"Fossies" - the Fresh Open Source Software Archive

Member "OpenBLAS-0.3.20/USAGE.md" (20 Feb 2022, 7580 Bytes) of package /linux/misc/OpenBLAS-0.3.20.tar.gz:


As a special service "Fossies" has tried to format the requested source page into HTML format (assuming markdown format). Alternatively you can here view or download the uninterpreted source code file. A member file download can also be achieved by clicking within a package contents listing on the according byte size field.

A hint: This file contains one or more very long lines, so maybe it is better readable using the pure text view mode that shows the contents as wrapped lines within the browser window.


Notes on OpenBLAS usage

Usage

Program is Terminated. Because you tried to allocate too many memory regions

In OpenBLAS, we mange a pool of memory buffers and allocate the number of buffers as the following.

#define NUM_BUFFERS (MAX_CPU_NUMBER * 2)

This error indicates that the program exceeded the number of buffers.

Please build OpenBLAS with larger NUM_THREADS. For example, make NUM_THREADS=32 or make NUM_THREADS=64. In Makefile.system, we will set MAX_CPU_NUMBER=NUM_THREADS.

Despite its name, and due to the use of memory buffers in functions like SGEMM, the setting of NUM_THREADS can be relevant even for a single-threaded build of OpenBLAS, if such functions get called by multiple threads of a program that uses OpenBLAS. In some cases, the affected code may simply crash or throw a segmentation fault without displaying the above warning first.

Note that the number of threads used at runtime can be altered to differ from the value NUM_THREADS was set to at build time. At runtime, the actual number of threads can be set anywhere from 1 to the build's NUM_THREADS (note however, that this does not change the number of memory buffers that will be allocated, which is set at build time). The number of threads for a process can be set by using the mechanisms described below.

How can I use OpenBLAS in multi-threaded applications?

If your application is already multi-threaded, it will conflict with OpenBLAS multi-threading. Thus, you must set OpenBLAS to use single thread in any of the following ways:

If the application is parallelized by OpenMP, please use OpenBLAS built with USE_OPENMP=1

How to choose TARGET manually at runtime when compiled with DYNAMIC_ARCH

The environment variable which control the kernel selection is OPENBLAS_CORETYPE (see driver/others/dynamic.c) e.g. export OPENBLAS_CORETYPE=Haswell and the function char* openblas_get_corename() returns the used target.

How could I disable OpenBLAS threading affinity on runtime?

You can define the OPENBLAS_MAIN_FREE or GOTOBLAS_MAIN_FREE environment variable to disable threading affinity on runtime. For example, before the running,

export OPENBLAS_MAIN_FREE=1

Alternatively, you can disable affinity feature with enabling NO_AFFINITY=1 in Makefile.rule.

Linking with the library

gcc -o test test.c -I /your_path/OpenBLAS/include/ -L/your_path/OpenBLAS/lib -lopenblas

If the library is multithreaded, please add -lpthread. If the library contains LAPACK functions, please add -lgfortran or other Fortran libs.

gcc -o test test.c /your/path/libopenblas.a

You can download test.c from https://gist.github.com/xianyi/5780018

On Linux, if OpenBLAS was compiled with threading support (USE_THREAD=1 by default), custom programs statically linked against libopenblas.a should also link with the pthread library e.g.:

gcc -static -I/opt/OpenBLAS/include -L/opt/OpenBLAS/lib -o my_program my_program.c -lopenblas -lpthread

Failing to add the -lpthread flag will cause errors such as:

/opt/OpenBLAS/libopenblas.a(memory.o): In function `_touch_memory':
memory.c:(.text+0x15): undefined reference to `pthread_mutex_lock'
memory.c:(.text+0x41): undefined reference to `pthread_mutex_unlock'
...

Code examples

Call CBLAS interface

This example shows calling cblas_dgemm in C. https://gist.github.com/xianyi/6930656

#include <cblas.h>
#include <stdio.h>

void main()
{
  int i=0;
  double A[6] = {1.0,2.0,1.0,-3.0,4.0,-1.0};
  double B[6] = {1.0,2.0,1.0,-3.0,4.0,-1.0};
  double C[9] = {.5,.5,.5,.5,.5,.5,.5,.5,.5};
  cblas_dgemm(CblasColMajor, CblasNoTrans, CblasTrans,3,3,2,1,A, 3, B, 3,2,C,3);

  for(i=0; i<9; i++)
    printf("%lf ", C[i]);
  printf("\n");
}

gcc -o test_cblas_open test_cblas_dgemm.c -I /your_path/OpenBLAS/include/ -L/your_path/OpenBLAS/lib -lopenblas -lpthread -lgfortran

Call BLAS Fortran interface

This example shows calling dgemm Fortran interface in C. https://gist.github.com/xianyi/5780018

#include "stdio.h"
#include "stdlib.h"
#include "sys/time.h"
#include "time.h"

extern void dgemm_(char*, char*, int*, int*,int*, double*, double*, int*, double*, int*, double*, double*, int*);

int main(int argc, char* argv[])
{
  int i;
  printf("test!\n");
  if(argc<4){
    printf("Input Error\n");
    return 1;
  }

  int m = atoi(argv[1]);
  int n = atoi(argv[2]);
  int k = atoi(argv[3]);
  int sizeofa = m * k;
  int sizeofb = k * n;
  int sizeofc = m * n;
  char ta = 'N';
  char tb = 'N';
  double alpha = 1.2;
  double beta = 0.001;

  struct timeval start,finish;
  double duration;

  double* A = (double*)malloc(sizeof(double) * sizeofa);
  double* B = (double*)malloc(sizeof(double) * sizeofb);
  double* C = (double*)malloc(sizeof(double) * sizeofc);

  srand((unsigned)time(NULL));

  for (i=0; i<sizeofa; i++)
    A[i] = i%3+1;//(rand()%100)/10.0;

  for (i=0; i<sizeofb; i++)
    B[i] = i%3+1;//(rand()%100)/10.0;

  for (i=0; i<sizeofc; i++)
    C[i] = i%3+1;//(rand()%100)/10.0;
  //#if 0
  printf("m=%d,n=%d,k=%d,alpha=%lf,beta=%lf,sizeofc=%d\n",m,n,k,alpha,beta,sizeofc);
  gettimeofday(&start, NULL);
  dgemm_(&ta, &tb, &m, &n, &k, &alpha, A, &m, B, &k, &beta, C, &m);
  gettimeofday(&finish, NULL);

  duration = ((double)(finish.tv_sec-start.tv_sec)*1000000 + (double)(finish.tv_usec-start.tv_usec)) / 1000000;
  double gflops = 2.0 * m *n*k;
  gflops = gflops/duration*1.0e-6;

  FILE *fp;
  fp = fopen("timeDGEMM.txt", "a");
  fprintf(fp, "%dx%dx%d\t%lf s\t%lf MFLOPS\n", m, n, k, duration, gflops);
  fclose(fp);

  free(A);
  free(B);
  free(C);
  return 0;
}

gcc -o time_dgemm time_dgemm.c /your/path/libopenblas.a

./time_dgemm <m> <n> <k>

Troubleshooting

BLAS reference manual

If you want to understand every BLAS function and definition, please read Intel MKL reference manual or netlib.org

Here are OpenBLAS extension functions

How to reference OpenBLAS.

You can reference our papers.

Alternatively, you can cite the OpenBLAS homepage http://www.openblas.net directly.