"Fossies" - the Fresh Open Source Software Archive

Member "pari-2.13.1/src/test/32/mat" (12 Dec 2020, 17477 Bytes) of package /linux/misc/pari-2.13.1.tar.gz:


As a special service "Fossies" has tried to format the requested text file into HTML format (style: standard) with prefixed line numbers. Alternatively you can here view or download the uninterpreted source code file. See also the latest Fossies "Diffs" side-by-side code changes report for "mat": 2.13.0_vs_2.13.1.

    1 error("inconsistent addition t_MAT (1x1) + t_MAT (0x1).")
    2 error("impossible inverse in gdiv: [Mod(0, 2), Mod(0, 2); Mod(0, 2), Mod(0, 
    3 2)].")
    4 [0, 2]
    5 1
    6 1
    7 [[;], [;]]
    8 [[], [;]]
    9 [-3.3612877988091253174761851599065654319, -3.976856899758389008450416890680
   10 9665041, 2.9389389601206943824942150128578581054, 1.772259568771888526939788
   11 0627029321445, -0.93302137188052358042404010605293659373, -0.441231719485000
   12 70444920875205386881091, -0.19040285081078176048183742278228946814, 0.075729
   13 288512033916496344069514741014185, 0.027956052637213235642340429324234659900
   14 , 0.0096284368977104218404148935213290063312, -0.003106198327161964249988204
   15 5902715205667, -0.00094157426540918912117035392430195067794, -0.000268854775
   16 30463015261353875607132041931, -7.2459011321751905080067220992031631462 E-5,
   17  1.8462089149768956890169300433744512910 E-5, 4.4528901897458304967947732271
   18 708068875 E-6, 1.0176789800383226364895152347151747510 E-6, 2.20552412091014
   19 57554655197057289803706 E-7, -4.5349036687475247266974601071424129857 E-8, -
   20 8.8492541140723057133731328535614376294 E-9, -1.6389333061355481368271925736
   21 504820724 E-9, -2.8805272156166119158730325675280896976 E-10, -4.80266664969
   22 65909745773739693929989064 E-11, 7.5916176882374260025503147422014772958 E-1
   23 2, -1.1367331397963498149955520074031835155 E-12, -1.61050664103939094109404
   24 49194291021230 E-13, 2.1558223640276402145487596709860808075 E-14, 2.7214689
   25 692178509667012624472480322726 E-15, -3.232659043848202709644832083123995151
   26 3 E-16, -2.9855883849239760043478182416536329854 E-17, -1.664898755959816497
   27 7470350196661697536 E-17, 2.8771625420725328021428672070297279667 E-18, -1.0
   28 319233712195941381068955784281641143 E-18, 1.6356182814790027911170768841203
   29 266890 E-18, 8.0811640833543317283367798799396420333 E-19, -1.05792311976124
   30 33100847548785453343223 E-19, 3.1212834491595151717446703076475681855 E-20, 
   31 -6.2236951167032034426610950988624421246 E-20, -4.30278526231190452813726222
   32 95990239750 E-20, -2.7525464198315767914815519496564758696 E-20]~
   33 [;]
   34 
   35 [1]
   36 
   37 
   38 [1 2 3]
   39 
   40 [2 3 4]
   41 
   42 
   43 [1 1]
   44 
   45 [1 5]
   46 
   47 
   48 [1 0]
   49 
   50 [0 1]
   51 
   52 error("incorrect type in diagonal (t_MAT).")
   53 
   54 [1    0     0    0 0]
   55 
   56 [1    1     0    0 0]
   57 
   58 [1  3/2     1    0 0]
   59 
   60 [1  7/4   7/4    1 0]
   61 
   62 [1 15/8 35/16 15/8 1]
   63 
   64 
   65 [ 4  6]
   66 
   67 [10 12]
   68 
   69 
   70 [0 -2]
   71 
   72 [2  4]
   73 
   74 [0  0]
   75 
   76 
   77 [Mod(0, 2) Mod(0, 2)]
   78 
   79 [Mod(0, 2) Mod(0, 2)]
   80 
   81 [Mod(0, 2) Mod(0, 2)]
   82 
   83 
   84 [Mod(0, 7) Mod(5, 7)]
   85 
   86 [Mod(2, 7) Mod(4, 7)]
   87 
   88 [Mod(0, 7) Mod(0, 7)]
   89 
   90 
   91 [Mod(0, 18446744073709551629) Mod(18446744073709551627, 18446744073709551629
   92 )]
   93 
   94 [Mod(2, 18446744073709551629)                    Mod(4, 18446744073709551629
   95 )]
   96 
   97 [Mod(0, 18446744073709551629)                    Mod(0, 18446744073709551629
   98 )]
   99 
  100 
  101 [Mod(0, 3037000507) Mod(3037000505, 3037000507)]
  102 
  103 [Mod(2, 3037000507)          Mod(4, 3037000507)]
  104 
  105 [Mod(0, 3037000507)          Mod(0, 3037000507)]
  106 
  107 [Mod(0, 2), Mod(0, 2), Mod(0, 2)]~
  108 [Mod(0, 7), Mod(2, 7), Mod(0, 7)]~
  109 [Mod(0, 18446744073709551629), Mod(2, 18446744073709551629), Mod(0, 18446744
  110 073709551629)]~
  111 [Mod(0, 3037000507), Mod(2, 3037000507), Mod(0, 3037000507)]~
  112 matdet:
  113 Mod(1, 2)
  114 Mod(1, 7)
  115 Mod(29, 3037000507)
  116 Mod(29, 18446744073709551629)
  117 29 + O(101^3)
  118 matrank:
  119 3
  120 3
  121 3
  122 3
  123 3
  124 matadjoint:
  125 [Mod(1, 2), Mod(0, 2), Mod(0, 2); Mod(0, 2), Mod(1, 2), Mod(1, 2); Mod(0, 2)
  126 , Mod(1, 2), Mod(0, 2)]
  127 [Mod(6, 7), Mod(0, 7), Mod(1, 7); Mod(6, 7), Mod(3, 7), Mod(1, 7); Mod(1, 7)
  128 , Mod(2, 7), Mod(1, 7)]
  129 [Mod(69, 3037000507), Mod(14, 3037000507), Mod(3037000473, 3037000507); Mod(
  130 3037000499, 3037000507), Mod(3, 3037000507), Mod(1, 3037000507); Mod(3037000
  131 501, 3037000507), Mod(3037000502, 3037000507), Mod(8, 3037000507)]
  132 [Mod(69, 18446744073709551629), Mod(14, 18446744073709551629), Mod(184467440
  133 73709551595, 18446744073709551629); Mod(18446744073709551621, 18446744073709
  134 551629), Mod(3, 18446744073709551629), Mod(1, 18446744073709551629); Mod(184
  135 46744073709551623, 18446744073709551629), Mod(18446744073709551624, 18446744
  136 073709551629), Mod(8, 18446744073709551629)]
  137 [69 + O(101^3), 14 + O(101^3), 67 + 100*101 + 100*101^2 + O(101^3); 93 + 100
  138 *101 + 100*101^2 + O(101^3), 3 + O(101^3), 1 + O(101^3); 95 + 100*101 + 100*
  139 101^2 + O(101^3), 96 + 100*101 + 100*101^2 + O(101^3), 8 + O(101^3)]
  140 matimage:
  141 [Mod(1, 2), Mod(0, 2), Mod(0, 2); Mod(0, 2), Mod(0, 2), Mod(1, 2); Mod(0, 2)
  142 , Mod(1, 2), Mod(1, 2)]
  143 [Mod(1, 7), Mod(2, 7), Mod(4, 7); Mod(2, 7), Mod(5, 7), Mod(0, 7); Mod(2, 7)
  144 , Mod(2, 7), Mod(4, 7)]
  145 [Mod(1, 3037000507), Mod(2, 3037000507), Mod(4, 3037000507); Mod(2, 30370005
  146 07), Mod(12, 3037000507), Mod(7, 3037000507); Mod(2, 3037000507), Mod(9, 303
  147 7000507), Mod(11, 3037000507)]
  148 [Mod(1, 18446744073709551629), Mod(2, 18446744073709551629), Mod(4, 18446744
  149 073709551629); Mod(2, 18446744073709551629), Mod(12, 18446744073709551629), 
  150 Mod(7, 18446744073709551629); Mod(2, 18446744073709551629), Mod(9, 184467440
  151 73709551629), Mod(11, 18446744073709551629)]
  152 [1 + O(101^3), 2 + O(101^3), 4 + O(101^3); 2 + O(101^3), 12 + O(101^3), 7 + 
  153 O(101^3); 2 + O(101^3), 9 + O(101^3), 11 + O(101^3)]
  154 matimagecompl:
  155 Vecsmall([])
  156 Vecsmall([])
  157 Vecsmall([])
  158 Vecsmall([])
  159 Vecsmall([])
  160 matindexrank:
  161 [Vecsmall([1, 2, 3]), Vecsmall([1, 2, 3])]
  162 [Vecsmall([1, 2, 3]), Vecsmall([1, 2, 3])]
  163 [Vecsmall([1, 2, 3]), Vecsmall([1, 2, 3])]
  164 [Vecsmall([1, 2, 3]), Vecsmall([1, 2, 3])]
  165 [Vecsmall([1, 2, 3]), Vecsmall([1, 2, 3])]
  166 matker:
  167 [;]
  168 [;]
  169 [;]
  170 [;]
  171 [;]
  172 lindep:
  173 []~
  174 []~
  175 []~
  176 []~
  177 []~
  178 (x)->matsolve(x,vectorv(#x,i,i)):
  179 [Mod(1, 2), Mod(1, 2), Mod(0, 2)]~
  180 [Mod(2, 7), Mod(1, 7), Mod(1, 7)]~
  181 [Mod(2827552196, 3037000507), Mod(1256689865, 3037000507), Mod(942517399, 30
  182 37000507)]~
  183 [Mod(16538460204015460081, 18446744073709551629), Mod(11449703218164549287, 
  184 18446744073709551629), Mod(17810649450478187780, 18446744073709551629)]~
  185 [66 + 69*101 + 62*101^2 + O(101^3), 7 + 87*101 + 27*101^2 + O(101^3), 56 + 9
  186 0*101 + 20*101^2 + O(101^3)]~
  187 (x)->matsolve(x,matrix(#x,#x,i,j,i+j)):
  188 [Mod(0, 2), Mod(1, 2), Mod(0, 2); Mod(1, 2), Mod(1, 2), Mod(1, 2); Mod(1, 2)
  189 , Mod(0, 2), Mod(1, 2)]
  190 [Mod(2, 7), Mod(2, 7), Mod(2, 7); Mod(4, 7), Mod(0, 7), Mod(3, 7); Mod(5, 7)
  191 , Mod(2, 7), Mod(6, 7)]
  192 [Mod(628344934, 3037000507), Mod(1466138179, 3037000507), Mod(2303931424, 30
  193 37000507); Mod(2303931419, 3037000507), Mod(314172466, 3037000507), Mod(1361
  194 414020, 3037000507); Mod(209448311, 3037000507), Mod(2513379730, 3037000507)
  195 , Mod(1780310642, 3037000507)]
  196 [Mod(5724851609082274645, 18446744073709551629), Mod(13357987087858640838, 1
  197 8446744073709551629), Mod(2544378492925455402, 18446744073709551629); Mod(25
  198 44378492925455397, 18446744073709551629), Mod(12085797841395913136, 18446744
  199 073709551629), Mod(3180473116156819246, 18446744073709551629); Mod(190828386
  200 9694091548, 18446744073709551629), Mod(4452662362619546945, 1844674407370955
  201 1629), Mod(6997040855545002342, 18446744073709551629)]
  202 [5 + 94*101 + 13*101^2 + O(101^3), 45 + 17*101 + 66*101^2 + O(101^3), 85 + 4
  203 1*101 + 17*101^2 + O(101^3); 80 + 41*101 + 17*101^2 + O(101^3), 52 + 97*101 
  204 + 6*101^2 + O(101^3), 24 + 52*101 + 97*101^2 + O(101^3); 35 + 31*101 + 38*10
  205 1^2 + O(101^3), 14 + 73*101 + 55*101^2 + O(101^3), 94 + 13*101 + 73*101^2 + 
  206 O(101^3)]
  207 (x)->x^(-1):
  208 [Mod(1, 2), Mod(0, 2), Mod(0, 2); Mod(0, 2), Mod(1, 2), Mod(1, 2); Mod(0, 2)
  209 , Mod(1, 2), Mod(0, 2)]
  210 [Mod(6, 7), Mod(0, 7), Mod(1, 7); Mod(6, 7), Mod(3, 7), Mod(1, 7); Mod(1, 7)
  211 , Mod(2, 7), Mod(1, 7)]
  212 [Mod(1675586489, 3037000507), Mod(2408655575, 3037000507), Mod(2827552195, 3
  213 037000507); Mod(2094483108, 3037000507), Mod(733069088, 3037000507), Mod(125
  214 6689865, 3037000507); Mod(1570862331, 3037000507), Mod(2827552196, 303700050
  215 7), Mod(942517399, 3037000507)]
  216 [Mod(15266270957552732385, 18446744073709551629), Mod(12721892464627276986, 
  217 18446744073709551629), Mod(16538460204015460080, 18446744073709551629); Mod(
  218 636094623231363849, 18446744073709551629), Mod(15902365580784096232, 1844674
  219 4073709551629), Mod(11449703218164549287, 18446744073709551629); Mod(5088756
  220 985850910794, 18446744073709551629), Mod(16538460204015460081, 1844674407370
  221 9551629), Mod(17810649450478187780, 18446744073709551629)]
  222 [79 + 48*101 + 3*101^2 + O(101^3), 98 + 6*101 + 87*101^2 + O(101^3), 65 + 69
  223 *101 + 62*101^2 + O(101^3); 45 + 10*101 + 80*101^2 + O(101^3), 21 + 59*101 +
  224  83*101^2 + O(101^3), 7 + 87*101 + 27*101^2 + O(101^3); 59 + 83*101 + 34*101
  225 ^2 + O(101^3), 66 + 69*101 + 62*101^2 + O(101^3), 56 + 90*101 + 20*101^2 + O
  226 (101^3)]
  227 (x)->x^2:
  228 [Mod(1, 2), Mod(0, 2), Mod(0, 2); Mod(0, 2), Mod(1, 2), Mod(1, 2); Mod(0, 2)
  229 , Mod(1, 2), Mod(0, 2)]
  230 [Mod(6, 7), Mod(6, 7), Mod(6, 7); Mod(5, 7), Mod(1, 7), Mod(1, 7); Mod(0, 7)
  231 , Mod(1, 7), Mod(3, 7)]
  232 [Mod(13, 3037000507), Mod(62, 3037000507), Mod(62, 3037000507); Mod(40, 3037
  233 000507), Mod(211, 3037000507), Mod(169, 3037000507); Mod(42, 3037000507), Mo
  234 d(211, 3037000507), Mod(192, 3037000507)]
  235 [Mod(13, 18446744073709551629), Mod(62, 18446744073709551629), Mod(62, 18446
  236 744073709551629); Mod(40, 18446744073709551629), Mod(211, 184467440737095516
  237 29), Mod(169, 18446744073709551629); Mod(42, 18446744073709551629), Mod(211,
  238  18446744073709551629), Mod(192, 18446744073709551629)]
  239 [13 + O(101^3), 62 + O(101^3), 62 + O(101^3); 40 + O(101^3), 9 + 2*101 + O(1
  240 01^3), 68 + 101 + O(101^3); 42 + O(101^3), 9 + 2*101 + O(101^3), 91 + 101 + 
  241 O(101^3)]
  242 (x)->A*x:
  243 [Mod(1, 2), Mod(0, 2), Mod(0, 2); Mod(0, 2), Mod(1, 2), Mod(1, 2); Mod(0, 2)
  244 , Mod(1, 2), Mod(0, 2)]
  245 [Mod(6, 7), Mod(6, 7), Mod(6, 7); Mod(5, 7), Mod(1, 7), Mod(1, 7); Mod(0, 7)
  246 , Mod(1, 7), Mod(3, 7)]
  247 [Mod(13, 3037000507), Mod(62, 3037000507), Mod(62, 3037000507); Mod(40, 3037
  248 000507), Mod(211, 3037000507), Mod(169, 3037000507); Mod(42, 3037000507), Mo
  249 d(211, 3037000507), Mod(192, 3037000507)]
  250 [Mod(13, 18446744073709551629), Mod(62, 18446744073709551629), Mod(62, 18446
  251 744073709551629); Mod(40, 18446744073709551629), Mod(211, 184467440737095516
  252 29), Mod(169, 18446744073709551629); Mod(42, 18446744073709551629), Mod(211,
  253  18446744073709551629), Mod(192, 18446744073709551629)]
  254 [13 + O(101^3), 62 + O(101^3), 62 + O(101^3); 40 + O(101^3), 9 + 2*101 + O(1
  255 01^3), 68 + 101 + O(101^3); 42 + O(101^3), 9 + 2*101 + O(101^3), 91 + 101 + 
  256 O(101^3)]
  257 [;]
  258 matdet:
  259 1
  260 1
  261 1
  262 1
  263 1
  264 matrank:
  265 0
  266 0
  267 0
  268 0
  269 0
  270 matadjoint:
  271 [;]
  272 [;]
  273 [;]
  274 [;]
  275 [;]
  276 matimage:
  277 [;]
  278 [;]
  279 [;]
  280 [;]
  281 [;]
  282 matimagecompl:
  283 Vecsmall([])
  284 Vecsmall([])
  285 Vecsmall([])
  286 Vecsmall([])
  287 Vecsmall([])
  288 matindexrank:
  289 [Vecsmall([]), Vecsmall([])]
  290 [Vecsmall([]), Vecsmall([])]
  291 [Vecsmall([]), Vecsmall([])]
  292 [Vecsmall([]), Vecsmall([])]
  293 [Vecsmall([]), Vecsmall([])]
  294 matker:
  295 [;]
  296 [;]
  297 [;]
  298 [;]
  299 [;]
  300 lindep:
  301 []~
  302 []~
  303 []~
  304 []~
  305 []~
  306 (x)->matsolve(x,vectorv(#x,i,i)):
  307 []~
  308 []~
  309 []~
  310 []~
  311 []~
  312 (x)->matsolve(x,matrix(#x,#x,i,j,i+j)):
  313 [;]
  314 [;]
  315 [;]
  316 [;]
  317 [;]
  318 (x)->x^(-1):
  319 [;]
  320 [;]
  321 [;]
  322 [;]
  323 [;]
  324 (x)->x^2:
  325 [;]
  326 [;]
  327 [;]
  328 [;]
  329 [;]
  330 (x)->A*x:
  331 [;]
  332 [;]
  333 [;]
  334 [;]
  335 [;]
  336 Mod(3037000506, 3037000507)
  337 Mod(18446744073709551628, 18446744073709551629)
  338 [Mod(3, 18446744073709551629), Mod(1, 18446744073709551629), Mod(18446744073
  339 709551628, 18446744073709551629)]~
  340 
  341 [1 2]
  342 
  343 [3 4]
  344 
  345 
  346 [2 4]
  347 
  348 [6 8]
  349 
  350 
  351 [Mod(1, 2) Mod(0, 2)]
  352 
  353 [Mod(1, 2) Mod(0, 2)]
  354 
  355 
  356 [Mod(1, 3) Mod(2, 3)]
  357 
  358 [Mod(0, 3) Mod(1, 3)]
  359 
  360 
  361 [Mod(1, 18446744073709551629) Mod(2, 18446744073709551629)]
  362 
  363 [Mod(3, 18446744073709551629) Mod(4, 18446744073709551629)]
  364 
  365 
  366 [1 0]
  367 
  368 [1 0]
  369 
  370 
  371 [1/2]
  372 
  373 [ -2]
  374 
  375 [  1]
  376 
  377 
  378 [-1.0000000000000000000000000000000000000*I]
  379 
  380 [                                         1]
  381 
  382 
  383 [-1]
  384 
  385 [ 1]
  386 
  387 3
  388 0
  389 error("inconsistent dimensions in gtrace.")
  390 
  391 [1 0]
  392 
  393 [0 1]
  394 
  395 [;]
  396 19009323
  397 
  398 [2 0]
  399 
  400 [0 2]
  401 
  402 [1 0]
  403 
  404 [0 1]
  405 
  406 
  407 [2 0]
  408 
  409 [0 2]
  410 
  411 [1 0]
  412 
  413 [0 1]
  414 
  415 
  416 [1]
  417 
  418 [0]
  419 
  420 
  421 [1]
  422 
  423 [0]
  424 
  425 [;]
  426 
  427 [1 0 0]
  428 
  429 [0 1 0]
  430 
  431 [0 0 1]
  432 
  433 
  434 [2958 2373]
  435 
  436 [1785 1440]
  437 
  438 [ 812  666]
  439 
  440 [   0   20]
  441 
  442 
  443 [1 0]
  444 
  445 [0 0]
  446 
  447 [0 1]
  448 
  449 lindep:
  450 [1, 0, 1]~
  451 [1, -2, 1]~
  452 [1, -2, 1]~
  453 [1, -2, 1]~
  454 [3 + O(101^3), 95 + 100*101 + 100*101^2 + O(101^3), 3 + O(101^3)]~
  455 matsupplement:
  456 [Mod(1, 2), Mod(0, 2), Mod(0, 2); Mod(0, 2), Mod(1, 2), Mod(0, 2); Mod(1, 2)
  457 , Mod(0, 2), Mod(1, 2)]
  458 [Mod(1, 7), Mod(2, 7), Mod(0, 7); Mod(4, 7), Mod(5, 7), Mod(0, 7); Mod(0, 7)
  459 , Mod(1, 7), Mod(1, 7)]
  460 [Mod(1, 3037000507), Mod(2, 3037000507), Mod(0, 3037000507); Mod(4, 30370005
  461 07), Mod(5, 3037000507), Mod(0, 3037000507); Mod(7, 3037000507), Mod(8, 3037
  462 000507), Mod(1, 3037000507)]
  463 [Mod(1, 18446744073709551629), Mod(2, 18446744073709551629), Mod(0, 18446744
  464 073709551629); Mod(4, 18446744073709551629), Mod(5, 18446744073709551629), M
  465 od(0, 18446744073709551629); Mod(7, 18446744073709551629), Mod(8, 1844674407
  466 3709551629), Mod(1, 18446744073709551629)]
  467 [1 + O(101^3), 2 + O(101^3), 0; 4 + O(101^3), 5 + O(101^3), 0; 7 + O(101^3),
  468  8 + O(101^3), 1]
  469 matsupplement:
  470 [Mod(1, 2), Mod(0, 2), Mod(0, 2), Mod(0, 2), Mod(0, 2); Mod(0, 2), Mod(1, 2)
  471 , Mod(0, 2), Mod(0, 2), Mod(0, 2); Mod(0, 2), Mod(0, 2), Mod(1, 2), Mod(0, 2
  472 ), Mod(0, 2); Mod(0, 2), Mod(0, 2), Mod(0, 2), Mod(1, 2), Mod(0, 2); Mod(0, 
  473 2), Mod(0, 2), Mod(0, 2), Mod(0, 2), Mod(1, 2)]
  474 [Mod(1, 7), Mod(0, 7), Mod(0, 7), Mod(0, 7), Mod(0, 7); Mod(0, 7), Mod(1, 7)
  475 , Mod(0, 7), Mod(0, 7), Mod(0, 7); Mod(0, 7), Mod(0, 7), Mod(1, 7), Mod(0, 7
  476 ), Mod(0, 7); Mod(0, 7), Mod(0, 7), Mod(0, 7), Mod(1, 7), Mod(0, 7); Mod(0, 
  477 7), Mod(0, 7), Mod(0, 7), Mod(0, 7), Mod(1, 7)]
  478 [Mod(1, 3037000507), Mod(0, 3037000507), Mod(0, 3037000507), Mod(0, 30370005
  479 07), Mod(0, 3037000507); Mod(0, 3037000507), Mod(1, 3037000507), Mod(0, 3037
  480 000507), Mod(0, 3037000507), Mod(0, 3037000507); Mod(0, 3037000507), Mod(0, 
  481 3037000507), Mod(1, 3037000507), Mod(0, 3037000507), Mod(0, 3037000507); Mod
  482 (0, 3037000507), Mod(0, 3037000507), Mod(0, 3037000507), Mod(1, 3037000507),
  483  Mod(0, 3037000507); Mod(0, 3037000507), Mod(0, 3037000507), Mod(0, 30370005
  484 07), Mod(0, 3037000507), Mod(1, 3037000507)]
  485 [Mod(1, 18446744073709551629), Mod(0, 18446744073709551629), Mod(0, 18446744
  486 073709551629), Mod(0, 18446744073709551629), Mod(0, 18446744073709551629); M
  487 od(0, 18446744073709551629), Mod(1, 18446744073709551629), Mod(0, 1844674407
  488 3709551629), Mod(0, 18446744073709551629), Mod(0, 18446744073709551629); Mod
  489 (0, 18446744073709551629), Mod(0, 18446744073709551629), Mod(1, 184467440737
  490 09551629), Mod(0, 18446744073709551629), Mod(0, 18446744073709551629); Mod(0
  491 , 18446744073709551629), Mod(0, 18446744073709551629), Mod(0, 18446744073709
  492 551629), Mod(1, 18446744073709551629), Mod(0, 18446744073709551629); Mod(0, 
  493 18446744073709551629), Mod(0, 18446744073709551629), Mod(0, 1844674407370955
  494 1629), Mod(0, 18446744073709551629), Mod(1, 18446744073709551629)]
  495 [1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1]
  496   ***   Warning: new stack size = 1000000 (0.954 Mbytes).
  497 68
  498 2
  499 68
  500 
  501 [-6 -6]
  502 
  503 [-7 -7]
  504 
  505 [ 9  0]
  506 
  507 [ 0  9]
  508 
  509 0
  510 2
  511 17
  512 1
  513 6
  514 0
  515 0
  516 0
  517 Vecsmall([0, 0, 0])
  518 Vecsmall([3, 12, 27])
  519 3
  520 0
  521 Vecsmall([2, 2, 0, -4, -10])
  522 2
  523 
  524 [1 0 0]
  525 
  526 [0 0 1]
  527 
  528 
  529 [1 0 0]
  530 
  531 [0 0 1]
  532 
  533 
  534 [1 0 0]
  535 
  536 [0 0 1]
  537 
  538 
  539 [1 0]
  540 
  541 [1 0]
  542 
  543 
  544 [1 2]
  545 
  546 [0 1]
  547 
  548 
  549 [1 2]
  550 
  551 [3 4]
  552 
  553 
  554 [1 0 0]
  555 
  556 [0 0 1]
  557 
  558 
  559 [1 0 0]
  560 
  561 [0 0 1]
  562 
  563 
  564 [1 0 0]
  565 
  566 [0 0 1]
  567 
  568 [1, 2, 3]
  569 
  570 [1 2 3]
  571 
  572 [1 2 3]
  573 
  574 [2, 4, 6]
  575 
  576 [2 4 6]
  577 
  578 [1 2 3]
  579 
  580 [;]
  581 [;]
  582 [;]
  583 [;]
  584 [;]
  585   ***   Warning: new stack size = 16000000 (15.259 Mbytes).
  586 
  587 [0 -1 0]
  588 
  589 [0  1 1]
  590 
  591 
  592 [ -2    1 0]
  593 
  594 [3/2 -1/2 0]
  595 
  596 [;]
  597 30
  598 [[100, 100], [200, 200]]
  599 
  600 [3 4]
  601 
  602 [y 7]
  603 
  604 matrix(0,2)
  605 matrix(0,2)
  606 
  607 [1 4]
  608 
  609 [2 2]
  610 
  611 [3 1]
  612 
  613 
  614 [1 1]
  615 
  616   ***   at top-level: 1/Mat([0,0]~)
  617   ***                  ^------------
  618   *** _/_: impossible inverse in ginv: 0.
  619   ***   at top-level: mathouseholder(1,1)
  620   ***                 ^-------------------
  621   *** mathouseholder: incorrect type in mathouseholder (t_INT).
  622   ***   at top-level: [q,r]=matqr(matid(2),1);mathouseholder(q,1)
  623   ***                                         ^-------------------
  624   *** mathouseholder: incorrect type in mathouseholder (t_INT).
  625   ***   at top-level: matsolve([1,0;0,0]*Mod(1,2),[1,1]~)
  626   ***                 ^-----------------------------------
  627   *** matsolve: impossible inverse in gauss: [Mod(1, 2), Mod(0, 2); Mod(0, 2), Mod(0, 2)].
  628   ***   at top-level: matsolve([1,0;0,0]*Mod(1,3),[1,1]~)
  629   ***                 ^-----------------------------------
  630   *** matsolve: impossible inverse in gauss: [Mod(1, 3), Mod(0, 3); Mod(0, 3), Mod(0, 3)].
  631   ***   at top-level: vecsum(1)
  632   ***                 ^---------
  633   *** vecsum: incorrect type in vecsum (t_INT).
  634   ***   at top-level: 1~
  635   ***                 ^--
  636   *** _~: incorrect type in gtrans (t_INT).
  637   ***   at top-level: vectorsmall(3,i,i^100)
  638   ***                                 ^------
  639   ***   overflow in t_INT-->long assignment.
  640   ***   at top-level: m[1,]=[1,2]
  641   ***                 ^-----------
  642   ***   inconsistent dimensions in matrix row assignment.
  643   ***   at top-level: m[1,]=[1,2,3,4]
  644   ***                 ^---------------
  645   ***   inconsistent dimensions in matrix row assignment.
  646   ***   at top-level: m[1,]=[1,2,3]~
  647   ***                 ^--------------
  648   ***   incorrect type in matrix row assignment (t_COL).
  649   ***   at top-level: [1,2,3;4,5,6]^-1
  650   ***                              ^---
  651   *** _^_: impossible inverse in ginv: [1, 2, 3; 4, 5, 6].
  652   ***   at top-level: [1,2,3;4,5,6;7,8,9]^-1
  653   ***                                    ^---
  654   *** _^_: impossible inverse in ginv: 0.
  655   ***   at top-level: matrixqz(matrix(2,2))
  656   ***                 ^---------------------
  657   *** matrixqz: domain error in QM_minors_coprime: rank(A) < 2
  658   ***   at top-level: matrixqz([;],-3)
  659   ***                 ^----------------
  660   *** matrixqz: invalid flag in QM_minors_coprime.
  661   ***   at top-level: matreduce(1)
  662   ***                 ^------------
  663   *** matreduce: incorrect type in matreduce (t_INT).
  664   ***   at top-level: matreduce([;])
  665   ***                 ^--------------
  666   *** matreduce: incorrect type in matreduce (t_MAT).
  667   ***   at top-level: matreduce([1,x;1,y])
  668   ***                 ^--------------------
  669   *** matreduce: incorrect type in matreduce (t_MAT).
  670 Total time spent: 461