"Fossies" - the Fresh Open Source Software Archive 
Member "pari-2.13.1/src/test/32/mf" (14 Jan 2021, 79038 Bytes) of package /linux/misc/pari-2.13.1.tar.gz:
As a special service "Fossies" has tried to format the requested text file into HTML format (style:
standard) with prefixed line numbers.
Alternatively you can here
view or
download the uninterpreted source code file.
See also the latest
Fossies "Diffs" side-by-side code changes report for "mf":
2.13.0_vs_2.13.1.
1 *** Warning: new stack size = 40000000 (38.147 Mbytes).
2
3 [ "Factors" 0 0 0 0]
4
5 [ "Divisors" 0 0 0 0]
6
7 [ "H" 0 0 0 0]
8
9 ["CorediscF" 0 0 0 0]
10
11 [ "Dihedral" 0 0 0 0]
12
13 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
14 [Mod(-1/5*t - 2/5, t^2 + 1), Mod(1, t^2 + 1), Mod(4*t + 1, t^2 + 1), Mod(-9*
15 t + 1, t^2 + 1), Mod(4*t - 15, t^2 + 1), Mod(1, t^2 + 1), Mod(-5*t + 37, t^2
16 + 1), Mod(49*t + 1, t^2 + 1), Mod(-60*t - 15, t^2 + 1), Mod(-9*t - 80, t^2
17 + 1), Mod(4*t + 1, t^2 + 1), Mod(122, t^2 + 1), Mod(139*t + 21, t^2 + 1), Mo
18 d(-169*t + 1, t^2 + 1), Mod(53*t - 195, t^2 + 1), Mod(-9*t + 1, t^2 + 1)]
19 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
20 [0, 1, 0, 8, 0, -26, 0, -48, 0, 73, 0, 120, 0, -170, 0, -208]
21 5
22 23
23 40000
24 20000
25 0
26 [0, 8]~
27 [16, -4]~
28 [16, -32, 256]~
29 [64/5, 4/5, 32/5]~
30
31 [ 0]
32
33 [ 1]
34
35 [ 0]
36
37 [ -516]
38
39 [ 0]
40
41 [-10530]
42
43 [ 0]
44
45 [ 49304]
46
47 [ 0]
48
49 [ 89109]
50
51 [ 0]
52
53
54 [ 0 0 0 0]
55
56 [ 1 0 0 1]
57
58 [ -24 1 0 0]
59
60 [ 252 0 0 -516]
61
62 [ -1472 -24 1 0]
63
64 [ 4830 0 0 -10530]
65
66 [ -6048 252 0 0]
67
68 [ -16744 0 0 49304]
69
70 [ 84480 -1472 -24 0]
71
72 [-113643 0 0 89109]
73
74 [-115920 4830 0 0]
75
76
77 [ 0 0 0 0]
78
79 [ -24 1 0 0]
80
81 [ -1472 -24 1 0]
82
83 [ -6048 252 0 0]
84
85 [ 84480 -1472 -24 0]
86
87 [-115920 4830 0 0]
88
89 [[43/64, 129/8, 1376, 21/64]~, [0, 1, 0; 768, 24, 0; 18432, 2048, 768; 0, -1
90 , 0]]
91 [[43/64, -63/8, 800, 21/64]~, [1, 0; 24, 0; 2048, 768; -1, 0]]
92 [[1, 0, 1472, 0]~, [0; 0; 768; 0]]
93 [1, 0, 0, 0]~
94 [1, [1, 1]]
95 [1, 0, 0, 0]~
96 [1, 0, 0, 0]~
97 []
98 [1]
99 []
100 []
101 [0, 0]
102 []
103 [0, 0]
104 0
105 10
106 0
107 1
108 0
109 0
110 0
111 1
112 []
113 [[1, Mod(0, 1), 0, 0]]
114 0
115 1
116 0
117 0
118 [[0, 0], [0, 0], [0, 0], [0, 0]]
119 [[1, 0], [0, 0], [0, 0], [1, 0]]
120 77291
121 29586
122 65034
123 [[11/32, 1/64, 1/32; 1/32, -9/64, -5/32; -1/8, 3/16, 1/8; -5/32, 1/64, 1/32;
124 -5/32, -7/64, 1/32; -1/8, 1/16, 1/8; -3/32, 3/64, -1/32; -1/16, 3/32, 1/16;
125 -1/32, -3/64, -3/32; -1/32, 5/64, -3/32; 0, 0, 0], [y, y, y, y^4 - y^3 - 5*
126 y^2 + 3*y + 4, y^4 - y^3 - 8*y^2 + 4*y + 12]]
127 [y, y, y]
128 [y, y, y]
129 [y, y, y]
130 [y, y, y, y^4 - y^3 - 5*y^2 + 3*y + 4, y^4 - y^3 - 8*y^2 + 4*y + 12]
131 [y^40 + y^38 - 22*y^36 - 488*y^34 + 200*y^32 + 61712*y^30 + 53952*y^28 - 211
132 6352*y^26 - 23962624*y^24 + 95379456*y^22 + 2793799680*y^20 + 6104285184*y^1
133 8 - 98150907904*y^16 - 554788978688*y^14 + 905164357632*y^12 + 6626275544268
134 8*y^10 + 13743895347200*y^8 - 2146246697418752*y^6 - 6192449487634432*y^4 +
135 18014398509481984*y^2 + 1152921504606846976]
136 [y, y^2 + Mod(-2*t, t^2 + t + 1), y^5 + Mod(t + 1, t^2 + t + 1)*y^4 + Mod(-3
137 7*t, t^2 + t + 1)*y^3 + 21*y^2 + Mod(-288*t - 288, t^2 + t + 1)*y + Mod(64*t
138 , t^2 + t + 1)]
139 [1, 1]
140 1
141 [[2, Mod(22, 23), 1, 0], [22, Mod(5, 23), 1, 0]]
142 []
143 0
144 6
145 2
146 [0, 3, -1, 0, 3, 1, -8, -1, -9, 1, -1, -2, 4, 10, 1, -2, 7, -2, 7, -4]
147 [0, -1, 9, -8, -11, -1, 4, 1, 13, 7, 9, 8, -20, 6, -9, -8, -27, -6, 5, 20]
148 [0, 2, 8, -8, -8, 0, -4, 0, 4, 8, 8, 6, -16, 16, -8, -10]
149 [0, 0, -3, 28, -33, -28, 34, 6, -113, 88, 33, 128, 108, -62, -17, 6]
150 [0, 1, 17, -16, -19, -1, 0, 1, 17, 15, 17, 14, -36, 22, -17, -18]
151 [0, 3, -1, 0, 3, 1, -8, -1, -9, 1, -1, -2, 4, 10, 1, -2, 7, -2, 7, -4, 7, 2,
152 8, -8, -4, 3, 6, -12, -7, 4, -8, -4, -9, -12, -6, -3, 3, 14, 20, -6, -9, -1
153 0, 8, 0, 0, 5, -16, 4, 28, 3]
154 [0, -8, 4, 4, -20, -8, 32, 8, 36, -12, 4, -4, -24, -20, -4, 4]
155 [0, 0, 3, 0, -1, 0, 0, 0, 3, 0, 1, 0, -8, 0, -1, 0]
156 [0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, -1, 0, 0, 0]
157 [0, 3, -1, 0, 3, -1, 8, 0, -9, 1, 1, -2, -4, -10, 0, -2]
158 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
159 [0, 1/2, 1/3, 1/4, 3/4, 1/6, 1/8, 3/8, 1/12, 7/12, 1/16, 1/24, 7/24, 1/32, 1
160 /48, 1/96]
161 [96, 24, 32, 6, 6, 8, 3, 3, 2, 2, 3, 1, 1, 3, 1, 1]
162 [1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1]
163 [1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1]
164 16
165 6442450944
166 15917322219892801768783872
167 96
168 10
169 88
170 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
171 "TR([96, 6, 1, y, t - 1])"
172 "CONST([])"
173 [-2, -4]
174 [0, 72, -2, -4, -12, -16, -90, -8, 424, -8, -300, -8, -396, -16, 944, -976]
175 [0, 0]
176 [0, 10, 0, 0, 0, -76, 0, 0, 0, 810, 0, 0, 0, 12, 0, 0]
177 [0, 1, -1, -1, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, 0]
178 [Mod(0, t^2 - t + 1), Mod(1, t^2 - t + 1), Mod(-t, t^2 - t + 1), Mod(0, t^2
179 - t + 1), Mod(t - 1, t^2 - t + 1), Mod(-1, t^2 - t + 1), Mod(0, t^2 - t + 1)
180 , Mod(0, t^2 - t + 1), Mod(1, t^2 - t + 1), Mod(t - 1, t^2 - t + 1), Mod(t,
181 t^2 - t + 1), Mod(0, t^2 - t + 1), Mod(0, t^2 - t + 1), Mod(-t, t^2 - t + 1)
182 , Mod(0, t^2 - t + 1), Mod(0, t^2 - t + 1)]
183 [Mod(0, t^4 - t^3 + t^2 - t + 1), Mod(1, t^4 - t^3 + t^2 - t + 1), Mod(-t, t
184 ^4 - t^3 + t^2 - t + 1), Mod(t^3 + t - 1, t^4 - t^3 + t^2 - t + 1), Mod(t^2,
185 t^4 - t^3 + t^2 - t + 1), Mod(0, t^4 - t^3 + t^2 - t + 1), Mod(-t^3 + 1, t^
186 4 - t^3 + t^2 - t + 1), Mod(0, t^4 - t^3 + t^2 - t + 1), Mod(-t^3, t^4 - t^3
187 + t^2 - t + 1), Mod(-t^2 - 1, t^4 - t^3 + t^2 - t + 1), Mod(0, t^4 - t^3 +
188 t^2 - t + 1), Mod(-t^3, t^4 - t^3 + t^2 - t + 1), Mod(t^3 - t^2 - 1, t^4 - t
189 ^3 + t^2 - t + 1), Mod(0, t^4 - t^3 + t^2 - t + 1), Mod(0, t^4 - t^3 + t^2 -
190 t + 1), Mod(0, t^4 - t^3 + t^2 - t + 1)]
191 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
192 [0, 2, 0, -2, 0, -2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2]
193 [0, 2, -2, 0, -12, 0, 28, -16, 40, -2, -56, 0, -56, 0, 16, 112]
194 [0, 1, -1, -1, -1, 1, 1, 0, 3, 1, -1, -4, 1, -2, 0, -1]
195 [0, 2, 4, 0, -6, 0, -6, -4, -36, 18, -10, 28, -24, 96, 36, 30]
196 [15, 4, 1, y, t - 1]
197 8
198 [4, 1, [0, 4, 0, -48, 0, 216, 0, -352, 0, -396]]
199 [4, 2, [0, 0, 7, 0, 0, 0, -84, 0, 0, 0]]
200 72
201 [3, 1, [0, 4, -24, 36, 16, 24, -216, -160, 672, 324]]
202 [3, 2, [0, 0, 7, 0, -42, 0, 63, 0, 28, 0]]
203 6
204 62
205 16
206 10
207 [[2717/14336, 3993/28672, 185/14336, 2717/14336, 3993/28672, 185/14336; -103
208 /4608, 65/3072, -7/4608, 103/4608, -65/3072, 7/4608; 225/57344, -95/114688,
209 -123/57344, 225/57344, -95/114688, -123/57344; 5/1024, -49/18432, 13/9216, -
210 5/1024, 49/18432, -13/9216; 1/2048, -5/12288, -1/6144, -1/2048, 5/12288, 1/6
211 144; 31/57344, -33/114688, -5/57344, 31/57344, -33/114688, -5/57344; -7/9216
212 , 1/18432, -1/3072, 7/9216, -1/18432, 1/3072; -5/28672, -1/57344, -1/28672,
213 -5/28672, -1/57344, -1/28672; 1/2048, -1/36864, 1/18432, -1/2048, 1/36864, -
214 1/18432; -11/57344, -115/1032192, 9/57344, -11/57344, -115/1032192, 9/57344]
215 , [y, y, y, y, y, y, y^2 - 31, y^2 - 31]]
216 [[2717/14336, 3993/28672, 185/14336, 2717/14336, 3993/28672, 185/14336, Mod(
217 -4227/888832*y + 4539/57344, y^2 - 31), Mod(-4227/888832*y + 4539/57344, y^2
218 - 31); -103/4608, 65/3072, -7/4608, 103/4608, -65/3072, 7/4608, Mod(-29/952
219 32*y + 179/6144, y^2 - 31), Mod(29/95232*y - 179/6144, y^2 - 31); 225/57344,
220 -95/114688, -123/57344, 225/57344, -95/114688, -123/57344, Mod(785/3555328*
221 y - 109/229376, y^2 - 31), Mod(785/3555328*y - 109/229376, y^2 - 31); 5/1024
222 , -49/18432, 13/9216, -5/1024, 49/18432, -13/9216, Mod(13/571392*y - 67/3686
223 4, y^2 - 31), Mod(-13/571392*y + 67/36864, y^2 - 31); 1/2048, -5/12288, -1/6
224 144, -1/2048, 5/12288, 1/6144, Mod(-13/380928*y + 1/24576, y^2 - 31), Mod(13
225 /380928*y - 1/24576, y^2 - 31); 31/57344, -33/114688, -5/57344, 31/57344, -3
226 3/114688, -5/57344, Mod(-81/3555328*y - 19/229376, y^2 - 31), Mod(-81/355532
227 8*y - 19/229376, y^2 - 31); -7/9216, 1/18432, -1/3072, 7/9216, -1/18432, 1/3
228 072, Mod(17/571392*y + 19/36864, y^2 - 31), Mod(-17/571392*y - 19/36864, y^2
229 - 31); -5/28672, -1/57344, -1/28672, -5/28672, -1/57344, -1/28672, Mod(-5/1
230 777664*y + 13/114688, y^2 - 31), Mod(-5/1777664*y + 13/114688, y^2 - 31); 1/
231 2048, -1/36864, 1/18432, -1/2048, 1/36864, -1/18432, Mod(1/1142784*y - 19/73
232 728, y^2 - 31), Mod(-1/1142784*y + 19/73728, y^2 - 31); -11/57344, -115/1032
233 192, 9/57344, -11/57344, -115/1032192, 9/57344, Mod(461/31997952*y + 151/206
234 4384, y^2 - 31), Mod(461/31997952*y + 151/2064384, y^2 - 31)], [y, y, y, y,
235 y, y, y^2 - 31, y^2 - 31]]
236 [1, 1, 1, 1, 1, 1, 2, 2]
237 [[2717/14336, 3993/28672, 185/14336, 2717/14336, 3993/28672, 185/14336; -103
238 /4608, 65/3072, -7/4608, 103/4608, -65/3072, 7/4608; 225/57344, -95/114688,
239 -123/57344, 225/57344, -95/114688, -123/57344; 5/1024, -49/18432, 13/9216, -
240 5/1024, 49/18432, -13/9216; 1/2048, -5/12288, -1/6144, -1/2048, 5/12288, 1/6
241 144; 31/57344, -33/114688, -5/57344, 31/57344, -33/114688, -5/57344; -7/9216
242 , 1/18432, -1/3072, 7/9216, -1/18432, 1/3072; -5/28672, -1/57344, -1/28672,
243 -5/28672, -1/57344, -1/28672; 1/2048, -1/36864, 1/18432, -1/2048, 1/36864, -
244 1/18432; -11/57344, -115/1032192, 9/57344, -11/57344, -115/1032192, 9/57344]
245 , [y, y, y, y, y, y]]
246 [[2717/14336, 3993/28672, 185/14336, 2717/14336, 3993/28672, 185/14336, Mod(
247 -4227/888832*y + 4539/57344, y^2 - 31), Mod(-4227/888832*y + 4539/57344, y^2
248 - 31); -103/4608, 65/3072, -7/4608, 103/4608, -65/3072, 7/4608, Mod(-29/952
249 32*y + 179/6144, y^2 - 31), Mod(29/95232*y - 179/6144, y^2 - 31); 225/57344,
250 -95/114688, -123/57344, 225/57344, -95/114688, -123/57344, Mod(785/3555328*
251 y - 109/229376, y^2 - 31), Mod(785/3555328*y - 109/229376, y^2 - 31); 5/1024
252 , -49/18432, 13/9216, -5/1024, 49/18432, -13/9216, Mod(13/571392*y - 67/3686
253 4, y^2 - 31), Mod(-13/571392*y + 67/36864, y^2 - 31); 1/2048, -5/12288, -1/6
254 144, -1/2048, 5/12288, 1/6144, Mod(-13/380928*y + 1/24576, y^2 - 31), Mod(13
255 /380928*y - 1/24576, y^2 - 31); 31/57344, -33/114688, -5/57344, 31/57344, -3
256 3/114688, -5/57344, Mod(-81/3555328*y - 19/229376, y^2 - 31), Mod(-81/355532
257 8*y - 19/229376, y^2 - 31); -7/9216, 1/18432, -1/3072, 7/9216, -1/18432, 1/3
258 072, Mod(17/571392*y + 19/36864, y^2 - 31), Mod(-17/571392*y - 19/36864, y^2
259 - 31); -5/28672, -1/57344, -1/28672, -5/28672, -1/57344, -1/28672, Mod(-5/1
260 777664*y + 13/114688, y^2 - 31), Mod(-5/1777664*y + 13/114688, y^2 - 31); 1/
261 2048, -1/36864, 1/18432, -1/2048, 1/36864, -1/18432, Mod(1/1142784*y - 19/73
262 728, y^2 - 31), Mod(-1/1142784*y + 19/73728, y^2 - 31); -11/57344, -115/1032
263 192, 9/57344, -11/57344, -115/1032192, 9/57344, Mod(461/31997952*y + 151/206
264 4384, y^2 - 31), Mod(461/31997952*y + 151/2064384, y^2 - 31)], [y, y, y, y,
265 y, y, y^2 - 31, y^2 - 31]]
266 [0, 1, 0, 9, 0, 26, 0, 36, 0, 81, y]
267 [0, 1, 0, 9, 0, -14, 0, -100, 0, 81, y]
268 [0, 1, 0, 9, 0, -86, 0, 180, 0, 81, y]
269 [0, 1, 0, -9, 0, 26, 0, -36, 0, 81, y]
270 [0, 1, 0, -9, 0, -14, 0, 100, 0, 81, y]
271 [0, 1, 0, -9, 0, -86, 0, -180, 0, 81, y]
272 [Mod(0, y^2 - 31), Mod(1, y^2 - 31), Mod(0, y^2 - 31), Mod(9, y^2 - 31), Mod
273 (0, y^2 - 31), Mod(16*y + 18, y^2 - 31), Mod(0, y^2 - 31), Mod(16*y + 60, y^
274 2 - 31), Mod(0, y^2 - 31), Mod(81, y^2 - 31), y^2 - 31]
275 [Mod(0, y^2 - 31), Mod(1, y^2 - 31), Mod(0, y^2 - 31), Mod(-9, y^2 - 31), Mo
276 d(0, y^2 - 31), Mod(16*y + 18, y^2 - 31), Mod(0, y^2 - 31), Mod(-16*y - 60,
277 y^2 - 31), Mod(0, y^2 - 31), Mod(81, y^2 - 31), y^2 - 31]
278 [Mod(0, y^2 - 31), Mod(0, y^2 - 31), Mod(1, y^2 - 31), Mod(0, y^2 - 31), Mod
279 (-18, y^2 - 31), Mod(0, y^2 - 31), Mod(32*y + 117, y^2 - 31), Mod(0, y^2 - 3
280 1), Mod(-320*y - 444, y^2 - 31), Mod(0, y^2 - 31), Mod(864*y + 9502, y^2 - 3
281 1), Mod(0, y^2 - 31), Mod(-2304*y - 19690, y^2 - 31), Mod(0, y^2 - 31), Mod(
282 2592*y + 16536, y^2 - 31), 0]
283 21
284 [4, -7, 11, 0, 0, 0, 0, 0, 0, 0]~
285
286 [0 0 0 0 0 0 0 0 0 0]
287
288 [0 0 0 0 0 0 0 0 0 0]
289
290 [0 0 0 0 0 0 0 0 0 0]
291
292 [0 0 0 0 0 0 0 0 0 0]
293
294 [0 0 0 0 0 0 0 0 0 0]
295
296 [0 0 0 0 0 0 0 0 0 0]
297
298 [0 0 0 0 0 0 0 0 0 0]
299
300 [0 0 0 0 0 0 0 0 0 0]
301
302 [0 0 0 0 0 0 0 0 0 0]
303
304 [0 0 0 0 0 0 0 0 0 0]
305
306
307 [0 81 0 0 4887/7 0 0 0 45522/7 0]
308
309 [1 0 0 0 0 -264 0 1422 0 0]
310
311 [0 0 0 0 477/28 0 81 0 1269/7 0]
312
313 [0 0 0 0 0 61 0 -152 0 81]
314
315 [0 0 0 0 0 12 0 12 0 0]
316
317 [0 0 0 0 171/28 0 0 0 27/7 0]
318
319 [0 0 1 0 0 -7 0 40 0 0]
320
321 [0 0 0 0 9/14 0 0 0 -27/7 0]
322
323 [0 0 0 0 0 2 0 -19 0 0]
324
325 [0 0 0 1 -95/28 0 0 0 -71/7 0]
326
327 [[81, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 81, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 81, 0,
328 0, 0, 0, 0, 0, 0; 0, 0, 0, 81, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 81, 0, 0, 0, 0
329 , 0; 0, 0, 0, 0, 0, 81, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 81, 0, 0, 0; 0, 0, 0,
330 0, 0, 0, 0, 81, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 81, 0; 0, 0, 0, 0, 0, 0, 0, 0,
331 0, 81], [0, 0, 0, 155223/7, -647676/7, 0, 1574721/7, 0, 2180790/7, 0; 0, 0,
332 8068, 0, 0, -45888, 0, -25888, 0, 86508; 0, 81, 0, 22293/28, -8640/7, 0, -6
333 0507/28, 0, -63009/14, 0; 0, 0, -288, 0, 0, 2656, 0, 4468, 0, -8424; 0, 0, -
334 27, 0, 0, -42, 0, -1482, 0, 81; 0, 0, 0, -909/28, 540/7, 0, -11421/28, 0, -1
335 791/14, 0; 1, 0, 120, 0, 0, -808, 0, -550, 0, 2592; 0, 0, 0, 549/14, -1674/7
336 , 0, 3159/14, 0, 801/7, 0; 0, 0, -63, 0, 0, 467, 0, 266, 0, -810; 0, 0, 0, -
337 167/28, 148/7, 0, 12393/28, 0, 8891/14, 0], [-2434/7, 0, 300738/7, 0, 0, 229
338 0482/7, 0, 16881306/7, 0, 11792304/7; 0, 4943, 0, 78792, -67632, 0, 416424,
339 0, 265872, 0; -747/28, 0, 39517/14, 0, 0, -329463/14, 0, 567081/14, 0, -1517
340 13/7; 0, -288, 0, -4237, -8472, 0, -39276, 0, -47928, 0; 0, -27, 0, -972, 16
341 43, 0, -2754, 0, 108, 0; -141/28, 0, -5811/14, 0, 0, -12575/14, 0, -11937/14
342 , 0, -58239/7; 0, 120, 0, 1320, -1440, 0, 13151, 0, 18000, 0; 39/14, 0, 1299
343 /7, 0, 0, -1269/7, 0, 15800/7, 0, 12312/7; 0, -63, 0, -618, 408, 0, -4356, 0
344 , -6337, 0; 153/28, 0, 2463/14, 0, 0, -13443/14, 0, -22899/14, 0, 37304/7]]
345 0.43212772973212385449512289817170941385
346 0.065367804723930579823031060437204674227
347 -3.2767866024378219074845099715117890907
348 0.34284913090478965797177570867964351435
349 -0.76125796339716986841247525017762663821
350 0.49159382167950494101715310718716918356
351 -0.49676146954567727676850448728844180079
352 -52.340285691058552832964253754168105742
353 1.0398936863409539900708802050121051862
354 183.58598430613706225199581706089347024
355 5.1579000625428403504184801623630511115 E-16
356 3.4870504895354529381700292194184810754 E-6
357 [1, 1]
358 [1/23, 1/23]
359 [1/23, 1/23]
360 [12709878029020295059028381417601, 12709844797213685207966660148549]
361 [0, -4186596901512170847892276510318430 - 1173029439813149005414471837402481
362 *I, (3714866976289080663253111389348917 + 2259060652327972078839134831842555
363 *I)*y]
364 [0, 1, -24, 252, -1472, 4830, -6048, -16744, 84480, -113643, -115920, 534612
365 , -370944, -577738, 401856, 1217160]
366 [0]
367
368 [633/1792 351/1024 10819/896 67047/1792 267993/1792 102867/896 5265/3584 -14
369 7319/896 -906249/1792 81]
370
371 [19/256 -3/8 267/128 -17/16 -81/8 7013/128 -205/16 24615/128 -497/8 6117/64]
372
373 [87/7168 -9/4096 -591/3584 1135/7168 -22815/7168 12357/3584 49113/14336 -457
374 77/3584 48943/7168 1215/128]
375
376 [-1/512 1/16 -41/256 -5/32 59/16 -1447/256 143/32 -3613/256 283/16 -1063/128
377 ]
378
379 [1/1024 3/256 -39/512 3/32 -3/64 -121/512 -3/128 -3/512 39/64 -321/256]
380
381 [9/7168 9/4096 47/3584 -879/7168 799/7168 1371/3584 -7641/14336 -3407/3584 2
382 769/7168 81/128]
383
384 [1/512 -1/128 25/256 1/16 -23/32 7/256 -55/64 637/256 -101/32 223/128]
385
386 [-1/3584 9/2048 -27/1792 65/3584 255/3584 -171/1792 135/7168 111/1792 -79/35
387 84 0]
388
389 [-1/1024 1/128 -9/512 1/64 1/4 -103/512 5/16 -733/512 23/16 -151/256]
390
391 [-5/7168 19/4096 61/3584 171/7168 -1371/7168 -687/3584 3965/14336 2963/3584
392 4267/7168 -81/128]
393
394
395 [1 0 0]
396
397 [0 1 0]
398
399 [0 0 1]
400
401 [0, 0, 0, 18, 0, 224, 0, 440, 0, 0, 0, 840, 0, 192, 0, 900]
402
403 [1]
404
405 [17.981439237735731033658522362934698192, -14.465932470400861049133659073570
406 007347, -14.173043447523315720648161399342292854, -12.8444792338479425607250
407 88799397162586, -12.673296763439189428830632012708642221, 11.313822387102528
408 758430335085165159676, 15.809242390926312020182669681356476477, 19.952518856
409 726468490501784413242971475, 12.164217722077195145237910274949933293, 15.381
410 272600128290391693466194368971580]
411 [149.32003336233083380416740549931024313, -145.22528341237431879984196577788
412 550379, -144.05206065368915254369133157416377264, -137.368077052425797668068
413 45719565543525, -136.68537976117761802503641918389974975, 132.33498216866595
414 894851650979950974707, 144.81477270149742577794938046771306641, 153.37574451
415 331022295236625862817598070, 133.99393725109713614517615928616029184, 140.82
416 191407690427938490321804273819109]
417 [1750.8612976244284982995145051957076323, -1743.4610846371885006840699908522
418 210646, -1739.3285039438314041396755906212872382, -1706.54568655078571155570
419 67243660579136, -1704.1559309139961646459809162176700473, 1693.2006899626197
420 396492113391602468661, 1739.6937549158404780145317707347222603, 1760.8038249
421 508416117204235666645232767, 1696.9537629837898396249480554755379813, 1714.4
422 123077300799878900824934093074081]
423 [-25289.463103882493149683693231641947547, 25271.306252281313102094765195122
424 776006, 25256.284246728344311859481152424676239, 25079.367724015404662920284
425 476322170148, 25070.741444350281949178792195757223585, -25040.19987820531753
426 6042355830671301459, -25256.861209437637891371256419970666372, -25318.141977
427 898178949067363044347232866, -25050.025763197973566457964437905037423, -2510
428 2.674289656622081201236099263608944]
429 0.15111211321192334885298629517871164534
430 -0.029981366891420022975489657187955538024
431 1
432 [0, 1, -4, 2, 8, -5, -8, 6, 0, -23]
433 [0, t, -4*t^2, 2*t^3, -8*t^3 - 8*t^2 - 8*t - 8, -5, -8*t, 6*t^2, 0, 23*t^3 +
434 23*t^2 + 23*t + 23, 20]
435 [0, 5, [1, 0; 0, 1]]
436 [0, 1, -2, -1, 2, 1]
437 [0, 1, [1, 0; 0, 1]]
438 [1/4, 0, 0, 0, 0]
439 [1/2, 11, [1, 0; 0, 1]]
440 [0, 0.0083160068527003923763819239796690829909 + 0.0186369836048978260765912
441 63978546433841*I, 0.040773714507830673270468368068835601812 - 0.001864595582
442 8220482074272494197134258868*I, 0.046062126409693852745000230038901860300 -
443 0.13522737805608561952910766786281685190*I, -0.07682530715670062861328778204
444 2554261374 + 0.027600040327739509297577443995295764559*I, -0.125743903939079
445 05970350003436207154063 + 0.067798479979021507423866878355650878641*I]
446 [0, 7, [1, 0; 0, 1]]
447 [0, 0, 0, 0.66666666666666666666666666666666666667 + 0.E-38*I, 0, -4.0000000
448 000000000000000000000000000000 + 6.9282032302755091741097853660234894676*I,
449 0, -12.000000000000000000000000000000000000 - 20.784609690826527522329356098
450 070468402*I, 0, 0, 0, 20.000000000000000000000000000000000018 - 34.641016151
451 377545870548926830117447370*I, 0]
452 [Mod(0, t^2 + t + 1), Mod(0, t^2 + t + 1), Mod(0, t^2 + t + 1), Mod(2/3, t^2
453 + t + 1), Mod(0, t^2 + t + 1), Mod(8*t, t^2 + t + 1), Mod(0, t^2 + t + 1),
454 Mod(-24*t - 24, t^2 + t + 1), Mod(0, t^2 + t + 1), Mod(0, t^2 + t + 1), Mod(
455 0, t^2 + t + 1), Mod(-40*t, t^2 + t + 1), Mod(0, t^2 + t + 1)]
456 [-5/32, 81/32, 21/16, -597/8, 1215/32, 1689/8, -14813/16, -14337/16]
457 [1/2, 1, [1, 0; 0, 1]]
458 [Mod(0, t^2 + t + 1), Mod(0, t^2 + t + 1), Mod(2/3*t, t^2 + t + 1), Mod(-2/3
459 , t^2 + t + 1), Mod(4/3*t + 4/3, t^2 + t + 1)]
460 1
461 [Mod(61/256*t, t^2 + 1), Mod(-1/64*t, t^2 + 1), Mod(-1/64*t, t^2 + 1), Mod(9
462 1/8*t, t^2 + 1), Mod(-1/64*t, t^2 + 1), Mod(-7813/32*t, t^2 + 1)]
463 [0, 1, [1, 0; 0, 1]]
464 [Mod(0, t^2 + 1), Mod(-t, t^2 + 1), Mod(0, t^2 + 1), Mod(2*t, t^2 + 1)*y]
465 [0, 1, [1, 0; 0, 1]]
466 [0, 0, -0.026871677793768185811758182803469159206 - 0.0427660302192192146895
467 36937410383070596*I, 0, -0.016681611742316464491440499523538796306 - 0.04767
468 3307393570615953995380441278707349*I, 0]
469
470 [ 0 1]
471
472 [-1 0]
473
474 1
475
476 [1/4 1/4]
477
478 [1/4 -1/4]
479
480 0.35355339059327376220042218105242451964
481
482 [x + Mod(-t, t^2 + 1) 2]
483
484 [ x + Mod(t, t^2 + 1) 2]
485
486 1
487 [[I, -I, -I, I, I, -I]]
488 [[0.33333333333333333333333333333333333334 + 0.94280904158206336586779248280
489 646538571*I, -0.33333333333333333333333333333333333334 + 0.94280904158206336
490 586779248280646538571*I]]
491 [[-1, -1, -1, -1, -1, -1, -1, -1, -1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
492 [1, 0, 240, 0, 2160, 0, 6720, 0, 17520, 0, 30240]
493 [0, -1, -1, 1, -1, -1, 1, 2, -1, 2, -1]
494 [5/2*x, x, 2*x, 0, 3*x, 2*x]
495
496 [ 3 3]
497
498 [-1/3 -3]
499
500 [1/4, -1/4]~
501 [0, 1, 0, -3, 0, -2, 0, -4, 0, 6, 0, 2, 0, -5, 0, 6]
502 [0, 0, 0, 0, 0, 0, 0]
503 [64/5, 4/5, 32/5]~
504 [1, 20, 180, 960, 3380, 8424, 16320, 28800, 52020, 88660, 129064, 175680, 26
505 2080, 386920, 489600, 600960]
506 [1, 180, 3380, 16320, 52020, 129064, 262080]
507 [0, 4, -16, 0, 64, -56, 0, 0, -256, 324, 224, 0, 0, -952, 0, 0]
508 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
509 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
510 [3, 12, 12, 0, 12, 24, 0, 0, 12, 12, 24, 0, 0, 24, 0, 0]
511 23: [[22, [[0, 1, -1, -1, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, 0]]]]
512 31: [[30, [[0, 1, -1, 0, 0, -1, 0, -1, 1, 1, 1, 0, 0, 0, 1, 0]]]]
513 39: [[38, [[0, 1, 0, -1, -1, 0, 0, 0, 0, 1, 0, 0, 1, -1, 0, 0]]]]
514 44: [[21, [[0, 1, 0, -1, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1]]]]
515 46: [[45, [[0, 1, 0, -1, -1, 0, 0, 0, 1, 0, 0, 0, 1, -1, 0, 0], [0, 0, 1, 0,
516 -1, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0]]]]
517 47: [[46, [[0, 1, 0, -1, 0, 0, -1, 0, -1, 1, 0, 0, 1, 0, 1, 0], [0, 0, 1, -1
518 , -1, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0]]]]
519 52: [[3, [[0, 1, -t, 0, t - 1, -1, 0, 0, 1, t - 1, t, 0, 0, -t, 0, 0]]]]
520 55: [[54, [[0, 1, 0, 0, -1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0]]]]
521 56: [[13, [[0, 1, -1, 0, 1, 0, 0, -1, -1, -1, 0, 0, 0, 0, 1, 0]]]]
522 57: [[26, [[0, 1, 0, -t, t - 1, 0, 0, -1, 0, t - 1, 0, 0, 1, -t + 1, 0, 0]]]
523 ]
524 59: [[58, [[0, 1, 0, -1, 1, -1, 0, -1, 0, 0, 0, 0, -1, 0, 0, 1]]]]
525 62: [[61, [[0, 1, 0, 0, -1, -1, 0, -1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0,
526 -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0]]]]
527 63: [[55, [[0, 1, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0]]]]
528 68: [[67, [[0, 1, -1, 0, 1, 0, 0, 0, -1, -1, 0, 0, 0, -2, 0, 0]]], [47, [[0,
529 1, t, 0, -1, -t - 1, 0, 0, -t, t, -t + 1, 0, 0, 0, 0, 0]]]]
530 69: [[22, [[0, 1, -1, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, -1, 0, 0], [0, 0, 0, 1,
531 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0]]]]
532 71: [[70, [[0, 1, 0, 0, 0, -1, -1, 0, 0, 1, 0, 0, -1, 0, 0, -1], [0, 0, 1, 0
533 , -1, -1, -1, 0, 1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, -1, -1, 0, 0, 1, 0, 1
534 , 0, 0, 0, 0, -1]]]]
535 72: [[67, [[0, 1, -t, -t, t - 1, 0, t - 1, 0, 1, t - 1, 0, t, 1, 0, 0, 0]]]]
536 76: [[37, [[0, 1, 0, 0, 0, -1, 0, -1, 0, 1, 0, -1, 0, 0, 0, 0]]]]
537 77: [[69, [[0, 1, t^2 - t, 0, t - 1, 0, 0, -t^3, -t^2, t^3 - t^2 + t - 1, 0,
538 -t, 0, 0, t^3 - t^2 + t, 0]]]]
539 78: [[77, [[0, 1, 0, -1, -1, 0, 0, 0, 0, 1, 0, 0, 1, -1, 0, 0], [0, 0, 1, 0,
540 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0]]]]
541 79: [[78, [[0, 1, 0, 0, 0, -1, 0, 0, -1, 1, -1, 0, 0, 0, 0, 0], [0, 0, 1, 0,
542 -1, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0]]]]
543 80: [[79, [[0, 1, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0]]]]
544 83: [[82, [[0, 1, 0, -1, 1, 0, 0, -1, 0, 0, 0, -1, -1, 0, 0, 0]]]]
545 84: [[65, [[0, 1, 0, -t, 0, 0, 0, t - 1, 0, t - 1, 0, 0, 0, -1, 0, 0]]]]
546 87: [[86, [[0, 1, 0, 0, 0, 0, -1, -1, 0, 1, 0, 0, 0, -1, 0, 0], [0, 0, 1, -1
547 , 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0]]]]
548 88: [[65, [[0, 1, 0, -1, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1], [0, 0, 1, 0,
549 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0]]], [59, [[0, 1, -t, t^3 + t - 1, t^2,
550 0, -t^3 + 1, 0, -t^3, -t^2 - 1, 0, -t^3, t^3 - t^2 - 1, 0, 0, 0]]]]
551 92: [[45, [[0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0], [0, 0, 1, 0,
552 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0,
553 -1, 0, 0, 0]]]]
554 93: [[61, [[0, 1, -1, 0, 0, -1, 0, -1, 1, 1, 1, 0, 0, 0, 1, 0], [0, 0, 0, 1,
555 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1]]], [47, [[0, 1, 0, -t, -t^3, 0, 0, t^
556 3 + t - 1, 0, t^2, 0, 0, t^3 - t^2 + t - 1, -t^2 + t - 1, 0, 0]]]]
557 94: [[93, [[0, 1, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 1, 0,
558 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, -1, 1, -1, 0, 0
559 , -1, 0, 0, 0], [0, 0, 0, 0, 1, 0, -1, 0, -1, 0, 0, 0, 0, 0, 1, 0]]]]
560 95: [[94, [[0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 1, -1,
561 0, 0, 0, 0, 0, 0, -1, 0, -1, 1, 0, 1], [0, 0, 0, 0, 1, -1, -1, 0, 0, 1, 0,
562 1, 0, 0, 0, 0]]]]
563 99: [[76, [[0, 1, 0, t - 1, t - 1, -t + 1, 0, 0, 0, -t, 0, -t, -t, 0, 0, t]]
564 ]]
565 100: [[91, [[0, 1, -t, 0, t^2, -t^3, 0, 0, -t^3, t^3 - t^2 + t - 1, t^3 - t^
566 2 + t - 1, 0, 0, t^2 - t, 0, 0]]]]
567 103: [[102, [[0, 1, 0, 0, 0, 0, 0, -1, -1, 1, 0, 0, 0, 0, -1, 0], [0, 0, 1,
568 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0]]]]
569 104: [[51, [[0, 1, 0, -1, 1, 0, 0, 0, 0, 0, -1, 0, -1, 0, -1, 0], [0, 0, 1,
570 0, 0, -1, -1, -1, 1, 0, 0, 0, 0, 1, 0, 1]]], [55, [[0, 1, 0, 0, 0, -1, 0, 0,
571 0, t - 1, 0, 0, 0, -t, 0, 0], [0, 0, 1, 0, -t, 0, 0, 0, t - 1, 0, -1, 0, 0,
572 0, 0, 0]]]]
573 107: [[106, [[0, 1, 0, -1, 1, 0, 0, 0, 0, 0, 0, -1, -1, -1, 0, 0]]]]
574 108: [[53, [[0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0]]]]
575 110: [[109, [[0, 1, 0, 0, -1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0], [0, 0, 1,
576 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0]]]]
577 111: [[110, [[0, 1, 0, 0, 0, 0, 0, -1, 0, 1, -1, 0, -1, 0, 0, 0], [0, 0, 1,
578 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 1, -1, 0, 0, -1, 0, 0, 1
579 , 0, 0, 0, 0, 0]]], [101, [[0, 1, 0, -t, t, 0, 0, -t, 0, t - 1, 0, 0, -t + 1
580 , t - 2, 0, 0]]], [26, [[0, 1, 0, t - 1, t - 1, 0, 0, -t + 1, 0, -t, 0, 0, -
581 t, -t + 1, 0, 0]]]]
582 112: [[41, [[0, 1, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0,
583 -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0]]], [69, [[0, 1, t, 0, -1, 0, 0, t, -t
584 , -t, 0, -t - 1, 0, 0, -1, 0]]]]
585 114: [[83, [[0, 1, 0, -t, t - 1, 0, 0, -1, 0, t - 1, 0, 0, 1, -t + 1, 0, 0],
586 [0, 0, 1, 0, 0, 0, -t, 0, t - 1, 0, 0, 0, 0, 0, -1, 0]]]]
587 115: [[91, [[0, 1, -1, -1, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, 0], [0, 0, 0, 0
588 , 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1]]]]
589 116: [[115, [[0, 1, 0, 0, 1, -1, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0], [0, 0, 1,
590 -1, 0, 0, 0, 0, 1, 0, -1, -1, -1, 0, 0, 1]]], [103, [[0, 1, -t, 0, t^2, -t^5
591 + t^4, 0, 0, -t^3, -t^3, -t^4 + t^3 - t^2 + t - 1, 0, 0, t^5 - t^4 + t^3 +
592 t - 1, 0, 0]]]]
593 117: [[116, [[0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0], [0, 0, 0, 1
594 , 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0]]], [73, [[0, 1, 0, 0, -t, 0, 0, t -
595 1, 0, 0, 0, 0, 0, t, 0, 0]]]]
596 118: [[117, [[0, 1, 0, -1, 1, -1, 0, -1, 0, 0, 0, 0, -1, 0, 0, 1], [0, 0, 1,
597 0, 0, 0, -1, 0, 1, 0, -1, 0, 0, 0, -1, 0]]]]
598 119: [[118, [[0, 1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1], [0, 0, 1, 0
599 , -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, -2, -1, 0, 0, 1,
600 0, 2, 0, 1, 0], [0, 0, 0, 0, 0, 1, -1, -1, 0, 0, 1, 0, 1, 0, 0, 0]]]]
601 120: [[29, [[0, 1, 0, 0, -1, 0, -1, 0, 0, -1, 1, 0, 0, 0, 0, 1], [0, 0, 1, 1
602 , 0, -1, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0]]]]
603 124: [[61, [[0, 1, 0, 0, 0, -1, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0,
604 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0], [0, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0,
605 0, 0, 0, 0, 0]]], [87, [[0, 1, 0, 0, -1, t - 1, -t, 0, 0, 0, 0, 0, 0, -t + 1
606 , t, 0], [0, 0, 1, t, 0, 0, 0, -t, -1, 0, t - 1, -t + 1, -t, 0, 0, -1]]]]
607 126: [[55, [[0, 1, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0,
608 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0]]]]
609 127: [[126, [[0, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, -1, 0, -1, 0, 0], [0, 0, 1,
610 0, -1, 0, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0]]]]
611 128: [[63, [[0, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0]]]]
612 129: [[41, [[0, 1, 0, -t, -t^5, 0, 0, t^4 - t^3, 0, t^2, 0, 0, t^5 - t^4 + t
613 ^3 - t^2 + t - 1, t^5 - t^4 + t^3 + t - 1, 0, 0]]]]
614 131: [[130, [[0, 1, 0, 0, 1, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1], [0, 0, 0,
615 1, 0, -1, 0, -1, 0, -1, 0, 1, 1, 1, 0, 0]]]]
616 132: [[109, [[0, 1, 0, 0, 0, -1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1
617 , 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1]]]]
618 133: [[83, [[0, 1, -t, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, t - 1], [0, 0, 0
619 , 1, 0, -1, -t, t - 1, 0, 0, t, 0, 0, -t, 1, 0]]], [37, [[0, 1, 0, 0, -t, -t
620 + 1, 0, t - 1, 0, t - 1, 0, t, 0, 0, 0, 0]]]]
621 135: [[134, [[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 1, 0,
622 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0]]]]
623 136: [[135, [[0, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -2, 0, 0], [0, 0, 1, 0
624 , -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]]], [67, [[0, 1, -1, 0, 1, 0, 0, 0, -1
625 , 1, 0, 0, 0, 0, 0, 0]]], [47, [[0, 1, 0, 0, 0, -t - 1, 0, 0, 0, t, 0, 0, 0,
626 0, 0, 0], [0, 0, 1, 0, t, 0, 0, 0, -1, 0, -t - 1, 0, 0, 0, 0, 0]]], [115, [
627 [0, 1, -t, -t - 1, -1, 0, t - 1, 0, t, t, 0, -t + 1, t + 1, 0, 0, 0]]], [43,
628 [[0, 1, t^3, -t^3 + t^2, -t^2, 0, t^2 - t, 0, t, -t^2 + t - 1, 0, t^3 - 1,
629 -t + 1, 0, 0, 0]]]]
630 138: [[91, [[0, 1, 0, 0, -1, 0, 0, 0, 1, -1, 0, 0, 0, -1, 0, 0], [0, 0, 1, 0
631 , -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0
632 , -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0]]]]
633 139: [[138, [[0, 1, 0, 0, 1, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, 0]]]]
634 140: [[69, [[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1], [0, 0, 0, 1,
635 0, -1, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0]]], [79, [[0, 1, 0, 0, -t, t - 1, -1,
636 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 1, -t + 1, 0, 0, 0, t - 1, -t, 0, t - 1,
637 0, -1, 0, 0, t]]]]
638 141: [[46, [[0, 1, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 1, 0], [0, 0, 1, 0,
639 -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0
640 , 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, -1, 0, 0, 0]]]]
641 142: [[141, [[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, -1], [0, 0, 1,
642 0, 0, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 1, -1, 0,
643 0, -1, 0, 0, -1], [0, 0, 0, 0, 1, 0, 0, 0, -1, 0, -1, 0, -1, 0, 0, 0], [0,
644 0, 0, 0, 0, 1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, -1,
645 0, -1, 0, 0, 0, 0, 0]]]]
646 143: [[142, [[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, -1, 0], [0, 0, 1, 0
647 , 0, 0, 0, -2, -1, 0, 0, 1, 0, 1, 0, 0], [0, 0, 0, 1, -1, 0, 0, 0, 0, -1, 0,
648 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, -1, -1, 0, 0, 1, 0, 1, 0, 0]]]]
649 144: [[127, [[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0]]], [103, [[0,
650 1, 0, -t, 0, 0, 0, 0, 0, t - 1, 0, t, 0, 0, 0, 0], [0, 0, 1, 0, -t, 0, -t,
651 0, t - 1, 0, 0, 0, t - 1, 0, 0, 0]]]]
652 145: [[99, [[0, 1, 0, 0, t, -t, 0, 0, 0, t, 0, -t - 1, 0, 0, 0, 0]]], [57, [
653 [0, 1, 0, 0, t, t, 0, -t - 1, 0, -t, 0, 0, 0, -t + 1, 0, 0]]]]
654 147: [[92, [[0, 1, 0, -t, -t^3, 0, 0, -t^5, 0, t^2, 0, 0, t^4, t^5 + t^3 - t
655 ^2 + t - 1, 0, 0]]]]
656 148: [[105, [[0, 1, 0, -t, 0, 0, 0, -1, 0, 0, 0, t, 0, 0, 0, 0]]], [63, [[0,
657 1, -t, 0, t - 1, -t + 1, 0, 0, 1, -t, -1, 0, 0, 2*t - 2, 0, 0]]], [127, [[0
658 , 1, -t, 0, t^2, t^4 + t^3 - 1, 0, 0, -t^3, -t^4 + t, -t^5 - t^4 + t, 0, 0,
659 -t^2, 0, 0]]]]
660 [1, 0, 0] [2, 0, 0] [3, 0, 0] [4, 0, 0] [5, 0, 0] [6, 0, 0] [7, 0, 0] [8, 0,
661 0] [9, 0, 0] [10, 0, 0] [11, 0, 0] [12, 0, 0] [13, 0, 0] [14, 0, 0] [15, 0,
662 0] [16, 0, 0] [17, 0, 0] [18, 0, 0] [19, 0, 0] [20, 0, 0] [21, 0, 0] [22, 0
663 , 0] [23, 1, 1] [24, 0, 0] [25, 0, 0] [26, 0, 0] [27, 0, 0] [28, 0, 0] [29,
664 0, 0] [30, 0, 0] [31, 1, 1] [32, 0, 0] [33, 0, 0] [34, 0, 0] [35, 0, 0] [36,
665 0, 0] [37, 0, 0] [38, 0, 0] [39, 1, 1] [40, 0, 0] [41, 0, 0] [42, 0, 0] [43
666 , 0, 0] [44, 1, 1] [45, 0, 0] [46, 2, 0] [47, 2, 2] [48, 0, 0] [49, 0, 0] [5
667 0, 0, 0] [51, 0, 0] [52, 2, 2] [53, 0, 0] [54, 0, 0] [55, 1, 1] [56, 1, 1] [
668 57, 2, 2] [58, 0, 0] [59, 1, 1] [60, 0, 0] [61, 0, 0] [62, 2, 0] [63, 1, 1]
669 [64, 0, 0] [65, 0, 0] [66, 0, 0] [67, 0, 0] [68, 3, 3] [69, 2, 0] [70, 0, 0]
670 [71, 3, 3] [72, 2, 2] [73, 0, 0] [74, 0, 0] [75, 0, 0] [76, 1, 1] [77, 4, 4
671 ] [78, 2, 0] [79, 2, 2] [80, 1, 1] [81, 0, 0] [82, 0, 0] [83, 1, 1] [84, 2,
672 2] [85, 0, 0] [86, 0, 0] [87, 2, 2] [88, 6, 4] [89, 0, 0] [90, 0, 0] [91, 0,
673 0] [92, 3, 0] [93, 6, 4] [94, 4, 0] [95, 3, 3] [96, 0, 0] [97, 0, 0] [98, 0
674 , 0] [99, 2, 2] [100, 4, 4] [101, 0, 0] [102, 0, 0] [103, 2, 2] [104, 6, 2]
675 [105, 0, 0] [106, 0, 0] [107, 1, 1] [108, 1, 1] [109, 0, 0] [110, 2, 0] [111
676 , 7, 7] [112, 4, 2] [113, 0, 0] [114, 4, 0] [115, 2, 0] [116, 8, 8] [117, 4,
677 2] [118, 2, 0] [119, 4, 4] [120, 2, 2] [121, 0, 0] [122, 0, 0] [123, 0, 0]
678 [124, 7, 4] [125, 0, 0] [126, 2, 0] [127, 2, 2] [128, 1, 1] [129, 6, 6] [130
679 , 0, 0] [131, 2, 2] [132, 2, 0] [133, 6, 6] [134, 0, 0] [135, 2, 2] [136, 13
680 , 7] [137, 0, 0] [138, 4, 0] [139, 1, 1] [140, 6, 6] [141, 4, 0] [142, 6, 0]
681 [143, 4, 4] [144, 5, 1] [145, 4, 4] [146, 0, 0] [147, 6, 6] [148, 10, 10] [
682 149, 0, 0] [150, 0, 0]
683 [[22, Mod(5, 23), 1, 0], [2, Mod(22, 23), 2, 1]]
684 [[2, Mod(22, 23), 1, 1]]
685 [[2, Mod(22, 23), 1, 1]]
686 []
687 [[2, Mod(22, 23), 1, 0], [22, Mod(5, 23), 1, 0]]
688 [[2, Mod(45, 46), 2, -1]]
689 [[0, 0], [0, 0], [0, 0], [1, 1]]
690 [[0, 0], [0, 0], [0, 0], [1, 1]]
691 [[0, 0], [0, 0], [0, 0], [0, 0]]
692 98
693 193
694 95
695 127
696 320
697 [[1, Mod(1, 96), 2, 0], [2, Mod(95, 96), 4, 0], [2, Mod(49, 96), 2, 0], [2,
698 Mod(47, 96), 2, 0], [8, Mod(37, 96), 8, 0], [8, Mod(59, 96), 14, 0]]
699 [[1, Mod(1, 96), 9, 0], [2, Mod(95, 96), 8, 0], [2, Mod(49, 96), 8, 0], [2,
700 Mod(47, 96), 8, 0], [4, Mod(25, 96), 12, 0], [4, Mod(71, 96), 12, 0], [8, Mo
701 d(37, 96), 14, 0], [8, Mod(59, 96), 14, 0]]
702 [[1, Mod(1, 96), 7, 0], [2, Mod(95, 96), 4, 0], [2, Mod(49, 96), 6, 0], [2,
703 Mod(47, 96), 6, 0], [4, Mod(25, 96), 12, 0], [4, Mod(71, 96), 12, 0], [8, Mo
704 d(37, 96), 6, 0]]
705 [[1, Mod(1, 96), 15, 0], [2, Mod(95, 96), 16, 0], [2, Mod(49, 96), 16, 0], [
706 2, Mod(47, 96), 16, 0], [4, Mod(25, 96), 8, 0], [4, Mod(71, 96), 8, 0], [8,
707 Mod(37, 96), 4, 0], [8, Mod(59, 96), 4, 0]]
708 [[1, Mod(1, 96), 24, 0], [2, Mod(95, 96), 24, 0], [2, Mod(49, 96), 24, 0], [
709 2, Mod(47, 96), 24, 0], [4, Mod(25, 96), 20, 0], [4, Mod(71, 96), 20, 0], [8
710 , Mod(37, 96), 18, 0], [8, Mod(59, 96), 18, 0]]
711 [[2, 0], [0, 0], [0, 0], [4, 0], [8, 0], [0, 0], [0, 0], [14, 0], [0, 0], [0
712 , 0], [0, 0], [0, 0], [2, 0], [0, 0], [0, 0], [2, 0]]
713 [[9, 0], [0, 0], [0, 0], [8, 0], [14, 0], [0, 0], [0, 0], [14, 0], [12, 0],
714 [0, 0], [0, 0], [12, 0], [8, 0], [0, 0], [0, 0], [8, 0]]
715 [[7, 0], [0, 0], [0, 0], [4, 0], [6, 0], [0, 0], [0, 0], [0, 0], [12, 0], [0
716 , 0], [0, 0], [12, 0], [6, 0], [0, 0], [0, 0], [6, 0]]
717 [[15, 0], [0, 0], [0, 0], [16, 0], [4, 0], [0, 0], [0, 0], [4, 0], [8, 0], [
718 0, 0], [0, 0], [8, 0], [16, 0], [0, 0], [0, 0], [16, 0]]
719 [[24, 0], [0, 0], [0, 0], [24, 0], [18, 0], [0, 0], [0, 0], [18, 0], [20, 0]
720 , [0, 0], [0, 0], [20, 0], [24, 0], [0, 0], [0, 0], [24, 0]]
721 10
722 2
723 0
724 [1, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0]
725 [1/2 - 1/2*I, 0, 1/2 - 1/2*I, 1, 1.2548652488804080851212455162477386227 + 0
726 .13774935502057657907313538946599934252*I]
727 [0, 2, 0, 0, Mod(-2*t - 2, t^2 + t + 1), 0, 0, 0, 0, Mod(2*t, t^2 + t + 1),
728 0, 0, 0, 0, 0, 0]
729 [196, 1/2, Mod(2, 7), y, t^2 + t + 1]
730 [0, 2, 0, 0, Mod(4*t, t^2 + 1), 0, 0, 0, 0, Mod(-6*t, t^2 + 1), 0, 0, 0, 0,
731 0, 0]
732 [100, 3/2, Mod(7, 20), y, t^2 + 1]
733 [1, -264, -135432, -5196576, -69341448, -515625264, -2665843488, -1065335251
734 2, -35502821640, -102284205672, -264515760432, -622498190688, -1364917062432
735 , -2799587834736, -5465169838656, -10149567696576]
736 [0, 1, -24, 252, -1472, 4830, -6048, -16744, 84480, -113643, -115920, 534612
737 , -370944, -577738, 401856, 1217160]
738 [1, 12, 1, 1, t - 1]
739 [1, -24, 252, -1472, 4830, -6048, -16744, 84480, -113643, -115920, 534612, -
740 370944, -577738, 401856, 1217160, 987136]
741 [1/1728, 0, -1/20736, 0, 1/165888, 0, 1/497664, 0, -11/3981312, 0, 7/1592524
742 8]
743 [0.0017853698506421519043430549603422623106, 0, -0.0171012292073417293156314
744 59010992410421, 0, 0.040951184469824320600328376773822139547, 0, 0.104600637
745 48004752177296678887319501733, 0, -0.59041770925463104960248994945766228175,
746 0, 0.23992339736027093580525099155844404883]
747 1
748 [1728, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
749 [0, 1728, -41472, 435456, -2543616, 8346240, -10450944, -28933632, 145981440
750 , -196375104, -200309760, 923809536, -640991232, -998331264, 694407168, 2103
751 252480]
752 [0, -504, -33264, -368928, -2130912, -7877520, -24349248]
753 [0, -504, -8316, -40992, -133182, -1575504/5, -676368]
754 [-1/2, -240, -30960, -525120, -3963120, -18750240, -67740480]
755 [Mod(21/19*t^5 - 4/19*t^4 - 68/19*t^3 + 24/19*t^2 - 29/19*t - 37/19, t^6 + t
756 ^3 + 1), Mod(-9/19*t^5 + 18/19*t^4 + 40/19*t^3 + 6/19*t^2 + 7/19*t - 14/19,
757 t^6 + t^3 + 1), Mod(-21/19*t^5 - 34/19*t^4 + 106/19*t^3 - 24/19*t^2 + 67/19*
758 t + 75/19, t^6 + t^3 + 1), Mod(-27/19*t^5 + 73/19*t^4 + 101/19*t^3 - 39/19*t
759 ^2 + 59/19*t + 91/19, t^6 + t^3 + 1), Mod(-37/19*t^5 - 40/19*t^4 - 129/19*t^
760 3 - 140/19*t^2 + 14/19*t + 10/19, t^6 + t^3 + 1), Mod(37/19*t^5 - 188/19*t^4
761 + 148/19*t^3 - 69/19*t^2 - 261/19*t + 104/19, t^6 + t^3 + 1), Mod(13/19*t^5
762 - 7/19*t^4 - 157/19*t^3 + 251/19*t^2 + 11/19*t + 16/19, t^6 + t^3 + 1)]
763 [0, -8, 0, 0, 448, -960, 0, 0, 1920, -72, 0, 0, -11520, 10560, 0, 0]
764 [0]
765 [1, 2, 0, 0, 242, 480, 0, 0, 2640, 4322, 0, 0, 11040, 13920, 0, 0]
766 [1]
767 [0, -1, 24, -252, 1472, -4830, 6048, 16744, -84480, 113643, 115920]
768 [[1, 1], 0.16568457302248264542066459293908431501]
769 [y, y^2 + Mod(-t, t^2 + 1)*y + 32]
770 [t^2 + 1, [1, I, -1, -I]~]
771 [0, 1, -4 - 4*I, -23 + 23*I, 32*I]
772 [t^2 + 1, [1, I, -1, -I]~]
773 2
774 [0, 1, 4 + 4*I, 23.894541729001368054461689919961782206 - 23.894541729001368
775 054461689919961782206*I, 32*I]
776 [0, 1, 4 + 4*I, -32.894541729001368054461689919961782206 + 32.89454172900136
777 8054461689919961782206*I, 32*I]
778
779 [ 1 I]
780
781 [0.E-38 - 5.1789083458002736108923379839923564411*I 1/2]
782
783 (-0.42032884322677921722469742108951886443 - 0.36665141119210363722276336624
784 357748307*I)*x^5 + (-0.18897096195310015252637690454628340018 + 0.2334775315
785 3997872645748275207133555666*I)*x^4 + (0.05669894077036206721138027675869498
786 5766 + 0.019851987390139195033288439780776993730*I)*x^3 + (-0.01778807113146
787 0726637976503215205801403 - 0.0066687070863864346224329592313502928776*I)*x^
788 2 + (-0.00014285107000277589442425212918179977119 + 0.0094974404850612698333
789 714635028430975514*I)*x + (0.0017634098246564914212887661127367171167 - 3.84
790 93221223953106272210521959657558937 E-5*I)
791 (-0.42032884322677921722469742108951886443 - 0.36665141119210363722276336624
792 357748307*I)*x^5 + (-0.18897096195310015252637690454628340018 + 0.2334775315
793 3997872645748275207133555666*I)*x^4 + (0.05669894077036206721138027675869498
794 5766 + 0.019851987390139195033288439780776993730*I)*x^3 + (-0.01778807113146
795 0726637976503215205801403 - 0.0066687070863864346224329592313502928776*I)*x^
796 2 + (-0.00014285107000277589442425212918179977119 + 0.0094974404850612698333
797 714635028430975514*I)*x + (0.0017634098246564914212887661127367171167 - 3.84
798 93221223953106272210521959657558937 E-5*I)
799 [(-0.11978968330084743941034336902296121263 + 0.6675712441890031614835686639
800 3309199760*I)*x^5 + (0.47459258827123214210389409418585137394 + 0.0738116455
801 79858397157878143011696499169*I)*x^4 + (0.0239881015411315413733797131896244
802 63396 - 0.19195836968288495139427189581460315486*I)*x^3 + (-0.06091879582539
803 5161943853589975161158104 - 0.0055897035583019227181012364528570531811*I)*x^
804 2 + (-0.00093396277153707022978325343297000205630 + 0.0151596173238831031064
805 47349960285186585*I)*x + (0.0021431928592073859680903512704736845544 + 8.205
806 9193124110226533224704061362634241 E-5*I), (-0.62739345285811739127778056884
807 021600097 - 0.087390135179795679398135448226837566631*I)*x^5 + (0.0071366457
808 725152534775841805760933396780 + 0.40397833014354552911285996147380482698*I)
809 *x^4 + (0.12891258393984629705652072463003358643 - 0.05228352106134393940156
810 8419229621475946*I)*x^3 + (-0.035464631571369665466140174106504828211 - 0.02
811 6028100099104453183586604526392274925*I)*x^2 + (-0.0033524403603294024998684
812 552942059280440 + 0.012329256529445897292427816673749766245*I)*x + (0.001991
813 1655001689021405322834054755664714 + 0.0002187595828686439236664039723449641
814 6014*I)]
815 (-0.42032884322677921722469742108951886443 - 0.36665141119210363722276336624
816 357748307*I)*x^5 + (-0.18897096195310015252637690454628340018 + 0.2334775315
817 3997872645748275207133555666*I)*x^4 + (0.05669894077036206721138027675869498
818 5766 + 0.019851987390139195033288439780776993730*I)*x^3 + (-0.01778807113146
819 0726637976503215205801403 - 0.0066687070863864346224329592313502928776*I)*x^
820 2 + (-0.00014285107000277589442425212918179977119 + 0.0094974404850612698333
821 714635028430975514*I)*x + (0.0017634098246564914212887661127367171167 - 3.84
822 93221223953106272210521959657558937 E-5*I)
823 (0.63503857136548153723243364047328438986 + 3.514572428867635055012606515575
824 9628731*I)*x^5 + (-0.55372847947444593258698788340168966082 - 9.108921742882
825 8235118512107360613470523*I)*x^4 + (-0.5736853636153969172965804481164446308
826 3 + 9.3350094980459189288929480268625379486*I)*x^3 + (0.92067030358191022593
827 055872189272950582 - 4.7134500726338769290757263902171115959*I)*x^2 + (-0.40
828 943867072608376472339177571526455001 + 1.15651384868088764032207293563713484
829 07*I)*x + (0.059036856826078966302068066654747180072 - 0.1074704942638566941
830 6527151515690888886*I)
831 (0.50591569408594293044173544719087511946 + 2.117281275622317566448200088099
832 4098275*I)*x^5 + (-0.50329189412202947783246908444432161292 - 5.590428274519
833 0468676320341127315401960*I)*x^4 + (-0.3497080814333576092739419971721942705
834 1 + 5.8131984654812768380493298366830104987*I)*x^3 + (0.67136183809998279160
835 852888055285137912 - 2.9619446659820968460170467417907610716*I)*x^2 + (-0.31
836 298236313441943447438431991727961780 + 0.72375422627359354753058812996616936
837 826*I)*x + (0.046021296425325344919105451970096214097 - 0.064981133287689249
838 704701491873473271745*I)
839 (0.50591569408757962384361452599497966291 + 2.117281275639064594489871762594
840 8918260*I)*x^5 + (-0.50329189412193445432675932972323847027 - 5.590428274561
841 3236110866820457378951587*I)*x^4 + (-0.3497080814376803071251059760080492944
842 6 + 5.8131984655235440791534068179731335741*I)*x^3 + (0.67136183810425750258
843 930943563014705872 - 2.9619446660030143316765275738312612505*I)*x^2 + (-0.31
844 298236313601104936106517214476233040 + 0.72375422627871605117093909126879831
845 832*I)*x + (0.046021296425535731444176918743279766645 - 0.064981133288185583
846 919869819271833506431*I)
847 (164.35262898335787004106106716673677130 + 27.238600223902468333759517924304
848 610904*I)*x^5 + (-271.95434178285557919428732408774729971 - 54.8341728611807
849 65120958234414937486873*I)*x^4 + (180.19514127347078229995469690124466357 +
850 41.691669235812561554783086959210566385*I)*x^3 + (-59.9543068680018830870208
851 43160703944761 - 15.111269706996669294559216350864552013*I)*x^2 + (10.065256
852 240339619831161098072464760373 + 2.6184808251354815164522274491363646980*I)*
853 x + (-0.68672917564913976846740362654117485201 - 0.1732219127234492275765682
854 9146590865136*I)
855 [(-37.400871663494856516636401987243309210 - 123.329800340743528756196753860
856 76255844*I)*x^5 + (53.268246125228312340154821977677892221 + 207.67678245211
857 016109263953978319052970*I)*x^4 + (-28.666898066293079278659311038421188987
858 - 139.64875858061674710101939900539440561*I)*x^3 + (6.8676880960045824324968
859 267496774844483 + 46.814934586818559059649732674905180429*I)*x^2 + (-0.59643
860 957211173608030883172017086163757 - 7.8046112726147121874007178376101555939*
861 I)*x + (-0.0064055991688804413829736007101014212258 + 0.51526489380605352673
862 507681658732620789*I), (140.09242210378463676125436253030190949 - 46.3393403
863 38148920959200393601425458778*I)*x^5 + (-239.1537304828094629201233858532011
864 7138 + 64.836449022531128110429287661758992831*I)*x^4 + (162.744445131511330
865 16860078839933141537 - 33.558240643220739258219626272248254402*I)*x^3 + (-55
866 .079528297804953230956818685769222608 + 7.3487498203155016127222453918267226
867 450*I)*x^2 + (9.2420957758989707670959015639234112401 - 0.450495026534426142
868 94207267772156672859*I)*x + (-0.61189800800168155000144831291875936999 - 0.0
869 33316392602605981857006660342857673457*I)]
870 [0, 0]
871 1.0024642466164642932880429736720212519 E-5
872
873 [1.0616767679426667234166859887525352956 E-5 0]
874
875 [0 1.3579771881756813076319839557062773447 E-5]
876
877 1
878 1
879 [[((61893*t - 42501)*y + (-301056*t + 307452))*x^5 + ((-1166160*t + 897220)*
880 y + (5999170*t - 11970090))*x^3 + ((2722848*t - 2437636)*y + (-14350096*t +
881 127683672))*x, ((-1556688*t + 1540416)*y + (8350926*t - 115713582))*x^5 + ((
882 775632*t - 254024)*y + (-3647414*t - 91773402))*x^4 + ((2332320*t - 1794440)
883 *y + (-11998340*t + 23940180))*x^3 + ((-2332320*t + 1794440)*y + (11998340*t
884 - 23940180))*x^2 + ((-775632*t + 254024)*y + (3647414*t + 91773402))*x + ((
885 1556688*t - 1540416)*y + (-8350926*t + 115713582)), ((-2034*t + 387138)*y +
886 (-13420332*t - 9981516))*x^5 + ((-64862*t + 64184)*y + (-22679326*t - 186377
887 68))*x^4 + ((593250*t - 2384300)*y + (8836600*t + 627150))*x^3 + ((648620*t
888 - 641840)*y + (5731360*t - 34684220))*x^2 + ((-1562112*t + 2572784)*y + (940
889 7024*t + 27149832))*x + 176849520, ((2034*t - 387138)*y + (-163429188*t + 99
890 81516))*x^5 + ((-2637646*t - 1497928)*y + (-49829158*t - 9230744))*x^4 + ((4
891 8590*t + 3032920)*y + (25847620*t + 5104210))*x^3 + ((3032920*t - 48590)*y +
892 (5104210*t - 25847620))*x^2 + ((1497928*t - 2637646)*y + (9230744*t - 49829
893 158))*x + ((-387138*t - 2034)*y + (9981516*t + 163429188)), (-22106190*t + 2
894 2106190)*x^5 + ((1033724*t - 252668)*y + (4435702*t - 9139214))*x^4 + ((6452
895 30*t + 3390)*y + (20207790*t - 14476430))*x^3 + ((-2977550*t + 1791050)*y +
896 (-8209450*t - 9463750))*x^2 + ((-258092*t - 1356)*y + (-8083116*t - 82634188
897 ))*x + ((1556688*t - 1540416)*y + (13755264*t + 93607392)), ((355683*t + 120
898 069)*y + (-2132976*t - 281868))*x^5 + ((-897220*t - 1166160)*y + (11970090*t
899 + 5999170))*x^3 + ((-1432727*t + 2508939)*y + (-21158346*t - 99350278))*x,
900 (-22106190*t + 22106190)*x^5 + ((-1033724*t + 252668)*y + (-4435702*t + 9139
901 214))*x^4 + ((645230*t + 3390)*y + (20207790*t - 14476430))*x^3 + ((2977550*
902 t - 1791050)*y + (8209450*t + 9463750))*x^2 + ((-258092*t - 1356)*y + (-8083
903 116*t - 82634188))*x + ((-1556688*t + 1540416)*y + (-13755264*t - 93607392))
904 , ((2034*t - 387138)*y + (-163429188*t + 9981516))*x^5 + ((2637646*t + 14979
905 28)*y + (49829158*t + 9230744))*x^4 + ((48590*t + 3032920)*y + (25847620*t +
906 5104210))*x^3 + ((-3032920*t + 48590)*y + (-5104210*t + 25847620))*x^2 + ((
907 1497928*t - 2637646)*y + (9230744*t - 49829158))*x + ((387138*t + 2034)*y +
908 (-9981516*t - 163429188)), ((-2034*t + 387138)*y + (-13420332*t - 9981516))*
909 x^5 + ((64862*t - 64184)*y + (22679326*t + 18637768))*x^4 + ((593250*t - 238
910 4300)*y + (8836600*t + 627150))*x^3 + ((-648620*t + 641840)*y + (-5731360*t
911 + 34684220))*x^2 + ((-1562112*t + 2572784)*y + (9407024*t + 27149832))*x - 1
912 76849520, ((-1556688*t + 1540416)*y + (8350926*t - 115713582))*x^5 + ((-7756
913 32*t + 254024)*y + (3647414*t + 91773402))*x^4 + ((2332320*t - 1794440)*y +
914 (-11998340*t + 23940180))*x^3 + ((2332320*t - 1794440)*y + (-11998340*t + 23
915 940180))*x^2 + ((-775632*t + 254024)*y + (3647414*t + 91773402))*x + ((-1556
916 688*t + 1540416)*y + (8350926*t - 115713582)), ((-77568*t + 417576)*y + (-25
917 584*t - 2434032))*x^5 + ((268940*t - 2063380)*y + (5970920*t + 17969260))*x^
918 3 + ((-71303*t + 1290121)*y + (-28333394*t - 35508442))*x, -176849520*x^5 +
919 ((1562112*t - 2572784)*y + (-9407024*t - 27149832))*x^4 + ((-648620*t + 6418
920 40)*y + (-5731360*t + 34684220))*x^3 + ((-593250*t + 2384300)*y + (-8836600*
921 t - 627150))*x^2 + ((64862*t - 64184)*y + (22679326*t + 18637768))*x + ((203
922 4*t - 387138)*y + (13420332*t + 9981516)), ((-1540416*t - 1556688)*y + (9360
923 7392*t - 13755264))*x^5 + ((1356*t - 258092)*y + (82634188*t - 8083116))*x^4
924 + ((1791050*t + 2977550)*y + (-9463750*t + 8209450))*x^3 + ((-3390*t + 6452
925 30)*y + (14476430*t + 20207790))*x^2 + ((-252668*t - 1033724)*y + (-9139214*
926 t - 4435702))*x + (-22106190*t - 22106190), ((-1540416*t - 1556688)*y + (936
927 07392*t - 13755264))*x^5 + ((-1356*t + 258092)*y + (-82634188*t + 8083116))*
928 x^4 + ((1791050*t + 2977550)*y + (-9463750*t + 8209450))*x^3 + ((3390*t - 64
929 5230)*y + (-14476430*t - 20207790))*x^2 + ((-252668*t - 1033724)*y + (-91392
930 14*t - 4435702))*x + (22106190*t + 22106190), -176849520*x^5 + ((-1562112*t
931 + 2572784)*y + (9407024*t + 27149832))*x^4 + ((-648620*t + 641840)*y + (-573
932 1360*t + 34684220))*x^3 + ((593250*t - 2384300)*y + (8836600*t + 627150))*x^
933 2 + ((64862*t - 64184)*y + (22679326*t + 18637768))*x + ((-2034*t + 387138)*
934 y + (-13420332*t - 9981516)), ((71303*t - 1290121)*y + (28333394*t + 3550844
935 2))*x^4 + ((-268940*t + 2063380)*y + (-5970920*t - 17969260))*x^2 + ((77568*
936 t - 417576)*y + (25584*t + 2434032)), ((1432727*t - 2508939)*y + (21158346*t
937 + 99350278))*x^4 + ((897220*t + 1166160)*y + (-11970090*t - 5999170))*x^2 +
938 ((-355683*t - 120069)*y + (2132976*t + 281868)), ((-2722848*t + 2437636)*y
939 + (14350096*t - 127683672))*x^4 + ((1166160*t - 897220)*y + (-5999170*t + 11
940 970090))*x^2 + ((-61893*t + 42501)*y + (301056*t - 307452))], [((52*t - 46)*
941 y + (-316*t + 398))*x^4 + ((-250*t + 250)*y + (1750*t - 7250))*x^2 + 30000,
942 ((-198*t + 204)*y + (1434*t + 23148))*x^5 + ((-240*t + 270)*y + (1920*t - 12
943 510))*x^4 + ((270*t - 210)*y + (-1410*t - 3270))*x^3 + ((270*t - 210)*y + (-
944 1410*t - 3270))*x^2 + ((-240*t + 270)*y + (1920*t - 12510))*x + ((-198*t + 2
945 04)*y + (1434*t + 23148)), ((6*t + 42)*y + (3012*t + 2484))*x^5 + ((-25*t +
946 165)*y + (-2595*t - 1355))*x^4 + ((-65*t + 15)*y + (-2115*t - 325))*x^3 + ((
947 190*t - 510)*y + (-450*t - 1210))*x^2 + ((260*t - 300)*y + (-420*t - 18020))
948 *x + ((-168*t + 264)*y + (1944*t + 7368)), ((270*t + 210)*y + (10380*t + 540
949 ))*x^5 + ((-275*t - 425)*y + (-15425*t + 1775))*x^4 + ((-575*t - 175)*y + (-
950 3325*t + 125))*x^3 + ((-175*t + 575)*y + (125*t + 3325))*x^2 + ((425*t - 275
951 )*y + (-1775*t - 15425))*x + ((210*t - 270)*y + (540*t - 10380)), ((-54*t +
952 12)*y + (-678*t + 1164))*x^5 + ((-140*t + 10)*y + (-4400*t + 4610))*x^4 + ((
953 350*t - 160)*y + (380*t - 830))*x^3 + ((80*t + 50)*y + (1790*t + 2440))*x^2
954 + ((-380*t + 280)*y + (-2480*t - 7900))*x + ((144*t - 192)*y + (-2112*t - 21
955 984)), ((144*t + 58)*y + (-1112*t - 234))*x^4 + (-250*y + (2750*t + 4500))*x
956 ^2 + (-3750*t - 26250), ((54*t - 12)*y + (678*t - 1164))*x^5 + ((-140*t + 10
957 )*y + (-4400*t + 4610))*x^4 + ((-350*t + 160)*y + (-380*t + 830))*x^3 + ((80
958 *t + 50)*y + (1790*t + 2440))*x^2 + ((380*t - 280)*y + (2480*t + 7900))*x +
959 ((144*t - 192)*y + (-2112*t - 21984)), ((-270*t - 210)*y + (-10380*t - 540))
960 *x^5 + ((-275*t - 425)*y + (-15425*t + 1775))*x^4 + ((575*t + 175)*y + (3325
961 *t - 125))*x^3 + ((-175*t + 575)*y + (125*t + 3325))*x^2 + ((-425*t + 275)*y
962 + (1775*t + 15425))*x + ((210*t - 270)*y + (540*t - 10380)), ((-6*t - 42)*y
963 + (-3012*t - 2484))*x^5 + ((-25*t + 165)*y + (-2595*t - 1355))*x^4 + ((65*t
964 - 15)*y + (2115*t + 325))*x^3 + ((190*t - 510)*y + (-450*t - 1210))*x^2 + (
965 (-260*t + 300)*y + (420*t + 18020))*x + ((-168*t + 264)*y + (1944*t + 7368))
966 , ((198*t - 204)*y + (-1434*t - 23148))*x^5 + ((-240*t + 270)*y + (1920*t -
967 12510))*x^4 + ((-270*t + 210)*y + (1410*t + 3270))*x^3 + ((270*t - 210)*y +
968 (-1410*t - 3270))*x^2 + ((240*t - 270)*y + (-1920*t + 12510))*x + ((-198*t +
969 204)*y + (1434*t + 23148)), ((-12*t + 196)*y + (-164*t - 1428))*x^4 + (-250
970 *y + (2750*t + 4500))*x^2 + (-3750*t - 3750), ((-168*t + 264)*y + (1944*t +
971 7368))*x^5 + ((260*t - 300)*y + (-420*t - 18020))*x^4 + ((190*t - 510)*y + (
972 -450*t - 1210))*x^3 + ((-65*t + 15)*y + (-2115*t - 325))*x^2 + ((-25*t + 165
973 )*y + (-2595*t - 1355))*x + ((6*t + 42)*y + (3012*t + 2484)), ((-192*t - 144
974 )*y + (-21984*t + 2112))*x^5 + ((-280*t - 380)*y + (7900*t - 2480))*x^4 + ((
975 50*t - 80)*y + (2440*t - 1790))*x^3 + ((160*t + 350)*y + (830*t + 380))*x^2
976 + ((10*t + 140)*y + (4610*t + 4400))*x + ((-12*t - 54)*y + (-1164*t - 678)),
977 ((192*t + 144)*y + (21984*t - 2112))*x^5 + ((-280*t - 380)*y + (7900*t - 24
978 80))*x^4 + ((-50*t + 80)*y + (-2440*t + 1790))*x^3 + ((160*t + 350)*y + (830
979 *t + 380))*x^2 + ((-10*t - 140)*y + (-4610*t - 4400))*x + ((-12*t - 54)*y +
980 (-1164*t - 678)), ((168*t - 264)*y + (-1944*t - 7368))*x^5 + ((260*t - 300)*
981 y + (-420*t - 18020))*x^4 + ((-190*t + 510)*y + (450*t + 1210))*x^3 + ((-65*
982 t + 15)*y + (-2115*t - 325))*x^2 + ((25*t - 165)*y + (2595*t + 1355))*x + ((
983 6*t + 42)*y + (3012*t + 2484)), (-3750*t - 3750)*x^5 + (-250*y + (2750*t + 4
984 500))*x^3 + ((-12*t + 196)*y + (-164*t - 1428))*x, (-3750*t - 26250)*x^5 + (
985 -250*y + (2750*t + 4500))*x^3 + ((144*t + 58)*y + (-1112*t - 234))*x, 30000*
986 x^5 + ((-250*t + 250)*y + (1750*t - 7250))*x^3 + ((52*t - 46)*y + (-316*t +
987 398))*x]]
988 Mod(-904583688/27200667365, y^2 + Mod(-t, t^2 + 1)*y + 32)*y^2 + Mod(-485238
989 4244/5440133473, y^2 + Mod(-t, t^2 + 1)*y + 32)
990 0.0011925695879998878380848926233233473256*x^3 - 0.0034461762994896503999275
991 399407078201462*I*x^2 - 0.0029814239699997195952122315583083683139*x
992 (0.0011925695879998878380848926233233473256*x^4 + 0.001788854381999831757127
993 3389349850209884*x^3 + 0.0011925695879998878380848926233233473255*x^2 + 0.00
994 17888543819998317571273389349850209884*x + 0.0011925695879998878380848926233
995 233473256)/x
996 (0.0011925695879998878380848926233233473256*x^4 + 0.001788854381999831757127
997 3389349850209884*x^3 + 0.0017888543819998317571273389349850209884*x - 0.0011
998 925695879998878380848926233233473256)/x
999 (0.0011925695879998878380848926233233473256*x^4 - 0.001788854381999831757127
1000 3389349850209884*x^3 - 0.0017888543819998317571273389349850209884*x - 0.0011
1001 925695879998878380848926233233473256)/x
1002 (0.0011925695879998878380848926233233473256*x^4 - 0.001788854381999831757127
1003 3389349850209884*x^3 + 0.0011925695879998878380848926233233473255*x^2 - 0.00
1004 17888543819998317571273389349850209884*x + 0.0011925695879998878380848926233
1005 233473256)/x
1006 (-0.0029814239699997195952122315583083683139*x^2 + 0.00344617629948965039992
1007 75399407078201462*I*x + 0.0011925695879998878380848926233233473256)/x
1008 (-0.0029814239699997195952122315583083683139*x^2 + 0.00344617629948965039992
1009 75399407078201462*I*x + 0.0011925695879998878380848926233233473256)/x
1010 (0.13416407864998738178455042012387657413 - 0.086154407487241259998188498517
1011 695503654*I)*x^2 + (-0.089442719099991587856366946749251049416 + 0.034461762
1012 994896503999275399407078201462*I)*x + 0.017888543819998317571273389349850209
1013 883
1014 -0.062500000000000000000000000000000000000*I*x^2 - 0.00390625000000000000000
1015 00000000000000000*I
1016 (0.029076134702187599205839917739040862356*x^3 + (-0.02180710102664069940437
1017 9938304280646767 - 0.020833333333333333333333333333333333302*I)*x^2 + (0.005
1018 4517752566601748510949845760701616916 + 0.0104166666666666666666666666666666
1019 66659*I)*x + (-0.00045431460472168123759124871467251347431 - 0.0039062500000
1020 000000000000000000000000000*I))/(-4*x + 1)
1021 -10.687500000000000000000000000000000000*I*x^2 + 8.0000000000000000000000000
1022 000000000000*I*x - 2.0000000000000000000000000000000000000*I
1023 0.023437500000000000000000000000000000000*I*x^2 + 0.031250000000000000000000
1024 000000000000000*I*x + 0.093750000000000000000000000000000000000*I
1025 [[1], [1, 1]]
1026 [[0.70710678118654752440084436210484903928 + 0.70710678118654752440084436210
1027 484903928*I], [-0.70710678118654752440084436210484903928 - 0.707106781186547
1028 52440084436210484903928*I, -0.70710678118654752440084436210484903928 - 0.707
1029 10678118654752440084436210484903928*I]]
1030 [[0.99595931395311210936063384855913482217 - 0.08980559531591707448838903035
1031 9505357518*I], [0.53927595283868673281600574405026404174 + 0.842129115213294
1032 66664554619540652632773*I, -0.85895466516104552261001111734173629157 + 0.512
1033 05164114381683048538165804971399484*I]]
1034 [[-0.76775173011852704509198454449006172342 - 0.6407474392457674209160837770
1035 1764443336*I], [-0.21414952481887583992521740447795630386 + 0.97680089118502
1036 020368501019184890743540*I, -0.96944785623768905552448638076096150650 - 0.24
1037 529748069670216936666745500978951116*I]]
1038 [10, 7, Mod(2, 5), 0, t^2 + 1]
1039 3
1040 [0, 3, 4*t + 4, 32*t - 32, 96*t, 155*t + 90, 112, -348*t - 348, 128*t - 128,
1041 -2177*t]
1042 2
1043 [0, 1, -4*t - 4, 23*t - 23, 32*t, 100*t - 75, 184, -247*t - 247, -128*t + 12
1044 8, -329*t]
1045 [0, 1, 4*t + 4, (5*t + 5)*y + (2*t - 2), 32*t, (-5*t - 15)*y + (35*t + 80),
1046 40*t*y - 16, (-55*t + 55)*y + (-78*t - 78), 128*t - 128, -90*y - 879*t]
1047 [0, 1, -2, -1, 2, 1, 2, -2, 0, -2, -2]
1048 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
1049 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
1050 [-1/12, -3/2, 16/3, -1/12, -27/4, 1/6, 4/3]~
1051 [0, 0, -2399/5121840000, -479/13111910400000, 1/307310400000]~
1052 [1, 0, 0, 0, 0, 0]
1053 8
1054 [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]~
1055 12
1056 x^12 + Mod(-4*t - 4, t^2 + t + 1)*x^11 + Mod(-4*t, t^2 + t + 1)*x^10 + Mod(-
1057 40, t^2 + t + 1)*x^9 + Mod(27*t + 27, t^2 + t + 1)*x^8 + Mod(150*t, t^2 + t
1058 + 1)*x^7 + Mod(216, t^2 + t + 1)*x^6 + Mod(270*t + 270, t^2 + t + 1)*x^5 + M
1059 od(-675*t, t^2 + t + 1)*x^4 + Mod(54, t^2 + t + 1)*x^3 + Mod(-972*t - 972, t
1060 ^2 + t + 1)*x^2 + Mod(648*t, t^2 + t + 1)*x
1061 0
1062 []
1063 [-24]
1064 [14]
1065 [14]
1066 [[], 1]
1067 [-12]
1068 [[33, 2, 1, y, t - 1], [0, 1, 1, -1, -1, -2, -1, 4, -3, 1, -2]]
1069 [[38, 2, 1, y, t - 1], [0, 1, 1, -1, 1, -4, -1, 3, 1, -2, -4]]
1070 [[39, 2, 1, y, t - 1], [0, 1, 1, -1, -1, 2, -1, -4, -3, 1, 2]]
1071 [[34, 2, 1, y, t - 1], [0, 1, 1, -2, 1, 0, -2, -4, 1, 1, 0]]
1072 [[38, 2, 1, y, t - 1], [0, 1, -1, 1, 1, 0, -1, -1, -1, -2, 0]]
1073 [[11, 3, -11, y, t + 1], [0, 1, 0, -5, 4, -1, 0, 0, 0, 16, 0]]
1074 [[12, 3, -3, y, t + 1], [0, 1, 0, -3, 0, 0, 0, 2, 0, 9, 0]]
1075 [[16, 3, -4, y, t + 1], [0, 1, 0, 0, 0, -6, 0, 0, 0, 9, 0]]
1076 [[38, 2, 1], [0, 1, 2, 3, 4, -5, -8, 1, -7, -5, 7]]
1077 [[40, 2, 8], [0, 1, 2, 3, 4, -4, -6, -1, -10, -1, 2]]
1078 [[40, 2, 40], [0, 1, 2, 3, 4, -8, -6, -7, 6, -1, -2]]
1079 3
1080 [0, 1, 2, 3, 4, 5]
1081 x^12 + 2*x^11 + 4*x^10 + 4*x^9 + 4*x^8 + 2*x^7 - 8*x^5 - 17*x^4 - 16*x^3 - 8
1082 *x^2 + 16*x + 16
1083 [2, 40, 20, 10, 8, 10, 4, 2]
1084 [[0, 0], [0, 0], [0, 0], [1, 1], [0, 0], [1, 1], [0, 0], [3, 3]]
1085 [[3, 3]]
1086 [[5, 5]]
1087 [[2, 2]]
1088 [[6, 6]]
1089 [[4, 4]]
1090 [[0, -1; 1, 0], [1, 0; 1, 1], [0, -1; 1, 2], [0, -1; 1, 3], [1, 0; 2, 1], [1
1091 , 0; 4, 1]]
1092 [[-1, 1; -4, 3], 5]
1093 [[0, -1; 1, 0], [1, 0; 1, 1], [0, -1; 1, 2], [0, -1; 1, 3], [0, -1; 1, 4], [
1094 0, -1; 1, 5], [0, -1; 1, 6], [0, -1; 1, 7], [0, -1; 1, 8], [0, -1; 1, 9], [0
1095 , -1; 1, 10], [0, -1; 1, 11], [0, -1; 1, 12], [0, -1; 1, 13], [0, -1; 1, 14]
1096 , [0, -1; 1, 15], [0, -1; 1, 16], [0, -1; 1, 17], [0, -1; 1, 18], [0, -1; 1,
1097 19], [0, -1; 1, 20], [0, -1; 1, 21], [0, -1; 1, 22], [1, 0; 23, 1]]
1098 [0, 1, t^3 + t - 1, 0, -t^2 - 1, 0, 0, -t, -t^3 + t^2 - t + 1, -t^3, 0]
1099 [10]
1100 1
1101 [0, 1, 0, 0, t - 1, t - 1, 0, 0, 0, 0, 0]
1102 [6]
1103 6
1104 10
1105 3
1106 [[0, 0, 0; 0, 0, 1; 0, -2, 0], [0, 0, 0; 0, 0, -1; 0, 2, 0]]
1107 1.4557628922687093224624220035988692874
1108 10000.000000000000000000001237896015010
1109 1.9689399767614335374830916735439946588
1110 [-1, -60.000000000000000000000000000000000000, 240.0000000000000000000000000
1111 0000000000*x^-1 + O(x^0)]
1112 [-1, -378.00000000000000000000000000000000000, -504.000000000000000000000000
1113 00000000001*x^-1 + O(x^0)]
1114 0.0050835121083932868604942901374387473226
1115 [1620/691, 1, 9/14, 9/14, 1, 1620/691]
1116 0.0074154209298961305890064277459002287248
1117 [1, 25/48, 5/12, 25/48, 1]
1118 [270000/43867, 1, 75/364, 15/308, 0, -15/308, -75/364, -1, -270000/43867]
1119 -0.43965042620884602281482782769927016562
1120 [1, 11/60, 1/24, 1/120, -1/120, -1/24, -11/60, -1]
1121 1.3407636701883001534150257403529284807 - 0.09169347814648177113546620833059
1122 8109326*I
1123 3.1415926535897932384626433832795028842*x^-1 + O(x^0)
1124 6.0268120396919401235462601927282855839
1125 -125
1126 0.037077104649480652945032138729501143624
1127 x^9 - 25/4*x^7 + 21/2*x^5 - 25/4*x^3 + x
1128 -0.0059589649895782378538355644158109773247*I
1129 -x^10 + 691/36*x^8 - 691/12*x^6 + 691/12*x^4 - 691/36*x^2 + 1
1130 1.0353620568043209223478168122251645932 E-6
1131 [[4*x^9 - 25*x^7 + 42*x^5 - 25*x^3 + 4*x], [-36*x^10 + 691*x^8 - 2073*x^6 +
1132 2073*x^4 - 691*x^2 + 36]]
1133 4096/691
1134 -691/4096
1135 0.0039083456561245989852473854813821138618
1136 [[0, 0, 0, 1, 1, 0, 0, -1, -1, 0, 0, 0], [2, 0, 10, 5, -5, -10, -10, -5, 5,
1137 10, 0, -2]]
1138 24/5
1139 0.00036417018656710457295477514743042437729
1140 0.00049190307191092718531081143004073999661
1141 0.11655892584877731533791261543544162961*x + 0.03444188571581440474103881572
1142 3936163594
1143 0.0010890395470223995019083365452957049165
1144 (-1.3193074979773231773661743756435007224 - 0.047852089878877215068678875180
1145 019315601*I)*x + (0.55369913164712442515829589611646024395 + 0.1378560105941
1146 2197357057720849196966097*I)
1147 2.7088661559067092169467726322243151834*x^4 + 10.836695978514012215743285363
1148 808371991*x^3 + 25.296899951502000988317286862612207702*x^2 + 41.46298040535
1149 0911775127337547706905296*x + 36.867636355501616095737218901200295353
1150 0.68152665510891372423521870628322971562
1151 (-23183.009401346887106321839878457037987 + 10141.03198768851019292105517715
1152 0961372*I)*x^4 + (36768.014815457253142184985512097903984 - 15843.6719474121
1153 59422532108270646842468*I)*x^3 + (-21653.185479189712080795697797411393243 +
1154 9383.4655370867720981173021992677296843*I)*x^2 + (5567.82157171174936497454
1155 45772875483392 - 2529.1579539358590353355113445052491948*I)*x + (-519.290436
1156 33066550788943723994543165137 + 267.97049309982710940044149283381067824*I)
1157 0
1158 -7.5483533093124615800482309272746852303 E-5*I*x^4 - 0.000325960230614461968
1159 18766920427560516720*x^3 + 0.00053071372195845519650854381590103954823*I*x^2
1160 + 0.00038639246231107851592899900012773026572*x - 0.00010622771569710146301
1161 261452001204110433*I
1162 -159.28538078371628604726626677227374955*I*x^4 - 37.413371571061889095904737
1163 694744717500*x^3 + 4.0605244955720177153253400611368714530*I*x^2 + 0.2512588
1164 6591932202962812257047290475386*x - 0.00775320874361027409750103740193487763
1165 58*I
1166 -1.0529510950884198373348191584869623207 E-9*I*x^4 - 4.379386751919803419760
1167 5690442523726760 E-9*x^3 + 6.8404573572594165822427167063489824371 E-9*I*x^2
1168 + 4.7561506807037037564779077168765701622 E-9*x - 1.24219231762730610575003
1169 87331529713560 E-9*I
1170 [x^8 - 3*x^6 + 3*x^4 - x^2, 4*x^9 - 25*x^7 + 42*x^5 - 25*x^3 + 4*x, x^10 - 1
1171 ]
1172 [x^8 - 3*x^6 + 3*x^4 - x^2, x^10 - 1]
1173 [4*x^9 - 25*x^7 + 42*x^5 - 25*x^3 + 4*x]
1174 []
1175 []
1176 [0.027225824587703356565506853506344987171 + 0.00514822234043271905508741860
1177 26406789728*I, 0.027225198325372166661822373393404529522 + 0.005147912007675
1178 1226908071569776979202339*I, 0.027225932797583197568370599484048729606 + 0.0
1179 051482759611568609455954291851306519100*I, 0.0272255959592292808469822068846
1180 79062877 + 0.0051481090481140853554894307306409710468*I]
1181 1.5962359833107661839072302449298089226 E-51
1182 0.00013137888540468962216778728275879264699
1183 [0, 1, -y, 2*y - 1, y - 1, -2*y]
1184 [[[0, 0, 0, y + 1, 1, -y, 1, y + 1, y + 1, y, y + 1, 0, 0, -y - 1, -y, -y -
1185 1, -y - 1, -1, y, -1, -y - 1, 0, 0, 0], [4*y + 6, 0, 22*y + 22, 11, -11*y, 1
1186 1*y + 11, 11*y, 22*y + 11, -11, -11*y - 11, -22*y - 11, -22*y - 22, -22*y -
1187 22, -22*y - 11, -11*y - 11, -11, 22*y + 11, 11*y, 11*y + 11, -11*y, 11, 22*y
1188 + 22, 0, -4*y - 6]], [[0, 0, 0, 1, y + 1, y, y + 1, 1, 1, -y, 1, 0, 0, -1,
1189 y, -1, -1, -y - 1, -y, -y - 1, -1, 0, 0, 0], [2*y + 6, 0, 22, 11*y + 11, 11*
1190 y, 11, -11*y, -11*y + 11, -11*y - 11, -11, 11*y - 11, -22, -22, 11*y - 11, -
1191 11, -11*y - 11, -11*y + 11, -11*y, 11, 11*y, 11*y + 11, 22, 0, -2*y - 6]]]
1192 [-192/55*y + 336/55, -48/55*y + 144/55]
1193 [[[x, x^2 + 2*x + 1, Mod(t, t^2 + t + 1)*x^2 + Mod(2*t + 1, t^2 + t + 1)*x +
1194 2, Mod(-2*t, t^2 + t + 1)*x^2 + Mod(-t - 2, t^2 + t + 1)*x + Mod(t + 1, t^2
1195 + t + 1), Mod(2*t, t^2 + t + 1)*x^2 + Mod(-t - 2, t^2 + t + 1)*x + Mod(-t -
1196 1, t^2 + t + 1), Mod(-t, t^2 + t + 1)*x^2 + Mod(2*t + 1, t^2 + t + 1)*x - 2
1197 , -x^2 + 2*x - 1, x], [Mod(47*t - 528, t^2 + t + 1)*x^2 + 3871, -3871*x^2 +
1198 3871, Mod(-5293*t - 3792, t^2 + t + 1)*x^2 + Mod(2054*t - 3555, t^2 + t + 1)
1199 *x + Mod(2054*t + 316, t^2 + t + 1), Mod(1738*t + 2054, t^2 + t + 1)*x^2 + M
1200 od(-5609*t - 2054, t^2 + t + 1)*x + Mod(-1501*t - 5293, t^2 + t + 1), Mod(17
1201 38*t + 2054, t^2 + t + 1)*x^2 + Mod(5609*t + 2054, t^2 + t + 1)*x + Mod(-150
1202 1*t - 5293, t^2 + t + 1), Mod(-5293*t - 3792, t^2 + t + 1)*x^2 + Mod(-2054*t
1203 + 3555, t^2 + t + 1)*x + Mod(2054*t + 316, t^2 + t + 1), -3871*x^2 + 3871,
1204 -3871*x^2 + Mod(-47*t + 528, t^2 + t + 1)]], [0.0600760389692829045137557605
1205 79766793352 + 0.0076557040727195254011353573267975581651*I, 3.80684584829863
1206 11431726029948424993484 E-6 - 2.3063284341262122716050386345503232003 E-5*I,
1207 3008/305809]]
1208 [0, 1/7]
1209 0.012348139466200861797970297067148459977
1210 [0, 1/2, 1/3, 1/4, 1/6, 1/12]
1211 [0, 1/2, 1/3, 1/4, 1/6, 1/12]
1212 [12, 3, 4, 3, 1, 1]
1213 [1, 0, 1, 1, 0, 1]
1214 [1, 0, 1, 1, 0, 1]
1215 [0, 1/4, 0, 0, 1/4, 0]
1216 [1/12, 1/6, 1/2, 2/3, 1/2, 2]
1217 [1/12, 1/6, 1/4, 2/3, 1/2, 1]
1218 1
1219 [3, 7, -3, y, t + 1, 3, "F_7(-3)"]
1220 [15, 7, -15, y, t + 1, 3, "F_7(-3, 5)"]
1221 [1, 4, 1, y, t - 1, 3, "E_4"]
1222 [11, 1, -11, y, t + 1, 3, "LIN([F_1(1, -11)], [2]~)", "F_1(1, -11)"]
1223 [4, 1/2, 1, y, t - 1, 3, "THETA(1)"]
1224 [4, 1/2, 1, y, t - 1, 1, "T_4(9)(THETA(1))", "THETA(1)"]
1225 [1, 12, 1, y, t - 1, 0, "DELTA"]
1226 [11, 2, 1, y, t - 1, 0, "ETAQUO([Vecsmall([1, 11]), Vecsmall([2, 2])], 1)"]
1227 [35, 2, 1, y, t - 1, 0, "ELL([0, 1, 1, 9, 1])"]
1228 [385, 2, 1, y, t - 1, -1, "LIN([ETAQUO([Vecsmall([1, 11]), Vecsmall([2, 2])]
1229 , 1), ELL([0, 1, 1, 9, 1])], [1, 1])", "ETAQUO([Vecsmall([1, 11]), Vecsmall(
1230 [2, 2])], 1)", "ELL([0, 1, 1, 9, 1])"]
1231 [3, 21, -3, y, t + 1, -1, "POW(F_7(-3), 3)", "F_7(-3)"]
1232 [15, 14, 5, y, t + 1, -1, "MUL(F_7(-3), F_7(-3, 5))", "F_7(-3)", "F_7(-3, 5)
1233 "]
1234 [1, 12, 1, y, t - 1, 0, "MULRC_2(E_4, E_4)", "E_4", "E_4"]
1235 [385, 2, 1, y, t - 1, -1, "LIN([ETAQUO([Vecsmall([1, 11]), Vecsmall([2, 2])]
1236 , 1), ELL([0, 1, 1, 9, 1])], [1, -1])", "ETAQUO([Vecsmall([1, 11]), Vecsmall
1237 ([2, 2])], 1)", "ELL([0, 1, 1, 9, 1])"]
1238 [15, 0, 5, y, t + 1, -1, "DIV(F_7(-3, 5), F_7(-3))", "F_7(-3, 5)", "F_7(-3)"
1239 ]
1240 [1, 12, 1, y, t - 1, -1, "SHIFT(DELTA, 1)", "DELTA"]
1241 [1, 6, 1, y, t - 1, -1, "DER^1(E_4)", "E_4"]
1242 [1, 12, 1, y, t - 1, -1, "DERE2^4(E_4)", "E_4"]
1243 [25, 4, 1, y, t - 1, -1, "TWIST(E_4, 5)", "E_4"]
1244 [1, 12, 1, y, t - 1, 0, "T_1(5)(DELTA)", "DELTA"]
1245 [3, 4, 1, y, t - 1, 3, "B(3)(E_4)", "E_4"]
1246 [2, 2, 1, y, t - 1, 3, "LIN([F_2(1), B(2)(F_2(1))], [1, -2])", "F_2(1)", "B(
1247 2)(F_2(1))"]
1248 [3, 2, 1, y, t - 1, 3, "LIN([F_2(1), B(3)(F_2(1))], [1, -3])", "F_2(1)", "B(
1249 3)(F_2(1))"]
1250 [6, 2, 1, y, t - 1, 3, "LIN([F_2(1), B(6)(F_2(1))], [1, -6])", "F_2(1)", "B(
1251 6)(F_2(1))"]
1252 [1, 4, 1, y, t - 1, 3, "F_4(1, 1)"]
1253 [2, 4, 1, y, t - 1, 3, "B(2)(F_4(1, 1))", "F_4(1, 1)"]
1254 [3, 4, 1, y, t - 1, 3, "B(3)(F_4(1, 1))", "F_4(1, 1)"]
1255 [4, 4, 1, y, t - 1, 3, "B(4)(F_4(1, 1))", "F_4(1, 1)"]
1256 [6, 4, 1, y, t - 1, 3, "B(6)(F_4(1, 1))", "F_4(1, 1)"]
1257 [8, 4, 1, y, t - 1, 3, "B(8)(F_4(1, 1))", "F_4(1, 1)"]
1258 [12, 4, 1, y, t - 1, 3, "B(12)(F_4(1, 1))", "F_4(1, 1)"]
1259 [24, 4, 1, y, t - 1, 3, "B(24)(F_4(1, 1))", "F_4(1, 1)"]
1260 [6, 4, 1, y, t - 1, 2, "TR^new([6, 4, 1, y, t - 1])"]
1261 [12, 4, 1, y, t - 1, 2, "B(2)(TR^new([6, 4, 1, y, t - 1]))", "TR^new([6, 4,
1262 1, y, t - 1])"]
1263 [24, 4, 1, y, t - 1, 1, "B(4)(TR^new([6, 4, 1, y, t - 1]))", "TR^new([6, 4,
1264 1, y, t - 1])"]
1265 [8, 4, 1, y, t - 1, 2, "TR^new([8, 4, 1, y, t - 1])"]
1266 [24, 4, 1, y, t - 1, 1, "B(3)(TR^new([8, 4, 1, y, t - 1]))", "TR^new([8, 4,
1267 1, y, t - 1])"]
1268 [12, 4, 1, y, t - 1, 2, "TR^new([12, 4, 1, y, t - 1])"]
1269 [24, 4, 1, y, t - 1, 1, "B(2)(TR^new([12, 4, 1, y, t - 1]))", "TR^new([12, 4
1270 , 1, y, t - 1])"]
1271 [24, 4, 1, y, t - 1, 0, "TR^new([24, 4, 1, y, t - 1])"]
1272 [1, 2, 3, 4, 6, 8, 12, 24, 6, 12, 24, 8, 24, 12, 24, 24]
1273 [23, 1, -23, y, t + 1, 1, "LIN([DIH(-23, [1, 0; 0, 1], [3], [1])], [1]~)", "
1274 DIH(-23, [1, 0; 0, 1], [3], [1])"]
1275 0.035149946790370230814006345508484787440
1276 23
1277 []~
1278 [[4, 1, -4], 4, [0.25000000000000000000000000000000000000, 1, 1, 0]]
1279 [[4, 3/2, 1], 4, [1, 6, 12, 8]]
1280 [[11, 2, 1], 1, [0, 1, -2, -1, 2, 1]]
1281 -3
1282 [-3, -39]
1283
1284 [1 24]
1285
1286
1287 [ 1 1]
1288
1289 [23 1]
1290
1291 0
1292
1293 [1 -24]
1294
1295 0
1296
1297 [1 480]
1298
1299 [Mod(575, 576), 1] [Mod(593, 900), 1] [Mod(575, 1152), 1] [Mod(1151, 1152),
1300 1]
1301 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1
1302 2 2 2 1 1 1 1 1
1303 1 1 1 1 1 1 1 1 1 1 1 2 2 3 3 4 3 2 3 3 4 5 5 5 5 3 3 4 4 6 6 4 2 6 7 4 4 5
1304 5 5 5 6 6 1 2 2 3 3 4 3 2 3 3 4 5 5 5 5 4 4 4 4 6 6 4 3 6 8 5 5 6 6 6 6 6 6
1305 1 1 1 2 3 3 2 3 3 3 3 4 4 4 4 2 2 4 5 6 4 7 7 6 6 6 6 6 6 2 3 3 4 4 6 4 2 4
1306 4 4 6 6 6 6 4 4 4 4 8 8 4 2 8 8 4 4 6 6 6 6 6 6 2 3 3 5 5 6 5 4 7 7 6 9 9 9
1307 9 8 8 8 8 10 10 8 7 14 12 11 11 12 12 12 12 12 12
1308 1 1 3 3 2 3 4 5 5 6 7 7 7 7 8 8 8 8 6 6 8 9 10 12 13 13 12 12 12 12 12 12 2
1309 3 3 4 4 6 4 2 4 4 4 6 6 6 6 4 4 4 4 8 8 4 2 8 8 4 4 6 6 6 6 6 6 2 4 4 7 7 8
1310 7 6 9 9 10 13 13 13 13 12 12 12 12 14 14 12 11 18 20 17 17 18 18 18 18 18 18
1311
1312 0 2 6 13 22 28 48 64 74 96
1313 2 6 8 14 16 24 24 32 32 48
1314 2 8 14 27 38 52 72 96 106 144
1315 [[[0, 1, 0, 0, -4, 0, -6, 8, 0, 9, 4, 0, 12, -20, 0, -24], [0, 0, 1, 0, -2,
1316 -4, 3, 2, 4, 0, 0, 2, -6, 0, -8, -6], [0, 0, 0, 1, -2, 0, 0, 2, 0, 0, 0, 0,
1317 -2, 0, 0, -6]], [[0, 1, 0, 0, -2, -6, 0, 0, 12, 9, 0, 0, -18, 12, 0, 0], [0,
1318 0, 1, 0, -2, -2, -3, 4, 8, 6, -2, -16, -6, 4, 14, 12], [0, 0, 0, 1, 0, -4,
1319 -2, 4, 8, 4, -8, -12, -8, 8, 24, 8]]]
1320
1321 [ 0 0 0]
1322
1323 [ 1 0 0]
1324
1325 [ 0 1 0]
1326
1327 [ 0 0 1]
1328
1329 [-2 0 0]
1330
1331 [ 0 0 0]
1332
1333
1334 [0 0 0 0]
1335
1336 [1 0 0 0]
1337
1338 [0 1 0 0]
1339
1340 [0 0 1 0]
1341
1342 [0 0 0 1]
1343
1344 [0 0 -1 0]
1345
1346 [0, 1, 0, 0, 0, 0, 0, -3, -2, 1, 0, -6, 0, 0, 6, 12]
1347 [0, 0, 1, 0, 0, 0, 0, -3, -4, 4, 0, 0, 0, 0, -1, 2]
1348 [0, 0, 0, 1, 0, -1, 0, -1, 0, 0, -2, 0, 2, 1, 2, 0]
1349 [0, 0, 0, 0, 1, 0, 0, -1, -3, 2, 0, -2, 0, 0, 2, 4]
1350 [2]~
1351 [0, 2]~
1352 [Mod(-1/49*t^11 + 1/49*t^10 + 1/98*t^9 - 5/196*t^8 - 1/196*t^7 - 5/196*t^4 +
1353 5/196*t^3 - 1/196*t^2 - 1/196*t + 1/49, t^12 - t^11 + t^9 - t^8 + t^6 - t^4
1354 + t^3 - t + 1), Mod(-6/49*t^11 + 13/196*t^10 - 13/196*t^8 + 2/49*t^7 + 13/1
1355 96*t^6 - 11/196*t^5 - 11/196*t^4 + 6/49*t^3 - 11/196*t^2 - 13/196*t + 4/49,
1356 t^12 - t^11 + t^9 - t^8 + t^6 - t^4 + t^3 - t + 1), Mod(1/196*t^11 - 5/196*t
1357 ^10 - 1/98*t^9 + 3/98*t^8 - 5/196*t^7 - 1/196*t^6 + 3/196*t^5 + 1/196*t^4 -
1358 1/98*t^3 + 1/49*t^2 + 1/98*t - 1/98, t^12 - t^11 + t^9 - t^8 + t^6 - t^4 + t
1359 ^3 - t + 1), Mod(9/196*t^10 - 15/196*t^9 - 3/49*t^8 - 3/196*t^6 - 3/49*t^5 +
1360 15/196*t^4 + 3/196*t^3 - 15/196*t^2 - 3/196, t^12 - t^11 + t^9 - t^8 + t^6
1361 - t^4 + t^3 - t + 1), Mod(15/196*t^11 - 15/196*t^9 + 9/98*t^8 - 3/49*t^7 - 3
1362 /49*t^6 + 15/196*t^5 - 3/49*t^3 + 3/49*t^2 + 9/196*t - 27/196, t^12 - t^11 +
1363 t^9 - t^8 + t^6 - t^4 + t^3 - t + 1), Mod(3/49*t^11 + 3/98*t^10 - 15/196*t^
1364 9 + 3/49*t^8 + 3/196*t^7 - 3/98*t^6 - 3/196*t^5 + 3/196*t^4 - 9/196*t^3 - 3/
1365 98*t^2 + 3/196*t + 3/196, t^12 - t^11 + t^9 - t^8 + t^6 - t^4 + t^3 - t + 1)
1366 ]
1367
1368 [Mod(0, t^2 + t + 1) Mod(0, t^2 + t + 1) Mod(0, t^2 + t + 1) Mod(1, t^2 + t
1369 + 1)]
1370
1371 [Mod(-2, t^2 + t + 1) Mod(-2*t - 2, t^2 + t + 1) Mod(0, t^2 + t + 1) Mod(0,
1372 t^2 + t + 1)]
1373
1374 [Mod(2*t + 4, t^2 + t + 1) Mod(4*t + 2, t^2 + t + 1) Mod(4*t + 4, t^2 + t +
1375 1) Mod(-t + 1, t^2 + t + 1)]
1376
1377 [Mod(-8*t, t^2 + t + 1) Mod(4, t^2 + t + 1) Mod(-4*t + 4, t^2 + t + 1) Mod(-
1378 4*t - 4, t^2 + t + 1)]
1379
1380 [0, 1, 0, 0, 0, -t - 2, 0, 0, -2, 4*t, 0, 0, 2*t + 4, -4*t - 2, 0, 0]
1381 [0, 0, 1, 0, 0, 0, t - 1, 0, -2*t - 2, -2, -t - 2, 0, 4*t + 2, -2*t + 2, -2*
1382 t + 1, 4*t + 4]
1383 [0, 0, 0, 1, 0, -2*t - 2, 0, 3*t + 2, 0, 2*t - 2, -2, -2*t - 1, 4*t + 4, -2*
1384 t, -6*t - 4, t + 2]
1385 [0, 0, 0, 0, 1, t - 1, -t - 2, -2*t + 1, 0, t + 1, 4*t + 2, 1, -t + 1, -t -
1386 2, -t - 3, t]
1387 [4, 1, -4, y, t + 1]
1388 [1, 0, 0, 2, 0, 0, 0, 6, 6, 0, 0, 0, 8, 0, 0, 6]
1389 [0, 1, 0, -1, 1, 2, 4, -3, -3, 5, 2, 4, -4, 0, 8, -3]
1390 [0, 0, 1, 1, 0, 1, 0, 1, 2, 0, 1, 0, 2, 2, 0, 1]
1391 2
1392 [1, 12, 1, y, t - 1]
1393 [4, 6, 1, y, t - 1]
1394 [9, 4, 1, y, t - 1]
1395 [16, 3, -4, y, t + 1]
1396 [36, 2, 1, y, t - 1]
1397 [144, 1, -4, y, t + 1]
1398 [576, 1/2, 12, y, t + 1]
1399 [64, 3/2, 1, y, t - 1]
1400 [0, 1, 0, 0, 0, 0, 0, 0, -3, 0]~
1401 [[0, 64, [1, 0; 0, 1]], [0, -0.031250000000000000000000000000000000000 - 0.0
1402 31250000000000000000000000000000000000*I, 0, 0, 0, 0, 0, 0, 0, 0.09375000000
1403 0000000000000000000000000000 + 0.093750000000000000000000000000000000000*I,
1404 0]]
1405 [Mod(0, t^2 + 1), Mod(-1/32*t - 1/32, t^2 + 1), Mod(0, t^2 + 1), Mod(0, t^2
1406 + 1), Mod(0, t^2 + 1), Mod(0, t^2 + 1), Mod(0, t^2 + 1), Mod(0, t^2 + 1), Mo
1407 d(0, t^2 + 1), Mod(3/32*t + 3/32, t^2 + 1), Mod(0, t^2 + 1)]
1408 [[0, 16, [1, 0; 0, 1]], [0, 0.10393370153781815463484854720223821959 + 0.069
1409 446279127450278092853851743566609297*I, 0, 0, 0, 0, 0, 0, 0, -0.208338837382
1410 35083427856155523069982789 + 0.31180110461345446390454564160671465878*I, 0]]
1411 [Mod(0, t^16 + 1), Mod(1/8*t^3, t^16 + 1), Mod(0, t^16 + 1), Mod(0, t^16 + 1
1412 ), Mod(0, t^16 + 1), Mod(0, t^16 + 1), Mod(0, t^16 + 1), Mod(0, t^16 + 1), M
1413 od(0, t^16 + 1), Mod(3/8*t^11, t^16 + 1), Mod(0, t^16 + 1)]
1414 0.0018674427317079888144293843310939736875
1415 [Mod(-t, t^2 + 1), Mod(-2*t, t^2 + 1), Mod(0, t^2 + 1)]
1416 [Mod(2*t, t^2 + 1), Mod(0, t^2 + 1), Mod(2*t, t^2 + 1), Mod(0, t^2 + 1)]
1417 [2, 0, 2, 0]
1418 [Mod(1/2*t + 1/2, t^2 + 1), Mod(t + 1, t^2 + 1), Mod(0, t^2 + 1)]
1419 [Mod(-1/2*t + 1/2, t^2 + 1), Mod(-t + 1, t^2 + 1), Mod(0, t^2 + 1)]
1420 [Mod(1/2*t + 1/2, t^2 + 1), Mod(t - 1, t^2 + 1), Mod(0, t^2 + 1)]
1421 [1, 2, 0]
1422 [36, 5/2, 1, y, t - 1]
1423 2
1424
1425 [-1 0 0 2 0 0]
1426
1427 [ 0 0 0 0 1 0]
1428
1429 [9, 4, 1, y, t - 1]
1430 [9, 4, 1, y, t - 1]
1431
1432 [0 -1 0 0 2 0 0 0 0 0 0 0 0 -6 0 0 8 0 0 0 0]
1433
1434 [0 0 0 0 0 1 0 0 -2 0 0 0 0 0 0 0 0 1 0 0 2]
1435
1436
1437 [-3 0 5/2 7/2]
1438
1439 [ 1 -1/2 -7 -7]
1440
1441 [ 1 1/2 0 -3]
1442
1443 [ 0 0 5/2 5/2]
1444
1445 [[1, 1], [2, 1]]
1446 [[2, 4; 0, 0; 0, 0; 5, 7; -14, -14; 0, 0; 0, 0; -5, -5; 0, -6; 0, 0; 0, 0; 1
1447 5, 15; 0, 0; 0, 0], [1, 1; 0, 0; 0, 0; 1, 4; 0, -14; 0, 0; 0, 0; 0, -5; -3,
1448 3; 0, 0; 0, 0; 0, 15; 0, 0; 0, 0]]
1449 [Mat(Mod(1, t^4 - t^2 + 1)), [1; 0], [[1, 1]]]
1450 [12, 12, 12, 12, 12]
1451 4
1452 0.0018371115455019092538663990739211073913
1453 3.7500000000000000000000000000000000004
1454 [4, 1/2, 1, y, t - 1]
1455 [16, 1/2, 1, y, t - 1]
1456 [1, -2]~
1457 "F_4(-3, -4)"
1458 "F_3(5, -7)"
1459 "DERE2^3(MUL(F_4(-3, -4), F_3(5, -7)))"
1460 "DELTA"
1461 "E_2"
1462 "T_1(3)(E_2)"
1463 ["S_4^new(G_0(37, 1))", "S_4(G_0(37, 1))", "S_4^old(G_0(37, 1))", "E_4(G_0(3
1464 7, 1))", "M_4(G_0(37, 1))"]
1465 ["S_3/2(G_0(16, 1))", "M_3/2(G_0(16, 1))"]
1466 ["F_4(-3, -4)", "F_3(1, -3)"]
1467 1/72
1468 [1/4, 6, 6, 24, 6, 36, 24, 48, 6, 78, 36]
1469 [1/24, 10, 90, 280, 730, 1260, 2520, 3440, 5850, 7570, 11340]
1470 [10]~
1471 [0, 1, 0, 0, 0, -2, 0, 0, 0, -3, 0, 0, 0, 6, 0, 0, 0, 2, 0, 0, 0]
1472 -125832074732008
1473 -3268080304426/13
1474 [691/32760, 0, -2017/252, 0, -361, 0, -3362, 0, -4130785/252, 0, -278854/5,
1475 0, -152166, 0, -355688, 0]
1476 [-1/12, 9375/2, 14055]
1477 [-1/12, 1702, 0]
1478 [-1/12, 0, 0, 1/3, 1/2, 0, 0, 1, 1, 0, 0, 1, 4/3, 0, 0, 2]
1479 [1/120, -1/12, 0, 0, -7/12, -2/5, 0, 0, -1, -25/12, 0, 0, -2, -2, 0, 0]
1480 [-1/252, 0, 0, -2/9, -1/2, 0, 0, -16/7, -3, 0, 0, -6, -74/9, 0, 0, -16]
1481 [1/240, 1/120, 0, 0, 121/120, 2, 0, 0, 11, 2161/120, 0, 0, 46, 58, 0, 0]
1482 [-1/132, 0, 0, 2/3, 5/2, 0, 0, 32, 57, 0, 0, 2550/11, 1058/3, 0, 0, 992]
1483 [691/32760, -1/252, 0, 0, -2017/252, -134/5, 0, 0, -361, -176905/252, 0, 0,
1484 -3362, -66926/13, 0, 0]
1485 [-1/12, 0, 0, -14/3, -61/2, 0, 0, -1168, -2763, 0, 0, -21726, -115598/3, 0,
1486 0, -165616]
1487 [-43867/14364, 0, 0, 1618/27, 1385/2, 0, 0, 565184/7, 250737, 0, 0, 3749250,
1488 212490322/27, 0, 0, 52548032]
1489 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
1490 [-1/12, 1/2, 1, 4/3, 3/2, 2, 2, 2, 3, 5/2, 2, 4, 10/3, 2, 4, 4]
1491 [-1/12, 1/2, 1, 4/3, 3/2, 2, 2, 2, 3, 5/2, 2, 4, 10/3, 2, 4, 4]
1492 [-1/3, 0, 0, 4/3, 2, 0, 0, 4, 4, 0, 0, 4, 16/3, 0, 0, 8]
1493 [-1/12, 0, 0, 4/3, 5/2, 0, 0, 5, 3, 0, 0, 3, 16/3, 0, 0, 8]
1494 [-1/2, 0, 0, 2, 3, 0, 0, 6, 6, 0, 0, 6, 8, 0, 0, 12]
1495 [-10/3, 0, 0, 40/3, 20, 0, 0, 40, 40, 0, 0, 40, 160/3, 0, 0, 80]
1496 [-1/2, 0, 0, 2, 3, 0, 0, 6, 6, 0, 0, 6, 8, 0, 0, 12]
1497 [1, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0]
1498 [4/3, 8/3, 0, 0, 8/3, 0, 0, 0, 0, 8/3, 0, 0, 0, 0, 0, 0]
1499 [0, -4, -8, 0, 0, 0, 16, 0, 0, 28, 16, 0, 0, 0, -32, 0]
1500 4.7568284600108842668699998822419036612 + 4.75682846001088426686999988224190
1501 36612*I
1502 0
1503 0.0061538599016729274239549224845781815123
1504 0
1505 +oo
1506 0
1507 [1, 24, 324, 3200, 25650, 176256, 1073720]
1508 0.0067751374633700320670755869090304807506
1509 [0, 1, 0, 28, 0, 126, 0, 344, 0, 757, 0, 1332, 0, 2198, 0, 3528]
1510
1511 [ "Factors" 50000 13 1000000000]
1512
1513 [ "Divisors" 50000 5 1000000000]
1514
1515 [ "H" 50000 3 200000000]
1516
1517 ["CorediscF" 100000 3 200000000]
1518
1519 [ "Dihedral" 1000 0 0]
1520
1521 *** at top-level: mftobasis(mf0,L[1])
1522 *** ^-------------------
1523 *** mftobasis: domain error in mftobasis: form does not belong to space
1524 *** at top-level: mfdim([4,1/2],0)
1525 *** ^----------------
1526 *** mfdim: incorrect type in half-integral weight [new/old spaces] (t_INT).
1527 *** at top-level: mfdim([4,1/2],2)
1528 *** ^----------------
1529 *** mfdim: incorrect type in half-integral weight [new/old spaces] (t_INT).
1530 *** at top-level: mfdim([4,1/2],5)
1531 *** ^----------------
1532 *** mfdim: incorrect type in half-integral weight [incorrect space] (t_INT).
1533 *** at top-level: mfeisenstein(2,1.0)
1534 *** ^-------------------
1535 *** mfeisenstein: incorrect type in znchar (t_REAL).
1536 *** at top-level: mfeisenstein(2,[0,0])
1537 *** ^---------------------
1538 *** mfeisenstein: incorrect type in checkNF [chi] (t_VEC).
1539 *** at top-level: mfeisenstein(6,Mod(7,9),Mod(4,9))
1540 *** ^---------------------------------
1541 *** mfeisenstein: sorry, mfeisenstein for these characters is not yet implemented.
1542 *** at top-level: mfinit([1,1.0])
1543 *** ^---------------
1544 *** mfinit: incorrect type in checkNF [k] (t_VEC).
1545 *** at top-level: ...nit([14,6,Mod(9,14)],0));mfmul(L[1],L[2])
1546 *** ^----------------
1547 *** mfmul: incorrect type in mfsamefield [different fields] (t_VEC).
1548 *** at top-level: mfcuspwidth(0,0)
1549 *** ^----------------
1550 *** mfcuspwidth: domain error in mfcuspwidth: N <= 0
1551 *** at top-level: mfparams(mfadd(F2,F3))
1552 *** ^-------------
1553 *** in function mfadd: mflinear([F,G],[1,1])
1554 *** ^---------------------
1555 *** mflinear: incorrect type in mflinear [different characters] (t_VEC).
1556 *** at top-level: mfparams(mfadd(F4,F6))
1557 *** ^-------------
1558 *** in function mfadd: mflinear([F,G],[1,1])
1559 *** ^---------------------
1560 *** mflinear: incorrect type in mflinear [different weights] (t_VEC).
1561 *** at top-level: mfinit([23,1,Mod(22,45)],0)
1562 *** ^---------------------------
1563 *** mfinit: incorrect type in checkNF [chi] (t_VEC).
1564 *** at top-level: mfinit([23,2,Mod(22,45)],0)
1565 *** ^---------------------------
1566 *** mfinit: incorrect type in checkNF [chi] (t_VEC).
1567 *** at top-level: mfinit([7,1,-7],2)
1568 *** ^------------------
1569 *** mfinit: sorry, mfinit in weight 1 for old space is not yet implemented.
1570 *** at top-level: mfinit([7,1,-7],5)
1571 *** ^------------------
1572 *** mfinit: invalid flag in mfinit.
1573 *** at top-level: mfinit([1,2],5)
1574 *** ^---------------
1575 *** mfinit: invalid flag in mfinit.
1576 *** at top-level: mfgaloistype([11,1,Mod(2,11)],mfeisenstein(1,1
1577 *** ^----------------------------------------------
1578 *** mfgaloistype: domain error in mfgaloistype: form not a cuspidal eigenform
1579 *** at top-level: mfdiv(D,mfpow(D,2))
1580 *** ^-------------------
1581 *** mfdiv: domain error in mfdiv: ord(G) > ord(F)
1582 *** at top-level: mfeval(mfD,D,-I)
1583 *** ^----------------
1584 *** mfeval: domain error in mfeval: imag(tau) <= 0
1585 *** at top-level: mfslashexpansion(mfD,D,[1,2;3,4],1,1)
1586 *** ^-------------------------------------
1587 *** mfslashexpansion: incorrect type in GL2toSL2 (t_MAT).
1588 *** at top-level: mftonew(mfD,1)
1589 *** ^--------------
1590 *** mftonew: incorrect type in mftobasis (t_INT).
1591 *** at top-level: T=mftraceform([96,6],4)
1592 *** ^---------------------
1593 *** mftraceform: domain error in mftraceform: space = 4
1594 *** at top-level: mfshimura(mfinit(T5),T5,4)
1595 *** ^--------------------------
1596 *** mfshimura: incorrect type in mfshimura [t] (t_INT).
1597 *** at top-level: mftonew(mf,E4)
1598 *** ^--------------
1599 *** mftonew: incorrect type in mftonew [not a full or cuspidal space] (t_VEC).
1600 *** at top-level: mffields(mf)
1601 *** ^------------
1602 *** mffields: incorrect type in mfsplit [space does not contain newspace] (t_VEC).
1603 *** at top-level: mfdiv(1,mfTheta())
1604 *** ^------------------
1605 *** mfdiv: incorrect type in mfdiv (t_INT).
1606 *** at top-level: mfdiv(D,mftraceform([1,3]))
1607 *** ^---------------------------
1608 *** mfdiv: domain error in mfdiv: ord(G) > ord(F)
1609 *** at top-level: mfcosets(1.)
1610 *** ^------------
1611 *** mfcosets: incorrect type in mfcosets (t_REAL).
1612 *** at top-level: ...([1,0]);F=mfbasis(mf)[1];mfsymbol(mf,F)
1613 *** ^--------------
1614 *** mfsymbol: incorrect type in mfsymbol [k <= 0] (t_VEC).
1615 *** at top-level: mfmanin(FSbug)
1616 *** ^--------------
1617 *** mfmanin: incorrect type in mfmanin [need integral k > 1] (t_VEC).
1618 *** at top-level: mfsymboleval(FSbug,[0,1])
1619 *** ^-------------------------
1620 *** mfsymboleval: incorrect type in mfsymboleval [need integral k > 1] (t_VEC).
1621 *** at top-level: mfgaloistype([4,1,-4],x)
1622 *** ^------------------------
1623 *** mfgaloistype: incorrect type in mfgaloistype (t_POL).
1624 *** at top-level: mfdiv(E,f)
1625 *** ^----------
1626 *** mfdiv: sorry, changing cyclotomic fields in mf is not yet implemented.
1627 *** at top-level: ...,0);[F]=mfeigenbasis(mf);mfpow(F,3)
1628 *** ^----------
1629 *** mfpow: sorry, changing cyclotomic fields in mf is not yet implemented.
1630 Total time spent: 6823