"Fossies" - the Fresh Open Source Software Archive

Member "libressl-2.9.2/man/ASN1_generate_nconf.3" (4 Dec 2018, 10351 Bytes) of package /linux/misc/libressl-2.9.2.tar.gz:


Caution: As a special service "Fossies" has tried to format the requested manual source page into HTML format but links to other man pages may be missing or even errorneous. Alternatively you can here view or download the uninterpreted manual source code. A member file download can also be achieved by clicking within a package contents listing on the according byte size field.

ASN1_GENERATE_NCONF(3) BSD Library Functions Manual ASN1_GENERATE_NCONF(3)

NAME

ASN1_generate_nconf, ASN1_generate_v3 — ASN.1 generation functions

SYNOPSIS

#include <openssl/asn1.h>

ASN1_TYPE *

ASN1_generate_nconf(const char *str, CONF *nconf);

ASN1_TYPE *

ASN1_generate_v3(const char *str, X509V3_CTX *cnf);

DESCRIPTION

These functions generate the ASN.1 encoding of a string in an ASN1_TYPE structure.

str contains the string to encode nconf or cnf contains the optional configuration information where additional strings will be read from. nconf will typically come from a config file whereas cnf is obtained from an X509V3_CTX structure which will typically be used by X509 v3 certificate extension functions. cnf or nconf can be set to NULL if no additional configuration will be used.

GENERATION STRING FORMAT

The actual data encoded is determined by the string str and the configuration information. The general format of the string is:

[

modifier, ]type[:value]

That is zero or more comma separated modifiers followed by a type followed by an optional colon and a value. The formats of type, value and modifier are explained below.

Supported types
The supported types are listed below. Unless otherwise specified, only the ASCII format is permissible.

BOOLEAN, BOOL

This encodes a boolean type. The value string is mandatory and should be TRUE or FALSE. Additionally true, Y, y, YES, yes, false, N, n, NO and no are acceptable.

NULL

Encode the NULL type. The value string must not be present.

INTEGER, INT

Encodes an ASN.1 INTEGER type. The value string represents the value of the integer. It can be prefaced by a minus sign and is normally interpreted as a decimal value unless the prefix 0x is included.

ENUMERATED, ENUM

Encodes the ASN.1 ENUMERATED type. It is otherwise identical to INTEGER.

OBJECT, OID

Encodes an ASN.1 OBJECT IDENTIFIER. The value string can be a short name, a long name, or numerical format.

UTCTIME, UTC

Encodes an ASN.1 UTCTime structure. The value should be in the format YYMMDDHHMMSSZ.

GENERALIZEDTIME, GENTIME

Encodes an ASN.1 GeneralizedTime structure. The value should be in the format YYYYMMDDHHMMSSZ.

OCTETSTRING, OCT

Encodes an ASN.1 OCTET STRING. value represents the contents of this structure. The format strings ASCII and HEX can be used to specify the format of value.

BITSTRING, BITSTR

Encodes an ASN.1 BIT STRING. value represents the contents of this structure. The format strings ASCII, HEX, and BITLIST can be used to specify the format of value.

If the format is anything other than BITLIST, the number of unused bits is set to zero.

BMPSTRING, BMP, GeneralString, IA5STRING, IA5, NUMERICSTRING, NUMERIC, PRINTABLESTRING, PRINTABLE, T61STRING, T61, TELETEXSTRING, UNIVERSALSTRING, UNIV, UTF8String, UTF8, VISIBLESTRING, VISIBLE

These encode the corresponding string types. value represents the contents of this structure. The format can be ASCII or UTF8.

SEQUENCE, SEQ, SET

Formats the result as an ASN.1 SEQUENCE or SET type. value should be a section name which will contain the contents. The field names in the section are ignored and the values are in the generated string format. If value is absent, then an empty SEQUENCE will be encoded.

Modifiers
Modifiers affect the following structure. They can be used to add EXPLICIT or IMPLICIT tagging, add wrappers, or to change the string format of the final type and value. The supported formats are:

EXPLICIT, EXP

Add an explicit tag to the following structure. This string should be followed by a colon and the tag value to use as a decimal value.

By following the number with U, A, P or C, UNIVERSAL, APPLICATION, PRIVATE or CONTEXT SPECIFIC tagging can be used. The default is CONTEXT SPECIFIC.

IMPLICIT, IMP

This is the same as EXPLICIT except IMPLICIT tagging is used instead.

OCTWRAP, SEQWRAP, SETWRAP, BITWRAP

The following structure is surrounded by an OCTET STRING, a SEQUENCE, a SET, or a BIT STRING, respectively. For a BIT STRING the number of unused bits is set to zero.

FORMAT

This specifies the format of the ultimate value. It should be followed by a colon and one of the strings ASCII, UTF8, HEX, or BITLIST.

If no format specifier is included, then ASCII is used. If UTF8 is specified, then the value string must be a valid UTF-8 string. For HEX, the output must be a set of hex digits. BITLIST (which is only valid for a BIT STRING) is a comma separated list of the indices of the set bits, all other bits are zero.

RETURN VALUES

ASN1_generate_nconf() and ASN1_generate_v3() return the encoded data as an ASN1_TYPE structure or NULL if an error occurred.

The error codes can be obtained by ERR_get_error(3).

EXAMPLES

A simple IA5String:

IA5STRING:Hello World

An IA5String explicitly tagged:

EXPLICIT:0,IA5STRING:Hello World

An IA5String explicitly tagged using APPLICATION tagging:

EXPLICIT:0A,IA5STRING:Hello World

A BITSTRING with bits 1 and 5 set and all others zero:

FORMAT:BITLIST,BITSTRING:1,5

A more complex example using a config file to produce a SEQUENCE consisting of a BOOL an OID and a UTF8String:

asn1 = SEQUENCE:seq_section

[seq_section]

field1 = BOOLEAN:TRUE
field2 = OID:commonName
field3 = UTF8:Third field

This example produces an RSAPrivateKey structure. This is the key contained in the file client.pem in all OpenSSL distributions. Note that the field names such as "coeff" are ignored and are present just for clarity.

asn1=SEQUENCE:private_key
[private_key]
version=INTEGER:0

n=INTEGER:0xBB6FE79432CC6EA2D8F970675A5A87BFBE1AFF0BE63E879F2AFFB93644\
D4D2C6D000430DEC66ABF47829E74B8C5108623A1C0EE8BE217B3AD8D36D5EB4FCA1D9

e=INTEGER:0x010001

d=INTEGER:0x6F05EAD2F27FFAEC84BEC360C4B928FD5F3A9865D0FCAAD291E2A52F4A\
F810DC6373278C006A0ABBA27DC8C63BF97F7E666E27C5284D7D3B1FFFE16B7A87B51D

p=INTEGER:0xF3929B9435608F8A22C208D86795271D54EBDFB09DDEF539AB083DA912\
D4BD57

q=INTEGER:0xC50016F89DFF2561347ED1186A46E150E28BF2D0F539A1594BBD7FE467\
46EC4F

exp1=INTEGER:0x9E7D4326C924AFC1DEA40B45650134966D6F9DFA3A7F9D698CD4ABEA\
9C0A39B9

exp2=INTEGER:0xBA84003BB95355AFB7C50DF140C60513D0BA51D637272E355E397779\
E7B2458F

coeff=INTEGER:0x30B9E4F2AFA5AC679F920FC83F1F2DF1BAF1779CF989447FABC2F5\
628657053A

This example is the corresponding public key in an ASN.1 SubjectPublicKeyInfo structure:

# Start with a SEQUENCE
asn1=SEQUENCE:pubkeyinfo

# pubkeyinfo contains an algorithm identifier and the public key
# wrapped in a BIT STRING
[pubkeyinfo]
algorithm=SEQUENCE:rsa_alg
pubkey=BITWRAP,SEQUENCE:rsapubkey

# algorithm ID for RSA is just an OID and a NULL
[rsa_alg]
algorithm=OID:rsaEncryption
parameter=NULL

# Actual public key: modulus and exponent
[rsapubkey]
n=INTEGER:0xBB6FE79432CC6EA2D8F970675A5A87BFBE1AFF0BE63E879F2AFFB93644\
D4D2C6D000430DEC66ABF47829E74B8C5108623A1C0EE8BE217B3AD8D36D5EB4FCA1D9

e=INTEGER:0x010001

SEE ALSO

ERR_get_error(3), x509v3.cnf(5)

HISTORY

ASN1_generate_nconf() and ASN1_generate_v3() first appeared in OpenSSL 0.9.8 and have been available since OpenBSD 4.5.

BSD April 25, 2018 BSD