"Fossies" - the Fresh Open Source Software Archive

Member "go/src/cmd/compile/internal/ssagen/abi.go" (26 Apr 2023, 10823 Bytes) of package /linux/misc/go1.20.4.src.tar.gz:


As a special service "Fossies" has tried to format the requested source page into HTML format using (guessed) Go source code syntax highlighting (style: standard) with prefixed line numbers and code folding option. Alternatively you can here view or download the uninterpreted source code file. See also the last Fossies "Diffs" side-by-side code changes report for "abi.go": 1.19.3_vs_1.20rc1.

    1 // Copyright 2009 The Go Authors. All rights reserved.
    2 // Use of this source code is governed by a BSD-style
    3 // license that can be found in the LICENSE file.
    4 
    5 package ssagen
    6 
    7 import (
    8     "fmt"
    9     "internal/buildcfg"
   10     "log"
   11     "os"
   12     "strings"
   13 
   14     "cmd/compile/internal/base"
   15     "cmd/compile/internal/ir"
   16     "cmd/compile/internal/typecheck"
   17     "cmd/compile/internal/types"
   18     "cmd/internal/obj"
   19 )
   20 
   21 // SymABIs records information provided by the assembler about symbol
   22 // definition ABIs and reference ABIs.
   23 type SymABIs struct {
   24     defs map[string]obj.ABI
   25     refs map[string]obj.ABISet
   26 }
   27 
   28 func NewSymABIs() *SymABIs {
   29     return &SymABIs{
   30         defs: make(map[string]obj.ABI),
   31         refs: make(map[string]obj.ABISet),
   32     }
   33 }
   34 
   35 // canonicalize returns the canonical name used for a linker symbol in
   36 // s's maps. Symbols in this package may be written either as "".X or
   37 // with the package's import path already in the symbol. This rewrites
   38 // both to use the full path, which matches compiler-generated linker
   39 // symbol names.
   40 func (s *SymABIs) canonicalize(linksym string) string {
   41     // If the symbol is already prefixed with "", rewrite it to start
   42     // with LocalPkg.Prefix.
   43     //
   44     // TODO(mdempsky): Have cmd/asm stop writing out symbols like this.
   45     if strings.HasPrefix(linksym, `"".`) {
   46         return types.LocalPkg.Prefix + linksym[2:]
   47     }
   48     return linksym
   49 }
   50 
   51 // ReadSymABIs reads a symabis file that specifies definitions and
   52 // references of text symbols by ABI.
   53 //
   54 // The symabis format is a set of lines, where each line is a sequence
   55 // of whitespace-separated fields. The first field is a verb and is
   56 // either "def" for defining a symbol ABI or "ref" for referencing a
   57 // symbol using an ABI. For both "def" and "ref", the second field is
   58 // the symbol name and the third field is the ABI name, as one of the
   59 // named cmd/internal/obj.ABI constants.
   60 func (s *SymABIs) ReadSymABIs(file string) {
   61     data, err := os.ReadFile(file)
   62     if err != nil {
   63         log.Fatalf("-symabis: %v", err)
   64     }
   65 
   66     for lineNum, line := range strings.Split(string(data), "\n") {
   67         lineNum++ // 1-based
   68         line = strings.TrimSpace(line)
   69         if line == "" || strings.HasPrefix(line, "#") {
   70             continue
   71         }
   72 
   73         parts := strings.Fields(line)
   74         switch parts[0] {
   75         case "def", "ref":
   76             // Parse line.
   77             if len(parts) != 3 {
   78                 log.Fatalf(`%s:%d: invalid symabi: syntax is "%s sym abi"`, file, lineNum, parts[0])
   79             }
   80             sym, abistr := parts[1], parts[2]
   81             abi, valid := obj.ParseABI(abistr)
   82             if !valid {
   83                 log.Fatalf(`%s:%d: invalid symabi: unknown abi "%s"`, file, lineNum, abistr)
   84             }
   85 
   86             sym = s.canonicalize(sym)
   87 
   88             // Record for later.
   89             if parts[0] == "def" {
   90                 s.defs[sym] = abi
   91             } else {
   92                 s.refs[sym] |= obj.ABISetOf(abi)
   93             }
   94         default:
   95             log.Fatalf(`%s:%d: invalid symabi type "%s"`, file, lineNum, parts[0])
   96         }
   97     }
   98 }
   99 
  100 // GenABIWrappers applies ABI information to Funcs and generates ABI
  101 // wrapper functions where necessary.
  102 func (s *SymABIs) GenABIWrappers() {
  103     // For cgo exported symbols, we tell the linker to export the
  104     // definition ABI to C. That also means that we don't want to
  105     // create ABI wrappers even if there's a linkname.
  106     //
  107     // TODO(austin): Maybe we want to create the ABI wrappers, but
  108     // ensure the linker exports the right ABI definition under
  109     // the unmangled name?
  110     cgoExports := make(map[string][]*[]string)
  111     for i, prag := range typecheck.Target.CgoPragmas {
  112         switch prag[0] {
  113         case "cgo_export_static", "cgo_export_dynamic":
  114             symName := s.canonicalize(prag[1])
  115             pprag := &typecheck.Target.CgoPragmas[i]
  116             cgoExports[symName] = append(cgoExports[symName], pprag)
  117         }
  118     }
  119 
  120     // Apply ABI defs and refs to Funcs and generate wrappers.
  121     //
  122     // This may generate new decls for the wrappers, but we
  123     // specifically *don't* want to visit those, lest we create
  124     // wrappers for wrappers.
  125     for _, fn := range typecheck.Target.Decls {
  126         if fn.Op() != ir.ODCLFUNC {
  127             continue
  128         }
  129         fn := fn.(*ir.Func)
  130         nam := fn.Nname
  131         if ir.IsBlank(nam) {
  132             continue
  133         }
  134         sym := nam.Sym()
  135 
  136         symName := sym.Linkname
  137         if symName == "" {
  138             symName = sym.Pkg.Prefix + "." + sym.Name
  139         }
  140         symName = s.canonicalize(symName)
  141 
  142         // Apply definitions.
  143         defABI, hasDefABI := s.defs[symName]
  144         if hasDefABI {
  145             if len(fn.Body) != 0 {
  146                 base.ErrorfAt(fn.Pos(), "%v defined in both Go and assembly", fn)
  147             }
  148             fn.ABI = defABI
  149         }
  150 
  151         if fn.Pragma&ir.CgoUnsafeArgs != 0 {
  152             // CgoUnsafeArgs indicates the function (or its callee) uses
  153             // offsets to dispatch arguments, which currently using ABI0
  154             // frame layout. Pin it to ABI0.
  155             fn.ABI = obj.ABI0
  156         }
  157 
  158         // If cgo-exported, add the definition ABI to the cgo
  159         // pragmas.
  160         cgoExport := cgoExports[symName]
  161         for _, pprag := range cgoExport {
  162             // The export pragmas have the form:
  163             //
  164             //   cgo_export_* <local> [<remote>]
  165             //
  166             // If <remote> is omitted, it's the same as
  167             // <local>.
  168             //
  169             // Expand to
  170             //
  171             //   cgo_export_* <local> <remote> <ABI>
  172             if len(*pprag) == 2 {
  173                 *pprag = append(*pprag, (*pprag)[1])
  174             }
  175             // Add the ABI argument.
  176             *pprag = append(*pprag, fn.ABI.String())
  177         }
  178 
  179         // Apply references.
  180         if abis, ok := s.refs[symName]; ok {
  181             fn.ABIRefs |= abis
  182         }
  183         // Assume all functions are referenced at least as
  184         // ABIInternal, since they may be referenced from
  185         // other packages.
  186         fn.ABIRefs.Set(obj.ABIInternal, true)
  187 
  188         // If a symbol is defined in this package (either in
  189         // Go or assembly) and given a linkname, it may be
  190         // referenced from another package, so make it
  191         // callable via any ABI. It's important that we know
  192         // it's defined in this package since other packages
  193         // may "pull" symbols using linkname and we don't want
  194         // to create duplicate ABI wrappers.
  195         //
  196         // However, if it's given a linkname for exporting to
  197         // C, then we don't make ABI wrappers because the cgo
  198         // tool wants the original definition.
  199         hasBody := len(fn.Body) != 0
  200         if sym.Linkname != "" && (hasBody || hasDefABI) && len(cgoExport) == 0 {
  201             fn.ABIRefs |= obj.ABISetCallable
  202         }
  203 
  204         // Double check that cgo-exported symbols don't get
  205         // any wrappers.
  206         if len(cgoExport) > 0 && fn.ABIRefs&^obj.ABISetOf(fn.ABI) != 0 {
  207             base.Fatalf("cgo exported function %v cannot have ABI wrappers", fn)
  208         }
  209 
  210         if !buildcfg.Experiment.RegabiWrappers {
  211             continue
  212         }
  213 
  214         forEachWrapperABI(fn, makeABIWrapper)
  215     }
  216 }
  217 
  218 func forEachWrapperABI(fn *ir.Func, cb func(fn *ir.Func, wrapperABI obj.ABI)) {
  219     need := fn.ABIRefs &^ obj.ABISetOf(fn.ABI)
  220     if need == 0 {
  221         return
  222     }
  223 
  224     for wrapperABI := obj.ABI(0); wrapperABI < obj.ABICount; wrapperABI++ {
  225         if !need.Get(wrapperABI) {
  226             continue
  227         }
  228         cb(fn, wrapperABI)
  229     }
  230 }
  231 
  232 // makeABIWrapper creates a new function that will be called with
  233 // wrapperABI and calls "f" using f.ABI.
  234 func makeABIWrapper(f *ir.Func, wrapperABI obj.ABI) {
  235     if base.Debug.ABIWrap != 0 {
  236         fmt.Fprintf(os.Stderr, "=-= %v to %v wrapper for %v\n", wrapperABI, f.ABI, f)
  237     }
  238 
  239     // Q: is this needed?
  240     savepos := base.Pos
  241     savedclcontext := typecheck.DeclContext
  242     savedcurfn := ir.CurFunc
  243 
  244     base.Pos = base.AutogeneratedPos
  245     typecheck.DeclContext = ir.PEXTERN
  246 
  247     // At the moment we don't support wrapping a method, we'd need machinery
  248     // below to handle the receiver. Panic if we see this scenario.
  249     ft := f.Nname.Type()
  250     if ft.NumRecvs() != 0 {
  251         base.ErrorfAt(f.Pos(), "makeABIWrapper support for wrapping methods not implemented")
  252         return
  253     }
  254 
  255     // Reuse f's types.Sym to create a new ODCLFUNC/function.
  256     fn := typecheck.DeclFunc(f.Nname.Sym(), nil,
  257         typecheck.NewFuncParams(ft.Params(), true),
  258         typecheck.NewFuncParams(ft.Results(), false))
  259     fn.ABI = wrapperABI
  260 
  261     fn.SetABIWrapper(true)
  262     fn.SetDupok(true)
  263 
  264     // ABI0-to-ABIInternal wrappers will be mainly loading params from
  265     // stack into registers (and/or storing stack locations back to
  266     // registers after the wrapped call); in most cases they won't
  267     // need to allocate stack space, so it should be OK to mark them
  268     // as NOSPLIT in these cases. In addition, my assumption is that
  269     // functions written in assembly are NOSPLIT in most (but not all)
  270     // cases. In the case of an ABIInternal target that has too many
  271     // parameters to fit into registers, the wrapper would need to
  272     // allocate stack space, but this seems like an unlikely scenario.
  273     // Hence: mark these wrappers NOSPLIT.
  274     //
  275     // ABIInternal-to-ABI0 wrappers on the other hand will be taking
  276     // things in registers and pushing them onto the stack prior to
  277     // the ABI0 call, meaning that they will always need to allocate
  278     // stack space. If the compiler marks them as NOSPLIT this seems
  279     // as though it could lead to situations where the linker's
  280     // nosplit-overflow analysis would trigger a link failure. On the
  281     // other hand if they not tagged NOSPLIT then this could cause
  282     // problems when building the runtime (since there may be calls to
  283     // asm routine in cases where it's not safe to grow the stack). In
  284     // most cases the wrapper would be (in effect) inlined, but are
  285     // there (perhaps) indirect calls from the runtime that could run
  286     // into trouble here.
  287     // FIXME: at the moment all.bash does not pass when I leave out
  288     // NOSPLIT for these wrappers, so all are currently tagged with NOSPLIT.
  289     fn.Pragma |= ir.Nosplit
  290 
  291     // Generate call. Use tail call if no params and no returns,
  292     // but a regular call otherwise.
  293     //
  294     // Note: ideally we would be using a tail call in cases where
  295     // there are params but no returns for ABI0->ABIInternal wrappers,
  296     // provided that all params fit into registers (e.g. we don't have
  297     // to allocate any stack space). Doing this will require some
  298     // extra work in typecheck/walk/ssa, might want to add a new node
  299     // OTAILCALL or something to this effect.
  300     tailcall := fn.Type().NumResults() == 0 && fn.Type().NumParams() == 0 && fn.Type().NumRecvs() == 0
  301     if base.Ctxt.Arch.Name == "ppc64le" && base.Ctxt.Flag_dynlink {
  302         // cannot tailcall on PPC64 with dynamic linking, as we need
  303         // to restore R2 after call.
  304         tailcall = false
  305     }
  306     if base.Ctxt.Arch.Name == "amd64" && wrapperABI == obj.ABIInternal {
  307         // cannot tailcall from ABIInternal to ABI0 on AMD64, as we need
  308         // to special registers (X15) when returning to ABIInternal.
  309         tailcall = false
  310     }
  311 
  312     var tail ir.Node
  313     call := ir.NewCallExpr(base.Pos, ir.OCALL, f.Nname, nil)
  314     call.Args = ir.ParamNames(fn.Type())
  315     call.IsDDD = fn.Type().IsVariadic()
  316     tail = call
  317     if tailcall {
  318         tail = ir.NewTailCallStmt(base.Pos, call)
  319     } else if fn.Type().NumResults() > 0 {
  320         n := ir.NewReturnStmt(base.Pos, nil)
  321         n.Results = []ir.Node{call}
  322         tail = n
  323     }
  324     fn.Body.Append(tail)
  325 
  326     typecheck.FinishFuncBody()
  327     if base.Debug.DclStack != 0 {
  328         types.CheckDclstack()
  329     }
  330 
  331     typecheck.Func(fn)
  332     ir.CurFunc = fn
  333     typecheck.Stmts(fn.Body)
  334 
  335     typecheck.Target.Decls = append(typecheck.Target.Decls, fn)
  336 
  337     // Restore previous context.
  338     base.Pos = savepos
  339     typecheck.DeclContext = savedclcontext
  340     ir.CurFunc = savedcurfn
  341 }