\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 5.0 - L Infinity Segment Delaunay Graphs
Class and Concept List
Here is the list of all concepts and classes of this package. Classes are inside the namespace CGAL. Concepts are in the global namespace.
[detail level 12]
 NCGAL
 CSegment_Delaunay_graph_Linf_2The class Segment_Delaunay_graph_Linf_2 represents the segment Delaunay graph under the \( L_{\infty} \) metric (which is the dual graph of the 2D segment Voronoi diagram under the \( L_{\infty} \) metric)
 CSegment_Delaunay_graph_Linf_filtered_traits_2The class Segment_Delaunay_graph_Linf_filtered_traits_2 provides a model for the SegmentDelaunayGraphLinfTraits_2 concept
 CSegment_Delaunay_graph_Linf_filtered_traits_without_intersections_2The class Segment_Delaunay_graph_Linf_filtered_traits_without_intersections_2 provides a model for the SegmentDelaunayGraphLinfTraits_2 concept
 CSegment_Delaunay_graph_Linf_hierarchy_2This class is equivalent to the Segment_Delaunay_graph_hierarchy_2 class, but it uses Segment_Delaunay_graph_Linf_2<Gt,DS> at every level of the hierarchy (instead of Segment_Delaunay_graph_2<Gt,DS> at each level of Segment_Delaunay_graph_hierarchy_2)
 CSegment_Delaunay_graph_Linf_traits_2The class Segment_Delaunay_graph_Linf_traits_2 provides a model for the SegmentDelaunayGraphLinfTraits_2 concept
 CSegment_Delaunay_graph_Linf_traits_without_intersections_2The class Segment_Delaunay_graph_Linf_traits_without_intersections_2 provides a model for the SegmentDelaunayGraphLinfTraits_2 concept
 CSegmentDelaunayGraphLinfTraits_2The concept SegmentDelaunayGraphLinfTraits_2 provides traits for constructing the segment Delaunay graph under the \( L_{\infty} \) distance. The segment Delaunay graph is the dual of the segment Voronoi diagram. We stress that we consider the 1-dimensionalization of \( L_{\infty} \) bisectors between two sites which is explained in Section Bisectors and 1-Dimensionalization of the User Manual, and this reflects on the constructed graph (and its dual diagram). These traits should be used in the Gt template parameter of the CGAL::Segment_Delaunay_graph_Linf_2<Gt,DS> and CGAL::Segment_Delaunay_graph_Linf_hierarchy_2<Gt,STag,DS> class templates. The concept is a refinement of SegmentDelaunayGraphTraits_2. In particular, it provides a type Site_2, which must be a model of the concept SegmentDelaunayGraphSite_2. It also provides constructions for sites and several function object types for the predicates
 CConstruct_sdg_bisector_2The class template drawing the \(L_{\infty}\) bisector between two sites
 CConstruct_sdg_bisector_ray_2The class template drawing the \(L_{\infty}\) edge between two sites, that is bounded by another site and the dummy site \(s_{\infty}\) (at infinity)
 CConstruct_sdg_bisector_segment_2The class template drawing the \(L_{\infty}\) edge between two sites, that is bounded by two other sites