"Fossies" - the Fresh Open Source Software Archive 
Member "SDL2_ttf-2.20.2/external/freetype/src/gzip/adler32.c" (25 May 2022, 5182 Bytes) of package /linux/misc/SDL2_ttf-2.20.2.tar.gz:
As a special service "Fossies" has tried to format the requested source page into HTML format using (guessed) C and C++ source code syntax highlighting (style:
standard) with prefixed line numbers and
code folding option.
Alternatively you can here
view or
download the uninterpreted source code file.
For more information about "adler32.c" see the
Fossies "Dox" file reference documentation.
1 /* adler32.c -- compute the Adler-32 checksum of a data stream
2 * Copyright (C) 1995-2011, 2016 Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 */
5
6 /* @(#) $Id$ */
7
8 #include "zutil.h"
9
10 #ifndef Z_FREETYPE
11 local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2));
12 #endif
13
14 #define BASE 65521U /* largest prime smaller than 65536 */
15 #define NMAX 5552
16 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
17
18 #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;}
19 #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);
20 #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);
21 #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
22 #define DO16(buf) DO8(buf,0); DO8(buf,8);
23
24 /* use NO_DIVIDE if your processor does not do division in hardware --
25 try it both ways to see which is faster */
26 #ifdef NO_DIVIDE
27 /* note that this assumes BASE is 65521, where 65536 % 65521 == 15
28 (thank you to John Reiser for pointing this out) */
29 # define CHOP(a) \
30 do { \
31 unsigned long tmp = a >> 16; \
32 a &= 0xffffUL; \
33 a += (tmp << 4) - tmp; \
34 } while (0)
35 # define MOD28(a) \
36 do { \
37 CHOP(a); \
38 if (a >= BASE) a -= BASE; \
39 } while (0)
40 # define MOD(a) \
41 do { \
42 CHOP(a); \
43 MOD28(a); \
44 } while (0)
45 # define MOD63(a) \
46 do { /* this assumes a is not negative */ \
47 z_off64_t tmp = a >> 32; \
48 a &= 0xffffffffL; \
49 a += (tmp << 8) - (tmp << 5) + tmp; \
50 tmp = a >> 16; \
51 a &= 0xffffL; \
52 a += (tmp << 4) - tmp; \
53 tmp = a >> 16; \
54 a &= 0xffffL; \
55 a += (tmp << 4) - tmp; \
56 if (a >= BASE) a -= BASE; \
57 } while (0)
58 #else
59 # define MOD(a) a %= BASE
60 # define MOD28(a) a %= BASE
61 # define MOD63(a) a %= BASE
62 #endif
63
64 /* ========================================================================= */
65 uLong ZEXPORT adler32_z(
66 uLong adler,
67 const Bytef *buf,
68 z_size_t len)
69 {
70 unsigned long sum2;
71 unsigned n;
72
73 /* split Adler-32 into component sums */
74 sum2 = (adler >> 16) & 0xffff;
75 adler &= 0xffff;
76
77 /* in case user likes doing a byte at a time, keep it fast */
78 if (len == 1) {
79 adler += buf[0];
80 if (adler >= BASE)
81 adler -= BASE;
82 sum2 += adler;
83 if (sum2 >= BASE)
84 sum2 -= BASE;
85 return adler | (sum2 << 16);
86 }
87
88 /* initial Adler-32 value (deferred check for len == 1 speed) */
89 if (buf == Z_NULL)
90 return 1L;
91
92 /* in case short lengths are provided, keep it somewhat fast */
93 if (len < 16) {
94 while (len--) {
95 adler += *buf++;
96 sum2 += adler;
97 }
98 if (adler >= BASE)
99 adler -= BASE;
100 MOD28(sum2); /* only added so many BASE's */
101 return adler | (sum2 << 16);
102 }
103
104 /* do length NMAX blocks -- requires just one modulo operation */
105 while (len >= NMAX) {
106 len -= NMAX;
107 n = NMAX / 16; /* NMAX is divisible by 16 */
108 do {
109 DO16(buf); /* 16 sums unrolled */
110 buf += 16;
111 } while (--n);
112 MOD(adler);
113 MOD(sum2);
114 }
115
116 /* do remaining bytes (less than NMAX, still just one modulo) */
117 if (len) { /* avoid modulos if none remaining */
118 while (len >= 16) {
119 len -= 16;
120 DO16(buf);
121 buf += 16;
122 }
123 while (len--) {
124 adler += *buf++;
125 sum2 += adler;
126 }
127 MOD(adler);
128 MOD(sum2);
129 }
130
131 /* return recombined sums */
132 return adler | (sum2 << 16);
133 }
134
135 /* ========================================================================= */
136 uLong ZEXPORT adler32(
137 uLong adler,
138 const Bytef *buf,
139 uInt len)
140 {
141 return adler32_z(adler, buf, len);
142 }
143
144 #ifndef Z_FREETYPE
145
146 /* ========================================================================= */
147 local uLong adler32_combine_(
148 uLong adler1,
149 uLong adler2,
150 z_off64_t len2)
151 {
152 unsigned long sum1;
153 unsigned long sum2;
154 unsigned rem;
155
156 /* for negative len, return invalid adler32 as a clue for debugging */
157 if (len2 < 0)
158 return 0xffffffffUL;
159
160 /* the derivation of this formula is left as an exercise for the reader */
161 MOD63(len2); /* assumes len2 >= 0 */
162 rem = (unsigned)len2;
163 sum1 = adler1 & 0xffff;
164 sum2 = rem * sum1;
165 MOD(sum2);
166 sum1 += (adler2 & 0xffff) + BASE - 1;
167 sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
168 if (sum1 >= BASE) sum1 -= BASE;
169 if (sum1 >= BASE) sum1 -= BASE;
170 if (sum2 >= ((unsigned long)BASE << 1)) sum2 -= ((unsigned long)BASE << 1);
171 if (sum2 >= BASE) sum2 -= BASE;
172 return sum1 | (sum2 << 16);
173 }
174
175 /* ========================================================================= */
176 uLong ZEXPORT adler32_combine(
177 uLong adler1,
178 uLong adler2,
179 z_off_t len2)
180 {
181 return adler32_combine_(adler1, adler2, len2);
182 }
183
184 uLong ZEXPORT adler32_combine64(
185 uLong adler1,
186 uLong adler2,
187 z_off64_t len2)
188 {
189 return adler32_combine_(adler1, adler2, len2);
190 }
191
192 #endif /* !Z_FREETYPE */