"Fossies" - the Fresh Open Source Software Archive 
Member "pari-2.13.1/src/test/in/trans2" (4 Jan 2021, 2435 Bytes) of package /linux/misc/pari-2.13.1.tar.gz:
As a special service "Fossies" has tried to format the requested text file into HTML format (style:
standard) with prefixed line numbers.
Alternatively you can here
view or
download the uninterpreted source code file.
See also the latest
Fossies "Diffs" side-by-side code changes report for "trans2":
2.13.0_vs_2.13.1.
1 OVERFLOW_EXPONENT=if(sizebyte(0)==16, 2^50, 2^20);
2 default(realprecision,38);
3 default(parisize,20*10^6);
4 exp(quadgen(5))
5 exp(Mod(x,x^2+1))
6 iferr(exp(""),E,E)
7 N=2^64;
8 O(2^0)^N
9 iferr(O(2^0)^-N,E,E)
10 0^N
11 Pol(1)^N
12 (8+O(x^2))^(1/3)
13 (8+O(x^2))^(1/2)
14 sqrt(Mod(1,y)*(1+x+O(x^2)))
15 sqrt(4+x+O(x^2))
16 iferr(O(x)^0.5,E,E)
17 O(1)^0.5
18 (1+x+O(x^2))^0.5
19 iferr(O(x)^((2^65)/3),E,E)
20 iferr(""^0,E,E)
21 iferr(0^Mod(1,3),E,E)
22 N=2^16; y=x^N;
23 y^3
24 iferr(y^OVERFLOW_EXPONENT,E,E)
25 iferr(0.^(2.^64),E,E)
26 agm(1,1)
27 agm(-1,1)
28 agm(1+x+O(x^10),1)
29 agm(1,[1,2])
30 log(4+O(3^4))
31
32 obj=[Mod(1,3), O(3^5), 3 + O(3^5),I];
33 test(f,p)=print(iferr(f(p),E,E));
34 [test(f,p) | f<-[exp,log,cos,sin,tan,cotan];p<-obj];
35 tan(1+I)
36 tan(-127336279536511925./2^49)
37 cotan(2)
38 asin(1+O(x^3))
39 asin(-1+O(x^3))
40 asinh(I+O(x^3))
41 asinh(-I+O(x^3))
42 acosh(1+O(x^3))
43 acosh(1+x^2+O(x^3))
44 acosh(2+x+O(x^3))
45 acos(1+O(x^3))
46 sinh(I)
47 tan(1+10^18*I)
48 tan(1-10^18*I)
49 cotan(1+10^18*I)
50 cotan(1-10^18*I)
51 w=Pi/4;
52 test(z)= my(a=expm1(z),b=exp(z)-1); printf("%.1e\n", abs(a-b)/abs(a));
53 for (i=0,7, z=1e-20+i*w; test(z))
54 for (i=0,7, z=1e-20+i*w+I; test(z))
55 erfc(1/2+I)
56 erfc(-1/2+I)
57 expm1(3+O(3^2))
58 expm1(x)
59 expm1(O(x))
60 expm1(1e-20+x+O(x^2))
61 expm1(3/4)
62 expm1(1)
63 forstep(x=1, 1+2*Pi, Pi/2, if(abs(expm1(I*x)-exp(I*x)+1) > 1e-38,print(x)))
64
65 log1p(x + O(x^5))
66 log1p(1e-10 + x + O(x^5))
67 log1p(O(x))
68 log1p(1/10^10)
69 log1p(1e-10)
70 log1p(1e-20)
71 log1p(1e-10*(1+I))
72 log1p(1e-20*(1+I))
73 log1p(2+O(5^3))
74
75 a=-1633048355459347662258066616498.+ 107206003159399666971219664801296.*I;
76 acosh(a)
77 asinh(a)
78
79 localprec(1310); precision(imag(cos(Pi*(1+I/2^2048)))) >= 1310
80
81 localprec(1000); abs(sinh(1e-500)-1e-500) < 2e-1500
82
83 sinc(0)
84 sinc(1/2)
85 sinc(10*I)
86 sinc(1+I)
87 sinc(O(3^2))
88 sinc(3+O(3^4))
89 sinc(2+O(3^2))
90 sinc(x)
91 sinc(1/x)
92 sinc(0.*I)
93 sinc(O(3^4)*I)
94 sinc((1+O(3^3)) * x)
95 sinc(Pi * x)
96
97 localprec(2003); log(exp(1.5)) - 1.5
98
99 localbitprec(320); obj=[1.2, 2.1*I, 1+1.1*I];
100 {
101 fun=[exp,expm1,log,arg,
102 cos,sin,tan,cotan,sinc,
103 cosh,sinh,tanh,cotanh,
104 acos,asin,atan,
105 acosh,asinh,atanh,
106 sqrt,x->sqrtn(x,3),
107 gamma,lngamma,psi,zeta];
108 for (i=1, #fun,
109 my (f = fun[i]);
110 print1(f,": " ); print([bitprecision(f(p)) | p<-obj]));
111 }
112
113 tst(f, z) =
114 {
115 localbitprec(64); a = f(z * 1.);
116 localbitprec(128);b = f(z * 1.); exponent(b/a - 1);
117 }
118 z = -0xffffffffffffffd6 / 2^64; tst(atanh,z)
119 z = -0xffffffffffffffeb / 2^64; tst(atanh,z)
120 z = 0x1000000000000004 / 2^60; tst(acosh,z)
121 z = 0x33bc6d3d39ebfccc8 / 2^56; tst(tan,z)