"Fossies" - the Fresh Open Source Software Archive

Member "pari-2.13.1/src/test/32/mf" (14 Jan 2021, 79038 Bytes) of package /linux/misc/pari-2.13.1.tar.gz:


As a special service "Fossies" has tried to format the requested text file into HTML format (style: standard) with prefixed line numbers. Alternatively you can here view or download the uninterpreted source code file. See also the latest Fossies "Diffs" side-by-side code changes report for "mf": 2.13.0_vs_2.13.1.

    1   ***   Warning: new stack size = 40000000 (38.147 Mbytes).
    2 
    3 [  "Factors" 0 0 0 0]
    4 
    5 [ "Divisors" 0 0 0 0]
    6 
    7 [        "H" 0 0 0 0]
    8 
    9 ["CorediscF" 0 0 0 0]
   10 
   11 [ "Dihedral" 0 0 0 0]
   12 
   13 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
   14 [Mod(-1/5*t - 2/5, t^2 + 1), Mod(1, t^2 + 1), Mod(4*t + 1, t^2 + 1), Mod(-9*
   15 t + 1, t^2 + 1), Mod(4*t - 15, t^2 + 1), Mod(1, t^2 + 1), Mod(-5*t + 37, t^2
   16  + 1), Mod(49*t + 1, t^2 + 1), Mod(-60*t - 15, t^2 + 1), Mod(-9*t - 80, t^2 
   17 + 1), Mod(4*t + 1, t^2 + 1), Mod(122, t^2 + 1), Mod(139*t + 21, t^2 + 1), Mo
   18 d(-169*t + 1, t^2 + 1), Mod(53*t - 195, t^2 + 1), Mod(-9*t + 1, t^2 + 1)]
   19 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
   20 [0, 1, 0, 8, 0, -26, 0, -48, 0, 73, 0, 120, 0, -170, 0, -208]
   21 5
   22 23
   23 40000
   24 20000
   25 0
   26 [0, 8]~
   27 [16, -4]~
   28 [16, -32, 256]~
   29 [64/5, 4/5, 32/5]~
   30 
   31 [     0]
   32 
   33 [     1]
   34 
   35 [     0]
   36 
   37 [  -516]
   38 
   39 [     0]
   40 
   41 [-10530]
   42 
   43 [     0]
   44 
   45 [ 49304]
   46 
   47 [     0]
   48 
   49 [ 89109]
   50 
   51 [     0]
   52 
   53 
   54 [      0     0   0      0]
   55 
   56 [      1     0   0      1]
   57 
   58 [    -24     1   0      0]
   59 
   60 [    252     0   0   -516]
   61 
   62 [  -1472   -24   1      0]
   63 
   64 [   4830     0   0 -10530]
   65 
   66 [  -6048   252   0      0]
   67 
   68 [ -16744     0   0  49304]
   69 
   70 [  84480 -1472 -24      0]
   71 
   72 [-113643     0   0  89109]
   73 
   74 [-115920  4830   0      0]
   75 
   76 
   77 [      0     0   0 0]
   78 
   79 [    -24     1   0 0]
   80 
   81 [  -1472   -24   1 0]
   82 
   83 [  -6048   252   0 0]
   84 
   85 [  84480 -1472 -24 0]
   86 
   87 [-115920  4830   0 0]
   88 
   89 [[43/64, 129/8, 1376, 21/64]~, [0, 1, 0; 768, 24, 0; 18432, 2048, 768; 0, -1
   90 , 0]]
   91 [[43/64, -63/8, 800, 21/64]~, [1, 0; 24, 0; 2048, 768; -1, 0]]
   92 [[1, 0, 1472, 0]~, [0; 0; 768; 0]]
   93 [1, 0, 0, 0]~
   94 [1, [1, 1]]
   95 [1, 0, 0, 0]~
   96 [1, 0, 0, 0]~
   97 []
   98 [1]
   99 []
  100 []
  101 [0, 0]
  102 []
  103 [0, 0]
  104 0
  105 10
  106 0
  107 1
  108 0
  109 0
  110 0
  111 1
  112 []
  113 [[1, Mod(0, 1), 0, 0]]
  114 0
  115 1
  116 0
  117 0
  118 [[0, 0], [0, 0], [0, 0], [0, 0]]
  119 [[1, 0], [0, 0], [0, 0], [1, 0]]
  120 77291
  121 29586
  122 65034
  123 [[11/32, 1/64, 1/32; 1/32, -9/64, -5/32; -1/8, 3/16, 1/8; -5/32, 1/64, 1/32;
  124  -5/32, -7/64, 1/32; -1/8, 1/16, 1/8; -3/32, 3/64, -1/32; -1/16, 3/32, 1/16;
  125  -1/32, -3/64, -3/32; -1/32, 5/64, -3/32; 0, 0, 0], [y, y, y, y^4 - y^3 - 5*
  126 y^2 + 3*y + 4, y^4 - y^3 - 8*y^2 + 4*y + 12]]
  127 [y, y, y]
  128 [y, y, y]
  129 [y, y, y]
  130 [y, y, y, y^4 - y^3 - 5*y^2 + 3*y + 4, y^4 - y^3 - 8*y^2 + 4*y + 12]
  131 [y^40 + y^38 - 22*y^36 - 488*y^34 + 200*y^32 + 61712*y^30 + 53952*y^28 - 211
  132 6352*y^26 - 23962624*y^24 + 95379456*y^22 + 2793799680*y^20 + 6104285184*y^1
  133 8 - 98150907904*y^16 - 554788978688*y^14 + 905164357632*y^12 + 6626275544268
  134 8*y^10 + 13743895347200*y^8 - 2146246697418752*y^6 - 6192449487634432*y^4 + 
  135 18014398509481984*y^2 + 1152921504606846976]
  136 [y, y^2 + Mod(-2*t, t^2 + t + 1), y^5 + Mod(t + 1, t^2 + t + 1)*y^4 + Mod(-3
  137 7*t, t^2 + t + 1)*y^3 + 21*y^2 + Mod(-288*t - 288, t^2 + t + 1)*y + Mod(64*t
  138 , t^2 + t + 1)]
  139 [1, 1]
  140 1
  141 [[2, Mod(22, 23), 1, 0], [22, Mod(5, 23), 1, 0]]
  142 []
  143 0
  144 6
  145 2
  146 [0, 3, -1, 0, 3, 1, -8, -1, -9, 1, -1, -2, 4, 10, 1, -2, 7, -2, 7, -4]
  147 [0, -1, 9, -8, -11, -1, 4, 1, 13, 7, 9, 8, -20, 6, -9, -8, -27, -6, 5, 20]
  148 [0, 2, 8, -8, -8, 0, -4, 0, 4, 8, 8, 6, -16, 16, -8, -10]
  149 [0, 0, -3, 28, -33, -28, 34, 6, -113, 88, 33, 128, 108, -62, -17, 6]
  150 [0, 1, 17, -16, -19, -1, 0, 1, 17, 15, 17, 14, -36, 22, -17, -18]
  151 [0, 3, -1, 0, 3, 1, -8, -1, -9, 1, -1, -2, 4, 10, 1, -2, 7, -2, 7, -4, 7, 2,
  152  8, -8, -4, 3, 6, -12, -7, 4, -8, -4, -9, -12, -6, -3, 3, 14, 20, -6, -9, -1
  153 0, 8, 0, 0, 5, -16, 4, 28, 3]
  154 [0, -8, 4, 4, -20, -8, 32, 8, 36, -12, 4, -4, -24, -20, -4, 4]
  155 [0, 0, 3, 0, -1, 0, 0, 0, 3, 0, 1, 0, -8, 0, -1, 0]
  156 [0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, -1, 0, 0, 0]
  157 [0, 3, -1, 0, 3, -1, 8, 0, -9, 1, 1, -2, -4, -10, 0, -2]
  158 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
  159 [0, 1/2, 1/3, 1/4, 3/4, 1/6, 1/8, 3/8, 1/12, 7/12, 1/16, 1/24, 7/24, 1/32, 1
  160 /48, 1/96]
  161 [96, 24, 32, 6, 6, 8, 3, 3, 2, 2, 3, 1, 1, 3, 1, 1]
  162 [1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1]
  163 [1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1]
  164 16
  165 6442450944
  166 15917322219892801768783872
  167 96
  168 10
  169 88
  170 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
  171 "TR([96, 6, 1, y, t - 1])"
  172 "CONST([])"
  173 [-2, -4]
  174 [0, 72, -2, -4, -12, -16, -90, -8, 424, -8, -300, -8, -396, -16, 944, -976]
  175 [0, 0]
  176 [0, 10, 0, 0, 0, -76, 0, 0, 0, 810, 0, 0, 0, 12, 0, 0]
  177 [0, 1, -1, -1, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, 0]
  178 [Mod(0, t^2 - t + 1), Mod(1, t^2 - t + 1), Mod(-t, t^2 - t + 1), Mod(0, t^2 
  179 - t + 1), Mod(t - 1, t^2 - t + 1), Mod(-1, t^2 - t + 1), Mod(0, t^2 - t + 1)
  180 , Mod(0, t^2 - t + 1), Mod(1, t^2 - t + 1), Mod(t - 1, t^2 - t + 1), Mod(t, 
  181 t^2 - t + 1), Mod(0, t^2 - t + 1), Mod(0, t^2 - t + 1), Mod(-t, t^2 - t + 1)
  182 , Mod(0, t^2 - t + 1), Mod(0, t^2 - t + 1)]
  183 [Mod(0, t^4 - t^3 + t^2 - t + 1), Mod(1, t^4 - t^3 + t^2 - t + 1), Mod(-t, t
  184 ^4 - t^3 + t^2 - t + 1), Mod(t^3 + t - 1, t^4 - t^3 + t^2 - t + 1), Mod(t^2,
  185  t^4 - t^3 + t^2 - t + 1), Mod(0, t^4 - t^3 + t^2 - t + 1), Mod(-t^3 + 1, t^
  186 4 - t^3 + t^2 - t + 1), Mod(0, t^4 - t^3 + t^2 - t + 1), Mod(-t^3, t^4 - t^3
  187  + t^2 - t + 1), Mod(-t^2 - 1, t^4 - t^3 + t^2 - t + 1), Mod(0, t^4 - t^3 + 
  188 t^2 - t + 1), Mod(-t^3, t^4 - t^3 + t^2 - t + 1), Mod(t^3 - t^2 - 1, t^4 - t
  189 ^3 + t^2 - t + 1), Mod(0, t^4 - t^3 + t^2 - t + 1), Mod(0, t^4 - t^3 + t^2 -
  190  t + 1), Mod(0, t^4 - t^3 + t^2 - t + 1)]
  191 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
  192 [0, 2, 0, -2, 0, -2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2]
  193 [0, 2, -2, 0, -12, 0, 28, -16, 40, -2, -56, 0, -56, 0, 16, 112]
  194 [0, 1, -1, -1, -1, 1, 1, 0, 3, 1, -1, -4, 1, -2, 0, -1]
  195 [0, 2, 4, 0, -6, 0, -6, -4, -36, 18, -10, 28, -24, 96, 36, 30]
  196 [15, 4, 1, y, t - 1]
  197 8
  198 [4, 1, [0, 4, 0, -48, 0, 216, 0, -352, 0, -396]]
  199 [4, 2, [0, 0, 7, 0, 0, 0, -84, 0, 0, 0]]
  200 72
  201 [3, 1, [0, 4, -24, 36, 16, 24, -216, -160, 672, 324]]
  202 [3, 2, [0, 0, 7, 0, -42, 0, 63, 0, 28, 0]]
  203 6
  204 62
  205 16
  206 10
  207 [[2717/14336, 3993/28672, 185/14336, 2717/14336, 3993/28672, 185/14336; -103
  208 /4608, 65/3072, -7/4608, 103/4608, -65/3072, 7/4608; 225/57344, -95/114688, 
  209 -123/57344, 225/57344, -95/114688, -123/57344; 5/1024, -49/18432, 13/9216, -
  210 5/1024, 49/18432, -13/9216; 1/2048, -5/12288, -1/6144, -1/2048, 5/12288, 1/6
  211 144; 31/57344, -33/114688, -5/57344, 31/57344, -33/114688, -5/57344; -7/9216
  212 , 1/18432, -1/3072, 7/9216, -1/18432, 1/3072; -5/28672, -1/57344, -1/28672, 
  213 -5/28672, -1/57344, -1/28672; 1/2048, -1/36864, 1/18432, -1/2048, 1/36864, -
  214 1/18432; -11/57344, -115/1032192, 9/57344, -11/57344, -115/1032192, 9/57344]
  215 , [y, y, y, y, y, y, y^2 - 31, y^2 - 31]]
  216 [[2717/14336, 3993/28672, 185/14336, 2717/14336, 3993/28672, 185/14336, Mod(
  217 -4227/888832*y + 4539/57344, y^2 - 31), Mod(-4227/888832*y + 4539/57344, y^2
  218  - 31); -103/4608, 65/3072, -7/4608, 103/4608, -65/3072, 7/4608, Mod(-29/952
  219 32*y + 179/6144, y^2 - 31), Mod(29/95232*y - 179/6144, y^2 - 31); 225/57344,
  220  -95/114688, -123/57344, 225/57344, -95/114688, -123/57344, Mod(785/3555328*
  221 y - 109/229376, y^2 - 31), Mod(785/3555328*y - 109/229376, y^2 - 31); 5/1024
  222 , -49/18432, 13/9216, -5/1024, 49/18432, -13/9216, Mod(13/571392*y - 67/3686
  223 4, y^2 - 31), Mod(-13/571392*y + 67/36864, y^2 - 31); 1/2048, -5/12288, -1/6
  224 144, -1/2048, 5/12288, 1/6144, Mod(-13/380928*y + 1/24576, y^2 - 31), Mod(13
  225 /380928*y - 1/24576, y^2 - 31); 31/57344, -33/114688, -5/57344, 31/57344, -3
  226 3/114688, -5/57344, Mod(-81/3555328*y - 19/229376, y^2 - 31), Mod(-81/355532
  227 8*y - 19/229376, y^2 - 31); -7/9216, 1/18432, -1/3072, 7/9216, -1/18432, 1/3
  228 072, Mod(17/571392*y + 19/36864, y^2 - 31), Mod(-17/571392*y - 19/36864, y^2
  229  - 31); -5/28672, -1/57344, -1/28672, -5/28672, -1/57344, -1/28672, Mod(-5/1
  230 777664*y + 13/114688, y^2 - 31), Mod(-5/1777664*y + 13/114688, y^2 - 31); 1/
  231 2048, -1/36864, 1/18432, -1/2048, 1/36864, -1/18432, Mod(1/1142784*y - 19/73
  232 728, y^2 - 31), Mod(-1/1142784*y + 19/73728, y^2 - 31); -11/57344, -115/1032
  233 192, 9/57344, -11/57344, -115/1032192, 9/57344, Mod(461/31997952*y + 151/206
  234 4384, y^2 - 31), Mod(461/31997952*y + 151/2064384, y^2 - 31)], [y, y, y, y, 
  235 y, y, y^2 - 31, y^2 - 31]]
  236 [1, 1, 1, 1, 1, 1, 2, 2]
  237 [[2717/14336, 3993/28672, 185/14336, 2717/14336, 3993/28672, 185/14336; -103
  238 /4608, 65/3072, -7/4608, 103/4608, -65/3072, 7/4608; 225/57344, -95/114688, 
  239 -123/57344, 225/57344, -95/114688, -123/57344; 5/1024, -49/18432, 13/9216, -
  240 5/1024, 49/18432, -13/9216; 1/2048, -5/12288, -1/6144, -1/2048, 5/12288, 1/6
  241 144; 31/57344, -33/114688, -5/57344, 31/57344, -33/114688, -5/57344; -7/9216
  242 , 1/18432, -1/3072, 7/9216, -1/18432, 1/3072; -5/28672, -1/57344, -1/28672, 
  243 -5/28672, -1/57344, -1/28672; 1/2048, -1/36864, 1/18432, -1/2048, 1/36864, -
  244 1/18432; -11/57344, -115/1032192, 9/57344, -11/57344, -115/1032192, 9/57344]
  245 , [y, y, y, y, y, y]]
  246 [[2717/14336, 3993/28672, 185/14336, 2717/14336, 3993/28672, 185/14336, Mod(
  247 -4227/888832*y + 4539/57344, y^2 - 31), Mod(-4227/888832*y + 4539/57344, y^2
  248  - 31); -103/4608, 65/3072, -7/4608, 103/4608, -65/3072, 7/4608, Mod(-29/952
  249 32*y + 179/6144, y^2 - 31), Mod(29/95232*y - 179/6144, y^2 - 31); 225/57344,
  250  -95/114688, -123/57344, 225/57344, -95/114688, -123/57344, Mod(785/3555328*
  251 y - 109/229376, y^2 - 31), Mod(785/3555328*y - 109/229376, y^2 - 31); 5/1024
  252 , -49/18432, 13/9216, -5/1024, 49/18432, -13/9216, Mod(13/571392*y - 67/3686
  253 4, y^2 - 31), Mod(-13/571392*y + 67/36864, y^2 - 31); 1/2048, -5/12288, -1/6
  254 144, -1/2048, 5/12288, 1/6144, Mod(-13/380928*y + 1/24576, y^2 - 31), Mod(13
  255 /380928*y - 1/24576, y^2 - 31); 31/57344, -33/114688, -5/57344, 31/57344, -3
  256 3/114688, -5/57344, Mod(-81/3555328*y - 19/229376, y^2 - 31), Mod(-81/355532
  257 8*y - 19/229376, y^2 - 31); -7/9216, 1/18432, -1/3072, 7/9216, -1/18432, 1/3
  258 072, Mod(17/571392*y + 19/36864, y^2 - 31), Mod(-17/571392*y - 19/36864, y^2
  259  - 31); -5/28672, -1/57344, -1/28672, -5/28672, -1/57344, -1/28672, Mod(-5/1
  260 777664*y + 13/114688, y^2 - 31), Mod(-5/1777664*y + 13/114688, y^2 - 31); 1/
  261 2048, -1/36864, 1/18432, -1/2048, 1/36864, -1/18432, Mod(1/1142784*y - 19/73
  262 728, y^2 - 31), Mod(-1/1142784*y + 19/73728, y^2 - 31); -11/57344, -115/1032
  263 192, 9/57344, -11/57344, -115/1032192, 9/57344, Mod(461/31997952*y + 151/206
  264 4384, y^2 - 31), Mod(461/31997952*y + 151/2064384, y^2 - 31)], [y, y, y, y, 
  265 y, y, y^2 - 31, y^2 - 31]]
  266 [0, 1, 0, 9, 0, 26, 0, 36, 0, 81, y]
  267 [0, 1, 0, 9, 0, -14, 0, -100, 0, 81, y]
  268 [0, 1, 0, 9, 0, -86, 0, 180, 0, 81, y]
  269 [0, 1, 0, -9, 0, 26, 0, -36, 0, 81, y]
  270 [0, 1, 0, -9, 0, -14, 0, 100, 0, 81, y]
  271 [0, 1, 0, -9, 0, -86, 0, -180, 0, 81, y]
  272 [Mod(0, y^2 - 31), Mod(1, y^2 - 31), Mod(0, y^2 - 31), Mod(9, y^2 - 31), Mod
  273 (0, y^2 - 31), Mod(16*y + 18, y^2 - 31), Mod(0, y^2 - 31), Mod(16*y + 60, y^
  274 2 - 31), Mod(0, y^2 - 31), Mod(81, y^2 - 31), y^2 - 31]
  275 [Mod(0, y^2 - 31), Mod(1, y^2 - 31), Mod(0, y^2 - 31), Mod(-9, y^2 - 31), Mo
  276 d(0, y^2 - 31), Mod(16*y + 18, y^2 - 31), Mod(0, y^2 - 31), Mod(-16*y - 60, 
  277 y^2 - 31), Mod(0, y^2 - 31), Mod(81, y^2 - 31), y^2 - 31]
  278 [Mod(0, y^2 - 31), Mod(0, y^2 - 31), Mod(1, y^2 - 31), Mod(0, y^2 - 31), Mod
  279 (-18, y^2 - 31), Mod(0, y^2 - 31), Mod(32*y + 117, y^2 - 31), Mod(0, y^2 - 3
  280 1), Mod(-320*y - 444, y^2 - 31), Mod(0, y^2 - 31), Mod(864*y + 9502, y^2 - 3
  281 1), Mod(0, y^2 - 31), Mod(-2304*y - 19690, y^2 - 31), Mod(0, y^2 - 31), Mod(
  282 2592*y + 16536, y^2 - 31), 0]
  283 21
  284 [4, -7, 11, 0, 0, 0, 0, 0, 0, 0]~
  285 
  286 [0 0 0 0 0 0 0 0 0 0]
  287 
  288 [0 0 0 0 0 0 0 0 0 0]
  289 
  290 [0 0 0 0 0 0 0 0 0 0]
  291 
  292 [0 0 0 0 0 0 0 0 0 0]
  293 
  294 [0 0 0 0 0 0 0 0 0 0]
  295 
  296 [0 0 0 0 0 0 0 0 0 0]
  297 
  298 [0 0 0 0 0 0 0 0 0 0]
  299 
  300 [0 0 0 0 0 0 0 0 0 0]
  301 
  302 [0 0 0 0 0 0 0 0 0 0]
  303 
  304 [0 0 0 0 0 0 0 0 0 0]
  305 
  306 
  307 [0 81 0 0 4887/7    0  0    0 45522/7  0]
  308 
  309 [1  0 0 0      0 -264  0 1422       0  0]
  310 
  311 [0  0 0 0 477/28    0 81    0  1269/7  0]
  312 
  313 [0  0 0 0      0   61  0 -152       0 81]
  314 
  315 [0  0 0 0      0   12  0   12       0  0]
  316 
  317 [0  0 0 0 171/28    0  0    0    27/7  0]
  318 
  319 [0  0 1 0      0   -7  0   40       0  0]
  320 
  321 [0  0 0 0   9/14    0  0    0   -27/7  0]
  322 
  323 [0  0 0 0      0    2  0  -19       0  0]
  324 
  325 [0  0 0 1 -95/28    0  0    0   -71/7  0]
  326 
  327 [[81, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 81, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 81, 0,
  328  0, 0, 0, 0, 0, 0; 0, 0, 0, 81, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 81, 0, 0, 0, 0
  329 , 0; 0, 0, 0, 0, 0, 81, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 81, 0, 0, 0; 0, 0, 0, 
  330 0, 0, 0, 0, 81, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 81, 0; 0, 0, 0, 0, 0, 0, 0, 0,
  331  0, 81], [0, 0, 0, 155223/7, -647676/7, 0, 1574721/7, 0, 2180790/7, 0; 0, 0,
  332  8068, 0, 0, -45888, 0, -25888, 0, 86508; 0, 81, 0, 22293/28, -8640/7, 0, -6
  333 0507/28, 0, -63009/14, 0; 0, 0, -288, 0, 0, 2656, 0, 4468, 0, -8424; 0, 0, -
  334 27, 0, 0, -42, 0, -1482, 0, 81; 0, 0, 0, -909/28, 540/7, 0, -11421/28, 0, -1
  335 791/14, 0; 1, 0, 120, 0, 0, -808, 0, -550, 0, 2592; 0, 0, 0, 549/14, -1674/7
  336 , 0, 3159/14, 0, 801/7, 0; 0, 0, -63, 0, 0, 467, 0, 266, 0, -810; 0, 0, 0, -
  337 167/28, 148/7, 0, 12393/28, 0, 8891/14, 0], [-2434/7, 0, 300738/7, 0, 0, 229
  338 0482/7, 0, 16881306/7, 0, 11792304/7; 0, 4943, 0, 78792, -67632, 0, 416424, 
  339 0, 265872, 0; -747/28, 0, 39517/14, 0, 0, -329463/14, 0, 567081/14, 0, -1517
  340 13/7; 0, -288, 0, -4237, -8472, 0, -39276, 0, -47928, 0; 0, -27, 0, -972, 16
  341 43, 0, -2754, 0, 108, 0; -141/28, 0, -5811/14, 0, 0, -12575/14, 0, -11937/14
  342 , 0, -58239/7; 0, 120, 0, 1320, -1440, 0, 13151, 0, 18000, 0; 39/14, 0, 1299
  343 /7, 0, 0, -1269/7, 0, 15800/7, 0, 12312/7; 0, -63, 0, -618, 408, 0, -4356, 0
  344 , -6337, 0; 153/28, 0, 2463/14, 0, 0, -13443/14, 0, -22899/14, 0, 37304/7]]
  345 0.43212772973212385449512289817170941385
  346 0.065367804723930579823031060437204674227
  347 -3.2767866024378219074845099715117890907
  348 0.34284913090478965797177570867964351435
  349 -0.76125796339716986841247525017762663821
  350 0.49159382167950494101715310718716918356
  351 -0.49676146954567727676850448728844180079
  352 -52.340285691058552832964253754168105742
  353 1.0398936863409539900708802050121051862
  354 183.58598430613706225199581706089347024
  355 5.1579000625428403504184801623630511115 E-16
  356 3.4870504895354529381700292194184810754 E-6
  357 [1, 1]
  358 [1/23, 1/23]
  359 [1/23, 1/23]
  360 [12709878029020295059028381417601, 12709844797213685207966660148549]
  361 [0, -4186596901512170847892276510318430 - 1173029439813149005414471837402481
  362 *I, (3714866976289080663253111389348917 + 2259060652327972078839134831842555
  363 *I)*y]
  364 [0, 1, -24, 252, -1472, 4830, -6048, -16744, 84480, -113643, -115920, 534612
  365 , -370944, -577738, 401856, 1217160]
  366 [0]
  367 
  368 [633/1792 351/1024 10819/896 67047/1792 267993/1792 102867/896 5265/3584 -14
  369 7319/896 -906249/1792 81]
  370 
  371 [19/256 -3/8 267/128 -17/16 -81/8 7013/128 -205/16 24615/128 -497/8 6117/64]
  372 
  373 [87/7168 -9/4096 -591/3584 1135/7168 -22815/7168 12357/3584 49113/14336 -457
  374 77/3584 48943/7168 1215/128]
  375 
  376 [-1/512 1/16 -41/256 -5/32 59/16 -1447/256 143/32 -3613/256 283/16 -1063/128
  377 ]
  378 
  379 [1/1024 3/256 -39/512 3/32 -3/64 -121/512 -3/128 -3/512 39/64 -321/256]
  380 
  381 [9/7168 9/4096 47/3584 -879/7168 799/7168 1371/3584 -7641/14336 -3407/3584 2
  382 769/7168 81/128]
  383 
  384 [1/512 -1/128 25/256 1/16 -23/32 7/256 -55/64 637/256 -101/32 223/128]
  385 
  386 [-1/3584 9/2048 -27/1792 65/3584 255/3584 -171/1792 135/7168 111/1792 -79/35
  387 84 0]
  388 
  389 [-1/1024 1/128 -9/512 1/64 1/4 -103/512 5/16 -733/512 23/16 -151/256]
  390 
  391 [-5/7168 19/4096 61/3584 171/7168 -1371/7168 -687/3584 3965/14336 2963/3584 
  392 4267/7168 -81/128]
  393 
  394 
  395 [1 0 0]
  396 
  397 [0 1 0]
  398 
  399 [0 0 1]
  400 
  401 [0, 0, 0, 18, 0, 224, 0, 440, 0, 0, 0, 840, 0, 192, 0, 900]
  402 
  403 [1]
  404 
  405 [17.981439237735731033658522362934698192, -14.465932470400861049133659073570
  406 007347, -14.173043447523315720648161399342292854, -12.8444792338479425607250
  407 88799397162586, -12.673296763439189428830632012708642221, 11.313822387102528
  408 758430335085165159676, 15.809242390926312020182669681356476477, 19.952518856
  409 726468490501784413242971475, 12.164217722077195145237910274949933293, 15.381
  410 272600128290391693466194368971580]
  411 [149.32003336233083380416740549931024313, -145.22528341237431879984196577788
  412 550379, -144.05206065368915254369133157416377264, -137.368077052425797668068
  413 45719565543525, -136.68537976117761802503641918389974975, 132.33498216866595
  414 894851650979950974707, 144.81477270149742577794938046771306641, 153.37574451
  415 331022295236625862817598070, 133.99393725109713614517615928616029184, 140.82
  416 191407690427938490321804273819109]
  417 [1750.8612976244284982995145051957076323, -1743.4610846371885006840699908522
  418 210646, -1739.3285039438314041396755906212872382, -1706.54568655078571155570
  419 67243660579136, -1704.1559309139961646459809162176700473, 1693.2006899626197
  420 396492113391602468661, 1739.6937549158404780145317707347222603, 1760.8038249
  421 508416117204235666645232767, 1696.9537629837898396249480554755379813, 1714.4
  422 123077300799878900824934093074081]
  423 [-25289.463103882493149683693231641947547, 25271.306252281313102094765195122
  424 776006, 25256.284246728344311859481152424676239, 25079.367724015404662920284
  425 476322170148, 25070.741444350281949178792195757223585, -25040.19987820531753
  426 6042355830671301459, -25256.861209437637891371256419970666372, -25318.141977
  427 898178949067363044347232866, -25050.025763197973566457964437905037423, -2510
  428 2.674289656622081201236099263608944]
  429 0.15111211321192334885298629517871164534
  430 -0.029981366891420022975489657187955538024
  431 1
  432 [0, 1, -4, 2, 8, -5, -8, 6, 0, -23]
  433 [0, t, -4*t^2, 2*t^3, -8*t^3 - 8*t^2 - 8*t - 8, -5, -8*t, 6*t^2, 0, 23*t^3 +
  434  23*t^2 + 23*t + 23, 20]
  435 [0, 5, [1, 0; 0, 1]]
  436 [0, 1, -2, -1, 2, 1]
  437 [0, 1, [1, 0; 0, 1]]
  438 [1/4, 0, 0, 0, 0]
  439 [1/2, 11, [1, 0; 0, 1]]
  440 [0, 0.0083160068527003923763819239796690829909 + 0.0186369836048978260765912
  441 63978546433841*I, 0.040773714507830673270468368068835601812 - 0.001864595582
  442 8220482074272494197134258868*I, 0.046062126409693852745000230038901860300 - 
  443 0.13522737805608561952910766786281685190*I, -0.07682530715670062861328778204
  444 2554261374 + 0.027600040327739509297577443995295764559*I, -0.125743903939079
  445 05970350003436207154063 + 0.067798479979021507423866878355650878641*I]
  446 [0, 7, [1, 0; 0, 1]]
  447 [0, 0, 0, 0.66666666666666666666666666666666666667 + 0.E-38*I, 0, -4.0000000
  448 000000000000000000000000000000 + 6.9282032302755091741097853660234894676*I, 
  449 0, -12.000000000000000000000000000000000000 - 20.784609690826527522329356098
  450 070468402*I, 0, 0, 0, 20.000000000000000000000000000000000018 - 34.641016151
  451 377545870548926830117447370*I, 0]
  452 [Mod(0, t^2 + t + 1), Mod(0, t^2 + t + 1), Mod(0, t^2 + t + 1), Mod(2/3, t^2
  453  + t + 1), Mod(0, t^2 + t + 1), Mod(8*t, t^2 + t + 1), Mod(0, t^2 + t + 1), 
  454 Mod(-24*t - 24, t^2 + t + 1), Mod(0, t^2 + t + 1), Mod(0, t^2 + t + 1), Mod(
  455 0, t^2 + t + 1), Mod(-40*t, t^2 + t + 1), Mod(0, t^2 + t + 1)]
  456 [-5/32, 81/32, 21/16, -597/8, 1215/32, 1689/8, -14813/16, -14337/16]
  457 [1/2, 1, [1, 0; 0, 1]]
  458 [Mod(0, t^2 + t + 1), Mod(0, t^2 + t + 1), Mod(2/3*t, t^2 + t + 1), Mod(-2/3
  459 , t^2 + t + 1), Mod(4/3*t + 4/3, t^2 + t + 1)]
  460 1
  461 [Mod(61/256*t, t^2 + 1), Mod(-1/64*t, t^2 + 1), Mod(-1/64*t, t^2 + 1), Mod(9
  462 1/8*t, t^2 + 1), Mod(-1/64*t, t^2 + 1), Mod(-7813/32*t, t^2 + 1)]
  463 [0, 1, [1, 0; 0, 1]]
  464 [Mod(0, t^2 + 1), Mod(-t, t^2 + 1), Mod(0, t^2 + 1), Mod(2*t, t^2 + 1)*y]
  465 [0, 1, [1, 0; 0, 1]]
  466 [0, 0, -0.026871677793768185811758182803469159206 - 0.0427660302192192146895
  467 36937410383070596*I, 0, -0.016681611742316464491440499523538796306 - 0.04767
  468 3307393570615953995380441278707349*I, 0]
  469 
  470 [ 0 1]
  471 
  472 [-1 0]
  473 
  474 1
  475 
  476 [1/4  1/4]
  477 
  478 [1/4 -1/4]
  479 
  480 0.35355339059327376220042218105242451964
  481 
  482 [x + Mod(-t, t^2 + 1) 2]
  483 
  484 [ x + Mod(t, t^2 + 1) 2]
  485 
  486 1
  487 [[I, -I, -I, I, I, -I]]
  488 [[0.33333333333333333333333333333333333334 + 0.94280904158206336586779248280
  489 646538571*I, -0.33333333333333333333333333333333333334 + 0.94280904158206336
  490 586779248280646538571*I]]
  491 [[-1, -1, -1, -1, -1, -1, -1, -1, -1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
  492 [1, 0, 240, 0, 2160, 0, 6720, 0, 17520, 0, 30240]
  493 [0, -1, -1, 1, -1, -1, 1, 2, -1, 2, -1]
  494 [5/2*x, x, 2*x, 0, 3*x, 2*x]
  495 
  496 [   3  3]
  497 
  498 [-1/3 -3]
  499 
  500 [1/4, -1/4]~
  501 [0, 1, 0, -3, 0, -2, 0, -4, 0, 6, 0, 2, 0, -5, 0, 6]
  502 [0, 0, 0, 0, 0, 0, 0]
  503 [64/5, 4/5, 32/5]~
  504 [1, 20, 180, 960, 3380, 8424, 16320, 28800, 52020, 88660, 129064, 175680, 26
  505 2080, 386920, 489600, 600960]
  506 [1, 180, 3380, 16320, 52020, 129064, 262080]
  507 [0, 4, -16, 0, 64, -56, 0, 0, -256, 324, 224, 0, 0, -952, 0, 0]
  508 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
  509 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
  510 [3, 12, 12, 0, 12, 24, 0, 0, 12, 12, 24, 0, 0, 24, 0, 0]
  511 23: [[22, [[0, 1, -1, -1, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, 0]]]]
  512 31: [[30, [[0, 1, -1, 0, 0, -1, 0, -1, 1, 1, 1, 0, 0, 0, 1, 0]]]]
  513 39: [[38, [[0, 1, 0, -1, -1, 0, 0, 0, 0, 1, 0, 0, 1, -1, 0, 0]]]]
  514 44: [[21, [[0, 1, 0, -1, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1]]]]
  515 46: [[45, [[0, 1, 0, -1, -1, 0, 0, 0, 1, 0, 0, 0, 1, -1, 0, 0], [0, 0, 1, 0,
  516  -1, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0]]]]
  517 47: [[46, [[0, 1, 0, -1, 0, 0, -1, 0, -1, 1, 0, 0, 1, 0, 1, 0], [0, 0, 1, -1
  518 , -1, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0]]]]
  519 52: [[3, [[0, 1, -t, 0, t - 1, -1, 0, 0, 1, t - 1, t, 0, 0, -t, 0, 0]]]]
  520 55: [[54, [[0, 1, 0, 0, -1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0]]]]
  521 56: [[13, [[0, 1, -1, 0, 1, 0, 0, -1, -1, -1, 0, 0, 0, 0, 1, 0]]]]
  522 57: [[26, [[0, 1, 0, -t, t - 1, 0, 0, -1, 0, t - 1, 0, 0, 1, -t + 1, 0, 0]]]
  523 ]
  524 59: [[58, [[0, 1, 0, -1, 1, -1, 0, -1, 0, 0, 0, 0, -1, 0, 0, 1]]]]
  525 62: [[61, [[0, 1, 0, 0, -1, -1, 0, -1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0,
  526  -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0]]]]
  527 63: [[55, [[0, 1, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0]]]]
  528 68: [[67, [[0, 1, -1, 0, 1, 0, 0, 0, -1, -1, 0, 0, 0, -2, 0, 0]]], [47, [[0,
  529  1, t, 0, -1, -t - 1, 0, 0, -t, t, -t + 1, 0, 0, 0, 0, 0]]]]
  530 69: [[22, [[0, 1, -1, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, -1, 0, 0], [0, 0, 0, 1,
  531  0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0]]]]
  532 71: [[70, [[0, 1, 0, 0, 0, -1, -1, 0, 0, 1, 0, 0, -1, 0, 0, -1], [0, 0, 1, 0
  533 , -1, -1, -1, 0, 1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, -1, -1, 0, 0, 1, 0, 1
  534 , 0, 0, 0, 0, -1]]]]
  535 72: [[67, [[0, 1, -t, -t, t - 1, 0, t - 1, 0, 1, t - 1, 0, t, 1, 0, 0, 0]]]]
  536 76: [[37, [[0, 1, 0, 0, 0, -1, 0, -1, 0, 1, 0, -1, 0, 0, 0, 0]]]]
  537 77: [[69, [[0, 1, t^2 - t, 0, t - 1, 0, 0, -t^3, -t^2, t^3 - t^2 + t - 1, 0,
  538  -t, 0, 0, t^3 - t^2 + t, 0]]]]
  539 78: [[77, [[0, 1, 0, -1, -1, 0, 0, 0, 0, 1, 0, 0, 1, -1, 0, 0], [0, 0, 1, 0,
  540  0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0]]]]
  541 79: [[78, [[0, 1, 0, 0, 0, -1, 0, 0, -1, 1, -1, 0, 0, 0, 0, 0], [0, 0, 1, 0,
  542  -1, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0]]]]
  543 80: [[79, [[0, 1, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0]]]]
  544 83: [[82, [[0, 1, 0, -1, 1, 0, 0, -1, 0, 0, 0, -1, -1, 0, 0, 0]]]]
  545 84: [[65, [[0, 1, 0, -t, 0, 0, 0, t - 1, 0, t - 1, 0, 0, 0, -1, 0, 0]]]]
  546 87: [[86, [[0, 1, 0, 0, 0, 0, -1, -1, 0, 1, 0, 0, 0, -1, 0, 0], [0, 0, 1, -1
  547 , 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0]]]]
  548 88: [[65, [[0, 1, 0, -1, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1], [0, 0, 1, 0, 
  549 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0]]], [59, [[0, 1, -t, t^3 + t - 1, t^2, 
  550 0, -t^3 + 1, 0, -t^3, -t^2 - 1, 0, -t^3, t^3 - t^2 - 1, 0, 0, 0]]]]
  551 92: [[45, [[0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0], [0, 0, 1, 0, 
  552 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0,
  553  -1, 0, 0, 0]]]]
  554 93: [[61, [[0, 1, -1, 0, 0, -1, 0, -1, 1, 1, 1, 0, 0, 0, 1, 0], [0, 0, 0, 1,
  555  0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1]]], [47, [[0, 1, 0, -t, -t^3, 0, 0, t^
  556 3 + t - 1, 0, t^2, 0, 0, t^3 - t^2 + t - 1, -t^2 + t - 1, 0, 0]]]]
  557 94: [[93, [[0, 1, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 1, 0, 
  558 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, -1, 1, -1, 0, 0
  559 , -1, 0, 0, 0], [0, 0, 0, 0, 1, 0, -1, 0, -1, 0, 0, 0, 0, 0, 1, 0]]]]
  560 95: [[94, [[0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 1, -1,
  561  0, 0, 0, 0, 0, 0, -1, 0, -1, 1, 0, 1], [0, 0, 0, 0, 1, -1, -1, 0, 0, 1, 0, 
  562 1, 0, 0, 0, 0]]]]
  563 99: [[76, [[0, 1, 0, t - 1, t - 1, -t + 1, 0, 0, 0, -t, 0, -t, -t, 0, 0, t]]
  564 ]]
  565 100: [[91, [[0, 1, -t, 0, t^2, -t^3, 0, 0, -t^3, t^3 - t^2 + t - 1, t^3 - t^
  566 2 + t - 1, 0, 0, t^2 - t, 0, 0]]]]
  567 103: [[102, [[0, 1, 0, 0, 0, 0, 0, -1, -1, 1, 0, 0, 0, 0, -1, 0], [0, 0, 1, 
  568 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0]]]]
  569 104: [[51, [[0, 1, 0, -1, 1, 0, 0, 0, 0, 0, -1, 0, -1, 0, -1, 0], [0, 0, 1, 
  570 0, 0, -1, -1, -1, 1, 0, 0, 0, 0, 1, 0, 1]]], [55, [[0, 1, 0, 0, 0, -1, 0, 0,
  571  0, t - 1, 0, 0, 0, -t, 0, 0], [0, 0, 1, 0, -t, 0, 0, 0, t - 1, 0, -1, 0, 0,
  572  0, 0, 0]]]]
  573 107: [[106, [[0, 1, 0, -1, 1, 0, 0, 0, 0, 0, 0, -1, -1, -1, 0, 0]]]]
  574 108: [[53, [[0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0]]]]
  575 110: [[109, [[0, 1, 0, 0, -1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0], [0, 0, 1, 
  576 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0]]]]
  577 111: [[110, [[0, 1, 0, 0, 0, 0, 0, -1, 0, 1, -1, 0, -1, 0, 0, 0], [0, 0, 1, 
  578 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 1, -1, 0, 0, -1, 0, 0, 1
  579 , 0, 0, 0, 0, 0]]], [101, [[0, 1, 0, -t, t, 0, 0, -t, 0, t - 1, 0, 0, -t + 1
  580 , t - 2, 0, 0]]], [26, [[0, 1, 0, t - 1, t - 1, 0, 0, -t + 1, 0, -t, 0, 0, -
  581 t, -t + 1, 0, 0]]]]
  582 112: [[41, [[0, 1, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0,
  583  -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0]]], [69, [[0, 1, t, 0, -1, 0, 0, t, -t
  584 , -t, 0, -t - 1, 0, 0, -1, 0]]]]
  585 114: [[83, [[0, 1, 0, -t, t - 1, 0, 0, -1, 0, t - 1, 0, 0, 1, -t + 1, 0, 0],
  586  [0, 0, 1, 0, 0, 0, -t, 0, t - 1, 0, 0, 0, 0, 0, -1, 0]]]]
  587 115: [[91, [[0, 1, -1, -1, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, 0], [0, 0, 0, 0
  588 , 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1]]]]
  589 116: [[115, [[0, 1, 0, 0, 1, -1, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0], [0, 0, 1, 
  590 -1, 0, 0, 0, 0, 1, 0, -1, -1, -1, 0, 0, 1]]], [103, [[0, 1, -t, 0, t^2, -t^5
  591  + t^4, 0, 0, -t^3, -t^3, -t^4 + t^3 - t^2 + t - 1, 0, 0, t^5 - t^4 + t^3 + 
  592 t - 1, 0, 0]]]]
  593 117: [[116, [[0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0], [0, 0, 0, 1
  594 , 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0]]], [73, [[0, 1, 0, 0, -t, 0, 0, t - 
  595 1, 0, 0, 0, 0, 0, t, 0, 0]]]]
  596 118: [[117, [[0, 1, 0, -1, 1, -1, 0, -1, 0, 0, 0, 0, -1, 0, 0, 1], [0, 0, 1,
  597  0, 0, 0, -1, 0, 1, 0, -1, 0, 0, 0, -1, 0]]]]
  598 119: [[118, [[0, 1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1], [0, 0, 1, 0
  599 , -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, -2, -1, 0, 0, 1,
  600  0, 2, 0, 1, 0], [0, 0, 0, 0, 0, 1, -1, -1, 0, 0, 1, 0, 1, 0, 0, 0]]]]
  601 120: [[29, [[0, 1, 0, 0, -1, 0, -1, 0, 0, -1, 1, 0, 0, 0, 0, 1], [0, 0, 1, 1
  602 , 0, -1, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0]]]]
  603 124: [[61, [[0, 1, 0, 0, 0, -1, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0,
  604  0, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0], [0, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 
  605 0, 0, 0, 0, 0]]], [87, [[0, 1, 0, 0, -1, t - 1, -t, 0, 0, 0, 0, 0, 0, -t + 1
  606 , t, 0], [0, 0, 1, t, 0, 0, 0, -t, -1, 0, t - 1, -t + 1, -t, 0, 0, -1]]]]
  607 126: [[55, [[0, 1, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0,
  608  0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0]]]]
  609 127: [[126, [[0, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, -1, 0, -1, 0, 0], [0, 0, 1, 
  610 0, -1, 0, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0]]]]
  611 128: [[63, [[0, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0]]]]
  612 129: [[41, [[0, 1, 0, -t, -t^5, 0, 0, t^4 - t^3, 0, t^2, 0, 0, t^5 - t^4 + t
  613 ^3 - t^2 + t - 1, t^5 - t^4 + t^3 + t - 1, 0, 0]]]]
  614 131: [[130, [[0, 1, 0, 0, 1, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1], [0, 0, 0, 
  615 1, 0, -1, 0, -1, 0, -1, 0, 1, 1, 1, 0, 0]]]]
  616 132: [[109, [[0, 1, 0, 0, 0, -1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1
  617 , 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1]]]]
  618 133: [[83, [[0, 1, -t, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, t - 1], [0, 0, 0
  619 , 1, 0, -1, -t, t - 1, 0, 0, t, 0, 0, -t, 1, 0]]], [37, [[0, 1, 0, 0, -t, -t
  620  + 1, 0, t - 1, 0, t - 1, 0, t, 0, 0, 0, 0]]]]
  621 135: [[134, [[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 1, 0,
  622  0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0]]]]
  623 136: [[135, [[0, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -2, 0, 0], [0, 0, 1, 0
  624 , -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]]], [67, [[0, 1, -1, 0, 1, 0, 0, 0, -1
  625 , 1, 0, 0, 0, 0, 0, 0]]], [47, [[0, 1, 0, 0, 0, -t - 1, 0, 0, 0, t, 0, 0, 0,
  626  0, 0, 0], [0, 0, 1, 0, t, 0, 0, 0, -1, 0, -t - 1, 0, 0, 0, 0, 0]]], [115, [
  627 [0, 1, -t, -t - 1, -1, 0, t - 1, 0, t, t, 0, -t + 1, t + 1, 0, 0, 0]]], [43,
  628  [[0, 1, t^3, -t^3 + t^2, -t^2, 0, t^2 - t, 0, t, -t^2 + t - 1, 0, t^3 - 1, 
  629 -t + 1, 0, 0, 0]]]]
  630 138: [[91, [[0, 1, 0, 0, -1, 0, 0, 0, 1, -1, 0, 0, 0, -1, 0, 0], [0, 0, 1, 0
  631 , -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0
  632 , -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0]]]]
  633 139: [[138, [[0, 1, 0, 0, 1, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, 0]]]]
  634 140: [[69, [[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1], [0, 0, 0, 1,
  635  0, -1, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0]]], [79, [[0, 1, 0, 0, -t, t - 1, -1, 
  636 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 1, -t + 1, 0, 0, 0, t - 1, -t, 0, t - 1, 
  637 0, -1, 0, 0, t]]]]
  638 141: [[46, [[0, 1, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 1, 0], [0, 0, 1, 0,
  639  -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0
  640 , 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, -1, 0, 0, 0]]]]
  641 142: [[141, [[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, -1], [0, 0, 1, 
  642 0, 0, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 1, -1, 0,
  643  0, -1, 0, 0, -1], [0, 0, 0, 0, 1, 0, 0, 0, -1, 0, -1, 0, -1, 0, 0, 0], [0, 
  644 0, 0, 0, 0, 1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, -1, 
  645 0, -1, 0, 0, 0, 0, 0]]]]
  646 143: [[142, [[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, -1, 0], [0, 0, 1, 0
  647 , 0, 0, 0, -2, -1, 0, 0, 1, 0, 1, 0, 0], [0, 0, 0, 1, -1, 0, 0, 0, 0, -1, 0,
  648  0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, -1, -1, 0, 0, 1, 0, 1, 0, 0]]]]
  649 144: [[127, [[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0]]], [103, [[0,
  650  1, 0, -t, 0, 0, 0, 0, 0, t - 1, 0, t, 0, 0, 0, 0], [0, 0, 1, 0, -t, 0, -t, 
  651 0, t - 1, 0, 0, 0, t - 1, 0, 0, 0]]]]
  652 145: [[99, [[0, 1, 0, 0, t, -t, 0, 0, 0, t, 0, -t - 1, 0, 0, 0, 0]]], [57, [
  653 [0, 1, 0, 0, t, t, 0, -t - 1, 0, -t, 0, 0, 0, -t + 1, 0, 0]]]]
  654 147: [[92, [[0, 1, 0, -t, -t^3, 0, 0, -t^5, 0, t^2, 0, 0, t^4, t^5 + t^3 - t
  655 ^2 + t - 1, 0, 0]]]]
  656 148: [[105, [[0, 1, 0, -t, 0, 0, 0, -1, 0, 0, 0, t, 0, 0, 0, 0]]], [63, [[0,
  657  1, -t, 0, t - 1, -t + 1, 0, 0, 1, -t, -1, 0, 0, 2*t - 2, 0, 0]]], [127, [[0
  658 , 1, -t, 0, t^2, t^4 + t^3 - 1, 0, 0, -t^3, -t^4 + t, -t^5 - t^4 + t, 0, 0, 
  659 -t^2, 0, 0]]]]
  660 [1, 0, 0] [2, 0, 0] [3, 0, 0] [4, 0, 0] [5, 0, 0] [6, 0, 0] [7, 0, 0] [8, 0,
  661  0] [9, 0, 0] [10, 0, 0] [11, 0, 0] [12, 0, 0] [13, 0, 0] [14, 0, 0] [15, 0,
  662  0] [16, 0, 0] [17, 0, 0] [18, 0, 0] [19, 0, 0] [20, 0, 0] [21, 0, 0] [22, 0
  663 , 0] [23, 1, 1] [24, 0, 0] [25, 0, 0] [26, 0, 0] [27, 0, 0] [28, 0, 0] [29, 
  664 0, 0] [30, 0, 0] [31, 1, 1] [32, 0, 0] [33, 0, 0] [34, 0, 0] [35, 0, 0] [36,
  665  0, 0] [37, 0, 0] [38, 0, 0] [39, 1, 1] [40, 0, 0] [41, 0, 0] [42, 0, 0] [43
  666 , 0, 0] [44, 1, 1] [45, 0, 0] [46, 2, 0] [47, 2, 2] [48, 0, 0] [49, 0, 0] [5
  667 0, 0, 0] [51, 0, 0] [52, 2, 2] [53, 0, 0] [54, 0, 0] [55, 1, 1] [56, 1, 1] [
  668 57, 2, 2] [58, 0, 0] [59, 1, 1] [60, 0, 0] [61, 0, 0] [62, 2, 0] [63, 1, 1] 
  669 [64, 0, 0] [65, 0, 0] [66, 0, 0] [67, 0, 0] [68, 3, 3] [69, 2, 0] [70, 0, 0]
  670  [71, 3, 3] [72, 2, 2] [73, 0, 0] [74, 0, 0] [75, 0, 0] [76, 1, 1] [77, 4, 4
  671 ] [78, 2, 0] [79, 2, 2] [80, 1, 1] [81, 0, 0] [82, 0, 0] [83, 1, 1] [84, 2, 
  672 2] [85, 0, 0] [86, 0, 0] [87, 2, 2] [88, 6, 4] [89, 0, 0] [90, 0, 0] [91, 0,
  673  0] [92, 3, 0] [93, 6, 4] [94, 4, 0] [95, 3, 3] [96, 0, 0] [97, 0, 0] [98, 0
  674 , 0] [99, 2, 2] [100, 4, 4] [101, 0, 0] [102, 0, 0] [103, 2, 2] [104, 6, 2] 
  675 [105, 0, 0] [106, 0, 0] [107, 1, 1] [108, 1, 1] [109, 0, 0] [110, 2, 0] [111
  676 , 7, 7] [112, 4, 2] [113, 0, 0] [114, 4, 0] [115, 2, 0] [116, 8, 8] [117, 4,
  677  2] [118, 2, 0] [119, 4, 4] [120, 2, 2] [121, 0, 0] [122, 0, 0] [123, 0, 0] 
  678 [124, 7, 4] [125, 0, 0] [126, 2, 0] [127, 2, 2] [128, 1, 1] [129, 6, 6] [130
  679 , 0, 0] [131, 2, 2] [132, 2, 0] [133, 6, 6] [134, 0, 0] [135, 2, 2] [136, 13
  680 , 7] [137, 0, 0] [138, 4, 0] [139, 1, 1] [140, 6, 6] [141, 4, 0] [142, 6, 0]
  681  [143, 4, 4] [144, 5, 1] [145, 4, 4] [146, 0, 0] [147, 6, 6] [148, 10, 10] [
  682 149, 0, 0] [150, 0, 0] 
  683 [[22, Mod(5, 23), 1, 0], [2, Mod(22, 23), 2, 1]]
  684 [[2, Mod(22, 23), 1, 1]]
  685 [[2, Mod(22, 23), 1, 1]]
  686 []
  687 [[2, Mod(22, 23), 1, 0], [22, Mod(5, 23), 1, 0]]
  688 [[2, Mod(45, 46), 2, -1]]
  689 [[0, 0], [0, 0], [0, 0], [1, 1]]
  690 [[0, 0], [0, 0], [0, 0], [1, 1]]
  691 [[0, 0], [0, 0], [0, 0], [0, 0]]
  692 98
  693 193
  694 95
  695 127
  696 320
  697 [[1, Mod(1, 96), 2, 0], [2, Mod(95, 96), 4, 0], [2, Mod(49, 96), 2, 0], [2, 
  698 Mod(47, 96), 2, 0], [8, Mod(37, 96), 8, 0], [8, Mod(59, 96), 14, 0]]
  699 [[1, Mod(1, 96), 9, 0], [2, Mod(95, 96), 8, 0], [2, Mod(49, 96), 8, 0], [2, 
  700 Mod(47, 96), 8, 0], [4, Mod(25, 96), 12, 0], [4, Mod(71, 96), 12, 0], [8, Mo
  701 d(37, 96), 14, 0], [8, Mod(59, 96), 14, 0]]
  702 [[1, Mod(1, 96), 7, 0], [2, Mod(95, 96), 4, 0], [2, Mod(49, 96), 6, 0], [2, 
  703 Mod(47, 96), 6, 0], [4, Mod(25, 96), 12, 0], [4, Mod(71, 96), 12, 0], [8, Mo
  704 d(37, 96), 6, 0]]
  705 [[1, Mod(1, 96), 15, 0], [2, Mod(95, 96), 16, 0], [2, Mod(49, 96), 16, 0], [
  706 2, Mod(47, 96), 16, 0], [4, Mod(25, 96), 8, 0], [4, Mod(71, 96), 8, 0], [8, 
  707 Mod(37, 96), 4, 0], [8, Mod(59, 96), 4, 0]]
  708 [[1, Mod(1, 96), 24, 0], [2, Mod(95, 96), 24, 0], [2, Mod(49, 96), 24, 0], [
  709 2, Mod(47, 96), 24, 0], [4, Mod(25, 96), 20, 0], [4, Mod(71, 96), 20, 0], [8
  710 , Mod(37, 96), 18, 0], [8, Mod(59, 96), 18, 0]]
  711 [[2, 0], [0, 0], [0, 0], [4, 0], [8, 0], [0, 0], [0, 0], [14, 0], [0, 0], [0
  712 , 0], [0, 0], [0, 0], [2, 0], [0, 0], [0, 0], [2, 0]]
  713 [[9, 0], [0, 0], [0, 0], [8, 0], [14, 0], [0, 0], [0, 0], [14, 0], [12, 0], 
  714 [0, 0], [0, 0], [12, 0], [8, 0], [0, 0], [0, 0], [8, 0]]
  715 [[7, 0], [0, 0], [0, 0], [4, 0], [6, 0], [0, 0], [0, 0], [0, 0], [12, 0], [0
  716 , 0], [0, 0], [12, 0], [6, 0], [0, 0], [0, 0], [6, 0]]
  717 [[15, 0], [0, 0], [0, 0], [16, 0], [4, 0], [0, 0], [0, 0], [4, 0], [8, 0], [
  718 0, 0], [0, 0], [8, 0], [16, 0], [0, 0], [0, 0], [16, 0]]
  719 [[24, 0], [0, 0], [0, 0], [24, 0], [18, 0], [0, 0], [0, 0], [18, 0], [20, 0]
  720 , [0, 0], [0, 0], [20, 0], [24, 0], [0, 0], [0, 0], [24, 0]]
  721 10
  722 2
  723 0
  724 [1, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0]
  725 [1/2 - 1/2*I, 0, 1/2 - 1/2*I, 1, 1.2548652488804080851212455162477386227 + 0
  726 .13774935502057657907313538946599934252*I]
  727 [0, 2, 0, 0, Mod(-2*t - 2, t^2 + t + 1), 0, 0, 0, 0, Mod(2*t, t^2 + t + 1), 
  728 0, 0, 0, 0, 0, 0]
  729 [196, 1/2, Mod(2, 7), y, t^2 + t + 1]
  730 [0, 2, 0, 0, Mod(4*t, t^2 + 1), 0, 0, 0, 0, Mod(-6*t, t^2 + 1), 0, 0, 0, 0, 
  731 0, 0]
  732 [100, 3/2, Mod(7, 20), y, t^2 + 1]
  733 [1, -264, -135432, -5196576, -69341448, -515625264, -2665843488, -1065335251
  734 2, -35502821640, -102284205672, -264515760432, -622498190688, -1364917062432
  735 , -2799587834736, -5465169838656, -10149567696576]
  736 [0, 1, -24, 252, -1472, 4830, -6048, -16744, 84480, -113643, -115920, 534612
  737 , -370944, -577738, 401856, 1217160]
  738 [1, 12, 1, 1, t - 1]
  739 [1, -24, 252, -1472, 4830, -6048, -16744, 84480, -113643, -115920, 534612, -
  740 370944, -577738, 401856, 1217160, 987136]
  741 [1/1728, 0, -1/20736, 0, 1/165888, 0, 1/497664, 0, -11/3981312, 0, 7/1592524
  742 8]
  743 [0.0017853698506421519043430549603422623106, 0, -0.0171012292073417293156314
  744 59010992410421, 0, 0.040951184469824320600328376773822139547, 0, 0.104600637
  745 48004752177296678887319501733, 0, -0.59041770925463104960248994945766228175,
  746  0, 0.23992339736027093580525099155844404883]
  747 1
  748 [1728, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
  749 [0, 1728, -41472, 435456, -2543616, 8346240, -10450944, -28933632, 145981440
  750 , -196375104, -200309760, 923809536, -640991232, -998331264, 694407168, 2103
  751 252480]
  752 [0, -504, -33264, -368928, -2130912, -7877520, -24349248]
  753 [0, -504, -8316, -40992, -133182, -1575504/5, -676368]
  754 [-1/2, -240, -30960, -525120, -3963120, -18750240, -67740480]
  755 [Mod(21/19*t^5 - 4/19*t^4 - 68/19*t^3 + 24/19*t^2 - 29/19*t - 37/19, t^6 + t
  756 ^3 + 1), Mod(-9/19*t^5 + 18/19*t^4 + 40/19*t^3 + 6/19*t^2 + 7/19*t - 14/19, 
  757 t^6 + t^3 + 1), Mod(-21/19*t^5 - 34/19*t^4 + 106/19*t^3 - 24/19*t^2 + 67/19*
  758 t + 75/19, t^6 + t^3 + 1), Mod(-27/19*t^5 + 73/19*t^4 + 101/19*t^3 - 39/19*t
  759 ^2 + 59/19*t + 91/19, t^6 + t^3 + 1), Mod(-37/19*t^5 - 40/19*t^4 - 129/19*t^
  760 3 - 140/19*t^2 + 14/19*t + 10/19, t^6 + t^3 + 1), Mod(37/19*t^5 - 188/19*t^4
  761  + 148/19*t^3 - 69/19*t^2 - 261/19*t + 104/19, t^6 + t^3 + 1), Mod(13/19*t^5
  762  - 7/19*t^4 - 157/19*t^3 + 251/19*t^2 + 11/19*t + 16/19, t^6 + t^3 + 1)]
  763 [0, -8, 0, 0, 448, -960, 0, 0, 1920, -72, 0, 0, -11520, 10560, 0, 0]
  764 [0]
  765 [1, 2, 0, 0, 242, 480, 0, 0, 2640, 4322, 0, 0, 11040, 13920, 0, 0]
  766 [1]
  767 [0, -1, 24, -252, 1472, -4830, 6048, 16744, -84480, 113643, 115920]
  768 [[1, 1], 0.16568457302248264542066459293908431501]
  769 [y, y^2 + Mod(-t, t^2 + 1)*y + 32]
  770 [t^2 + 1, [1, I, -1, -I]~]
  771 [0, 1, -4 - 4*I, -23 + 23*I, 32*I]
  772 [t^2 + 1, [1, I, -1, -I]~]
  773 2
  774 [0, 1, 4 + 4*I, 23.894541729001368054461689919961782206 - 23.894541729001368
  775 054461689919961782206*I, 32*I]
  776 [0, 1, 4 + 4*I, -32.894541729001368054461689919961782206 + 32.89454172900136
  777 8054461689919961782206*I, 32*I]
  778 
  779 [                                                 1   I]
  780 
  781 [0.E-38 - 5.1789083458002736108923379839923564411*I 1/2]
  782 
  783 (-0.42032884322677921722469742108951886443 - 0.36665141119210363722276336624
  784 357748307*I)*x^5 + (-0.18897096195310015252637690454628340018 + 0.2334775315
  785 3997872645748275207133555666*I)*x^4 + (0.05669894077036206721138027675869498
  786 5766 + 0.019851987390139195033288439780776993730*I)*x^3 + (-0.01778807113146
  787 0726637976503215205801403 - 0.0066687070863864346224329592313502928776*I)*x^
  788 2 + (-0.00014285107000277589442425212918179977119 + 0.0094974404850612698333
  789 714635028430975514*I)*x + (0.0017634098246564914212887661127367171167 - 3.84
  790 93221223953106272210521959657558937 E-5*I)
  791 (-0.42032884322677921722469742108951886443 - 0.36665141119210363722276336624
  792 357748307*I)*x^5 + (-0.18897096195310015252637690454628340018 + 0.2334775315
  793 3997872645748275207133555666*I)*x^4 + (0.05669894077036206721138027675869498
  794 5766 + 0.019851987390139195033288439780776993730*I)*x^3 + (-0.01778807113146
  795 0726637976503215205801403 - 0.0066687070863864346224329592313502928776*I)*x^
  796 2 + (-0.00014285107000277589442425212918179977119 + 0.0094974404850612698333
  797 714635028430975514*I)*x + (0.0017634098246564914212887661127367171167 - 3.84
  798 93221223953106272210521959657558937 E-5*I)
  799 [(-0.11978968330084743941034336902296121263 + 0.6675712441890031614835686639
  800 3309199760*I)*x^5 + (0.47459258827123214210389409418585137394 + 0.0738116455
  801 79858397157878143011696499169*I)*x^4 + (0.0239881015411315413733797131896244
  802 63396 - 0.19195836968288495139427189581460315486*I)*x^3 + (-0.06091879582539
  803 5161943853589975161158104 - 0.0055897035583019227181012364528570531811*I)*x^
  804 2 + (-0.00093396277153707022978325343297000205630 + 0.0151596173238831031064
  805 47349960285186585*I)*x + (0.0021431928592073859680903512704736845544 + 8.205
  806 9193124110226533224704061362634241 E-5*I), (-0.62739345285811739127778056884
  807 021600097 - 0.087390135179795679398135448226837566631*I)*x^5 + (0.0071366457
  808 725152534775841805760933396780 + 0.40397833014354552911285996147380482698*I)
  809 *x^4 + (0.12891258393984629705652072463003358643 - 0.05228352106134393940156
  810 8419229621475946*I)*x^3 + (-0.035464631571369665466140174106504828211 - 0.02
  811 6028100099104453183586604526392274925*I)*x^2 + (-0.0033524403603294024998684
  812 552942059280440 + 0.012329256529445897292427816673749766245*I)*x + (0.001991
  813 1655001689021405322834054755664714 + 0.0002187595828686439236664039723449641
  814 6014*I)]
  815 (-0.42032884322677921722469742108951886443 - 0.36665141119210363722276336624
  816 357748307*I)*x^5 + (-0.18897096195310015252637690454628340018 + 0.2334775315
  817 3997872645748275207133555666*I)*x^4 + (0.05669894077036206721138027675869498
  818 5766 + 0.019851987390139195033288439780776993730*I)*x^3 + (-0.01778807113146
  819 0726637976503215205801403 - 0.0066687070863864346224329592313502928776*I)*x^
  820 2 + (-0.00014285107000277589442425212918179977119 + 0.0094974404850612698333
  821 714635028430975514*I)*x + (0.0017634098246564914212887661127367171167 - 3.84
  822 93221223953106272210521959657558937 E-5*I)
  823 (0.63503857136548153723243364047328438986 + 3.514572428867635055012606515575
  824 9628731*I)*x^5 + (-0.55372847947444593258698788340168966082 - 9.108921742882
  825 8235118512107360613470523*I)*x^4 + (-0.5736853636153969172965804481164446308
  826 3 + 9.3350094980459189288929480268625379486*I)*x^3 + (0.92067030358191022593
  827 055872189272950582 - 4.7134500726338769290757263902171115959*I)*x^2 + (-0.40
  828 943867072608376472339177571526455001 + 1.15651384868088764032207293563713484
  829 07*I)*x + (0.059036856826078966302068066654747180072 - 0.1074704942638566941
  830 6527151515690888886*I)
  831 (0.50591569408594293044173544719087511946 + 2.117281275622317566448200088099
  832 4098275*I)*x^5 + (-0.50329189412202947783246908444432161292 - 5.590428274519
  833 0468676320341127315401960*I)*x^4 + (-0.3497080814333576092739419971721942705
  834 1 + 5.8131984654812768380493298366830104987*I)*x^3 + (0.67136183809998279160
  835 852888055285137912 - 2.9619446659820968460170467417907610716*I)*x^2 + (-0.31
  836 298236313441943447438431991727961780 + 0.72375422627359354753058812996616936
  837 826*I)*x + (0.046021296425325344919105451970096214097 - 0.064981133287689249
  838 704701491873473271745*I)
  839 (0.50591569408757962384361452599497966291 + 2.117281275639064594489871762594
  840 8918260*I)*x^5 + (-0.50329189412193445432675932972323847027 - 5.590428274561
  841 3236110866820457378951587*I)*x^4 + (-0.3497080814376803071251059760080492944
  842 6 + 5.8131984655235440791534068179731335741*I)*x^3 + (0.67136183810425750258
  843 930943563014705872 - 2.9619446660030143316765275738312612505*I)*x^2 + (-0.31
  844 298236313601104936106517214476233040 + 0.72375422627871605117093909126879831
  845 832*I)*x + (0.046021296425535731444176918743279766645 - 0.064981133288185583
  846 919869819271833506431*I)
  847 (164.35262898335787004106106716673677130 + 27.238600223902468333759517924304
  848 610904*I)*x^5 + (-271.95434178285557919428732408774729971 - 54.8341728611807
  849 65120958234414937486873*I)*x^4 + (180.19514127347078229995469690124466357 + 
  850 41.691669235812561554783086959210566385*I)*x^3 + (-59.9543068680018830870208
  851 43160703944761 - 15.111269706996669294559216350864552013*I)*x^2 + (10.065256
  852 240339619831161098072464760373 + 2.6184808251354815164522274491363646980*I)*
  853 x + (-0.68672917564913976846740362654117485201 - 0.1732219127234492275765682
  854 9146590865136*I)
  855 [(-37.400871663494856516636401987243309210 - 123.329800340743528756196753860
  856 76255844*I)*x^5 + (53.268246125228312340154821977677892221 + 207.67678245211
  857 016109263953978319052970*I)*x^4 + (-28.666898066293079278659311038421188987 
  858 - 139.64875858061674710101939900539440561*I)*x^3 + (6.8676880960045824324968
  859 267496774844483 + 46.814934586818559059649732674905180429*I)*x^2 + (-0.59643
  860 957211173608030883172017086163757 - 7.8046112726147121874007178376101555939*
  861 I)*x + (-0.0064055991688804413829736007101014212258 + 0.51526489380605352673
  862 507681658732620789*I), (140.09242210378463676125436253030190949 - 46.3393403
  863 38148920959200393601425458778*I)*x^5 + (-239.1537304828094629201233858532011
  864 7138 + 64.836449022531128110429287661758992831*I)*x^4 + (162.744445131511330
  865 16860078839933141537 - 33.558240643220739258219626272248254402*I)*x^3 + (-55
  866 .079528297804953230956818685769222608 + 7.3487498203155016127222453918267226
  867 450*I)*x^2 + (9.2420957758989707670959015639234112401 - 0.450495026534426142
  868 94207267772156672859*I)*x + (-0.61189800800168155000144831291875936999 - 0.0
  869 33316392602605981857006660342857673457*I)]
  870 [0, 0]
  871 1.0024642466164642932880429736720212519 E-5
  872 
  873 [1.0616767679426667234166859887525352956 E-5 0]
  874 
  875 [0 1.3579771881756813076319839557062773447 E-5]
  876 
  877 1
  878 1
  879 [[((61893*t - 42501)*y + (-301056*t + 307452))*x^5 + ((-1166160*t + 897220)*
  880 y + (5999170*t - 11970090))*x^3 + ((2722848*t - 2437636)*y + (-14350096*t + 
  881 127683672))*x, ((-1556688*t + 1540416)*y + (8350926*t - 115713582))*x^5 + ((
  882 775632*t - 254024)*y + (-3647414*t - 91773402))*x^4 + ((2332320*t - 1794440)
  883 *y + (-11998340*t + 23940180))*x^3 + ((-2332320*t + 1794440)*y + (11998340*t
  884  - 23940180))*x^2 + ((-775632*t + 254024)*y + (3647414*t + 91773402))*x + ((
  885 1556688*t - 1540416)*y + (-8350926*t + 115713582)), ((-2034*t + 387138)*y + 
  886 (-13420332*t - 9981516))*x^5 + ((-64862*t + 64184)*y + (-22679326*t - 186377
  887 68))*x^4 + ((593250*t - 2384300)*y + (8836600*t + 627150))*x^3 + ((648620*t 
  888 - 641840)*y + (5731360*t - 34684220))*x^2 + ((-1562112*t + 2572784)*y + (940
  889 7024*t + 27149832))*x + 176849520, ((2034*t - 387138)*y + (-163429188*t + 99
  890 81516))*x^5 + ((-2637646*t - 1497928)*y + (-49829158*t - 9230744))*x^4 + ((4
  891 8590*t + 3032920)*y + (25847620*t + 5104210))*x^3 + ((3032920*t - 48590)*y +
  892  (5104210*t - 25847620))*x^2 + ((1497928*t - 2637646)*y + (9230744*t - 49829
  893 158))*x + ((-387138*t - 2034)*y + (9981516*t + 163429188)), (-22106190*t + 2
  894 2106190)*x^5 + ((1033724*t - 252668)*y + (4435702*t - 9139214))*x^4 + ((6452
  895 30*t + 3390)*y + (20207790*t - 14476430))*x^3 + ((-2977550*t + 1791050)*y + 
  896 (-8209450*t - 9463750))*x^2 + ((-258092*t - 1356)*y + (-8083116*t - 82634188
  897 ))*x + ((1556688*t - 1540416)*y + (13755264*t + 93607392)), ((355683*t + 120
  898 069)*y + (-2132976*t - 281868))*x^5 + ((-897220*t - 1166160)*y + (11970090*t
  899  + 5999170))*x^3 + ((-1432727*t + 2508939)*y + (-21158346*t - 99350278))*x, 
  900 (-22106190*t + 22106190)*x^5 + ((-1033724*t + 252668)*y + (-4435702*t + 9139
  901 214))*x^4 + ((645230*t + 3390)*y + (20207790*t - 14476430))*x^3 + ((2977550*
  902 t - 1791050)*y + (8209450*t + 9463750))*x^2 + ((-258092*t - 1356)*y + (-8083
  903 116*t - 82634188))*x + ((-1556688*t + 1540416)*y + (-13755264*t - 93607392))
  904 , ((2034*t - 387138)*y + (-163429188*t + 9981516))*x^5 + ((2637646*t + 14979
  905 28)*y + (49829158*t + 9230744))*x^4 + ((48590*t + 3032920)*y + (25847620*t +
  906  5104210))*x^3 + ((-3032920*t + 48590)*y + (-5104210*t + 25847620))*x^2 + ((
  907 1497928*t - 2637646)*y + (9230744*t - 49829158))*x + ((387138*t + 2034)*y + 
  908 (-9981516*t - 163429188)), ((-2034*t + 387138)*y + (-13420332*t - 9981516))*
  909 x^5 + ((64862*t - 64184)*y + (22679326*t + 18637768))*x^4 + ((593250*t - 238
  910 4300)*y + (8836600*t + 627150))*x^3 + ((-648620*t + 641840)*y + (-5731360*t 
  911 + 34684220))*x^2 + ((-1562112*t + 2572784)*y + (9407024*t + 27149832))*x - 1
  912 76849520, ((-1556688*t + 1540416)*y + (8350926*t - 115713582))*x^5 + ((-7756
  913 32*t + 254024)*y + (3647414*t + 91773402))*x^4 + ((2332320*t - 1794440)*y + 
  914 (-11998340*t + 23940180))*x^3 + ((2332320*t - 1794440)*y + (-11998340*t + 23
  915 940180))*x^2 + ((-775632*t + 254024)*y + (3647414*t + 91773402))*x + ((-1556
  916 688*t + 1540416)*y + (8350926*t - 115713582)), ((-77568*t + 417576)*y + (-25
  917 584*t - 2434032))*x^5 + ((268940*t - 2063380)*y + (5970920*t + 17969260))*x^
  918 3 + ((-71303*t + 1290121)*y + (-28333394*t - 35508442))*x, -176849520*x^5 + 
  919 ((1562112*t - 2572784)*y + (-9407024*t - 27149832))*x^4 + ((-648620*t + 6418
  920 40)*y + (-5731360*t + 34684220))*x^3 + ((-593250*t + 2384300)*y + (-8836600*
  921 t - 627150))*x^2 + ((64862*t - 64184)*y + (22679326*t + 18637768))*x + ((203
  922 4*t - 387138)*y + (13420332*t + 9981516)), ((-1540416*t - 1556688)*y + (9360
  923 7392*t - 13755264))*x^5 + ((1356*t - 258092)*y + (82634188*t - 8083116))*x^4
  924  + ((1791050*t + 2977550)*y + (-9463750*t + 8209450))*x^3 + ((-3390*t + 6452
  925 30)*y + (14476430*t + 20207790))*x^2 + ((-252668*t - 1033724)*y + (-9139214*
  926 t - 4435702))*x + (-22106190*t - 22106190), ((-1540416*t - 1556688)*y + (936
  927 07392*t - 13755264))*x^5 + ((-1356*t + 258092)*y + (-82634188*t + 8083116))*
  928 x^4 + ((1791050*t + 2977550)*y + (-9463750*t + 8209450))*x^3 + ((3390*t - 64
  929 5230)*y + (-14476430*t - 20207790))*x^2 + ((-252668*t - 1033724)*y + (-91392
  930 14*t - 4435702))*x + (22106190*t + 22106190), -176849520*x^5 + ((-1562112*t 
  931 + 2572784)*y + (9407024*t + 27149832))*x^4 + ((-648620*t + 641840)*y + (-573
  932 1360*t + 34684220))*x^3 + ((593250*t - 2384300)*y + (8836600*t + 627150))*x^
  933 2 + ((64862*t - 64184)*y + (22679326*t + 18637768))*x + ((-2034*t + 387138)*
  934 y + (-13420332*t - 9981516)), ((71303*t - 1290121)*y + (28333394*t + 3550844
  935 2))*x^4 + ((-268940*t + 2063380)*y + (-5970920*t - 17969260))*x^2 + ((77568*
  936 t - 417576)*y + (25584*t + 2434032)), ((1432727*t - 2508939)*y + (21158346*t
  937  + 99350278))*x^4 + ((897220*t + 1166160)*y + (-11970090*t - 5999170))*x^2 +
  938  ((-355683*t - 120069)*y + (2132976*t + 281868)), ((-2722848*t + 2437636)*y 
  939 + (14350096*t - 127683672))*x^4 + ((1166160*t - 897220)*y + (-5999170*t + 11
  940 970090))*x^2 + ((-61893*t + 42501)*y + (301056*t - 307452))], [((52*t - 46)*
  941 y + (-316*t + 398))*x^4 + ((-250*t + 250)*y + (1750*t - 7250))*x^2 + 30000, 
  942 ((-198*t + 204)*y + (1434*t + 23148))*x^5 + ((-240*t + 270)*y + (1920*t - 12
  943 510))*x^4 + ((270*t - 210)*y + (-1410*t - 3270))*x^3 + ((270*t - 210)*y + (-
  944 1410*t - 3270))*x^2 + ((-240*t + 270)*y + (1920*t - 12510))*x + ((-198*t + 2
  945 04)*y + (1434*t + 23148)), ((6*t + 42)*y + (3012*t + 2484))*x^5 + ((-25*t + 
  946 165)*y + (-2595*t - 1355))*x^4 + ((-65*t + 15)*y + (-2115*t - 325))*x^3 + ((
  947 190*t - 510)*y + (-450*t - 1210))*x^2 + ((260*t - 300)*y + (-420*t - 18020))
  948 *x + ((-168*t + 264)*y + (1944*t + 7368)), ((270*t + 210)*y + (10380*t + 540
  949 ))*x^5 + ((-275*t - 425)*y + (-15425*t + 1775))*x^4 + ((-575*t - 175)*y + (-
  950 3325*t + 125))*x^3 + ((-175*t + 575)*y + (125*t + 3325))*x^2 + ((425*t - 275
  951 )*y + (-1775*t - 15425))*x + ((210*t - 270)*y + (540*t - 10380)), ((-54*t + 
  952 12)*y + (-678*t + 1164))*x^5 + ((-140*t + 10)*y + (-4400*t + 4610))*x^4 + ((
  953 350*t - 160)*y + (380*t - 830))*x^3 + ((80*t + 50)*y + (1790*t + 2440))*x^2 
  954 + ((-380*t + 280)*y + (-2480*t - 7900))*x + ((144*t - 192)*y + (-2112*t - 21
  955 984)), ((144*t + 58)*y + (-1112*t - 234))*x^4 + (-250*y + (2750*t + 4500))*x
  956 ^2 + (-3750*t - 26250), ((54*t - 12)*y + (678*t - 1164))*x^5 + ((-140*t + 10
  957 )*y + (-4400*t + 4610))*x^4 + ((-350*t + 160)*y + (-380*t + 830))*x^3 + ((80
  958 *t + 50)*y + (1790*t + 2440))*x^2 + ((380*t - 280)*y + (2480*t + 7900))*x + 
  959 ((144*t - 192)*y + (-2112*t - 21984)), ((-270*t - 210)*y + (-10380*t - 540))
  960 *x^5 + ((-275*t - 425)*y + (-15425*t + 1775))*x^4 + ((575*t + 175)*y + (3325
  961 *t - 125))*x^3 + ((-175*t + 575)*y + (125*t + 3325))*x^2 + ((-425*t + 275)*y
  962  + (1775*t + 15425))*x + ((210*t - 270)*y + (540*t - 10380)), ((-6*t - 42)*y
  963  + (-3012*t - 2484))*x^5 + ((-25*t + 165)*y + (-2595*t - 1355))*x^4 + ((65*t
  964  - 15)*y + (2115*t + 325))*x^3 + ((190*t - 510)*y + (-450*t - 1210))*x^2 + (
  965 (-260*t + 300)*y + (420*t + 18020))*x + ((-168*t + 264)*y + (1944*t + 7368))
  966 , ((198*t - 204)*y + (-1434*t - 23148))*x^5 + ((-240*t + 270)*y + (1920*t - 
  967 12510))*x^4 + ((-270*t + 210)*y + (1410*t + 3270))*x^3 + ((270*t - 210)*y + 
  968 (-1410*t - 3270))*x^2 + ((240*t - 270)*y + (-1920*t + 12510))*x + ((-198*t +
  969  204)*y + (1434*t + 23148)), ((-12*t + 196)*y + (-164*t - 1428))*x^4 + (-250
  970 *y + (2750*t + 4500))*x^2 + (-3750*t - 3750), ((-168*t + 264)*y + (1944*t + 
  971 7368))*x^5 + ((260*t - 300)*y + (-420*t - 18020))*x^4 + ((190*t - 510)*y + (
  972 -450*t - 1210))*x^3 + ((-65*t + 15)*y + (-2115*t - 325))*x^2 + ((-25*t + 165
  973 )*y + (-2595*t - 1355))*x + ((6*t + 42)*y + (3012*t + 2484)), ((-192*t - 144
  974 )*y + (-21984*t + 2112))*x^5 + ((-280*t - 380)*y + (7900*t - 2480))*x^4 + ((
  975 50*t - 80)*y + (2440*t - 1790))*x^3 + ((160*t + 350)*y + (830*t + 380))*x^2 
  976 + ((10*t + 140)*y + (4610*t + 4400))*x + ((-12*t - 54)*y + (-1164*t - 678)),
  977  ((192*t + 144)*y + (21984*t - 2112))*x^5 + ((-280*t - 380)*y + (7900*t - 24
  978 80))*x^4 + ((-50*t + 80)*y + (-2440*t + 1790))*x^3 + ((160*t + 350)*y + (830
  979 *t + 380))*x^2 + ((-10*t - 140)*y + (-4610*t - 4400))*x + ((-12*t - 54)*y + 
  980 (-1164*t - 678)), ((168*t - 264)*y + (-1944*t - 7368))*x^5 + ((260*t - 300)*
  981 y + (-420*t - 18020))*x^4 + ((-190*t + 510)*y + (450*t + 1210))*x^3 + ((-65*
  982 t + 15)*y + (-2115*t - 325))*x^2 + ((25*t - 165)*y + (2595*t + 1355))*x + ((
  983 6*t + 42)*y + (3012*t + 2484)), (-3750*t - 3750)*x^5 + (-250*y + (2750*t + 4
  984 500))*x^3 + ((-12*t + 196)*y + (-164*t - 1428))*x, (-3750*t - 26250)*x^5 + (
  985 -250*y + (2750*t + 4500))*x^3 + ((144*t + 58)*y + (-1112*t - 234))*x, 30000*
  986 x^5 + ((-250*t + 250)*y + (1750*t - 7250))*x^3 + ((52*t - 46)*y + (-316*t + 
  987 398))*x]]
  988 Mod(-904583688/27200667365, y^2 + Mod(-t, t^2 + 1)*y + 32)*y^2 + Mod(-485238
  989 4244/5440133473, y^2 + Mod(-t, t^2 + 1)*y + 32)
  990 0.0011925695879998878380848926233233473256*x^3 - 0.0034461762994896503999275
  991 399407078201462*I*x^2 - 0.0029814239699997195952122315583083683139*x
  992 (0.0011925695879998878380848926233233473256*x^4 + 0.001788854381999831757127
  993 3389349850209884*x^3 + 0.0011925695879998878380848926233233473255*x^2 + 0.00
  994 17888543819998317571273389349850209884*x + 0.0011925695879998878380848926233
  995 233473256)/x
  996 (0.0011925695879998878380848926233233473256*x^4 + 0.001788854381999831757127
  997 3389349850209884*x^3 + 0.0017888543819998317571273389349850209884*x - 0.0011
  998 925695879998878380848926233233473256)/x
  999 (0.0011925695879998878380848926233233473256*x^4 - 0.001788854381999831757127
 1000 3389349850209884*x^3 - 0.0017888543819998317571273389349850209884*x - 0.0011
 1001 925695879998878380848926233233473256)/x
 1002 (0.0011925695879998878380848926233233473256*x^4 - 0.001788854381999831757127
 1003 3389349850209884*x^3 + 0.0011925695879998878380848926233233473255*x^2 - 0.00
 1004 17888543819998317571273389349850209884*x + 0.0011925695879998878380848926233
 1005 233473256)/x
 1006 (-0.0029814239699997195952122315583083683139*x^2 + 0.00344617629948965039992
 1007 75399407078201462*I*x + 0.0011925695879998878380848926233233473256)/x
 1008 (-0.0029814239699997195952122315583083683139*x^2 + 0.00344617629948965039992
 1009 75399407078201462*I*x + 0.0011925695879998878380848926233233473256)/x
 1010 (0.13416407864998738178455042012387657413 - 0.086154407487241259998188498517
 1011 695503654*I)*x^2 + (-0.089442719099991587856366946749251049416 + 0.034461762
 1012 994896503999275399407078201462*I)*x + 0.017888543819998317571273389349850209
 1013 883
 1014 -0.062500000000000000000000000000000000000*I*x^2 - 0.00390625000000000000000
 1015 00000000000000000*I
 1016 (0.029076134702187599205839917739040862356*x^3 + (-0.02180710102664069940437
 1017 9938304280646767 - 0.020833333333333333333333333333333333302*I)*x^2 + (0.005
 1018 4517752566601748510949845760701616916 + 0.0104166666666666666666666666666666
 1019 66659*I)*x + (-0.00045431460472168123759124871467251347431 - 0.0039062500000
 1020 000000000000000000000000000*I))/(-4*x + 1)
 1021 -10.687500000000000000000000000000000000*I*x^2 + 8.0000000000000000000000000
 1022 000000000000*I*x - 2.0000000000000000000000000000000000000*I
 1023 0.023437500000000000000000000000000000000*I*x^2 + 0.031250000000000000000000
 1024 000000000000000*I*x + 0.093750000000000000000000000000000000000*I
 1025 [[1], [1, 1]]
 1026 [[0.70710678118654752440084436210484903928 + 0.70710678118654752440084436210
 1027 484903928*I], [-0.70710678118654752440084436210484903928 - 0.707106781186547
 1028 52440084436210484903928*I, -0.70710678118654752440084436210484903928 - 0.707
 1029 10678118654752440084436210484903928*I]]
 1030 [[0.99595931395311210936063384855913482217 - 0.08980559531591707448838903035
 1031 9505357518*I], [0.53927595283868673281600574405026404174 + 0.842129115213294
 1032 66664554619540652632773*I, -0.85895466516104552261001111734173629157 + 0.512
 1033 05164114381683048538165804971399484*I]]
 1034 [[-0.76775173011852704509198454449006172342 - 0.6407474392457674209160837770
 1035 1764443336*I], [-0.21414952481887583992521740447795630386 + 0.97680089118502
 1036 020368501019184890743540*I, -0.96944785623768905552448638076096150650 - 0.24
 1037 529748069670216936666745500978951116*I]]
 1038 [10, 7, Mod(2, 5), 0, t^2 + 1]
 1039 3
 1040 [0, 3, 4*t + 4, 32*t - 32, 96*t, 155*t + 90, 112, -348*t - 348, 128*t - 128,
 1041  -2177*t]
 1042 2
 1043 [0, 1, -4*t - 4, 23*t - 23, 32*t, 100*t - 75, 184, -247*t - 247, -128*t + 12
 1044 8, -329*t]
 1045 [0, 1, 4*t + 4, (5*t + 5)*y + (2*t - 2), 32*t, (-5*t - 15)*y + (35*t + 80), 
 1046 40*t*y - 16, (-55*t + 55)*y + (-78*t - 78), 128*t - 128, -90*y - 879*t]
 1047 [0, 1, -2, -1, 2, 1, 2, -2, 0, -2, -2]
 1048 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 1049 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
 1050 [-1/12, -3/2, 16/3, -1/12, -27/4, 1/6, 4/3]~
 1051 [0, 0, -2399/5121840000, -479/13111910400000, 1/307310400000]~
 1052 [1, 0, 0, 0, 0, 0]
 1053 8
 1054 [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]~
 1055 12
 1056 x^12 + Mod(-4*t - 4, t^2 + t + 1)*x^11 + Mod(-4*t, t^2 + t + 1)*x^10 + Mod(-
 1057 40, t^2 + t + 1)*x^9 + Mod(27*t + 27, t^2 + t + 1)*x^8 + Mod(150*t, t^2 + t 
 1058 + 1)*x^7 + Mod(216, t^2 + t + 1)*x^6 + Mod(270*t + 270, t^2 + t + 1)*x^5 + M
 1059 od(-675*t, t^2 + t + 1)*x^4 + Mod(54, t^2 + t + 1)*x^3 + Mod(-972*t - 972, t
 1060 ^2 + t + 1)*x^2 + Mod(648*t, t^2 + t + 1)*x
 1061 0
 1062 []
 1063 [-24]
 1064 [14]
 1065 [14]
 1066 [[], 1]
 1067 [-12]
 1068 [[33, 2, 1, y, t - 1], [0, 1, 1, -1, -1, -2, -1, 4, -3, 1, -2]]
 1069 [[38, 2, 1, y, t - 1], [0, 1, 1, -1, 1, -4, -1, 3, 1, -2, -4]]
 1070 [[39, 2, 1, y, t - 1], [0, 1, 1, -1, -1, 2, -1, -4, -3, 1, 2]]
 1071 [[34, 2, 1, y, t - 1], [0, 1, 1, -2, 1, 0, -2, -4, 1, 1, 0]]
 1072 [[38, 2, 1, y, t - 1], [0, 1, -1, 1, 1, 0, -1, -1, -1, -2, 0]]
 1073 [[11, 3, -11, y, t + 1], [0, 1, 0, -5, 4, -1, 0, 0, 0, 16, 0]]
 1074 [[12, 3, -3, y, t + 1], [0, 1, 0, -3, 0, 0, 0, 2, 0, 9, 0]]
 1075 [[16, 3, -4, y, t + 1], [0, 1, 0, 0, 0, -6, 0, 0, 0, 9, 0]]
 1076 [[38, 2, 1], [0, 1, 2, 3, 4, -5, -8, 1, -7, -5, 7]]
 1077 [[40, 2, 8], [0, 1, 2, 3, 4, -4, -6, -1, -10, -1, 2]]
 1078 [[40, 2, 40], [0, 1, 2, 3, 4, -8, -6, -7, 6, -1, -2]]
 1079 3
 1080 [0, 1, 2, 3, 4, 5]
 1081 x^12 + 2*x^11 + 4*x^10 + 4*x^9 + 4*x^8 + 2*x^7 - 8*x^5 - 17*x^4 - 16*x^3 - 8
 1082 *x^2 + 16*x + 16
 1083 [2, 40, 20, 10, 8, 10, 4, 2]
 1084 [[0, 0], [0, 0], [0, 0], [1, 1], [0, 0], [1, 1], [0, 0], [3, 3]]
 1085 [[3, 3]]
 1086 [[5, 5]]
 1087 [[2, 2]]
 1088 [[6, 6]]
 1089 [[4, 4]]
 1090 [[0, -1; 1, 0], [1, 0; 1, 1], [0, -1; 1, 2], [0, -1; 1, 3], [1, 0; 2, 1], [1
 1091 , 0; 4, 1]]
 1092 [[-1, 1; -4, 3], 5]
 1093 [[0, -1; 1, 0], [1, 0; 1, 1], [0, -1; 1, 2], [0, -1; 1, 3], [0, -1; 1, 4], [
 1094 0, -1; 1, 5], [0, -1; 1, 6], [0, -1; 1, 7], [0, -1; 1, 8], [0, -1; 1, 9], [0
 1095 , -1; 1, 10], [0, -1; 1, 11], [0, -1; 1, 12], [0, -1; 1, 13], [0, -1; 1, 14]
 1096 , [0, -1; 1, 15], [0, -1; 1, 16], [0, -1; 1, 17], [0, -1; 1, 18], [0, -1; 1,
 1097  19], [0, -1; 1, 20], [0, -1; 1, 21], [0, -1; 1, 22], [1, 0; 23, 1]]
 1098 [0, 1, t^3 + t - 1, 0, -t^2 - 1, 0, 0, -t, -t^3 + t^2 - t + 1, -t^3, 0]
 1099 [10]
 1100 1
 1101 [0, 1, 0, 0, t - 1, t - 1, 0, 0, 0, 0, 0]
 1102 [6]
 1103 6
 1104 10
 1105 3
 1106 [[0, 0, 0; 0, 0, 1; 0, -2, 0], [0, 0, 0; 0, 0, -1; 0, 2, 0]]
 1107 1.4557628922687093224624220035988692874
 1108 10000.000000000000000000001237896015010
 1109 1.9689399767614335374830916735439946588
 1110 [-1, -60.000000000000000000000000000000000000, 240.0000000000000000000000000
 1111 0000000000*x^-1 + O(x^0)]
 1112 [-1, -378.00000000000000000000000000000000000, -504.000000000000000000000000
 1113 00000000001*x^-1 + O(x^0)]
 1114 0.0050835121083932868604942901374387473226
 1115 [1620/691, 1, 9/14, 9/14, 1, 1620/691]
 1116 0.0074154209298961305890064277459002287248
 1117 [1, 25/48, 5/12, 25/48, 1]
 1118 [270000/43867, 1, 75/364, 15/308, 0, -15/308, -75/364, -1, -270000/43867]
 1119 -0.43965042620884602281482782769927016562
 1120 [1, 11/60, 1/24, 1/120, -1/120, -1/24, -11/60, -1]
 1121 1.3407636701883001534150257403529284807 - 0.09169347814648177113546620833059
 1122 8109326*I
 1123 3.1415926535897932384626433832795028842*x^-1 + O(x^0)
 1124 6.0268120396919401235462601927282855839
 1125 -125
 1126 0.037077104649480652945032138729501143624
 1127 x^9 - 25/4*x^7 + 21/2*x^5 - 25/4*x^3 + x
 1128 -0.0059589649895782378538355644158109773247*I
 1129 -x^10 + 691/36*x^8 - 691/12*x^6 + 691/12*x^4 - 691/36*x^2 + 1
 1130 1.0353620568043209223478168122251645932 E-6
 1131 [[4*x^9 - 25*x^7 + 42*x^5 - 25*x^3 + 4*x], [-36*x^10 + 691*x^8 - 2073*x^6 + 
 1132 2073*x^4 - 691*x^2 + 36]]
 1133 4096/691
 1134 -691/4096
 1135 0.0039083456561245989852473854813821138618
 1136 [[0, 0, 0, 1, 1, 0, 0, -1, -1, 0, 0, 0], [2, 0, 10, 5, -5, -10, -10, -5, 5, 
 1137 10, 0, -2]]
 1138 24/5
 1139 0.00036417018656710457295477514743042437729
 1140 0.00049190307191092718531081143004073999661
 1141 0.11655892584877731533791261543544162961*x + 0.03444188571581440474103881572
 1142 3936163594
 1143 0.0010890395470223995019083365452957049165
 1144 (-1.3193074979773231773661743756435007224 - 0.047852089878877215068678875180
 1145 019315601*I)*x + (0.55369913164712442515829589611646024395 + 0.1378560105941
 1146 2197357057720849196966097*I)
 1147 2.7088661559067092169467726322243151834*x^4 + 10.836695978514012215743285363
 1148 808371991*x^3 + 25.296899951502000988317286862612207702*x^2 + 41.46298040535
 1149 0911775127337547706905296*x + 36.867636355501616095737218901200295353
 1150 0.68152665510891372423521870628322971562
 1151 (-23183.009401346887106321839878457037987 + 10141.03198768851019292105517715
 1152 0961372*I)*x^4 + (36768.014815457253142184985512097903984 - 15843.6719474121
 1153 59422532108270646842468*I)*x^3 + (-21653.185479189712080795697797411393243 +
 1154  9383.4655370867720981173021992677296843*I)*x^2 + (5567.82157171174936497454
 1155 45772875483392 - 2529.1579539358590353355113445052491948*I)*x + (-519.290436
 1156 33066550788943723994543165137 + 267.97049309982710940044149283381067824*I)
 1157 0
 1158 -7.5483533093124615800482309272746852303 E-5*I*x^4 - 0.000325960230614461968
 1159 18766920427560516720*x^3 + 0.00053071372195845519650854381590103954823*I*x^2
 1160  + 0.00038639246231107851592899900012773026572*x - 0.00010622771569710146301
 1161 261452001204110433*I
 1162 -159.28538078371628604726626677227374955*I*x^4 - 37.413371571061889095904737
 1163 694744717500*x^3 + 4.0605244955720177153253400611368714530*I*x^2 + 0.2512588
 1164 6591932202962812257047290475386*x - 0.00775320874361027409750103740193487763
 1165 58*I
 1166 -1.0529510950884198373348191584869623207 E-9*I*x^4 - 4.379386751919803419760
 1167 5690442523726760 E-9*x^3 + 6.8404573572594165822427167063489824371 E-9*I*x^2
 1168  + 4.7561506807037037564779077168765701622 E-9*x - 1.24219231762730610575003
 1169 87331529713560 E-9*I
 1170 [x^8 - 3*x^6 + 3*x^4 - x^2, 4*x^9 - 25*x^7 + 42*x^5 - 25*x^3 + 4*x, x^10 - 1
 1171 ]
 1172 [x^8 - 3*x^6 + 3*x^4 - x^2, x^10 - 1]
 1173 [4*x^9 - 25*x^7 + 42*x^5 - 25*x^3 + 4*x]
 1174 []
 1175 []
 1176 [0.027225824587703356565506853506344987171 + 0.00514822234043271905508741860
 1177 26406789728*I, 0.027225198325372166661822373393404529522 + 0.005147912007675
 1178 1226908071569776979202339*I, 0.027225932797583197568370599484048729606 + 0.0
 1179 051482759611568609455954291851306519100*I, 0.0272255959592292808469822068846
 1180 79062877 + 0.0051481090481140853554894307306409710468*I]
 1181 1.5962359833107661839072302449298089226 E-51
 1182 0.00013137888540468962216778728275879264699
 1183 [0, 1, -y, 2*y - 1, y - 1, -2*y]
 1184 [[[0, 0, 0, y + 1, 1, -y, 1, y + 1, y + 1, y, y + 1, 0, 0, -y - 1, -y, -y - 
 1185 1, -y - 1, -1, y, -1, -y - 1, 0, 0, 0], [4*y + 6, 0, 22*y + 22, 11, -11*y, 1
 1186 1*y + 11, 11*y, 22*y + 11, -11, -11*y - 11, -22*y - 11, -22*y - 22, -22*y - 
 1187 22, -22*y - 11, -11*y - 11, -11, 22*y + 11, 11*y, 11*y + 11, -11*y, 11, 22*y
 1188  + 22, 0, -4*y - 6]], [[0, 0, 0, 1, y + 1, y, y + 1, 1, 1, -y, 1, 0, 0, -1, 
 1189 y, -1, -1, -y - 1, -y, -y - 1, -1, 0, 0, 0], [2*y + 6, 0, 22, 11*y + 11, 11*
 1190 y, 11, -11*y, -11*y + 11, -11*y - 11, -11, 11*y - 11, -22, -22, 11*y - 11, -
 1191 11, -11*y - 11, -11*y + 11, -11*y, 11, 11*y, 11*y + 11, 22, 0, -2*y - 6]]]
 1192 [-192/55*y + 336/55, -48/55*y + 144/55]
 1193 [[[x, x^2 + 2*x + 1, Mod(t, t^2 + t + 1)*x^2 + Mod(2*t + 1, t^2 + t + 1)*x +
 1194  2, Mod(-2*t, t^2 + t + 1)*x^2 + Mod(-t - 2, t^2 + t + 1)*x + Mod(t + 1, t^2
 1195  + t + 1), Mod(2*t, t^2 + t + 1)*x^2 + Mod(-t - 2, t^2 + t + 1)*x + Mod(-t -
 1196  1, t^2 + t + 1), Mod(-t, t^2 + t + 1)*x^2 + Mod(2*t + 1, t^2 + t + 1)*x - 2
 1197 , -x^2 + 2*x - 1, x], [Mod(47*t - 528, t^2 + t + 1)*x^2 + 3871, -3871*x^2 + 
 1198 3871, Mod(-5293*t - 3792, t^2 + t + 1)*x^2 + Mod(2054*t - 3555, t^2 + t + 1)
 1199 *x + Mod(2054*t + 316, t^2 + t + 1), Mod(1738*t + 2054, t^2 + t + 1)*x^2 + M
 1200 od(-5609*t - 2054, t^2 + t + 1)*x + Mod(-1501*t - 5293, t^2 + t + 1), Mod(17
 1201 38*t + 2054, t^2 + t + 1)*x^2 + Mod(5609*t + 2054, t^2 + t + 1)*x + Mod(-150
 1202 1*t - 5293, t^2 + t + 1), Mod(-5293*t - 3792, t^2 + t + 1)*x^2 + Mod(-2054*t
 1203  + 3555, t^2 + t + 1)*x + Mod(2054*t + 316, t^2 + t + 1), -3871*x^2 + 3871, 
 1204 -3871*x^2 + Mod(-47*t + 528, t^2 + t + 1)]], [0.0600760389692829045137557605
 1205 79766793352 + 0.0076557040727195254011353573267975581651*I, 3.80684584829863
 1206 11431726029948424993484 E-6 - 2.3063284341262122716050386345503232003 E-5*I,
 1207  3008/305809]]
 1208 [0, 1/7]
 1209 0.012348139466200861797970297067148459977
 1210 [0, 1/2, 1/3, 1/4, 1/6, 1/12]
 1211 [0, 1/2, 1/3, 1/4, 1/6, 1/12]
 1212 [12, 3, 4, 3, 1, 1]
 1213 [1, 0, 1, 1, 0, 1]
 1214 [1, 0, 1, 1, 0, 1]
 1215 [0, 1/4, 0, 0, 1/4, 0]
 1216 [1/12, 1/6, 1/2, 2/3, 1/2, 2]
 1217 [1/12, 1/6, 1/4, 2/3, 1/2, 1]
 1218 1
 1219 [3, 7, -3, y, t + 1, 3, "F_7(-3)"]
 1220 [15, 7, -15, y, t + 1, 3, "F_7(-3, 5)"]
 1221 [1, 4, 1, y, t - 1, 3, "E_4"]
 1222 [11, 1, -11, y, t + 1, 3, "LIN([F_1(1, -11)], [2]~)", "F_1(1, -11)"]
 1223 [4, 1/2, 1, y, t - 1, 3, "THETA(1)"]
 1224 [4, 1/2, 1, y, t - 1, 1, "T_4(9)(THETA(1))", "THETA(1)"]
 1225 [1, 12, 1, y, t - 1, 0, "DELTA"]
 1226 [11, 2, 1, y, t - 1, 0, "ETAQUO([Vecsmall([1, 11]), Vecsmall([2, 2])], 1)"]
 1227 [35, 2, 1, y, t - 1, 0, "ELL([0, 1, 1, 9, 1])"]
 1228 [385, 2, 1, y, t - 1, -1, "LIN([ETAQUO([Vecsmall([1, 11]), Vecsmall([2, 2])]
 1229 , 1), ELL([0, 1, 1, 9, 1])], [1, 1])", "ETAQUO([Vecsmall([1, 11]), Vecsmall(
 1230 [2, 2])], 1)", "ELL([0, 1, 1, 9, 1])"]
 1231 [3, 21, -3, y, t + 1, -1, "POW(F_7(-3), 3)", "F_7(-3)"]
 1232 [15, 14, 5, y, t + 1, -1, "MUL(F_7(-3), F_7(-3, 5))", "F_7(-3)", "F_7(-3, 5)
 1233 "]
 1234 [1, 12, 1, y, t - 1, 0, "MULRC_2(E_4, E_4)", "E_4", "E_4"]
 1235 [385, 2, 1, y, t - 1, -1, "LIN([ETAQUO([Vecsmall([1, 11]), Vecsmall([2, 2])]
 1236 , 1), ELL([0, 1, 1, 9, 1])], [1, -1])", "ETAQUO([Vecsmall([1, 11]), Vecsmall
 1237 ([2, 2])], 1)", "ELL([0, 1, 1, 9, 1])"]
 1238 [15, 0, 5, y, t + 1, -1, "DIV(F_7(-3, 5), F_7(-3))", "F_7(-3, 5)", "F_7(-3)"
 1239 ]
 1240 [1, 12, 1, y, t - 1, -1, "SHIFT(DELTA, 1)", "DELTA"]
 1241 [1, 6, 1, y, t - 1, -1, "DER^1(E_4)", "E_4"]
 1242 [1, 12, 1, y, t - 1, -1, "DERE2^4(E_4)", "E_4"]
 1243 [25, 4, 1, y, t - 1, -1, "TWIST(E_4, 5)", "E_4"]
 1244 [1, 12, 1, y, t - 1, 0, "T_1(5)(DELTA)", "DELTA"]
 1245 [3, 4, 1, y, t - 1, 3, "B(3)(E_4)", "E_4"]
 1246 [2, 2, 1, y, t - 1, 3, "LIN([F_2(1), B(2)(F_2(1))], [1, -2])", "F_2(1)", "B(
 1247 2)(F_2(1))"]
 1248 [3, 2, 1, y, t - 1, 3, "LIN([F_2(1), B(3)(F_2(1))], [1, -3])", "F_2(1)", "B(
 1249 3)(F_2(1))"]
 1250 [6, 2, 1, y, t - 1, 3, "LIN([F_2(1), B(6)(F_2(1))], [1, -6])", "F_2(1)", "B(
 1251 6)(F_2(1))"]
 1252 [1, 4, 1, y, t - 1, 3, "F_4(1, 1)"]
 1253 [2, 4, 1, y, t - 1, 3, "B(2)(F_4(1, 1))", "F_4(1, 1)"]
 1254 [3, 4, 1, y, t - 1, 3, "B(3)(F_4(1, 1))", "F_4(1, 1)"]
 1255 [4, 4, 1, y, t - 1, 3, "B(4)(F_4(1, 1))", "F_4(1, 1)"]
 1256 [6, 4, 1, y, t - 1, 3, "B(6)(F_4(1, 1))", "F_4(1, 1)"]
 1257 [8, 4, 1, y, t - 1, 3, "B(8)(F_4(1, 1))", "F_4(1, 1)"]
 1258 [12, 4, 1, y, t - 1, 3, "B(12)(F_4(1, 1))", "F_4(1, 1)"]
 1259 [24, 4, 1, y, t - 1, 3, "B(24)(F_4(1, 1))", "F_4(1, 1)"]
 1260 [6, 4, 1, y, t - 1, 2, "TR^new([6, 4, 1, y, t - 1])"]
 1261 [12, 4, 1, y, t - 1, 2, "B(2)(TR^new([6, 4, 1, y, t - 1]))", "TR^new([6, 4, 
 1262 1, y, t - 1])"]
 1263 [24, 4, 1, y, t - 1, 1, "B(4)(TR^new([6, 4, 1, y, t - 1]))", "TR^new([6, 4, 
 1264 1, y, t - 1])"]
 1265 [8, 4, 1, y, t - 1, 2, "TR^new([8, 4, 1, y, t - 1])"]
 1266 [24, 4, 1, y, t - 1, 1, "B(3)(TR^new([8, 4, 1, y, t - 1]))", "TR^new([8, 4, 
 1267 1, y, t - 1])"]
 1268 [12, 4, 1, y, t - 1, 2, "TR^new([12, 4, 1, y, t - 1])"]
 1269 [24, 4, 1, y, t - 1, 1, "B(2)(TR^new([12, 4, 1, y, t - 1]))", "TR^new([12, 4
 1270 , 1, y, t - 1])"]
 1271 [24, 4, 1, y, t - 1, 0, "TR^new([24, 4, 1, y, t - 1])"]
 1272 [1, 2, 3, 4, 6, 8, 12, 24, 6, 12, 24, 8, 24, 12, 24, 24]
 1273 [23, 1, -23, y, t + 1, 1, "LIN([DIH(-23, [1, 0; 0, 1], [3], [1])], [1]~)", "
 1274 DIH(-23, [1, 0; 0, 1], [3], [1])"]
 1275 0.035149946790370230814006345508484787440
 1276 23
 1277 []~
 1278 [[4, 1, -4], 4, [0.25000000000000000000000000000000000000, 1, 1, 0]]
 1279 [[4, 3/2, 1], 4, [1, 6, 12, 8]]
 1280 [[11, 2, 1], 1, [0, 1, -2, -1, 2, 1]]
 1281 -3
 1282 [-3, -39]
 1283 
 1284 [1 24]
 1285 
 1286 
 1287 [ 1 1]
 1288 
 1289 [23 1]
 1290 
 1291 0
 1292 
 1293 [1 -24]
 1294 
 1295 0
 1296 
 1297 [1 480]
 1298 
 1299 [Mod(575, 576), 1] [Mod(593, 900), 1] [Mod(575, 1152), 1] [Mod(1151, 1152), 
 1300 1] 
 1301 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 
 1302 2 2 2 1 1 1 1 1 
 1303 1 1 1 1 1 1 1 1 1 1 1 2 2 3 3 4 3 2 3 3 4 5 5 5 5 3 3 4 4 6 6 4 2 6 7 4 4 5 
 1304 5 5 5 6 6 1 2 2 3 3 4 3 2 3 3 4 5 5 5 5 4 4 4 4 6 6 4 3 6 8 5 5 6 6 6 6 6 6 
 1305 1 1 1 2 3 3 2 3 3 3 3 4 4 4 4 2 2 4 5 6 4 7 7 6 6 6 6 6 6 2 3 3 4 4 6 4 2 4 
 1306 4 4 6 6 6 6 4 4 4 4 8 8 4 2 8 8 4 4 6 6 6 6 6 6 2 3 3 5 5 6 5 4 7 7 6 9 9 9 
 1307 9 8 8 8 8 10 10 8 7 14 12 11 11 12 12 12 12 12 12 
 1308 1 1 3 3 2 3 4 5 5 6 7 7 7 7 8 8 8 8 6 6 8 9 10 12 13 13 12 12 12 12 12 12 2 
 1309 3 3 4 4 6 4 2 4 4 4 6 6 6 6 4 4 4 4 8 8 4 2 8 8 4 4 6 6 6 6 6 6 2 4 4 7 7 8 
 1310 7 6 9 9 10 13 13 13 13 12 12 12 12 14 14 12 11 18 20 17 17 18 18 18 18 18 18
 1311  
 1312 0 2 6 13 22 28 48 64 74 96 
 1313 2 6 8 14 16 24 24 32 32 48 
 1314 2 8 14 27 38 52 72 96 106 144 
 1315 [[[0, 1, 0, 0, -4, 0, -6, 8, 0, 9, 4, 0, 12, -20, 0, -24], [0, 0, 1, 0, -2, 
 1316 -4, 3, 2, 4, 0, 0, 2, -6, 0, -8, -6], [0, 0, 0, 1, -2, 0, 0, 2, 0, 0, 0, 0, 
 1317 -2, 0, 0, -6]], [[0, 1, 0, 0, -2, -6, 0, 0, 12, 9, 0, 0, -18, 12, 0, 0], [0,
 1318  0, 1, 0, -2, -2, -3, 4, 8, 6, -2, -16, -6, 4, 14, 12], [0, 0, 0, 1, 0, -4, 
 1319 -2, 4, 8, 4, -8, -12, -8, 8, 24, 8]]]
 1320 
 1321 [ 0 0 0]
 1322 
 1323 [ 1 0 0]
 1324 
 1325 [ 0 1 0]
 1326 
 1327 [ 0 0 1]
 1328 
 1329 [-2 0 0]
 1330 
 1331 [ 0 0 0]
 1332 
 1333 
 1334 [0 0  0 0]
 1335 
 1336 [1 0  0 0]
 1337 
 1338 [0 1  0 0]
 1339 
 1340 [0 0  1 0]
 1341 
 1342 [0 0  0 1]
 1343 
 1344 [0 0 -1 0]
 1345 
 1346 [0, 1, 0, 0, 0, 0, 0, -3, -2, 1, 0, -6, 0, 0, 6, 12]
 1347 [0, 0, 1, 0, 0, 0, 0, -3, -4, 4, 0, 0, 0, 0, -1, 2]
 1348 [0, 0, 0, 1, 0, -1, 0, -1, 0, 0, -2, 0, 2, 1, 2, 0]
 1349 [0, 0, 0, 0, 1, 0, 0, -1, -3, 2, 0, -2, 0, 0, 2, 4]
 1350 [2]~
 1351 [0, 2]~
 1352 [Mod(-1/49*t^11 + 1/49*t^10 + 1/98*t^9 - 5/196*t^8 - 1/196*t^7 - 5/196*t^4 +
 1353  5/196*t^3 - 1/196*t^2 - 1/196*t + 1/49, t^12 - t^11 + t^9 - t^8 + t^6 - t^4
 1354  + t^3 - t + 1), Mod(-6/49*t^11 + 13/196*t^10 - 13/196*t^8 + 2/49*t^7 + 13/1
 1355 96*t^6 - 11/196*t^5 - 11/196*t^4 + 6/49*t^3 - 11/196*t^2 - 13/196*t + 4/49, 
 1356 t^12 - t^11 + t^9 - t^8 + t^6 - t^4 + t^3 - t + 1), Mod(1/196*t^11 - 5/196*t
 1357 ^10 - 1/98*t^9 + 3/98*t^8 - 5/196*t^7 - 1/196*t^6 + 3/196*t^5 + 1/196*t^4 - 
 1358 1/98*t^3 + 1/49*t^2 + 1/98*t - 1/98, t^12 - t^11 + t^9 - t^8 + t^6 - t^4 + t
 1359 ^3 - t + 1), Mod(9/196*t^10 - 15/196*t^9 - 3/49*t^8 - 3/196*t^6 - 3/49*t^5 +
 1360  15/196*t^4 + 3/196*t^3 - 15/196*t^2 - 3/196, t^12 - t^11 + t^9 - t^8 + t^6 
 1361 - t^4 + t^3 - t + 1), Mod(15/196*t^11 - 15/196*t^9 + 9/98*t^8 - 3/49*t^7 - 3
 1362 /49*t^6 + 15/196*t^5 - 3/49*t^3 + 3/49*t^2 + 9/196*t - 27/196, t^12 - t^11 +
 1363  t^9 - t^8 + t^6 - t^4 + t^3 - t + 1), Mod(3/49*t^11 + 3/98*t^10 - 15/196*t^
 1364 9 + 3/49*t^8 + 3/196*t^7 - 3/98*t^6 - 3/196*t^5 + 3/196*t^4 - 9/196*t^3 - 3/
 1365 98*t^2 + 3/196*t + 3/196, t^12 - t^11 + t^9 - t^8 + t^6 - t^4 + t^3 - t + 1)
 1366 ]
 1367 
 1368 [Mod(0, t^2 + t + 1) Mod(0, t^2 + t + 1) Mod(0, t^2 + t + 1) Mod(1, t^2 + t 
 1369 + 1)]
 1370 
 1371 [Mod(-2, t^2 + t + 1) Mod(-2*t - 2, t^2 + t + 1) Mod(0, t^2 + t + 1) Mod(0, 
 1372 t^2 + t + 1)]
 1373 
 1374 [Mod(2*t + 4, t^2 + t + 1) Mod(4*t + 2, t^2 + t + 1) Mod(4*t + 4, t^2 + t + 
 1375 1) Mod(-t + 1, t^2 + t + 1)]
 1376 
 1377 [Mod(-8*t, t^2 + t + 1) Mod(4, t^2 + t + 1) Mod(-4*t + 4, t^2 + t + 1) Mod(-
 1378 4*t - 4, t^2 + t + 1)]
 1379 
 1380 [0, 1, 0, 0, 0, -t - 2, 0, 0, -2, 4*t, 0, 0, 2*t + 4, -4*t - 2, 0, 0]
 1381 [0, 0, 1, 0, 0, 0, t - 1, 0, -2*t - 2, -2, -t - 2, 0, 4*t + 2, -2*t + 2, -2*
 1382 t + 1, 4*t + 4]
 1383 [0, 0, 0, 1, 0, -2*t - 2, 0, 3*t + 2, 0, 2*t - 2, -2, -2*t - 1, 4*t + 4, -2*
 1384 t, -6*t - 4, t + 2]
 1385 [0, 0, 0, 0, 1, t - 1, -t - 2, -2*t + 1, 0, t + 1, 4*t + 2, 1, -t + 1, -t - 
 1386 2, -t - 3, t]
 1387 [4, 1, -4, y, t + 1]
 1388 [1, 0, 0, 2, 0, 0, 0, 6, 6, 0, 0, 0, 8, 0, 0, 6]
 1389 [0, 1, 0, -1, 1, 2, 4, -3, -3, 5, 2, 4, -4, 0, 8, -3]
 1390 [0, 0, 1, 1, 0, 1, 0, 1, 2, 0, 1, 0, 2, 2, 0, 1]
 1391 2
 1392 [1, 12, 1, y, t - 1]
 1393 [4, 6, 1, y, t - 1]
 1394 [9, 4, 1, y, t - 1]
 1395 [16, 3, -4, y, t + 1]
 1396 [36, 2, 1, y, t - 1]
 1397 [144, 1, -4, y, t + 1]
 1398 [576, 1/2, 12, y, t + 1]
 1399 [64, 3/2, 1, y, t - 1]
 1400 [0, 1, 0, 0, 0, 0, 0, 0, -3, 0]~
 1401 [[0, 64, [1, 0; 0, 1]], [0, -0.031250000000000000000000000000000000000 - 0.0
 1402 31250000000000000000000000000000000000*I, 0, 0, 0, 0, 0, 0, 0, 0.09375000000
 1403 0000000000000000000000000000 + 0.093750000000000000000000000000000000000*I, 
 1404 0]]
 1405 [Mod(0, t^2 + 1), Mod(-1/32*t - 1/32, t^2 + 1), Mod(0, t^2 + 1), Mod(0, t^2 
 1406 + 1), Mod(0, t^2 + 1), Mod(0, t^2 + 1), Mod(0, t^2 + 1), Mod(0, t^2 + 1), Mo
 1407 d(0, t^2 + 1), Mod(3/32*t + 3/32, t^2 + 1), Mod(0, t^2 + 1)]
 1408 [[0, 16, [1, 0; 0, 1]], [0, 0.10393370153781815463484854720223821959 + 0.069
 1409 446279127450278092853851743566609297*I, 0, 0, 0, 0, 0, 0, 0, -0.208338837382
 1410 35083427856155523069982789 + 0.31180110461345446390454564160671465878*I, 0]]
 1411 [Mod(0, t^16 + 1), Mod(1/8*t^3, t^16 + 1), Mod(0, t^16 + 1), Mod(0, t^16 + 1
 1412 ), Mod(0, t^16 + 1), Mod(0, t^16 + 1), Mod(0, t^16 + 1), Mod(0, t^16 + 1), M
 1413 od(0, t^16 + 1), Mod(3/8*t^11, t^16 + 1), Mod(0, t^16 + 1)]
 1414 0.0018674427317079888144293843310939736875
 1415 [Mod(-t, t^2 + 1), Mod(-2*t, t^2 + 1), Mod(0, t^2 + 1)]
 1416 [Mod(2*t, t^2 + 1), Mod(0, t^2 + 1), Mod(2*t, t^2 + 1), Mod(0, t^2 + 1)]
 1417 [2, 0, 2, 0]
 1418 [Mod(1/2*t + 1/2, t^2 + 1), Mod(t + 1, t^2 + 1), Mod(0, t^2 + 1)]
 1419 [Mod(-1/2*t + 1/2, t^2 + 1), Mod(-t + 1, t^2 + 1), Mod(0, t^2 + 1)]
 1420 [Mod(1/2*t + 1/2, t^2 + 1), Mod(t - 1, t^2 + 1), Mod(0, t^2 + 1)]
 1421 [1, 2, 0]
 1422 [36, 5/2, 1, y, t - 1]
 1423 2
 1424 
 1425 [-1 0 0 2 0 0]
 1426 
 1427 [ 0 0 0 0 1 0]
 1428 
 1429 [9, 4, 1, y, t - 1]
 1430 [9, 4, 1, y, t - 1]
 1431 
 1432 [0 -1 0 0 2 0 0 0  0 0 0 0 0 -6 0 0 8 0 0 0 0]
 1433 
 1434 [0  0 0 0 0 1 0 0 -2 0 0 0 0  0 0 0 0 1 0 0 2]
 1435 
 1436 
 1437 [-3    0 5/2 7/2]
 1438 
 1439 [ 1 -1/2  -7  -7]
 1440 
 1441 [ 1  1/2   0  -3]
 1442 
 1443 [ 0    0 5/2 5/2]
 1444 
 1445 [[1, 1], [2, 1]]
 1446 [[2, 4; 0, 0; 0, 0; 5, 7; -14, -14; 0, 0; 0, 0; -5, -5; 0, -6; 0, 0; 0, 0; 1
 1447 5, 15; 0, 0; 0, 0], [1, 1; 0, 0; 0, 0; 1, 4; 0, -14; 0, 0; 0, 0; 0, -5; -3, 
 1448 3; 0, 0; 0, 0; 0, 15; 0, 0; 0, 0]]
 1449 [Mat(Mod(1, t^4 - t^2 + 1)), [1; 0], [[1, 1]]]
 1450 [12, 12, 12, 12, 12]
 1451 4
 1452 0.0018371115455019092538663990739211073913
 1453 3.7500000000000000000000000000000000004
 1454 [4, 1/2, 1, y, t - 1]
 1455 [16, 1/2, 1, y, t - 1]
 1456 [1, -2]~
 1457 "F_4(-3, -4)"
 1458 "F_3(5, -7)"
 1459 "DERE2^3(MUL(F_4(-3, -4), F_3(5, -7)))"
 1460 "DELTA"
 1461 "E_2"
 1462 "T_1(3)(E_2)"
 1463 ["S_4^new(G_0(37, 1))", "S_4(G_0(37, 1))", "S_4^old(G_0(37, 1))", "E_4(G_0(3
 1464 7, 1))", "M_4(G_0(37, 1))"]
 1465 ["S_3/2(G_0(16, 1))", "M_3/2(G_0(16, 1))"]
 1466 ["F_4(-3, -4)", "F_3(1, -3)"]
 1467 1/72
 1468 [1/4, 6, 6, 24, 6, 36, 24, 48, 6, 78, 36]
 1469 [1/24, 10, 90, 280, 730, 1260, 2520, 3440, 5850, 7570, 11340]
 1470 [10]~
 1471 [0, 1, 0, 0, 0, -2, 0, 0, 0, -3, 0, 0, 0, 6, 0, 0, 0, 2, 0, 0, 0]
 1472 -125832074732008
 1473 -3268080304426/13
 1474 [691/32760, 0, -2017/252, 0, -361, 0, -3362, 0, -4130785/252, 0, -278854/5, 
 1475 0, -152166, 0, -355688, 0]
 1476 [-1/12, 9375/2, 14055]
 1477 [-1/12, 1702, 0]
 1478 [-1/12, 0, 0, 1/3, 1/2, 0, 0, 1, 1, 0, 0, 1, 4/3, 0, 0, 2]
 1479 [1/120, -1/12, 0, 0, -7/12, -2/5, 0, 0, -1, -25/12, 0, 0, -2, -2, 0, 0]
 1480 [-1/252, 0, 0, -2/9, -1/2, 0, 0, -16/7, -3, 0, 0, -6, -74/9, 0, 0, -16]
 1481 [1/240, 1/120, 0, 0, 121/120, 2, 0, 0, 11, 2161/120, 0, 0, 46, 58, 0, 0]
 1482 [-1/132, 0, 0, 2/3, 5/2, 0, 0, 32, 57, 0, 0, 2550/11, 1058/3, 0, 0, 992]
 1483 [691/32760, -1/252, 0, 0, -2017/252, -134/5, 0, 0, -361, -176905/252, 0, 0, 
 1484 -3362, -66926/13, 0, 0]
 1485 [-1/12, 0, 0, -14/3, -61/2, 0, 0, -1168, -2763, 0, 0, -21726, -115598/3, 0, 
 1486 0, -165616]
 1487 [-43867/14364, 0, 0, 1618/27, 1385/2, 0, 0, 565184/7, 250737, 0, 0, 3749250,
 1488  212490322/27, 0, 0, 52548032]
 1489 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 1490 [-1/12, 1/2, 1, 4/3, 3/2, 2, 2, 2, 3, 5/2, 2, 4, 10/3, 2, 4, 4]
 1491 [-1/12, 1/2, 1, 4/3, 3/2, 2, 2, 2, 3, 5/2, 2, 4, 10/3, 2, 4, 4]
 1492 [-1/3, 0, 0, 4/3, 2, 0, 0, 4, 4, 0, 0, 4, 16/3, 0, 0, 8]
 1493 [-1/12, 0, 0, 4/3, 5/2, 0, 0, 5, 3, 0, 0, 3, 16/3, 0, 0, 8]
 1494 [-1/2, 0, 0, 2, 3, 0, 0, 6, 6, 0, 0, 6, 8, 0, 0, 12]
 1495 [-10/3, 0, 0, 40/3, 20, 0, 0, 40, 40, 0, 0, 40, 160/3, 0, 0, 80]
 1496 [-1/2, 0, 0, 2, 3, 0, 0, 6, 6, 0, 0, 6, 8, 0, 0, 12]
 1497 [1, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0]
 1498 [4/3, 8/3, 0, 0, 8/3, 0, 0, 0, 0, 8/3, 0, 0, 0, 0, 0, 0]
 1499 [0, -4, -8, 0, 0, 0, 16, 0, 0, 28, 16, 0, 0, 0, -32, 0]
 1500 4.7568284600108842668699998822419036612 + 4.75682846001088426686999988224190
 1501 36612*I
 1502 0
 1503 0.0061538599016729274239549224845781815123
 1504 0
 1505 +oo
 1506 0
 1507 [1, 24, 324, 3200, 25650, 176256, 1073720]
 1508 0.0067751374633700320670755869090304807506
 1509 [0, 1, 0, 28, 0, 126, 0, 344, 0, 757, 0, 1332, 0, 2198, 0, 3528]
 1510 
 1511 [  "Factors"  50000 13 1000000000]
 1512 
 1513 [ "Divisors"  50000  5 1000000000]
 1514 
 1515 [        "H"  50000  3  200000000]
 1516 
 1517 ["CorediscF" 100000  3  200000000]
 1518 
 1519 [ "Dihedral"   1000  0          0]
 1520 
 1521   ***   at top-level: mftobasis(mf0,L[1])
 1522   ***                 ^-------------------
 1523   *** mftobasis: domain error in mftobasis: form does not belong to space
 1524   ***   at top-level: mfdim([4,1/2],0)
 1525   ***                 ^----------------
 1526   *** mfdim: incorrect type in half-integral weight [new/old spaces] (t_INT).
 1527   ***   at top-level: mfdim([4,1/2],2)
 1528   ***                 ^----------------
 1529   *** mfdim: incorrect type in half-integral weight [new/old spaces] (t_INT).
 1530   ***   at top-level: mfdim([4,1/2],5)
 1531   ***                 ^----------------
 1532   *** mfdim: incorrect type in half-integral weight [incorrect space] (t_INT).
 1533   ***   at top-level: mfeisenstein(2,1.0)
 1534   ***                 ^-------------------
 1535   *** mfeisenstein: incorrect type in znchar (t_REAL).
 1536   ***   at top-level: mfeisenstein(2,[0,0])
 1537   ***                 ^---------------------
 1538   *** mfeisenstein: incorrect type in checkNF [chi] (t_VEC).
 1539   ***   at top-level: mfeisenstein(6,Mod(7,9),Mod(4,9))
 1540   ***                 ^---------------------------------
 1541   *** mfeisenstein: sorry, mfeisenstein for these characters is not yet implemented.
 1542   ***   at top-level: mfinit([1,1.0])
 1543   ***                 ^---------------
 1544   *** mfinit: incorrect type in checkNF [k] (t_VEC).
 1545   ***   at top-level: ...nit([14,6,Mod(9,14)],0));mfmul(L[1],L[2])
 1546   ***                                             ^----------------
 1547   *** mfmul: incorrect type in mfsamefield [different fields] (t_VEC).
 1548   ***   at top-level: mfcuspwidth(0,0)
 1549   ***                 ^----------------
 1550   *** mfcuspwidth: domain error in mfcuspwidth: N <= 0
 1551   ***   at top-level: mfparams(mfadd(F2,F3))
 1552   ***                          ^-------------
 1553   ***   in function mfadd: mflinear([F,G],[1,1])
 1554   ***                      ^---------------------
 1555   *** mflinear: incorrect type in mflinear [different characters] (t_VEC).
 1556   ***   at top-level: mfparams(mfadd(F4,F6))
 1557   ***                          ^-------------
 1558   ***   in function mfadd: mflinear([F,G],[1,1])
 1559   ***                      ^---------------------
 1560   *** mflinear: incorrect type in mflinear [different weights] (t_VEC).
 1561   ***   at top-level: mfinit([23,1,Mod(22,45)],0)
 1562   ***                 ^---------------------------
 1563   *** mfinit: incorrect type in checkNF [chi] (t_VEC).
 1564   ***   at top-level: mfinit([23,2,Mod(22,45)],0)
 1565   ***                 ^---------------------------
 1566   *** mfinit: incorrect type in checkNF [chi] (t_VEC).
 1567   ***   at top-level: mfinit([7,1,-7],2)
 1568   ***                 ^------------------
 1569   *** mfinit: sorry, mfinit in weight 1 for old space is not yet implemented.
 1570   ***   at top-level: mfinit([7,1,-7],5)
 1571   ***                 ^------------------
 1572   *** mfinit: invalid flag in mfinit.
 1573   ***   at top-level: mfinit([1,2],5)
 1574   ***                 ^---------------
 1575   *** mfinit: invalid flag in mfinit.
 1576   ***   at top-level: mfgaloistype([11,1,Mod(2,11)],mfeisenstein(1,1
 1577   ***                 ^----------------------------------------------
 1578   *** mfgaloistype: domain error in mfgaloistype: form not a cuspidal eigenform
 1579   ***   at top-level: mfdiv(D,mfpow(D,2))
 1580   ***                 ^-------------------
 1581   *** mfdiv: domain error in mfdiv: ord(G) > ord(F)
 1582   ***   at top-level: mfeval(mfD,D,-I)
 1583   ***                 ^----------------
 1584   *** mfeval: domain error in mfeval: imag(tau) <= 0
 1585   ***   at top-level: mfslashexpansion(mfD,D,[1,2;3,4],1,1)
 1586   ***                 ^-------------------------------------
 1587   *** mfslashexpansion: incorrect type in GL2toSL2 (t_MAT).
 1588   ***   at top-level: mftonew(mfD,1)
 1589   ***                 ^--------------
 1590   *** mftonew: incorrect type in mftobasis (t_INT).
 1591   ***   at top-level: T=mftraceform([96,6],4)
 1592   ***                   ^---------------------
 1593   *** mftraceform: domain error in mftraceform: space = 4
 1594   ***   at top-level: mfshimura(mfinit(T5),T5,4)
 1595   ***                 ^--------------------------
 1596   *** mfshimura: incorrect type in mfshimura [t] (t_INT).
 1597   ***   at top-level: mftonew(mf,E4)
 1598   ***                 ^--------------
 1599   *** mftonew: incorrect type in mftonew [not a full or cuspidal space] (t_VEC).
 1600   ***   at top-level: mffields(mf)
 1601   ***                 ^------------
 1602   *** mffields: incorrect type in mfsplit [space does not contain newspace] (t_VEC).
 1603   ***   at top-level: mfdiv(1,mfTheta())
 1604   ***                 ^------------------
 1605   *** mfdiv: incorrect type in mfdiv (t_INT).
 1606   ***   at top-level: mfdiv(D,mftraceform([1,3]))
 1607   ***                 ^---------------------------
 1608   *** mfdiv: domain error in mfdiv: ord(G) > ord(F)
 1609   ***   at top-level: mfcosets(1.)
 1610   ***                 ^------------
 1611   *** mfcosets: incorrect type in mfcosets (t_REAL).
 1612   ***   at top-level: ...([1,0]);F=mfbasis(mf)[1];mfsymbol(mf,F)
 1613   ***                                             ^--------------
 1614   *** mfsymbol: incorrect type in mfsymbol [k <= 0] (t_VEC).
 1615   ***   at top-level: mfmanin(FSbug)
 1616   ***                 ^--------------
 1617   *** mfmanin: incorrect type in mfmanin [need integral k > 1] (t_VEC).
 1618   ***   at top-level: mfsymboleval(FSbug,[0,1])
 1619   ***                 ^-------------------------
 1620   *** mfsymboleval: incorrect type in mfsymboleval [need integral k > 1] (t_VEC).
 1621   ***   at top-level: mfgaloistype([4,1,-4],x)
 1622   ***                 ^------------------------
 1623   *** mfgaloistype: incorrect type in mfgaloistype (t_POL).
 1624   ***   at top-level: mfdiv(E,f)
 1625   ***                 ^----------
 1626   *** mfdiv: sorry, changing cyclotomic fields in mf is not yet implemented.
 1627   ***   at top-level: ...,0);[F]=mfeigenbasis(mf);mfpow(F,3)
 1628   ***                                             ^----------
 1629   *** mfpow: sorry, changing cyclotomic fields in mf is not yet implemented.
 1630 Total time spent: 6823