"Fossies" - the Fresh Open Source Software Archive

Member "KASH3-lib-archindep-2008-07-31/lib/elldoc.g" (3 Sep 2008, 2722 Bytes) of package /linux/misc/old/KASH3-lib-archindep-2008-07-31.tar.gz:


As a special service "Fossies" has tried to format the requested text file into HTML format (style: standard) with prefixed line numbers. Alternatively you can here view or download the uninterpreted source code file.

    1 
    2 
    3 
    4 
    5 
    6 
    7 
    8 
    9 
   10 
   11 InstallMethod(
   12 rec(
   13     kind:="FUNCTION",
   14     name:="Size",
   15     sin:=[[grp^ell,"P"]],
   16     sou:=[[elt-ord^rat,"n"]],
   17     short:=
   18       "The number of points belonging to EC ",
   19     ex:=["EC:= EllipticCurve(5,[1,2]);;\nSize(EC);\n"
   20         ],
   21     see:=[]), _Size);
   22 
   23 
   24 
   25 ----------------------------------------------------------------------------------------------------------
   26 
   27 InstallMethod(
   28 rec(
   29 kind := "FUNCTION",
   30 name := "Points",
   31 sin := [[grp^ell,"E"]],
   32 sou := [[list,"L"]],
   33 short :="Returns all Points of E as a list."
   34 ),_Points);
   35 
   36 InstallMethod(
   37 rec(
   38 kind := "FUNCTION",
   39 name := "ECSize",
   40 sin := [[grp^ell,"E"]],
   41 sou := [[elt-ord^rat,"N"]],
   42 short :="Returns the number of Points of E."
   43 ),_ECSize);
   44 
   45 InstallMethod(
   46 rec(
   47 kind := "FUNCTION",
   48 name := "EllipticCurve",
   49 sin := [[elt-ord^rat,"q"],[list,"L"]],
   50 sou := [[grp^ell]],
   51 short :=
   52 "Constructs an elliptic curve over the finite field with q elements. If L has length 2, the curve is "+
   53 "defined by the equation y^2 = x^3 + L[1]*x + L[2], if L has length 5, the curve is  "+
   54 "defined by the equation y^2 + L[1]*x*y + L[2]*y = x^3 + L[3]*x^2 + L[4]*x + L[5]. "
   55 ),_EllipticCurve);
   56 
   57 
   58 InstallMethod(
   59 rec(
   60 kind := "FUNCTION",
   61 name := "Order",
   62 sin := [[elt-grp^ell,"P"]],
   63 sou := [[elt-ord^rat,"n"]],
   64 short :="Returns the Order of P."
   65 ),_Order);
   66 
   67 InstallMethod(
   68 rec(
   69 kind := "FUNCTION",
   70 name := "RandomPoint",
   71 sin := [[grp^ell,"EC"]],
   72 sou := [[elt-grp^ell,"P"]],
   73 short :="Returns a random point of EC."
   74 ),_RandomPoint);
   75 
   76 InstallMethod(
   77 rec(
   78 kind := "FUNCTION",
   79 name := "WeierstrassNormalForm",
   80 sin := [[grp^ell,"EC"]],
   81 sou := [[grp^ell,"EC2"]],
   82 short :="Returns, if possible, a curve EC2 in short Weierstrass normal form, which is isomorphic to EC."
   83 ),_WeierstrassNormalForm);
   84 
   85 InstallMethod(
   86 rec(
   87 kind := "FUNCTION",
   88 name := "ECGenerator",
   89 sin := [[grp^ell,"EC"]],
   90 sou := [[list,"EC2"]],
   91 short :="Returns a list of generator(s) of the group of _Points over EC."
   92 ),_ECGenerator);
   93 
   94 
   95 
   96 
   97 
   98 InstallDocumentation(
   99 rec(
  100 kind := "FUNCTION",
  101 name := "Points",
  102 sin := [[grp^ell,"E"]],
  103 sou := [[list,"L"]],
  104 short :="Returns all Points of E as a list."
  105 ));
  106 
  107 InstallDocumentation(
  108 rec(
  109 kind := "FUNCTION",
  110 name := "EllipticFunctionField",
  111 sin := [[grp^ell,"E"]],
  112 sou := [[fld^fun,"F"]],
  113 short :="Returns the function field defined by E"
  114 ));
  115 
  116 InstallDocumentation(
  117 rec(
  118 kind := "FUNCTION",
  119 name := "MakePoint",
  120 sin := [[list(elt-fld^fin),"L"],[grp^ell,"EC"]],
  121 sou := [[elt-grp^ell,"P"]],
  122 short :="Returns,if possible, a point on EC, defined by the coordinates given in L."
  123 ));
  124 
  125 InstallDocumentation(
  126 rec(
  127 kind := "FUNCTION",
  128 name := "MakePoints",
  129 sin := [[elt-fld^fin,"x"],[grp^ell,"EC"]],
  130 sou := [[elt-grp^ell,"P"]],
  131 short :="Returns the points on EC with x-coordinate x."
  132 ));
  133 
  134 
  135 
  136