"Fossies" - the Fresh Open Source Software Archive

Member "kubernetes-1.25.4/build/README.md" (9 Nov 2022, 7285 Bytes) of package /linux/misc/kubernetes-1.25.4.tar.gz:

As a special service "Fossies" has tried to format the requested source page into HTML format (assuming markdown format). Alternatively you can here view or download the uninterpreted source code file. A member file download can also be achieved by clicking within a package contents listing on the according byte size field.

A hint: This file contains one or more very long lines, so maybe it is better readable using the pure text view mode that shows the contents as wrapped lines within the browser window.

Building Kubernetes

Building Kubernetes is easy if you take advantage of the containerized build environment. This document will help guide you through understanding this build process.


  1. Docker, using one of the following configurations:

Note: You will need to check if Docker CLI plugin buildx is properly installed (docker-buildx file should be present in ~/.docker/cli-plugins). You can install buildx according to the instructions.

  1. Optional Google Cloud SDK

You must install and configure Google Cloud SDK if you want to upload your release to Google Cloud Storage and may safely omit this otherwise.


While it is possible to build Kubernetes using a local golang installation, we have a build process that runs in a Docker container. This simplifies initial set up and provides for a very consistent build and test environment.

Key scripts

The following scripts are found in the build/ directory. Note that all scripts must be run from the Kubernetes root directory.

Basic Flow

The scripts directly under build/ are used to build and test. They will ensure that the kube-build Docker image is built (based on build/build-image/Dockerfile and after base image's KUBE_BUILD_IMAGE_CROSS_TAG from Dockerfile is replaced with one of those actual tags of the base image, like v1.13.9-2) and then execute the appropriate command in that container. These scripts will both ensure that the right data is cached from run to run for incremental builds and will copy the results back out of the container. You can specify a different registry/name and version for kube-cross by setting KUBE_CROSS_IMAGE and KUBE_CROSS_VERSION, see common.sh for more details.

The kube-build container image is built by first creating a "context" directory in _output/images/build-image. It is done there instead of at the root of the Kubernetes repo to minimize the amount of data we need to package up when building the image.

There are 3 different containers instances that are run from this image. The first is a "data" container to store all data that needs to persist across to support incremental builds. Next there is an "rsync" container that is used to transfer data in and out to the data container. Lastly there is a "build" container that is used for actually doing build actions. The data container persists across runs while the rsync and build containers are deleted after each use.

rsync is used transparently behind the scenes to efficiently move data in and out of the container. This will use an ephemeral port picked by Docker. You can modify this by setting the KUBE_RSYNC_PORT env variable.

All Docker names are suffixed with a hash derived from the file path (to allow concurrent usage on things like CI machines) and a version number. When the version number changes all state is cleared and clean build is started. This allows the build infrastructure to be changed and signal to CI systems that old artifacts need to be deleted.

Build artifacts

The build system output all its products to a top level directory in the source repository named _output. These include the binary compiled packages (e.g. kubectl, kube-scheduler etc.) and archived Docker images. If you intend to run a component with a docker image you will need to import it from this directory with the appropriate command (e.g. docker import _output/release-images/amd64/kube-scheduler.tar k8s.io/kube-scheduler:$(git describe)).


The build/release.sh script will build a release. It will build binaries, run tests, (optionally) build runtime Docker images.

The main output is a tar file: kubernetes.tar.gz. This includes:

In addition, there are some other tar files that are created:

When building final release tars, they are first staged into _output/release-stage before being tar'd up and put into _output/release-tars.


make release and its variant make quick-release provide a hermetic build environment which should provide some level of reproducibility for builds. make itself is not hermetic.

The Kubernetes build environment supports the SOURCE_DATE_EPOCH environment variable specified by the Reproducible Builds project, which can be set to a UNIX epoch timestamp. This will be used for the build timestamps embedded in compiled Go binaries, and maybe someday also Docker images.

One reasonable setting for this variable is to use the commit timestamp from the tip of the tree being built; this is what the Kubernetes CI system uses. For example, you could use the following one-liner:

SOURCE_DATE_EPOCH=$(git show -s --format=format:%ct HEAD)