeta_functions</td>
<td>573</td>
</tr>
<tr>
<td>polynomial()</td>
<td>sympy.series.formal.FormalPowerSeries</td>
<td>708</td>
</tr>
<tr>
<td>PolynomialError</td>
<td>sympy.polys.polyerrors</td>
<td>2726</td>
</tr>
<tr>
<td>PolynomialRing</td>
<td>sympy.polys.domains</td>
<td>2627</td>
</tr>
<tr>
<td>PolyRing</td>
<td>sympy.polys.rings</td>
<td>2634</td>
</tr>
<tr>
<td>polytope_integrate()</td>
<td>sympy.integrals.nopoly</td>
<td>678</td>
</tr>
<tr>
<td>pos()</td>
<td>sympy.polys.domains.domain</td>
<td>2596</td>
</tr>
<tr>
<td>pos_from()</td>
<td>sympy.physics.vector.point</td>
<td>1703</td>
</tr>
<tr>
<td>POSform()</td>
<td>sympy.logic.boolalg</td>
<td>1205</td>
</tr>
<tr>
<td>posify()</td>
<td>sympy.simplify.simplify</td>
<td>725</td>
</tr>
<tr>
<td>position()</td>
<td>sympy.physics.quantum.cartesian.XBra</td>
<td>1871</td>
</tr>
<tr>
<td>position()</td>
<td>sympy.physics.quantum.cartesian.XKet</td>
<td>1871</td>
</tr>
<tr>
<td>position_wrt()</td>
<td>sympy.vector.coordsysrect.CoordSys3D</td>
<td>1501</td>
</tr>
<tr>
<td>position_x</td>
<td>sympy.physics.quantum.cartesian.XBra</td>
<td>1870</td>
</tr>
<tr>
<td>position_y</td>
<td>sympy.physics.quantum.cartesian.XKet</td>
<td>1870</td>
</tr>
<tr>
<td>position_z</td>
<td>sympy.physics.quantum.cartesian.XBra</td>
<td>1870</td>
</tr>
<tr>
<td>PositionBra3D</td>
<td>sympy.physics.quantum.cartesian</td>
<td>1870</td>
</tr>
<tr>
<td>PositionKet3D</td>
<td>sympy.physics.quantum.cartesian</td>
<td>1870</td>
</tr>
<tr>
<td>PositionState3D</td>
<td>sympy.physics.quantum.cartesian</td>
<td>1870</td>
</tr>
<tr>
<td>positive</td>
<td>sympy.liealgebras.type_a.TypeA</td>
<td>2403</td>
</tr>
<tr>
<td>positive_Roots()</td>
<td>sympy.liealgebras.type_b.TypeB</td>
<td>2405</td>
</tr>
<tr>
<td>positive_Roots()</td>
<td>sympy.liealgebras.type_c.TypeC</td>
<td>2406</td>
</tr>
<tr>
<td>positive_Roots()</td>
<td>sympy.liealgebras.type_d.TypeD</td>
<td>2806</td>
</tr>
<tr>
<td>positive_Roots()</td>
<td>sympy.liealgebras.type_e.TypeE</td>
<td>2409</td>
</tr>
<tr>
<td>PositiveDefinitePredicate()</td>
<td>sympy.assumptions.predicates.matrices</td>
<td>264</td>
</tr>
<tr>
<td>PositivePredicate</td>
<td>sympy.assumptions.predicates.order</td>
<td>275</td>
</tr>
<tr>
<td>PostDecrement</td>
<td>sympy.codegen.cnodes</td>
<td>1192</td>
</tr>
<tr>
<td>postfixes()</td>
<td>sympy.utilities.iterables</td>
<td>2160</td>
</tr>
<tr>
<td>PostIncrement</td>
<td>sympy.codegen.cnodes</td>
<td>1192</td>
</tr>
<tr>
<td>postorder_traversal()</td>
<td>sympy.core.traversal</td>
<td>1124</td>
</tr>
<tr>
<td>potential_energy()</td>
<td>sympy.physics.mechanics.particle.Property</td>
<td>1793</td>
</tr>
<tr>
<td>potential_energy()</td>
<td>sympy.physics.mechanics.rigidbody.Rigidbody.Property</td>
<td>1796</td>
</tr>
<tr>
<td>potential_energy()</td>
<td>sympy.physics.mechanics.functions</td>
<td>1800</td>
</tr>
<tr>
<td>Pow()</td>
<td>sympy.core.power</td>
<td>1055</td>
</tr>
<tr>
<td>Pow()</td>
<td>sympy.algebras.Quaternion</td>
<td>942</td>
</tr>
<tr>
<td>powdenest()</td>
<td>sympy.simplify.powsimp</td>
<td>738</td>
</tr>
<tr>
<td>pow_xin()</td>
<td>sympy.polys.ring_series</td>
<td>2748</td>
</tr>
<tr>
<td>pow()</td>
<td>sympy.polys.polyclasses.ANP</td>
<td>2650</td>
</tr>
<tr>
<td>pow()</td>
<td>sympy.polys.polyclasses.DMF</td>
<td>2650</td>
</tr>
<tr>
<td>pow()</td>
<td>sympy.polys.polyclasses.DMP</td>
<td>2647</td>
</tr>
<tr>
<td>pow()</td>
<td>sympy.algebras.Quaternion</td>
<td>943</td>
</tr>
<tr>
<td>pow()</td>
<td>sympy.polys.ring_series</td>
<td>2748</td>
</tr>
<tr>
<td>pow()</td>
<td>sympy.simplify.powsimp</td>
<td>738</td>
</tr>
<tr>
<td>pow()</td>
<td>sympy.polys.numberfields.modules.Module</td>
<td>2806</td>
</tr>
</tbody>
</table>

Index 3233
power_representation() (in module sympy.solvers.diophantine.diophantine), 787
PowerBasis (class in sympy.polys.numberfields.modules), 2809
PowerBasisElement (class in sympy.polys.numberfields.modules), 2816
PowerFunction() (in module sympy.stats), 3003
PowerSet (class in sympy.sets.powerset), 1256
powerset() (sympy.sets.sets.Set method), 1236
powsimp() (in module sympy.simplify.powsimp), 736
powsimp() (sympy.core.expr.Expr method), 1024
pprint_nodes() (in module sympy.printing.tree), 2253
PQa() (in module sympy.solvers.diophantine.diophantine), 792
pquo() (in module sympy.polys.polytools), 2437
pquo() (sympy.polys.polyclasses.DMP method), 2647
pquo() (sympy.polys.polytools.Poly method), 2486
prem() (in module sympy.polys.polytools), 2437
prem() (sympy.polys.polyclasses.DMP method), 2647
prem() (sympy.polys.polytools.Poly method), 2486
premises (sympy.categories.Diagram property), 2835
preorder_traversal() (in module sympy.core.traversal), 1125
presentation() (sympy.combinatorics.perm_groups.PermutationGroup method), 379
pretty() (in module sympy.printing.pretty.pretty), 2212
pretty_atom() (in module sympy.printing.pretty.pretty_symbology), 2261
pretty_print() (in module sympy.printing.pretty.pretty), 2212
pretty_symbol() (in module sympy.printing.pretty.pretty_symbology), 2261
pretty_form() (in module sympy.printing.pretty.stringpict), 2263
PrettyPrinter (class in sympy.printing.pretty.pretty), 2212
prev() (sympy.combinatorics.prufer.Prufer method), 392
prev_binary() (sympy.combinatorics.subsets.Subset method), 397
prev_gray() (sympy.combinatorics.subsets.Subset method), 398
prev_lex() (sympy.combinatorics.partitions.IntegerPartition method), 309
prev_lexicographic() (sympy.combinatorics.subsets.Subset method), 398
prevprime() (in module sympy.ntheory.generate), 1526
prime, 976
prime() (in module sympy.ntheory.generate), 1524
printmethod (sympy.printing.mathematica.MCodePrinter attribute), 2229
printmethod (sympy.printing.mathml.MathMLContentPrinter attribute), 2229
printmethod (sympy.printing.mathml.MathMLPresentationPrinter attribute), 2250
printmethod (sympy.printing.octave.OctaveCodePrinter attribute), 2236
printmethod (sympy.printing.pretty.pretty.PrettyPrinter attribute), 2212
printmethod (sympy.printing.printer.Printer attribute), 2211
printmethod (sympy.printing.rcode.RCodePrinter attribute), 2217
printmethod (sympy.printing.repr.ReprPrinter attribute), 2252
PrismaticJoint (class in sympy.physics.mechanics.joint), 1825
Probability (class in sympy.stats), 3044
probability() (sympy.stats.BernoulliProcess method), 3038
process_series() (sympy.plotting.plot.MatplotlibBackend method), 2952
prod() (in module sympy.core.mul), 1061
Product (class in sympy.concrete.products), 957
product() (in module sympy.core.products), 968
product() (sympy.polys.agca.ideals.Ideal method), 2543
product() (sympy.series.formal.FormalPowerSeries method), 708
product_matrix_left (sympy.algebras.Quaternion property), 943
product_matrix_right (sympy.algebras.Quaternion property), 944
ProductDomain (class in sympy.stats.rv), 3065
ProductPSpace (class in sympy.stats.rv), 3065
ProductSet (class in sympy.sets.sets), 1242
Program (class in sympy.codegen.fnodes), 1196

3236 Index
sympy.external.pythonmpq, 2612
PythonRationalField (class in sympy.polys.domains), 2611
quo() (sympy.polys.domains.RationalField method), 2611
quo() (sympy.polys.domains.ring.Ring method), 2601
quo() (sympy.polys.domains.quotientring.QuotientRing method), 2602
quo() (sympy.polys.polynomials.Poly method), 2487
quo_ground() (sympy.polys.polynomials.DMP method), 2648
quo_ground() (sympy.polys.polytools.Poly method), 2487
quantile() (sympl.sympy.stats.Quantile method), 3054
quantum() (sympl.sympy.physics.quantum_quantum method), 1853
QuadraticU (class in sympy.stats), 3005
QuotientModule (class in sympy.polys.domains.quotientring), 2632
QuotientModuleElement (class in sympy.polys.domains.quotientring), 2632
QuotientRing (class in sympy.polys.domains.quotientring), 2632
Index 3237
rad_rationalize() (in module sympy.simplify.radsimp), 728
Rademacher() (in module sympy.stats), 2964
radical() (in module sympy.polys.agca.ideals.Ideal method), 2544
radius (sympy.geometry.ellipse.Circle property), 2346
radius (sympy.geometry.polygon.RegularPolygon property), 2366
radius (sympy.physics.optics.gaussoptBeamParameter property), 1928
radius_of_convergence (sympy.functions.special.hyper.Hypergeometric2F0 property), 579
radsimp() (in module sympy.simplify.radsimp), 727
radsimp() (sympy.core.basic.Expr method), 1024
raise_on_deprecated() (in module sympy.testing.runtests), 2103
RaisedCosine() (in module sympy.stats), 3006
raises() (in module sympy.testing.pytest), 2098
ramp_response_numerical_data() (sympy.physics.control.control_plots method), 2020
ramp_response_plot() (sympy.physics.control.control_plots method), 2019
randMatrix() (in module sympy.matrices.dense), 1363
random() (sympy.combinatorics.perm_groups.PermutationGroup class method), 333
random_bitstring() (sympy.combinatorics.graycode method), 406
random_circuit() (in module sympy.physics.quantum.UnderstandingGate), 1916
random_complex_number() (in module sympy.core.random), 1122
random_derangement() (in module sympy.combinatorics.subsets.Subset, 2160
random_integer_partition() (in module sympy.combinatorics.partitions), 310
random_point() (sympy.geometry.ellipse.Ellipse method), 2339
random_point() (sympy.geometry.line.LinearEntity method), 2302
random_point() (sympy.geometry.plane.Plane method), 2386
random_poly() (in module sympy.combinatorics.perm_groups.PermutationGroup, 2544
random_pr() (sympy.combinatorics.perm_groups.PermutationGroup method), 379
random_stab() (sympy.combinatorics.perm_groups.PermutationGroup method), 380
random_symbols() (in module sympy.stats.rv), 3066
RandomDomain (class in sympy.stats.rv), 3064
RandomSymbol (class in sympy.stats.rv), 3065
randperm() (in module sympy.combinatorics.graycode.GrayCode property), 404
randrange() (sympy.combinatorics.permutations.Partition property), 307
range (sympy.combinatorics.permutations.Permutation property), 393
range (sympy.tensor.tensor.Tensor property), 1450
range() (sympy.combinatorics.permutations.Permutation method), 334
rank() (sympy.combinatorics.permutations.Permutation method), 1349
rank_gray() (sympy.combinatorics.subsets.Subset method), 399
rank_lexicographic() (sympy.combinatorics.subsets.Subset method), 399
rank_nonlex() (sympy.combinatorics.permutations.Permutation method), 334
rank_trotterjohnson() (sympy.combinatorics.permutations.Permutation method), 2415
rat_clear_denoms() (sympy.polys.polytools.Poly method), 2487
ratint() (in module sympy.polys.polys, 2515
ratint_logpart() (in module sympy.polys.polytools, 646
ratint_ratpart() (in module sympy.polys.polytools, 647
ratint_rational_part() (in module sympy.polys.polytools, 647
rational, 976
rational() (class in sympy.core.numbers), 3238
remove_node() (sympy.physics.continuum_mechanics.truss.Truss method), 1887
remove_redundant_sols() (in module sympy.solvers.ode.riccati), 853
remove_support() (sympy.physics.continuum_mechanics.truss.Truss method), 1024
remove() (sympy.core.expr.Expr method), 1886
render() (sympy.printing.pretty.stringpict.stringPict method), 2262
render_as_module() (in module sympy.codegen.futils), 1203
render_as_module() (in module sympy.codegen.pyutils), 1203
render_as_source_file() (in module sympy.codegen.cutils), 2262
reorder() (sympy.concrete.expr_with_intlimits.ExprWithIntLimits method), 989
reorder() (sympy.polys.polytools.Poly method), 2489
reorder() (sympy.polys.polytools.Poly method), 2489
reorder_limit() (sympy.concrete.expr_with_intlimits.ExprWithIntLimits method), 966
rep_expectation() (in module sympy.physics.quantum.represent), 1886
rep_innerproduct() (in module sympy.physics.quantum.represent), 1886
repeated_decimals() (in module sympy.core.relational.Relational), 2201
replace() (in module sympy.utilities.misc), 2186
replace() (sympy.core.basic.Basic method), 989
replace() (sympy.matrices.common.MatrixCommon method), 1395
replace() (sympy.polys.polytools.Poly method), 2489
replace_in_Add() (sympy.codegen.rewriting.FuncMinusOneOptim method), 1163
replace_with_arrays() (sympy.tensor.tensor.TensExpr method), 1461
ReplaceOptim (class in sympy.codegen.rewriting), 1164
Reporter (class in sympy.testing.runtests), 2101
repr() (sympy.polys.numberfields.primes.PrimeIdeal method), 2790
represent() (in module sympy.physics.quantum.represent), 1887
represent() (sympy.polys.numberfields.modules.Module method), 2819
represent() (sympy.polys.numberfields.modules.Module method), 2806
represent() (in module sympy.polys.numberfields.modules.PowerBasis method), 2809
represent() (in module sympy.polys.numberfields.modules.Submodule method), 2813
reprify() (sympy.printing.repr.ReprPrinter method), 2252
reshape() (in module sympy.codegen.futils), 1199
reshape() (in module sympy.utilities.iterables), 2161
reshape() (in module sympy.matrices.common.MatrixCommon method), 1396
residue() (in module sympy.series.residues), 689
reset() (in module sympy.combinatorics.polyhedron.Polyhedron method), 389
reset() (in module sympy.combinatorics.permutations.Permutation method), 335
restrict_codomain() (in module sympy.polys.agca.homomorphisms.ModuleHomomorphism method), 2554
restrict_domain() (in module sympy.polys.agca.homomorphisms.ModuleHomomorphism method), 2554
Result (class in sympy.utilities.codegen), 2123
result_variables (sympy.utilities.codegen.Routine property), 2123
resultant() (in module sympy.polys.polytools), 2440
resultant() (sympy.polys.polyclasses.DMP method), 2648
resultant() (sympy.polys.polytools.Poly method), 2489
reset() (sympy.core.relation.RelationalProperty), 1069
return() (sympy.combinatorics.permutations.permutationsPermuation method), 2043
return() (sympy.core.relation.RelationalProperty), 1069
return_expr() (sympy.parsing.sym_expr.SymPyExpression method), 2206
reverse_order() (sympy.concrete.products.Product method), 961
reverse_order() (sympy.concrete.summations.Sum method), 956
reversed() (sympy.sets.fancysets.Range property), 1251
reversed() (sympy.core.relation.RelationalProperty), 1069
reversed_expanded() (sympy.core.relation.RelationalProperty), 1069
reversedgradedlexorder (class in sympy.polys.polyclasses), 2531
reversedsign (sympy.core.relation.RelationalProperty), 2531

SymPy Documentation, Release 1.12.1

revert() (sympy.polys.domains.domain.Domain.revert() method), 2597
revert() (sympy.polys.domains.field.Field.revert() method), 2601
revert() (sympy.polys.domains.ring.Ring.revert() method), 2602
revert() (sympy.polys.polyclasses.DMP.revert() method), 2648
rewrite() (in module sympy.series.gruntz), 682
rewrite() (sympy.core.basic.Basic rewrite() method), 991
RGS (sympy.combinatorics.partitions.Partition RGS property), 306
RGS_enum() (in module sympy.combinatorics.partitions), 310
RGS_generalized() (in module sympy.combinatorics.partitions), 310
RGS_rank() (in module sympy.combinatorics.partitions), 311
RGS_unrank() (in module sympy.combinatorics.partitions), 311
rhs (sympy.core.relational.Relational rhs property), 1070
rhs() (sympy.physics.mechanics.joints rhs() method), 1852
rhs() (sympy.physics.mechanics.kane.KanesMethod rhs() method), 1814
rhs() (sympy.physics.mechanics.lagrange.LagrangesMethod rhs() method), 1817
riccati_inverse_normal() (in module sympy.solvers.ode.riccati), 851
riccati_normal() (in module sympy.solvers.ode.riccati), 851
riccati_reduced() (in module sympy.solvers.ode.riccati), 851
RiccatiSpecial (class in sympy.solvers.ode.single), 832
richardson() (in module sympy.series.acceleration), 688
riemann() (sympy.tensor.tensor.TensorSymmetry class method), 1469
riccian_cyclic() (in module sympy.tensor.tensor), 1467
riccian_cyclic_replace() (in module sympy.tensor.tensor), 1467
right() (sympy.printing.pretty.stringpict.right() method), 2262
RootOf (class in sympy.polys.rootoftools), 2507
roots() (sympy.liealgebras.root system.RootSystem roots() method), 2402
roots() (in module sympy.printing.pretty.stringpict), 2262
RigidBody (class in sympy.physics.mechanics.rigidbody), 1793
Rg (class in sympy.polys.domains.range), 2601
ring() (in module sympy.polys.rings), 2632
risch_integrate() (in module sympy.integrals.risch), 650
RisingFactorial (class in sympy.functions.combinatorial.factorials), 500
Rk (in module sympy.physics.quantum.qft), 1919
RkGate (class in sympy.physics.quantum.qft), 1919
rmul() (sympy.combinatorics.permutations.Permutation rmul() method), 335
rmul_with_af() (sympy.combinatorics.permutations.Permutation class method), 336
rmultiply() (sympy.matrices.common.MatrixCommon method), 1396
root() (in module sympy.printing.pretty.pretty_symbology), 2260
root() (sympy.functions.elementary.miscellaneous, 479
rootof() (in module sympy.printing.pretty.stringpict), 2262
roots() (in module sympy.polys.roots), 2507
roots() (in module sympy.polys.polyroots), 2512
roots() (sysmpy.liealgebras.type_a.TypeA roots() method), 2404
roots() (sympy.liealgebras.type_b.TypeB roots() method), 2405
roots() (sympy.liealgebras.type_c.TypeC roots() method), 2407
roots() (sympy.liealgebras.type_d.TypeD roots() method), 2408
roots() (sympy.liealgebras.type_e.TypeE roots() method), 2410
roots() (sympy.liealgebras.type_f.TypeF roots() method), 2411
roots() (sympy.liealgebras.type_g.TypeG roots() method), 2412
method), 2780
rs_asin() (in module sympy.polys.ring_series), 2737
rs_atan() (in module sympy.polys.ring_series), 2737
rs_atanh() (in module sympy.polys.ring_series), 2737
rs_compose_add() (in module sympy.polys.ring_series), 2739
rs_cos() (in module sympy.polys.ring_series), 2739
rs_cos_sin() (in module sympy.polys.ring_series), 2739
rs_cosh() (in module sympy.polys.ring_series), 2740
rs_cot() (in module sympy.polys.ring_series), 2738
rs_diff() (in module sympy.polys.ring_series), 2744
rs_exp() (in module sympy.polys.ring_series), 2736
rs_fun() (in module sympy.polys.ring_series), 2736
rs_hadamard_exp() (in module sympy.polys.ring_series), 2747
rs_integrate() (in module sympy.polys.ring_series), 2740
rs_is_puiseux() (in module sympy.polys.ring_series), 2746
rs_LambertW() (in module sympy.polys.ring_series), 2736
rs_log() (in module sympy.polys.ring_series), 2736
rs_mul() (in module sympy.polys.ring_series), 2741
rs_newton() (in module sympy.polys.ring_series), 2745
rs_nth_root() (in module sympy.polys.ring_series), 2743
rs_pow() (in module sympy.polys.ring_series), 2741
rs_puiseux() (in module sympy.polys.ring_series), 2746
rs_puiseux2() (in module sympy.polys.ring_series), 2746
rs_series_from_list() (in module sympy.polys.ring_series), 2746
rs_series_inversion() (in module sympy.polys.ring_series), 2742
rs_series_reversion() (in module sympy.polys.ring_series), 2742
rs_sin() (in module sympy.polys.ring_series), 2738
rs_sinh() (in module sympy.polys.ring_series), 2739
rs_square() (in module sympy.polys.ring_series), 2737
rs_subs() (in module sympy.polys.ring_series), 2744
rs_swap() (in module sympy.stats.rv), 3066
rs_tan() (in module sympy.polys.ring_series), 2737
rs_tanh() (in module sympy.polys.ring_series), 2740
rs_trunc() (in module sympy.polys.ring_series), 2743
rsa_private_key() (in module sympy.crypto.crypto), 2866
rsa_public_key() (in module sympy.crypto.crypto), 2864
rsolve() (in module sympy.solvers.recurr), 900
rsolve_hyper() (in module sympy.solvers.recurr), 902
rsolve_hypergeometric() (in module sympy.series.formal), 715
rsolve_poly() (in module sympy.solvers.recurr), 900
rsolve_ratio() (in module sympy.solvers.recurr), 901
run() (in module sympy.testing.runtests), 2102
run_all_tests() (in module sympy.testing.runtests), 2103
run_in_subprocess_with_hash_randomization() (in module sympy.testing.runtests), 2104
runs() (in module sympy.utilities.iterables), 2162
rust_code() (in module sympy.printing.rust), 2239
RustCodeGen (class in sympy.utilities.codegen), 2123
RustPrinter (class in sympy.printing.rust), 2239
S
S, 239
S (in module sympy.physics.quantum.gate), 1914
S1TransitiveSubgroups (class in sympy.combinatorics.galois), 411
S2TransitiveSubgroups (class in sympy.combinatorics.galois), 411
S3_in_S6() (in module sympy.combinatorics.galois), 412
S3TransitiveSubgroups (class in sympy.combinatorics.galois), 411
S4m() (in module sympy.combinatorics.galois), 412
S4p() (in module sympy.combinatorics.galois), 412
S4TransitiveSubgroups (class in sympy.combinatorics.galois), 411
S4xC2() (in module sympy.combinatorics.galois), 413
S5TransitiveSubgroups (class in sympy.combinatorics.galois), 411
S6TransitiveSubgroups (class in sympy.combinatorics.galois), 411
same_root() (sympy.polys.polytools.Poly method), 2491
sample() (in module sympy.stats), 3055
sample() (sympy.stats.DiscreteMarkovChain method), 3034
sample_iter() (in module sympy.stats), 3056
sampling_density() (in module sympy.stats.rv), 3060
sampling_E() (in module sympy.stats.rv), 3060
sampling_P() (in module sympy.stats.rv), 3060
satisfiable() (sympy.logic.inference, 1228
saturate() (sympy.polys.agca.ideals.Ideal method), 2544
scalar_map() (sympy.vector.coordsysrect.CooredSys3D method), 1502
scalar_part() (sympy.algebras.Quaternion method), 945
scalar_potential() (in module sympy.physics.vector.fieldfunctions), 1719
scalar_potential() (in module sympy.vector), 1519
scalar_potential() (in module sympy.physics.vector.fieldfunctions), 1719
scalar_potential_difference() (in module sympy.physics.vector.fieldfunctions), 1719
scalar_potential_difference() (in module sympy.vector), 1520
scale() (sympy.geometry.curve.Curve method), 2327
scale() (sympy.geometry.ellipse.Circle method), 2344
scale() (sympy.geometry.ellipse.Ellipse method), 2341
scale() (sympy.geometry.entity.GeometryEntity method), 2271
scale() (sympy.geometry.point.Point2D method), 2285
scale() (sympy.geometry.polygon.RegularPolygon method), 2367
scale() (sympy.series.fourier.FourierSeries method), 698
scale_factor (sympy.physics.units.quantities.Quantity property), 1635
scalex() (sympy.series.fourier.FourierSeries method), 699
scc() (sympy.polys.matrices.ddm.DDM method), 2773
scc() (sympy.polys.matrices.domainmatrix.DomainMatrix method), 2767
scc() (sympy.polys.matrices.sdm.SDM method), 2781
schreier_sims() (sympy.combinatorics.perm_groups.PermutationGroup method), 380
schreier_sims_incremental() (sympy.combinatorics.perm_groups.PermutationGroup method), 380
schreier_sims_random() (sympy.combinatorics.perm_groups.PermutationGroup method), 381
schreier_vector() (sympy.combinatorics.perm_groups.PermutationGroup method), 382
schur() (sympy.matrices.expressions.blockmatrix.BlockMatrix method), 1428
Scope (class in sympy.codegen.ast), 1180
Scope (class in sympy.polys.matrices.sdm), 2774
sdm_add() (in module sympy.polys.distributedmodules), 2704
sdm_deg() (in module sympy.polys.distributedmodules), 2706
sdm_ecart() (in module sympy.polys.distributedmodules), 2723
sdm_from_dict() (in module sympy.polys.distributedmodules), 2704
sdm_from_vector() (in module sympy.polys.distributedmodules), 2706
sdm_groebner() (in module sympy.polys.distributedmodules), 2723
sdm_LC() (in module sympy.polys.distributedmodules), 2723
sdm_LM() (in module sympy.polys.distributedmodules), 2724
Index 3245
Index
series() (sympy.liealgebras.cartan_type.Standard_Cartan method), 2394

SeriesApprox (class in sympy.codegen.approximations), 1166

Set (class in sympy.sets.sets), 1229

set_acc() (sympy.physics.vector.point.Point method), 1704

set_ang_acc() (sympy.physics.vector.frame.ReferenceFrame method), 1688

set_ang_vel() (sympy.physics.vector.frame.ReferenceFrame method), 1688

set_comm() (sympy.tensor.tensor._TensorManager method), 1470

set_comms() (sympy.tensor.tensor._TensorManager method), 1471

set_domain() (sympy.polys.polytools.Poly method), 2492

set_global_relative_scale_factor() (sympy.physics.units.quantities.Quantity method), 1635

set_global_settings() (sympy.printing.printer.Printer class method), 2212

set_modulus() (sympy.polys.polytools.Poly method), 2492

set_norm() (sympy.algebras.Quaternion method), 946

set_pos() (sympy.physics.vector.point.Point method), 1704

set_vel() (sympy.physics.vector.point.Point method), 1704

seterr() (in module sympy.core.numbers), 1045

SetKind (class in sympy.sets.conditionset), 1259

sets (sympy.sets.fancysets.ComplexRegion property), 1254

setup() (in module sympy.polys.polyconfig), 2725

sfield() (in module sympy.polys.fields), 2642

shanks() (in module sympy.series.acceleration), 689

shape (sympy.matrices.common.MatrixCommon property), 1398

shape (sympy.physics.control.lti.MIMOParallel property), 1999

shape (sympy.physics.control.lti.MIMOSeries property), 1996

shape (sympy.physics.control.lti.TransferFunction property), 1993

shape (sympy.tensor.indexed.IndexedBase property), 1451

shape() (in module sympy.codegen.fnodes), 1199

ShapeError (class in sympy.matrices.matrices), 1359

shear_force() (sympy.physics.continuum_mechanics.beam.Beam method), 2047

shear_force() (sympy.physics.continuum_mechanics.beam.Beam3D method), 2067

shear_stress() (sympy.physics.continuum_mechanics.beam.Beam method), 2047

shear_stress() (sympy.physics.continuum_mechanics.beam.Beam3D method), 2067

Shi (class in sympy.functions.special.error_functions), 551

shift() (sympy.polys.polyclasses.DMP method), 2648

shift() (sympy.polys.polytools.Poly method), 2492

shear_modulus (sympy.physics.continuum_mechanics.beam.Beam3D property), 2067

shear_stress() (sympy.physics.continuum_mechanics.beam.Beam3D method), 2067

shor() (in module sympy.physics.quantum.shor), 1925

Si (class in sympy.functions.special.error_functions), 548

sides (sympy.geometry.polygon.Polygon property), 2358

SetKind (class in sympy.sets.conditionset), 1259

Sieve (class in sympy.ntheory.generate), 1522

sift() (in module sympy.utilities.iterables), 2164

sigma_approximation() (sympy.series.fourier.FourierSeries method), 700

sign (class in sympy.functions.elementary.complexes), 443

sign (sympy.physics.control.lti.Feedback property), 1981

sign (sympy.physics.control.lti.MIMOFeedback property), 2003

signature (sympy.core.function.Lambda property), 1087

signature() (sympy.combinatorics.permutations.Permutation method), 337

signed_permutations() (in module
<table>
<thead>
<tr>
<th>Function/Class</th>
<th>Module/Class/Method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>sympy.utilities.iterables</td>
<td>2166</td>
<td></td>
</tr>
<tr>
<td>SignedIntType</td>
<td>class in sympy.codegen.ast</td>
<td>1180</td>
</tr>
<tr>
<td>simple_root()</td>
<td>(sympy.liealgebras.type_a.TypeA method)</td>
<td>2404</td>
</tr>
<tr>
<td>simple_root()</td>
<td>(sympy.liealgebras.type_b.TypeB method)</td>
<td>2405</td>
</tr>
<tr>
<td>simple_root()</td>
<td>(sympy.liealgebras.type_c.TypeC SingularValueDecomposition method)</td>
<td>2407</td>
</tr>
<tr>
<td>simple_root()</td>
<td>(sympy.liealgebras.type_d.TypeD method)</td>
<td>2408</td>
</tr>
<tr>
<td>simple_root()</td>
<td>(sympy.liealgebras.type_e.TypeE method)</td>
<td>2410</td>
</tr>
<tr>
<td>simple_root()</td>
<td>(sympy.liealgebras.type_f.TypeF method)</td>
<td>2411</td>
</tr>
<tr>
<td>simple_roots()</td>
<td>(sympy.liealgebras.root_system.RootSystem method)</td>
<td>2402</td>
</tr>
<tr>
<td>simpleDE()</td>
<td>(in module sympy.series.formal)</td>
<td>714</td>
</tr>
<tr>
<td>SimpleDomain</td>
<td>(class in sympy.polys.domains.simpledomain)</td>
<td>2602</td>
</tr>
<tr>
<td>Simplification</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>simplify()</td>
<td>(in module sympy.simplify.simplify)</td>
<td>719</td>
</tr>
<tr>
<td>simplify()</td>
<td>(sympy.core.basic.Basic method)</td>
<td>993</td>
</tr>
<tr>
<td>simplify()</td>
<td>(sympy.matrices.common.MatrixCommon method)</td>
<td>1398</td>
</tr>
<tr>
<td>simplify()</td>
<td>(sympy.matrices.dense.MutableDenseMatrix method)</td>
<td>1408</td>
</tr>
<tr>
<td>simplify()</td>
<td>(sympy.physics.vector.dyadic.Dyadic method)</td>
<td>1698</td>
</tr>
<tr>
<td>simplify()</td>
<td>(sympy.physics.vector.vector.Vector method)</td>
<td>1694</td>
</tr>
<tr>
<td>simplify_ggpp()</td>
<td>(in module sympy.physics.hep.gamma_matrices)</td>
<td>1639</td>
</tr>
<tr>
<td>simplify_index_permutations()</td>
<td>(in module sympy.physics.secondquant)</td>
<td>1609</td>
</tr>
<tr>
<td>simplify_logic()</td>
<td>(in module sympy.logic.boolalg)</td>
<td>1221</td>
</tr>
<tr>
<td>sin</td>
<td>(class in sympy.functions.elementary.trigonometric)</td>
<td>449</td>
</tr>
<tr>
<td>sinc</td>
<td>(class in sympy.functions.elementary.trigonometric)</td>
<td>453</td>
</tr>
<tr>
<td>sine_transform()</td>
<td>(in module sympy.integrals.transforms)</td>
<td>640</td>
</tr>
<tr>
<td>SineTransform</td>
<td>(class in sympy.integrals.transforms)</td>
<td>641</td>
</tr>
<tr>
<td>SingleDomain</td>
<td>(class in sympy.stats.rv)</td>
<td>3065</td>
</tr>
<tr>
<td>SinglePSpace</td>
<td>(class in sympy.stats.rv)</td>
<td>3065</td>
</tr>
</tbody>
</table>
Index 3249
property), 1940
speed (sympy.physics.optics.waves.TWave property), 1961
speeds (sympy.physics.mechanics.joint.Joint property), 1820
speeds (sympy.physics.mechanics.system.SymbolicSystem property), 1856
spherical_bessel_fn() (in module sympy.polys.orthopolys), 2517
SphericalJoint (class in sympy.physics.mechanics.joint), 1841
spin() (sympy.geometry.polygon.RegularPolygon method), 2367
split() (sympy.tensor.tensor.TensMul method), 1466
split_list() (in module sympy.testing.runtests), 2104
split_super_sub() (in module sympy.printing.conventions), 2258
split_symbols() (in module sympy.parsing.sympy_parser), 2199
split_symbols_custom() (in module sympy.parsing.sympy_parser), 2199
spoly() (in module sympy.polys.groebnertools), 2722
sqf() (in module sympy.polys.polytools), 2447
sqf_list() (in module sympy.polys.polytools), 2446
sqf_list() (sympy.polys.polycrass.DMP method), 2646
sqf_list() (sympy.polys.polytools.Poly method), 2492
sqf_list(include) (sympy.polys.polycrass.DMP method), 2648
sqf_list(include) (sympy.polys.polytools.Poly method), 2493
sqf_norm() (in module sympy.polys.polytools), 2446
sqf_norm() (sympy.polys.polycrass.DMP method), 2648
sqf_norm() (sympy.polys.polytools.Poly method), 2493
sqf_normal() (in module sympy.solvers.diophantine.diophantine) start (sympy.series.sequences.RecursiveSeq property), 796
sqf_part() (in module sympy.polys.polytools), 2446
sqf_part() (sympy.polys.polycrass.DMP method), 2648
sqf_part() (sympy.polys.polytools.Poly starts_with_unity()
Index

3251

Index to SymPy Documentation, Release 1.12.1

(state (in module sympy.physics.quantum.state), 1903)

state() (sympy.physics.secondquant.FixedBosonicBasis method), 1596

state() (sympy.physics.secondquant.VarBosonicBasis method), 1606

state_to_operators() (in module sympy.physics.quantum.operatorset), 1882

StateBase (class in sympy.physics.quantum.state), 1903

states (sympy.physics.mechanics.system.SymbolicSystem property), 1903

stationary_distribution() (sympy.stats.DiscreteMarkovChain method), 3034

stationary_points() (in module sympy.calculus.util), 305

std() (in module sympy.stats), 3054

step_response_numerical_data() (sympy.physics.control.control_plots method), 2017

step_response_plot() (sympy.physics.control.control_plots method), 2016

stieltjes (class in sympy.functions.special.zeta_functions), 576

stirling() (in module sympy.functions.combinatorial.numbers), 501

stokes_vector() (in module sympy.physics.optics.polarization), 1949

stop (sympy.series.sequences.RecursiveSeq property), 698

stop (sympy.series.sequences.SeqBase property), 692

Stream (class in sympy.codegen.ast), 1180

strict (sympy.core.reational.Relational property), 1070

StrictGreaterThan (class in sympy.core.reational), 1079

StrictLessThan (class in sympy.core.reational), 1083

strides (sympy.tensor.indexed.IndexedBase property), 1453

String (class in sympy.codegen.ast), 1181

stringify_expr() (in module sympy.parsing.sympy_parser), 2197

stringPict (class in sympy.printing.pretty.stringpict), 2261

strip_zero() (sympy.polys.rings.PolyElement method), 2640

strip_lines() (in module sympy.utilities.misc), 2187

strong_gens (sympy.combinatorics.perm_groups.PermutationGroup method), 383

strong_presentation() (sympy.combinatorics.perm_groups.PermutationGroup method), 384

strongly_connected_components() (in module sympy.utilities.iterables), 2166

strongly_connected_components_decomposition() (sympy.matrices.matrices.MatrixBase method), 1355

StrPrinter (class in sympy.printing.str), 2253

struct (class in sympy.codegen.cnodes), 1193

Structural Equality, 240

StudentT() (in module sympy.stats), 3008

sturm() (in module sympy.polys.polytools), 2445

sturm() (sympy.polys.polyclasses.DMP method), 2648

sturm() (sympy.polys.polyclasses.DMF method), 2494

sub (in module sympy.printing.pretty.pretty_symbology), 2260

sub() (sympy.polys.domains.domain.Domain method), 2597

sub() (sympy.polys.matrices.dmm.DDM method), 2774

sub() (sympy.polys.matrices.domainmatrix.DomainMatrix method), 2769

sub() (sympy.polys.matrices.sdm.SDM method), 2781

sub() (sympy.polys.polyclasses.DMF method), 2650

sub() (sympy.polys.polytools.Poly method), 2495

sub_ground() (sympy.polys.polyclasses.DMF method), 2648

sub_ground() (sympy.polys.polytools.Poly method), 2495

subdiagram_from_objects() (sympy.categories.Diagram method), 2836

Subexpression, 240
SymPy Documentation, Release 1.12.1

subfactorial (class in sympy.functions.combinatorial.factorials), 491

subgroup() (sympy.combinatorics.perm_groups.PermutationGroup method), 384

subgroup_search() (sympy.combinatorics.perm_groups.PermutationGroup method), 384

SubModule (class in sympy.polys.agca.modules), 2536

Submodule (class in sympy.polys.numberfields.modules), 2810

submodule() (sympy.polys.agca.modules.Module method), 2533

submodule() (sympy.polys.agca.modules.QuotientModule method), 2540

submodule_from_gens() (sympy.polys.agca.modules.Module method), 2533

submodule_from_matrix() (sympy.polys.agca.modules.Module method), 2533

SubQuotientModule (class in sympy.polys.agca.modules), 2547

subresultants() (in module sympy.polys.polytools), 2440

subresultants() (sympy.polys.polyclasses.DMP method), 2648

subresultants() (sympy.polys.polytools.Poly method), 2495

Subs (class in sympy.core.function), 1098

SubsSet (class in sympy.series.gruntz), 683

subset() (sympy.combinatorics.subsets.Subset class method), 400

subset() (sympy.combinatorics.subsets.Subset class method), 400

subset() (method in sympy.utilities.iterables), 2168

subset() (in module sympy.series.gruntz), 683

subset() (method in module sympy.physics.secondquant), 1609

subset_from_bitlist() (sympy.combinatorics.subsets.Subsetclassmethod), 400

subset_indices() (sympy.combinatorics.subsets.Subsetclassmethod), 400

subsets() (in module sympy.concrete.summations), 952

sum_of_four_squares() (in module sympy.solvers.diophantine.diophantine), 790

sum_of_powers() (in module sympy.solvers.diophantine.diophantine), 790

sum_of_squares() (in module sympy.solvers.diophantine.diophantine), 791

sum_of_three_squares() (in module sympy.solvers.diophantine.diophantine), 789

SumApprox (class in sympy.codegen.approximations), 1167

summation() (in module sympy.concrete.summations), 967

superposition_basis() (in module sympy.printing.pretty.pretty_symbology), 2260

sup (sympy.sets.sets.Set property), 1237

superposition_basis() (in module sympy.physics.quantum.grover), 1918

superset (sympy.combinatorics.subsets.Subset property), 401

superset_size (sympy.combinatorics.subsets.Subset property), 401

supplement_a_subspace() (in module sympy.polys.numberfields.utilities), 2824

support() (sympy.combinatorics.permutations.Permutation method), 337

supports (sympy.physics.continuum_mechanics.truss.Truss property), 2098

SurfaceBaseSeries (class in sympy.plotting.plot), 2951

SurfaceOver2DRangeSeries (class in sympy.plotting.plot), 2951

SWAP (in module sympy.physics.quantum.gate), 1914

swap_point() (sympy.physics.quantum.circuitplot.CircuitPlot method), 1910
SwapGate (class in sympy.physics.quantum.gate), 1914

swhinnerton_dyer_poly() (in module sympy.polys.specialpolys), 2514

sylow_subgroup() (sympy.combinatorics.permutation_group, method), 386

symarray() (in module sympy.matrices.dense), 1372

symb_2txt (in module sympy.printing.pretty.pretty_symbology), 2260

Symbol, 241

SymbolicSystem (class in sympy.physics.mechanics.system), 1852

symbols() (in module sympy.core.symbol), 1030

symmetric() (sympy.combinatorics.generators, method), 342

symmetric_difference() (sympy.sets.sets.Set, method), 1237

symmetric_poly() (in module sympy.polys.specialpolys), 2514

symmetric_poly()(sympy.polys.rings.PolyRing, method), 2635

symmetric_residue() (in module sympy.ntheory.modular), 1554

SymmetricDifference (class in sympy.sets.sets), 1244

SymmetricGroup() (in module sympy.combinatorics.named_groups), 408

SymmetricPredicate (class in sympy.assumptions.predicates.matrices), 261

symmetrize() (in module sympy.polys.polyfuncs), 2501

symmetrize() (sympy.polys.rings.PolyElement, method), 2640

sympify(), 241

sympify() (in module sympy.core.sympify), 970

sympy.abc module, 931

sympy.algebras module, 932

sympy.assumptions module, 244

sympy.assumptions.ask module, 249
sympy.combinatorics.named_groups module, 408
sympy.combinatorics.partitions module, 306
sympy.combinatorics.perm_groups module, 343
sympy.combinatorics.permutations module, 312
sympy.combinatorics.polyhedron module, 387
sympy.combinatorics.prufer module, 391
sympy.combinatorics.subsets module, 395
sympy.combinatorics.tensor_can module, 425
sympy.combinatorics.testutil module, 423
sympy.combinatorics.util module, 416
sympy.core.add module, 1062
sympy.core.assumptions module, 975
sympy.core.basic module, 979
sympy.core.cache module, 979
sympy.core.containers module, 1114
sympy.core.evalf module, 1111
sympy.core.expr module, 999
sympy.core.exprtools module, 1116
sympy.core.function module, 1087
sympy.core.kind module, 1118
sympy.core.mod module, 1066
sympy.core.mul module, 1058
sympy.core.multidimensional module, 1086
sympy.core.numbers module, 1033
sympy.core.power module, 1055
sympy.core.random module, 1122
sympy.core.relational module, 1067
sympy.core.singleton module, 997
sympy.core.symbol module, 1028
sympy.core.sympify module, 970
sympy.core.traversal module, 1124
sympy.crypto.crypto module, 2846
sympy.diffgeom module, 2883
sympy.discrete module, 1127
sympy.discrete.convolutions module, 1127
sympy.discrete.transforms module, 1127
sympy.functions module, 441
sympy.functions.special.bessel module, 554
sympy.functions.special.beta_functions module, 526
sympy.functions.special.elliptic_integrals module, 583
sympy.functions.special.error_functions module, 528
sympy.functions.special.gamma_functions module, 515
sympy.functions.special.mathieu_functions module, 586
sympy.functions.special.polynomials module, 589
sympy.functions.special.singularity_functions module, 513
sympy.functions.special.zeta_functions module, 571
sympy.geometry.curve module, 2323
sympy.geometry.ellipse module, 2328
sympy.geometry.entity module, 2269
sympy.geometry.line module, 2291
sympy.geometry.plane module, 2378
sympy.geometry.point module, 2277
sympy.geometrypolygon module, 2348
sympy.geometryutil module, 2272
sympy.physics.optics.medium
module, 1939

sympy.physics.optics.polarization
module, 1940

sympy.physics.optics.utils
module, 1952

sympy.physics.optics.waves
module, 1959

sympy.physics.paulialgebra
module, 1984

sympy.physics.qho_1d
module, 1984

sympy.physics.quantum.anticommutator
module, 1860

sympy.physics.quantum.cartesian
module, 1870

sympy.physics.quantum.cg
module, 1861

sympy.physics.quantum.circuitplot
module, 1909

sympy.physics.quantum.commutator
module, 1864

sympy.physics.quantum.constants
module, 1865

sympy.physics.quantum.dagger
module, 1866

sympy.physics.quantum.gate
module, 1911

sympy.physics.quantum.grover
module, 1916

sympy.physics.quantum.hilbert
module, 1871

sympy.physics.quantum.innerproduct
module, 1867

sympy.physics.quantum.operator
module, 1876

sympy.physics.quantum.operatorset
module, 1881

sympy.physics.quantum.piab
module, 1926

sympy.physics.quantum.qapply
module, 1883

sympy.physics.quantum.qft
module, 1919

sympy.physics.quantum.qubit
module, 1919

sympy.physics.quantum.represent
module, 1884

sympy.physics.quantum.shor
module, 1925

sympy.physics.quantum.spin
module, 1889

sympy.physics.quantum.state
module, 1901

sympy.physics.quantum.tensorproduct
module, 1868

sympy.physics.secondquant
module, 1587

sympy.physics.sho
module, 1586

sympy.physics.units.dimensions
module, 1631

sympy.physics.units.prefixes
module, 1634

sympy.physics.units.quantities
module, 1635

sympy.physics.units.unitsystem
module, 1634

sympy.physics.units.util
module, 1636

sympy.physics.vector
module, 1640

sympy.physics.vector.functions
module, 1707

sympy.physics.vector.point
module, 1700

sympy.physics.wigner
module, 1611

sympy.plotting.plot
module, 2904

sympy.plotting.pygletplot
module, 2953

sympy.polys
module, 2435

sympy.polys.numberfields.modules
module, 2800

sympy.polys.numberfields.subfield
module, 2795

sympy.polys.polyconfig
module, 2725

sympy.polys.polyoptions
module, 2724

sympy.polys.solvers
module, 2748

sympy.printing.aesaracode
module, 2241

sympy.printing.c
module, 2213

sympy.printing.codeprinter
module, 2258

sympy.printing.conventions
module, 2258

sympy.printing.cxx
module, 2217

sympy.printing.fortran
module, 2220

sympy.printing.gtk
module, 2245
<table>
<thead>
<tr>
<th>Module Name</th>
<th>Module Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>sympy.printing.jscode</td>
<td>2230</td>
</tr>
<tr>
<td>sympy.printing.julia</td>
<td>2232</td>
</tr>
<tr>
<td>sympy.printing.lambdarepr</td>
<td>2245</td>
</tr>
<tr>
<td>sympy.printing.latex</td>
<td>2245</td>
</tr>
<tr>
<td>sympy.printing.maple</td>
<td>2229</td>
</tr>
<tr>
<td>sympy.printing.mathematica</td>
<td>2227</td>
</tr>
<tr>
<td>sympy.printing.mathml</td>
<td>2250</td>
</tr>
<tr>
<td>sympy.printing.octave</td>
<td>2235</td>
</tr>
<tr>
<td>sympy.printing.precedence</td>
<td>2259</td>
</tr>
<tr>
<td>sympy.printing.pretty</td>
<td>2212</td>
</tr>
<tr>
<td>sympy.printing.pretty.pretty</td>
<td>2212</td>
</tr>
<tr>
<td>sympy.printing.pretty.pretty_symbology</td>
<td>2259</td>
</tr>
<tr>
<td>sympy.printing.pretty.stringpict</td>
<td>2261</td>
</tr>
<tr>
<td>sympy.printing.preview</td>
<td>2256</td>
</tr>
<tr>
<td>sympy.printing.printer</td>
<td>2208</td>
</tr>
<tr>
<td>sympy.printing.pycode</td>
<td>2251</td>
</tr>
<tr>
<td>sympy.printing.python</td>
<td>2252</td>
</tr>
<tr>
<td>sympy.printing.rcode</td>
<td>2217</td>
</tr>
<tr>
<td>sympy.printing.repr</td>
<td>2252</td>
</tr>
<tr>
<td>sympy.printing.rust</td>
<td>2239</td>
</tr>
<tr>
<td>sympy.printing.smtlib</td>
<td>2224</td>
</tr>
<tr>
<td>sympy.printing.str</td>
<td>2253</td>
</tr>
<tr>
<td>sympy.printing.tree</td>
<td>2253</td>
</tr>
<tr>
<td>sympy.sets.conditionset</td>
<td>1257</td>
</tr>
<tr>
<td>sympy.sets.fancysets</td>
<td>1246</td>
</tr>
<tr>
<td>sympy.sets.powerset</td>
<td>1256</td>
</tr>
<tr>
<td>sympy.sets.sets</td>
<td>1229</td>
</tr>
<tr>
<td>sympy.simplify.combsimp</td>
<td>740</td>
</tr>
<tr>
<td>sympy.simplify.cse_main</td>
<td>741</td>
</tr>
<tr>
<td>sympy.simplify.epathtools</td>
<td>744</td>
</tr>
<tr>
<td>sympy.simplify.hyperexpand</td>
<td>743</td>
</tr>
<tr>
<td>sympy.simplify.hyperexpand_doc</td>
<td>754</td>
</tr>
<tr>
<td>sympy.simplify.powsimp</td>
<td>736</td>
</tr>
<tr>
<td>sympy.simplify.radsimp</td>
<td>727</td>
</tr>
<tr>
<td>sympy.simplify.ratsimp</td>
<td>734</td>
</tr>
<tr>
<td>sympy.simplify.simplify</td>
<td>202</td>
</tr>
<tr>
<td>sympy.simplify.sqrtdenest</td>
<td>740</td>
</tr>
<tr>
<td>sympy.simplify.trigsimp</td>
<td>735</td>
</tr>
<tr>
<td>sympy.solvers</td>
<td>882</td>
</tr>
<tr>
<td>sympy.solvers.inequalities</td>
<td>803</td>
</tr>
<tr>
<td>sympy.solvers.ode</td>
<td>807</td>
</tr>
<tr>
<td>sympy.solvers.ode.ode</td>
<td>869</td>
</tr>
<tr>
<td>sympy.solvers.pde</td>
<td>881</td>
</tr>
<tr>
<td>sympy.solvers.recurr</td>
<td>900</td>
</tr>
<tr>
<td>sympy.solvers.solve</td>
<td>905</td>
</tr>
<tr>
<td>sympy.stats</td>
<td>2957</td>
</tr>
<tr>
<td>sympy.stats.crv</td>
<td>3065</td>
</tr>
<tr>
<td>sympy.stats.crv_types</td>
<td>3065</td>
</tr>
<tr>
<td>sympy.stats.Die()</td>
<td>module, 3066</td>
</tr>
<tr>
<td>sympy.stats.frv</td>
<td>module, 3065</td>
</tr>
<tr>
<td>sympy.stats.frv_types</td>
<td>module, 3065</td>
</tr>
<tr>
<td>sympy.stats.Normal()</td>
<td>module, 3066</td>
</tr>
<tr>
<td>sympy.stats.rv</td>
<td>module, 3064</td>
</tr>
<tr>
<td>sympy.tensor</td>
<td>module, 1432</td>
</tr>
</tbody>
</table>
targets (symPy.physics.quantum.gate.UGate
property), 1915
targets (symPy.physics.quantum.grover.Oracle
property), 1917
taxicab_distance()
(symPy.geometry.point.Point
method), 2283
taylor_term() (symPy.core.expr.Expr
method), 1027
taylor_term() (symPy.functions.elementary.exponential.
method), 2262
taylor_term() (symPy.functions.elementary.exponential.
method), 2262
taylor_term() (symPy.functions.elementary.exponential.
method), 2262
taylor_term() (symPy.functions.elementary.exponential.
method), 2262
taylor_term() (symPy.functions.elementary.hyperbolic.
method), 2648
taylor_term() (symPy.functions.elementary.hyperbolic.
method), 2648
taylor_term() (symPy.functions.elementary.hyperbolic.
method), 2648
taylor_term() (symPy.functions.elementary.hyperbolic.
method), 2648
TC() (symPy.polys.polyclasses.ANP
method), 2650
TC() (symPy.polys.polyclasses.DMP
method), 2643
TC() (symPy.polys.polytools.Poly
method), 2496
TensAdd (class in symPy.tensor.tensor), 1462
TensExpr (class in symPy.tensor.tensor), 1461
TensMul (class in symPy.tensor.tensor), 1464
tensor_heads() (in module
symPy.tensor.tensor), 1461
tensor_product_simp() (in module
symPy.physics.quantum.tensorproduct), 1869
tensorcontraction() (in module
symPy.tensor.array), 1438
tensordiagonal() (in module
symPy.tensor.array), 1440
TensorHead (class in symPy.tensor.tensor), 1459
TensorIndex (class in symPy.tensor.tensor), 1458
TensorIndexType (class in
symPy.tensor.tensor), 1457
TensorPowerHilbertSpace (class in
symPy.physics.quantum.hilbert), 1874
TensorProduct (class in symPy.diffgeom),
2895
TensorProduct (class in
symPy.physics.quantum.tensorproduct), 1868
tensorproduct() (in module
symPy.tensor.array), 1439
TensorProductHilbertSpace (class in
symPy.physics.quantum.hilbert), 1875
TensorSymmetry (class in
symPy.tensor.tensor), 1467
tensorsymmetry() (in module
symPy.tensor.tensor), 1469
TensorType (class in symPy.tensor.tensor),
1469
term_to_integer() (in module
symPy.logic.boolalg), 1225
terminal_width() (symPy.printing.pretty.stringpict.
method), 2262
terms() (symPy.polys.polyclasses.DMP
method), 2648
terms() (symPy.polys.polytools.Poly
method), 2496
terms() (symPy.polys.rings.PolyElement
method), 2641
terms_gcd() (in module
symPy.polys.polytools), 2441
terms_gcd() (symPy.polys.polyclasses.DMP
method), 2648
terms_gcd() (symPy.polys.polytools.Poly
method), 2496
termwise() (symPy.polys.polytools.Poly
method), 2496
test() (in module symPy.testing.runtests), 2106
test_derivative_numerically() (in module
symPy.core.random), 1123
test_factor() (symPy.polys.numberfields.primes.PrimeIdeal
method), 2791
TextBackend (class in symPy.plotting.plot),
2953
textplot() (in module
symPy.plotting.textplot), 2956
TGate (class in symPy.physics.quantum.gate),
1914
ThinLens (class in
symPy.physics.optics.gaussopt), 1934
threaded() (in module
symPy.utilities.decorator), 2131
threaded_factory() (in module
symPy.utilities.decorator), 2131
Three-valued logic, 242
time (symPy.physics.quantum.state.TimeDepState
property), 1905
time_derivative() (in module
symPy.physics.vector.functions), 1716
time_period (symPy.physics.optics.waves.TWave
property), 1961
timed() (in module symPy.utilities.timeutils),
2189
TimeDepBra (class in

topological_sort()
to_sympy() (sympy.polys.domains.AlgebraicField method), 2626
to_sympy() (sympy.polys.domains.ComplexField method), 2627
toSympy() (sympy.polys.domains.domain.Domain method), 2597
toSympy() (sympy.polys.domains.ExpressionDomain method), 2649

toSympy() (sympy.polys.domains.FractionField method), 2630
toSympy() (sympy.polys.domains.gaussiandomains.Gausiandomain method), 2613
toSympy() (sympy.polys.domains.GMPYIntegerRing method), 2609
toSympy() (sympy.polys.domains.GMPYRationalField method), 2612
toSympy() (sympy.polys.domains.IntegerRing method), 2608

toSympy() (sympy.polys.domains.RationalField method), 2611
toSympy() (sympy.polys.domains.RealField method), 2626
toSympy_dict() (sympy.polys.polyclasses.DMP method), 2651

toSympy_dict() (sympy.polys.polyclasses.ANP method), 2622
toSympy_list() (sympy.polys.polyclasses.ANP method), 2651
toSympy_list() (sympy.polys.polyclasses.DMP method), 2649
toSympy_list() (sympy.polys.polyclasses.Poly method), 2649
toSympy_list() (sympy.polys.polyclasses.Poly method), 2649
toSympy_list() (sympy.combinatorics.pruefer.Pruefer static method), 394
toSympy_list() (sympy.combinatorics.pruefer.Pruefer static method), 394
to_tuple() (sympy.polys.polyclasses.ANP method), 2651
to_tuple() (sympy.polys.polyclasses.DMP method), 2649
to_tuple() (sympy.polys.rationaltools), 2521
together() (in module sympy.polys.rationaltools), 2521
together() (in module sympy.core.expr.Expr method), 1027

together() (in module sympy.polys.rationaltools), 2521
together() (in module sympy.core.expr.Expr method), 1027
Token (class in sympy.codegen.ast), 1181
tolist() (sympy.matrices.common.MatrixCommon method), 1400
topological_sort() (in module sympy.utilities.iterables), 2168

SymPy Documentation, Release 1.12.1

Index

method, 2770
toSympy() (sympy.polys.domains.AlgebraicField method), 2626
toSympy() (sympy.polys.domains.ComplexField method), 2627
toSympy() (sympy.polys.domains.domain.Domain method), 2597
toSympy() (sympy.polys.domains.ExpressionDomain method), 2649
toSympy() (sympy.polys.domains.FractionField method), 2630
toSympy() (sympy.polys.domains.gaussiandomains.Gausiandomain method), 2613
toSympy() (sympy.polys.domains.GMPYIntegerRing method), 2609
toSympy() (sympy.polys.domains.GMPYRationalField method), 2612
toSympy() (sympy.polys.domains.IntegerRing method), 2608
toSympy() (sympy.polys.domains.RationalField method), 2611
toSympy() (sympy.polys.domains.RealField method), 2626
toSympy_dict() (sympy.polys.polyclasses.DMP method), 2651

toSympy_dict() (sympy.polys.polyclasses.ANP method), 2622
toSympy_list() (sympy.polys.polyclasses.ANP method), 2651
toSympy_list() (sympy.polys.polyclasses.DMP method), 2649
toSympy_list() (sympy.polys.polyclasses.Poly method), 2649
toSympy_list() (sympy.combinatorics.pruefer.Pruefer static method), 394
toSympy_list() (sympy.combinatorics.pruefer.Pruefer static method), 394
to_tuple() (sympy.polys.polyclasses.ANP method), 2651
to_tuple() (sympy.polys.polyclasses.DMP method), 2649
to_tuple() (sympy.polys.polyclasses.DMP method), 2649
to_tuple() (sympy.polys.polyclasses.DMP method), 2649
together() (in module sympy.ntheory.factor_.), 1546
together() (in module sympy.ntheory.factor_), 1546

together() (in module sympy.ntheory.factor_), 1546
together() (in module sympy.ntheory.factor_), 1546
together() (in module sympy.ntheory.factor_), 1546
together() (in module sympy.ntheory.factor_), 1546
together() (in module sympy.ntheory.factor_), 1546
together() (in module sympy.ntheory.factor_), 1546

together() (in module sympy.ntheory.factor_), 1546
together() (in module sympy.ntheory.factor_), 1546
together() (in module sympy.ntheory.factor_), 1546
together() (in module sympy.ntheory.factor_), 1546
together() (in module sympy.ntheory.factor_), 1546
together() (in module sympy.ntheory.factor_), 1546
together() (in module sympy.ntheory.factor_), 1546
together() (in module sympy.ntheory.factor_), 1546
together() (in module sympy.ntheory.factor_), 1546

together() (in module sympy.ntheory.factor_), 1546
together() (in module sympy.ntheory.factor_), 1546
together() (in module sympy.ntheory.factor_), 1546
together() (in module sympy.ntheory.factor_), 1546
together() (in module sympy.ntheory.factor_), 1546
together() (in module sympy.ntheory.factor_), 1546
together() (in module sympy.ntheory.factor_), 1546
together() (in module sympy.ntheory.factor_), 1546

method, 1173
toSympy() (sympy.physics.continuum_mechanics.beam.Beam3D method), 1982
toSympy() (sympy.physics.continuum_mechanics.beam.Beam3D method), 1982
toSympy() (sympy.physics.control.lti.TransferFunctionMatrix class), 1963
toSympy() (sympy.physics.control.lti.TransferFunctionMatrix class), 1963
toSympy() (sympy.physics.control.lti.TransferFunctionMatrix class), 1963
toSympy() (sympy.physics.control.lti.TransferFunctionMatrix class), 1963

toSympy() (sympy.physics.control.lti.TransferFunctionMatrix class), 1963
toSympy() (sympy.physics.control.lti.TransferFunctionMatrix class), 1963
toSympy() (sympy.physics.control.lti.TransferFunctionMatrix class), 1963
toSympy() (sympy.physics.control.lti.TransferFunctionMatrix class), 1963
toSympy() (sympy.physics.control.lti.TransferFunctionMatrix class), 1963
toSympy() (sympy.physics.control.lti.TransferFunctionMatrix class), 1963
toSympy() (sympy.physics.control.lti.TransferFunctionMatrix class), 1963
toSympy() (sympy.physics.control.lti.TransferFunctionMatrix class), 1963
transform() (sympy.geometry.point.Point2D method), 2285
transform() (sympy.geometry.point.Point3D method), 2289
transform() (sympy.integrals.integrals.IntegralTransforms() (sympy.combinatorics.permutations.PermutationGroup property), 338
transform() (sympy.polys.polyclasses.DMP method), 2649
transform() (sympy.polys.polytools.Poly method), 2498
transform_variable (sympy.integrals.transforms.IntegralTransform property), 646
transformation() (sympy.diffgeom.CoordSystem method), 2889
transformation_to_DN() (in module sympy.solvers.diophantine.diophantine), 782
transformation_to_normal() (in module sympy.solvers.diophantine.diophantine), 784
transition_probabilities (sympy.stats.DiscreteMarkovChain property), 3035
transitivity_degree (sympy.combinatorics.perm_groups.PermutationGroup property), 386
translate() (in module sympy.utilities.misc), 2187
translate() (sympy.geometry.curve.Curve method), 2327
translate() (sympy.geometry.entity.GeometryEntity sympy.simplify.trigsimp) (sympy.core.expr.Expr method), 1027
translate() (sympy.geometry.point.Point2D method), 2285
translate() (sympy.geometry.point.Point3D method), 2289
translation_coordinate (sympy.physics.mechanics.joint.CylindricalJoint property), 1835
translation_speed (sympy.physics.mechanics.joint.CylindricalJoint property), 1835
transmissive_filter() (in module sympy.physics.optics.polarization), 1951
Transpose (class in sympy.matrices.expressions), 1419
transpose() (sympy.matrices.common.MatrixCommon method), 2091
transpose() (sympy.matrices.expressions.blockmatrix.BlockMatrix method), 1429
transpose() (sympy.matrices.exprtools.Matrix method), 1993
transpose() (sympy.polys.matrices.domainmatrix.DomainMatrix method), 2771
transpose() (sympy.polys.matrices.sdm.SDM method), 2782
transverse_magnification() (in module sympy.physics.optics.util), 1958
tree() (in module sympy.printing.tree), 2254
tree_cse() (in module sympy.simplify.cse_main), 2327
tree_repr (sympy.combinatorics.prufer.Prufer property), 394
Triangle (class in sympy.geometry.polygon), 2368
Triangular() (in module sympy.stats), 3010
TriangularPredicate (class in sympy.assumptions.predicates.matrices), 271
tribonacci (class in sympy.functions.combinatorial.numbers), 494
TribonacciConstant (class in sympy.core.numbers), 1052
trigamma (class in sympy.functions.special.gamma_functions), 522
trigintegrate() (in module sympy.integrals.trigonometry), 648
trigsimp() (in module sympy.core.expr.Expr method), 1027
TRmorrie() (in module sympy.simplify.fu), 765
TRpower() (in module sympy.simplify.fu), 767
trunc() (in module sympy.polys.polynomials), 2443
trunc() (sympy.polys.matrices.domainmatrix.DomainMatrix method), 2649
Truss (class in sympy.physics.continuum_mechanics.truss), 2091
truth_table() (in module sympy.logic.boolalg), 1224
Tuple (class in sympy.core.containers), 1114
TupleKind (class in sympy.core.containers), 1115
TWave (class in sympy.physics.optics.waves), 1959
two_qubit_box() (sympy.physics.quantum.circuitplot.CircuitPlot method), 1910
twoform_to_matrix() (in module sympy.diffgeom), 2902
TwoQubitGate (class in sympy.physics.quantum.gate), 1914
Type (class in sympy.codegen.ast), 1182
TypeA (class in sympy.liealgebras.type_a), 2403
TypeB (class in sympy.liealgebras.type_b), 2404
TypeC (class in sympy.liealgebras.type_c), 2406
TypeD (class in sympy.liealgebras.type_d), 2407
TypeE (class in sympy.liealgebras.type_e), 2409
TypeF (class in sympy.liealgebras.type_f), 2410
TypeG (class in sympy.liealgebras.type_g), 2411

U
u (sympy.physics.mechanics.joints method Joint property), 1852
U() (in module sympy.printing.pretty.pretty_symbology), 2259
udivisor_count() (in module sympy.ntheory.factor), 1544
udivisor_sigma (class in sympy.ntheory.factor), 1548
udivisors() (in module sympy.ntheory.factor), 1544
UDLdecomposition() (sympy.matrices.expressions.blockmatrix method), 1427
ufuncify() (in module sympy.utilities.autowrap), 2114
UfuncifyCodeWrapper (class in sympy.utilities.autowrap), 2111
UGate (class in sympy.physics.quantum.gate), 1914
uncouple() (in module sympy.physics.quantum.spin), 1899
Undefined Function, 242
UndefinedKind (in module sympy.core.kind), 1118
UndefinedPredicate (class in sympy.assumptions.assume), 254

Unequality (class in sympy.core.relational), 1079
Unevaluated, 242
UnevaluatedExpr (class in sympy.core.expr), 1118
unflatten() (in module sympy.utilities.iterables), 2170
UnificationFailed (class in sympy.polys.polyerrors), 2726
Uniform() (in module sympy.stats), 3012
UniformSum() (in module sympy.stats), 3013
unify() (sympy.polys.domains.domain.Domain method), 2599
unify() (sympy.polys.matrices.domainmatrix DomainMatrix method), 2771
unify() (sympy.polys.numberfields.modules.ModuleElement method), 2815
unify() (sympy.polys.polynomials ANP method), 2851
unify() (sympy.polys.polynomials DMP method), 2649
unify() (sympy.polys.polytools Poly method), 2498
union (class in sympy.codegen.cnodes), 1193
Union (class in sympy.sets.Set), 1241
union() (sympy.polys.agca.ideals Ideal method), 2544
union() (sympy.polys.agca.modules.SubModule method), 2541
union() (sympy.series.gruntz SubsSet method), 684
UnionOperator (class in sympy.physics.quantum.operator), 1881
UnitaryPredicate (class in sympy.assumptions.predicates.matrices), 264
UnitSystem (class in sympy.physics.units.unitSystem), 1634
UnitTriangularPredicate (class in sympy.assumptions.predicates.matrices), 272
Univariate (class in sympy.solvers.diophantine), 799
UnivariatePolynomialError (class in sympy.printing.pretty.printer), 902

Index 3263
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vech()</td>
<td>(sympy.matrices.common.MatrixCommon method), 1402</td>
</tr>
<tr>
<td>Vector</td>
<td>(class in sympy.physics.vector.vector), 1689</td>
</tr>
<tr>
<td>Vector</td>
<td>(class in sympy.vector.vector), 1502</td>
</tr>
<tr>
<td>vector_coplanar()</td>
<td>(sympy.algebras.Quaternion class method), 949</td>
</tr>
<tr>
<td>vector_integrate()</td>
<td>(in module sympy.vector.integrals), 1502</td>
</tr>
<tr>
<td>vector_part()</td>
<td>(sympy.algebras.Quaternion method), 950</td>
</tr>
<tr>
<td>vectorize</td>
<td>(class in sympy.core.multidimensional), 1086</td>
</tr>
<tr>
<td>vectors_in_basis()</td>
<td>(in module sympy.diffgeom), 2901</td>
</tr>
<tr>
<td>vel()</td>
<td>(sympy.physics.vector.point.Point method), 1706</td>
</tr>
<tr>
<td>verify_numerically()</td>
<td>(in module sympy.diffgeom), 1123</td>
</tr>
<tr>
<td>vertices</td>
<td>(sympy.combinatorics.polyhedron.Polyhedron property), 390</td>
</tr>
<tr>
<td>vertices</td>
<td>(sympy.geometry.polygon.Polygon property), 2359</td>
</tr>
<tr>
<td>vertices</td>
<td>(sympy.geometry.polygon.RegularPolygon property), 2368</td>
</tr>
<tr>
<td>vertices</td>
<td>(sympy.geometry.polygon.Triangle property), 2378</td>
</tr>
<tr>
<td>VF()</td>
<td>(in module sympy.printing.pretty.pretty_symbology), 2260</td>
</tr>
<tr>
<td>vfield()</td>
<td>(in module sympy.polys.fields), 2642</td>
</tr>
<tr>
<td>viete()</td>
<td>(in module sympy.polys.polyfuncs), 2503</td>
</tr>
<tr>
<td>vlatex()</td>
<td>(in module sympy.physics.vector.printing), 1713</td>
</tr>
<tr>
<td>vobj()</td>
<td>(in module sympy.printing.pretty.pretty_symbology), 2260</td>
</tr>
<tr>
<td>VonMises()</td>
<td>(in module sympy.stats), 3014</td>
</tr>
<tr>
<td>vpprint()</td>
<td>(in module sympy.physics.vector.printing), 1712</td>
</tr>
<tr>
<td>vprint()</td>
<td>(in module sympy.physics.vector.printing), 1712</td>
</tr>
<tr>
<td>vradius</td>
<td>(sympy.geometry.ellipse.Circle property), 2347</td>
</tr>
<tr>
<td>vradius</td>
<td>(sympy.geometry.ellipse.Ellipse property), 2344</td>
</tr>
<tr>
<td>vring()</td>
<td>(in module sympy.polys.rings), 2633</td>
</tr>
<tr>
<td>vstack()</td>
<td>(sympy.matrices.common.MatrixCommon class method), 1403</td>
</tr>
<tr>
<td>vstack()</td>
<td>(sympy.polys.matrices.sdm.SDM method), 2772</td>
</tr>
<tr>
<td>vstack()</td>
<td>(sympy.polys.matrices.ddm/DDM method), 2782</td>
</tr>
<tr>
<td>W</td>
<td>w(sympy.physics.optics.gaussoptBeamParameter property), 1928</td>
</tr>
<tr>
<td>w_0</td>
<td>(sympy.physics.optics.gaussoptBeamParameter property), 1928</td>
</tr>
<tr>
<td>waist2rayleigh()</td>
<td>(in module sympy.physics.optics.gaussopt), 1938</td>
</tr>
<tr>
<td>waist_approximation_limit</td>
<td>(sympy.physics.optics.gaussoptBeamParameter property), 1929</td>
</tr>
<tr>
<td>Wald()</td>
<td>(in module sympy.stats), 3015</td>
</tr>
<tr>
<td>walk()</td>
<td>(in module sympy.core.traversal), 1126</td>
</tr>
<tr>
<td>warns()</td>
<td>(in module sympy.testing.pytest), 2099</td>
</tr>
<tr>
<td>warns_deprecated_sympy()</td>
<td>(in module sympy.testing.pytest), 2100</td>
</tr>
<tr>
<td>Wavefunction</td>
<td>(class in sympy.physics.quantum.state), 1905</td>
</tr>
<tr>
<td>wavelength</td>
<td>(sympy.physics.optics.waves.TWave property), 1961</td>
</tr>
<tr>
<td>wavenumber</td>
<td>(sympy.physics.optics.waves.TWave property), 1962</td>
</tr>
<tr>
<td>weak</td>
<td>(sympy.core.relational.Relational property), 1070</td>
</tr>
<tr>
<td>WedgeProduct</td>
<td>(class in sympy.diffgeom), 2896</td>
</tr>
<tr>
<td>Weibull()</td>
<td>(in module sympy.stats), 3016</td>
</tr>
<tr>
<td>WeldJoint</td>
<td>(class in sympy.physics.mechanics.joint), 1846</td>
</tr>
<tr>
<td>WeylGroup</td>
<td>(class in sympy.liealgebras.weyl_group), 2413</td>
</tr>
<tr>
<td>WGate</td>
<td>(in module sympy.physics.quantum.grover), 1917</td>
</tr>
<tr>
<td>where()</td>
<td>(in module sympy.stats), 3049</td>
</tr>
<tr>
<td>While</td>
<td>(class in sympy.codegen.ast), 1186</td>
</tr>
<tr>
<td>whole_submodule()</td>
<td>(sympy.polys.numberfields.modules.Module method), 2809</td>
</tr>
<tr>
<td>wicks()</td>
<td>(in module sympy.physics.secondquant), 1611</td>
</tr>
<tr>
<td>width</td>
<td>(sympy.categories.diagram_drawing.DiagramGrid property), 2839</td>
</tr>
<tr>
<td>width()</td>
<td>(sympy.printing.pretty.stringpict.stringPict method), 2263</td>
</tr>
<tr>
<td>WienerProcess</td>
<td>(class in sympy.stats), 3039</td>
</tr>
<tr>
<td>Wigner3j</td>
<td>(class in sympy.physics.quantum.cg), 1862</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>Ynm</td>
<td>(class in sympy.functions.special.spherical_harmonics), 603</td>
</tr>
<tr>
<td>Ynm_c</td>
<td>(in module sympy.functions.special.spherical_harmonics), 605</td>
</tr>
<tr>
<td>Y0p</td>
<td>(class in sympy.physics.quantum.cartesian), 1871</td>
</tr>
<tr>
<td>YuleSimon</td>
<td>() (in module sympy.stats), 2970</td>
</tr>
<tr>
<td>Z</td>
<td>(in module sympy.physics.quantum.gate), 1915</td>
</tr>
<tr>
<td>z</td>
<td>(sympy.geometry.point.Point3D property), 2290</td>
</tr>
<tr>
<td>z</td>
<td>(sympy.physics.mechanics.body.Body property), 1810</td>
</tr>
<tr>
<td>z</td>
<td>(sympy.physics.vector.frame.ReferenceFrame property), 1689</td>
</tr>
<tr>
<td>zdirection</td>
<td>(sympy.geometry.line.Ray3D property), 2321</td>
</tr>
<tr>
<td>zero,</td>
<td>976</td>
</tr>
<tr>
<td>Zero</td>
<td>(class in sympy.core.numbers), 1045</td>
</tr>
<tr>
<td>zero</td>
<td>(sympy.polys.domains.domain.Domain attribute), 2599</td>
</tr>
<tr>
<td>zero</td>
<td>(sympy.polys.polytools.Poly property), 2499</td>
</tr>
<tr>
<td>zero()</td>
<td>(sympy.polys.numberfields.modules.Module method), 2809</td>
</tr>
<tr>
<td>ZeroMatrix</td>
<td>(class in sympy.matrices.expressions), 1423</td>
</tr>
<tr>
<td>ZeroPredicate</td>
<td>(class in sympy.assumptions.predicates.order), 277</td>
</tr>
<tr>
<td>zeros()</td>
<td>(in module sympy.matrices.dense), 1359</td>
</tr>
<tr>
<td>zeros()</td>
<td>(sympy.matrices.common.MatrixCommon class method), 1404</td>
</tr>
<tr>
<td>zeros()</td>
<td>(sympy.physics.control.lti.TransferFunction method), 1971</td>
</tr>
<tr>
<td>zeros()</td>
<td>(sympy.polys.matrices.domainmatrix.DomainMatrix class method), 2772</td>
</tr>
<tr>
<td>zeros()</td>
<td>(sympy.polys.matrices.sdm.SDM class method), 2782</td>
</tr>
<tr>
<td>zeta</td>
<td>(class in sympy.functions.special.zeta_functions), 571</td>
</tr>
<tr>
<td>Zeta()</td>
<td>(in module sympy.stats), 2970</td>
</tr>
<tr>
<td>ZGate</td>
<td>(class in sympy.physics.quantum.gate), 1915</td>
</tr>
<tr>
<td>Znm</td>
<td>(class in sympy.functions.special.spherical_harmonics), 605</td>
</tr>
<tr>
<td>zoo,</td>
<td>242</td>
</tr>
<tr>
<td>Z0p</td>
<td>(class in sympy.physics.quantum.cartesian), 1871</td>
</tr>
</tbody>
</table>