Unresolved directive in ../Versions.asciidoc - include::{asciidoc-dir}/../../shared/versions/stack/{source_branch}.asciidoc[]
Unresolved directive in ../Versions.asciidoc - include::{asciidoc-dir}/../../shared/attributes.asciidoc[]
Preface
This section describes the Java API that Elasticsearch provides. All Elasticsearch operations are executed using a Client object. All operations are completely asynchronous in nature (either accepts a listener, or returns a future).
Additionally, operations on a client may be accumulated and executed in Bulk.
Note, all the APIs are exposed through the Java API (actually, the Java API is used internally to execute them).
Warning
|
We plan on deprecating the The Java High Level REST Client currently has support for the more commonly used APIs, but there are a lot more that still need to be added. You can help us prioritise by telling us which missing APIs you need for your application by adding a comment to this issue: Java high-level REST client completeness. Any missing APIs can always be implemented today by using the {java-rest}/java-rest-low.html[low level Java REST Client] with JSON request and response bodies. |
Javadoc
The javadoc for the transport client can be found at https://artifacts.elastic.co/javadoc/org/elasticsearch/client/transport/{version}/index.html.
Maven Repository
Elasticsearch is hosted on Maven Central.
For example, you can define the latest version in your pom.xml
file:
org.elasticsearch.client
transport
{version}
Lucene Snapshot repository
The very first releases of any major version (like a beta), might have been built on top of a Lucene Snapshot version. In such a case you will be unable to resolve the Lucene dependencies of the client.
For example, if you want to use the 6.0.0-beta1
version which depends on Lucene 7.0.0-snapshot-00142c9
, you must
define the following repository.
For Maven:
elastic-lucene-snapshots
Elastic Lucene Snapshots
https://s3.amazonaws.com/download.elasticsearch.org/lucenesnapshots/00142c9
true
false
For Gradle:
maven {
name "lucene-snapshots"
url 'https://s3.amazonaws.com/download.elasticsearch.org/lucenesnapshots/00142c9'
}
Log4j 2 Logger
You need to also include Log4j 2 dependencies:
org.apache.logging.log4j
log4j-core
2.17.1
And also provide a Log4j 2 configuration file in your classpath.
For example, you can add in your src/main/resources
project dir a log4j2.properties
file like:
appender.console.type = Console
appender.console.name = console
appender.console.layout.type = PatternLayout
appender.console.layout.pattern = [%d{ISO8601}][%-5p][%-25c] %marker%m%n
rootLogger.level = info
rootLogger.appenderRef.console.ref = console
Using another Logger
If you want to use another logger than Log4j 2, you can use SLF4J bridge to do that:
org.apache.logging.log4j
log4j-to-slf4j
2.17.1
org.slf4j
slf4j-api
1.7.24
This page lists implementations you can use. Pick your favorite logger
and add it as a dependency. As an example, we will use the slf4j-simple
logger:
org.slf4j
slf4j-simple
1.7.21
Client
You can use the Java client in multiple ways:
Obtaining an Elasticsearch Client
is simple. The most common way to
get a client is by creating a TransportClient
that connects to a cluster.
Important
|
The client must have the same major version (e.g. |
Warning
|
We plan on deprecating the The Java High Level REST Client currently has support for the more commonly used APIs, but there are a lot more that still need to be added. You can help us prioritise by telling us which missing APIs you need for your application by adding a comment to this issue: Java high-level REST client completeness. Any missing APIs can always be implemented today by using the {java-rest}/java-rest-low.html[low level Java REST Client] with JSON request and response bodies. |
Transport Client
The TransportClient
connects remotely to an Elasticsearch cluster
using the transport module. It does not join the cluster, but simply
gets one or more initial transport addresses and communicates with them
in round robin fashion on each action (though most actions will probably
be "two hop" operations).
// on startup
TransportClient client = new PreBuiltTransportClient(Settings.EMPTY)
.addTransportAddress(new TransportAddress(InetAddress.getByName("host1"), 9300))
.addTransportAddress(new TransportAddress(InetAddress.getByName("host2"), 9300));
// on shutdown
client.close();
Note that you have to set the cluster name if you use one different than "elasticsearch":
Settings settings = Settings.builder()
.put("cluster.name", "myClusterName").build();
TransportClient client = new PreBuiltTransportClient(settings);
//Add transport addresses and do something with the client...
The Transport client comes with a cluster sniffing feature which
allows it to dynamically add new hosts and remove old ones.
When sniffing is enabled, the transport client will connect to the nodes in its
internal node list, which is built via calls to addTransportAddress
.
After this, the client will call the internal cluster state API on those nodes
to discover available data nodes. The internal node list of the client will
be replaced with those data nodes only. This list is refreshed every five seconds by default.
Note that the IP addresses the sniffer connects to are the ones declared as the 'publish'
address in those node’s Elasticsearch config.
Keep in mind that the list might possibly not include the original node it connected to if that node is not a data node. If, for instance, you initially connect to a master node, after sniffing, no further requests will go to that master node, but rather to any data nodes instead. The reason the transport client excludes non-data nodes is to avoid sending search traffic to master only nodes.
In order to enable sniffing, set client.transport.sniff
to true
:
Settings settings = Settings.builder()
.put("client.transport.sniff", true).build();
TransportClient client = new PreBuiltTransportClient(settings);
Other transport client level settings include:
Parameter | Description |
---|---|
|
Set to |
|
The time to wait for a ping response
from a node. Defaults to |
|
How often to sample / ping
the nodes listed and connected. Defaults to |
Connecting a Client to a Coordinating Only Node
You can start locally a {ref}/modules-node.html#coordinating-only-node[Coordinating Only Node]
and then simply create a TransportClient
in your
application which connects to this Coordinating Only Node.
This way, the coordinating only node will be able to load whatever plugin you need (think about discovery plugins for example).
Document APIs
This section describes the following CRUD APIs:
Note
|
All CRUD APIs are single-index APIs. The index parameter accepts a single
index name, or an alias which points to a single index.
|
Index API
The index API allows one to index a typed JSON document into a specific index and make it searchable.
Generate JSON document
There are several different ways of generating a JSON document:
-
Manually (aka do it yourself) using native
byte[]
or as aString
-
Using a
Map
that will be automatically converted to its JSON equivalent -
Using a third party library to serialize your beans such as Jackson
-
Using built-in helpers XContentFactory.jsonBuilder()
Internally, each type is converted to byte[]
(so a String is converted
to a byte[]
). Therefore, if the object is in this form already, then
use it. The jsonBuilder
is highly optimized JSON generator that
directly constructs a byte[]
.
Do It Yourself
Nothing really difficult here but note that you will have to encode dates according to the {ref}/mapping-date-format.html[Date Format].
String json = "{" +
"\"user\":\"kimchy\"," +
"\"postDate\":\"2013-01-30\"," +
"\"message\":\"trying out Elasticsearch\"" +
"}";
Using Map
Map is a key:values pair collection. It represents a JSON structure:
Map<String, Object> json = new HashMap<String, Object>();
json.put("user","kimchy");
json.put("postDate",new Date());
json.put("message","trying out Elasticsearch");
Serialize your beans
You can use Jackson to serialize
your beans to JSON. Please add Jackson Databind
to your project. Then you can use ObjectMapper
to serialize your beans:
import com.fasterxml.jackson.databind.*;
// instance a json mapper
ObjectMapper mapper = new ObjectMapper(); // create once, reuse
// generate json
byte[] json = mapper.writeValueAsBytes(yourbeaninstance);
Use Elasticsearch helpers
Elasticsearch provides built-in helpers to generate JSON content.
import static org.elasticsearch.common.xcontent.XContentFactory.*;
XContentBuilder builder = jsonBuilder()
.startObject()
.field("user", "kimchy")
.field("postDate", new Date())
.field("message", "trying out Elasticsearch")
.endObject()
Note that you can also add arrays with startArray(String)
and
endArray()
methods. By the way, the field
method
accepts many object types. You can directly pass numbers, dates and even
other XContentBuilder objects.
If you need to see the generated JSON content, you can use the
Strings.toString()
method.
import org.elasticsearch.common.Strings;
String json = Strings.toString(builder);
Index document
The following example indexes a JSON document into an index called
twitter, under a type called _doc`
, with id valued 1:
import static org.elasticsearch.common.xcontent.XContentFactory.*;
IndexResponse response = client.prepareIndex("twitter", "_doc", "1")
.setSource(jsonBuilder()
.startObject()
.field("user", "kimchy")
.field("postDate", new Date())
.field("message", "trying out Elasticsearch")
.endObject()
)
.get();
Note that you can also index your documents as JSON String and that you don’t have to give an ID:
String json = "{" +
"\"user\":\"kimchy\"," +
"\"postDate\":\"2013-01-30\"," +
"\"message\":\"trying out Elasticsearch\"" +
"}";
IndexResponse response = client.prepareIndex("twitter", "_doc")
.setSource(json, XContentType.JSON)
.get();
IndexResponse
object will give you a report:
// Index name
String _index = response.getIndex();
// Type name
String _type = response.getType();
// Document ID (generated or not)
String _id = response.getId();
// Version (if it's the first time you index this document, you will get: 1)
long _version = response.getVersion();
// status has stored current instance statement.
RestStatus status = response.status();
For more information on the index operation, check out the REST {ref}/docs-index_.html[index] docs.
Get API
The get API allows to get a typed JSON document from the index based on
its id. The following example gets a JSON document from an index called
twitter, under a type called _doc`
, with id valued 1:
GetResponse response = client.prepareGet("twitter", "_doc", "1").get();
For more information on the get operation, check out the REST {ref}/docs-get.html[get] docs.
Delete API
The delete API allows one to delete a typed JSON document from a specific
index based on its id. The following example deletes the JSON document
from an index called twitter, under a type called _doc
, with id valued
1:
DeleteResponse response = client.prepareDelete("twitter", "_doc", "1").get();
For more information on the delete operation, check out the {ref}/docs-delete.html[delete API] docs.
Delete By Query API
The delete by query API allows one to delete a given set of documents based on the result of a query:
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../modules/reindex/src/test/java/org/elasticsearch/client/documentation/ReindexDocumentationIT.java[delete-by-query-sync]
-
query
-
index
-
execute the operation
-
number of deleted documents
As it can be a long running operation, if you wish to do it asynchronously, you can call execute
instead of get
and provide a listener like:
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../modules/reindex/src/test/java/org/elasticsearch/client/documentation/ReindexDocumentationIT.java[delete-by-query-async]
-
query
-
index
-
listener
-
number of deleted documents
Update API
You can either create an UpdateRequest
and send it to the client:
UpdateRequest updateRequest = new UpdateRequest();
updateRequest.index("index");
updateRequest.type("_doc");
updateRequest.id("1");
updateRequest.doc(jsonBuilder()
.startObject()
.field("gender", "male")
.endObject());
client.update(updateRequest).get();
Or you can use prepareUpdate()
method:
client.prepareUpdate("ttl", "doc", "1")
.setScript(new Script(
"ctx._source.gender = \"male\"", (1)
ScriptService.ScriptType.INLINE, null, null))
.get();
client.prepareUpdate("ttl", "doc", "1")
.setDoc(jsonBuilder() (2)
.startObject()
.field("gender", "male")
.endObject())
.get();
-
Your script. It could also be a locally stored script name. In that case, you’ll need to use
ScriptService.ScriptType.FILE
-
Document which will be merged to the existing one.
Note that you can’t provide both script
and doc
.
Update by script
The update API allows to update a document based on a script provided:
UpdateRequest updateRequest = new UpdateRequest("ttl", "doc", "1")
.script(new Script("ctx._source.gender = \"male\""));
client.update(updateRequest).get();
Update by merging documents
The update API also support passing a partial document, which will be merged into the existing document (simple recursive merge, inner merging of objects, replacing core "keys/values" and arrays). For example:
UpdateRequest updateRequest = new UpdateRequest("index", "type", "1")
.doc(jsonBuilder()
.startObject()
.field("gender", "male")
.endObject());
client.update(updateRequest).get();
Upsert
There is also support for upsert
. If the document does not exist, the content of the upsert
element will be used to index the fresh doc:
IndexRequest indexRequest = new IndexRequest("index", "type", "1")
.source(jsonBuilder()
.startObject()
.field("name", "Joe Smith")
.field("gender", "male")
.endObject());
UpdateRequest updateRequest = new UpdateRequest("index", "type", "1")
.doc(jsonBuilder()
.startObject()
.field("gender", "male")
.endObject())
.upsert(indexRequest); (1)
client.update(updateRequest).get();
-
If the document does not exist, the one in
indexRequest
will be added
If the document index/_doc/1
already exists, we will have after this operation a document like:
{
"name" : "Joe Dalton",
"gender": "male" (1)
}
-
This field is added by the update request
If it does not exist, we will have a new document:
{
"name" : "Joe Smith",
"gender": "male"
}
Multi Get API
The multi get API allows to get a list of documents based on their index
and id
:
MultiGetResponse multiGetItemResponses = client.prepareMultiGet()
.add("twitter", "_doc", "1") (1)
.add("twitter", "_doc", "2", "3", "4") (2)
.add("another", "_doc", "foo") (3)
.get();
for (MultiGetItemResponse itemResponse : multiGetItemResponses) { (4)
GetResponse response = itemResponse.getResponse();
if (response.isExists()) { (5)
String json = response.getSourceAsString(); (6)
}
}
-
get by a single id
-
or by a list of ids for the same index
-
you can also get from another index
-
iterate over the result set
-
you can check if the document exists
-
access to the
_source
field
For more information on the multi get operation, check out the REST {ref}/docs-multi-get.html[multi get] docs.
Bulk API
The bulk API allows one to index and delete several documents in a single request. Here is a sample usage:
import static org.elasticsearch.common.xcontent.XContentFactory.*;
BulkRequestBuilder bulkRequest = client.prepareBulk();
// either use client#prepare, or use Requests# to directly build index/delete requests
bulkRequest.add(client.prepareIndex("twitter", "_doc", "1")
.setSource(jsonBuilder()
.startObject()
.field("user", "kimchy")
.field("postDate", new Date())
.field("message", "trying out Elasticsearch")
.endObject()
)
);
bulkRequest.add(client.prepareIndex("twitter", "_doc", "2")
.setSource(jsonBuilder()
.startObject()
.field("user", "kimchy")
.field("postDate", new Date())
.field("message", "another post")
.endObject()
)
);
BulkResponse bulkResponse = bulkRequest.get();
if (bulkResponse.hasFailures()) {
// process failures by iterating through each bulk response item
}
Using Bulk Processor
The BulkProcessor
class offers a simple interface to flush bulk operations automatically based on the number or size
of requests, or after a given period.
To use it, first create a BulkProcessor
instance:
import org.elasticsearch.action.bulk.BackoffPolicy;
import org.elasticsearch.action.bulk.BulkProcessor;
import org.elasticsearch.common.unit.ByteSizeUnit;
import org.elasticsearch.common.unit.ByteSizeValue;
import org.elasticsearch.common.unit.TimeValue;
BulkProcessor bulkProcessor = BulkProcessor.builder(
client, (1)
new BulkProcessor.Listener() {
@Override
public void beforeBulk(long executionId,
BulkRequest request) { ... } (2)
@Override
public void afterBulk(long executionId,
BulkRequest request,
BulkResponse response) { ... } (3)
@Override
public void afterBulk(long executionId,
BulkRequest request,
Throwable failure) { ... } (4)
})
.setBulkActions(10000) (5)
.setBulkSize(new ByteSizeValue(5, ByteSizeUnit.MB)) (6)
.setFlushInterval(TimeValue.timeValueSeconds(5)) (7)
.setConcurrentRequests(1) (8)
.setBackoffPolicy(
BackoffPolicy.exponentialBackoff(TimeValue.timeValueMillis(100), 3)) (9)
.build();
-
Add your Elasticsearch client
-
This method is called just before bulk is executed. You can for example see the numberOfActions with
request.numberOfActions()
-
This method is called after bulk execution. You can for example check if there was some failing requests with
response.hasFailures()
-
This method is called when the bulk failed and raised a
Throwable
-
We want to execute the bulk every 10 000 requests
-
We want to flush the bulk every 5mb
-
We want to flush the bulk every 5 seconds whatever the number of requests
-
Set the number of concurrent requests. A value of 0 means that only a single request will be allowed to be executed. A value of 1 means 1 concurrent request is allowed to be executed while accumulating new bulk requests.
-
Set a custom backoff policy which will initially wait for 100ms, increase exponentially and retries up to three times. A retry is attempted whenever one or more bulk item requests have failed with an
EsRejectedExecutionException
which indicates that there were too little compute resources available for processing the request. To disable backoff, passBackoffPolicy.noBackoff()
.
By default, BulkProcessor
:
-
sets bulkActions to
1000
-
sets bulkSize to
5mb
-
does not set flushInterval
-
sets concurrentRequests to 1, which means an asynchronous execution of the flush operation.
-
sets backoffPolicy to an exponential backoff with 8 retries and a start delay of 50ms. The total wait time is roughly 5.1 seconds.
Add requests
Then you can simply add your requests to the BulkProcessor
:
bulkProcessor.add(new IndexRequest("twitter", "_doc", "1").source(/* your doc here */));
bulkProcessor.add(new DeleteRequest("twitter", "_doc", "2"));
Closing the Bulk Processor
When all documents are loaded to the BulkProcessor
it can be closed by using awaitClose
or close
methods:
bulkProcessor.awaitClose(10, TimeUnit.MINUTES);
or
bulkProcessor.close();
Both methods flush any remaining documents and disable all other scheduled flushes if they were scheduled by setting
flushInterval
. If concurrent requests were enabled the awaitClose
method waits for up to the specified timeout for
all bulk requests to complete then returns true
, if the specified waiting time elapses before all bulk requests complete,
false
is returned. The close
method doesn’t wait for any remaining bulk requests to complete and exits immediately.
Using Bulk Processor in tests
If you are running tests with Elasticsearch and are using the BulkProcessor
to populate your dataset
you should better set the number of concurrent requests to 0
so the flush operation of the bulk will be executed
in a synchronous manner:
BulkProcessor bulkProcessor = BulkProcessor.builder(client, new BulkProcessor.Listener() { /* Listener methods */ })
.setBulkActions(10000)
.setConcurrentRequests(0)
.build();
// Add your requests
bulkProcessor.add(/* Your requests */);
// Flush any remaining requests
bulkProcessor.flush();
// Or close the bulkProcessor if you don't need it anymore
bulkProcessor.close();
// Refresh your indices
client.admin().indices().prepareRefresh().get();
// Now you can start searching!
client.prepareSearch().get();
Global Parameters
Global parameters can be specified on the BulkRequest as well as BulkProcessor, similar to the REST API. These global parameters serve as defaults and can be overridden by local parameters specified on each sub request. Some parameters have to be set before any sub request is added - index, type - and you have to specify them during BulkRequest or BulkProcessor creation. Some are optional - pipeline, routing - and can be specified at any point before the bulk is sent.
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/BulkProcessorIT.java[bulk-processor-mix-parameters]
-
global parameters from the BulkRequest will be applied on a sub request
-
local pipeline parameter on a sub request will override global parameters from BulkRequest
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/BulkRequestWithGlobalParametersIT.java[bulk-request-mix-pipeline]
-
local pipeline parameter on a sub request will override global pipeline from the BulkRequest
-
global parameter from the BulkRequest will be applied on a sub request
Update By Query API
The simplest usage of updateByQuery
updates each
document in an index without changing the source. This usage enables
picking up a new property or another online mapping change.
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../modules/reindex/src/test/java/org/elasticsearch/client/documentation/ReindexDocumentationIT.java[update-by-query]
Calls to the updateByQuery
API start by getting a snapshot of the index, indexing
any documents found using the internal
versioning.
Note
|
Version conflicts happen when a document changes between the time of the snapshot and the time the index request processes. |
When the versions match, updateByQuery
updates the document
and increments the version number.
All update and query failures cause updateByQuery
to abort. These failures are
available from the BulkByScrollResponse#getIndexingFailures
method. Any
successful updates remain and are not rolled back. While the first failure
causes the abort, the response contains all of the failures generated by the
failed bulk request.
To prevent version conflicts from causing updateByQuery
to abort, set
abortOnVersionConflict(false)
. The first example does this because it is
trying to pick up an online mapping change and a version conflict means that
the conflicting document was updated between the start of the updateByQuery
and the time when it attempted to update the document. This is fine because
that update will have picked up the online mapping update.
The UpdateByQueryRequestBuilder
API supports filtering the updated documents,
limiting the total number of documents to update, and updating documents
with a script:
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../modules/reindex/src/test/java/org/elasticsearch/client/documentation/ReindexDocumentationIT.java[update-by-query-filter]
UpdateByQueryRequestBuilder
also enables direct access to the query used
to select the documents. You can use this access to change the default scroll size or
otherwise modify the request for matching documents.
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../modules/reindex/src/test/java/org/elasticsearch/client/documentation/ReindexDocumentationIT.java[update-by-query-size]
You can also combine size
with sorting to limit the documents updated:
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../modules/reindex/src/test/java/org/elasticsearch/client/documentation/ReindexDocumentationIT.java[update-by-query-sort]
In addition to changing the _source
field for the document, you can use a
script to change the action, similar to the Update API:
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../modules/reindex/src/test/java/org/elasticsearch/client/documentation/ReindexDocumentationIT.java[update-by-query-script]
As in the Update API, you can set the value of ctx.op
to change the
operation that executes:
noop
-
Set
ctx.op = "noop"
if your script doesn’t make any changes. TheupdateByQuery
operation then omits that document from the updates. This behavior increments thenoop
counter in the response body. delete
-
Set
ctx.op = "delete"
if your script decides that the document must be deleted. The deletion will be reported in thedeleted
counter in the response body.
Setting ctx.op
to any other value generates an error. Setting any
other field in ctx
generates an error.
This API doesn’t allow you to move the documents it touches, just modify their source. This is intentional! We’ve made no provisions for removing the document from its original location.
You can also perform these operations on multiple indices and types at once, similar to the search API:
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../modules/reindex/src/test/java/org/elasticsearch/client/documentation/ReindexDocumentationIT.java[update-by-query-multi-index]
If you provide a routing
value then the process copies the routing value to the scroll query,
limiting the process to the shards that match that routing value:
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../modules/reindex/src/test/java/org/elasticsearch/client/documentation/ReindexDocumentationIT.java[update-by-query-routing]
updateByQuery
can also use the ingest node by
specifying a pipeline
like this:
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../modules/reindex/src/test/java/org/elasticsearch/client/documentation/ReindexDocumentationIT.java[update-by-query-pipeline]
Works with the Task API
You can fetch the status of all running update-by-query requests with the Task API:
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../modules/reindex/src/test/java/org/elasticsearch/client/documentation/ReindexDocumentationIT.java[update-by-query-list-tasks]
With the TaskId
shown above you can look up the task directly:
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../modules/reindex/src/test/java/org/elasticsearch/client/documentation/ReindexDocumentationIT.java[update-by-query-get-task]
Works with the Cancel Task API
Any Update By Query can be canceled using the Task Cancel API:
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../modules/reindex/src/test/java/org/elasticsearch/client/documentation/ReindexDocumentationIT.java[update-by-query-cancel-task]
Use the list tasks
API to find the value of taskId
.
Cancelling a request is typically a very fast process but can take up to a few seconds. The task status API continues to list the task until the cancellation is complete.
Rethrottling
Use the _rethrottle
API to change the value of requests_per_second
on a running update:
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../modules/reindex/src/test/java/org/elasticsearch/client/documentation/ReindexDocumentationIT.java[update-by-query-rethrottle]
Use the list tasks
API to find the value of taskId
.
As with the updateByQuery
API, the value of requests_per_second
can be any positive float value to set the level of the throttle, or Float.POSITIVE_INFINITY
to disable throttling.
A value of requests_per_second
that speeds up the process takes
effect immediately. requests_per_second
values that slow the query take effect
after completing the current batch in order to prevent scroll timeouts.
Reindex API
See {ref}/docs-reindex.html[reindex API].
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../modules/reindex/src/test/java/org/elasticsearch/client/documentation/ReindexDocumentationIT.java[reindex1]
-
Optionally a query can provided to filter what documents should be re-indexed from the source to the target index.
Search API
The search API allows one to execute a search query and get back search hits
that match the query. It can be executed across one or more indices and
across one or more types. The query can be provided using the query Java API.
The body of the search request is built using the SearchSourceBuilder
. Here is an example:
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.action.search.SearchType;
import org.elasticsearch.index.query.QueryBuilders.*;
SearchResponse response = client.prepareSearch("index1", "index2")
.setSearchType(SearchType.DFS_QUERY_THEN_FETCH)
.setQuery(QueryBuilders.termQuery("multi", "test")) // Query
.setPostFilter(QueryBuilders.rangeQuery("age").from(12).to(18)) // Filter
.setFrom(0).setSize(60).setExplain(true)
.get();
Note that all parameters are optional. Here is the smallest search call you can write:
// MatchAll on the whole cluster with all default options
SearchResponse response = client.prepareSearch().get();
Note
|
Although the Java API defines the additional search types QUERY_AND_FETCH and DFS_QUERY_AND_FETCH, these modes are internal optimizations and should not be specified explicitly by users of the API. |
For more information on the search operation, check out the REST {ref}/search.html[search] docs.
Using scrolls in Java
Read the {ref}/search-request-scroll.html[scroll documentation] first!
import static org.elasticsearch.index.query.QueryBuilders.*;
QueryBuilder qb = termQuery("multi", "test");
SearchResponse scrollResp = client.prepareSearch(test)
.addSort(FieldSortBuilder.DOC_FIELD_NAME, SortOrder.ASC)
.setScroll(new TimeValue(60000))
.setQuery(qb)
.setSize(100).get(); //max of 100 hits will be returned for each scroll
//Scroll until no hits are returned
do {
for (SearchHit hit : scrollResp.getHits().getHits()) {
//Handle the hit...
}
scrollResp = client.prepareSearchScroll(scrollResp.getScrollId()).setScroll(new TimeValue(60000)).execute().actionGet();
} while(scrollResp.getHits().getHits().length != 0); // Zero hits mark the end of the scroll and the while loop.
MultiSearch API
See {ref}/search-multi-search.html[MultiSearch API Query] documentation
SearchRequestBuilder srb1 = client
.prepareSearch().setQuery(QueryBuilders.queryStringQuery("elasticsearch")).setSize(1);
SearchRequestBuilder srb2 = client
.prepareSearch().setQuery(QueryBuilders.matchQuery("name", "kimchy")).setSize(1);
MultiSearchResponse sr = client.prepareMultiSearch()
.add(srb1)
.add(srb2)
.get();
// You will get all individual responses from MultiSearchResponse#getResponses()
long nbHits = 0;
for (MultiSearchResponse.Item item : sr.getResponses()) {
SearchResponse response = item.getResponse();
nbHits += response.getHits().getTotalHits();
}
Using Aggregations
The following code shows how to add two aggregations within your search:
SearchResponse sr = client.prepareSearch()
.setQuery(QueryBuilders.matchAllQuery())
.addAggregation(
AggregationBuilders.terms("agg1").field("field")
)
.addAggregation(
AggregationBuilders.dateHistogram("agg2")
.field("birth")
.dateHistogramInterval(DateHistogramInterval.YEAR)
)
.get();
// Get your facet results
Terms agg1 = sr.getAggregations().get("agg1");
Histogram agg2 = sr.getAggregations().get("agg2");
See Aggregations Java API documentation for details.
Terminate After
The maximum number of documents to collect for each shard, upon reaching which the query execution will terminate early.
If set, you will be able to check if the operation terminated early by asking for isTerminatedEarly()
in the
SearchResponse
object:
SearchResponse sr = client.prepareSearch(INDEX)
.setTerminateAfter(1000) (1)
.get();
if (sr.isTerminatedEarly()) {
// We finished early
}
-
Finish after 1000 docs
Search Template
See {ref}/search-template.html[Search Template] documentation
Define your template parameters as a Map<String,Object>
:
Map<String, Object> template_params = new HashMap<>();
template_params.put("param_gender", "male");
You can use your stored search templates in config/scripts
.
For example, if you have a file named config/scripts/template_gender.mustache
containing:
{
"query" : {
"match" : {
"gender" : "{{param_gender}}"
}
}
}
Create your search template request:
SearchResponse sr = new SearchTemplateRequestBuilder(client)
.setScript("template_gender") (1)
.setScriptType(ScriptService.ScriptType.FILE) (2)
.setScriptParams(template_params) (3)
.setRequest(new SearchRequest()) (4)
.get() (5)
.getResponse(); (6)
-
template name
-
template stored on disk in
gender_template.mustache
-
parameters
-
set the execution context (ie. define the index name here)
-
execute and get the template response
-
get from the template response the search response itself
You can also store your template in the cluster state:
client.admin().cluster().preparePutStoredScript()
.setScriptLang("mustache")
.setId("template_gender")
.setSource(new BytesArray(
"{\n" +
" \"query\" : {\n" +
" \"match\" : {\n" +
" \"gender\" : \"{{param_gender}}\"\n" +
" }\n" +
" }\n" +
"}")).get();
To execute a stored templates, use ScriptService.ScriptType.STORED
:
SearchResponse sr = new SearchTemplateRequestBuilder(client)
.setScript("template_gender") (1)
.setScriptType(ScriptType.STORED) (2)
.setScriptParams(template_params) (3)
.setRequest(new SearchRequest()) (4)
.get() (5)
.getResponse(); (6)
-
template name
-
template stored in the cluster state
-
parameters
-
set the execution context (ie. define the index name here)
-
execute and get the template response
-
get from the template response the search response itself
You can also execute inline templates:
sr = new SearchTemplateRequestBuilder(client)
.setScript("{\n" + (1)
" \"query\" : {\n" +
" \"match\" : {\n" +
" \"gender\" : \"{{param_gender}}\"\n" +
" }\n" +
" }\n" +
"}")
.setScriptType(ScriptType.INLINE) (2)
.setScriptParams(template_params) (3)
.setRequest(new SearchRequest()) (4)
.get() (5)
.getResponse(); (6)
-
template’s body
-
template is passed inline
-
parameters
-
set the execution context (ie. define the index name here)
-
execute and get the template response
-
get from the template response the search response itself
Aggregations
Elasticsearch provides a full Java API to play with aggregations. See the {ref}/search-aggregations.html[Aggregations guide].
Use the factory for aggregation builders (AggregationBuilders
) and add each aggregation
you want to compute when querying and add it to your search request:
SearchResponse sr = node.client().prepareSearch()
.setQuery( /* your query */ )
.addAggregation( /* add an aggregation */ )
.execute().actionGet();
Note that you can add more than one aggregation. See {ref}/search-search.html[Search Java API] for details.
To build aggregation requests, use AggregationBuilders
helpers. Just import them
in your class:
import org.elasticsearch.search.aggregations.AggregationBuilders;
Structuring aggregations
As explained in the {ref}/search-aggregations.html[Aggregations guide], you can define sub aggregations inside an aggregation.
An aggregation could be a metrics aggregation or a bucket aggregation.
For example, here is a 3 levels aggregation composed of:
-
Terms aggregation (bucket)
-
Date Histogram aggregation (bucket)
-
Average aggregation (metric)
SearchResponse sr = node.client().prepareSearch()
.addAggregation(
AggregationBuilders.terms("by_country").field("country")
.subAggregation(AggregationBuilders.dateHistogram("by_year")
.field("dateOfBirth")
.dateHistogramInterval(DateHistogramInterval.YEAR)
.subAggregation(AggregationBuilders.avg("avg_children").field("children"))
)
)
.execute().actionGet();
Metrics aggregations
Min Aggregation
Here is how you can use {ref}/search-aggregations-metrics-min-aggregation.html[Min Aggregation] with Java API.
Prepare aggregation request
Here is an example on how to create the aggregation request:
MinAggregationBuilder aggregation =
AggregationBuilders
.min("agg")
.field("height");
Use aggregation response
Import Aggregation definition classes:
import org.elasticsearch.search.aggregations.metrics.min.Min;
// sr is here your SearchResponse object
Min agg = sr.getAggregations().get("agg");
double value = agg.getValue();
Max Aggregation
Here is how you can use {ref}/search-aggregations-metrics-max-aggregation.html[Max Aggregation] with Java API.
Prepare aggregation request
Here is an example on how to create the aggregation request:
MaxAggregationBuilder aggregation =
AggregationBuilders
.max("agg")
.field("height");
Use aggregation response
Import Aggregation definition classes:
import org.elasticsearch.search.aggregations.metrics.max.Max;
// sr is here your SearchResponse object
Max agg = sr.getAggregations().get("agg");
double value = agg.getValue();
Sum Aggregation
Here is how you can use {ref}/search-aggregations-metrics-sum-aggregation.html[Sum Aggregation] with Java API.
Prepare aggregation request
Here is an example on how to create the aggregation request:
SumAggregationBuilder aggregation =
AggregationBuilders
.sum("agg")
.field("height");
Use aggregation response
Import Aggregation definition classes:
import org.elasticsearch.search.aggregations.metrics.sum.Sum;
// sr is here your SearchResponse object
Sum agg = sr.getAggregations().get("agg");
double value = agg.getValue();
Avg Aggregation
Here is how you can use {ref}/search-aggregations-metrics-avg-aggregation.html[Avg Aggregation] with Java API.
Prepare aggregation request
Here is an example on how to create the aggregation request:
AvgAggregationBuilder aggregation =
AggregationBuilders
.avg("agg")
.field("height");
Use aggregation response
Import Aggregation definition classes:
import org.elasticsearch.search.aggregations.metrics.avg.Avg;
// sr is here your SearchResponse object
Avg agg = sr.getAggregations().get("agg");
double value = agg.getValue();
Stats Aggregation
Here is how you can use {ref}/search-aggregations-metrics-stats-aggregation.html[Stats Aggregation] with Java API.
Prepare aggregation request
Here is an example on how to create the aggregation request:
StatsAggregationBuilder aggregation =
AggregationBuilders
.stats("agg")
.field("height");
Use aggregation response
Import Aggregation definition classes:
import org.elasticsearch.search.aggregations.metrics.stats.Stats;
// sr is here your SearchResponse object
Stats agg = sr.getAggregations().get("agg");
double min = agg.getMin();
double max = agg.getMax();
double avg = agg.getAvg();
double sum = agg.getSum();
long count = agg.getCount();
Extended Stats Aggregation
Here is how you can use {ref}/search-aggregations-metrics-extendedstats-aggregation.html[Extended Stats Aggregation] with Java API.
Prepare aggregation request
Here is an example on how to create the aggregation request:
ExtendedStatsAggregationBuilder aggregation =
AggregationBuilders
.extendedStats("agg")
.field("height");
Use aggregation response
Import Aggregation definition classes:
import org.elasticsearch.search.aggregations.metrics.stats.extended.ExtendedStats;
// sr is here your SearchResponse object
ExtendedStats agg = sr.getAggregations().get("agg");
double min = agg.getMin();
double max = agg.getMax();
double avg = agg.getAvg();
double sum = agg.getSum();
long count = agg.getCount();
double stdDeviation = agg.getStdDeviation();
double sumOfSquares = agg.getSumOfSquares();
double variance = agg.getVariance();
Value Count Aggregation
Here is how you can use {ref}/search-aggregations-metrics-valuecount-aggregation.html[Value Count Aggregation] with Java API.
Prepare aggregation request
Here is an example on how to create the aggregation request:
ValueCountAggregationBuilder aggregation =
AggregationBuilders
.count("agg")
.field("height");
Use aggregation response
Import Aggregation definition classes:
import org.elasticsearch.search.aggregations.metrics.valuecount.ValueCount;
// sr is here your SearchResponse object
ValueCount agg = sr.getAggregations().get("agg");
long value = agg.getValue();
Percentile Aggregation
Here is how you can use {ref}/search-aggregations-metrics-percentile-aggregation.html[Percentile Aggregation] with Java API.
Prepare aggregation request
Here is an example on how to create the aggregation request:
PercentilesAggregationBuilder aggregation =
AggregationBuilders
.percentiles("agg")
.field("height");
You can provide your own percentiles instead of using defaults:
PercentilesAggregationBuilder aggregation =
AggregationBuilders
.percentiles("agg")
.field("height")
.percentiles(1.0, 5.0, 10.0, 20.0, 30.0, 75.0, 95.0, 99.0);
Use aggregation response
Import Aggregation definition classes:
import org.elasticsearch.search.aggregations.metrics.percentiles.Percentile;
import org.elasticsearch.search.aggregations.metrics.percentiles.Percentiles;
// sr is here your SearchResponse object
Percentiles agg = sr.getAggregations().get("agg");
// For each entry
for (Percentile entry : agg) {
double percent = entry.getPercent(); // Percent
double value = entry.getValue(); // Value
logger.info("percent [{}], value [{}]", percent, value);
}
This will basically produce for the first example:
percent [1.0], value [0.814338896154595]
percent [5.0], value [0.8761912455821302]
percent [25.0], value [1.173346540141847]
percent [50.0], value [1.5432023318692198]
percent [75.0], value [1.923915462033674]
percent [95.0], value [2.2273644908535335]
percent [99.0], value [2.284989339108279]
Percentile Ranks Aggregation
Here is how you can use {ref}/search-aggregations-metrics-percentile-rank-aggregation.html[Percentile Ranks Aggregation] with Java API.
Prepare aggregation request
Here is an example on how to create the aggregation request:
PercentileRanksAggregationBuilder aggregation =
AggregationBuilders
.percentileRanks("agg")
.field("height")
.values(1.24, 1.91, 2.22);
Use aggregation response
Import Aggregation definition classes:
import org.elasticsearch.search.aggregations.metrics.percentiles.Percentile;
import org.elasticsearch.search.aggregations.metrics.percentiles.PercentileRanks;
// sr is here your SearchResponse object
PercentileRanks agg = sr.getAggregations().get("agg");
// For each entry
for (Percentile entry : agg) {
double percent = entry.getPercent(); // Percent
double value = entry.getValue(); // Value
logger.info("percent [{}], value [{}]", percent, value);
}
This will basically produce:
percent [29.664353095090945], value [1.24]
percent [73.9335313461868], value [1.91]
percent [94.40095147327283], value [2.22]
Cardinality Aggregation
Here is how you can use {ref}/search-aggregations-metrics-cardinality-aggregation.html[Cardinality Aggregation] with Java API.
Prepare aggregation request
Here is an example on how to create the aggregation request:
CardinalityAggregationBuilder aggregation =
AggregationBuilders
.cardinality("agg")
.field("tags");
Use aggregation response
Import Aggregation definition classes:
import org.elasticsearch.search.aggregations.metrics.cardinality.Cardinality;
// sr is here your SearchResponse object
Cardinality agg = sr.getAggregations().get("agg");
long value = agg.getValue();
Geo Bounds Aggregation
Here is how you can use {ref}/search-aggregations-metrics-geobounds-aggregation.html[Geo Bounds Aggregation] with Java API.
Prepare aggregation request
Here is an example on how to create the aggregation request:
GeoBoundsBuilder aggregation =
GeoBoundsAggregationBuilder
.geoBounds("agg")
.field("address.location")
.wrapLongitude(true);
Use aggregation response
Import Aggregation definition classes:
import org.elasticsearch.search.aggregations.metrics.geobounds.GeoBounds;
// sr is here your SearchResponse object
GeoBounds agg = sr.getAggregations().get("agg");
GeoPoint bottomRight = agg.bottomRight();
GeoPoint topLeft = agg.topLeft();
logger.info("bottomRight {}, topLeft {}", bottomRight, topLeft);
This will basically produce:
bottomRight [40.70500764381921, 13.952946866893775], topLeft [53.49603022435221, -4.190029308156676]
Top Hits Aggregation
Here is how you can use {ref}/search-aggregations-metrics-top-hits-aggregation.html[Top Hits Aggregation] with Java API.
Prepare aggregation request
Here is an example on how to create the aggregation request:
AggregationBuilder aggregation =
AggregationBuilders
.terms("agg").field("gender")
.subAggregation(
AggregationBuilders.topHits("top")
);
You can use most of the options available for standard search such as from
, size
, sort
, highlight
, explain
…
AggregationBuilder aggregation =
AggregationBuilders
.terms("agg").field("gender")
.subAggregation(
AggregationBuilders.topHits("top")
.explain(true)
.size(1)
.from(10)
);
Use aggregation response
Import Aggregation definition classes:
import org.elasticsearch.search.aggregations.bucket.terms.Terms;
import org.elasticsearch.search.aggregations.metrics.tophits.TopHits;
// sr is here your SearchResponse object
Terms agg = sr.getAggregations().get("agg");
// For each entry
for (Terms.Bucket entry : agg.getBuckets()) {
String key = entry.getKey(); // bucket key
long docCount = entry.getDocCount(); // Doc count
logger.info("key [{}], doc_count [{}]", key, docCount);
// We ask for top_hits for each bucket
TopHits topHits = entry.getAggregations().get("top");
for (SearchHit hit : topHits.getHits().getHits()) {
logger.info(" -> id [{}], _source [{}]", hit.getId(), hit.getSourceAsString());
}
}
This will basically produce for the first example:
key [male], doc_count [5107]
-> id [AUnzSZze9k7PKXtq04x2], _source [{"gender":"male",...}]
-> id [AUnzSZzj9k7PKXtq04x4], _source [{"gender":"male",...}]
-> id [AUnzSZzl9k7PKXtq04x5], _source [{"gender":"male",...}]
key [female], doc_count [4893]
-> id [AUnzSZzM9k7PKXtq04xy], _source [{"gender":"female",...}]
-> id [AUnzSZzp9k7PKXtq04x8], _source [{"gender":"female",...}]
-> id [AUnzSZ0W9k7PKXtq04yS], _source [{"gender":"female",...}]
Scripted Metric Aggregation
Here is how you can use {ref}/search-aggregations-metrics-scripted-metric-aggregation.html[Scripted Metric Aggregation] with Java API.
Prepare aggregation request
Here is an example on how to create the aggregation request:
ScriptedMetricAggregationBuilder aggregation = AggregationBuilders
.scriptedMetric("agg")
.initScript(new Script("state.heights = []"))
.mapScript(new Script("state.heights.add(doc.gender.value == 'male' ? doc.height.value : -1.0 * doc.height.value)"));
You can also specify a combine
script which will be executed on each shard:
ScriptedMetricAggregationBuilder aggregation = AggregationBuilders
.scriptedMetric("agg")
.initScript(new Script("state.heights = []"))
.mapScript(new Script("state.heights.add(doc.gender.value == 'male' ? doc.height.value : -1.0 * doc.height.value)"))
.combineScript(new Script("double heights_sum = 0.0; for (t in state.heights) { heights_sum += t } return heights_sum"));
You can also specify a reduce
script which will be executed on the node which gets the request:
ScriptedMetricAggregationBuilder aggregation = AggregationBuilders
.scriptedMetric("agg")
.initScript(new Script("state.heights = []"))
.mapScript(new Script("state.heights.add(doc.gender.value == 'male' ? doc.height.value : -1.0 * doc.height.value)"))
.combineScript(new Script("double heights_sum = 0.0; for (t in state.heights) { heights_sum += t } return heights_sum"))
.reduceScript(new Script("double heights_sum = 0.0; for (a in states) { heights_sum += a } return heights_sum"));
Use aggregation response
Import Aggregation definition classes:
import org.elasticsearch.search.aggregations.bucket.terms.Terms;
import org.elasticsearch.search.aggregations.metrics.tophits.TopHits;
// sr is here your SearchResponse object
ScriptedMetric agg = sr.getAggregations().get("agg");
Object scriptedResult = agg.aggregation();
logger.info("scriptedResult [{}]", scriptedResult);
Note that the result depends on the script you built. For the first example, this will basically produce:
scriptedResult object [ArrayList]
scriptedResult [ {
"heights" : [ 1.122218480146643, -1.8148918111233887, -1.7626731575142909, ... ]
}, {
"heights" : [ -0.8046067304119863, -2.0785486707864553, -1.9183567430207953, ... ]
}, {
"heights" : [ 2.092635728868694, 1.5697545960886536, 1.8826954461968808, ... ]
}, {
"heights" : [ -2.1863201099468403, 1.6328549117346856, -1.7078288405893842, ... ]
}, {
"heights" : [ 1.6043904836424177, -2.0736538674414025, 0.9898266674373053, ... ]
} ]
The second example will produce:
scriptedResult object [ArrayList]
scriptedResult [-41.279615707402876,
-60.88007362339038,
38.823270659734256,
14.840192739445632,
11.300902755741326]
The last example will produce:
scriptedResult object [Double]
scriptedResult [2.171917696507009]
Bucket aggregations
Global Aggregation
Here is how you can use {ref}/search-aggregations-bucket-global-aggregation.html[Global Aggregation] with Java API.
Prepare aggregation request
Here is an example on how to create the aggregation request:
AggregationBuilders
.global("agg")
.subAggregation(AggregationBuilders.terms("genders").field("gender"));
Use aggregation response
Import Aggregation definition classes:
import org.elasticsearch.search.aggregations.bucket.global.Global;
// sr is here your SearchResponse object
Global agg = sr.getAggregations().get("agg");
agg.getDocCount(); // Doc count
Filter Aggregation
Here is how you can use {ref}/search-aggregations-bucket-filter-aggregation.html[Filter Aggregation] with Java API.
Prepare aggregation request
Here is an example on how to create the aggregation request:
AggregationBuilders
.filter("agg", QueryBuilders.termQuery("gender", "male"));
Use aggregation response
Import Aggregation definition classes:
import org.elasticsearch.search.aggregations.bucket.filter.Filter;
// sr is here your SearchResponse object
Filter agg = sr.getAggregations().get("agg");
agg.getDocCount(); // Doc count
Filters Aggregation
Here is how you can use {ref}/search-aggregations-bucket-filters-aggregation.html[Filters Aggregation] with Java API.
Prepare aggregation request
Here is an example on how to create the aggregation request:
AggregationBuilder aggregation =
AggregationBuilders
.filters("agg",
new FiltersAggregator.KeyedFilter("men", QueryBuilders.termQuery("gender", "male")),
new FiltersAggregator.KeyedFilter("women", QueryBuilders.termQuery("gender", "female")));
Use aggregation response
Import Aggregation definition classes:
import org.elasticsearch.search.aggregations.bucket.filters.Filters;
// sr is here your SearchResponse object
Filters agg = sr.getAggregations().get("agg");
// For each entry
for (Filters.Bucket entry : agg.getBuckets()) {
String key = entry.getKeyAsString(); // bucket key
long docCount = entry.getDocCount(); // Doc count
logger.info("key [{}], doc_count [{}]", key, docCount);
}
This will basically produce:
key [men], doc_count [4982]
key [women], doc_count [5018]
Missing Aggregation
Here is how you can use {ref}/search-aggregations-bucket-missing-aggregation.html[Missing Aggregation] with Java API.
Prepare aggregation request
Here is an example on how to create the aggregation request:
AggregationBuilders.missing("agg").field("gender");
Use aggregation response
Import Aggregation definition classes:
import org.elasticsearch.search.aggregations.bucket.missing.Missing;
// sr is here your SearchResponse object
Missing agg = sr.getAggregations().get("agg");
agg.getDocCount(); // Doc count
Nested Aggregation
Here is how you can use {ref}/search-aggregations-bucket-nested-aggregation.html[Nested Aggregation] with Java API.
Prepare aggregation request
Here is an example on how to create the aggregation request:
AggregationBuilders
.nested("agg", "resellers");
Use aggregation response
Import Aggregation definition classes:
import org.elasticsearch.search.aggregations.bucket.nested.Nested;
// sr is here your SearchResponse object
Nested agg = sr.getAggregations().get("agg");
agg.getDocCount(); // Doc count
Reverse Nested Aggregation
Here is how you can use {ref}/search-aggregations-bucket-reverse-nested-aggregation.html[Reverse Nested Aggregation] with Java API.
Prepare aggregation request
Here is an example on how to create the aggregation request:
AggregationBuilder aggregation =
AggregationBuilders
.nested("agg", "resellers")
.subAggregation(
AggregationBuilders
.terms("name").field("resellers.name")
.subAggregation(
AggregationBuilders
.reverseNested("reseller_to_product")
)
);
Use aggregation response
Import Aggregation definition classes:
import org.elasticsearch.search.aggregations.bucket.nested.Nested;
import org.elasticsearch.search.aggregations.bucket.nested.ReverseNested;
import org.elasticsearch.search.aggregations.bucket.terms.Terms;
// sr is here your SearchResponse object
Nested agg = sr.getAggregations().get("agg");
Terms name = agg.getAggregations().get("name");
for (Terms.Bucket bucket : name.getBuckets()) {
ReverseNested resellerToProduct = bucket.getAggregations().get("reseller_to_product");
resellerToProduct.getDocCount(); // Doc count
}
Children Aggregation
Here is how you can use {ref}/search-aggregations-bucket-children-aggregation.html[Children Aggregation] with Java API.
Prepare aggregation request
Here is an example on how to create the aggregation request:
AggregationBuilder aggregation =
AggregationBuilders
.children("agg", "reseller"); (1)
-
"agg"
is the name of the aggregation and"reseller"
is the child type
Use aggregation response
Import Aggregation definition classes:
import org.elasticsearch.join.aggregations.Children;
// sr is here your SearchResponse object
Children agg = sr.getAggregations().get("agg");
agg.getDocCount(); // Doc count
Terms Aggregation
Here is how you can use {ref}/search-aggregations-bucket-terms-aggregation.html[Terms Aggregation] with Java API.
Prepare aggregation request
Here is an example on how to create the aggregation request:
AggregationBuilders
.terms("genders")
.field("gender");
Use aggregation response
Import Aggregation definition classes:
import org.elasticsearch.search.aggregations.bucket.terms.Terms;
// sr is here your SearchResponse object
Terms genders = sr.getAggregations().get("genders");
// For each entry
for (Terms.Bucket entry : genders.getBuckets()) {
entry.getKey(); // Term
entry.getDocCount(); // Doc count
}
Order
Import bucket ordering strategy classes:
import org.elasticsearch.search.aggregations.BucketOrder;
Ordering the buckets by their doc_count
in an ascending manner:
AggregationBuilders
.terms("genders")
.field("gender")
.order(BucketOrder.count(true))
Ordering the buckets alphabetically by their terms in an ascending manner:
AggregationBuilders
.terms("genders")
.field("gender")
.order(BucketOrder.key(true))
Ordering the buckets by single value metrics sub-aggregation (identified by the aggregation name):
AggregationBuilders
.terms("genders")
.field("gender")
.order(BucketOrder.aggregation("avg_height", false))
.subAggregation(
AggregationBuilders.avg("avg_height").field("height")
)
Ordering the buckets by multiple criteria:
AggregationBuilders
.terms("genders")
.field("gender")
.order(BucketOrder.compound( // in order of priority:
BucketOrder.aggregation("avg_height", false), // sort by sub-aggregation first
BucketOrder.count(true))) // then bucket count as a tie-breaker
.subAggregation(
AggregationBuilders.avg("avg_height").field("height")
)
Significant Terms Aggregation
Here is how you can use {ref}/search-aggregations-bucket-significantterms-aggregation.html[Significant Terms Aggregation] with Java API.
Prepare aggregation request
Here is an example on how to create the aggregation request:
AggregationBuilder aggregation =
AggregationBuilders
.significantTerms("significant_countries")
.field("address.country");
// Let say you search for men only
SearchResponse sr = client.prepareSearch()
.setQuery(QueryBuilders.termQuery("gender", "male"))
.addAggregation(aggregation)
.get();
Use aggregation response
Import Aggregation definition classes:
import org.elasticsearch.search.aggregations.bucket.significant.SignificantTerms;
// sr is here your SearchResponse object
SignificantTerms agg = sr.getAggregations().get("significant_countries");
// For each entry
for (SignificantTerms.Bucket entry : agg.getBuckets()) {
entry.getKey(); // Term
entry.getDocCount(); // Doc count
}
Range Aggregation
Here is how you can use {ref}/search-aggregations-bucket-range-aggregation.html[Range Aggregation] with Java API.
Prepare aggregation request
Here is an example on how to create the aggregation request:
AggregationBuilder aggregation =
AggregationBuilders
.range("agg")
.field("height")
.addUnboundedTo(1.0f) // from -infinity to 1.0 (excluded)
.addRange(1.0f, 1.5f) // from 1.0 to 1.5 (excluded)
.addUnboundedFrom(1.5f); // from 1.5 to +infinity
Use aggregation response
Import Aggregation definition classes:
import org.elasticsearch.search.aggregations.bucket.range.Range;
// sr is here your SearchResponse object
Range agg = sr.getAggregations().get("agg");
// For each entry
for (Range.Bucket entry : agg.getBuckets()) {
String key = entry.getKeyAsString(); // Range as key
Number from = (Number) entry.getFrom(); // Bucket from
Number to = (Number) entry.getTo(); // Bucket to
long docCount = entry.getDocCount(); // Doc count
logger.info("key [{}], from [{}], to [{}], doc_count [{}]", key, from, to, docCount);
}
This will basically produce for the first example:
key [*-1.0], from [-Infinity], to [1.0], doc_count [9]
key [1.0-1.5], from [1.0], to [1.5], doc_count [21]
key [1.5-*], from [1.5], to [Infinity], doc_count [20]
Date Range Aggregation
Here is how you can use {ref}/search-aggregations-bucket-daterange-aggregation.html[Date Range Aggregation] with Java API.
Prepare aggregation request
Here is an example on how to create the aggregation request:
AggregationBuilder aggregation =
AggregationBuilders
.dateRange("agg")
.field("dateOfBirth")
.format("yyyy")
.addUnboundedTo("1950") // from -infinity to 1950 (excluded)
.addRange("1950", "1960") // from 1950 to 1960 (excluded)
.addUnboundedFrom("1960"); // from 1960 to +infinity
Use aggregation response
Import Aggregation definition classes:
import org.elasticsearch.search.aggregations.bucket.range.Range;
// sr is here your SearchResponse object
Range agg = sr.getAggregations().get("agg");
// For each entry
for (Range.Bucket entry : agg.getBuckets()) {
String key = entry.getKeyAsString(); // Date range as key
DateTime fromAsDate = (DateTime) entry.getFrom(); // Date bucket from as a Date
DateTime toAsDate = (DateTime) entry.getTo(); // Date bucket to as a Date
long docCount = entry.getDocCount(); // Doc count
logger.info("key [{}], from [{}], to [{}], doc_count [{}]", key, fromAsDate, toAsDate, docCount);
}
This will basically produce:
key [*-1950], from [null], to [1950-01-01T00:00:00.000Z], doc_count [8]
key [1950-1960], from [1950-01-01T00:00:00.000Z], to [1960-01-01T00:00:00.000Z], doc_count [5]
key [1960-*], from [1960-01-01T00:00:00.000Z], to [null], doc_count [37]
Ip Range Aggregation
Here is how you can use {ref}/search-aggregations-bucket-iprange-aggregation.html[Ip Range Aggregation] with Java API.
Prepare aggregation request
Here is an example on how to create the aggregation request:
AggregatorBuilder<?> aggregation =
AggregationBuilders
.ipRange("agg")
.field("ip")
.addUnboundedTo("192.168.1.0") // from -infinity to 192.168.1.0 (excluded)
.addRange("192.168.1.0", "192.168.2.0") // from 192.168.1.0 to 192.168.2.0 (excluded)
.addUnboundedFrom("192.168.2.0"); // from 192.168.2.0 to +infinity
Note that you could also use ip masks as ranges:
AggregatorBuilder<?> aggregation =
AggregationBuilders
.ipRange("agg")
.field("ip")
.addMaskRange("192.168.0.0/32")
.addMaskRange("192.168.0.0/24")
.addMaskRange("192.168.0.0/16");
Use aggregation response
Import Aggregation definition classes:
import org.elasticsearch.search.aggregations.bucket.range.Range;
// sr is here your SearchResponse object
Range agg = sr.getAggregations().get("agg");
// For each entry
for (Range.Bucket entry : agg.getBuckets()) {
String key = entry.getKeyAsString(); // Ip range as key
String fromAsString = entry.getFromAsString(); // Ip bucket from as a String
String toAsString = entry.getToAsString(); // Ip bucket to as a String
long docCount = entry.getDocCount(); // Doc count
logger.info("key [{}], from [{}], to [{}], doc_count [{}]", key, fromAsString, toAsString, docCount);
}
This will basically produce for the first example:
key [*-192.168.1.0], from [null], to [192.168.1.0], doc_count [13]
key [192.168.1.0-192.168.2.0], from [192.168.1.0], to [192.168.2.0], doc_count [14]
key [192.168.2.0-*], from [192.168.2.0], to [null], doc_count [23]
And for the second one (using Ip masks):
key [192.168.0.0/32], from [192.168.0.0], to [192.168.0.1], doc_count [0]
key [192.168.0.0/24], from [192.168.0.0], to [192.168.1.0], doc_count [13]
key [192.168.0.0/16], from [192.168.0.0], to [192.169.0.0], doc_count [50]
Histogram Aggregation
Here is how you can use {ref}/search-aggregations-bucket-histogram-aggregation.html[Histogram Aggregation] with Java API.
Prepare aggregation request
Here is an example on how to create the aggregation request:
AggregationBuilder aggregation =
AggregationBuilders
.histogram("agg")
.field("height")
.interval(1);
Use aggregation response
Import Aggregation definition classes:
import org.elasticsearch.search.aggregations.bucket.histogram.Histogram;
// sr is here your SearchResponse object
Histogram agg = sr.getAggregations().get("agg");
// For each entry
for (Histogram.Bucket entry : agg.getBuckets()) {
Number key = (Number) entry.getKey(); // Key
long docCount = entry.getDocCount(); // Doc count
logger.info("key [{}], doc_count [{}]", key, docCount);
}
Order
Supports the same order functionality as the Terms Aggregation
.
Date Histogram Aggregation
Here is how you can use {ref}/search-aggregations-bucket-datehistogram-aggregation.html[Date Histogram Aggregation] with Java API.
Prepare aggregation request
Here is an example on how to create the aggregation request:
AggregationBuilder aggregation =
AggregationBuilders
.dateHistogram("agg")
.field("dateOfBirth")
.dateHistogramInterval(DateHistogramInterval.YEAR);
Or if you want to set an interval of 10 days:
AggregationBuilder aggregation =
AggregationBuilders
.dateHistogram("agg")
.field("dateOfBirth")
.dateHistogramInterval(DateHistogramInterval.days(10));
Use aggregation response
Import Aggregation definition classes:
import org.elasticsearch.search.aggregations.bucket.histogram.Histogram;
// sr is here your SearchResponse object
Histogram agg = sr.getAggregations().get("agg");
// For each entry
for (Histogram.Bucket entry : agg.getBuckets()) {
DateTime key = (DateTime) entry.getKey(); // Key
String keyAsString = entry.getKeyAsString(); // Key as String
long docCount = entry.getDocCount(); // Doc count
logger.info("key [{}], date [{}], doc_count [{}]", keyAsString, key.getYear(), docCount);
}
This will basically produce for the first example:
key [1942-01-01T00:00:00.000Z], date [1942], doc_count [1]
key [1945-01-01T00:00:00.000Z], date [1945], doc_count [1]
key [1946-01-01T00:00:00.000Z], date [1946], doc_count [1]
...
key [2005-01-01T00:00:00.000Z], date [2005], doc_count [1]
key [2007-01-01T00:00:00.000Z], date [2007], doc_count [2]
key [2008-01-01T00:00:00.000Z], date [2008], doc_count [3]
Order
Supports the same order functionality as the Terms Aggregation
.
Geo Distance Aggregation
Here is how you can use {ref}/search-aggregations-bucket-geodistance-aggregation.html[Geo Distance Aggregation] with Java API.
Prepare aggregation request
Here is an example on how to create the aggregation request:
AggregationBuilder aggregation =
AggregationBuilders
.geoDistance("agg", new GeoPoint(48.84237171118314,2.33320027692004))
.field("address.location")
.unit(DistanceUnit.KILOMETERS)
.addUnboundedTo(3.0)
.addRange(3.0, 10.0)
.addRange(10.0, 500.0);
Use aggregation response
Import Aggregation definition classes:
import org.elasticsearch.search.aggregations.bucket.range.Range;
// sr is here your SearchResponse object
Range agg = sr.getAggregations().get("agg");
// For each entry
for (Range.Bucket entry : agg.getBuckets()) {
String key = entry.getKeyAsString(); // key as String
Number from = (Number) entry.getFrom(); // bucket from value
Number to = (Number) entry.getTo(); // bucket to value
long docCount = entry.getDocCount(); // Doc count
logger.info("key [{}], from [{}], to [{}], doc_count [{}]", key, from, to, docCount);
}
This will basically produce:
key [*-3.0], from [0.0], to [3.0], doc_count [161]
key [3.0-10.0], from [3.0], to [10.0], doc_count [460]
key [10.0-500.0], from [10.0], to [500.0], doc_count [4925]
Geo Hash Grid Aggregation
Here is how you can use {ref}/search-aggregations-bucket-geohashgrid-aggregation.html[Geo Hash Grid Aggregation] with Java API.
Prepare aggregation request
Here is an example on how to create the aggregation request:
AggregationBuilder aggregation =
AggregationBuilders
.geohashGrid("agg")
.field("address.location")
.precision(4);
Use aggregation response
Import Aggregation definition classes:
import org.elasticsearch.search.aggregations.bucket.geogrid.GeoHashGrid;
// sr is here your SearchResponse object
GeoHashGrid agg = sr.getAggregations().get("agg");
// For each entry
for (GeoHashGrid.Bucket entry : agg.getBuckets()) {
String keyAsString = entry.getKeyAsString(); // key as String
GeoPoint key = (GeoPoint) entry.getKey(); // key as geo point
long docCount = entry.getDocCount(); // Doc count
logger.info("key [{}], point {}, doc_count [{}]", keyAsString, key, docCount);
}
This will basically produce:
key [gbqu], point [47.197265625, -1.58203125], doc_count [1282]
key [gbvn], point [50.361328125, -4.04296875], doc_count [1248]
key [u1j0], point [50.712890625, 7.20703125], doc_count [1156]
key [u0j2], point [45.087890625, 7.55859375], doc_count [1138]
...
Query DSL
Elasticsearch provides a full Java query dsl in a similar manner to the
REST {ref}/query-dsl.html[Query DSL]. The factory for query
builders is QueryBuilders
. Once your query is ready, you can use the
Search API.
To use QueryBuilders
just import them in your class:
import static org.elasticsearch.index.query.QueryBuilders.*;
Note that you can easily print (aka debug) JSON generated queries using
toString()
method on QueryBuilder
object.
The QueryBuilder
can then be used with any API that accepts a query,
such as count
and search
.
Match All Query
See {ref}/query-dsl-match-all-query.html[Match All Query]
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[match_all]
Full text queries
The high-level full text queries are usually used for running full text
queries on full text fields like the body of an email. They understand how the
field being queried is analyzed and will apply each field’s
analyzer
(or search_analyzer
) to the query string before executing.
The queries in this group are:
match
query-
The standard query for performing full text queries, including fuzzy matching and phrase or proximity queries.
multi_match
query-
The multi-field version of the
match
query. common_terms
query-
A more specialized query which gives more preference to uncommon words.
query_string
query-
Supports the compact Lucene query string syntax, allowing you to specify AND|OR|NOT conditions and multi-field search within a single query string. For expert users only.
simple_query_string
-
A simpler, more robust version of the
query_string
syntax suitable for exposing directly to users.
Match Query
See {ref}/query-dsl-match-query.html[Match Query]
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[match]
-
field
-
text
Multi Match Query
See {ref}/query-dsl-multi-match-query.html[Multi Match Query]
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[multi_match]
-
text
-
fields
Common Terms Query
See {ref}/query-dsl-common-terms-query.html[Common Terms Query]
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[common_terms]
-
field
-
value
Query String Query
See {ref}/query-dsl-query-string-query.html[Query String Query]
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[query_string]
Simple Query String Query
See {ref}/query-dsl-simple-query-string-query.html[Simple Query String Query]
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[simple_query_string]
Term level queries
While the full text queries will analyze the query string before executing, the term-level queries operate on the exact terms that are stored in the inverted index.
These queries are usually used for structured data like numbers, dates, and enums, rather than full text fields. Alternatively, they allow you to craft low-level queries, foregoing the analysis process.
The queries in this group are:
term
query-
Find documents which contain the exact term specified in the field specified.
terms
query-
Find documents which contain any of the exact terms specified in the field specified.
range
query-
Find documents where the field specified contains values (dates, numbers, or strings) in the range specified.
exists
query-
Find documents where the field specified contains any non-null value.
prefix
query-
Find documents where the field specified contains terms which being with the exact prefix specified.
wildcard
query-
Find documents where the field specified contains terms which match the pattern specified, where the pattern supports single character wildcards (
?
) and multi-character wildcards (*
) regexp
query-
Find documents where the field specified contains terms which match the regular expression specified.
fuzzy
query-
Find documents where the field specified contains terms which are fuzzily similar to the specified term. Fuzziness is measured as a Levenshtein edit distance of 1 or 2.
type
query-
Find documents of the specified type.
ids
query-
Find documents with the specified type and IDs.
Term Query
See {ref}/query-dsl-term-query.html[Term Query]
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[term]
-
field
-
text
Terms Query
See {ref}/query-dsl-terms-query.html[Terms Query]
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[terms]
-
field
-
values
Range Query
See {ref}/query-dsl-range-query.html[Range Query]
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[range]
-
field
-
from
-
to
-
include lower value means that
from
isgt
whenfalse
orgte
whentrue
-
include upper value means that
to
islt
whenfalse
orlte
whentrue
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[range_simplified]
-
field
-
set
from
to 10 andincludeLower
totrue
-
set
to
to 20 andincludeUpper
tofalse
Exists Query
See {ref}/query-dsl-exists-query.html[Exists Query].
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[exists]
-
field
Prefix Query
See {ref}/query-dsl-prefix-query.html[Prefix Query]
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[prefix]
-
field
-
prefix
Wildcard Query
See {ref}/query-dsl-wildcard-query.html[Wildcard Query]
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[wildcard]
-
field
-
wildcard expression
Regexp Query
See {ref}/query-dsl-regexp-query.html[Regexp Query]
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[regexp]
-
field
-
regexp
Fuzzy Query
See {ref}/query-dsl-fuzzy-query.html[Fuzzy Query]
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[fuzzy]
-
field
-
text
Type Query
See {ref}/query-dsl-type-query.html[Type Query]
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[type]
-
type
Ids Query
See {ref}/query-dsl-ids-query.html[Ids Query]
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[ids]
-
type is optional
Compound queries
Compound queries wrap other compound or leaf queries, either to combine their results and scores, to change their behaviour, or to switch from query to filter context.
The queries in this group are:
constant_score
query-
A query which wraps another query, but executes it in filter context. All matching documents are given the same
`constant'' `_score
. bool
query-
The default query for combining multiple leaf or compound query clauses, as
must
,should
,must_not
, orfilter
clauses. Themust
andshould
clauses have their scores combined — the more matching clauses, the better — while themust_not
andfilter
clauses are executed in filter context. dis_max
query-
A query which accepts multiple queries, and returns any documents which match any of the query clauses. While the
bool
query combines the scores from all matching queries, thedis_max
query uses the score of the single best- matching query clause. function_score
query-
Modify the scores returned by the main query with functions to take into account factors like popularity, recency, distance, or custom algorithms implemented with scripting.
boosting
query-
Return documents which match a
positive
query, but reduce the score of documents which also match anegative
query.
Constant Score Query
See {ref}/query-dsl-constant-score-query.html[Constant Score Query]
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[constant_score]
-
your query
-
query score ==== Bool Query
See {ref}/query-dsl-bool-query.html[Bool Query]
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[bool]
-
must query
-
must not query
-
should query
-
a query that must appear in the matching documents but doesn’t contribute to scoring. ==== Dis Max Query
See {ref}/query-dsl-dis-max-query.html[Dis Max Query]
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[dis_max]
-
add your queries
-
add your queries
-
boost factor
-
tie breaker ==== Function Score Query
See {ref}/query-dsl-function-score-query.html[Function Score Query].
To use ScoreFunctionBuilders
just import them in your class:
import static org.elasticsearch.index.query.functionscore.ScoreFunctionBuilders.*;
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[function_score]
-
Add a first function based on a query
-
And randomize the score based on a given seed
-
Add another function based on the age field ==== Boosting Query
See {ref}/query-dsl-boosting-query.html[Boosting Query]
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[boosting]
-
query that will promote documents
-
query that will demote documents
-
negative boost
Joining queries
Performing full SQL-style joins in a distributed system like Elasticsearch is prohibitively expensive. Instead, Elasticsearch offers two forms of join which are designed to scale horizontally.
nested
query-
Documents may contains fields of type
nested
. These fields are used to index arrays of objects, where each object can be queried (with thenested
query) as an independent document. has_child
andhas_parent
queries-
A parent-child relationship can exist between two document types within a single index. The
has_child
query returns parent documents whose child documents match the specified query, while thehas_parent
query returns child documents whose parent document matches the specified query.
Nested Query
See {ref}/query-dsl-nested-query.html[Nested Query]
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[nested]
-
path to nested document
-
your query. Any fields referenced inside the query must use the complete path (fully qualified).
-
score mode could be
ScoreMode.Max
,ScoreMode.Min
,ScoreMode.Total
,ScoreMode.Avg
orScoreMode.None
Has Child Query
See {ref}/query-dsl-has-child-query.html[Has Child Query]
When using the has_child
query it is important to use the PreBuiltTransportClient
instead of the regular client:
Settings settings = Settings.builder().put("cluster.name", "elasticsearch").build();
TransportClient client = new PreBuiltTransportClient(settings);
client.addTransportAddress(new TransportAddress(new InetSocketAddress(InetAddresses.forString("127.0.0.1"), 9300)));
Otherwise the parent-join module doesn’t get loaded and the has_child
query can’t be used from the transport client.
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[has_child]
-
child type to query against
-
query
-
score mode can be
ScoreMode.Avg
,ScoreMode.Max
,ScoreMode.Min
,ScoreMode.None
orScoreMode.Total
Has Parent Query
See {ref}/query-dsl-has-parent-query.html[Has Parent]
When using the has_parent
query it is important to use the PreBuiltTransportClient
instead of the regular client:
Settings settings = Settings.builder().put("cluster.name", "elasticsearch").build();
TransportClient client = new PreBuiltTransportClient(settings);
client.addTransportAddress(new TransportAddress(new InetSocketAddress(InetAddresses.forString("127.0.0.1"), 9300)));
Otherwise the parent-join module doesn’t get loaded and the has_parent
query can’t be used from the transport client.
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[has_parent]
-
parent type to query against
-
query
-
whether the score from the parent hit should propagate to the child hit
Geo queries
Elasticsearch supports two types of geo data:
geo_point
fields which support lat/lon pairs, and
geo_shape
fields, which support points, lines, circles, polygons, multi-polygons etc.
The queries in this group are:
geo_shape
query-
Find document with geo-shapes which either intersect, are contained by, or do not intersect with the specified geo-shape.
geo_bounding_box
query-
Finds documents with geo-points that fall into the specified rectangle.
geo_distance
query-
Finds document with geo-points within the specified distance of a central point.
geo_polygon
query-
Find documents with geo-points within the specified polygon.
GeoShape Query
See {ref}/query-dsl-geo-shape-query.html[Geo Shape Query]
Note: the geo_shape
type uses Spatial4J
and JTS
, both of which are
optional dependencies. Consequently you must add Spatial4J
and JTS
to your classpath in order to use this type:
<dependency>
<groupId>org.locationtech.spatial4j</groupId>
<artifactId>spatial4j</artifactId>
<version>0.7</version> (1)
</dependency>
<dependency>
<groupId>org.locationtech.jts</groupId>
<artifactId>jts-core</artifactId>
<version>1.15.0</version> (2)
<exclusions>
<exclusion>
<groupId>xerces</groupId>
<artifactId>xercesImpl</artifactId>
</exclusion>
</exclusions>
</dependency>
-
check for updates in Maven Central
-
check for updates in Maven Central
// Import ShapeRelation and ShapeBuilder
import org.elasticsearch.common.geo.ShapeRelation;
import org.elasticsearch.common.geo.builders.ShapeBuilder;
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[geo_shape]
-
field
-
shape
-
relation can be
ShapeRelation.CONTAINS
,ShapeRelation.WITHIN
,ShapeRelation.INTERSECTS
orShapeRelation.DISJOINT
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[indexed_geo_shape]
-
field
-
The ID of the document that containing the pre-indexed shape.
-
Index type where the pre-indexed shape is.
-
relation
-
Name of the index where the pre-indexed shape is. Defaults to 'shapes'.
-
The field specified as path containing the pre-indexed shape. Defaults to 'shape'.
Geo Bounding Box Query
See {ref}/query-dsl-geo-bounding-box-query.html[Geo Bounding Box Query]
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[geo_bounding_box]
-
field
-
bounding box top left point
-
bounding box bottom right point
Geo Distance Query
See {ref}/query-dsl-geo-distance-query.html[Geo Distance Query]
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[geo_distance]
-
field
-
center point
-
distance from center point
Geo Polygon Query
See {ref}/query-dsl-geo-polygon-query.html[Geo Polygon Query]
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[geo_polygon]
-
add your polygon of points a document should fall within
-
initialise the query with field and points
Specialized queries
This group contains queries which do not fit into the other groups:
more_like_this
query-
This query finds documents which are similar to the specified text, document, or collection of documents.
script
query-
This query allows a script to act as a filter. Also see the
function_score
query. percolate
query-
This query finds percolator queries based on documents.
wrapper
query-
A query that accepts other queries as json or yaml string.
More Like This Query
See {ref}/query-dsl-mlt-query.html[More Like This Query]
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[more_like_this]
-
fields
-
text
-
ignore threshold
-
max num of Terms in generated queries
Script Query
See {ref}/query-dsl-script-query.html[Script Query]
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[script_inline]
-
inlined script
If you have stored on each data node a script named myscript.painless
with:
doc['num1'].value > params.param1
You can use it then with:
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[script_file]
-
Script type: either
ScriptType.FILE
,ScriptType.INLINE
orScriptType.INDEXED
-
Scripting engine
-
Script name
-
Parameters as a
Map<String, Object>
Percolate Query
See: * {ref}/query-dsl-percolate-query.html[Percolate Query]
Settings settings = Settings.builder().put("cluster.name", "elasticsearch").build();
TransportClient client = new PreBuiltTransportClient(settings);
client.addTransportAddress(new TransportAddress(new InetSocketAddress(InetAddresses.forString("127.0.0.1"), 9300)));
Before the percolate
query can be used an percolator
mapping should be added and
a document containing a percolator query should be indexed:
// create an index with a percolator field with the name 'query':
client.admin().indices().prepareCreate("myIndexName")
.addMapping("_doc", "query", "type=percolator", "content", "type=text")
.get();
//This is the query we're registering in the percolator
QueryBuilder qb = termQuery("content", "amazing");
//Index the query = register it in the percolator
client.prepareIndex("myIndexName", "_doc", "myDesignatedQueryName")
.setSource(jsonBuilder()
.startObject()
.field("query", qb) // Register the query
.endObject())
.setRefreshPolicy(RefreshPolicy.IMMEDIATE) // Needed when the query shall be available immediately
.get();
This indexes the above term query under the name myDesignatedQueryName.
In order to check a document against the registered queries, use this code:
//Build a document to check against the percolator
XContentBuilder docBuilder = XContentFactory.jsonBuilder().startObject();
docBuilder.field("content", "This is amazing!");
docBuilder.endObject(); //End of the JSON root object
PercolateQueryBuilder percolateQuery = new PercolateQueryBuilder("query", "_doc", BytesReference.bytes(docBuilder));
// Percolate, by executing the percolator query in the query dsl:
SearchResponse response = client().prepareSearch("myIndexName")
.setQuery(percolateQuery))
.get();
//Iterate over the results
for(SearchHit hit : response.getHits()) {
// Percolator queries as hit
}
Wrapper Query
See {ref}/query-dsl-wrapper-query.html[Wrapper Query]
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[wrapper]
-
query defined as query builder
Span queries
Span queries are low-level positional queries which provide expert control over the order and proximity of the specified terms. These are typically used to implement very specific queries on legal documents or patents.
Span queries cannot be mixed with non-span queries (with the exception of the span_multi
query).
The queries in this group are:
span_term
query-
The equivalent of the
term
query but for use with other span queries. span_multi
query-
Wraps a
term
,range
,prefix
,wildcard
,regexp
, orfuzzy
query. span_first
query-
Accepts another span query whose matches must appear within the first N positions of the field.
span_near
query-
Accepts multiple span queries whose matches must be within the specified distance of each other, and possibly in the same order.
span_or
query-
Combines multiple span queries — returns documents which match any of the specified queries.
span_not
query-
Wraps another span query, and excludes any documents which match that query.
span_containing
query-
Accepts a list of span queries, but only returns those spans which also match a second span query.
span_within
query-
The result from a single span query is returned as long is its span falls within the spans returned by a list of other span queries.
Span Term Query
See {ref}/query-dsl-span-term-query.html[Span Term Query]
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[span_term]
-
field
-
value
Span Multi Term Query
See {ref}/query-dsl-span-multi-term-query.html[Span Multi Term Query]
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[span_multi]
-
Can be any builder extending the
MultiTermQueryBuilder
class. For example:FuzzyQueryBuilder
,PrefixQueryBuilder
,RangeQueryBuilder
,RegexpQueryBuilder
orWildcardQueryBuilder
.
Span First Query
See {ref}/query-dsl-span-first-query.html[Span First Query]
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[span_first]
-
query
-
max end position
Span Near Query
See {ref}/query-dsl-span-near-query.html[Span Near Query]
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[span_near]
-
span term queries
-
slop factor: the maximum number of intervening unmatched positions
-
whether matches are required to be in-order
Span Or Query
See {ref}/query-dsl-span-or-query.html[Span Or Query]
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[span_or]
-
span term queries
Span Not Query
See {ref}/query-dsl-span-not-query.html[Span Not Query]
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[span_not]
-
span query whose matches are filtered
-
span query whose matches must not overlap those returned
Span Containing Query
See {ref}/query-dsl-span-containing-query.html[Span Containing Query]
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[span_containing]
-
big
part -
little
part
Span Within Query
See {ref}/query-dsl-span-within-query.html[Span Within Query]
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../client/rest-high-level/src/test/java/org/elasticsearch/client/documentation/QueryDSLDocumentationTests.java[span_within]
-
big
part -
little
part
Java API Administration
Elasticsearch provides a full Java API to deal with administration tasks.
To access them, you need to call admin()
method from a client to get an AdminClient
:
AdminClient adminClient = client.admin();
Note
|
In the rest of this guide, we will use client.admin() .
|
Indices Administration
To access indices Java API, you need to call indices()
method from an AdminClient
:
IndicesAdminClient indicesAdminClient = client.admin().indices();
Note
|
In the rest of this guide, we will use client.admin().indices() .
|
Create Index
Using an IndicesAdminClient
, you can create an index with all default settings and no mapping:
client.admin().indices().prepareCreate("twitter").get();
Index Settings
Each index created can have specific settings associated with it.
client.admin().indices().prepareCreate("twitter")
.setSettings(Settings.builder() (1)
.put("index.number_of_shards", 3)
.put("index.number_of_replicas", 2)
)
.get(); (2)
-
Settings for this index
-
Execute the action and wait for the result
Put Mapping
You can add mappings at index creation time:
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../server/src/test/java/org/elasticsearch/client/documentation/IndicesDocumentationIT.java[index-with-mapping]
-
Creates an index called
twitter
-
Add a
_doc
type with a field calledmessage
that has the datatypetext
.
There are several variants of the above addMapping
method, some taking an
XContentBuilder
or a Map
with the mapping definition as arguments. Make sure
to check the javadocs to pick the simplest one for your use case.
The PUT mapping API also allows for updating the mapping after index creation. In this case you can provide the mapping as a String similar to the REST API syntax:
include-tagged::/fresh_work/warex/file_cache/linux/www/elasticsearch-6.8.23-src.tar.gz/elasticsearch-6.8.23/docs/java-api/../../server/src/test/java/org/elasticsearch/client/documentation/IndicesDocumentationIT.java[putMapping-request-source]
-
Puts a mapping on existing index called
twitter
-
Adds a new field
name
to the mapping -
The type can be also provided within the source
Refresh
The refresh API allows to explicitly refresh one or more index:
client.admin().indices().prepareRefresh().get(); (1)
client.admin().indices()
.prepareRefresh("twitter") (2)
.get();
client.admin().indices()
.prepareRefresh("twitter", "company") (3)
.get();
-
Refresh all indices
-
Refresh one index
-
Refresh many indices
Get Settings
The get settings API allows to retrieve settings of index/indices:
GetSettingsResponse response = client.admin().indices()
.prepareGetSettings("company", "employee").get(); (1)
for (ObjectObjectCursor<String, Settings> cursor : response.getIndexToSettings()) { (2)
String index = cursor.key; (3)
Settings settings = cursor.value; (4)
Integer shards = settings.getAsInt("index.number_of_shards", null); (5)
Integer replicas = settings.getAsInt("index.number_of_replicas", null); (6)
}
-
Get settings for indices
company
andemployee
-
Iterate over results
-
Index name
-
Settings for the given index
-
Number of shards for this index
-
Number of replicas for this index ==== Update Indices Settings
You can change index settings by calling:
client.admin().indices().prepareUpdateSettings("twitter") (1)
.setSettings(Settings.builder() (2)
.put("index.number_of_replicas", 0)
)
.get();
-
Index to update
-
Settings
Cluster Administration
To access cluster Java API, you need to call cluster()
method from an AdminClient
:
ClusterAdminClient clusterAdminClient = client.admin().cluster();
Note
|
In the rest of this guide, we will use client.admin().cluster() .
|
Cluster Health
Health
The cluster health API allows to get a very simple status on the health of the cluster and also can give you some technical information about the cluster status per index:
ClusterHealthResponse healths = client.admin().cluster().prepareHealth().get(); (1)
String clusterName = healths.getClusterName(); (2)
int numberOfDataNodes = healths.getNumberOfDataNodes(); (3)
int numberOfNodes = healths.getNumberOfNodes(); (4)
for (ClusterIndexHealth health : healths.getIndices().values()) { (5)
String index = health.getIndex(); (6)
int numberOfShards = health.getNumberOfShards(); (7)
int numberOfReplicas = health.getNumberOfReplicas(); (8)
ClusterHealthStatus status = health.getStatus(); (9)
}
-
Get information for all indices
-
Access the cluster name
-
Get the total number of data nodes
-
Get the total number of nodes
-
Iterate over all indices
-
Index name
-
Number of shards
-
Number of replicas
-
Index status
Wait for status
You can use the cluster health API to wait for a specific status for the whole cluster or for a given index:
client.admin().cluster().prepareHealth() (1)
.setWaitForYellowStatus() (2)
.get();
client.admin().cluster().prepareHealth("company") (3)
.setWaitForGreenStatus() (4)
.get();
client.admin().cluster().prepareHealth("employee") (5)
.setWaitForGreenStatus() (6)
.setTimeout(TimeValue.timeValueSeconds(2)) (7)
.get();
-
Prepare a health request
-
Wait for the cluster being yellow
-
Prepare the health request for index
company
-
Wait for the index being green
-
Prepare the health request for index
employee
-
Wait for the index being green
-
Wait at most for 2 seconds
If the index does not have the expected status and you want to fail in that case, you need to explicitly interpret the result:
ClusterHealthResponse response = client.admin().cluster().prepareHealth("company")
.setWaitForGreenStatus() (1)
.get();
ClusterHealthStatus status = response.getIndices().get("company").getStatus();
if (!status.equals(ClusterHealthStatus.GREEN)) {
throw new RuntimeException("Index is in " + status + " state"); (2)
}
-
Wait for the index being green
-
Throw an exception if not
GREEN
Stored Scripts API
The stored script API allows one to interact with scripts and templates stored in Elasticsearch. It can be used to create, update, get, and delete stored scripts and templates.
PutStoredScriptResponse response = client.admin().cluster().preparePutStoredScript()
.setId("script1")
.setContent(new BytesArray("{\"script\": {\"lang\": \"painless\", \"source\": \"_score * doc['my_numeric_field'].value\"} }"), XContentType.JSON)
.get();
GetStoredScriptResponse response = client().admin().cluster().prepareGetStoredScript()
.setId("script1")
.get();
DeleteStoredScriptResponse response = client().admin().cluster().prepareDeleteStoredScript()
.setId("script1")
.get();
To store templates simply use "mustache" for the scriptLang.
Script Language
The put stored script API allows one to set the language of the stored script. If one is not provided the default scripting language will be used.