1 (0.65296549642016672783864624794608469715 + 0.343065839816545357588735986978 2 31148676*I) + (0.19044897540645184469078131473790885364 + 0.5805524673194769 3 2349794265298068695525*I)*x + (0.090862784286733058570355592072096462602 + 0 4 .21088392899265350361451872767550590408*I)*x^2 + (0.034253752000523576920016 5 074597694397590 + 0.15168994440796279268955277197772465641*I)*x^3 + (-0.0093 6 139210540785894159197859484392067432 + 0.03306465179643991397682862055127742 7 8299*I)*x^4 + (0.0066762623841895560506752315759505427095 + 0.01516404667566 8 6586697065188398143396917*I)*x^5 + O(x^6) 9 1 - 0.57721566490153286060651209008240243104*x + 0.9890559953279725553953956 10 5150063470794*x^2 - 0.90747907608088628901656016735627511493*x^3 + 0.9817280 11 8683440018733638029402185085036*x^4 - 0.981995068903145202104701413791374675 12 51*x^5 + O(x^6) 13 1 + 0.42278433509846713939348790991759756896*x + 0.4118403304264396947888835 14 6141823227690*x^2 + 0.081576919247086266378835484144359593009*x^3 + 0.074249 15 010753513898319820126665575735432*x^4 - 0.0002669820687450147683211197695238 16 2515661*x^5 + O(x^6) 17 0.50000000000000000000000000000000000000*x^-1 + 0.46139216754923356969674395 18 495879878448 + 0.93661624898783663224281375818851553069*x + 0.72048875166669 19 501900756857612523634632*x^2 + 1.1032890464233243060581361321045221793*x^3 + 20 O(x^4) 21 (-0.30434960902188368417660077077485938103 + 0.48375784292991511172812918802 22 297918039*I) + (0.59465032062247697727187848272191072247 + 0.576674047468581 23 17413405079475000049045*I)*x + (0.23150004831138189314916325909209289721 - 0 24 .14711677137965943279150680857845149795*I)*x^2 + (-0.02190784473534413804389 25 4242836567535805 + 0.044442141724177702067115896271895013565*I)*x^3 + (-0.00 26 095310203972899907556180572534221362410 - 0.01322027411091502743411636095975 27 8682565*I)*x^4 + (0.0023292347420337443292606199295988510753 + 0.00349489957 28 19835964464884744063791902941*I)*x^5 + O(x^6) 29 -0.57721566490153286060651209008240243104*x + 0.8224670334241132182362075833 30 2301259461*x^2 - 0.40068563438653142846657938717048333026*x^3 + 0.2705808084 31 2778454787900092413529197569*x^4 - 0.20738555102867398526627309729140683361* 32 x^5 + O(x^6) 33 0.42278433509846713939348790991759756896*x + 0.32246703342411321823620758332 34 301259461*x^2 - 0.067352301053198095133246053837149996923*x^3 + 0.0205808084 35 27784547879000924135291975694*x^4 - 0.00738555102867398526627309729140683361 36 08*x^5 + O(x^6) 37 0.E-38 38 0.E-38 39 (0.59465032062247697727187848272191072247 + 0.576674047468581174134050794750 40 00049045*I) + (0.46300009662276378629832651818418579441 - 0.2942335427593188 41 6558301361715690299591*I)*x + (-0.065723534206032414131682728509702607416 + 42 0.13332642517253310620134768881568504070*I)*x^2 + (-0.0038124081589159963022 43 472229013688544964 - 0.052881096443660109736465443839034730260*I)*x^3 + (0.0 44 11646173710168721646303099647994255377 + 0.017474497859917982232442372031895 45 951470*I)*x^4 + (-0.0077757069690405743408170730434310459472 - 0.00403456423 46 41327827815714280332882428196*I)*x^5 + O(x^6) 47 -0.57721566490153286060651209008240243104 + 1.644934066848226436472415166646 48 0251892*x - 1.2020569031595942853997381615114499908*x^2 + 1.0823232337111381 49 915160036965411679028*x^3 - 1.0369277551433699263313654864570341681*x^4 + 1. 50 0173430619844491397145179297909205279*x^5 + O(x^6) 51 -x^-1 + 0.92278433509846713939348790991759756896 + 2.89493406684822643647241 52 51666460251892*x - 0.077056903159594285399738161511449990768*x^2 + 2.1448232 53 337111381915160036965411679028*x^3 + O(x^4) 54 -3.5449077018110320545963349666822903656 - 0.1293535897955400553154795370758 55 8123108*x - 15.838884621997332891305490359174586834*x^2 - 0.0882351409230713 56 74511750322744686275982*x^3 - 63.934119924167817737375290277713885431*x^4 - 57 0.042848354492868684268292005312709221526*x^5 + O(x^6) 58 1 - 0.57721566490153286060651209008240243104*a*x + O(x^2) 59 -0.57721566490153286060651209008240243104*a*x + O(x^2) 60 *** gamma: Warning: normalizing a series with 0 leading term. 61 2*x^-1 + O(x^0) 62 -x^-1 - 0.57721566490153286060651209008240243104 + 1.64493406684822643647241 63 51666460251892*x - 1.2020569031595942853997381615114499908*x^2 + 1.082323233 64 7111381915160036965411679028*x^3 - 1.0369277551433699263313654864570341681*x 65 ^4 + 1.0173430619844491397145179297909205279*x^5 + O(x^6) 66 x^-1 - 0.57721566490153286060651209008240243104 + 0.989055995327972555395395 67 65150063470794*x - 0.90747907608088628901656016735627511493*x^2 + 0.98172808 68 683440018733638029402185085036*x^3 - 0.9819950689031452021047014137913746755 69 1*x^4 + O(x^5) 70 4.0238726007709377354370243392300398572 E2564 71 277.25887222397812376689284858327062723 72 277.25887222397812376689284858327062723 + 1.57079632679489661923132169163975 73 14421*I 74 0.70315664064524318722569033366791109947 75 -x^-1 + O(x^0) 76 0.036489973978576520559023667001244432804 + 0.467401100272339654708622749969 77 03778383*x + O(x^2) 78 x^-1 + O(x^0) 79 9999999999999999.5772156649015330017905 80 9999999999999999.4227843350984672382991 81 36.841361487904730902009429765103126607 - 6.28318530717958647692528676655900 82 57684*I 83 36.841361487904730886566296784796549486 84 170141183460469231740910675752738881536 85 1001.0000000000000000000000000000000000 86 8.4592930575197658134779513864578051837 E92 87 8.4592930575197658134779513864578051837 E92 + 417.27460269708707626917373711 88 782229398*I 89 799877009219260410589.21059353880333769 + 88.7228391116729996053515014380223 90 25492*I 91 -864.73828787067971564321683481711497423 - 631.46012337154844093099132003918 92 007972*I 93 1.7724538509055160272981674833411451828 94 3.2007257594901922498857741835634344245 E867 95 3.0616681090421088936612867355651954590 E867 - 9.193770672812704213454512890 96 0883765323 E866*I 97 8459293057519765813477951386457805183660969095271154721136672171659780563637 98 16339197618169691.8420416798032146865778 + 417.27460269708707626917373711782 99 2293981451080884873662980649365715022960425756218794729722851598595227020005 100 2467288*I 101 8459293057519765813477951386457805183660969095271154721136672171659780563637 102 16339197618169691.8420416798032146865778 + 41727.460269708707626917373711782 103 2293981451080884873662980649365715022960425756218794729722851598595227020005 104 2467288*I 105 8459293057519765813477951386457805183660969095271154721136672171659780563637 106 16339197618169691.8420416798032146865778407117373385742831330551204346169684 107 432 + 417274.602697087076269173737117822293981451080884873662980649365715022 108 9604257562187947297228515985952270200052467287642139293693997776338197086953 109 142287383*I 110 0.99999999999999999999999999999942278433509846713939348790991858662495316863 111 6615471796845732492343995375856774526593328777198552545340369146294559716293 112 3800 113 -1000000.5772166539584356686368774405975327324364299837039157908236471064277 114 4207952925289528676019700485467432997942048345744111188601460149907155979685 115 1143 116 realprecision = 38 significant digits 117 2.6789385347077476336556929409746776441 118 1.3541179394264004169452880281545137855 119 3.6256099082219083119306851558676720030 120 1.2254167024651776451290983033628905269 121 5.5663160017802352042500968952077261114 122 1.1287870299081259612609010902588420133 123 7.5339415987976119046992298412151336246 124 2.3704361844166009086464735041766525099 125 1.4345188480905567756360197394564231366 126 1.0896523574228969512523767551028929712 127 11.499428186073990663885609852439200980 128 2.1275570586022219715722784393442933506 129 1.5287091970871110050473026638281056936 130 1.0555465648134663023137014847342622098 131 23.462487693183319881385711469586294930 132 4.3968001000002525082360090974782051647 133 3.0815055600034352026059386146337367711 134 1.9322353352363753417755866326226966547 135 1.6399148048748842094926399415540991281 136 1.2850506996660505175844624287857794935 137 1.1737241052110611751264934325039885767 138 1.0258364967528902874118049964999185687 139 1.1304468487397583052339766579000353759 E156 140 1.1413851228335801146661943537905279353 E154 141 -3.1238305253309576820203344603145336407 E-155 142 3.1251326639409330707998343913109131879 E-157 143 4.5628187500777884959959637081483557229 E456568 144 1.3768469063730103610139202204469277024 E-456572 145 *** at top-level: lngamma(-2+x) 146 *** ^------------- 147 *** lngamma: domain error in intformal: residue(series, pole) != 0 148 *** at top-level: gamma(O(x)) 149 *** ^----------- 150 *** gamma: domain error in gamma: argument = 0 151 *** at top-level: lngamma(O(x)) 152 *** ^------------- 153 *** lngamma: domain error in lngamma: argument = 0 154 *** at top-level: psi(O(x)) 155 *** ^--------- 156 *** psi: domain error in psi: argument = 0 157 Total time spent: 30