A hint: This file contains one or more very long lines, so maybe it is better readable using the pure text view mode that shows the contents as wrapped lines within the browser window.
1 __DOC := rec(keys:=Dry([ 2 "f896a5", 3 "95e4b1", 4 "5d80db", 5 "4546ad", 6 "575f80", 7 "cfb542", 8 "881f04", 9 "7251a6", 10 "a0823b", 11 "b2cb94", 12 "c4f2b5", 13 "143f84", 14 "ac2569", 15 "8024dd", 16 "b49bbf", 17 "c7a0ee", 18 "3b1b6a", 19 "636b79", 20 "bde31f", 21 "1630a6", 22 "2ae099", 23 "e10eac", 24 "f6116f", 25 "3b8353", 26 "7834fe", 27 "6a9bd1", 28 "c8a315", 29 "aa13b4", 30 "0b6f20", 31 "2625da", 32 "887cf1", 33 "2dded0", 34 "f78331", 35 "6da1f1", 36 "d81c63", 37 "b9f653", 38 "697229", 39 "19c302", 40 "1ed908", 41 "96e0c5", 42 "6a4b57", 43 "de4e08", 44 "1543ee", 45 "deb7d2", 46 "57fa02", 47 "8b67a5", 48 "1a2112", 49 "398368", 50 "f16dd2", 51 "b922b7", 52 "b588e0", 53 "214893", 54 "2809b1", 55 "efdf43", 56 "3557f0", 57 "7081f0", 58 "37c247", 59 "e9863c", 60 "d8eb79", 61 "455bb8", 62 "5447d9", 63 "b428bb", 64 "2e722c", 65 "d6a98a", 66 "144d2d", 67 "ad4301", 68 "66b097", 69 "ea1698", 70 "f9320a", 71 "3e2598", 72 "2a0f5b", 73 "9528e2", 74 "51dd36", 75 "3729c0", 76 "4ecb42", 77 "199ebf", 78 "03ff1b", 79 "4a46b0", 80 "14d69d", 81 "3c99b9", 82 "0f6520", 83 "1fbd2d", 84 "7de892", 85 "335b78", 86 "72db5a", 87 "dcc5e1", 88 "39607a", 89 "f81ead", 90 "ad5189", 91 "1bdd5d", 92 "4a4a6e", 93 "fbad9f", 94 "43bf9a", 95 "0730f5", 96 "68305c", 97 "fc8a38", 98 "36bbdd", 99 "ab6670", 100 "e60d0d", 101 "650413", 102 "efc75e", 103 "90fb03", 104 "d34ecf", 105 "96b3e7", 106 "7ef2be", 107 "72dcb5", 108 "1cc237", 109 "d1d7cb", 110 "aeb167", 111 "98a11b", 112 "ab7b5e", 113 "ec51e2", 114 "ca03d1", 115 "b12aa7", 116 "32de83", 117 "26ec35", 118 "637982", 119 "871abd", 120 "f2d081", 121 "1b2275", 122 "ead233", 123 "c601cc", 124 "0ce1d5", 125 "c025b1", 126 "8eb302", 127 "bb5501", 128 "2b0f66", 129 "cf988f", 130 "07c92e", 131 "b7306d", 132 "fa766e", 133 "1f9485", 134 "62d20c", 135 "dcca85", 136 "a0add0", 137 "8b4255", 138 "b464a5", 139 "0c44c7", 140 "3109b6", 141 "79a28e", 142 "2ad5c7", 143 "ebcb64", 144 "4a2939", 145 "5ec41d", 146 "90d41a", 147 "1c4f4b", 148 "1160f6", 149 "88de41", 150 "d07f27", 151 "849310", 152 "afd6a2", 153 "367094", 154 "c34314", 155 "1b771b", 156 "3196a1", 157 "8cb8bb", 158 "966a95", 159 "cefa10", 160 "cf9331", 161 "c13e31", 162 "a3cff8", 163 "a283e8", 164 "196729", 165 "d691ad", 166 "afca37", 167 "52ee65", 168 "9df99d", 169 "7a1f45", 170 "954a96", 171 "cc967a", 172 "04d6e2", 173 "0f386d", 174 "8a7886", 175 "c3156e", 176 "909f99", 177 "0f462d", 178 "c032ad", 179 "065765", 180 "32096c", 181 "ca73ab", 182 "e0184a", 183 "f3f65b", 184 "4a6ac6", 185 "153d7a", 186 "1b9919", 187 "14048e", 188 "27e1eb", 189 "12d7db", 190 "5974c9", 191 "adf18d", 192 "c70f5c", 193 "f49c4a", 194 "55939c", 195 "80071c", 196 "d86b75", 197 "ed8fcc", 198 "dde0bc", 199 "f904e2", 200 "4d7a41", 201 "fe08ce", 202 "d038c9", 203 "2df183", 204 "306f68", 205 "16264b", 206 "2656fb", 207 "9a3bee", 208 "1d3c71", 209 "8be19d", 210 "2e50e8", 211 "52a693", 212 "9e54fd", 213 "17c2d1", 214 "3ae997", 215 "454b97", 216 "2afd97", 217 "06161c", 218 "fc2dbf", 219 "3836b4", 220 "16397d", 221 "a5a791", 222 "8ee1cd", 223 "4af2c5", 224 "2a4d61", 225 "f68093", 226 "65cacd", 227 "be3460", 228 "60e26c", 229 "566c1e", 230 "22d77a", 231 "fcb739", 232 "cff7d0", 233 "f8c01e", 234 "9eede6", 235 "707dde", 236 "79fde2", 237 "90ccd6", 238 "76ce42", 239 "bdc1fd", 240 "749950", 241 "e854e6", 242 "83082f", 243 "7e4ac6", 244 "79731e", 245 "010b85", 246 "b520c7", 247 "058bfd", 248 "2582ff", 249 "a1fdaa", 250 "58ab0e", 251 "8d5179", 252 "6e06f6", 253 "57c950", 254 "0d5fda", 255 "b5fb63", 256 "538a8c", 257 "a3e705", 258 "c92634", 259 "ed35c2", 260 "a26b37", 261 "ab46c5", 262 "afac3c", 263 "ead637", 264 "65d8e9", 265 "9b982b", 266 "08ba89", 267 "54eb9f", 268 "51a70b", 269 "4c47dd", 270 "6ce6c5", 271 "bc0792", 272 "61074f", 273 "7d5323", 274 "fd2d29", 275 "bd102f", 276 "7cc48c", 277 "7acb1d", 278 "2d83c5", 279 "1352b4", 280 "1a564a", 281 "61057a", 282 "cc954c", 283 "716b03", 284 "33ff40", 285 "a9e585", 286 "82f7c4", 287 "dfa314", 288 "8f26c3", 289 "55e26b", 290 "6f0af0", 291 "71e03d", 292 "c16201", 293 "aa88e2", 294 "ee3f72", 295 "93f01f", 296 "4e3050", 297 "51e100", 298 "96758c", 299 "46626e", 300 "ea70c0", 301 "ee0a32", 302 "de2e6c", 303 "bd482b", 304 "2ee348", 305 "cf4269", 306 "120c98", 307 "86383f", 308 "5b5c8d", 309 "1f60ed", 310 "5d2a18", 311 "97f2d4", 312 "6708e8", 313 "8d5ec6", 314 "a6ea5b", 315 "f2b426", 316 "a946db", 317 "1a92f7", 318 "6b513a", 319 "fdca38", 320 "548853", 321 "5345a1", 322 "e292e9", 323 "b38c0e", 324 "f03e60", 325 "1b536b", 326 "94b4b7", 327 "296081", 328 "e28cd6", 329 "c6d89b", 330 "1322a4", 331 "e63d5b", 332 "edab48", 333 "dbaff7", 334 "1362af", 335 "7d6800", 336 "a8d39a", 337 "567a74", 338 "675095", 339 "a5b5a6", 340 "3b4186", 341 "cd7ab2", 342 "39cdfc", 343 "1eaf4c", 344 "c5c1d4", 345 "088b6b", 346 "99775d", 347 "e98dea", 348 "579958", 349 "a3fe4c", 350 "b9714c", 351 "1b29b5", 352 "8646f9", 353 "135a15", 354 "7e460e", 355 "103b26", 356 "268863", 357 "c00cab", 358 "7646a5", 359 "86055e", 360 "062463", 361 "8bab25", 362 "6bcd2e", 363 "9d9291", 364 "a3f4c7", 365 "b39c6c", 366 "c2fce0", 367 "e5b910", 368 "187ae4", 369 "42f968", 370 "2dd4da", 371 "141812", 372 "6869ff", 373 "e0443c", 374 "1a0a18", 375 "ee8c2e", 376 "ce5458", 377 "487c0f", 378 "a8a50b", 379 "63c9db", 380 "3943fc", 381 "c5f8b8", 382 "60328f", 383 "8dd900", 384 "09db15", 385 "03e031", 386 "dea687", 387 "6a788f", 388 "885945", 389 "a9c98d", 390 "006396", 391 "5e69c1", 392 "90cf6e", 393 "14eea5", 394 "fdb426", 395 "d1103e", 396 "e8fd95", 397 "bbfd6e", 398 "9aa461", 399 "94dbb3", 400 "5f9aec", 401 "f9e752", 402 "f63716", 403 "bf9496", 404 "69d342", 405 "bd9934", 406 "430302", 407 "fe5666", 408 "b19e9b", 409 "d27408", 410 "ff2f7d", 411 "99b3fa", 412 "b9a29c", 413 "116c84", 414 "9a6451", 415 "6c8bc0", 416 "a848e9", 417 "1f37ab", 418 "1361ce", 419 "28c8d2", 420 "ba191d", 421 "1f84f1", 422 "e139be", 423 "da2302", 424 "2184f2", 425 "057455", 426 "889a24", 427 "a58e00", 428 "fed97c", 429 "b209ca", 430 "130ccf", 431 "564416", 432 "883c6f", 433 "c11247", 434 "dc0712", 435 "f3a0cf", 436 "38af93", 437 "719540", 438 "1eb812", 439 "d5bdc1", 440 "64d3bf", 441 "6ed7ac", 442 "9bd2a8", 443 "b2084c", 444 "3c64b7", 445 "545d6d", 446 "772456", 447 "2371d9", 448 "dc0dae", 449 "d7d7b2", 450 "2bbd7f", 451 "40738e", 452 "67ab80", 453 "e6e4de", 454 "b89a5e", 455 "5f9914", 456 "191cfd", 457 "47a5d6", 458 "a53da3", 459 "d9093f", 460 "a4c200", 461 "80ef57", 462 "9da624", 463 "890b10", 464 "55a86d", 465 "d311d7", 466 "5f76dc", 467 "23ff06", 468 "acacf0", 469 "cc9e0a", 470 "1c07a1", 471 "c89f1d", 472 "df84c5", 473 "9efff3", 474 "6ce3e4", 475 "5f50a9", 476 "fd316b", 477 "c8309c", 478 "87c7ba", 479 "18316f", 480 "72c468", 481 "c77aaf", 482 "3eb458", 483 "b8e53c", 484 "d19437", 485 "66baf1", 486 "f0ca70", 487 "20475b", 488 "f307dc", 489 "584386", 490 "a41a54", 491 "7cc02b", 492 "fb76d0", 493 "c401e7", 494 "a2c7a5", 495 "4ce650", 496 "63b663", 497 "ff2ad4", 498 "17cebe", 499 "71a37f", 500 "64a650", 501 "6ee450", 502 "d78dd5", 503 "9a31fa", 504 "1e319c", 505 "bbb6f8", 506 "c757b8", 507 "bef35b", 508 "228580", 509 "20711c", 510 "6ff760", 511 "7421d8", 512 "4b4b22", 513 "12da23", 514 "eae08f", 515 "d97a93", 516 "2c586c", 517 "75db40", 518 "416e8f", 519 "50625c", 520 "56efc7", 521 "d717ba", 522 "af0655", 523 "b4dc97", 524 "bfcc9d", 525 "676767", 526 "4c2cbf", 527 "c61e27", 528 "ff057b", 529 "737a5c", 530 "3d04c7", 531 "0c7daf", 532 "f2726a", 533 "f77154", 534 "c2bf1d", 535 "9ce6f1", 536 "48446e", 537 "ddfe0a", 538 "6e0860", 539 "cdd7b9", 540 "b132f6", 541 "54aba9", 542 "c647c8", 543 "58e6f5", 544 "dfffc7", 545 "1ca758", 546 "5104be", 547 "77833f", 548 "78c4e6", 549 "ba88f2", 550 "5412b3", 551 "829cf9", 552 "fb7bf1", 553 "0cce58", 554 "22ce53", 555 "109b0a", 556 "5d0a7e", 557 "49bff8", 558 "1e1fcb", 559 "781c13", 560 "238a94", 561 "ca36a7", 562 "e51526", 563 "553b27", 564 "e6b0c9", 565 "3d7eec", 566 "e9735a", 567 "08af13", 568 "8e0999", 569 "cb6ee8", 570 "e5f5c1", 571 "44a57f", 572 "065a64", 573 "ca50f2", 574 "7ccbe9", 575 "63f63f", 576 "e1edd4", 577 "71a89b", 578 "47d84d", 579 "c6023b", 580 "3d613e", 581 "44eb5e", 582 "0a5141", 583 "857ad1", 584 "8c651b", 585 "3105af", 586 "5a626d", 587 "c6a6b4", 588 "90f13e", 589 "7fa635", 590 "d081cf", 591 "d79561", 592 "0ba7f4", 593 "6a7a0a", 594 "8fc1fe", 595 "22cc35", 596 "aaebb6", 597 "012cb4", 598 "a90850", 599 "b2bd3e", 600 "cca8e5", 601 "ebba2d", 602 "104c32", 603 "dd3d18", 604 "43c40a", 605 "98045c", 606 "435133", 607 "3cb492", 608 "f50b6d", 609 "b73aba", 610 "4bbc46", 611 "854628", 612 "d58beb", 613 "3d0a34", 614 "a51c13", 615 "610ebf", 616 "86ccf4", 617 "865a97", 618 "68af7a", 619 "c7ceac", 620 "96aeae", 621 "2ace92", 622 "8d5e14", 623 "b95c14", 624 "f482da", 625 "93a1f1", 626 "6dd570", 627 "9076b2", 628 "f62937", 629 "f71924", 630 "a48882", 631 "4d409d", 632 "c47b27", 633 "a58de7", 634 "09c43b", 635 "a14ca0", 636 "3f6d35", 637 "d8744b", 638 "732fb7", 639 "6c1e5d", 640 "036011", 641 "a5c47e", 642 "f8b58f", 643 "ebd6fd", 644 "7bce36", 645 "6c3f92", 646 "aa5a05", 647 "363c30", 648 "ff53a6", 649 "f49ea9", 650 "9735a1", 651 "2ff489", 652 "579169", 653 "0a2873", 654 "0239d5", 655 "bc5c24", 656 "01efb4", 657 "5b7e45", 658 "0b3a0f", 659 "a147ac", 660 "c3d4cc", 661 "c444d7", 662 "5fd5aa", 663 "029925", 664 "5ee102", 665 "2fc756", 666 "b3e6b7", 667 "11dc14", 668 "df130f", 669 "c11b40", 670 "db238a", 671 "9f32be", 672 "aa40a9", 673 "fd1745", 674 "190e40", 675 "a73756", 676 "e972d8", 677 "428a94", 678 "3f93bc", 679 "53741c", 680 "3226cf", 681 "e0b9fb", 682 "0a36a8", 683 "4e999a", 684 "ab07d2", 685 "0fb7b1", 686 "0c4d20", 687 "7b5126", 688 "171ca1", 689 "18b088", 690 "a9bc6e", 691 "ffb49c", 692 "340989", 693 "8e4693", 694 "9db529", 695 "982c5b", 696 "23b196", 697 "32a3e4", 698 "d29e21", 699 "ba2f7a", 700 "277c2a", 701 "c3fb49", 702 "37a6d4", 703 "e2f86e", 704 "10e78a", 705 "0945d7", 706 "148e85", 707 "d02d50", 708 "134191", 709 "b70700", 710 "201232", 711 "a98ed5", 712 "e4a2ee", 713 "66ad0c", 714 "62dc9e", 715 "2b17aa", 716 "3f3f5a", 717 "411b3d", 718 "52b500", 719 "842773", 720 "24c8ae", 721 "a919a7", 722 "faf5d3", 723 "1c4064", 724 "7555e6", 725 "a622c5", 726 "5191e5", 727 "f0d448", 728 "abdbbd", 729 "8b5b8b", 730 "a50f07", 731 "3ef04b", 732 "666ec6", 733 "c07ec4", 734 "515d6c", 735 "1ed557", 736 "38ce56", 737 "afdabf", 738 "7f5af5", 739 "61f668", 740 "9a0a4f", 741 "bb303d", 742 "3f8be1", 743 "21a10d", 744 "65d6ec", 745 "7ced20", 746 "20d162", 747 "da80fb", 748 "1c88cd", 749 "c6a2ad", 750 "352716", 751 "1a5084", 752 "8e8436", 753 "a3e6ae", 754 "beb919", 755 "83979c", 756 "cd5f0d", 757 "1b8042", 758 "0788b8", 759 "95a84a", 760 "e968f5", 761 "3c1a13", 762 "4c75c1", 763 "506f16", 764 "f7438f", 765 "427bfe", 766 "e23789", 767 "79388e", 768 "242972", 769 "fb3d53", 770 "d29e53", 771 "71c558", 772 "8b8cae", 773 "ed0077", 774 "a70dcb", 775 "9baeb8", 776 "817a72", 777 "ed836f", 778 "81b19d", 779 "e6c18c", 780 "fb83c5", 781 "9f8a7c", 782 "c548c3", 783 "d32a59", 784 "124d50", 785 "bf8067", 786 "7094e1", 787 "8df859", 788 "68090f", 789 "ad4650", 790 "0e9816", 791 "2de91e", 792 "21b5d9", 793 "32016c", 794 "eaba89", 795 "831049", 796 "9766e7", 797 "7d88df", 798 "18b8bd", 799 "84fe43", 800 "edce7d", 801 "467a61", 802 "70048b", 803 "b24fc3", 804 "578861", 805 "cd16cb", 806 "b14d2c", 807 "69032c", 808 "532bce", 809 "fd0e13", 810 "b7d483", 811 "d1e0a8", 812 "17b117", 813 "b1ac9a", 814 "70af9b", 815 "df577a", 816 "172183", 817 "a6d754", 818 "214c4b", 819 "be4f53", 820 "5fdd47", 821 "712be8", 822 "49bd01", 823 "6f1073", 824 "54a898", 825 "ba670f", 826 "b2b0b1", 827 "9ec16d", 828 "b76159", 829 "600c8f", 830 "ba6350", 831 "adc724", 832 "f64e57", 833 "d657ad", 834 "b0ae96", 835 "63041f", 836 "1da2eb", 837 "fba4ec", 838 "ba8276", 839 "10e946", 840 "6a66d6", 841 "706dab", 842 "ac0a74", 843 "97f90c", 844 "c30a68", 845 "43fbdf", 846 "c7cf83", 847 "f6c45e", 848 "de905e", 849 "fea34e", 850 "e24bd7", 851 "b82579", 852 "370676", 853 "293ef7", 854 "c263c1", 855 "ccdbf7", 856 "4b4951", 857 "0e7075", 858 "1804dd", 859 "19757c", 860 "7a23e7", 861 "a6a2ae", 862 "5120ce", 863 "6b0d91", 864 "bd2140", 865 "d90758", 866 "2ccd97", 867 "8d31ef", 868 "dab868", 869 "f280d3", 870 "881f91", 871 "5a4518", 872 "4ab0d0", 873 "162187", 874 "55347b", 875 "b1b97b", 876 "808a40", 877 "16064c", 878 "5ad828", 879 "18c766", 880 "7c4d6a", 881 "951a55", 882 "fcc20e", 883 "898075", 884 "dcd9a3", 885 "066223", 886 "0f485f", 887 "7acf8c", 888 "018bce", 889 "7a718a", 890 "e93e32", 891 "f20c76", 892 "5455f9", 893 "a8cffe", 894 "338c19", 895 "85eb29", 896 "74dc12", 897 "a0032b", 898 "70fc3c", 899 "bbdca0", 900 "e19659", 901 "95cab7", 902 "335cda", 903 "3142ad", 904 "616555", 905 "57c0af", 906 "663d28", 907 "ffb9a5", 908 "c605cd", 909 "b78847", 910 "d92d51", 911 "a65a55", 912 "c6c6c3", 913 "7a9344", 914 "d9be57", 915 "4e6ac6", 916 "dc49b0", 917 "058feb", 918 "191182", 919 "265636", 920 "d34620", 921 "7e49ed", 922 "9cbc40", 923 "4abe52", 924 "ca0208", 925 "3270c6", 926 "8df453", 927 "5f5c30", 928 "18e978", 929 "4813ae", 930 "ee530a", 931 "af53d2", 932 "959c77", 933 "a575ef", 934 "fbb9ae", 935 "6409c7", 936 "6f09f5", 937 "27edbc", 938 "377a44", 939 "235105", 940 "0972ef", 941 "685cf6", 942 "0796fa", 943 "01a221", 944 "2e6e2d", 945 "6fd0f2", 946 "662b76", 947 "ed62d3", 948 "7c009f", 949 "03e5ba", 950 "43f521", 951 "03e5a2", 952 "54b42a", 953 "fea072", 954 "08a35a", 955 "6a0a33", 956 "66aa56", 957 "bf6b19", 958 "9e528e", 959 "3ec17f", 960 "32a1f1", 961 "cb15ec", 962 "3d9824", 963 "b23f3a", 964 "28b62a", 965 "6bd0b5", 966 "1a44c9", 967 "0bb296", 968 "6e2b48", 969 "317ac6", 970 "902fe6", 971 "7f137c", 972 "f2a682", 973 "e1a6a1", 974 "3fa6b9", 975 "161b4a", 976 "9629c3", 977 "f06496", 978 "a22e48", 979 "1bb8b5", 980 "a92a60", 981 "58386e", 982 "085330", 983 "eb0da0", 984 "51fa4f", 985 "00c64d", 986 "259e51", 987 "55ef20", 988 "4b1354", 989 "747a14", 990 "24f1e7", 991 "3f7148", 992 "5d6723", 993 "e1626a", 994 "9bbb39", 995 "611937", 996 "9801f6", 997 "e2d017", 998 "d0d083", 999 "0e93c1", 1000 "b0b1a9", 1001 "72c9d2", 1002 "2ffae5", 1003 "5247d5", 1004 "843936", 1005 "96af75", 1006 "e92d1d", 1007 "2968a1", 1008 "5ab562", 1009 "4d8b46", 1010 "1c6ffa", 1011 "2cdf6f", 1012 "3f7351", 1013 "16f1e1", 1014 "a5a676", 1015 "881f57", 1016 "11112e", 1017 "3e1ecf", 1018 "dfad9a", 1019 "ac8d13", 1020 "af2773", 1021 "ed58e3", 1022 "60d114", 1023 "d0fed7", 1024 "e6e91e", 1025 "254dda", 1026 "86d669", 1027 "0116fc", 1028 "61087d", 1029 "510106", 1030 "e92718", 1031 "46d996", 1032 "8e6ac3", 1033 "ab9b01", 1034 "7f0382", 1035 "9a5ae0", 1036 "57652a", 1037 "021bf8", 1038 "f8b9e4", 1039 "692078", 1040 "6db802", 1041 "20e818", 1042 "b5e114", 1043 "c798a1", 1044 "b9ce32", 1045 "3820d2", 1046 "db4f88", 1047 "d61fbd", 1048 "8b40c1", 1049 "7cbb60", 1050 "3bd3c8", 1051 "e5580f", 1052 "7ec7fd", 1053 "8e0e8b", 1054 "528615", 1055 "d8803e", 1056 "55f70c", 1057 "d1036f", 1058 "b815aa", 1059 "d69b24", 1060 "d46cc9", 1061 "04f527", 1062 "2d7030", 1063 "1a86a7", 1064 "6d41c0", 1065 "e9a5bd", 1066 "323535", 1067 "059e5c", 1068 "f8d651", 1069 "e7c7d7", 1070 "a8b440", 1071 "47b687", 1072 "8a5fd9", 1073 "1ed860", 1074 "8c671c", 1075 "cce65a", 1076 "0224d1", 1077 "1e0b20", 1078 "5f40cd", 1079 "b5cacc", 1080 "7671ac", 1081 "e67408", 1082 "7b05b7", 1083 "77a6ff", 1084 "3fff14", 1085 "ae49bb", 1086 "455062", 1087 "a91233", 1088 "c35cea", 1089 "4b3538", 1090 "0fb449", 1091 "ebab58", 1092 "4af1a1", 1093 "f6c6c9", 1094 "e33ab0", 1095 "6e4c0d", 1096 "66160f", 1097 "56eca1", 1098 "cb1c4a", 1099 "33bbfc", 1100 "f6390f", 1101 "6dd9c6", 1102 "4d064f", 1103 "0e7d62", 1104 "8c8674", 1105 "b763f3", 1106 "97d946", 1107 "cc5f60", 1108 "3385b5", 1109 "342ae4", 1110 "9eeff8", 1111 "606207", 1112 "c4ce9e", 1113 "f49632", 1114 "466ec4", 1115 "0aa700", 1116 "ebce1b", 1117 "9d9aba", 1118 "820ef1", 1119 "ccf8c4", 1120 "f49308", 1121 "5396b2", 1122 "b69ddc", 1123 "31e9f8", 1124 "8e9edd", 1125 "29335a", 1126 "d39900", 1127 "25b9de", 1128 "aac18c", 1129 "d52461", 1130 "aacdef", 1131 "db4916", 1132 "0761f5", 1133 "70546f", 1134 "3c4b2b", 1135 "9f133a", 1136 "9dda84", 1137 "370481", 1138 "aad9a1", 1139 "479961", 1140 "86efb0", 1141 "ddb0f1", 1142 "842a4d", 1143 "0cedf6", 1144 "54c9fa", 1145 "3869b9", 1146 "258dd9", 1147 "a61c20", 1148 "27c0a3", 1149 "8105b9", 1150 "b2afc7", 1151 "393725", 1152 "9107cc", 1153 "9a4458", 1154 "51fd87", 1155 "82630a", 1156 "32f8f8", 1157 "b6b9a1", 1158 "12753b", 1159 "a8b487", 1160 "724944", 1161 "41c0c3", 1162 "27af27", 1163 "553511", 1164 "8bd6eb", 1165 "b93c71", 1166 "32f98c", 1167 "f4ed80", 1168 "044ee1", 1169 "840a58", 1170 "492533", 1171 "5dab23", 1172 "32fab8", 1173 "7536ae", 1174 "646bbb", 1175 "57c56c", 1176 "c0b957", 1177 "c961ea", 1178 "96a0d8", 1179 "91185c", 1180 "65071e", 1181 "4f96e3", 1182 "2b793c", 1183 "b42b44", 1184 "f5806c", 1185 "38c707", 1186 "6d9252", 1187 "a2d05d", 1188 "9a7a41", 1189 "64582d", 1190 "5a018f", 1191 "33d690", 1192 "b7dc36", 1193 "dde90b", 1194 "da5734", 1195 "946573", 1196 "0a254f", 1197 "4b48a9", 1198 "9b2361", 1199 "fec870", 1200 "fb8815", 1201 "b0cded", 1202 "59421e", 1203 "921e8a", 1204 "55f53f", 1205 "521b64", 1206 "ca9b48", 1207 "5cc02e", 1208 "b6573b", 1209 "25026d", 1210 "7daf95", 1211 "9c3309", 1212 "57cf8b", 1213 "fde1f8", 1214 "576482", 1215 "25ec5a", 1216 "3e44b2", 1217 "d077ac", 1218 "172cfa", 1219 "028e64", 1220 "9c3fb8", 1221 "48cf25", 1222 "3a3971", 1223 "aeb587", 1224 "9b7e3e", 1225 "4da975", 1226 "23c9a8", 1227 "ed7e69", 1228 "1054c2", 1229 "de4fba", 1230 "e151ee", 1231 "7376f5", 1232 "46b0f1", 1233 "6c2d09", 1234 "252151", 1235 "90f6ed", 1236 "d82e33", 1237 "690f83", 1238 "fab718", 1239 "cd721c", 1240 "4bb29b", 1241 "afeb08", 1242 "79895f", 1243 "569973", 1244 "e163f9", 1245 "9d162b", 1246 "d517a0", 1247 "a1dc65", 1248 "5cec3b", 1249 "1766ff", 1250 "f63bec", 1251 "01c622", 1252 "55a539", 1253 "d8960b", 1254 "ae6b5f", 1255 "14d252", 1256 "8efce6", 1257 "655304", 1258 "0c7fae", 1259 "f1535c", 1260 "df5cba", 1261 "ebe833", 1262 "be0b63", 1263 "e0e38f", 1264 "8ffb5c", 1265 "06d0bb", 1266 "b357a4", 1267 "25feca", 1268 "155933", 1269 "0dd431", 1270 "1a8581", 1271 "88697c", 1272 "44e808", 1273 "9430ce", 1274 "99456b", 1275 "e72f93", 1276 "780a30", 1277 "3364ba", 1278 "8a630d", 1279 "76ca35", 1280 "916b2d", 1281 "94c4f0", 1282 "73ca76", 1283 "b917cb", 1284 "3a6ca5", 1285 "e10b6b", 1286 "137076", 1287 "687e8f", 1288 "f531cf", 1289 "6a215c", 1290 "699b3c", 1291 "72c0eb", 1292 "4d3615", 1293 "114953", 1294 "e11f5d", 1295 "72a91c", 1296 "b2096a", 1297 "cd6d03", 1298 "95ab1e", 1299 "37e329", 1300 "cf79e3", 1301 "458190", 1302 "63b972", 1303 "7893eb", 1304 "a59133", 1305 "b0c2ec", 1306 "fc203b", 1307 "940918", 1308 "76129d", 1309 "181e75", 1310 "0632c4", 1311 "956e95", 1312 "0a6530", 1313 "0997a0", 1314 "ed4e38", 1315 "e42563", 1316 "c66db0", 1317 "04a96a", 1318 "cf43b9", 1319 "2cda0f", 1320 "cc0f6c", 1321 "e277a7", 1322 "a48254", 1323 "aa1571", 1324 "7faab6", 1325 "35999f", 1326 "49436f", 1327 "32fc29", 1328 "5d60b0", 1329 "9b5515", 1330 "8cd4bb", 1331 "ac7d31", 1332 "6ed5f9", 1333 "43c171", 1334 "9fadfa", 1335 "4c5e00", 1336 "24293a", 1337 "28258c", 1338 "01eb9c", 1339 "571b85", 1340 "62ee50", 1341 "04c7b3", 1342 "4a64be", 1343 "66d08e", 1344 "8d3016", 1345 "319261", 1346 "a0e3d1", 1347 "ec95b1", 1348 "7f3d29", 1349 "c130ec", 1350 "17f121", 1351 "73a79b", 1352 "2aa93f", 1353 "11bf8f", 1354 "9fdf95", 1355 "84247a", 1356 "768f87", 1357 "21e755", 1358 "fbfeeb", 1359 "6606d9", 1360 "a315e9", 1361 "192786", 1362 "31de0b", 1363 "8c0ea6", 1364 "a8fbe1", 1365 "025a48", 1366 "727934", 1367 "f97173", 1368 "56103e", 1369 "086c3f", 1370 "fa446b", 1371 "ddf1b4", 1372 "59960e", 1373 "9d5b07", 1374 "48258e", 1375 "813226", 1376 "a27a41", 1377 "6681bc", 1378 "08d237", 1379 "6f6a16", 1380 "bbed66", 1381 "c2a48d", 1382 "455b41", 1383 "302a95", 1384 "3b118f", 1385 "73c59d", 1386 "4cf1db", 1387 "eeae25", 1388 "d798dc", 1389 "9751a2", 1390 "50724c", 1391 "9b85d5", 1392 "b696d9", 1393 "57fcdb", 1394 "a3a043", 1395 "ba72cc", 1396 "46fcc2", 1397 "9f8634", 1398 "ed2ad9", 1399 "b4fb99", 1400 "daa1d5", 1401 "7599a6", 1402 "9cea42", 1403 "47be0b", 1404 "3d9787", 1405 "2242a6", 1406 "0764ba", 1407 "ef71b2", 1408 "24e641", 1409 "65f175", 1410 "441009", 1411 "97933a", 1412 "55371b", 1413 "48fd3b", 1414 "db8e44", 1415 "a859b9", 1416 "d1681c", 1417 "091fdb", 1418 "e76b22", 1419 "c78534", 1420 "1d4444", 1421 "e7edd6", 1422 "94dae2", 1423 "066a52", 1424 "a38a32", 1425 "89f9fc", 1426 "cacd09", 1427 "7c4fe3", 1428 "393313", 1429 "afb6d5", 1430 "af3e32", 1431 "14811e", 1432 "77d70d", 1433 "7c8763", 1434 "e8713e", 1435 "9ca0a7", 1436 "785b23", 1437 "3a3085", 1438 "2b2a25", 1439 "2f4d2c", 1440 "73a719", 1441 "95e815", 1442 "3165e4", 1443 "3be1a1", 1444 "77fa7c", 1445 "8b61f5", 1446 "9b7273", 1447 "5d579e", 1448 "09019e", 1449 "757bee", 1450 "8fff14", 1451 "5130e6", 1452 "4ddb4d", 1453 "47eebd", 1454 "13ecdb", 1455 "d59fa3", 1456 "994a18", 1457 "26d115", 1458 "aa0ba7", 1459 "07aac7", 1460 "46724f", 1461 "26df0c", 1462 "5e63db", 1463 "ae45d3", 1464 "35e36f", 1465 "4e5a80", 1466 "cf5bc1", 1467 "73a890", 1468 "520629", 1469 "575dfb", 1470 "df653b", 1471 "76ae19", 1472 "f2605b", 1473 "6f2a71", 1474 "a16025", 1475 "b0ac40", 1476 "bc4327", 1477 "6e64cb", 1478 "98ff32", 1479 "c6bc8c", 1480 "bb3e1e", 1481 "83b6a6", 1482 "5e1cce", 1483 "73843b", 1484 "f16537", 1485 "6cae78", 1486 "919bf3", 1487 "33023a", 1488 "6da1cc", 1489 "179a1d", 1490 "4ec7eb", 1491 "56daeb", 1492 "d162a9", 1493 "05421d", 1494 "1acc0e", 1495 "864a89", 1496 "8212f7", 1497 "de49e3", 1498 "a6240d", 1499 "33c05d", 1500 "2d6623", 1501 "bfab57", 1502 "19fffc", 1503 "252f5d", 1504 "b6db47", 1505 "d05e0b", 1506 "8f3748", 1507 "d565f2", 1508 "33efd3", 1509 "2116fb", 1510 "509347", 1511 "47ff30", 1512 "73c8e8", 1513 "81dfd8", 1514 "2b8fe8", 1515 "23d901", 1516 "c32b9a", 1517 "d6ca29", 1518 "322d52", 1519 "9502be", 1520 "46617e", 1521 "66806a", 1522 "f0cd3f", 1523 "19d162", 1524 "c11c91", 1525 "89160b", 1526 "ea2b03", 1527 "36a805", 1528 "1ec543", 1529 "fe3af2", 1530 "80203f", 1531 "b93e24", 1532 "66c86b", 1533 "ca8301", 1534 "b800d8", 1535 "9a9f28", 1536 "b3c48f", 1537 "e8514a", 1538 "1e77c3", 1539 "273033", 1540 "29bb66", 1541 "a3d8b1", 1542 "1d087e", 1543 "00efe6", 1544 "a5082d", 1545 "481faf", 1546 "a80563", 1547 "6556a5", 1548 "35375e", 1549 "707142", 1550 "79eb3b", 1551 "3dca35", 1552 "6ebc7b", 1553 "82bc3e", 1554 "074c05", 1555 "baa12d", 1556 "395e4f", 1557 "c2ba42", 1558 "e1d380", 1559 "f6d9b5", 1560 "ac4b2b", 1561 "356f29", 1562 "70516d", 1563 "7605c1", 1564 "4bdfdf", 1565 "6c690d", 1566 "f67e36", 1567 "2bddeb", 1568 "4306c6", 1569 "b1b7e3", 1570 "7a2eda", 1571 "6f70a3", 1572 "eedb7f", 1573 "4b28e0", 1574 "b04b05", 1575 "0e95f0", 1576 "dd744d", 1577 "8fee4b", 1578 "4b0783", 1579 "645114", 1580 "20920f", 1581 "83043c", 1582 "4157a6", 1583 "5e942e", 1584 "31cbd0", 1585 "d2f96c", 1586 "fab6be", 1587 "79b335", 1588 "5f384b", 1589 "f35021", 1590 "c949b0", 1591 "05be24", 1592 "a0a3da", 1593 "b8c8bf", 1594 "daeb93", 1595 "77f8d1", 1596 "a45b0f", 1597 "0bb0e4", 1598 "9b0117", 1599 "068c23", 1600 "d7a5d2", 1601 "1f3cb6", 1602 "f7cdae", 1603 "a9400e", 1604 "3e7f39", 1605 "e2bc15", 1606 "593aeb", 1607 "5c42ce", 1608 "f9240d", 1609 "616bb4", 1610 "4ce7b8", 1611 "9587b8", 1612 "bfc3a6", 1613 "847077", 1614 "b727c8", 1615 "e04a68", 1616 "a7edd9", 1617 "bb7766", 1618 "cb3834", 1619 "a819ab", 1620 "26c5a9", 1621 "bbfaa1", 1622 "09f943", 1623 "a5fa9d", 1624 "5e99ed", 1625 "094d42", 1626 "bf57c5", 1627 "f353d7", 1628 "64a71a", 1629 "90bdb9", 1630 "836cef", 1631 "a56992", 1632 "8a506d", 1633 "93ece1", 1634 "a52123", 1635 "fc4059", 1636 "47995e", 1637 "3c51d4", 1638 "b215ed", 1639 "67717d", 1640 "0d9b1a", 1641 "3bbc80", 1642 "3d30c3", 1643 "080b9b", 1644 "45972e", 1645 "5a86e1", 1646 "a50aaa", 1647 "abe5b8", 1648 "f7ce77", 1649 "d7f971", 1650 "d57599", 1651 "a6e07f", 1652 "287132", 1653 "133124", 1654 "5e360b", 1655 "533f43", 1656 "f56aab", 1657 "47070d", 1658 "8df2fc", 1659 "8c1dbf", 1660 "aaba92", 1661 "8843bc", 1662 "ace44f", 1663 "284ecd", 1664 "d27205", 1665 "0f9dd4", 1666 "3d3ddd", 1667 "a12100", 1668 "ed4597", 1669 "51550a", 1670 "a807af", 1671 "739a2e", 1672 "2ffd2e", 1673 "f9096f", 1674 "24824d", 1675 "7f0d75", 1676 "1f7f6f", 1677 "a98a6f", 1678 "a4753a", 1679 "ae96c3", 1680 "38e706", 1681 "e7c9a8", 1682 "61ddcc", 1683 "20a43a", 1684 "fceee6", 1685 "f114d7", 1686 "44c98b", 1687 "29016d", 1688 "6ad81b", 1689 "ddff01", 1690 "509f62", 1691 "423cf6", 1692 "2e84ab", 1693 "c86319", 1694 "a7f3b9", 1695 "84b554", 1696 "cbd700", 1697 "232c6a", 1698 "fd50d0", 1699 "24cee0", 1700 "6b4b0e", 1701 "881453", 1702 "36b88c", 1703 "a694a7", 1704 "8ef34b", 1705 "9e0a12", 1706 "f580ba", 1707 "31d531", 1708 "38b492", 1709 "29cd13", 1710 "f87982", 1711 "a9ab7a", 1712 "09ab76", 1713 "4f88cb", 1714 "619696", 1715 "2aa625", 1716 "6a6809", 1717 "3eb978", 1718 "3de444", 1719 "9eff74", 1720 "fb458e", 1721 "76850b", 1722 "f11c23", 1723 "6afd69", 1724 "84c32f", 1725 "ce47fb", 1726 "289649", 1727 "c5c922", 1728 "5e363a", 1729 "1d2724", 1730 "4be319", 1731 "67d9e9", 1732 "3cd330", 1733 "fbddb9", 1734 "001535", 1735 "076113", 1736 "d1a42c", 1737 "80adec", 1738 "b03c54", 1739 "b7acf4", 1740 "e2cd21", 1741 "b6f1e1", 1742 "480472", 1743 "f16237", 1744 "497f5e", 1745 "f1026f", 1746 "6f1de3", 1747 "f8827a", 1748 "e4368c", 1749 "8ab3cd", 1750 "b88c5e", 1751 "55b775", 1752 "ae12ca", 1753 "99698c", 1754 "0ffda2", 1755 "e26b6e", 1756 "f1f28c", 1757 "9105cf", 1758 "3cea86", 1759 "90e19c", 1760 "05c9d2", 1761 "f36598", 1762 "b3b8a0", 1763 "c563e3", 1764 "1743e1", 1765 "1085cf", 1766 "2e7229", 1767 "d4bafd", 1768 "ff2c9a", 1769 "e5726b", 1770 "03ac20", 1771 "189d1e", 1772 "0c84a1", 1773 "4ef9ef", 1774 "79ddc5", 1775 "5f12c5", 1776 "52ae4a", 1777 "21bff8", 1778 "6d630a", 1779 "ca215f", 1780 "f926d2", 1781 "dd0f32", 1782 "52f7ef", 1783 "fa82b3", 1784 "ed4bc2", 1785 "4e2015", 1786 "a4666e", 1787 "f89a03", 1788 "011d48", 1789 "0335c9", 1790 "d045d8", 1791 "76c75b", 1792 "d18e48", 1793 "538a68", 1794 "8f3853", 1795 "9f940e", 1796 "b1898c", 1797 "202868", 1798 "f9c563", 1799 "d41e0e", 1800 "6eb71b", 1801 "27e41d", 1802 "710b1e", 1803 "48f891", 1804 "c95189", 1805 "7eb40d", 1806 "8397ea", 1807 "2f0844", 1808 "d38a26", 1809 "b5f055", 1810 "d5f2d9", 1811 "8ac296", 1812 "ba91b2", 1813 "4154de", 1814 "745cd8", 1815 "6d05a0", 1816 "04289d", 1817 "0227f8", 1818 "75b21f", 1819 "295763", 1820 "f5d1ed", 1821 "4213f1", 1822 "0a9e31", 1823 "5f535c", 1824 "de7b0f", 1825 "279e47", 1826 "22ca01", 1827 "de922f", 1828 "cefcda", 1829 "210481", 1830 "bfa4c4", 1831 "c3466e", 1832 "b3ec34", 1833 "5ab2cb", 1834 "a011ee", 1835 "5fb13a", 1836 "e462f2", 1837 "3cd2f7", 1838 "647176", 1839 "ce29c1", 1840 "fe9cfe", 1841 "053422", 1842 "bd9cf9", 1843 "53caa9", 1844 "75dfc7", 1845 "d2678a", 1846 "2dc1ee", 1847 "109c9a", 1848 "51ac3b", 1849 "51d5e0", 1850 "cb93f4", 1851 "23e725", 1852 "a18db4", 1853 "4aa114", 1854 "856dc8", 1855 "c7e189", 1856 "0b7f41", 1857 "a1714b", 1858 "ff6204", 1859 "71d74d", 1860 "54f441", 1861 "87ea81", 1862 "ea31f2", 1863 "42637c", 1864 "a79b17", 1865 "e638b1", 1866 "17c478", 1867 "8952d3", 1868 "a3e20d", 1869 "c9e601", 1870 "75f964", 1871 "e42e3d", 1872 "582103", 1873 "d38948", 1874 "773482", 1875 "9ef34d", 1876 "41c326", 1877 "f658de", 1878 "a119d0", 1879 "a4fdf4", 1880 "1f6ac3", 1881 "3d3ba9", 1882 "2dd957", 1883 "4a974a", 1884 "0edbd3", 1885 "cb6c01", 1886 "9b466b", 1887 "c9bbb4", 1888 "cc809e", 1889 "6011b8", 1890 "2fa898", 1891 "3a44b6", 1892 "117c9f", 1893 "d93cfd", 1894 "abc821", 1895 "b9de7d", 1896 "57155b", 1897 "ef1f39", 1898 "5ad1af", 1899 "85f601", 1900 "2baed8", 1901 "e3c923", 1902 "a00e86", 1903 "6315ea", 1904 "6d0b7a", 1905 "a5cb8d", 1906 "0cddfe", 1907 "55c3f6", 1908 "866c97", 1909 "485a9d", 1910 "dd47ef", 1911 "2ad942", 1912 "4fa6d6", 1913 "d454e2", 1914 "59738a", 1915 "ccb0cf", 1916 "bf6c03", 1917 "10ac1e", 1918 "804c30", 1919 "fccac3", 1920 "399b51", 1921 "74298a", 1922 "c46a8c", 1923 "767657", 1924 "206ddc", 1925 "d49d6f", 1926 "ca80f1", 1927 "3ade95", 1928 "fbaf80", 1929 "4fd276", 1930 "7c9335", 1931 "3f49cf", 1932 "81876d", 1933 "cd4d7d", 1934 "e1471a", 1935 "5a42d5", 1936 "151c98", 1937 "e9441e", 1938 "c768e0", 1939 "ef90b3", 1940 "a51a6f", 1941 "abbc26", 1942 "8b5470", 1943 "e5723d", 1944 "43318f", 1945 "f4fa19", 1946 "4dc06e", 1947 "4651d6", 1948 "58cb92", 1949 "8c798b", 1950 "ee9be4", 1951 "01412d", 1952 "f6072f", 1953 "d958b7", 1954 "e349dd", 1955 "b959aa", 1956 "1e4634", 1957 "376948", 1958 "51b5e3", 1959 "34d1d3", 1960 "1066cc", 1961 "06013c", 1962 "1774c8", 1963 "8ff2ef", 1964 "dce819", 1965 "8f9255", 1966 "159276", 1967 "025cea", 1968 "163788", 1969 "f3621a", 1970 "722009", 1971 "616205", 1972 "246434", 1973 "0f8a49", 1974 "0120b9", 1975 "877010", 1976 "c780fd", 1977 "94f8c2", 1978 "016575", 1979 "7de522", 1980 "8f3fed", 1981 "600ac1", 1982 "b2b21e", 1983 "2efba3", 1984 "6bac3e", 1985 "0ed6b0", 1986 "f4b5b1", 1987 "275395", 1988 "ff06d2", 1989 "d48931", 1990 "f04f3e", 1991 "5e1198", 1992 "4dd285", 1993 "03162d", 1994 "92f103", 1995 "a5b320", 1996 "44d48d", 1997 "0bfcec", 1998 "b0aeeb", 1999 "47f68c", 2000 "7b58a0", 2001 "b19bd6", 2002 "43d18b", 2003 "7f58de", 2004 "0b42a4", 2005 "6308c8", 2006 "fc049c", 2007 "ac0d9f", 2008 "133980", 2009 "aa2dbf", 2010 "e7a7fb", 2011 "cbe6e3", 2012 "2e1f65", 2013 "a66753", 2014 "76fc60", 2015 "6e9613", 2016 "cb0381", 2017 "112c88", 2018 "f3a9f2", 2019 "59ad45", 2020 "250bfd", 2021 "694d42", 2022 "ed11b3", 2023 "4b938b", 2024 "5dc53b", 2025 "a5f957", 2026 "396d9a", 2027 "d0dc32", 2028 "f572a1", 2029 "f47be8", 2030 "7b4bb9", 2031 "a66614", 2032 "a4ee3b", 2033 "0fe395", 2034 "f6e364", 2035 "37a23c", 2036 "c3d325", 2037 "02eaaa", 2038 "e3ba58", 2039 "a3b283", 2040 "f5213d", 2041 "a73066", 2042 "f34274", 2043 "e96a3e", 2044 "020d11", 2045 "1aafda", 2046 "3aa594", 2047 "cfac5b", 2048 "76364b", 2049 "e03d67", 2050 "3e4e09", 2051 "6d79cb", 2052 "c6fcf5", 2053 "52a21b", 2054 "0ca1b4", 2055 "a46929", 2056 "5b75b2", 2057 "cd4dee", 2058 "36ec7c", 2059 "bb6446", 2060 "e2dff9", 2061 "144d74", 2062 "6adf1b", 2063 "0be529", 2064 "14ae84", 2065 "375f98", 2066 "91b5e3", 2067 "bfe191", 2068 "884a4a", 2069 "eb9a2d", 2070 "4fcde9", 2071 "78757a", 2072 "598c75", 2073 "0a5a20", 2074 "951160", 2075 "189897", 2076 "f5fc8f", 2077 "fe14f5", 2078 "1adfd6", 2079 "ef1dba", 2080 "47e0d7", 2081 "661f2d", 2082 "c2d1c2", 2083 "915721", 2084 "afe100", 2085 "5c6b4a", 2086 "8fe26d", 2087 "394628", 2088 "72390f", 2089 "cdeaff", 2090 "8e6887", 2091 "13b02b", 2092 "e679f0", 2093 "9274b8", 2094 "62c308", 2095 "654ba6", 2096 "1b9187", 2097 "732825", 2098 "74e22a", 2099 "423ec2", 2100 "c70019", 2101 "6f5460", 2102 "7ecf9f", 2103 "67c715", 2104 "12c178", 2105 "759689", 2106 "8d49ea", 2107 "cbf5dd", 2108 "ba855f", 2109 "f7c1ec", 2110 "66b076", 2111 "506b46", 2112 "dadd7a", 2113 "3ef3f4", 2114 "6cf4db", 2115 "739f67", 2116 "6e9cb0", 2117 "1c533c", 2118 "5635c3", 2119 "221981", 2120 "d8dece", 2121 "7fbb1c", 2122 "d49154", 2123 "b16f2e", 2124 "4e5fc4", 2125 "3b0c53", 2126 "df081f", 2127 "ca3b4f", 2128 "173a0e", 2129 "01ee96", 2130 "0e3191", 2131 "6e4e72", 2132 "041b26", 2133 "c8e5ad", 2134 "e38839", 2135 "0080f9", 2136 "9266b9", 2137 "b1ff69", 2138 "74bbaa", 2139 "f19c71", 2140 "ced311", 2141 "9d86ab", 2142 "aa1dd6", 2143 "84a877", 2144 "85fa4b", 2145 "d46bba", 2146 "22791b", 2147 "40cef8", 2148 "b5c8ee", 2149 "5a8481", 2150 "d28ebb", 2151 "19368e", 2152 "b10345", 2153 "28aebc", 2154 "df0e49", 2155 "30cd47", 2156 "2a24db", 2157 "b23f9b", 2158 "037a6e", 2159 "8a30be", 2160 "47f252", 2161 "9c60bb", 2162 "5f1100", 2163 "761f69", 2164 "5e2920", 2165 "c30524", 2166 "769b10", 2167 "b9ad71", 2168 "588db7", 2169 "15b2cc", 2170 "381f17", 2171 "2580db", 2172 "f003d8", 2173 "48ea14", 2174 "0bf086", 2175 "70ef9e", 2176 "28ed8b", 2177 "718ad9", 2178 "0c48b3", 2179 "50317c", 2180 "c0c3b3", 2181 "60b8a0", 2182 "4ff019", 2183 "6325a7", 2184 "0e71b5", 2185 "b9cde4", 2186 "800032", 2187 "4e7d87", 2188 "97b337", 2189 "3c078c", 2190 "2beb7a", 2191 "970963", 2192 "4359c7", 2193 "a063a9", 2194 "3bd9b8", 2195 "65a1d1", 2196 "f8fc5b", 2197 "2f371e", 2198 "305b60", 2199 "ba90f0", 2200 "0aeacf", 2201 "43f260", 2202 "2d2948", 2203 "a35006", 2204 "cf3946", 2205 "b06d87", 2206 "84ecc2", 2207 "d463b1", 2208 "ca585f", 2209 "940608", 2210 "918b3f", 2211 "274edb", 2212 "0f1689", 2213 "423cd5", 2214 "c3bbf7", 2215 "6a9c62", 2216 "c3f580", 2217 "4c0c8a", 2218 "7ba624", 2219 "e6f248", 2220 "b42db5", 2221 "aab4a7", 2222 "f82ab5", 2223 "e115c6", 2224 "7ec80e", 2225 "7a0179", 2226 "47a51e", 2227 "6155dd", 2228 "8ca588", 2229 "41a0ca", 2230 "890ac7", 2231 "0bb7a8", 2232 "d780a2", 2233 "171c1e", 2234 "39f023", 2235 "4f7ba0", 2236 "25f464", 2237 "2169cf", 2238 "fd81dc", 2239 "973dfa", 2240 "6865da", 2241 "b35db4", 2242 "6dfc55", 2243 "b04afb", 2244 "96963e", 2245 "b61cc1", 2246 "90ee1f", 2247 "2d42ef", 2248 "8e7b72", 2249 "a317c3", 2250 "9648b4", 2251 "3c9458", 2252 "75c63b", 2253 "c0cb6e", 2254 "94faf3", 2255 "293b8d", 2256 "994955", 2257 "60023b", 2258 "da9c5b", 2259 "9e2c17", 2260 "693742", 2261 "8e5661", 2262 "d6f078", 2263 "01e12e", 2264 "e8fd71", 2265 "0414cf", 2266 "612b42", 2267 "3ff5e8", 2268 "bccb50", 2269 "7f49bb", 2270 "f5c83d", 2271 "46b8d9", 2272 "6e9dbd", 2273 "2ebb87", 2274 "a2ecca", 2275 "52a255", 2276 "ce0b52", 2277 "cc9e1f", 2278 "23a4d1", 2279 "54b031", 2280 "353263", 2281 "fbcbf1", 2282 "3ad7e3", 2283 "a585cf", 2284 "24e4b4", 2285 "f58d9d", 2286 "540a9e", 2287 "ff4569", 2288 "9da95c", 2289 "a4a8df", 2290 "bf97df", 2291 "89bb0f", 2292 "442b48", 2293 "8fc204", 2294 "e97113", 2295 "330b93", 2296 "919e18", 2297 "8a7c2d", 2298 "943b2c", 2299 "332065", 2300 "cf91b0", 2301 "0c2382", 2302 "5f931a", 2303 "3c97aa", 2304 "7a7876", 2305 "fc8867", 2306 "c615a3", 2307 "ea93e3", 2308 "335ff3", 2309 "70575d", 2310 "dcd9e8", 2311 "0383ee", 2312 "b86b17", 2313 "6b8d0d", 2314 "bbca62", 2315 "769d64", 2316 "286067", 2317 "cc9f02", 2318 "79a07a", 2319 "7ae804", 2320 "9aef51", 2321 "db7a3d", 2322 "35a831", 2323 "895cba", 2324 "123288", 2325 "d696ec", 2326 "110a9c", 2327 "a07555", 2328 "2a3df8", 2329 "9c20f0", 2330 "84db9d", 2331 "897335", 2332 "c177ea", 2333 "fb3bdc", 2334 "028f12", 2335 "8fd208", 2336 "9dadff", 2337 "4871d3", 2338 "c1cde9", 2339 "c98a37", 2340 "ebf600", 2341 "add4ab", 2342 "8a0c5c", 2343 "8fc8ad", 2344 "2f10bd", 2345 "de8f07", 2346 "03811d", 2347 "a8e3d1", 2348 "146b66", 2349 "8b1702", 2350 "6056dd", 2351 "ffceb1", 2352 "ee3e5c", 2353 "ef7bc8", 2354 "f02755", 2355 "b69999", 2356 "c62d14", 2357 "328fba", 2358 "d5359a", 2359 "5ef02b", 2360 "3c2c7a", 2361 "21e9b9", 2362 "65009c", 2363 "2de706", 2364 "df6b84", 2365 "08c083", 2366 "c86d50", 2367 "1fb112", 2368 "6237fa", 2369 "bcef31", 2370 "041628", 2371 "3c2ab2", 2372 "9177e0", 2373 "4a7f6a", 2374 "6b3ff4", 2375 "6c5cdf", 2376 "6a000e", 2377 "cbbd95", 2378 "db4ba0", 2379 "9a81b2", 2380 "dadfb8", 2381 "29d5c7", 2382 "8b5ce4", 2383 "6c5abc", 2384 "cc83df", 2385 "128d9c", 2386 "7b9aa6", 2387 "72e3e8", 2388 "e59b1e", 2389 "805316", 2390 "7e1d71", 2391 "31ec87", 2392 "5163b0", 2393 "b9a222", 2394 "d05beb", 2395 "6536e0", 2396 "4161cd", 2397 "695808", 2398 "708f24", 2399 "f06501", 2400 "df311f", 2401 "e7e286", 2402 "22f700", 2403 "19e9e7", 2404 "f853b5", 2405 "dd5833", 2406 "34093c", 2407 "a42a2e", 2408 "1af8a9", 2409 "156efd", 2410 "f062b6", 2411 "e80460", 2412 "6b1794", 2413 "dfc0a9", 2414 "8066c3", 2415 "4b2845", 2416 "6c470c", 2417 "f05832", 2418 "8878d5", 2419 "a51aaa", 2420 "64c6c8", 2421 "10c30d", 2422 "28d70d", 2423 "db1357", 2424 "9e7eae", 2425 "2cf1b9", 2426 "75a14e", 2427 "670cfa", 2428 "d24d86", 2429 "69e2cb", 2430 "5c7130", 2431 "314c85", 2432 "04a7f2", 2433 "88e29b", 2434 "94e881", 2435 "bd545a", 2436 "4e962e", 2437 "3f7dab", 2438 "ec1f27", 2439 "79c00f", 2440 "740a64", 2441 "6ce369", 2442 "935cec", 2443 "65f18c", 2444 "ad2d69", 2445 "cfd941", 2446 "09c151", 2447 "9a482d", 2448 "b55a32", 2449 "3dd7c6", 2450 "a3fa6e", 2451 "b58803", 2452 "51a036", 2453 "c1f5b7", 2454 "ed7df9", 2455 "ef3c8c", 2456 "4ad8e6", 2457 "87dd81", 2458 "412cf7", 2459 "f7fa35", 2460 "df1a5b", 2461 "86f031", 2462 "1c0c90", 2463 "69543b", 2464 "2deb25", 2465 "e02623", 2466 "ec100a", 2467 "5c5c38", 2468 "0165a0", 2469 "c2a6c1", 2470 "5ffd54", 2471 "32a047", 2472 "5aecbd", 2473 "3fa824", 2474 "2fb39a", 2475 "836c07", 2476 "4dd1c1", 2477 "dd4f13", 2478 "b5f4e0", 2479 "8ee304", 2480 "452ac8", 2481 "60732c", 2482 "5b3698", 2483 "7a5de7", 2484 "55eeb6", 2485 "0d17f8", 2486 "f58bf1", 2487 "209f3d", 2488 "a15c6a", 2489 "cfb4b9", 2490 "f90698", 2491 "ab95fa", 2492 "2e5a3a", 2493 "5f94a0", 2494 "90aef0", 2495 "00d03f", 2496 "af59ff", 2497 "01d7f3", 2498 "8750ef", 2499 "6e20d2", 2500 "5a81d4", 2501 "d91ee0", 2502 "445bac", 2503 "95fa95", 2504 "d98f3d", 2505 "892229", 2506 "b66464", 2507 "5ab5e0", 2508 "23b457", 2509 "24b4c4", 2510 "c6566f", 2511 "23c6ea", 2512 "7aa36e", 2513 "5c56b3", 2514 "2fb63b", 2515 "7e74dd", 2516 "a4707f", 2517 "bd41fc", 2518 "33d393", 2519 "6c952a", 2520 "3653d1", 2521 "14fb35", 2522 "a97c60", 2523 "b33dea", 2524 "7cc232", 2525 "aeb01b", 2526 "e36149", 2527 "bf9201", 2528 "4e3aec", 2529 "783064", 2530 "17557e", 2531 "faa3a1", 2532 "2cca55", 2533 "64ed8a", 2534 "de0376", 2535 "a6778d", 2536 "dfc7b0", 2537 "794dff", 2538 "6bb0d8", 2539 "784b16", 2540 "67ba18", 2541 "c4d201", 2542 "c86c1e", 2543 "f729be", 2544 "81e358", 2545 "1e13bc", 2546 "740e99", 2547 "dc74c6", 2548 "1ebe3d", 2549 "ce79a7", 2550 "619e29", 2551 "1cbd5e", 2552 "0ad4ca", 2553 "2dd3f7", 2554 "583fc6", 2555 "684dcb", 2556 "88732c", 2557 "841e29", 2558 "8730ea", 2559 "59588d", 2560 "291912", 2561 "15cabc", 2562 "31d6fa", 2563 "23dba2", 2564 "87ff3d", 2565 "1841c9", 2566 "e430ec", 2567 "4b2d2e", 2568 "1cd502", 2569 "9c1800", 2570 "74d0fb", 2571 "c866f0", 2572 "a931d6", 2573 "3ee1c7", 2574 "0c870e", 2575 "943da1", 2576 "8aab6c", 2577 "b8dd22", 2578 "adfb85", 2579 "563780", 2580 "ed4d49", 2581 "efb7bb", 2582 "1ebde6", 2583 "af8a6c", 2584 "8d3856", 2585 "fabdfe", 2586 "862286", 2587 "158d5d", 2588 "573f77", 2589 "28a280", 2590 "dec325", 2591 "d8c962", 2592 "63b7cc", 2593 "439e80", 2594 "185a04", 2595 "d6ecf8", 2596 "78569e", 2597 "f61afb", 2598 "515892", 2599 "48298c", 2600 "ba936e", 2601 "7a3703", 2602 "2700e3", 2603 "b3de0f", 2604 "da1928", 2605 "609e69", 2606 "cbafe1", 2607 "024369", 2608 "c0b97a", 2609 "4fde28", 2610 "dd0ad7", 2611 "8cfb65", 2612 "703c53", 2613 "3d7694", 2614 "bb59b8", 2615 "d5352e", 2616 "f6526f", 2617 "ef4544", 2618 "b164f2", 2619 "d7530d", 2620 "18b9c6", 2621 "4995fc", 2622 "fd9179", 2623 "7bb7dc", 2624 "5b31b2", 2625 "49e519", 2626 "a776f7", 2627 "24c320", 2628 "98f412", 2629 "1ccf27", 2630 "f8e27a", 2631 "52b32e", 2632 "cd9193", 2633 "a99260", 2634 "19eeef", 2635 "faa4a0", 2636 "3f99c9", 2637 "2d5667", 2638 "746449", 2639 "b94dd5", 2640 "8de37d", 2641 "54bd0b", 2642 "328d55", 2643 "af6a3f", 2644 "6ce715", 2645 "c56b89", 2646 "50dc5e", 2647 "c7a626", 2648 "75dc26", 2649 "d33cf4", 2650 "d9adbd", 2651 "e66a85", 2652 "5a9a2f", 2653 "a03481", 2654 "c83220", 2655 "9919e5", 2656 "76a1bb", 2657 "5d2aa7", 2658 "d05de0", 2659 "934054", 2660 "d62d0f", 2661 "4e0bf4", 2662 "6eb799", 2663 "a54d83", 2664 "10484e", 2665 "3344c2", 2666 "9af456", 2667 "c12660", 2668 "60dbc2", 2669 "4d7195", 2670 "e4cf11", 2671 "9bb3dc", 2672 "e1db96", 2673 "534e81", 2674 "303480", 2675 "09792a", 2676 "42ad5c", 2677 "5b53a3", 2678 "429b0e", 2679 "a40b41", 2680 "710c8b", 2681 "f2018a", 2682 "f9dc5b", 2683 "148dc0", 2684 "2bb370", 2685 "cdf5a8", 2686 "2e33bb", 2687 "106d3e", 2688 "38da43", 2689 "611786", 2690 "d469d6", 2691 "b9a5c4", 2692 "9c16fc", 2693 "d2a319", 2694 "d10ef9", 2695 "b40965", 2696 "7f0ddb", 2697 "04c3b6", 2698 "da9752", 2699 "e6acb5", 2700 "fe63de", 2701 "cce582", 2702 "3e8987", 2703 "d99171", 2704 "bda91b", 2705 "75ac95", 2706 "1cd5e7", 2707 "c01ab4", 2708 "25b4cb", 2709 "1ca1be", 2710 "f13b84", 2711 "ed7736", 2712 "b91b58", 2713 "eace6f", 2714 "fea272", 2715 "65649c", 2716 "5f60da", 2717 "20f168", 2718 "80807d", 2719 "577e60", 2720 "881bf6", 2721 "1cbe04", 2722 "b09a40", 2723 "b7b041", 2724 "f2f1a2", 2725 "c48b5f", 2726 "3b5389", 2727 "81fec6", 2728 "c0f2c9", 2729 "7fe75b", 2730 "895472", 2731 "b1491d", 2732 "045cbc", 2733 "b308d1", 2734 "c4757f", 2735 "62b854", 2736 "7fcabf", 2737 "7a1753", 2738 "58cf32", 2739 "2e4132", 2740 "280d17", 2741 "043f11", 2742 "bec429", 2743 "f171b7", 2744 "21e699", 2745 "b23134", 2746 "182532", 2747 "36003d", 2748 "f7cf45", 2749 "b89329", 2750 "09aaa1", 2751 "d4c680", 2752 "771623", 2753 "7d0011", 2754 "6c739d", 2755 "9388df", 2756 "f2aa79", 2757 "2b59af", 2758 "6d51ba", 2759 "5047a1", 2760 "79c3c7", 2761 "957dea", 2762 "74c13f", 2763 "8f176b", 2764 "f20b74", 2765 "5f413b", 2766 "ed4ee1", 2767 "6e82ed", 2768 "42efa6", 2769 "4f9d69", 2770 "0f0785", 2771 "14ea25", 2772 "4e3f5f", 2773 "5d4cdb", 2774 "8d2365", 2775 "e4e645", 2776 "69f633", 2777 "5bfb78", 2778 "a43eec", 2779 "36bb13", 2780 "9b6012", 2781 "6e7e31", 2782 "6f6620", 2783 "989236", 2784 "0937c4", 2785 "92a4c5", 2786 "e85c46", 2787 "b54d3f", 2788 "9e55de", 2789 "5bd965", 2790 "2f112e", 2791 "7b8c24", 2792 "66ca0f", 2793 "059114", 2794 "ebc351", 2795 "cc97de", 2796 "6718c0", 2797 "6bb649", 2798 "94c851", 2799 "088172", 2800 "43ef9e", 2801 "88dd86", 2802 "709bc8", 2803 "c0b69b", 2804 "6eab36", 2805 "de81dc", 2806 "8590b4", 2807 "a244df", 2808 "2c971a", 2809 "c49ebd", 2810 "fd3709", 2811 "0f0fdd", 2812 "899e20", 2813 "137fd6", 2814 "f01a49", 2815 "e266a8", 2816 "fed874", 2817 "cd5450", 2818 "cfebf8", 2819 "7f1379", 2820 "6cc003", 2821 "a09ff2", 2822 "4b1c84", 2823 "ee530d", 2824 "e742ac", 2825 "e7b16d", 2826 "7adb01", 2827 "e13e64", 2828 "a6355d", 2829 "ddea8c", 2830 "30c8f9", 2831 "913b06", 2832 "d24f9a", 2833 "b97d62", 2834 "ee746c", 2835 "94dbaa", 2836 "14d0e4", 2837 "14f79f", 2838 "14388e", 2839 "f5a4bd", 2840 "97aafd", 2841 "4effd5", 2842 "edee13", 2843 "f3f4c7", 2844 "4ca046", 2845 "4d441e", 2846 "64ef98", 2847 "dc5090", 2848 "0f59f0", 2849 "7b7cea", 2850 "b5ed94", 2851 "312681", 2852 "22c40f", 2853 "1b0545", 2854 "addb9d", 2855 "281fc4", 2856 "6dfada", 2857 "92516e", 2858 "fedaee", 2859 "4291ff", 2860 "2b1eb6", 2861 "b7f5e9", 2862 "6efc28", 2863 "86dd05", 2864 "93dacc", 2865 "ec9b46", 2866 "25c192", 2867 "497b24", 2868 "20c891", 2869 "bc7a12", 2870 "f93834", 2871 "e8e887", 2872 "439f73", 2873 "5c7ca6", 2874 "0fc51e", 2875 "ea8152", 2876 "a65e6a", 2877 "0af09b", 2878 "395f13", 2879 "0f4508", 2880 "e49e28", 2881 "b657ec", 2882 "20ce9b", 2883 "b45057", 2884 "5274c7", 2885 "ce1792", 2886 "a2cf5e", 2887 "0afebf", 2888 "de4fbd", 2889 "1f60d1", 2890 "1d8a72", 2891 "02a58f", 2892 "51295f", 2893 "a0ffc6", 2894 "d40ab0", 2895 "2fc450", 2896 "640678", 2897 "bce213", 2898 "4ff6e0", 2899 "8ea5c8", 2900 "0c73a4", 2901 "1f0fd6", 2902 "c38f65", 2903 "619495", 2904 "322239", 2905 "0bfdb9", 2906 "0448ce", 2907 "aea202", 2908 "467b57", 2909 "00f32f", 2910 "b77d8f", 2911 "250e12", 2912 "720ba8", 2913 "f41314", 2914 "cd72ad", 2915 "3206ec", 2916 "7f66d6", 2917 "379fa8", 2918 "df64e5", 2919 "5fcaef", 2920 "3ba8e0", 2921 "e474c5", 2922 "9ad3af", 2923 "d0af70", 2924 "017fe8", 2925 "9a8dd7", 2926 "79374c", 2927 "c9987e", 2928 "c906be", 2929 "31fa7c", 2930 "73dac5", 2931 "173285", 2932 "df5cdd", 2933 "951469", 2934 "a699b9", 2935 "c50074", 2936 "c30897", 2937 "a15b0f", 2938 "20ff02", 2939 "a7db75", 2940 "f1bd41", 2941 "6c05fe", 2942 "b368bf", 2943 "7a781a", 2944 "7a5e15", 2945 "fdca5c", 2946 "4a2c7b", 2947 "6798d3", 2948 "4ab55f", 2949 "40d7e3", 2950 "ece61a", 2951 "48f3e8", 2952 "dffbfe", 2953 "5b98c1", 2954 "642ae6", 2955 "979ab5", 2956 "f5ff35", 2957 "9c6c06", 2958 "a7b5b6", 2959 "4eeb9a", 2960 "8ac4ed", 2961 "ca20dd", 2962 "27a57f", 2963 "81bb9f", 2964 "7bd639", 2965 "e24199", 2966 "ef0027", 2967 "c7950e", 2968 "d337c2", 2969 "a38059", 2970 "a11e26", 2971 "b65057", 2972 "1e95fe", 2973 "235eeb", 2974 "717cfb", 2975 "c2b4a4", 2976 "e7064f", 2977 "723f1b", 2978 "955f62", 2979 "05975c", 2980 "78bd16", 2981 "3ccc33", 2982 "22a110", 2983 "8f313e", 2984 "560b83", 2985 "88f152", 2986 "33022b", 2987 "0b96ce", 2988 "6f2bc6", 2989 "4c1a30", 2990 "3f73a1", 2991 "0e39ac", 2992 "6f3743", 2993 "261611", 2994 "43ccea", 2995 "acd57c", 2996 "8bf8c8", 2997 "fecdc3", 2998 "dd6eaf", 2999 "5f5c91", 3000 "3c554e", 3001 "d0df9b", 3002 "918bc5", 3003 "6773a0", 3004 "f7d376", 3005 "bf563a", 3006 "28ba91", 3007 "f5d26e", 3008 "4a5817", 3009 "c6403f", 3010 "58cf7a", 3011 "4bee30", 3012 "b9202f", 3013 "22c23c", 3014 "11d563", 3015 "42f120", 3016 "93f26a", 3017 "d788cc", 3018 "509b7f", 3019 "33d41f", 3020 "f675ce", 3021 "79f675", 3022 "16d22c", 3023 "a6d452", 3024 "4ef85c", 3025 "1a1534", 3026 "09b2fe", 3027 "3ef170", 3028 "373e36", 3029 "653ae8", 3030 "b01a34", 3031 "e5f4c3", 3032 "b240d6", 3033 "af47b9", 3034 "600174", 3035 "a362f2", 3036 "f8d24c", 3037 "00de66", 3038 "98b9e2", 3039 "ed4ba8", 3040 "3b5936", 3041 "6f3bb8", 3042 "e3f8a0", 3043 "a2315a", 3044 "9cd10a", 3045 "daa7cf", 3046 "8bc1e0", 3047 "045e9a", 3048 "dbf8d2", 3049 "133081", 3050 "17173e", 3051 "7ea524", 3052 "dff8b7", 3053 "f213cd", 3054 "6b96ff", 3055 "7cc60c", 3056 "f42bdb", 3057 "b52ef4", 3058 "c6f024", 3059 "861f1e", 3060 "928438", 3061 "b6d4e7", 3062 "b038c9", 3063 "3a0408", 3064 "8c85b7", 3065 "1deefd", 3066 "d8d02b", 3067 "76ca9a", 3068 "76fe32", 3069 "c237e3", 3070 "bf755b", 3071 "ef926a", 3072 "340b58", 3073 "9a8d89", 3074 "c53088", 3075 "ae434c", 3076 "cc32bb", 3077 "e34115", 3078 "004a5f", 3079 "589c6b", 3080 "835bc8", 3081 "4263b3", 3082 "2d0c50", 3083 "bbf23a", 3084 "ded0ec", 3085 "0a7b38", 3086 "f9c22e", 3087 "805c3d", 3088 "fddf1d", 3089 "0ed2d7", 3090 "03296f", 3091 "cc935b", 3092 "4a122f", 3093 "aefafe", 3094 "82ca93", 3095 "cdca22", 3096 "3fdba9", 3097 "0d9e7a", 3098 "326b08", 3099 "2a45b6", 3100 "d36f9b", 3101 "ff4764", 3102 "c218e3", 3103 "63143b", 3104 "424c1b", 3105 "0bc399", 3106 "14b9dd", 3107 "fa7ff6", 3108 "3d0dd0", 3109 "bb3c97", 3110 "3fac1b", 3111 "cc360c", 3112 "b27abc", 3113 "47a76e", 3114 "9e9cf3", 3115 "c47ae1", 3116 "971c41", 3117 "0c3d43", 3118 "cbb66a", 3119 "9fb8d6", 3120 "2d9a15", 3121 "eee3f1", 3122 "1481f8", 3123 "171da0", 3124 "26f30b", 3125 "9938b3", 3126 "788df6", 3127 "92828d", 3128 "2e7c1b", 3129 "32cc69", 3130 "c56eb0", 3131 "d81af3", 3132 "1b161c", 3133 "d6530e", 3134 "fb2926", 3135 "e517f9", 3136 "ae74bd", 3137 "cd1969", 3138 "9b3d76", 3139 "e1e4d9", 3140 "21391a", 3141 "c67813", 3142 "a26599", 3143 "b05a38", 3144 "b200a4", 3145 "d37afe", 3146 "3c8afe", 3147 "f65c3d", 3148 "62e2ec", 3149 "7f7cfc", 3150 "0b9b2d", 3151 "4e380f", 3152 "ace94b", 3153 "06f1d6", 3154 "2b39be", 3155 "2d4b38", 3156 "93b9e2", 3157 "c5fe02", 3158 "d0a3e7", 3159 "3b08a8", 3160 "3fa503", 3161 "344249", 3162 "11bce6", 3163 "746053", 3164 "39368e", 3165 "dee1eb", 3166 "3adc09", 3167 "acbc30", 3168 "82ee08", 3169 "b1432d", 3170 "6567df", 3171 "c84c50", 3172 "51da2d", 3173 "0c489d", 3174 "57e7d1", 3175 "359ce0", 3176 "9f2104", 3177 "5fb552", 3178 "d28b28", 3179 "cc7c5b", 3180 "b803e7", 3181 "6d6ca5", 3182 "d027b4", 3183 "9c6c33", 3184 "b5ed3e", 3185 "69c485", 3186 "295be0", 3187 "46f8ab", 3188 "78b371", 3189 "b76049", 3190 "8205ae", 3191 "8a27a7", 3192 "8d9bcd", 3193 "13b558", 3194 "5a4470", 3195 "ab84be", 3196 "d1dc27", 3197 "23d8b4", 3198 "ab041b", 3199 "0fe368", 3200 "918914", 3201 "8d545e", 3202 "7a0611", 3203 "5e8dd4", 3204 "935295", 3205 "0d772f", 3206 "c8d5b4", 3207 "029064", 3208 "fb8974", 3209 "364cc3", 3210 "34cafb", 3211 "1aaccf", 3212 "267be8", 3213 "97e752", 3214 "98a16a", 3215 "cce137", 3216 "cde424", 3217 "b42d93", 3218 "08787a", 3219 "898213", 3220 "5c8c42", 3221 "5284ac", 3222 "df902f", 3223 "0ae04a", 3224 "41b5ec", 3225 "916e12", 3226 "14b2dd", 3227 "37745e", 3228 "61c32e", 3229 "8dbb64", 3230 "97b5cd", 3231 "886ffa", 3232 "b46581", 3233 "75b535", 3234 "b04430", 3235 "2920b8", 3236 "6b03f8", 3237 "607a3e", 3238 "3d9e3a", 3239 "a87f47", 3240 "554fbe", 3241 "3691ff", 3242 "540d59", 3243 "1b7e7b", 3244 "d77aa4", 3245 "89f5fc", 3246 "7f2490", 3247 "348de3", 3248 "c9b6f4", 3249 "382f79", 3250 "0cc1d0", 3251 "bc5e24", 3252 "bcdf3f", 3253 "310d77", 3254 "ecb252", 3255 "b26d8f", 3256 "ec9ac9", 3257 "e9cede", 3258 "75868e", 3259 "ba7338", 3260 "1a6549", 3261 "8ffe0c", 3262 "ef1cfa", 3263 "a3bb08", 3264 "7a2c2e", 3265 "ca011c", 3266 "846b28", 3267 "87f535", 3268 "a923ed", 3269 "f667a3", 3270 "5ba52c", 3271 "2fccf1", 3272 "277ec0", 3273 "df7bf4", 3274 "0061b4", 3275 "02c340", 3276 "9ee81d", 3277 "dd49e0", 3278 "8c3f71", 3279 "74ef48", 3280 "01abb0", 3281 "a8a406", 3282 "7ef0ef", 3283 "28734d", 3284 "329a1e", 3285 "c2df87", 3286 "a420ab", 3287 "213ed3", 3288 "77523a", 3289 "55a3db", 3290 "ab72e0", 3291 "7b388c", 3292 "de812d", 3293 "6c53a7", 3294 "d039f9", 3295 "594a6f", 3296 "b720bf", 3297 "4e9b9f", 3298 "0b2e4b", 3299 "8e4ba1", 3300 "fd20a9", 3301 "78c397", 3302 "4fc8b8", 3303 "6cb3ef", 3304 "aa2092", 3305 "ff6459", 3306 "1886e3", 3307 "a0ded3", 3308 "f2ff77", 3309 "9cf802", 3310 "7ec071", 3311 "881c82", 3312 "6c5364", 3313 "1c6e30", 3314 "38b62b", 3315 "87379b", 3316 "320b42", 3317 "1ffdd0", 3318 "30092e", 3319 "e83203", 3320 "bd8c26", 3321 "e62572", 3322 "ae4362", 3323 "14c9f3", 3324 "4519fc", 3325 "13b80c", 3326 "bdf45f", 3327 "254a66", 3328 "a95365", 3329 "f55fdd", 3330 "59fe3e", 3331 "6e1a4d", 3332 "8e984a", 3333 "a9e9e4", 3334 "f55160", 3335 "24c6d5", 3336 "49a3cc", 3337 "b1c9d8", 3338 "f6bc88", 3339 "f2604f", 3340 "83eb80", 3341 "c93bdd", 3342 "e49dc0", 3343 "0aef1e", 3344 "c87880", 3345 "9de2d4", 3346 "0dc7a4", 3347 "2d59e1", 3348 "eb496f", 3349 "41445e", 3350 "9c9f4e", 3351 "cbec71", 3352 "9579c0", 3353 "78cfa9", 3354 "f18de2", 3355 "0be7f0", 3356 "4b054b", 3357 "dc3f33", 3358 "618077", 3359 "dfc01c", 3360 "0ad917", 3361 "fb4d07", 3362 "f784c2", 3363 "bb8323", 3364 "74e8bb", 3365 "275a70", 3366 "e8c39c", 3367 "1405df", 3368 "570341", 3369 "1ccb99", 3370 "09d459", 3371 "3f546b", 3372 "95e032", 3373 "19c8bb", 3374 "c67a85", 3375 "c3224d", 3376 "ce4380", 3377 "c6d56c", 3378 "e8ef18", 3379 "93fc71", 3380 "32f457", 3381 "e8285b", 3382 "f87509", 3383 "b6e78f", 3384 "c4c5f1", 3385 "66f323", 3386 "d7b1df", 3387 "06f79d", 3388 "49b163", 3389 "1cd196", 3390 "aee64e", 3391 "4476d6", 3392 "65c10d", 3393 "81cc80", 3394 "44d2e9", 3395 "1a7ad7", 3396 "38a132", 3397 "5aefda", 3398 "b917fc", 3399 "e41f4f", 3400 "958f57", 3401 "43eef9", 3402 "6517f8", 3403 "c0ac48", 3404 "e1733a", 3405 "3d4051", 3406 "864033", 3407 "5cd1b7", 3408 "9c05d2", 3409 "436028", 3410 "5e2738", 3411 "6d1225", 3412 "53487a", 3413 "3a0089", 3414 "4c77e4", 3415 "6a6ae0", 3416 "64ea77", 3417 "5423c0", 3418 "ad6289", 3419 "7cb0b3", 3420 "bd2a3b", 3421 "72086c", 3422 "99b701", 3423 "219440", 3424 "748a9e", 3425 "3b02b3", 3426 "6fb1ec", 3427 "289bab", 3428 "842b64", 3429 "4b9191", 3430 "a343c0", 3431 SUCCESS],rec(DupCheck:=FALSE)), 3432 base:=[ 3433 rec( 3434 kind := "FUNCTION", 3435 name := "RetrieveDocumentation", 3436 sin := [ [ string, "dochash" ] ], 3437 sou := [ [ record ] ], 3438 short := "Retrieve the current entry for `dochash' in the global documentation.\nUse this function to obtain the entire record from __DOC as is.", 3439 ex := [ "RetrieveDocumentation(\"f896a5\");" ], 3440 hash := "f896a5", 3441 sig := "RetrieveDocumentation(<string> dochash)", 3442 sog := " -> <record>", 3443 docsrc := "docui.g", 3444 sinflat := [ string ], 3445 souflat := [ record ], 3446 soghash := "275a70", 3447 sig4hash := "RetrieveDocumentation(string)" ), 3448 rec( 3449 kind := "FUNCTION", 3450 name := "ExistsDocumentation", 3451 sin := [ [ string, "dochash" ] ], 3452 sou := [ [ elt-alg^boo ] ], 3453 short := "Return true iff documentation for 'dochash' is available.", 3454 ex := [ ], 3455 hash := "95e4b1", 3456 sig := "ExistsDocumentation(<string> dochash)", 3457 sog := " -> <elt-alg^boo>", 3458 docsrc := "docui.g", 3459 sinflat := [ string ], 3460 souflat := [ elt-alg^boo ], 3461 soghash := "5e8dd4", 3462 sig4hash := "ExistsDocumentation(string)" ), 3463 rec( 3464 kind := "FUNCTION", 3465 name := "DisplayDocSig", 3466 sin := [ [ string, "dochash" ] ], 3467 sou := [ ], 3468 short := "Display name and signature for `dochash' which must be a valid hash in the internal documentation.", 3469 see := [ "4546ad", "575f80" ], 3470 ex := [ "DisplayDocSig(\"5d80db\");" ], 3471 hash := "5d80db", 3472 sig := "DisplayDocSig(<string> dochash)", 3473 sog := "", 3474 docsrc := "docui.g", 3475 sinflat := [ string ], 3476 souflat := [ ], 3477 soghash := "da39a3", 3478 sig4hash := "DisplayDocSig(string)" ), 3479 rec( 3480 kind := "FUNCTION", 3481 name := "DisplayDocShort", 3482 sin := [ [ string, "dochash" ] ], 3483 sou := [ ], 3484 short := "Display name, signature and shortdoc (if existing) for `dochash'.", 3485 see := [ "5d80db", "575f80" ], 3486 ex := [ "DisplayDocShort(\"4546ad\");" ], 3487 hash := "4546ad", 3488 sig := "DisplayDocShort(<string> dochash)", 3489 sog := "", 3490 docsrc := "docui.g", 3491 sinflat := [ string ], 3492 souflat := [ ], 3493 soghash := "da39a3", 3494 sig4hash := "DisplayDocShort(string)" ), 3495 rec( 3496 kind := "FUNCTION", 3497 name := "DisplayDocComplete", 3498 sin := [ [ string, "dochash" ] ], 3499 sou := [ ], 3500 short := "Display name, signature and everything else for `dochash'.", 3501 see := [ "5d80db", "4546ad" ], 3502 ex := [ "DisplayDocComplete(\"575f80\");" ], 3503 hash := "575f80", 3504 sig := "DisplayDocComplete(<string> dochash)", 3505 sog := "", 3506 docsrc := "docui.g", 3507 sinflat := [ string ], 3508 souflat := [ ], 3509 soghash := "da39a3", 3510 sig4hash := "DisplayDocComplete(string)" ), 3511 rec( 3512 kind := "FUNCTION", 3513 name := "InstallMethod", 3514 sin := [ [ record, "docrec" ], [ func, "body" ] ], 3515 opt := [ [ elt-ord^rat, "Position", "Default: 1, negative numbers are ..." ] ], 3516 sou := [ [ ] ], 3517 short := "Install the function `body' to be executed when called with arguments as specified by `docrec'.sin.\nNote: `docrec' has to be a fully qualified documentation record, `MergeDocumentation' is called automatically.", 3518 see := [ "a3cff8" ], 3519 hash := "cfb542", 3520 ex := [ ], 3521 sig := "InstallMethod(<record> docrec, <func> body [, optargs])", 3522 sog := "", 3523 docsrc := "method.g", 3524 sinflat := [ record, func ], 3525 souflat := [ ], 3526 soghash := "da39a3", 3527 sig4hash := "InstallMethod(record,func)" ), 3528 rec( 3529 kind := "FUNCTION", 3530 name := "List", 3531 sin := [ [ list, "l" ], [ func, "f" ] ], 3532 sou := [ ], 3533 short := "Apply `f' to every member of `l' and return the list of return values.", 3534 ex := [ "l:=[1,2,3,4];\nList(l,i->3*i);", "l:=[1,2,3,4];\nList(l,IsEven);" ], 3535 see := [ ], 3536 hash := "881f04", 3537 sig := "List(<list> l, <func> f)", 3538 sog := "", 3539 docsrc := "init-methods.g", 3540 sinflat := [ list, func ], 3541 souflat := [ ], 3542 soghash := "da39a3", 3543 sig4hash := "List(list,func)" ), 3544 rec( 3545 kind := "FUNCTION", 3546 name := "List", 3547 sin := [ [ func, "f" ], [ list, "l" ] ], 3548 sou := [ ], 3549 short := "Apply `f' to every member of `l' and return the list of return values.", 3550 ex := [ "l:=[1,2,3,4];\nList(i->3*i,l);", "l:=[1,2,3,4];\nList(IsEven,l);" ], 3551 see := [ ], 3552 hash := "7251a6", 3553 sig := "List(<func> f, <list> l)", 3554 sog := "", 3555 docsrc := "init-methods.g", 3556 sinflat := [ func, list ], 3557 souflat := [ ], 3558 soghash := "da39a3", 3559 sig4hash := "List(func,list)" ), 3560 rec( 3561 kind := "FUNCTION", 3562 docsrc := "string.c", 3563 name := "Size", 3564 sin := [ [ string, "S" ] ], 3565 sou := [ [ elt-ord^rat ] ], 3566 short := "Determine and return the number of characters in `S'.", 3567 ex := [ "Size(\"foo\");" ], 3568 see := [ "b2cb94" ], 3569 hash := "a0823b", 3570 sig := "Size(<string> S)", 3571 sog := " -> <elt-ord^rat>", 3572 sinflat := [ string ], 3573 souflat := [ elt-ord^rat ], 3574 soghash := "898213", 3575 sig4hash := "Size(string)" ), 3576 rec( 3577 kind := "FUNCTION", 3578 docsrc := "list.c", 3579 name := "Size", 3580 sin := [ [ list, "L" ] ], 3581 sou := [ [ elt-ord^rat ] ], 3582 short := "Determine and return the greatest position a value assigned to in `L'.", 3583 ex := [ "Size([1,2,3]);", "Size([1,,,,,,,,2]);", "Size([1,2,,,,,,,]);" ], 3584 see := [ ], 3585 hash := "b2cb94", 3586 sig := "Size(<list> L)", 3587 sog := " -> <elt-ord^rat>", 3588 sinflat := [ list ], 3589 souflat := [ elt-ord^rat ], 3590 soghash := "898213", 3591 sig4hash := "Size(list)" ), 3592 rec( 3593 kind := "FUNCTION", 3594 name := "Apply_", 3595 sin := [ [ list, "l" ], [ func, "f" ] ], 3596 sou := [ ], 3597 short := "Apply 'f' to every member of `l' and replace the entry by the corresponding return value.\nNote: The previous contents of `l' will be lost.", 3598 ex := [ "l:=[1,2,3,4];\nApply_(l,i->3*i); l;", "l:=[1,2,3,4];\nApply_(l,IsEven); l;" ], 3599 see := [ ], 3600 hash := "c4f2b5", 3601 sig := "Apply_(<list> l, <func> f)", 3602 sog := "", 3603 docsrc := "init-methods.g", 3604 sinflat := [ list, func ], 3605 souflat := [ ], 3606 soghash := "da39a3", 3607 sig4hash := "Apply_(list,func)" ), 3608 rec( 3609 kind := "FUNCTION", 3610 name := "Apply_", 3611 sin := [ [ func, "f" ], [ list, "l" ] ], 3612 sou := [ ], 3613 short := "Apply 'f' to every member of `l' and replace the entry by the corresponding return value.\nNote: The previous contents of `l' will be lost.", 3614 ex := [ "l:=[1,2,3,4];\nApply_(i->3*i,l); l;", "l:=[1,2,3,4];\nApply_(IsEven,l); l;" ], 3615 see := [ ], 3616 hash := "143f84", 3617 sig := "Apply_(<func> f, <list> l)", 3618 sog := "", 3619 docsrc := "init-methods.g", 3620 sinflat := [ func, list ], 3621 souflat := [ ], 3622 soghash := "da39a3", 3623 sig4hash := "Apply_(func,list)" ), 3624 rec( 3625 kind := "FUNCTION", 3626 name := "Apply", 3627 sin := [ [ list, "l" ], [ func, "f" ] ], 3628 sou := [ [ list, "r" ] ], 3629 short := "Return the list where every member 'b' of 'l' is replaced by 'f' applied to 'b'.", 3630 ex := [ "l:=[1,2,3,4];\nApply(l,i->3*i); l;", "l:=[1,2,3,4];\nApply(l,IsEven); l;" ], 3631 see := [ ], 3632 hash := "ac2569", 3633 sig := "Apply(<list> l, <func> f)", 3634 sog := " -> <list> r", 3635 docsrc := "init-methods.g", 3636 sinflat := [ list, func ], 3637 souflat := [ list ], 3638 soghash := "38b62b", 3639 sig4hash := "Apply(list,func)" ), 3640 rec( 3641 kind := "FUNCTION", 3642 name := "Apply", 3643 sin := [ [ func, "f" ], [ list, "A" ] ], 3644 sou := [ [ list, "r" ] ], 3645 short := "Apply 'f' to every member of `A' and replace the entry by the corresponding return value.\nNote: The previous contents of `l' will be lost.", 3646 ex := [ "l:=[1,2,3,4];\nApply(i->3*i,l); l;", "l:=[1,2,3,4];\nApply(IsEven,l); l;" ], 3647 see := [ ], 3648 hash := "8024dd", 3649 sig := "Apply(<func> f, <list> A)", 3650 sog := " -> <list> r", 3651 docsrc := "init-methods.g", 3652 sinflat := [ func, list ], 3653 souflat := [ list ], 3654 soghash := "38b62b", 3655 sig4hash := "Apply(func,list)" ), 3656 rec( 3657 kind := "FUNCTION", 3658 name := "Apply", 3659 sin := [ [ func, "f" ], [ alist, "A" ] ], 3660 sou := [ [ alist, "r" ] ], 3661 short := "Apply `f' to every member of `A' and return the alist of return values.", 3662 ex := [ "l:=Alist([3,1],[6,2],[9,3],[12,4]);\nApply(i->3*i,l);", "l:=[1,2,3,4];\nApply(IsEven,l);" ], 3663 see := [ ], 3664 hash := "b49bbf", 3665 sig := "Apply(<func> f, <alist> A)", 3666 sog := " -> <alist> r", 3667 docsrc := "init-methods.g", 3668 sinflat := [ func, alist ], 3669 souflat := [ alist ], 3670 soghash := "4405bf", 3671 sig4hash := "Apply(func,alist)" ), 3672 rec( 3673 kind := "FUNCTION", 3674 name := "Apply", 3675 sin := [ [ alist, "l" ], [ func, "f" ] ], 3676 sou := [ [ alist, "r" ] ], 3677 short := "Apply `f' to every member of `l' and return the alist of return values.", 3678 ex := [ "l:=Alist([3,1],[6,2],[9,3],[12,4]);\nApply(l,i->3*i);", "l:=[1,2,3,4];\nApply(l,IsEven);" ], 3679 see := [ ], 3680 hash := "c7a0ee", 3681 sig := "Apply(<alist> l, <func> f)", 3682 sog := " -> <alist> r", 3683 docsrc := "init-methods.g", 3684 sinflat := [ alist, func ], 3685 souflat := [ alist ], 3686 soghash := "4405bf", 3687 sig4hash := "Apply(alist,func)" ), 3688 rec( 3689 kind := "FUNCTION", 3690 name := "Apply_", 3691 sin := [ [ alist, "A" ], [ func, "f" ] ], 3692 sou := [ ], 3693 short := "Apply 'f' to every member of `A' and replace the entry by the corresponding return value.\nNote: The previous contents of `A' will be lost.", 3694 ex := [ "l:=[1,2,3,4];\nApply_(l,i->3*i); l;", "l:=[1,2,3,4];\nApply_(l,IsEven); l;" ], 3695 see := [ ], 3696 hash := "3b1b6a", 3697 sig := "Apply_(<alist> A, <func> f)", 3698 sog := "", 3699 docsrc := "init-methods.g", 3700 sinflat := [ alist, func ], 3701 souflat := [ ], 3702 soghash := "da39a3", 3703 sig4hash := "Apply_(alist,func)" ), 3704 rec( 3705 kind := "FUNCTION", 3706 name := "Apply_", 3707 sin := [ [ func, "f" ], [ alist, "A" ] ], 3708 sou := [ ], 3709 short := "Apply 'f' to every member of `A' and replace the entry by the corresponding return value.\nNote: The previous contents of `l' will be lost.", 3710 ex := [ "l:=[1,2,3,4];\nApply_(i->3*i,l); l;", "l:=[1,2,3,4];\nApply_(IsEven,l); l;" ], 3711 see := [ ], 3712 hash := "636b79", 3713 sig := "Apply_(<func> f, <alist> A)", 3714 sog := "", 3715 docsrc := "init-methods.g", 3716 sinflat := [ func, alist ], 3717 souflat := [ ], 3718 soghash := "da39a3", 3719 sig4hash := "Apply_(func,alist)" ), 3720 rec( 3721 kind := "FUNCTION", 3722 name := "GetEntry", 3723 sin := [ [ record, "r" ], [ string, "f" ] ], 3724 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 3725 Default := FAILURE ) ] ], 3726 sou := [ [ any ] ], 3727 short := "Returns the element of `r' in the field `f' if it exists and fails otherwise.", 3728 ex := [ "A:=rec(ac:=1,ad:=INFTY);\nGetEntry(A,\"ad\");\nGetEntry(A,\"ab\");" ], 3729 see := [ ], 3730 hash := "bde31f", 3731 sig := "GetEntry(<record> r, <string> f [, optargs])", 3732 sog := " -> <any>", 3733 docsrc := "init-methods.g", 3734 sinflat := [ record, string ], 3735 souflat := [ any ], 3736 soghash := "c5fe02", 3737 sig4hash := "GetEntry(record,string)" ), 3738 rec( 3739 kind := "FUNCTION", 3740 name := "GetEntry", 3741 sin := [ [ list, "l" ], [ elt-ord^rat, "pos" ] ], 3742 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 3743 Default := FAILURE ) ] ], 3744 sou := [ [ any ] ], 3745 short := "Returns the element of `l' at position `pos' if it exists and fails otherwise.", 3746 ex := [ "A:=[2,3,5,7,11,13,17,19];\nGetEntry(A,2);\nGetEntry(A,44);" ], 3747 see := [ ], 3748 hash := "1630a6", 3749 sig := "GetEntry(<list> l, <elt-ord^rat> pos [, optargs])", 3750 sog := " -> <any>", 3751 docsrc := "init-methods.g", 3752 sinflat := [ list, elt-ord^rat ], 3753 souflat := [ any ], 3754 soghash := "c5fe02", 3755 sig4hash := "GetEntry(list,elt-ord^rat)" ), 3756 rec( 3757 kind := "FUNCTION", 3758 name := "Position", 3759 sin := [ [ list, "L" ], [ any, "a" ] ], 3760 opt := [ [ elt-ord^rat, "Start", "Determines the position where the search is started.", rec( 3761 Default := 1 ) ], [ any, "Fail", "Determines what to return in case of failure.", rec( 3762 Default := FAILURE ) ] ], 3763 sou := [ [ elt-ord^rat ] ], 3764 short := "Return the position of the first occurence of `a' in `L' if `a in L' is true, and FAILURE otherwise.", 3765 ex := [ "L:=[1,,3,4];\nPosition(L,3); Position(L,1,rec(Start:=2)); Position(L,\"foo\");" ], 3766 see := [ ], 3767 hash := "2ae099", 3768 sig := "Position(<list> L, <any> a [, optargs])", 3769 sog := " -> <elt-ord^rat>", 3770 docsrc := "init-methods.g", 3771 sinflat := [ list, any ], 3772 souflat := [ elt-ord^rat ], 3773 soghash := "898213", 3774 sig4hash := "Position(list,any)" ), 3775 rec( 3776 kind := "FUNCTION", 3777 name := "Position", 3778 sin := [ [ string, "S" ], [ char, "c" ] ], 3779 opt := [ [ elt-ord^rat, "Start", "Determines the position where the search is started.", rec( 3780 Default := 1 ) ], [ any, "Fail", "Determines what to return in case of failure.", rec( 3781 Default := FAILURE ) ] ], 3782 sou := [ [ elt-ord^rat ] ], 3783 short := "Return the position of the first occurence of `c' in `S' if c is a character in the string `S', and FAILURE otherwise.", 3784 ex := [ "S:=\"foobar\";\nPosition(S,'o'); Position(S,'f',rec(Start:=2)); Position(S,\"foo\");" ], 3785 see := [ ], 3786 hash := "e10eac", 3787 sig := "Position(<string> S, <char> c [, optargs])", 3788 sog := " -> <elt-ord^rat>", 3789 docsrc := "init-methods.g", 3790 sinflat := [ string, char ], 3791 souflat := [ elt-ord^rat ], 3792 soghash := "898213", 3793 sig4hash := "Position(string,char)" ), 3794 rec( 3795 kind := "FUNCTION", 3796 name := "Position", 3797 sin := [ [ dry, "D" ], [ any, "a" ] ], 3798 opt := [ [ elt-ord^rat, "Start", "Determines the position where the search is started.", rec( 3799 Default := 1 ) ], [ any, "Fail", "Determines what to return in case of failure.", rec( 3800 Default := FAILURE ) ] ], 3801 sou := [ [ elt-ord^rat ] ], 3802 short := "Return the position of the occurence of `a' in `D' if `a in D' is true, and FAILURE otherwise.", 3803 ex := [ "D:=Dry([1,12,4,3]);\nPosition(D,12); Position(D,1,rec(Start:=2)); Position(D,\"foo\");" ], 3804 see := [ ], 3805 hash := "f6116f", 3806 sig := "Position(<dry> D, <any> a [, optargs])", 3807 sog := " -> <elt-ord^rat>", 3808 docsrc := "init-methods.g", 3809 sinflat := [ dry, any ], 3810 souflat := [ elt-ord^rat ], 3811 soghash := "898213", 3812 sig4hash := "Position(dry,any)" ), 3813 rec( 3814 kind := "FUNCTION", 3815 name := "Position", 3816 sin := [ [ alist, "A" ], [ any, "a" ] ], 3817 opt := [ [ elt-ord^rat, "Start", "Determines the position where the search is started.", rec( 3818 Default := 1 ) ], [ any, "Fail", "Determines what to return in case of failure.", rec( 3819 Default := FAILURE ) ] ], 3820 sou := [ [ elt-ord^rat ] ], 3821 short := "Return the position of the occurence of `a' in `A' if `a in A' is true, and FAILURE otherwise.", 3822 ex := [ "A:=Alist([1,12],[3,4]);\nPosition(A,3); Position(A,1,rec(Start:=2)); Position(A,\"foo\");" ], 3823 see := [ ], 3824 hash := "3b8353", 3825 sig := "Position(<alist> A, <any> a [, optargs])", 3826 sog := " -> <elt-ord^rat>", 3827 docsrc := "init-methods.g", 3828 sinflat := [ alist, any ], 3829 souflat := [ elt-ord^rat ], 3830 soghash := "898213", 3831 sig4hash := "Position(alist,any)" ), 3832 rec( 3833 kind := "FUNCTION", 3834 name := "Mapconcat", 3835 sin := [ [ func, "f" ], [ list, "l" ], [ string, "sep" ] ], 3836 sou := [ [ string, "s" ] ], 3837 short := "Apply `f' to every member of `l' to obtain a string. Then concatenate all these strings intermixed with `sep' and return the result.", 3838 ex := [ "Stringify:=function(arg) return SPrint(arg[1]); end;\nMapconcat(Stringify,[E,1,\"test\"],\", \");" ], 3839 see := [ "6a9bd1" ], 3840 hash := "7834fe", 3841 sig := "Mapconcat(<func> f, <list> l, <string> sep)", 3842 sog := " -> <string> s", 3843 docsrc := "init-methods.g", 3844 sinflat := [ func, list, string ], 3845 souflat := [ string ], 3846 soghash := "ecb252", 3847 sig4hash := "Mapconcat(func,list,string)" ), 3848 rec( 3849 kind := "FUNCTION", 3850 name := "Mapconcat", 3851 sin := [ [ func, "f" ], [ list, "l" ] ], 3852 sou := [ [ string, "s" ] ], 3853 short := "Apply `f' to every member of `l' to obtain a string. Then concatenate all these strings intermixed with a space and return the result.", 3854 ex := [ "Stringify:=function(arg) return SPrint(arg[1]); end;\nMapconcat(Stringify,[E,1,\"test\"]);" ], 3855 see := [ "7834fe" ], 3856 hash := "6a9bd1", 3857 sig := "Mapconcat(<func> f, <list> l)", 3858 sog := " -> <string> s", 3859 docsrc := "init-methods.g", 3860 sinflat := [ func, list ], 3861 souflat := [ string ], 3862 soghash := "ecb252", 3863 sig4hash := "Mapconcat(func,list)" ), 3864 rec( 3865 kind := "FUNCTION", 3866 name := "Filtered", 3867 sin := [ [ func, "pred" ], [ list, "l" ] ], 3868 sou := [ [ list, "filt" ] ], 3869 short := "Gather elements from `l' which suffice the predicate function `pred'.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 3870 ex := [ "Filtered(IsPrime,[1..100]);" ], 3871 see := [ ], 3872 hash := "c8a315", 3873 sig := "Filtered(<func> pred, <list> l)", 3874 sog := " -> <list> filt", 3875 docsrc := "init-methods.g", 3876 sinflat := [ func, list ], 3877 souflat := [ list ], 3878 soghash := "38b62b", 3879 sig4hash := "Filtered(func,list)" ), 3880 rec( 3881 kind := "FUNCTION", 3882 name := "Filtered", 3883 sin := [ [ list, "l" ], [ func, "pred" ] ], 3884 sou := [ [ list, "filt" ] ], 3885 short := "Gather elements from `l' which suffice the predicate function `pred'.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 3886 ex := [ "Filtered([1..100],IsPrime);" ], 3887 see := [ ], 3888 hash := "aa13b4", 3889 sig := "Filtered(<list> l, <func> pred)", 3890 sog := " -> <list> filt", 3891 docsrc := "init-methods.g", 3892 sinflat := [ list, func ], 3893 souflat := [ list ], 3894 soghash := "38b62b", 3895 sig4hash := "Filtered(list,func)" ), 3896 rec( 3897 kind := "FUNCTION", 3898 name := "Butfirst", 3899 sin := [ [ list, "l" ] ], 3900 sou := [ [ list, "r" ] ], 3901 short := "Return the list `l' without its first element.", 3902 see := [ "2625da" ], 3903 ex := [ ], 3904 hash := "0b6f20", 3905 sig := "Butfirst(<list> l)", 3906 sog := " -> <list> r", 3907 docsrc := "init-methods.g", 3908 sinflat := [ list ], 3909 souflat := [ list ], 3910 soghash := "38b62b", 3911 sig4hash := "Butfirst(list)" ), 3912 rec( 3913 kind := "FUNCTION", 3914 name := "Butfirst_", 3915 sin := [ [ list, "l" ] ], 3916 sou := [ [ list, "r" ] ], 3917 short := "Remove the first element from the list `l'.\nNote: `l' is modified by side-effect.", 3918 see := [ "0b6f20" ], 3919 ex := [ ], 3920 hash := "2625da", 3921 sig := "Butfirst_(<list> l)", 3922 sog := " -> <list> r", 3923 docsrc := "init-methods.g", 3924 sinflat := [ list ], 3925 souflat := [ list ], 3926 soghash := "38b62b", 3927 sig4hash := "Butfirst_(list)" ), 3928 rec( 3929 kind := "FUNCTION", 3930 name := "First", 3931 sin := [ [ list, "l" ] ], 3932 sou := [ [ any, "f" ] ], 3933 short := "Return the first element of the list `l'.", 3934 see := [ "6da1f1" ], 3935 hash := "887cf1", 3936 ex := [ ], 3937 sig := "First(<list> l)", 3938 sog := " -> <any> f", 3939 docsrc := "init-methods.g", 3940 sinflat := [ list ], 3941 souflat := [ any ], 3942 soghash := "c5fe02", 3943 sig4hash := "First(list)" ), 3944 rec( 3945 kind := "FUNCTION", 3946 name := "Butlast", 3947 sin := [ [ list, "l" ] ], 3948 sou := [ [ list, "r" ] ], 3949 short := "Return the list `l' without its last element.", 3950 see := [ "f78331" ], 3951 ex := [ ], 3952 hash := "2dded0", 3953 sig := "Butlast(<list> l)", 3954 sog := " -> <list> r", 3955 docsrc := "init-methods.g", 3956 sinflat := [ list ], 3957 souflat := [ list ], 3958 soghash := "38b62b", 3959 sig4hash := "Butlast(list)" ), 3960 rec( 3961 kind := "FUNCTION", 3962 name := "Butlast_", 3963 sin := [ [ list, "l" ] ], 3964 sou := [ [ list, "r" ] ], 3965 short := "Remove the last element from the list `l'.\nNote: `l' is modified by side-effect.", 3966 see := [ "2dded0" ], 3967 ex := [ ], 3968 hash := "f78331", 3969 sig := "Butlast_(<list> l)", 3970 sog := " -> <list> r", 3971 docsrc := "init-methods.g", 3972 sinflat := [ list ], 3973 souflat := [ list ], 3974 soghash := "38b62b", 3975 sig4hash := "Butlast_(list)" ), 3976 rec( 3977 kind := "FUNCTION", 3978 name := "Last", 3979 sin := [ [ list, "l" ] ], 3980 sou := [ [ any, "r" ] ], 3981 short := "Return the last element of the list `l'.", 3982 see := [ "887cf1" ], 3983 hash := "6da1f1", 3984 ex := [ ], 3985 sig := "Last(<list> l)", 3986 sog := " -> <any> r", 3987 docsrc := "init-methods.g", 3988 sinflat := [ list ], 3989 souflat := [ any ], 3990 soghash := "c5fe02", 3991 sig4hash := "Last(list)" ), 3992 rec( 3993 kind := "FUNCTION", 3994 name := "Mapc", 3995 sin := [ [ func, "f" ], [ list, "l" ] ], 3996 sou := [ ], 3997 short := "Apply 'f' on each element of 'l' _without_ modifying 'l'.", 3998 ex := [ ], 3999 hash := "d81c63", 4000 sig := "Mapc(<func> f, <list> l)", 4001 sog := "", 4002 docsrc := "init-methods.g", 4003 sinflat := [ func, list ], 4004 souflat := [ ], 4005 soghash := "da39a3", 4006 sig4hash := "Mapc(func,list)" ), 4007 rec( 4008 kind := "FUNCTION", 4009 name := "RunHookWithArg", 4010 sin := [ [ list, "hook" ], [ any, "arg" ] ], 4011 sou := [ ], 4012 short := "Run each function of the list `hook' with `arg' as argument.\nThis is unlike Mapc which takes _one_ function which acts on a list of arguments.", 4013 ex := [ "RunHookWithArg([i->i*2, i->i*3, i->i*4],2);" ], 4014 hash := "b9f653", 4015 sig := "RunHookWithArg(<list> hook, <any> arg)", 4016 sog := "", 4017 docsrc := "init-methods.g", 4018 sinflat := [ list, any ], 4019 souflat := [ ], 4020 soghash := "da39a3", 4021 sig4hash := "RunHookWithArg(list,any)" ), 4022 rec( 4023 kind := "FUNCTION", 4024 name := "Concatenation", 4025 sin := [ [ list, "l1" ], [ list, "l2" ] ], 4026 sou := [ [ list, "l" ] ], 4027 short := "Concatenate the lists `l1' and `l2' and return the result.", 4028 ex := [ "Concatenation([1,2],[3,4]);" ], 4029 see := [ ], 4030 hash := "697229", 4031 sig := "Concatenation(<list> l1, <list> l2)", 4032 sog := " -> <list> l", 4033 docsrc := "init-methods.g", 4034 sinflat := [ list, list ], 4035 souflat := [ list ], 4036 soghash := "38b62b", 4037 sig4hash := "Concatenation(list,list)" ), 4038 rec( 4039 kind := "FUNCTION", 4040 name := "Flat", 4041 sin := [ [ list, "l" ] ], 4042 sou := [ [ list, "f" ] ], 4043 short := "Flatten `l' by recursing into a nested list structure and fetching all atomary (i.e. non-lists) elements and return the result.", 4044 ex := [ "l:=[[1],[2,3,4]];\nFlat(l);" ], 4045 see := [ ], 4046 hash := "19c302", 4047 sig := "Flat(<list> l)", 4048 sog := " -> <list> f", 4049 docsrc := "init-methods.g", 4050 sinflat := [ list ], 4051 souflat := [ list ], 4052 soghash := "38b62b", 4053 sig4hash := "Flat(list)" ), 4054 rec( 4055 kind := "FUNCTION", 4056 name := "Reversed", 4057 sin := [ [ list, "l" ] ], 4058 sou := [ [ list, "r" ] ], 4059 short := "Reverse `l' and return the result.", 4060 ex := [ "l:=[1,2,3,4];\nReversed(l);" ], 4061 see := [ ], 4062 hash := "1ed908", 4063 sig := "Reversed(<list> l)", 4064 sog := " -> <list> r", 4065 docsrc := "init-methods.g", 4066 sinflat := [ list ], 4067 souflat := [ list ], 4068 soghash := "38b62b", 4069 sig4hash := "Reversed(list)" ), 4070 rec( 4071 kind := "FUNCTION", 4072 name := "Filter", 4073 sin := [ [ func, "pred" ] ], 4074 sou := [ [ func, "filt" ] ], 4075 short := "Construct a functional `filt(<list> l) -> <list>' which gathers elements from `l' which suffice the predicate function `pred' which has to have out-signature `-> elt-alg^boo'.", 4076 ex := [ "f:=Filter(IsPrime);\nf([1..100]);\n" ], 4077 see := [ ], 4078 hash := "96e0c5", 4079 sig := "Filter(<func> pred)", 4080 sog := " -> <func> filt", 4081 docsrc := "init-methods.g", 4082 sinflat := [ func ], 4083 souflat := [ func ], 4084 soghash := "99fdb3", 4085 sig4hash := "Filter(func)" ), 4086 rec( 4087 kind := "FUNCTION", 4088 name := "Number", 4089 sin := [ [ list, "l" ], [ func, "pred" ] ], 4090 sou := [ [ elt-ord^rat ] ], 4091 short := "Return the number of elements from `l' which suffice the predicate function `pred'.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 4092 ex := [ "Number([1..100],IsPrime);" ], 4093 see := [ ], 4094 hash := "6a4b57", 4095 sig := "Number(<list> l, <func> pred)", 4096 sog := " -> <elt-ord^rat>", 4097 docsrc := "init-methods.g", 4098 sinflat := [ list, func ], 4099 souflat := [ elt-ord^rat ], 4100 soghash := "898213", 4101 sig4hash := "Number(list,func)" ), 4102 rec( 4103 kind := "FUNCTION", 4104 name := "Number", 4105 sin := [ [ func, "pred" ], [ list, "l" ] ], 4106 sou := [ [ elt-ord^rat ] ], 4107 short := "Return the number of elements from `l' which suffice the predicate function `pred'.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 4108 ex := [ "Number(IsPrime,[1..100]);" ], 4109 see := [ ], 4110 hash := "de4e08", 4111 sig := "Number(<func> pred, <list> l)", 4112 sog := " -> <elt-ord^rat>", 4113 docsrc := "init-methods.g", 4114 sinflat := [ func, list ], 4115 souflat := [ elt-ord^rat ], 4116 soghash := "898213", 4117 sig4hash := "Number(func,list)" ), 4118 rec( 4119 kind := "FUNCTION", 4120 name := "Number", 4121 sin := [ [ list, "l" ] ], 4122 sou := [ [ elt-ord^rat ] ], 4123 short := "Count the number of elements in `l'.", 4124 ex := [ "Number([101,102,103]);", "Number([1,2,3,,,,,,4]);" ], 4125 see := [ ], 4126 hash := "1543ee", 4127 sig := "Number(<list> l)", 4128 sog := " -> <elt-ord^rat>", 4129 docsrc := "init-methods.g", 4130 sinflat := [ list ], 4131 souflat := [ elt-ord^rat ], 4132 soghash := "898213", 4133 sig4hash := "Number(list)" ), 4134 rec( 4135 kind := "FUNCTION", 4136 name := "Number", 4137 sin := [ [ func, "pred" ] ], 4138 sou := [ [ func, "ctr" ] ], 4139 short := "Construct a functional `ctr(<list> l) -> elt-ord^rat' which returns the number of elements from `l' which suffice the predicate function `pred'.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 4140 ex := [ "f:=Number(IsPrime);\nf([1..100]);" ], 4141 see := [ ], 4142 hash := "deb7d2", 4143 sig := "Number(<func> pred)", 4144 sog := " -> <func> ctr", 4145 docsrc := "init-methods.g", 4146 sinflat := [ func ], 4147 souflat := [ func ], 4148 soghash := "99fdb3", 4149 sig4hash := "Number(func)" ), 4150 rec( 4151 kind := "FUNCTION", 4152 name := "Number", 4153 sin := [ [ string, "s" ], [ func, "pred" ] ], 4154 sou := [ [ elt-ord^rat ] ], 4155 short := "Return the number of characters from `s' which suffice the predicate function `pred'.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 4156 ex := [ "Number(\"some really random text\",i->i in \"aeiou\");" ], 4157 see := [ ], 4158 hash := "57fa02", 4159 sig := "Number(<string> s, <func> pred)", 4160 sog := " -> <elt-ord^rat>", 4161 docsrc := "init-methods.g", 4162 sinflat := [ string, func ], 4163 souflat := [ elt-ord^rat ], 4164 soghash := "898213", 4165 sig4hash := "Number(string,func)" ), 4166 rec( 4167 kind := "FUNCTION", 4168 name := "Number", 4169 sin := [ [ func, "pred" ], [ string, "s" ] ], 4170 sou := [ [ elt-ord^rat ] ], 4171 short := "Return the number of characters from `s' which suffice the predicate function `pred'.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 4172 ex := [ "Number(i->not i in \"aeiou\",\"hm, this is a demonstration text\");" ], 4173 see := [ ], 4174 hash := "8b67a5", 4175 sig := "Number(<func> pred, <string> s)", 4176 sog := " -> <elt-ord^rat>", 4177 docsrc := "init-methods.g", 4178 sinflat := [ func, string ], 4179 souflat := [ elt-ord^rat ], 4180 soghash := "898213", 4181 sig4hash := "Number(func,string)" ), 4182 rec( 4183 kind := "FUNCTION", 4184 name := "Number", 4185 sin := [ [ string, "s" ] ], 4186 sou := [ [ elt-ord^rat ] ], 4187 short := "Count the number of characters in `s'.", 4188 ex := [ "Number(\"How many characters do I have?\");" ], 4189 see := [ ], 4190 hash := "1a2112", 4191 sig := "Number(<string> s)", 4192 sog := " -> <elt-ord^rat>", 4193 docsrc := "init-methods.g", 4194 sinflat := [ string ], 4195 souflat := [ elt-ord^rat ], 4196 soghash := "898213", 4197 sig4hash := "Number(string)" ), 4198 rec( 4199 kind := "FUNCTION", 4200 name := "Number", 4201 sin := [ [ seq(), "s" ], [ func, "pred" ] ], 4202 sou := [ [ elt-ord^rat ] ], 4203 short := "Return the number of elements from `s' which suffice the predicate function `pred'.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 4204 ex := [ "Number(Sequence([1..100]),IsPrime);" ], 4205 see := [ ], 4206 hash := "398368", 4207 sig := "Number(<seq()> s, <func> pred)", 4208 sog := " -> <elt-ord^rat>", 4209 docsrc := "init-methods.g", 4210 sinflat := [ seq(), func ], 4211 souflat := [ elt-ord^rat ], 4212 soghash := "898213", 4213 sig4hash := "Number(seq(),func)" ), 4214 rec( 4215 kind := "FUNCTION", 4216 name := "Number", 4217 sin := [ [ func, "pred" ], [ seq(), "s" ] ], 4218 sou := [ [ elt-ord^rat ] ], 4219 short := "Return the number of elements from `s' which suffice the predicate function `pred'.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 4220 ex := [ "Number(IsPrime,Sequence([1..100]));" ], 4221 see := [ ], 4222 hash := "f16dd2", 4223 sig := "Number(<func> pred, <seq()> s)", 4224 sog := " -> <elt-ord^rat>", 4225 docsrc := "init-methods.g", 4226 sinflat := [ func, seq() ], 4227 souflat := [ elt-ord^rat ], 4228 soghash := "898213", 4229 sig4hash := "Number(func,seq())" ), 4230 rec( 4231 kind := "FUNCTION", 4232 name := "Number", 4233 sin := [ [ seq(), "s" ] ], 4234 sou := [ [ elt-ord^rat ] ], 4235 short := "Count the number of elements in `s'.", 4236 ex := [ "Number(Sequence([101,102,103]));" ], 4237 see := [ ], 4238 hash := "b922b7", 4239 sig := "Number(<seq()> s)", 4240 sog := " -> <elt-ord^rat>", 4241 docsrc := "init-methods.g", 4242 sinflat := [ seq() ], 4243 souflat := [ elt-ord^rat ], 4244 soghash := "898213", 4245 sig4hash := "Number(seq())" ), 4246 rec( 4247 kind := "FUNCTION", 4248 name := "ForAll", 4249 sin := [ [ list, "l" ], [ func, "pred" ] ], 4250 sou := [ [ elt-alg^boo ] ], 4251 short := "Return true iff every member of `l' suffices the predicate function `pred'.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 4252 ex := [ "ForAll([1..100],IsPrime);", "ForAll([2,4,6,8,100],IsEven);" ], 4253 see := [ ], 4254 hash := "b588e0", 4255 sig := "ForAll(<list> l, <func> pred)", 4256 sog := " -> <elt-alg^boo>", 4257 docsrc := "init-methods.g", 4258 sinflat := [ list, func ], 4259 souflat := [ elt-alg^boo ], 4260 soghash := "5e8dd4", 4261 sig4hash := "ForAll(list,func)" ), 4262 rec( 4263 kind := "FUNCTION", 4264 name := "ForAll", 4265 sin := [ [ func, "pred" ], [ list, "l" ] ], 4266 sou := [ [ elt-alg^boo ] ], 4267 short := "Return true iff every member of `l' suffices the predicate function `pred'.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 4268 ex := [ "ForAll(IsPrime,[1..100]);", "ForAll(IsEven,[2,4,6,8,100]);" ], 4269 see := [ ], 4270 hash := "214893", 4271 sig := "ForAll(<func> pred, <list> l)", 4272 sog := " -> <elt-alg^boo>", 4273 docsrc := "init-methods.g", 4274 sinflat := [ func, list ], 4275 souflat := [ elt-alg^boo ], 4276 soghash := "5e8dd4", 4277 sig4hash := "ForAll(func,list)" ), 4278 rec( 4279 kind := "FUNCTION", 4280 name := "ForAll", 4281 sin := [ [ func, "pred" ] ], 4282 sou := [ [ func, "fa" ] ], 4283 short := "Construct a functional `fa(<list> l) -> elt-alg^boo' which returns true iff every member of `l' suffices the predicate function `pred'.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 4284 ex := [ "l:=[Random(10),Random(10)];\nf:=ForAll(IsEven);\nl; f(l);" ], 4285 see := [ ], 4286 hash := "2809b1", 4287 sig := "ForAll(<func> pred)", 4288 sog := " -> <func> fa", 4289 docsrc := "init-methods.g", 4290 sinflat := [ func ], 4291 souflat := [ func ], 4292 soghash := "99fdb3", 4293 sig4hash := "ForAll(func)" ), 4294 rec( 4295 kind := "FUNCTION", 4296 name := "ForAll", 4297 sin := [ [ seq(), "s" ], [ func, "pred" ] ], 4298 sou := [ [ elt-alg^boo ] ], 4299 short := "Return true iff every element of `s' suffices the predicate function `pred'.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 4300 ex := [ "ForAll(Sequence([1..100]),IsPrime);", "ForAll(Sequence([2,4,6,8,100]),IsEven);" ], 4301 see := [ "b588e0" ], 4302 hash := "efdf43", 4303 sig := "ForAll(<seq()> s, <func> pred)", 4304 sog := " -> <elt-alg^boo>", 4305 docsrc := "init-methods.g", 4306 sinflat := [ seq(), func ], 4307 souflat := [ elt-alg^boo ], 4308 soghash := "5e8dd4", 4309 sig4hash := "ForAll(seq(),func)" ), 4310 rec( 4311 kind := "FUNCTION", 4312 name := "ForAll", 4313 sin := [ [ func, "pred" ], [ seq(), "s" ] ], 4314 sou := [ [ elt-alg^boo ] ], 4315 short := "Return true iff every element of `s' suffices the predicate function `pred'.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 4316 ex := [ "ForAll(IsPrime,Sequence([1..100]));", "ForAll(IsEven,Sequence([2,4,6,8,100]));" ], 4317 see := [ "214893" ], 4318 hash := "3557f0", 4319 sig := "ForAll(<func> pred, <seq()> s)", 4320 sog := " -> <elt-alg^boo>", 4321 docsrc := "init-methods.g", 4322 sinflat := [ func, seq() ], 4323 souflat := [ elt-alg^boo ], 4324 soghash := "5e8dd4", 4325 sig4hash := "ForAll(func,seq())" ), 4326 rec( 4327 kind := "FUNCTION", 4328 name := "ForAny", 4329 sin := [ [ list, "l" ], [ func, "pred" ] ], 4330 sou := [ [ elt-alg^boo ] ], 4331 short := "Return true iff every member of `l' suffices the predicate function `pred'.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 4332 ex := [ "ForAny([1..100],IsPrime);", "ForAny([2,4,6,8,100],IsEven);" ], 4333 see := [ ], 4334 hash := "7081f0", 4335 sig := "ForAny(<list> l, <func> pred)", 4336 sog := " -> <elt-alg^boo>", 4337 docsrc := "init-methods.g", 4338 sinflat := [ list, func ], 4339 souflat := [ elt-alg^boo ], 4340 soghash := "5e8dd4", 4341 sig4hash := "ForAny(list,func)" ), 4342 rec( 4343 kind := "FUNCTION", 4344 name := "ForAny", 4345 sin := [ [ func, "pred" ], [ list, "l" ] ], 4346 sou := [ [ elt-alg^boo ] ], 4347 short := "Return true iff every member of `l' suffices the predicate function `pred'.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 4348 ex := [ "ForAny(IsPrime,[1..100]);", "ForAny(IsOdd,[2,4,6,8,100]);" ], 4349 see := [ ], 4350 hash := "37c247", 4351 sig := "ForAny(<func> pred, <list> l)", 4352 sog := " -> <elt-alg^boo>", 4353 docsrc := "init-methods.g", 4354 sinflat := [ func, list ], 4355 souflat := [ elt-alg^boo ], 4356 soghash := "5e8dd4", 4357 sig4hash := "ForAny(func,list)" ), 4358 rec( 4359 kind := "FUNCTION", 4360 name := "ForAny", 4361 sin := [ [ func, "pred" ] ], 4362 sou := [ [ func, "fa" ] ], 4363 short := "Construct a functional `fa(<list> l) -> elt-alg^boo' which returns true iff every member of `l' suffices the predicate function `pred'.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 4364 ex := [ "l:=[Random(1000)..1000+Random(1000)];\nf:=ForAny(IsPrime);\nl; f(l);" ], 4365 see := [ ], 4366 hash := "e9863c", 4367 sig := "ForAny(<func> pred)", 4368 sog := " -> <func> fa", 4369 docsrc := "init-methods.g", 4370 sinflat := [ func ], 4371 souflat := [ func ], 4372 soghash := "99fdb3", 4373 sig4hash := "ForAny(func)" ), 4374 rec( 4375 kind := "FUNCTION", 4376 name := "ForAny", 4377 sin := [ [ seq(), "s" ], [ func, "pred" ] ], 4378 sou := [ [ elt-alg^boo ] ], 4379 short := "Return true iff every element of `s' suffices the predicate function `pred'.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 4380 ex := [ "ForAny(Sequence([1..100]),IsPrime);", "ForAny(Sequence([2,4,6,8,100]),IsEven);" ], 4381 see := [ "7081f0" ], 4382 hash := "d8eb79", 4383 sig := "ForAny(<seq()> s, <func> pred)", 4384 sog := " -> <elt-alg^boo>", 4385 docsrc := "init-methods.g", 4386 sinflat := [ seq(), func ], 4387 souflat := [ elt-alg^boo ], 4388 soghash := "5e8dd4", 4389 sig4hash := "ForAny(seq(),func)" ), 4390 rec( 4391 kind := "FUNCTION", 4392 name := "ForAny", 4393 sin := [ [ func, "pred" ], [ seq(), "s" ] ], 4394 sou := [ [ elt-alg^boo ] ], 4395 short := "Return true iff every element of `s' suffices the predicate function `pred'.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 4396 ex := [ "ForAny(IsPrime,Sequence([1..100]));", "ForAny(IsOdd,Sequence([2,4,6,8,100]));" ], 4397 see := [ "37c247" ], 4398 hash := "455bb8", 4399 sig := "ForAny(<func> pred, <seq()> s)", 4400 sog := " -> <elt-alg^boo>", 4401 docsrc := "init-methods.g", 4402 sinflat := [ func, seq() ], 4403 souflat := [ elt-alg^boo ], 4404 soghash := "5e8dd4", 4405 sig4hash := "ForAny(func,seq())" ), 4406 rec( 4407 kind := "FUNCTION", 4408 name := "First", 4409 sin := [ [ list, "l" ], [ func, "pred" ] ], 4410 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 4411 Default := FAILURE ) ] ], 4412 sou := [ [ any ] ], 4413 short := "Find the first element which suffices the predicate function `pred' and return it.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 4414 ex := [ "First([1..100],IsPrime);", "First([2,4,6,8,12,50,100],i->i mod 5=0);" ], 4415 see := [ "ea1698" ], 4416 hash := "5447d9", 4417 sig := "First(<list> l, <func> pred [, optargs])", 4418 sog := " -> <any>", 4419 docsrc := "init-methods.g", 4420 sinflat := [ list, func ], 4421 souflat := [ any ], 4422 soghash := "c5fe02", 4423 sig4hash := "First(list,func)" ), 4424 rec( 4425 kind := "FUNCTION", 4426 name := "First", 4427 sin := [ [ func, "pred" ], [ list, "l" ] ], 4428 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 4429 Default := FAILURE ) ] ], 4430 sou := [ [ any ] ], 4431 short := "Find the first element which suffices the predicate function `pred' and return it.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 4432 ex := [ "First(IsPrime,[1..100]);", "First(IsOdd,[2,4,6,8,100]);" ], 4433 see := [ "f9320a" ], 4434 hash := "b428bb", 4435 sig := "First(<func> pred, <list> l [, optargs])", 4436 sog := " -> <any>", 4437 docsrc := "init-methods.g", 4438 sinflat := [ func, list ], 4439 souflat := [ any ], 4440 soghash := "c5fe02", 4441 sig4hash := "First(func,list)" ), 4442 rec( 4443 kind := "FUNCTION", 4444 name := "First", 4445 sin := [ [ func, "pred" ] ], 4446 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 4447 Default := FAILURE ) ] ], 4448 sou := [ [ func, "fir" ] ], 4449 short := "Construct a functional `fir(<list> l) -> any' which finds and returns the first element which suffices the predicate function `pred' and returns it.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 4450 ex := [ "l:=[Random(1000)..1000+Random(1000)];\nf:=First(i->i mod 17=0);\nl; f(l);" ], 4451 see := [ "3e2598" ], 4452 hash := "2e722c", 4453 sig := "First(<func> pred [, optargs])", 4454 sog := " -> <func> fir", 4455 docsrc := "init-methods.g", 4456 sinflat := [ func ], 4457 souflat := [ func ], 4458 soghash := "99fdb3", 4459 sig4hash := "First(func)" ), 4460 rec( 4461 kind := "FUNCTION", 4462 name := "First", 4463 sin := [ [ string, "s" ], [ func, "pred" ] ], 4464 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 4465 Default := FAILURE ) ] ], 4466 sou := [ [ char ] ], 4467 short := "Find the first character which suffices the predicate function `pred' and return it.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 4468 ex := [ "First(\"abcdefzyx\",i->(i='d' or i='z'));" ], 4469 see := [ "2a0f5b" ], 4470 hash := "d6a98a", 4471 sig := "First(<string> s, <func> pred [, optargs])", 4472 sog := " -> <char>", 4473 docsrc := "init-methods.g", 4474 sinflat := [ string, func ], 4475 souflat := [ char ], 4476 soghash := "71fafc", 4477 sig4hash := "First(string,func)" ), 4478 rec( 4479 kind := "FUNCTION", 4480 name := "First", 4481 sin := [ [ func, "pred" ], [ string, "s" ] ], 4482 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 4483 Default := FAILURE ) ] ], 4484 sou := [ [ char ] ], 4485 short := "Find the first character which suffices the predicate function `pred' and return it.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 4486 ex := [ "First(i->(i='d' or i='z'),\"abcdefzyx\");" ], 4487 see := [ "9528e2" ], 4488 hash := "144d2d", 4489 sig := "First(<func> pred, <string> s [, optargs])", 4490 sog := " -> <char>", 4491 docsrc := "init-methods.g", 4492 sinflat := [ func, string ], 4493 souflat := [ char ], 4494 soghash := "71fafc", 4495 sig4hash := "First(func,string)" ), 4496 rec( 4497 kind := "FUNCTION", 4498 name := "First", 4499 sin := [ [ seq(), "s" ], [ func, "pred" ] ], 4500 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 4501 Default := FAILURE ) ] ], 4502 sou := [ [ any ] ], 4503 short := "Find the first element which suffices the predicate function `pred' and return it.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 4504 ex := [ "First(Sequence([1..100]),IsPrime);", "First(Sequence([2,4,6,8,12,50,100]),i->i mod 5=0);" ], 4505 see := [ "51dd36" ], 4506 hash := "ad4301", 4507 sig := "First(<seq()> s, <func> pred [, optargs])", 4508 sog := " -> <any>", 4509 docsrc := "init-methods.g", 4510 sinflat := [ seq(), func ], 4511 souflat := [ any ], 4512 soghash := "c5fe02", 4513 sig4hash := "First(seq(),func)" ), 4514 rec( 4515 kind := "FUNCTION", 4516 name := "First", 4517 sin := [ [ func, "pred" ], [ seq(), "s" ] ], 4518 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 4519 Default := FAILURE ) ] ], 4520 sou := [ [ any ] ], 4521 short := "Find the first element which suffices the predicate function `pred' and return it.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 4522 ex := [ "First(IsPrime,Sequence([1..100]));", "First(IsOdd,Sequence([2,4,6,8,100]));" ], 4523 see := [ "f9320a" ], 4524 hash := "66b097", 4525 sig := "First(<func> pred, <seq()> s [, optargs])", 4526 sog := " -> <any>", 4527 docsrc := "init-methods.g", 4528 sinflat := [ func, seq() ], 4529 souflat := [ any ], 4530 soghash := "c5fe02", 4531 sig4hash := "First(func,seq())" ), 4532 rec( 4533 kind := "FUNCTION", 4534 name := "Last", 4535 sin := [ [ list, "l" ], [ func, "pred" ] ], 4536 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 4537 Default := FAILURE ) ] ], 4538 sou := [ [ any ] ], 4539 short := "Find the last element which suffices the predicate function `pred' and return it.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 4540 ex := [ "Last([1..100],IsPrime);", "Last([2,4,6,8,12,50,100],i->i mod 3=0);" ], 4541 see := [ "5447d9" ], 4542 hash := "ea1698", 4543 sig := "Last(<list> l, <func> pred [, optargs])", 4544 sog := " -> <any>", 4545 docsrc := "init-methods.g", 4546 sinflat := [ list, func ], 4547 souflat := [ any ], 4548 soghash := "c5fe02", 4549 sig4hash := "Last(list,func)" ), 4550 rec( 4551 kind := "FUNCTION", 4552 name := "Last", 4553 sin := [ [ func, "pred" ], [ list, "l" ] ], 4554 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 4555 Default := FAILURE ) ] ], 4556 sou := [ [ any ] ], 4557 short := "Find the last element which suffices the predicate function `pred' and return it.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 4558 ex := [ "Last(IsPrime,[1..100]);", "Last(IsOdd,[2,4,6,8,100]);" ], 4559 see := [ "b428bb" ], 4560 hash := "f9320a", 4561 sig := "Last(<func> pred, <list> l [, optargs])", 4562 sog := " -> <any>", 4563 docsrc := "init-methods.g", 4564 sinflat := [ func, list ], 4565 souflat := [ any ], 4566 soghash := "c5fe02", 4567 sig4hash := "Last(func,list)" ), 4568 rec( 4569 kind := "FUNCTION", 4570 name := "Last", 4571 sin := [ [ func, "pred" ] ], 4572 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 4573 Default := FAILURE ) ] ], 4574 sou := [ [ func, "las" ] ], 4575 short := "Construct a functional `las(<list> l) -> any' which finds and returns the last element which suffices the predicate function `pred' and returns it.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 4576 ex := [ "l:=[Random(1000)..1000+Random(1000)];\nf:=Last(i->i mod 17=0);\nl; f(l);" ], 4577 see := [ "2e722c" ], 4578 hash := "3e2598", 4579 sig := "Last(<func> pred [, optargs])", 4580 sog := " -> <func> las", 4581 docsrc := "init-methods.g", 4582 sinflat := [ func ], 4583 souflat := [ func ], 4584 soghash := "99fdb3", 4585 sig4hash := "Last(func)" ), 4586 rec( 4587 kind := "FUNCTION", 4588 name := "Last", 4589 sin := [ [ string, "s" ], [ func, "pred" ] ], 4590 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 4591 Default := FAILURE ) ] ], 4592 sou := [ [ char ] ], 4593 short := "Find the last character which suffices the predicate function `pred' and return it.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 4594 ex := [ "Last(\"test\",i->i<'s');" ], 4595 see := [ "d6a98a" ], 4596 hash := "2a0f5b", 4597 sig := "Last(<string> s, <func> pred [, optargs])", 4598 sog := " -> <char>", 4599 docsrc := "init-methods.g", 4600 sinflat := [ string, func ], 4601 souflat := [ char ], 4602 soghash := "71fafc", 4603 sig4hash := "Last(string,func)" ), 4604 rec( 4605 kind := "FUNCTION", 4606 name := "Last", 4607 sin := [ [ func, "pred" ], [ string, "s" ] ], 4608 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 4609 Default := FAILURE ) ] ], 4610 sou := [ [ char ] ], 4611 short := "Find the last character which suffices the predicate function `pred' and return it.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 4612 ex := [ "Last(i->i>'f',\"this is a demo.\");" ], 4613 see := [ "144d2d" ], 4614 hash := "9528e2", 4615 sig := "Last(<func> pred, <string> s [, optargs])", 4616 sog := " -> <char>", 4617 docsrc := "init-methods.g", 4618 sinflat := [ func, string ], 4619 souflat := [ char ], 4620 soghash := "71fafc", 4621 sig4hash := "Last(func,string)" ), 4622 rec( 4623 kind := "FUNCTION", 4624 name := "Last", 4625 sin := [ [ seq(), "s" ], [ func, "pred" ] ], 4626 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 4627 Default := FAILURE ) ] ], 4628 sou := [ [ any ] ], 4629 short := "Find the last element which suffices the predicate function `pred' and return it.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 4630 ex := [ "Last(Sequence([1..100]),IsPrime);", "Last(Sequence([2,4,6,8,12,50,100]),i->i mod 3=0);" ], 4631 see := [ "ad4301" ], 4632 hash := "51dd36", 4633 sig := "Last(<seq()> s, <func> pred [, optargs])", 4634 sog := " -> <any>", 4635 docsrc := "init-methods.g", 4636 sinflat := [ seq(), func ], 4637 souflat := [ any ], 4638 soghash := "c5fe02", 4639 sig4hash := "Last(seq(),func)" ), 4640 rec( 4641 kind := "FUNCTION", 4642 name := "Last", 4643 sin := [ [ func, "pred" ], [ seq(), "s" ] ], 4644 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 4645 Default := FAILURE ) ] ], 4646 sou := [ [ any ] ], 4647 short := "Find the last element which suffices the predicate function `pred' and return it.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 4648 ex := [ "Last(IsPrime,Sequence([1..100]));", "Last(IsOdd,Sequence([2,4,6,8,100]));" ], 4649 see := [ "66b097" ], 4650 hash := "3729c0", 4651 sig := "Last(<func> pred, <seq()> s [, optargs])", 4652 sog := " -> <any>", 4653 docsrc := "init-methods.g", 4654 sinflat := [ func, seq() ], 4655 souflat := [ any ], 4656 soghash := "c5fe02", 4657 sig4hash := "Last(func,seq())" ), 4658 rec( 4659 kind := "FUNCTION", 4660 name := "PositionProperty", 4661 sin := [ [ list, "l" ], [ func, "pred" ] ], 4662 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 4663 Default := FAILURE ) ] ], 4664 sou := [ [ elt-ord^rat ] ], 4665 short := "Return the position of the first element of `l' which suffices the predicate function `pred'.\nReturn FAILURE if no such element exists in `l'.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 4666 ex := [ "PositionProperty([50..100],IsPrime);", "PositionProperty([2,4,6,8,12,50,100],i->i mod 5=0);" ], 4667 see := [ ], 4668 hash := "4ecb42", 4669 sig := "PositionProperty(<list> l, <func> pred [, optargs])", 4670 sog := " -> <elt-ord^rat>", 4671 docsrc := "init-methods.g", 4672 sinflat := [ list, func ], 4673 souflat := [ elt-ord^rat ], 4674 soghash := "898213", 4675 sig4hash := "PositionProperty(list,func)" ), 4676 rec( 4677 kind := "FUNCTION", 4678 name := "PositionProperty", 4679 sin := [ [ func, "pred" ], [ list, "l" ] ], 4680 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 4681 Default := FAILURE ) ] ], 4682 sou := [ [ elt-ord^rat ] ], 4683 short := "Return the position of the first element of `l' which suffices the predicate function `pred'.\nReturn FAILURE if no such element exists in `l'.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 4684 ex := [ "PositionProperty(IsPrime,[1..100]);", "PositionProperty(IsOdd,[2,4,6,8,100]);" ], 4685 see := [ ], 4686 hash := "199ebf", 4687 sig := "PositionProperty(<func> pred, <list> l [, optargs])", 4688 sog := " -> <elt-ord^rat>", 4689 docsrc := "init-methods.g", 4690 sinflat := [ func, list ], 4691 souflat := [ elt-ord^rat ], 4692 soghash := "898213", 4693 sig4hash := "PositionProperty(func,list)" ), 4694 rec( 4695 kind := "FUNCTION", 4696 name := "PositionProperty", 4697 sin := [ [ func, "pred" ] ], 4698 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 4699 Default := FAILURE ) ] ], 4700 sou := [ [ func, "pos" ] ], 4701 short := "Construct a functional `pos(<list> l) -> elt-ord^rat' which returns the position of the first element of `l' which suffices the predicate function `pred'.\nReturn FAILURE if no such element exists in `l'.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 4702 ex := [ "l:=[Random(1000)..1000+Random(1000)];;\nf:=PositionProperty(i->i mod 17=0);;\nl; f(l);" ], 4703 see := [ ], 4704 hash := "03ff1b", 4705 sig := "PositionProperty(<func> pred [, optargs])", 4706 sog := " -> <func> pos", 4707 docsrc := "init-methods.g", 4708 sinflat := [ func ], 4709 souflat := [ func ], 4710 soghash := "99fdb3", 4711 sig4hash := "PositionProperty(func)" ), 4712 rec( 4713 kind := "FUNCTION", 4714 name := "PositionProperty", 4715 sin := [ [ string, "s" ], [ func, "pred" ] ], 4716 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 4717 Default := FAILURE ) ] ], 4718 sou := [ [ elt-ord^rat ] ], 4719 short := "Return the position of the first character of `s' which suffices the predicate function `pred'.\nReturn FAILURE if no such character exists in `s'.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 4720 ex := [ "PositionProperty(\"some random text\",i->i in \"uvwxyz\");" ], 4721 see := [ ], 4722 hash := "4a46b0", 4723 sig := "PositionProperty(<string> s, <func> pred [, optargs])", 4724 sog := " -> <elt-ord^rat>", 4725 docsrc := "init-methods.g", 4726 sinflat := [ string, func ], 4727 souflat := [ elt-ord^rat ], 4728 soghash := "898213", 4729 sig4hash := "PositionProperty(string,func)" ), 4730 rec( 4731 kind := "FUNCTION", 4732 name := "PositionProperty", 4733 sin := [ [ func, "pred" ], [ string, "s" ] ], 4734 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 4735 Default := FAILURE ) ] ], 4736 sou := [ [ elt-ord^rat ] ], 4737 short := "Return the position of the first character of `s' which suffices the predicate function `pred'.\nReturn FAILURE if no such character exists in `s'.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 4738 ex := [ "PositionProperty(i->i in \"aeiou\",\"some random text\");" ], 4739 see := [ ], 4740 hash := "14d69d", 4741 sig := "PositionProperty(<func> pred, <string> s [, optargs])", 4742 sog := " -> <elt-ord^rat>", 4743 docsrc := "init-methods.g", 4744 sinflat := [ func, string ], 4745 souflat := [ elt-ord^rat ], 4746 soghash := "898213", 4747 sig4hash := "PositionProperty(func,string)" ), 4748 rec( 4749 kind := "FUNCTION", 4750 name := "PositionProperty", 4751 sin := [ [ seq(), "s" ], [ func, "pred" ] ], 4752 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 4753 Default := FAILURE ) ] ], 4754 sou := [ [ elt-ord^rat ] ], 4755 short := "Return the position of the first element of `s' which suffices the predicate function `pred'.\nReturn FAILURE if no such element exists in `s'.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 4756 ex := [ "PositionProperty(Sequence([50..100]),IsPrime);", "PositionProperty(Sequence([2,4,6,8,12,50,100]),i->i mod 5=0);" ], 4757 see := [ "4ecb42" ], 4758 hash := "3c99b9", 4759 sig := "PositionProperty(<seq()> s, <func> pred [, optargs])", 4760 sog := " -> <elt-ord^rat>", 4761 docsrc := "init-methods.g", 4762 sinflat := [ seq(), func ], 4763 souflat := [ elt-ord^rat ], 4764 soghash := "898213", 4765 sig4hash := "PositionProperty(seq(),func)" ), 4766 rec( 4767 kind := "FUNCTION", 4768 name := "PositionProperty", 4769 sin := [ [ func, "pred" ], [ seq(), "s" ] ], 4770 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 4771 Default := FAILURE ) ] ], 4772 sou := [ [ elt-ord^rat ] ], 4773 short := "Return the position of the first element of `s' which suffices the predicate function `pred'.\nReturn FAILURE if no such element exists in `s'.\nNote: Apparently `pred' must have `-> elt-alg^boo' out-signature.", 4774 ex := [ "PositionProperty(IsPrime,Sequence([1..100]));", "PositionProperty(IsOdd,Sequence([2,4,6,8,100]));" ], 4775 see := [ "199ebf" ], 4776 hash := "0f6520", 4777 sig := "PositionProperty(<func> pred, <seq()> s [, optargs])", 4778 sog := " -> <elt-ord^rat>", 4779 docsrc := "init-methods.g", 4780 sinflat := [ func, seq() ], 4781 souflat := [ elt-ord^rat ], 4782 soghash := "898213", 4783 sig4hash := "PositionProperty(func,seq())" ), 4784 rec( 4785 kind := "FUNCTION", 4786 name := "Collected", 4787 sin := [ [ list, "l" ] ], 4788 sou := [ [ list, "coll" ] ], 4789 short := "Document me!", 4790 ex := [ "Collected([1,2,3,3,2,5,4,3,2,1,4,4,3]);" ], 4791 see := [ ], 4792 hash := "1fbd2d", 4793 sig := "Collected(<list> l)", 4794 sog := " -> <list> coll", 4795 docsrc := "init-methods.g", 4796 sinflat := [ list ], 4797 souflat := [ list ], 4798 soghash := "38b62b", 4799 sig4hash := "Collected(list)" ), 4800 rec( 4801 kind := "FUNCTION", 4802 name := "Cartesian", 4803 sin := [ [ list, "l1" ], [ list, "l2" ] ], 4804 sou := [ [ list, "l1xl2" ] ], 4805 short := "Return list obtained by the cartesian product of `l1' and `l2'.", 4806 ex := [ "Cartesian([1,2,3,4],[1,I]);" ], 4807 see := [ ], 4808 hash := "7de892", 4809 sig := "Cartesian(<list> l1, <list> l2)", 4810 sog := " -> <list> l1xl2", 4811 docsrc := "init-methods.g", 4812 sinflat := [ list, list ], 4813 souflat := [ list ], 4814 soghash := "38b62b", 4815 sig4hash := "Cartesian(list,list)" ), 4816 rec( 4817 kind := "FUNCTION", 4818 name := "Sort", 4819 sin := [ [ list, "l" ] ], 4820 sou := [ ], 4821 short := "Sort `l'.", 4822 ex := [ "A:=[1,14,3,7,2,1];\nSort(A); A;" ], 4823 see := [ ], 4824 hash := "335b78", 4825 sig := "Sort(<list> l)", 4826 sog := "", 4827 docsrc := "init-methods.g", 4828 sinflat := [ list ], 4829 souflat := [ ], 4830 soghash := "da39a3", 4831 sig4hash := "Sort(list)" ), 4832 rec( 4833 kind := "FUNCTION", 4834 name := "SortParallel", 4835 sin := [ [ list, "l1" ], [ list, "l2" ] ], 4836 sou := [ ], 4837 short := "Document me!", 4838 ex := [ ], 4839 see := [ ], 4840 hash := "72db5a", 4841 sig := "SortParallel(<list> l1, <list> l2)", 4842 sog := "", 4843 docsrc := "init-methods.g", 4844 sinflat := [ list, list ], 4845 souflat := [ ], 4846 soghash := "da39a3", 4847 sig4hash := "SortParallel(list,list)" ), 4848 rec( 4849 kind := "FUNCTION", 4850 name := "Permuted", 4851 sin := [ [ list, "l" ], [ elt-grp^per, "perm" ] ], 4852 sou := [ ], 4853 short := "Document me!", 4854 ex := [ ], 4855 see := [ ], 4856 hash := "dcc5e1", 4857 sig := "Permuted(<list> l, <elt-grp^per> perm)", 4858 sog := "", 4859 docsrc := "init-methods.g", 4860 sinflat := [ list, elt-grp^per ], 4861 souflat := [ ], 4862 soghash := "da39a3", 4863 sig4hash := "Permuted(list,elt-grp^per)" ), 4864 rec( 4865 kind := "FUNCTION", 4866 name := "PositionSorted", 4867 sin := [ [ list, "l" ], [ any, "elm" ] ], 4868 sou := [ [ elt-ord^rat ] ], 4869 short := "Returns the position of `elm' in the sorted list `l'.", 4870 ex := [ "A:=[2,3,5,7,11,13,17,19];\nPositionSorted(A,11);" ], 4871 see := [ ], 4872 hash := "39607a", 4873 sig := "PositionSorted(<list> l, <any> elm)", 4874 sog := " -> <elt-ord^rat>", 4875 docsrc := "init-methods.g", 4876 sinflat := [ list, any ], 4877 souflat := [ elt-ord^rat ], 4878 soghash := "898213", 4879 sig4hash := "PositionSorted(list,any)" ), 4880 rec( 4881 kind := "FUNCTION", 4882 name := "Product", 4883 sin := [ [ list, "l" ] ], 4884 sou := [ [ any ] ], 4885 short := "Return the product of the elements of `l'.\nNote: `l' may consist of elements of different types. Generally `Product' works on everything `*' can operate on.", 4886 ex := [ "Product([2,3,5,7]);", "Product([2,\"1,2 \",2]);" ], 4887 see := [ ], 4888 hash := "f81ead", 4889 sig := "Product(<list> l)", 4890 sog := " -> <any>", 4891 docsrc := "init-methods.g", 4892 sinflat := [ list ], 4893 souflat := [ any ], 4894 soghash := "c5fe02", 4895 sig4hash := "Product(list)" ), 4896 rec( 4897 kind := "FUNCTION", 4898 name := "Product", 4899 sin := [ [ seq(), "S" ] ], 4900 sou := [ [ any ] ], 4901 short := "Return the product of the elements of `s'.", 4902 ex := [ "Product( Sequence([1, 2, 3]) );\nProduct( Sequence([1..100]) );\nProduct( [1, 2, 3] );\nProduct( [1..100] );" ], 4903 see := [ "f81ead" ], 4904 hash := "ad5189", 4905 sig := "Product(<seq()> S)", 4906 sog := " -> <any>", 4907 docsrc := "<internal>", 4908 sinflat := [ seq() ], 4909 souflat := [ any ], 4910 soghash := "da39a3", 4911 sig4hash := "Product(seq())" ), 4912 rec( 4913 kind := "FUNCTION", 4914 name := "Product", 4915 sin := [ [ tup(), "t" ] ], 4916 sou := [ [ any ] ], 4917 short := "Return the product of the elements of `t'.", 4918 ex := [ "Product(Tuple([2,3,5,7]));", "Product(Tuple([2,\"a,b \",5]));" ], 4919 see := [ "f81ead" ], 4920 hash := "1bdd5d", 4921 sig := "Product(<tup()> t)", 4922 sog := " -> <any>", 4923 docsrc := "init-methods.g", 4924 sinflat := [ tup() ], 4925 souflat := [ any ], 4926 soghash := "c5fe02", 4927 sig4hash := "Product(tup())" ), 4928 rec( 4929 kind := "FUNCTION", 4930 name := "Product", 4931 sin := [ [ list, "l" ], [ func, "f" ] ], 4932 sou := [ [ any ] ], 4933 short := "Document me!", 4934 ex := [ ], 4935 see := [ ], 4936 hash := "4a4a6e", 4937 sig := "Product(<list> l, <func> f)", 4938 sog := " -> <any>", 4939 docsrc := "init-methods.g", 4940 sinflat := [ list, func ], 4941 souflat := [ any ], 4942 soghash := "c5fe02", 4943 sig4hash := "Product(list,func)" ), 4944 rec( 4945 kind := "FUNCTION", 4946 name := "Product", 4947 sin := [ [ func, "l" ], [ list, "l" ] ], 4948 sou := [ [ any ] ], 4949 short := "Document me!", 4950 ex := [ ], 4951 see := [ ], 4952 hash := "fbad9f", 4953 sig := "Product(<func> l, <list> l)", 4954 sog := " -> <any>", 4955 docsrc := "init-methods.g", 4956 sinflat := [ func, list ], 4957 souflat := [ any ], 4958 soghash := "c5fe02", 4959 sig4hash := "Product(func,list)" ), 4960 rec( 4961 kind := "FUNCTION", 4962 name := "Product", 4963 sin := [ [ func, "l" ] ], 4964 sou := [ [ any ] ], 4965 short := "Document me!", 4966 ex := [ ], 4967 see := [ ], 4968 hash := "43bf9a", 4969 sig := "Product(<func> l)", 4970 sog := " -> <any>", 4971 docsrc := "init-methods.g", 4972 sinflat := [ func ], 4973 souflat := [ any ], 4974 soghash := "c5fe02", 4975 sig4hash := "Product(func)" ), 4976 rec( 4977 kind := "FUNCTION", 4978 name := "Sum", 4979 sin := [ [ list, "l" ] ], 4980 sou := [ [ any ] ], 4981 short := "Return the sum of the elements of `l'.\nNote: `l' may consist of elements of different types. Generally `Sum' works on everything `+' can operate on.", 4982 ex := [ "Sum([1..100]);", "Sum([\"a\",\"b\",\"c\"]);" ], 4983 see := [ ], 4984 hash := "0730f5", 4985 sig := "Sum(<list> l)", 4986 sog := " -> <any>", 4987 docsrc := "init-methods.g", 4988 sinflat := [ list ], 4989 souflat := [ any ], 4990 soghash := "c5fe02", 4991 sig4hash := "Sum(list)" ), 4992 rec( 4993 kind := "FUNCTION", 4994 name := "Sum", 4995 sin := [ [ seq(), "S" ] ], 4996 sou := [ [ any ] ], 4997 short := "Return the sum of the elements of `s'.", 4998 ex := [ "Sum( Sequence([1, 2, 3]) );\nSum( Sequence([1..100]) );\nSum( [1, 2, 3] );\nSum( [1..100] );" ], 4999 see := [ ], 5000 hash := "68305c", 5001 sig := "Sum(<seq()> S)", 5002 sog := " -> <any>", 5003 docsrc := "<internal>", 5004 sinflat := [ seq() ], 5005 souflat := [ any ], 5006 soghash := "da39a3", 5007 sig4hash := "Sum(seq())" ), 5008 rec( 5009 kind := "FUNCTION", 5010 name := "Sum", 5011 sin := [ [ tup(), "t" ] ], 5012 sou := [ [ any ] ], 5013 short := "Return the sum of the elements of `t'.", 5014 ex := [ "Sum(Tuple([1..100]));", "Sum(Tuple([\"a\",\"b\",\"c\"]));" ], 5015 see := [ ], 5016 hash := "fc8a38", 5017 sig := "Sum(<tup()> t)", 5018 sog := " -> <any>", 5019 docsrc := "init-methods.g", 5020 sinflat := [ tup() ], 5021 souflat := [ any ], 5022 soghash := "c5fe02", 5023 sig4hash := "Sum(tup())" ), 5024 rec( 5025 kind := "FUNCTION", 5026 name := "Sum", 5027 sin := [ [ list, "l" ], [ func, "f" ] ], 5028 sou := [ [ any ] ], 5029 short := "Document me!", 5030 ex := [ ], 5031 see := [ ], 5032 hash := "36bbdd", 5033 sig := "Sum(<list> l, <func> f)", 5034 sog := " -> <any>", 5035 docsrc := "init-methods.g", 5036 sinflat := [ list, func ], 5037 souflat := [ any ], 5038 soghash := "c5fe02", 5039 sig4hash := "Sum(list,func)" ), 5040 rec( 5041 kind := "FUNCTION", 5042 name := "Sum", 5043 sin := [ [ func, "f" ], [ list, "l" ] ], 5044 sou := [ [ any ] ], 5045 short := "Document me!", 5046 ex := [ ], 5047 see := [ ], 5048 hash := "ab6670", 5049 sig := "Sum(<func> f, <list> l)", 5050 sog := " -> <any>", 5051 docsrc := "init-methods.g", 5052 sinflat := [ func, list ], 5053 souflat := [ any ], 5054 soghash := "c5fe02", 5055 sig4hash := "Sum(func,list)" ), 5056 rec( 5057 kind := "FUNCTION", 5058 name := "Sum", 5059 sin := [ [ func, "f" ] ], 5060 sou := [ [ any ] ], 5061 short := "Document me!", 5062 ex := [ ], 5063 see := [ ], 5064 hash := "e60d0d", 5065 sig := "Sum(<func> f)", 5066 sog := " -> <any>", 5067 docsrc := "init-methods.g", 5068 sinflat := [ func ], 5069 souflat := [ any ], 5070 soghash := "c5fe02", 5071 sig4hash := "Sum(func)" ), 5072 rec( 5073 kind := "FUNCTION", 5074 name := "Iterated", 5075 sin := [ [ list, "l" ], [ func, "f" ] ], 5076 sou := [ [ any ] ], 5077 short := "Document me!", 5078 ex := [ ], 5079 see := [ ], 5080 hash := "650413", 5081 sig := "Iterated(<list> l, <func> f)", 5082 sog := " -> <any>", 5083 docsrc := "init-methods.g", 5084 sinflat := [ list, func ], 5085 souflat := [ any ], 5086 soghash := "c5fe02", 5087 sig4hash := "Iterated(list,func)" ), 5088 rec( 5089 kind := "FUNCTION", 5090 name := "Maximum", 5091 sin := [ [ set, "s" ] ], 5092 sou := [ [ any ] ], 5093 short := "Determine and return the maximal element of `s'.\nNote: `s' may also be a list (nonetheless `Set(s)' must exist).", 5094 ex := [ "Maximum([3,-3,5]);", "Maximum(['a','b']);" ], 5095 see := [ ], 5096 hash := "efc75e", 5097 sig := "Maximum(<set> s)", 5098 sog := " -> <any>", 5099 docsrc := "init-methods.g", 5100 sinflat := [ set ], 5101 souflat := [ any ], 5102 soghash := "c5fe02", 5103 sig4hash := "Maximum(set)" ), 5104 rec( 5105 kind := "FUNCTION", 5106 name := "Maximum", 5107 sin := [ [ seq(), "S" ] ], 5108 sou := [ [ any ] ], 5109 short := "Determine and return the maximal element of `s'.", 5110 ex := [ "Maximum(Sequence([1,2,3,4,5]));" ], 5111 see := [ ], 5112 hash := "90fb03", 5113 sig := "Maximum(<seq()> S)", 5114 sog := " -> <any>", 5115 docsrc := "<internal>", 5116 sinflat := [ seq() ], 5117 souflat := [ any ], 5118 soghash := "da39a3", 5119 sig4hash := "Maximum(seq())" ), 5120 rec( 5121 kind := "FUNCTION", 5122 name := "Maximum", 5123 sin := [ [ tup(), "l" ] ], 5124 sou := [ [ any ] ], 5125 short := "Determine and return the maximal element in `t'.", 5126 ex := [ "Maximum(Tuple([3,-3,5]));", "Maximum(Tuple(['a','b']));" ], 5127 see := [ ], 5128 hash := "d34ecf", 5129 sig := "Maximum(<tup()> l)", 5130 sog := " -> <any>", 5131 docsrc := "init-methods.g", 5132 sinflat := [ tup() ], 5133 souflat := [ any ], 5134 soghash := "c5fe02", 5135 sig4hash := "Maximum(tup())" ), 5136 rec( 5137 kind := "FUNCTION", 5138 name := "Minimum", 5139 sin := [ [ set, "s" ] ], 5140 sou := [ [ any ] ], 5141 short := "Determine and return the minimal element of `s'.\nNote: `s' may also be a list (nonetheless `Set(s)' must exist).", 5142 ex := [ "Minimum([3,-3,5]);", "Minimum(['a','b']);" ], 5143 see := [ ], 5144 hash := "96b3e7", 5145 sig := "Minimum(<set> s)", 5146 sog := " -> <any>", 5147 docsrc := "init-methods.g", 5148 sinflat := [ set ], 5149 souflat := [ any ], 5150 soghash := "c5fe02", 5151 sig4hash := "Minimum(set)" ), 5152 rec( 5153 kind := "FUNCTION", 5154 name := "Minimum", 5155 sin := [ [ seq(), "S" ] ], 5156 sou := [ [ any ] ], 5157 short := "Determine and return the minimal element of `s'.", 5158 ex := [ "Minimum([3.1415, 2.7183, -19]);" ], 5159 see := [ ], 5160 hash := "7ef2be", 5161 sig := "Minimum(<seq()> S)", 5162 sog := " -> <any>", 5163 docsrc := "<internal>", 5164 sinflat := [ seq() ], 5165 souflat := [ any ], 5166 soghash := "da39a3", 5167 sig4hash := "Minimum(seq())" ), 5168 rec( 5169 kind := "FUNCTION", 5170 name := "Minimum", 5171 sin := [ [ tup(), "l" ] ], 5172 sou := [ [ any ] ], 5173 short := "Determine and return the minimal element in `t'.", 5174 ex := [ "Minimum(Tuple([3,-3,5]));", "Minimum(Tuple(['a','b']));" ], 5175 see := [ ], 5176 hash := "72dcb5", 5177 sig := "Minimum(<tup()> l)", 5178 sog := " -> <any>", 5179 docsrc := "init-methods.g", 5180 sinflat := [ tup() ], 5181 souflat := [ any ], 5182 soghash := "c5fe02", 5183 sig4hash := "Minimum(tup())" ), 5184 rec( 5185 kind := "FUNCTION", 5186 name := "Remove", 5187 sin := [ [ list, "L" ], [ elt-ord^rat, "pos" ] ], 5188 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 5189 Default := FAILURE ) ] ], 5190 sou := [ [ list ] ], 5191 short := "Return the list derived from removing the element at position `pos' from `L'.\nNote: `pos' must not exceed the scope of `L'.\nNote: This function returns the list created by the removal but does not affect `L'.", 5192 ex := [ "L:=[1,,3,4];\nRemove(L,3); L;" ], 5193 see := [ "d1d7cb" ], 5194 hash := "1cc237", 5195 sig := "Remove(<list> L, <elt-ord^rat> pos [, optargs])", 5196 sog := " -> <list>", 5197 docsrc := "init-methods.g", 5198 sinflat := [ list, elt-ord^rat ], 5199 souflat := [ list ], 5200 soghash := "38b62b", 5201 sig4hash := "Remove(list,elt-ord^rat)" ), 5202 rec( 5203 kind := "FUNCTION", 5204 name := "Remove_", 5205 sin := [ [ list, "L" ], [ elt-ord^rat, "pos" ] ], 5206 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 5207 Default := FAILURE ) ], [ any, "Success", "Determines what to return in case of success.", rec( 5208 Default := SUCCESS ) ] ], 5209 sou := [ ], 5210 short := "Remove the element at position `pos' in the list `L'.\nNote: `pos' must not exceed the scope of `L'.\nNote: This function works by side effect and returns VOID.", 5211 ex := [ "L:=[1,,3,4];\nRemove_(L,3); L;" ], 5212 see := [ "1cc237" ], 5213 hash := "d1d7cb", 5214 sig := "Remove_(<list> L, <elt-ord^rat> pos [, optargs])", 5215 sog := "", 5216 docsrc := "init-methods.g", 5217 sinflat := [ list, elt-ord^rat ], 5218 souflat := [ ], 5219 soghash := "da39a3", 5220 sig4hash := "Remove_(list,elt-ord^rat)" ), 5221 rec( 5222 kind := "FUNCTION", 5223 name := "Remove", 5224 sin := [ [ seq(), "S" ], [ elt-ord^rat, "pos" ] ], 5225 sou := [ [ seq() ] ], 5226 short := "Return the sequence derived from removing the element at position `pos' from `S'.\nNote: `pos' must not exceed the scope of `S'.\nNote: This function returns the sequence created by the removal but does not affect `S'.", 5227 hash := "aeb167", 5228 ex := [ ], 5229 sig := "Remove(<seq()> S, <elt-ord^rat> pos)", 5230 sog := " -> <seq()>", 5231 docsrc := "init-methods.g", 5232 sinflat := [ seq(), elt-ord^rat ], 5233 souflat := [ seq() ], 5234 soghash := "4bf3a0", 5235 sig4hash := "Remove(seq(),elt-ord^rat)" ), 5236 rec( 5237 kind := "FUNCTION", 5238 name := "Remove_", 5239 sin := [ [ seq(), "S" ], [ elt-ord^rat, "pos" ] ], 5240 sou := [ [ ] ], 5241 short := "Remove the element at position `pos' in the sequence `S'.\nNote: `pos' must not exceed the scope of `S'.\nNote: This function works by side effect and returns VOID.", 5242 hash := "98a11b", 5243 ex := [ ], 5244 sig := "Remove_(<seq()> S, <elt-ord^rat> pos)", 5245 sog := "", 5246 docsrc := "init-methods.g", 5247 sinflat := [ seq(), elt-ord^rat ], 5248 souflat := [ ], 5249 soghash := "da39a3", 5250 sig4hash := "Remove_(seq(),elt-ord^rat)" ), 5251 rec( 5252 kind := "FUNCTION", 5253 name := "Add_", 5254 sin := [ [ list, "L" ], [ any, "a" ] ], 5255 sou := [ ], 5256 short := "Add `a' to `L' by assigning `a' at the next position beyond the scope of `L'.\nNote: This function works by side effect and returns VOID.", 5257 ex := [ "L:=[1,,3,4];\nAdd_(L,5); L;" ], 5258 see := [ "ec51e2", "f55fdd" ], 5259 hash := "ab7b5e", 5260 sig := "Add_(<list> L, <any> a)", 5261 sog := "", 5262 docsrc := "init-methods.g", 5263 sinflat := [ list, any ], 5264 souflat := [ ], 5265 soghash := "da39a3", 5266 sig4hash := "Add_(list,any)" ), 5267 rec( 5268 kind := "FUNCTION", 5269 name := "Add", 5270 sin := [ [ list, "L" ], [ any, "a" ] ], 5271 sou := [ [ list ] ], 5272 short := "Add `a' to `L' by assigning `a' at the next position beyond the scope of `L'.\nNote: This function returns the list created by the addition but does not affect `L'.", 5273 ex := [ "L:=[1,,3,4];\nAdd(L,5); L;" ], 5274 see := [ "ab7b5e", "59fe3e" ], 5275 hash := "ec51e2", 5276 sig := "Add(<list> L, <any> a)", 5277 sog := " -> <list>", 5278 docsrc := "init-methods.g", 5279 sinflat := [ list, any ], 5280 souflat := [ list ], 5281 soghash := "38b62b", 5282 sig4hash := "Add(list,any)" ), 5283 rec( 5284 kind := "FUNCTION", 5285 name := "Add", 5286 sin := [ [ seq(), "Q" ], [ any, "x" ] ], 5287 sou := [ [ seq() ] ], 5288 short := "The sequence built by appending x to the sequence Q.", 5289 ex := [ "L:=Sequence([1,2,3,4]);\nAdd(L,5); L;" ], 5290 see := [ "ec51e2", "6e1a4d" ], 5291 hash := "ca03d1", 5292 sig := "Add(<seq()> Q, <any> x)", 5293 sog := " -> <seq()>", 5294 docsrc := "init-methods.g", 5295 sinflat := [ seq(), any ], 5296 souflat := [ seq() ], 5297 soghash := "4bf3a0", 5298 sig4hash := "Add(seq(),any)" ), 5299 rec( 5300 kind := "FUNCTION", 5301 name := "Add_", 5302 sin := [ [ seq(), "Q" ], [ any, "x" ] ], 5303 sou := [ [ seq() ] ], 5304 short := "Modify `Q' by appending x to the sequence Q.", 5305 ex := [ "L:=Sequence([1,2,3,4]);\nAdd_(L,5); L;" ], 5306 see := [ "ab7b5e", "8e984a" ], 5307 hash := "b12aa7", 5308 sig := "Add_(<seq()> Q, <any> x)", 5309 sog := " -> <seq()>", 5310 docsrc := "init-methods.g", 5311 sinflat := [ seq(), any ], 5312 souflat := [ seq() ], 5313 soghash := "4bf3a0", 5314 sig4hash := "Add_(seq(),any)" ), 5315 rec( 5316 kind := "FUNCTION", 5317 name := "Add", 5318 sin := [ [ string, "S" ], [ char, "c" ] ], 5319 sou := [ [ string ] ], 5320 short := "The string built by appending `c' to the string `S'.\nNote: This is roughly equivalent to `S+c'.", 5321 ex := [ "S:=\"abcdef\";\nAdd(S,'z'); S;" ], 5322 see := [ "ec51e2", "a9e9e4" ], 5323 hash := "32de83", 5324 sig := "Add(<string> S, <char> c)", 5325 sog := " -> <string>", 5326 docsrc := "init-methods.g", 5327 sinflat := [ string, char ], 5328 souflat := [ string ], 5329 soghash := "ecb252", 5330 sig4hash := "Add(string,char)" ), 5331 rec( 5332 kind := "FUNCTION", 5333 name := "Add_", 5334 sin := [ [ string, "S" ], [ char, "c" ] ], 5335 sou := [ [ string ] ], 5336 short := "Modify `S' by appending `c' to the string `S'.", 5337 ex := [ "S:=\"abcdef\";\nAdd_(S,'z'); S;" ], 5338 see := [ "ab7b5e", "f55160" ], 5339 hash := "26ec35", 5340 sig := "Add_(<string> S, <char> c)", 5341 sog := " -> <string>", 5342 docsrc := "init-methods.g", 5343 sinflat := [ string, char ], 5344 souflat := [ string ], 5345 soghash := "ecb252", 5346 sig4hash := "Add_(string,char)" ), 5347 rec( 5348 kind := "FUNCTION", 5349 name := "Union", 5350 sin := [ [ dry, "D1" ], [ list, "D2" ] ], 5351 sou := [ [ dry ] ], 5352 short := "Return the dry derived by the union of `D1' and `D2'.\nThe union is the dry of those elements that are elements of either dry. So `Union' adds (see DryAdd) all elements to `D1' that are in `D2'. `D2' may be a list that is not a proper dry, in which case `Dry' is silently applied to it.", 5353 ex := [ ], 5354 see := [ ], 5355 hash := "637982", 5356 sig := "Union(<dry> D1, <list> D2)", 5357 sog := " -> <dry>", 5358 docsrc := "init-methods.g", 5359 sinflat := [ dry, list ], 5360 souflat := [ dry ], 5361 soghash := "ef926a", 5362 sig4hash := "Union(dry,list)" ), 5363 rec( 5364 kind := "FUNCTION", 5365 name := "Union", 5366 sin := [ [ set, "S1" ], [ list, "S2" ] ], 5367 sou := [ [ set ] ], 5368 short := "Return the set derived by the union of `S1' and `S2'.\nThe union is the dry of those elements that are elements of either dry. So `Union' adds (see SetAdd) all elements to `S1' that are in `S2'. `S2' may be a list that is not a proper set, in which case `Set' is silently applied to it.", 5369 ex := [ ], 5370 see := [ ], 5371 hash := "871abd", 5372 sig := "Union(<set> S1, <list> S2)", 5373 sog := " -> <set>", 5374 docsrc := "init-methods.g", 5375 sinflat := [ set, list ], 5376 souflat := [ set ], 5377 soghash := "65c10d", 5378 sig4hash := "Union(set,list)" ), 5379 rec( 5380 kind := "FUNCTION", 5381 name := "Union_", 5382 sin := [ [ dry, "D1" ], [ list, "D2" ] ], 5383 sou := [ ], 5384 short := "Change `D1' so that it becomes the union of `D1' and `D2'.\nThe union is the dry of those elements that are elements of either dry. So `Union_' adds (see DryAdd) all elements to `D1' that are in `D2'. `D2' may be a list that is not a proper dry, in which case `Dry' is silently applied to it.", 5385 ex := [ ], 5386 see := [ ], 5387 hash := "f2d081", 5388 sig := "Union_(<dry> D1, <list> D2)", 5389 sog := "", 5390 docsrc := "init-methods.g", 5391 sinflat := [ dry, list ], 5392 souflat := [ ], 5393 soghash := "da39a3", 5394 sig4hash := "Union_(dry,list)" ), 5395 rec( 5396 kind := "FUNCTION", 5397 name := "Union_", 5398 sin := [ [ set, "S1" ], [ list, "S2" ] ], 5399 sou := [ ], 5400 short := "Change `S1' so that it becomes the union of `S1' and `S2'.\nThe union is the dry of those elements that are elements of either dry. So `Union_' adds (see SetAdd) all elements to `S1' that are in `S2'. `S2' may be a list that is not a proper set, in which case `Set' is silently applied to it.", 5401 ex := [ ], 5402 see := [ ], 5403 hash := "1b2275", 5404 sig := "Union_(<set> S1, <list> S2)", 5405 sog := "", 5406 docsrc := "init-methods.g", 5407 sinflat := [ set, list ], 5408 souflat := [ ], 5409 soghash := "da39a3", 5410 sig4hash := "Union_(set,list)" ), 5411 rec( 5412 kind := "FUNCTION", 5413 name := "Intersection", 5414 sin := [ [ dry, "D1" ], [ list, "D2" ] ], 5415 sou := [ [ dry ] ], 5416 short := "Return the dry derived by the intersection of the dries `D1' and `D2'.\nThe intersection is the dry of those elements that are elements in both dries. So `Intersection' removes (see `DryRemove') all elements from `D1' that are not in `D2'.\nNote: `D2' may be a list that is not a proper dry, in which case `Dry' is silently applied to it.", 5417 hash := "ead233", 5418 ex := [ ], 5419 sig := "Intersection(<dry> D1, <list> D2)", 5420 sog := " -> <dry>", 5421 docsrc := "init-methods.g", 5422 sinflat := [ dry, list ], 5423 souflat := [ dry ], 5424 soghash := "ef926a", 5425 sig4hash := "Intersection(dry,list)" ), 5426 rec( 5427 kind := "FUNCTION", 5428 name := "Intersection", 5429 sin := [ [ set, "S1" ], [ list, "S2" ] ], 5430 sou := [ [ set ] ], 5431 short := "Return the set derived by the intersection of the sets `S1' and `S2'.\nThe intersection is the set of those elements that are elements in both sets. So `Intersection' removes (see `SetRemove') all elements from `S1' that are not in `S2'.\n`S2' may be a list that is not a proper set, in which case `Set' is silently applied to it.", 5432 hash := "c601cc", 5433 ex := [ ], 5434 sig := "Intersection(<set> S1, <list> S2)", 5435 sog := " -> <set>", 5436 docsrc := "init-methods.g", 5437 sinflat := [ set, list ], 5438 souflat := [ set ], 5439 soghash := "65c10d", 5440 sig4hash := "Intersection(set,list)" ), 5441 rec( 5442 kind := "FUNCTION", 5443 name := "Intersection_", 5444 sin := [ [ dry, "D1" ], [ list, "D2" ] ], 5445 sou := [ ], 5446 short := "Change `D1' so that it becomes the intersection of `D1' and `D2'.\nThe intersection is the dry of those elements that are elements in both dries. So `Intersection_' removes (see `DryRemove_') all elements from `D1' which are not in `D2'.\nNote: `D2' may be a list that is not a proper dry, in which case `Dry' is silently applied to it.", 5447 hash := "0ce1d5", 5448 ex := [ ], 5449 sig := "Intersection_(<dry> D1, <list> D2)", 5450 sog := "", 5451 docsrc := "init-methods.g", 5452 sinflat := [ dry, list ], 5453 souflat := [ ], 5454 soghash := "da39a3", 5455 sig4hash := "Intersection_(dry,list)" ), 5456 rec( 5457 kind := "FUNCTION", 5458 name := "Intersection_", 5459 sin := [ [ set, "S1" ], [ list, "S2" ] ], 5460 sou := [ ], 5461 short := "Change `S1' so that it becomes the intersection of `S1' and `S2'.\nThe intersection is the set of those elements that are elements in both sets. So `SetIntersection_' removes (see `SetRemove_') all elements from `S1' that are not in `S2'.\n`S2' may be a list that is not a proper set, in which case `Set' is silently applied to it.", 5462 hash := "c025b1", 5463 ex := [ ], 5464 sig := "Intersection_(<set> S1, <list> S2)", 5465 sog := "", 5466 docsrc := "init-methods.g", 5467 sinflat := [ set, list ], 5468 souflat := [ ], 5469 soghash := "da39a3", 5470 sig4hash := "Intersection_(set,list)" ), 5471 rec( 5472 kind := "FUNCTION", 5473 name := "Difference", 5474 sin := [ [ dry, "D1" ], [ list, "D2" ] ], 5475 sou := [ [ dry ] ], 5476 short := "Return the dry derived by the difference of the dries `D1' and `D2'.\nThe difference is the dry of the elements that are in `D1' but not in `D2'. So `Difference' removes (see `DryRemove') all elements from `D1' that are in `D2'.\nNote: `D2' may be a list that is not a proper dry, in which case `Dry' is silently applied to it.", 5477 hash := "8eb302", 5478 ex := [ ], 5479 sig := "Difference(<dry> D1, <list> D2)", 5480 sog := " -> <dry>", 5481 docsrc := "init-methods.g", 5482 sinflat := [ dry, list ], 5483 souflat := [ dry ], 5484 soghash := "ef926a", 5485 sig4hash := "Difference(dry,list)" ), 5486 rec( 5487 kind := "FUNCTION", 5488 name := "Difference", 5489 sin := [ [ set, "S1" ], [ list, "S2" ] ], 5490 sou := [ [ set ] ], 5491 short := "Return the set derived by the difference of the sets `S1' and `S2'.\nThe difference is the set of the elements that are in `S1' but not in `S2'. So `Difference' removes (see `SetRemove') all elements from `S1' that are in `S2'.\nNote: `S2' may be a list that is not a proper set, in which case `Set' is silently applied to it.", 5492 hash := "bb5501", 5493 ex := [ ], 5494 sig := "Difference(<set> S1, <list> S2)", 5495 sog := " -> <set>", 5496 docsrc := "init-methods.g", 5497 sinflat := [ set, list ], 5498 souflat := [ set ], 5499 soghash := "65c10d", 5500 sig4hash := "Difference(set,list)" ), 5501 rec( 5502 kind := "FUNCTION", 5503 name := "Difference_", 5504 sin := [ [ dry, "D1" ], [ list, "D2" ] ], 5505 sou := [ ], 5506 short := "Change `D1' so that it becomes the difference of `D1' and `D2'.\nThe difference is the dry of the elements that are in `D1' but not in `D2'. So `Difference_' removes (see `DryRemove_') all elements from `D1' that are in `D2'.\nNote: `D2' may be a list that is not a proper dry, in which case `Dry' is silently applied to it.", 5507 hash := "2b0f66", 5508 ex := [ ], 5509 sig := "Difference_(<dry> D1, <list> D2)", 5510 sog := "", 5511 docsrc := "init-methods.g", 5512 sinflat := [ dry, list ], 5513 souflat := [ ], 5514 soghash := "da39a3", 5515 sig4hash := "Difference_(dry,list)" ), 5516 rec( 5517 kind := "FUNCTION", 5518 name := "Difference_", 5519 sin := [ [ set, "S1" ], [ list, "S2" ] ], 5520 sou := [ ], 5521 short := "Change `S1' so that it becomes the difference of `S1' and `S2'.\nThe difference is the set of the elements that are in `S1' but not in `S2'. So `Difference_' removes (see `SetRemove_') all elements from `S1' that are in `S2'.\nNote: `S2' may be a list that is not a proper set, in which case `Set' is silently applied to it.", 5522 hash := "cf988f", 5523 ex := [ ], 5524 sig := "Difference_(<set> S1, <list> S2)", 5525 sog := "", 5526 docsrc := "init-methods.g", 5527 sinflat := [ set, list ], 5528 souflat := [ ], 5529 soghash := "da39a3", 5530 sig4hash := "Difference_(set,list)" ), 5531 rec( 5532 kind := "FUNCTION", 5533 name := "AlistKeys", 5534 sin := [ [ alist, "A" ] ], 5535 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 5536 Default := FAILURE ) ] ], 5537 sou := [ [ list, "keyl" ] ], 5538 short := "Return a list of keys of the alist `A'.", 5539 ex := [ "A:=Alist([\"foo\",\"someval1\"],[\"bar\",\"someval2\"]);\nAlistKeys(A);" ], 5540 see := [ "b7306d" ], 5541 hash := "07c92e", 5542 sig := "AlistKeys(<alist> A [, optargs])", 5543 sog := " -> <list> keyl", 5544 docsrc := "init-methods.g", 5545 sinflat := [ alist ], 5546 souflat := [ list ], 5547 soghash := "38b62b", 5548 sig4hash := "AlistKeys(alist)" ), 5549 rec( 5550 kind := "FUNCTION", 5551 name := "AlistValues", 5552 sin := [ [ alist, "A" ] ], 5553 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 5554 Default := FAILURE ) ] ], 5555 sou := [ [ list, "vall" ] ], 5556 short := "Return a list of values of the alist `A'.", 5557 ex := [ "A:=Alist([\"foo\",\"someval1\"],[\"bar\",\"someval2\"]);\nAlistValues(A);" ], 5558 see := [ "07c92e" ], 5559 hash := "b7306d", 5560 sig := "AlistValues(<alist> A [, optargs])", 5561 sog := " -> <list> vall", 5562 docsrc := "init-methods.g", 5563 sinflat := [ alist ], 5564 souflat := [ list ], 5565 soghash := "38b62b", 5566 sig4hash := "AlistValues(alist)" ), 5567 rec( 5568 kind := "FUNCTION", 5569 name := "Assoc", 5570 sin := [ [ alist, "A" ], [ any, "key" ] ], 5571 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 5572 Default := FAILURE ) ] ], 5573 sou := [ [ any, "val" ] ], 5574 short := "Return the value associated with `key' in the alist `A'.", 5575 ex := [ "A:=Alist([\"foo\",\"someval1\"],[\"bar\",\"someval2\"]);\nAssoc(A,\"bar\"); Assoc(A,25);" ], 5576 see := [ ], 5577 hash := "fa766e", 5578 sig := "Assoc(<alist> A, <any> key [, optargs])", 5579 sog := " -> <any> val", 5580 docsrc := "init-methods.g", 5581 sinflat := [ alist, any ], 5582 souflat := [ any ], 5583 soghash := "c5fe02", 5584 sig4hash := "Assoc(alist,any)" ), 5585 rec( 5586 kind := "FUNCTION", 5587 name := "Rassoc", 5588 sin := [ [ alist, "A" ], [ any, "val" ] ], 5589 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 5590 Default := FAILURE ) ] ], 5591 sou := [ [ any, "key" ] ], 5592 short := "Return a list of keys whose associations are `val' in the alist `A'.", 5593 ex := [ "A:=Alist([\"foo\",\"someval1\"],[\"bar\",\"someval2\"]);\nRassoc(A,\"someval1\"); Rassoc(A,25);" ], 5594 see := [ ], 5595 hash := "1f9485", 5596 sig := "Rassoc(<alist> A, <any> val [, optargs])", 5597 sog := " -> <any> key", 5598 docsrc := "init-methods.g", 5599 sinflat := [ alist, any ], 5600 souflat := [ any ], 5601 soghash := "c5fe02", 5602 sig4hash := "Rassoc(alist,any)" ), 5603 rec( 5604 kind := "FUNCTION", 5605 name := "Preimages", 5606 sin := [ [ alist, "A" ], [ any, "val" ] ], 5607 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 5608 Default := FAILURE ) ] ], 5609 sou := [ [ any, "key" ] ], 5610 short := "Return a list of keys whose associations are `val' in the alist `A'.", 5611 ex := [ "A:=Alist([\"foo\",\"someval1\"],[\"bar\",\"someval2\"]);\nPreimages(A,\"someval1\"); Preimages(A,25);" ], 5612 see := [ ], 5613 hash := "62d20c", 5614 sig := "Preimages(<alist> A, <any> val [, optargs])", 5615 sog := " -> <any> key", 5616 docsrc := "init-methods.g", 5617 sinflat := [ alist, any ], 5618 souflat := [ any ], 5619 soghash := "c5fe02", 5620 sig4hash := "Preimages(alist,any)" ), 5621 rec( 5622 kind := "FUNCTION", 5623 name := "AddAssoc", 5624 sin := [ [ alist, "A" ], [ any, "key" ], [ any, "val" ] ], 5625 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 5626 Default := FAILURE ) ], [ any, "Success", "Determines what to return in case of success.", rec( 5627 Default := SUCCESS ) ] ], 5628 sou := [ [ alist ] ], 5629 short := "Associate `key' with `val' in alist `A' if `key' was not already present and return the alist derived from this association or FAILURE in case `key' already had an association in `A'.\nNote: This does not affect `A'.", 5630 ex := [ "A:=Alist();\nAddAssoc(A,1,\"foo\");" ], 5631 see := [ "8b4255" ], 5632 hash := "dcca85", 5633 sig := "AddAssoc(<alist> A, <any> key, <any> val [, optargs])", 5634 sog := " -> <alist>", 5635 docsrc := "init-methods.g", 5636 sinflat := [ alist, any, any ], 5637 souflat := [ alist ], 5638 soghash := "4405bf", 5639 sig4hash := "AddAssoc(alist,any,any)" ), 5640 rec( 5641 kind := "FUNCTION", 5642 name := "Add", 5643 sin := [ [ alist, "A" ], [ any, "key" ], [ any, "val" ] ], 5644 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 5645 Default := FAILURE ) ], [ any, "Success", "Determines what to return in case of success.", rec( 5646 Default := SUCCESS ) ] ], 5647 sou := [ [ alist ] ], 5648 short := "Associate `key' with `val' in alist `A' if `key' was not already present and return the alist derived from this association or FAILURE in case `key' already had an association in `A'.\nNote: This does not affect `A'.", 5649 ex := [ "A:=Alist();\nAdd(A,1,\"foo\");" ], 5650 see := [ "a0add0" ], 5651 hash := "a0add0", 5652 sig := "Add(<alist> A, <any> key, <any> val [, optargs])", 5653 sog := " -> <alist>", 5654 docsrc := "init-methods.g", 5655 sinflat := [ alist, any, any ], 5656 souflat := [ alist ], 5657 soghash := "4405bf", 5658 sig4hash := "Add(alist,any,any)" ), 5659 rec( 5660 kind := "FUNCTION", 5661 name := "AddAssoc_", 5662 sin := [ [ alist, "A" ], [ any, "key" ], [ any, "val" ] ], 5663 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 5664 Default := FAILURE ) ], [ any, "Success", "Determines what to return in case of success.", rec( 5665 Default := SUCCESS ) ] ], 5666 sou := [ ], 5667 short := "Associate `key' with `val' in alist `A' if `key' was not already present and return FAILURE on failure.\nNote: `A' is modified by side-effect.", 5668 ex := [ "A:=Alist();\nAddAssoc_(A,1,\"foo\"); A;" ], 5669 see := [ "dcca85" ], 5670 hash := "8b4255", 5671 sig := "AddAssoc_(<alist> A, <any> key, <any> val [, optargs])", 5672 sog := "", 5673 docsrc := "init-methods.g", 5674 sinflat := [ alist, any, any ], 5675 souflat := [ ], 5676 soghash := "da39a3", 5677 sig4hash := "AddAssoc_(alist,any,any)" ), 5678 rec( 5679 kind := "FUNCTION", 5680 name := "Add_", 5681 sin := [ [ alist, "A" ], [ any, "key" ], [ any, "val" ] ], 5682 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 5683 Default := FAILURE ) ], [ any, "Success", "Determines what to return in case of success.", rec( 5684 Default := SUCCESS ) ] ], 5685 sou := [ ], 5686 short := "Associate `key' with `val' in alist `A' if `key' was not already present and return FAILURE on failure.\nNote: `A' is modified by side-effect.", 5687 ex := [ "A:=Alist();\nAdd_(A,1,\"foo\"); A;" ], 5688 see := [ "a0add0" ], 5689 hash := "b464a5", 5690 sig := "Add_(<alist> A, <any> key, <any> val [, optargs])", 5691 sog := "", 5692 docsrc := "init-methods.g", 5693 sinflat := [ alist, any, any ], 5694 souflat := [ ], 5695 soghash := "da39a3", 5696 sig4hash := "Add_(alist,any,any)" ), 5697 rec( 5698 kind := "FUNCTION", 5699 name := "AddAssoc", 5700 sin := [ [ alist, "A" ], [ list, "keyval" ] ], 5701 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 5702 Default := FAILURE ) ], [ any, "Success", "Determines what to return in case of success.", rec( 5703 Default := SUCCESS ) ] ], 5704 sou := [ [ alist ] ], 5705 short := "Associate `key' (taken as first element of `keyval') with `val' (taken as the rest of `keyval') in alist `A' if `key' was not already present and return the alist derived from this association or FAILURE in case `key' already had an association in `A'.\nNote: This does not affect `A'.", 5706 ex := [ "A:=Alist();\nAddAssoc(A,[2,\"bar\",\"and_baz\"]);" ], 5707 see := [ "3109b6" ], 5708 hash := "0c44c7", 5709 sig := "AddAssoc(<alist> A, <list> keyval [, optargs])", 5710 sog := " -> <alist>", 5711 docsrc := "init-methods.g", 5712 sinflat := [ alist, list ], 5713 souflat := [ alist ], 5714 soghash := "4405bf", 5715 sig4hash := "AddAssoc(alist,list)" ), 5716 rec( 5717 kind := "FUNCTION", 5718 name := "AddAssoc_", 5719 sin := [ [ alist, "A" ], [ list, "keyval" ] ], 5720 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 5721 Default := FAILURE ) ], [ any, "Success", "Determines what to return in case of success.", rec( 5722 Default := SUCCESS ) ] ], 5723 sou := [ ], 5724 short := "Associate `key' (taken as first element of `keyval') with `val' (taken as the rest of `keyval') in alist `A' if `key' was not already present and return FAILURE in case of failure.\nNote: `A' is modified by side-effect.", 5725 ex := [ "A:=Alist();\nAddAssoc_(A,[2,\"bar\",\"and_baz\"]); A;" ], 5726 see := [ "0c44c7" ], 5727 hash := "3109b6", 5728 sig := "AddAssoc_(<alist> A, <list> keyval [, optargs])", 5729 sog := "", 5730 docsrc := "init-methods.g", 5731 sinflat := [ alist, list ], 5732 souflat := [ ], 5733 soghash := "da39a3", 5734 sig4hash := "AddAssoc_(alist,list)" ), 5735 rec( 5736 kind := "FUNCTION", 5737 name := "PutAssoc", 5738 sin := [ [ alist, "A" ], [ any, "key" ], [ any, "val" ] ], 5739 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 5740 Default := FAILURE ) ], [ any, "Success", "Determines what to return in case of success.", rec( 5741 Default := SUCCESS ) ] ], 5742 sou := [ [ alist ] ], 5743 short := "Associate `key' with `val' in alist `A' and return the alist derived from this association.\nNote: This does not affect `A'.", 5744 ex := [ "A:=Alist();\nPutAssoc(A,1,\"foo\");" ], 5745 see := [ "ebcb64" ], 5746 hash := "79a28e", 5747 sig := "PutAssoc(<alist> A, <any> key, <any> val [, optargs])", 5748 sog := " -> <alist>", 5749 docsrc := "init-methods.g", 5750 sinflat := [ alist, any, any ], 5751 souflat := [ alist ], 5752 soghash := "4405bf", 5753 sig4hash := "PutAssoc(alist,any,any)" ), 5754 rec( 5755 kind := "FUNCTION", 5756 name := "Put", 5757 sin := [ [ alist, "A" ], [ any, "key" ], [ any, "val" ] ], 5758 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 5759 Default := FAILURE ) ], [ any, "Success", "Determines what to return in case of success.", rec( 5760 Default := SUCCESS ) ] ], 5761 sou := [ [ alist ] ], 5762 short := "Associate `key' with `val' in alist `A' and return the alist derived from this association.\nNote: This does not affect `A'.", 5763 ex := [ "A:=Alist();\nPut(A,1,\"foo\");" ], 5764 see := [ "4a2939" ], 5765 hash := "2ad5c7", 5766 sig := "Put(<alist> A, <any> key, <any> val [, optargs])", 5767 sog := " -> <alist>", 5768 docsrc := "init-methods.g", 5769 sinflat := [ alist, any, any ], 5770 souflat := [ alist ], 5771 soghash := "4405bf", 5772 sig4hash := "Put(alist,any,any)" ), 5773 rec( 5774 kind := "FUNCTION", 5775 name := "PutAssoc_", 5776 sin := [ [ alist, "A" ], [ any, "key" ], [ any, "val" ] ], 5777 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 5778 Default := FAILURE ) ], [ any, "Success", "Determines what to return in case of success.", rec( 5779 Default := SUCCESS ) ] ], 5780 sou := [ ], 5781 short := "Associate `key' with `val' in alist `A' and return FAILURE on failure.\nNote: `A' is modified by side-effect.", 5782 ex := [ "A:=Alist();\nPutAssoc_(A,1,\"foo\"); A;" ], 5783 see := [ "79a28e" ], 5784 hash := "ebcb64", 5785 sig := "PutAssoc_(<alist> A, <any> key, <any> val [, optargs])", 5786 sog := "", 5787 docsrc := "init-methods.g", 5788 sinflat := [ alist, any, any ], 5789 souflat := [ ], 5790 soghash := "da39a3", 5791 sig4hash := "PutAssoc_(alist,any,any)" ), 5792 rec( 5793 kind := "FUNCTION", 5794 name := "Put_", 5795 sin := [ [ alist, "A" ], [ any, "key" ], [ any, "val" ] ], 5796 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 5797 Default := FAILURE ) ], [ any, "Success", "Determines what to return in case of success.", rec( 5798 Default := SUCCESS ) ] ], 5799 sou := [ ], 5800 short := "Associate `key' with `val' in alist `A' and return FAILURE on failure.\nNote: `A' is modified by side-effect.", 5801 ex := [ "A:=Alist();\nPut_(A,1,\"foo\"); A;" ], 5802 see := [ "2ad5c7" ], 5803 hash := "4a2939", 5804 sig := "Put_(<alist> A, <any> key, <any> val [, optargs])", 5805 sog := "", 5806 docsrc := "init-methods.g", 5807 sinflat := [ alist, any, any ], 5808 souflat := [ ], 5809 soghash := "da39a3", 5810 sig4hash := "Put_(alist,any,any)" ), 5811 rec( 5812 kind := "FUNCTION", 5813 name := "PutAssoc", 5814 sin := [ [ alist, "A" ], [ list, "keyval" ] ], 5815 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 5816 Default := FAILURE ) ], [ any, "Success", "Determines what to return in case of success.", rec( 5817 Default := SUCCESS ) ] ], 5818 sou := [ [ alist ] ], 5819 short := "Associate `key' (taken as first element of `keyval') with `val' (taken as second element of `keyval') in alist `A' and return the alist derived from this association.\nNote: This does not affect `A'.", 5820 ex := [ "A:=Alist();\nPutAssoc_(A,[2,\"bar\"]);" ], 5821 see := [ "5ec41d" ], 5822 hash := "5ec41d", 5823 sig := "PutAssoc(<alist> A, <list> keyval [, optargs])", 5824 sog := " -> <alist>", 5825 docsrc := "init-methods.g", 5826 sinflat := [ alist, list ], 5827 souflat := [ alist ], 5828 soghash := "4405bf", 5829 sig4hash := "PutAssoc(alist,list)" ), 5830 rec( 5831 kind := "FUNCTION", 5832 name := "PutAssoc_", 5833 sin := [ [ alist, "A" ], [ list, "keyval" ] ], 5834 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 5835 Default := FAILURE ) ], [ any, "Success", "Determines what to return in case of success.", rec( 5836 Default := SUCCESS ) ] ], 5837 sou := [ ], 5838 short := "Associate `key' (taken as first element of `keyval') with `val' (taken as second element of `keyval') in alist `A' and return FAILURE on failure.\nNote: `A' is modified by side-effect.", 5839 ex := [ "A:=Alist();\nPutAssoc_(A,[2,\"bar\"]); A;" ], 5840 see := [ "5ec41d" ], 5841 hash := "90d41a", 5842 sig := "PutAssoc_(<alist> A, <list> keyval [, optargs])", 5843 sog := "", 5844 docsrc := "init-methods.g", 5845 sinflat := [ alist, list ], 5846 souflat := [ ], 5847 soghash := "da39a3", 5848 sig4hash := "PutAssoc_(alist,list)" ), 5849 rec( 5850 kind := "FUNCTION", 5851 name := "RemAssoc", 5852 sin := [ [ alist, "A" ], [ any, "key" ] ], 5853 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 5854 Default := FAILURE ) ], [ any, "Success", "Determines what to return in case of success.", rec( 5855 Default := SUCCESS ) ] ], 5856 sou := [ [ alist ] ], 5857 short := "Remove `key' and its association in alist `A' and return the alist derived from this removal.\nNote: This does not affect `A'.", 5858 ex := [ "A:=Alist([1,\"foo\"],[2,\"bar\"]);\nRemAssoc(A,1);" ], 5859 see := [ "88de41" ], 5860 hash := "1c4f4b", 5861 sig := "RemAssoc(<alist> A, <any> key [, optargs])", 5862 sog := " -> <alist>", 5863 docsrc := "init-methods.g", 5864 sinflat := [ alist, any ], 5865 souflat := [ alist ], 5866 soghash := "4405bf", 5867 sig4hash := "RemAssoc(alist,any)" ), 5868 rec( 5869 kind := "FUNCTION", 5870 name := "Remove", 5871 sin := [ [ alist, "A" ], [ any, "key" ] ], 5872 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 5873 Default := FAILURE ) ], [ any, "Success", "Determines what to return in case of success.", rec( 5874 Default := SUCCESS ) ] ], 5875 sou := [ [ alist ] ], 5876 short := "Remove `key' and its association in alist `A' and return the alist derived from this removal.\nNote: This does not affect `A'.", 5877 ex := [ "A:=Alist([1,\"foo\"],[2,\"bar\"]);\nRemAssoc(A,1);" ], 5878 see := [ "d07f27" ], 5879 hash := "1160f6", 5880 sig := "Remove(<alist> A, <any> key [, optargs])", 5881 sog := " -> <alist>", 5882 docsrc := "init-methods.g", 5883 sinflat := [ alist, any ], 5884 souflat := [ alist ], 5885 soghash := "4405bf", 5886 sig4hash := "Remove(alist,any)" ), 5887 rec( 5888 kind := "FUNCTION", 5889 name := "RemAssoc_", 5890 sin := [ [ alist, "A" ], [ any, "key" ] ], 5891 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 5892 Default := FAILURE ) ], [ any, "Success", "Determines what to return in case of success.", rec( 5893 Default := SUCCESS ) ] ], 5894 sou := [ ], 5895 short := "Remove `key' and its association in alist `A' and return FAILURE on failure or SUCCESS on success.\nNote: `A' is modified by side-effect.", 5896 ex := [ "A:=Alist([1,\"foo\"],[2,\"bar\"]);\nRemAssoc_(A,1); A;" ], 5897 see := [ "1c4f4b" ], 5898 hash := "88de41", 5899 sig := "RemAssoc_(<alist> A, <any> key [, optargs])", 5900 sog := "", 5901 docsrc := "init-methods.g", 5902 sinflat := [ alist, any ], 5903 souflat := [ ], 5904 soghash := "da39a3", 5905 sig4hash := "RemAssoc_(alist,any)" ), 5906 rec( 5907 kind := "FUNCTION", 5908 name := "Remove_", 5909 sin := [ [ alist, "A" ], [ any, "key" ] ], 5910 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 5911 Default := FAILURE ) ], [ any, "Success", "Determines what to return in case of success.", rec( 5912 Default := SUCCESS ) ] ], 5913 sou := [ ], 5914 short := "Remove `key' and its association in alist `A' and return FAILURE on failure or SUCCESS on success.\nNote: `A' is modified by side-effect.", 5915 ex := [ "A:=Alist([1,\"foo\"],[2,\"bar\"]);\nRemAssoc_(A,1); A;" ], 5916 see := [ "1160f6" ], 5917 hash := "d07f27", 5918 sig := "Remove_(<alist> A, <any> key [, optargs])", 5919 sog := "", 5920 docsrc := "init-methods.g", 5921 sinflat := [ alist, any ], 5922 souflat := [ ], 5923 soghash := "da39a3", 5924 sig4hash := "Remove_(alist,any)" ), 5925 rec( 5926 kind := "FUNCTION", 5927 name := "Alist", 5928 sin := [ [ ] ], 5929 sou := [ [ alist, "A" ] ], 5930 short := "Create and return an empty association list `A'.", 5931 ex := [ "A:=Alist();" ], 5932 see := [ "afd6a2" ], 5933 hash := "849310", 5934 sig := "Alist()", 5935 sog := " -> <alist> A", 5936 docsrc := "init-methods.g", 5937 sinflat := [ ], 5938 souflat := [ alist ], 5939 soghash := "4405bf", 5940 sig4hash := "Alist()" ), 5941 rec( 5942 kind := "FUNCTION", 5943 name := "Alist", 5944 sin := [ [ nof(list) ] ], 5945 sou := [ [ alist, "A" ] ], 5946 short := "Create and return an association list `A' along with some content.\nThe arguments are two-cell lists. The alist is built by taking the first element of a list as key and the second element as associated value.", 5947 ex := [ "A:=Alist([1,\"foo\"],[2,\"bar\"]);" ], 5948 see := [ "849310" ], 5949 hash := "afd6a2", 5950 sig := "Alist(<nof(list)>)", 5951 sog := " -> <alist> A", 5952 docsrc := "init-methods.g", 5953 sinflat := [ nof(list) ], 5954 souflat := [ alist ], 5955 soghash := "4405bf", 5956 sig4hash := "Alist(nof(list))" ), 5957 rec( 5958 kind := "FUNCTION", 5959 name := "Function", 5960 sin := [ [ alist, "A" ] ], 5961 sou := [ [ func ] ], 5962 short := "Create a function (not a map!) whose `domain' is the keylist of `A' and whose `co-domain' is the valuelist of `A' and return this function.", 5963 ex := [ "A:=Alist([1,\"foo\"],[2,\"bar\"],[3,\"foobar\"]);\nAF:=Function(A);\nAF(1); AF(2); AF(3); AF(4);" ], 5964 see := [ ], 5965 hash := "367094", 5966 sig := "Function(<alist> A)", 5967 sog := " -> <func>", 5968 docsrc := "init-methods.g", 5969 sinflat := [ alist ], 5970 souflat := [ func ], 5971 soghash := "99fdb3", 5972 sig4hash := "Function(alist)" ), 5973 rec( 5974 kind := "FUNCTION", 5975 name := "MapAlist", 5976 sin := [ [ func, "f" ], [ alist, "A" ] ], 5977 sou := [ [ ] ], 5978 short := "Apply `f' to all entries in alist `A' and return SUCCESS.\n`f' is expected to take two arguments, the first one is bound to the key of an alist element, the second one is bound to its association.", 5979 ex := [ "A:=Alist([1,\"foo\"],[2,\"bar\"],[3,\"foobar\"]);\nf:=function(key,val)\nPrint(\"key is \",key,\", val is \",val,\"\\n\");\nend;\nMapAlist(f,A);" ], 5980 see := [ "b49bbf" ], 5981 hash := "c34314", 5982 sig := "MapAlist(<func> f, <alist> A)", 5983 sog := "", 5984 docsrc := "init-methods.g", 5985 sinflat := [ func, alist ], 5986 souflat := [ ], 5987 soghash := "da39a3", 5988 sig4hash := "MapAlist(func,alist)" ), 5989 rec( 5990 kind := "FUNCTION", 5991 name := "MapAlist", 5992 sin := [ [ alist, "A" ], [ func, "f" ] ], 5993 sou := [ [ ] ], 5994 short := "Apply `f' to all entries in alist `A' and return SUCCESS.\n`f' is expected to take two arguments, the first one is bound to the key of an alist element, the second one is bound to its association.", 5995 ex := [ "A:=Alist([1,\"foo\"],[2,\"bar\"],[3,\"foobar\"]);\nf:=function(key,val)\nPrint(\"key is \",key,\", val is \",val,\"\\n\");\nend;\nMapAlist(A,f);" ], 5996 see := [ "b49bbf" ], 5997 hash := "1b771b", 5998 sig := "MapAlist(<alist> A, <func> f)", 5999 sog := "", 6000 docsrc := "init-methods.g", 6001 sinflat := [ alist, func ], 6002 souflat := [ ], 6003 soghash := "da39a3", 6004 sig4hash := "MapAlist(alist,func)" ), 6005 rec( 6006 kind := "FUNCTION", 6007 name := "PrintString", 6008 sin := [ [ nof(string), "S" ] ], 6009 opt := [ [ elt-ord^rat, "Start", "Offset to indicate how many columns have already been printed in the current line", rec( 6010 Default := "GetCurrentColumn()" ) ] ], 6011 sou := [ [ ] ], 6012 short := "Print a string with respect to the current term's columns and lines definition.", 6013 ex := [ ], 6014 see := [ ], 6015 hash := "3196a1", 6016 sig := "PrintString(<nof(string)> S [, optargs])", 6017 sog := "", 6018 docsrc := "init-methods.g", 6019 sinflat := [ nof(string) ], 6020 souflat := [ ], 6021 soghash := "da39a3", 6022 sig4hash := "PrintString(nof(string))" ), 6023 rec( 6024 kind := "FUNCTION", 6025 name := "DocGenHashByString", 6026 sin := [ [ string, "docsig" ] ], 6027 sou := [ [ string, "dochash" ] ], 6028 short := "Return the hash value a record with signature `docsig' would have if added to the global documentation dry.\nYou may want to use this when using the InstallDocumentation or MergeDocumentation macros in order to refer to other functions without looking up the hash value.", 6029 ex := [ "DocGenHashByString(\"DocGenHashByString(string)\");" ], 6030 see := [ "966a95" ], 6031 hash := "8cb8bb", 6032 sig := "DocGenHashByString(<string> docsig)", 6033 sog := " -> <string> dochash", 6034 docsrc := "init-methods.g", 6035 sinflat := [ string ], 6036 souflat := [ string ], 6037 soghash := "ecb252", 6038 sig4hash := "DocGenHashByString(string)" ), 6039 rec( 6040 kind := "FUNCTION", 6041 name := "DocGenHashByRecord", 6042 sin := [ [ record, "docrec" ] ], 6043 sou := [ [ string, "dochash" ] ], 6044 short := "Return the hash value a record `docrec' would have if added to the global documentation dry.\nYou may want to use this when using the InstallDocumentation or MergeDocumentation macros in order to refer to other functions without looking up the hash value.\nNote: In general there is no need to provide the whole record as argument, instead sufficient are the rec fields which are used to compute the hash sum. Currently these are `kind' and `name' and in some cases (OPERATION and FUNCTION) `sin' is also mandatory.", 6045 ex := [ "DocGenHashByRecord(rec(kind:=\"FUNCTION\",name:=\"DocGenHashByRecord\",sin:=[[record]]));" ], 6046 see := [ "8cb8bb" ], 6047 hash := "966a95", 6048 sig := "DocGenHashByRecord(<record> docrec)", 6049 sog := " -> <string> dochash", 6050 docsrc := "init-methods.g", 6051 sinflat := [ record ], 6052 souflat := [ string ], 6053 soghash := "ecb252", 6054 sig4hash := "DocGenHashByRecord(record)" ), 6055 rec( 6056 kind := "FUNCTION", 6057 name := "CheckDocumentation", 6058 sin := [ [ record, "r" ] ], 6059 sou := [ ], 6060 short := "Return true iff documentation in record 'r' tends to be correct.", 6061 ex := [ ], 6062 hash := "cefa10", 6063 sig := "CheckDocumentation(<record> r)", 6064 sog := "", 6065 docsrc := "init-methods.g", 6066 sinflat := [ record ], 6067 souflat := [ ], 6068 soghash := "da39a3", 6069 sig4hash := "CheckDocumentation(record)" ), 6070 rec( 6071 kind := "FUNCTION", 6072 name := "BlowUpDocumentation", 6073 sin := [ [ record, "r" ] ], 6074 sou := [ ], 6075 short := "Blow up documentation in record 'r' by adding useful fields.", 6076 ex := [ ], 6077 hash := "cf9331", 6078 sig := "BlowUpDocumentation(<record> r)", 6079 sog := "", 6080 docsrc := "init-methods.g", 6081 sinflat := [ record ], 6082 souflat := [ ], 6083 soghash := "da39a3", 6084 sig4hash := "BlowUpDocumentation(record)" ), 6085 rec( 6086 kind := "FUNCTION", 6087 name := "InstallDocumentation", 6088 sin := [ [ record, "r" ] ], 6089 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 6090 Default := FAILURE ) ], [ elt-alg^boo, "ForceAdd", "Default: FALSE, indicate you want to add or replace existing documentation." ] ], 6091 sou := [ [ elt-alg^boo, "success" ] ], 6092 short := "Add documentation given by `r' to global documentation hash table.\nThe documentation in `r' is blown up and checked. Then it is tried to be added with a dry operation (DryReplaceOrAdd) and thus overwrites existing documentation iff the hash value computed by `r' is already in the global dry, and is appended otherwise.", 6093 see := [ "cf9331", "cefa10" ], 6094 ex := [ ], 6095 hash := "c13e31", 6096 sig := "InstallDocumentation(<record> r [, optargs])", 6097 sog := " -> <elt-alg^boo> success", 6098 docsrc := "init-methods.g", 6099 sinflat := [ record ], 6100 souflat := [ elt-alg^boo ], 6101 soghash := "5e8dd4", 6102 sig4hash := "InstallDocumentation(record)" ), 6103 rec( 6104 kind := "FUNCTION", 6105 name := "MergeDocumentation", 6106 sin := [ [ record, "r" ] ], 6107 opt := [ [ any, "Fail", "Determines what to return in case of failure.", rec( 6108 Default := FAILURE ) ], [ any, "Success", "Default: TRUE, indicate what to return in case of success" ], [ any, "Add", "Default: FALSE, add `r' to documentation dry in either case" ] ], 6109 sou := [ ], 6110 short := "Merge documentation given (even partially) by `r' to global documentation hash table.\n", 6111 ex := [ ], 6112 hash := "a3cff8", 6113 sig := "MergeDocumentation(<record> r [, optargs])", 6114 sog := "", 6115 docsrc := "init-methods.g", 6116 sinflat := [ record ], 6117 souflat := [ ], 6118 soghash := "da39a3", 6119 sig4hash := "MergeDocumentation(record)" ), 6120 rec( 6121 kind := "FUNCTION", 6122 name := "DocHash", 6123 sin := [ [ string, "s" ] ], 6124 sou := [ [ string, "hash" ] ], 6125 short := "Return the hash value used to identify a function specified by 's'. The string 's' must be of the form \"functionname(typearg1,typearg2,...)\" or \"type\" or \"keyword\".", 6126 ex := [ "x_s := DocHash(\"GCD(elt-ord^rat,elt-ord^rat)\"););", "x_s := DocHash(\"record\");", "x_s := DocHash(\"operations\");" ], 6127 hash := "a283e8", 6128 sig := "DocHash(<string> s)", 6129 sog := " -> <string> hash", 6130 docsrc := "init-methods.g", 6131 sinflat := [ string ], 6132 souflat := [ string ], 6133 soghash := "ecb252", 6134 sig4hash := "DocHash(string)" ), 6135 rec( 6136 kind := "FUNCTION", 6137 name := "CheckArgs", 6138 sin := [ [ list, "arglist" ], [ list, "argnames" ], [ list, "defaults" ] ], 6139 sou := [ [ record ] ], 6140 short := "Traverse through `arglist' and bind arguments to argument names in `argnames'. If some arguments are not provided bind them to values from `defaults'. Return the resulting record.", 6141 see := [ "afca37", "52ee65" ], 6142 ex := [ ], 6143 hash := "196729", 6144 sig := "CheckArgs(<list> arglist, <list> argnames, <list> defaults)", 6145 sog := " -> <record>", 6146 docsrc := "init-methods.g", 6147 sinflat := [ list, list, list ], 6148 souflat := [ record ], 6149 soghash := "275a70", 6150 sig4hash := "CheckArgs(list,list,list)" ), 6151 rec( 6152 kind := "KEYWORD", 6153 name := "Optional Arguments", 6154 short := "Many KASH3 functions take optional arguments. These are passed to a function by passing a record as a last argument to the function. ", 6155 see := [ "52ee65", "afca37", "196729" ], 6156 ex := [ ], 6157 hash := "d691ad", 6158 sig := "Optional Arguments", 6159 sog := "", 6160 docsrc := "init-methods.g", 6161 soghash := "da39a3", 6162 sig4hash := "Optional Arguments" ), 6163 rec( 6164 kind := "FUNCTION", 6165 name := "HasOptarg", 6166 sin := [ [ list, "arglist" ] ], 6167 sou := [ [ elt-alg^boo ] ], 6168 short := "Return TRUE iff arglist's last argument is an optional argument record.", 6169 see := [ "52ee65", "196729" ], 6170 ex := [ ], 6171 hash := "afca37", 6172 sig := "HasOptarg(<list> arglist)", 6173 sog := " -> <elt-alg^boo>", 6174 docsrc := "init-methods.g", 6175 sinflat := [ list ], 6176 souflat := [ elt-alg^boo ], 6177 soghash := "5e8dd4", 6178 sig4hash := "HasOptarg(list)" ), 6179 rec( 6180 kind := "FUNCTION", 6181 name := "ExtractOptarg", 6182 sin := [ [ list, "arglist" ] ], 6183 sou := [ [ record ] ], 6184 short := "Return arglist's last argument if it is an optional argument, FAILURE otherwise otherwise.", 6185 see := [ "9df99d", "afca37", "196729" ], 6186 ex := [ ], 6187 hash := "52ee65", 6188 sig := "ExtractOptarg(<list> arglist)", 6189 sog := " -> <record>", 6190 docsrc := "init-methods.g", 6191 sinflat := [ list ], 6192 souflat := [ record ], 6193 soghash := "275a70", 6194 sig4hash := "ExtractOptarg(list)" ), 6195 rec( 6196 kind := "FUNCTION", 6197 name := "ExtractOptarg_", 6198 sin := [ [ list, "arglist" ] ], 6199 sou := [ [ record ] ], 6200 short := "Return and remove arglist's last argument if it is an optional argument, FAILURE otherwise.\n Note: This is the destructive version of ExtractOptarg.", 6201 see := [ "52ee65", "afca37", "196729" ], 6202 ex := [ ], 6203 hash := "9df99d", 6204 sig := "ExtractOptarg_(<list> arglist)", 6205 sog := " -> <record>", 6206 docsrc := "init-methods.g", 6207 sinflat := [ list ], 6208 souflat := [ record ], 6209 soghash := "275a70", 6210 sig4hash := "ExtractOptarg_(list)" ), 6211 rec( 6212 kind := "FUNCTION", 6213 name := "Optarg", 6214 sin := [ [ list, "arglist" ], [ list, "optarg_names" ], [ list, "defaults" ] ], 6215 sou := [ [ record ] ], 6216 short := "Process optional arguments. Extract optional arguments record from 'arglist'.Set missing entries (from 'optarg_names') to default values from 'defaults'.", 6217 see := [ "52ee65", "afca37", "196729" ], 6218 ex := [ ], 6219 hash := "7a1f45", 6220 sig := "Optarg(<list> arglist, <list> optarg_names, <list> defaults)", 6221 sog := " -> <record>", 6222 docsrc := "init-methods.g", 6223 sinflat := [ list, list, list ], 6224 souflat := [ record ], 6225 soghash := "275a70", 6226 sig4hash := "Optarg(list,list,list)" ), 6227 rec( 6228 kind := "FUNCTION", 6229 name := "Read", 6230 sin := [ [ string, "filename" ] ], 6231 sou := [ ], 6232 short := "Read a file 'filename' containing KASH commands.", 6233 long := "The file 'filename' must both existing and readable.KASH looks first in the given path, then in the current directory and finally in $LIBNAME../src.", 6234 see := [ "cc967a" ], 6235 ex := [ ], 6236 hash := "954a96", 6237 sig := "Read(<string> filename)", 6238 sog := "", 6239 docsrc := "init-methods.g", 6240 sinflat := [ string ], 6241 souflat := [ ], 6242 soghash := "da39a3", 6243 sig4hash := "Read(string)" ), 6244 rec( 6245 kind := "FUNCTION", 6246 name := "ReadLib", 6247 sin := [ [ string, "lib" ] ], 6248 sou := [ ], 6249 short := "Same as `Read', but here the file should be in the KASH lib directory and it must have the extension .g .", 6250 see := [ "954a96" ], 6251 ex := [ ], 6252 hash := "cc967a", 6253 sig := "ReadLib(<string> lib)", 6254 sog := "", 6255 docsrc := "init-methods.g", 6256 sinflat := [ string ], 6257 souflat := [ ], 6258 soghash := "da39a3", 6259 sig4hash := "ReadLib(string)" ), 6260 rec( 6261 kind := "KEYWORD", 6262 name := "arg", 6263 syntax := "function(arg) ... end;", 6264 short := "Collapse arbitrary many arguments to a list of arguments and pass it to arg.", 6265 long := "When used as (only) argument in a function's declaration this so defined function accepts any number of arguments. Arguments passed to the function at call-time are gathered into a list whose value becomes `arg' in the function body.\nNote: This will not work on abbreviated function declarations, like `arg->arg[1];'.\nNote: Also, the function keyword will not collect rests of arguments into the arg argument, that is `function(some, arg) return TRUE; end;' is a valid function which takes exactly two arguments, `arg' has no no special meaning here (yet).", 6266 ex := [ "x_f := function(arg) return arg; end;\nx_f(1,2.3,\"hi mom\",[12,3]);\nx_f(6);" ], 6267 hash := "04d6e2", 6268 sig := "arg", 6269 sog := "", 6270 docsrc := "init-methods.g", 6271 soghash := "da39a3", 6272 sig4hash := "arg" ), 6273 rec( 6274 kind := "KEYWORD", 6275 docsrc := "kantconst.c", 6276 name := "Constants", 6277 short := "For convenience some constants are predefined in KASH. These constants cannot be overwritten. Some constants, namely 'E' and 'PI'. change their value with the global precision 'Precision()'. By convention constants are written in capitals.\n\nEnter '?*.|CONSTANT' to see a list of all constants.", 6278 ex := [ ], 6279 hash := "0f386d", 6280 sig := "Constants", 6281 sog := "", 6282 soghash := "da39a3", 6283 sig4hash := "Constants" ), 6284 rec( 6285 kind := "FUNCTION", 6286 name := "InstallConstants", 6287 sin := [ ], 6288 sou := [ ], 6289 short := "Reinitialize the constants\nC := ComplexField();\nE := Exp(1);\nI := C.1;\nPI:= Pi(R);\nQ := RationalField();\nR := RealField();\nX := ZX.1;\nZ := Integers();\nZX:= PolynomialRing(Z);", 6290 see := [ "0f386d", "4a6ac6" ], 6291 hash := "8a7886", 6292 ex := [ ], 6293 sig := "InstallConstants()", 6294 sog := "", 6295 docsrc := "constants.g", 6296 sinflat := [ ], 6297 souflat := [ ], 6298 soghash := "da39a3", 6299 sig4hash := "InstallConstants()" ), 6300 rec( 6301 kind := "CONSTANT", 6302 docsrc := "kantconst.c", 6303 name := "Q", 6304 sou := [ [ fld^rat ] ], 6305 short := "The field of rational numbers.", 6306 ex := [ ], 6307 hash := "c3156e", 6308 sig := "Q", 6309 sog := " -> <fld^rat>", 6310 souflat := [ fld^rat ], 6311 soghash := "d77aa4", 6312 sig4hash := "Q" ), 6313 rec( 6314 kind := "CONSTANT", 6315 docsrc := "kantconst.c", 6316 name := "Z", 6317 sou := [ [ ord^rat ] ], 6318 short := "The ring of rational integers.", 6319 ex := [ ], 6320 hash := "909f99", 6321 sig := "Z", 6322 sog := " -> <ord^rat>", 6323 souflat := [ ord^rat ], 6324 soghash := "ef1cfa", 6325 sig4hash := "Z" ), 6326 rec( 6327 kind := "CONSTANT", 6328 docsrc := "kantconst.c", 6329 name := "ZX", 6330 sou := [ [ alg^pol/ord^rat ] ], 6331 short := "The ring of polynomials in X over the ring of rational integers Z.", 6332 ex := [ ], 6333 hash := "0f462d", 6334 sig := "ZX", 6335 sog := " -> <alg^pol/ord^rat>", 6336 souflat := [ alg^pol/ord^rat ], 6337 soghash := "6fe1a1", 6338 sig4hash := "ZX" ), 6339 rec( 6340 kind := "CONSTANT", 6341 docsrc := "kantconst.c", 6342 name := "X", 6343 sou := [ [ func ] ], 6344 short := "The variable of the ring of polynomials ZX over the ring of rational integers Z.", 6345 ex := [ ], 6346 hash := "c032ad", 6347 sig := "X", 6348 sog := " -> <func>", 6349 souflat := [ func ], 6350 soghash := "99fdb3", 6351 sig4hash := "X" ), 6352 rec( 6353 kind := "CONSTANT", 6354 docsrc := "kantconst.c", 6355 name := "R", 6356 sou := [ [ fld^rea ] ], 6357 short := "The global real field.", 6358 ex := [ ], 6359 hash := "065765", 6360 sig := "R", 6361 sog := " -> <fld^rea>", 6362 souflat := [ fld^rea ], 6363 soghash := "348de3", 6364 sig4hash := "R" ), 6365 rec( 6366 kind := "CONSTANT", 6367 docsrc := "kantconst.c", 6368 name := "C", 6369 sou := [ [ fld^com ] ], 6370 short := "The global complex field.", 6371 ex := [ ], 6372 hash := "32096c", 6373 sig := "C", 6374 sog := " -> <fld^com>", 6375 souflat := [ fld^com ], 6376 soghash := "c8d5b4", 6377 sig4hash := "C" ), 6378 rec( 6379 kind := "CONSTANT", 6380 docsrc := "kantconst.c", 6381 name := "I", 6382 sou := [ [ elt-fld^com ] ], 6383 short := "A complex number I with I^2=-1.", 6384 ex := [ ], 6385 hash := "ca73ab", 6386 sig := "I", 6387 sog := " -> <elt-fld^com>", 6388 souflat := [ elt-fld^com ], 6389 soghash := "0d772f", 6390 sig4hash := "I" ), 6391 rec( 6392 kind := "CONSTANT", 6393 docsrc := "kantconst.c", 6394 name := "E", 6395 sou := [ [ elt-fld^rea ] ], 6396 short := "Eulers constant to the global precision 'Precision()'.", 6397 ex := [ ], 6398 hash := "e0184a", 6399 sig := "E", 6400 sog := " -> <elt-fld^rea>", 6401 souflat := [ elt-fld^rea ], 6402 soghash := "7f2490", 6403 sig4hash := "E" ), 6404 rec( 6405 kind := "FUNCTION", 6406 docsrc := "kantconst.c", 6407 name := "Precision", 6408 sin := [ ], 6409 sou := [ [ elt-ord^rat, "prec" ] ], 6410 short := "Returns the global precision for real and complex computations in the shell.", 6411 ex := [ ], 6412 hash := "f3f65b", 6413 sig := "Precision()", 6414 sog := " -> <elt-ord^rat> prec", 6415 sinflat := [ ], 6416 souflat := [ elt-ord^rat ], 6417 soghash := "898213", 6418 sig4hash := "Precision()" ), 6419 rec( 6420 kind := "FUNCTION", 6421 docsrc := "kantconst.c", 6422 name := "Precision", 6423 sin := [ [ elt-ord^rat, "n" ] ], 6424 sou := [ [ elt-ord^rat, "prec" ] ], 6425 short := "Sets the global precision for real and complex computations in the shell to 'n' and returns the new global precision. This is the smallest positive integer which is divisible by 4 and greater than or equal to Maximum(n,12). The default precision is 20.", 6426 ex := [ ], 6427 hash := "4a6ac6", 6428 sig := "Precision(<elt-ord^rat> n)", 6429 sog := " -> <elt-ord^rat> prec", 6430 sinflat := [ elt-ord^rat ], 6431 souflat := [ elt-ord^rat ], 6432 soghash := "898213", 6433 sig4hash := "Precision(elt-ord^rat)" ), 6434 rec( 6435 name := "Comment", 6436 kind := "KEYWORD", 6437 short := "Comments in KASH3 start with '#'. All text on a line after '#' is ignored by KASH3.", 6438 ex := [ "# this is a comment" ], 6439 hash := "153d7a", 6440 sig := "Comment", 6441 sog := "", 6442 docsrc := "kash.g", 6443 soghash := "da39a3", 6444 sig4hash := "Comment" ), 6445 rec( 6446 kind := "FUNCTION", 6447 name := "GAP", 6448 sin := [ ], 6449 sou := [ ], 6450 short := "Initializes the GAP3 (groups algorithms and programing) emulation mode. Not all functions are available. KASH3 provides NO DOCUMENTATION. Please refer to the GAP3 documentation for a description of the functions.", 6451 ex := [ ], 6452 hash := "1b9919", 6453 sig := "GAP()", 6454 sog := "", 6455 docsrc := "kash.g", 6456 sinflat := [ ], 6457 souflat := [ ], 6458 soghash := "da39a3", 6459 sig4hash := "GAP()" ), 6460 rec( 6461 kind := "FUNCTION", 6462 name := "IsOdd", 6463 sin := [ [ elt-ord^rat, "b" ] ], 6464 sou := [ [ elt-alg^boo ] ], 6465 short := "Return 'TRUE' if 'b' is odd", 6466 ex := [ "IsOdd(5)" ], 6467 see := [ "83043c" ], 6468 hash := "14048e", 6469 sig := "IsOdd(<elt-ord^rat> b)", 6470 sog := " -> <elt-alg^boo>", 6471 docsrc := "kash.g", 6472 sinflat := [ elt-ord^rat ], 6473 souflat := [ elt-alg^boo ], 6474 soghash := "5e8dd4", 6475 sig4hash := "IsOdd(elt-ord^rat)" ), 6476 rec( 6477 kind := "FUNCTION", 6478 name := "BindNames_", 6479 sin := [ [ str, "S" ], [ list, "L" ] ], 6480 short := "Define global variables whose names are given in 'L' which contain the generators of 'S'", 6481 ex := [ "CY := PolynomialAlgebra(C); BindNames_(CY,[\"Y\"]);" ], 6482 see := [ "12d7db", "340989" ], 6483 sou := [ [ any ] ], 6484 hash := "27e1eb", 6485 sig := "BindNames_(<str> S, <list> L)", 6486 sog := " -> <any>", 6487 docsrc := "kash.g", 6488 sinflat := [ str, list ], 6489 souflat := [ any ], 6490 soghash := "c5fe02", 6491 sig4hash := "BindNames_(str,list)" ), 6492 rec( 6493 kind := "FUNCTION", 6494 name := "BindName_", 6495 sin := [ [ str, "S" ], [ string, "name" ] ], 6496 short := "Define a global variables whose name is given by 'name' which contains the (first) generator of 'S'", 6497 ex := [ "CY := PolynomialAlgebra(C); BindName_(CY,\"Y\");" ], 6498 see := [ "27e1eb", "340989" ], 6499 sou := [ [ any ] ], 6500 hash := "12d7db", 6501 sig := "BindName_(<str> S, <string> name)", 6502 sog := " -> <any>", 6503 docsrc := "kash.g", 6504 sinflat := [ str, string ], 6505 souflat := [ any ], 6506 soghash := "c5fe02", 6507 sig4hash := "BindName_(str,string)" ), 6508 rec( 6509 kind := "FUNCTION", 6510 name := "SetVerbose", 6511 sin := [ [ string, "S" ], [ elt-ord^rat, "n" ] ], 6512 short := "Set the verbose level of 'S' to 'n'.", 6513 see := [ "adf18d", "c70f5c" ], 6514 ex := [ ], 6515 hash := "5974c9", 6516 sig := "SetVerbose(<string> S, <elt-ord^rat> n)", 6517 sog := "", 6518 docsrc := "kash.g", 6519 sinflat := [ string, elt-ord^rat ], 6520 soghash := "da39a3", 6521 sig4hash := "SetVerbose(string,elt-ord^rat)" ), 6522 rec( 6523 kind := "FUNCTION", 6524 name := "GetVerbose", 6525 sin := [ [ string, "S" ] ], 6526 sou := [ [ elt-ord^rat, "n" ] ], 6527 short := "Get the verbose level of 'S'.", 6528 see := [ "adf18d", "c70f5c" ], 6529 ex := [ ], 6530 hash := "adf18d", 6531 sig := "GetVerbose(<string> S)", 6532 sog := " -> <elt-ord^rat> n", 6533 docsrc := "kash.g", 6534 sinflat := [ string ], 6535 souflat := [ elt-ord^rat ], 6536 soghash := "898213", 6537 sig4hash := "GetVerbose(string)" ), 6538 rec( 6539 kind := "FUNCTION", 6540 name := "PrintVerbose", 6541 sin := [ [ string, "S" ], [ elt-ord^rat, "n" ], [ nof(any) ] ], 6542 short := "If the verbose level of 'S' is greater 'n' then print information.", 6543 see := [ "adf18d", "5974c9" ], 6544 ex := [ ], 6545 hash := "c70f5c", 6546 sig := "PrintVerbose(<string> S, <elt-ord^rat> n, <nof(any)>)", 6547 sog := "", 6548 docsrc := "kash.g", 6549 sinflat := [ string, elt-ord^rat, nof(any) ], 6550 soghash := "da39a3", 6551 sig4hash := "PrintVerbose(string,elt-ord^rat,nof(any))" ), 6552 rec( 6553 kind := "FUNCTION", 6554 name := "Matrix", 6555 sin := [ [ list, "L" ] ], 6556 sou := [ [ elt-alg^mat ] ], 6557 short := "Construct a matrix from the list of lists 'L'. All list in 'L' must have the same length. All elements in these lists must be coercible into a common coefficient ring.", 6558 hash := "f49c4a", 6559 ex := [ ], 6560 sig := "Matrix(<list> L)", 6561 sog := " -> <elt-alg^mat>", 6562 docsrc := "matrix.g", 6563 sinflat := [ list ], 6564 souflat := [ elt-alg^mat ], 6565 soghash := "8dbb64", 6566 sig4hash := "Matrix(list)" ), 6567 rec( 6568 kind := "FUNCTION", 6569 name := "Matrix", 6570 sin := [ [ seq(seq()), "L" ] ], 6571 sou := [ [ elt-alg^mat ] ], 6572 short := "Construct a matrix from the sequence of sequeces 'L'. All sequences in 'L' must have the same length. All elements in these lists must be coercible into a common coefficient ring.", 6573 hash := "55939c", 6574 ex := [ ], 6575 sig := "Matrix(<seq(seq())> L)", 6576 sog := " -> <elt-alg^mat>", 6577 docsrc := "matrix.g", 6578 sinflat := [ seq(seq()) ], 6579 souflat := [ elt-alg^mat ], 6580 soghash := "8dbb64", 6581 sig4hash := "Matrix(seq(seq()))" ), 6582 rec( 6583 name := "Maps", 6584 kind := "KEYWORD", 6585 short := "In KASH3 maps are functions with additional information, namely domain, codomain, and in some cases a map for computing preimages.", 6586 see := [ "37745e", "dde0bc", "ed8fcc", "54c9fa", "881f91", "3c8afe", "90f13e", "fa446b", "d86b75" ], 6587 ex := [ ], 6588 hash := "80071c", 6589 sig := "Maps", 6590 sog := "", 6591 docsrc := "map.g", 6592 soghash := "da39a3", 6593 sig4hash := "Maps" ), 6594 rec( 6595 name := "Composition", 6596 kind := "FUNCTION", 6597 sin := [ [ map(), "phi" ], [ map(), "psi" ] ], 6598 sou := [ [ map() ] ], 6599 short := "The composition 'phi*psi' of the maps 'phi' and 'psi'.", 6600 ex := [ "x_add_with_inv := function(a)\n# this function returns a map that adds 'a'\nlocal phi, psi;\n phi := function(b) return b+a; end;\n psi := function(c) return c-a; end;\n return Map(Z,Z,phi,psi);\nend;\n\nx_f := x_add_with_inv(5);\nx_f(2);\nx_Z7 := Quotient(Z,7);\nx_g := Composition(x_Z7.ext1,x_f);\nx_g(1);\nPreimage(Coerce(x_Z7,8),x_g);\n" ], 6601 see := [ "37745e", "dde0bc", "ed8fcc", "54c9fa", "881f91", "3c8afe", "90f13e" ], 6602 hash := "d86b75", 6603 sig := "Composition(<map()> phi, <map()> psi)", 6604 sog := " -> <map()>", 6605 docsrc := "map.g", 6606 sinflat := [ map(), map() ], 6607 souflat := [ map() ], 6608 soghash := "63931a", 6609 sig4hash := "Composition(map(),map())" ), 6610 rec( 6611 name := "Map", 6612 kind := "FUNCTION", 6613 sin := [ [ any, "domain" ], [ any, "codomain" ], [ func, "phi" ], [ func, "psi" ] ], 6614 sou := [ [ map() ] ], 6615 short := "Create a map with domain 'domain' and codomain 'codomain' from the function 'phi'. The function 'psi' is used for the computation of preimages.", 6616 ex := [ "x_add_with_inv := function(a)\n# this function returns a map that adds 'a'\nlocal phi, psi;\n phi := function(b) return b+a; end;\n psi := function(c) return c-a; end;\n return Map(Z,Z,phi,psi);\nend;\n\nx_f := x_add_with_inv(5);\nx_f(2);\nImage(3,x_f);\nPreimage(8,x_f);\nPreimage(x_f(900),x_f);" ], 6617 see := [ "37745e", "80071c", "dde0bc", "54c9fa", "881f91", "3c8afe", "90f13e", "d86b75" ], 6618 hash := "ed8fcc", 6619 sig := "Map(<any> domain, <any> codomain, <func> phi, <func> psi)", 6620 sog := " -> <map()>", 6621 docsrc := "map.g", 6622 sinflat := [ any, any, func, func ], 6623 souflat := [ map() ], 6624 soghash := "63931a", 6625 sig4hash := "Map(any,any,func,func)" ), 6626 rec( 6627 name := "Map", 6628 kind := "FUNCTION", 6629 sin := [ [ any, "domain" ], [ any, "codomain" ], [ func, "phi" ] ], 6630 sou := [ [ map() ] ], 6631 short := "Create a map with domain 'domain' and codomain 'codomain' from the function 'phi'. ", 6632 ex := [ "x_mult := function(a)\n# this function returns a map that multiplies by 'I*a'\nlocal phi;\n phi := function(b) return b*a*I; end;\n return Map(R,C,phi);\nend;\n\nx_f := x_mult(5);\nx_f(2);\nImage(3.1,x_f);\nDomain(x_f);\nCodomain(x_f);" ], 6633 see := [ "37745e", "80071c", "ed8fcc", "54c9fa", "881f91", "3c8afe", "90f13e", "d86b75" ], 6634 hash := "dde0bc", 6635 sig := "Map(<any> domain, <any> codomain, <func> phi)", 6636 sog := " -> <map()>", 6637 docsrc := "map.g", 6638 sinflat := [ any, any, func ], 6639 souflat := [ map() ], 6640 soghash := "63931a", 6641 sig4hash := "Map(any,any,func)" ), 6642 rec( 6643 kind := "KEYWORD", 6644 name := "QaoS", 6645 short := "", 6646 see := [ "4d7a41", "d038c9" ], 6647 ex := [ ], 6648 hash := "f904e2", 6649 sig := "QaoS", 6650 sog := "", 6651 docsrc := "qaos.k", 6652 soghash := "da39a3", 6653 sig4hash := "QaoS" ), 6654 rec( 6655 kind := "FUNCTION", 6656 name := "QaosNumberField", 6657 sin := [ [ string, "query" ] ], 6658 opt := [ [ elt-ord^rat, "Limit", "Determines how many fields may be retrieved maximally", rec( 6659 Default := 25 ) ], [ elt-ord^rat, "Offset", "Determines an offset of fields", rec( 6660 Default := 0 ) ], [ string, "Action", "Determines which action to perform on the query string. Possible values are `query' and `count'.", rec( 6661 Default := "query" ) ], [ list, "ColGroups", "Determines which information to return. This is a list of column group specifiers.", rec( 6662 Default := [ "cgall" ] ) ] ], 6663 sou := [ [ list, "L" ] ], 6664 short := "Searches the Algebraic Objects Database in Berlin. The query string equals the keyword search method in the web surface.\nSee `http://www.math.tu-berlin.de/cgi-bin/kant/qaos/query.scm?type=anf&action=Help' for more information about the syntax and keywords.\n\nNote: You must have `curl' (see http://curl.haxx.se) installed and properly configured in order to use QaoS from within KASH.", 6665 ex := [ ], 6666 hash := "4d7a41", 6667 sig := "QaosNumberField(<string> query [, optargs])", 6668 sog := " -> <list> L", 6669 docsrc := "qaos.k", 6670 sinflat := [ string ], 6671 souflat := [ list ], 6672 soghash := "38b62b", 6673 sig4hash := "QaosNumberField(string)" ), 6674 rec( 6675 kind := "FUNCTION", 6676 name := "QaosFunctionField", 6677 sin := [ [ string, "query" ] ], 6678 opt := [ [ elt-ord^rat, "Limit", "Determines how many fields may be retrieved maximally", rec( 6679 Default := 25 ) ], [ elt-ord^rat, "Offset", "Determines an offset of fields", rec( 6680 Default := 0 ) ], [ string, "Action", "Determines which action to perform on the query string. Possible values are `query' and `count'.", rec( 6681 Default := "query" ) ], [ list, "ColGroups", "Determines which information to return. This is a list of column group specifiers.", rec( 6682 Default := [ "cgall" ] ) ] ], 6683 sou := [ [ list, "L" ] ], 6684 short := "Searches the Algebraic Objects Database in Berlin. The query string equals the keyword search method in the web surface.\nSee `http://www.math.tu-berlin.de/cgi-bin/kant/qaos/query.scm?type=anf&action=Help' for more information about the syntax and keywords.\n\nNote: You must have `curl' (see http://curl.haxx.se) installed and properly configured in order to use QaoS from within KASH.", 6685 ex := [ ], 6686 hash := "fe08ce", 6687 sig := "QaosFunctionField(<string> query [, optargs])", 6688 sog := " -> <list> L", 6689 docsrc := "qaos.k", 6690 sinflat := [ string ], 6691 souflat := [ list ], 6692 soghash := "38b62b", 6693 sig4hash := "QaosFunctionField(string)" ), 6694 rec( 6695 kind := "FUNCTION", 6696 name := "QaosTransitiveGroup", 6697 sin := [ [ string, "query" ] ], 6698 opt := [ [ elt-ord^rat, "Limit", "Determines how many groups may be retrieved maximally", rec( 6699 Default := 25 ) ], [ elt-ord^rat, "Offset", "Determines an offset of groups", rec( 6700 Default := 0 ) ], [ string, "Action", "Determines which action to perform on the query string. Possible values are `query' and `count'.", rec( 6701 Default := "query" ) ], [ list, "ColGroups", "Determines which information to return. This is a list of column group specifiers.", rec( 6702 Default := [ "cgall" ] ) ] ], 6703 sou := [ [ list, "L" ] ], 6704 short := "Searches the Algebraic Objects Database in Berlin. The query string equals the keyword search method in the web surface.\nSee `http://www.math.tu-berlin.de/cgi-bin/kant/qaos/query.scm?type=trnsg&action=Help' for more information about the syntax and keywords.\n\nNote: You must have `curl' (see http://curl.haxx.se) installed and properly configured in order to use QaoS from within KASH.", 6705 ex := [ ], 6706 hash := "d038c9", 6707 sig := "QaosTransitiveGroup(<string> query [, optargs])", 6708 sog := " -> <list> L", 6709 docsrc := "qaos.k", 6710 sinflat := [ string ], 6711 souflat := [ list ], 6712 soghash := "38b62b", 6713 sig4hash := "QaosTransitiveGroup(string)" ), 6714 rec( 6715 kind := "FUNCTION", 6716 name := "QaosResult", 6717 sin := [ [ list, "collection" ] ], 6718 sou := [ [ list, "L" ] ], 6719 short := "Return the actual list of objects in `collection'.", 6720 ex := [ ], 6721 hash := "2df183", 6722 sig := "QaosResult(<list> collection)", 6723 sog := " -> <list> L", 6724 docsrc := "qaos.k", 6725 sinflat := [ list ], 6726 souflat := [ list ], 6727 soghash := "38b62b", 6728 sig4hash := "QaosResult(list)" ), 6729 rec( 6730 name := "Factorization", 6731 kind := "FUNCTION", 6732 sin := [ [ elt-alg^pol/any^loc, "Phi" ] ], 6733 sou := [ [ list ] ], 6734 opt := [ [ elt-alg^boo, "Certificates", "If TRUE two element certificates for the irreducibilty of factors are returned.", rec( 6735 Default := FALSE ) ], [ elt-alg^boo, "IsSquarefree", "If TRUE the polynomial is assumed to be squarefree", rec( 6736 Default := FALSE ) ], [ elt-alg^boo, "Ideals", "", rec( 6737 Default := FALSE ) ], [ elt-alg^boo, "Extensions", "If TRUE the extensions generated by the irreducible factors are returned", rec( 6738 Default := FALSE ) ] ], 6739 short := "The factorization of a polynomial over a p-adic field or a p-adic ring. The algorithm used is a combinantion of the algorithms by Ford-Pauli-Roblot and by Pauli.", 6740 hash := "306f68", 6741 ex := [ ], 6742 sig := "Factorization(<elt-alg^pol/any^loc> Phi [, optargs])", 6743 sog := " -> <list>", 6744 docsrc := "locFact.g", 6745 sinflat := [ elt-alg^pol/any^loc ], 6746 souflat := [ list ], 6747 soghash := "38b62b", 6748 sig4hash := "Factorization(elt-alg^pol/any^loc)" ), 6749 rec( 6750 name := "Intersection", 6751 kind := "FUNCTION", 6752 sin := [ [ elt-ids^int/ord^num, "A" ], [ elt-ids^int/ord^num, "B" ] ], 6753 sou := [ [ elt-ids^int/ord^num, "C" ] ], 6754 short := "The intersection 'C' of the ideals 'A' and 'B'. Both ideals must be in the same order.", 6755 author := [ "Carolin Just" ], 6756 ex := [ "o := EquationOrder(X^2+5);\nA :=256*o;\nB := 6*o;\nIntersection(A,B);" ], 6757 hash := "16264b", 6758 sig := "Intersection(<elt-ids^int/ord^num> A, <elt-ids^int/ord^num> B)", 6759 sog := " -> <elt-ids^int/ord^num> C", 6760 docsrc := "unit_group_res.g", 6761 sinflat := [ elt-ids^int/ord^num, elt-ids^int/ord^num ], 6762 souflat := [ elt-ids^int/ord^num ], 6763 soghash := "607a3e", 6764 sig4hash := "Intersection(elt-ids^int/ord^num,elt-ids^int/ord^num)" ), 6765 rec( 6766 name := "Intersection", 6767 kind := "FUNCTION", 6768 sin := [ [ ord^num, "o" ], [ elt-ids^int/ord^num, "A" ] ], 6769 sou := [ [ elt-ids^int/ord^num, "a" ] ], 6770 short := "The intersection 'a' of the ideal 'A' and the order 'o'. The order 'o' must be a suborder of the order of 'A'", 6771 author := [ "Carolin Just" ], 6772 ex := [ "o := EquationOrder(X^2-5);\nO := MaximalOrder(o);\nA :=256*O;\na := Intersection(o,A);" ], 6773 hash := "2656fb", 6774 sig := "Intersection(<ord^num> o, <elt-ids^int/ord^num> A)", 6775 sog := " -> <elt-ids^int/ord^num> a", 6776 docsrc := "unit_group_res.g", 6777 sinflat := [ ord^num, elt-ids^int/ord^num ], 6778 souflat := [ elt-ids^int/ord^num ], 6779 soghash := "607a3e", 6780 sig4hash := "Intersection(ord^num,elt-ids^int/ord^num)" ), 6781 rec( 6782 kind := "FUNCTION", 6783 name := "EllipticCurve", 6784 sin := [ [ elt-ord^rat, "q" ], [ list, "L" ] ], 6785 sou := [ [ grp^ell ] ], 6786 short := "Constructs an elliptic curve over the finite field with q elements. If L has length 2, the curve is defined by the equation y^2 = x^3 + L[1]*x + L[2], if L has length 5, the curve is defined by the equation y^2 + L[1]*x*y + L[2]*y = x^3 + L[3]*x^2 + L[4]*x + L[5]. ", 6787 ex := [ "EC:= EllipticCurve(5,[1,2]);\n" ], 6788 hash := "9a3bee", 6789 sig := "EllipticCurve(<elt-ord^rat> q, <list> L)", 6790 sog := " -> <grp^ell>", 6791 docsrc := "elliptic.g", 6792 sinflat := [ elt-ord^rat, list ], 6793 souflat := [ grp^ell ], 6794 soghash := "82fd04", 6795 sig4hash := "EllipticCurve(elt-ord^rat,list)" ), 6796 rec( 6797 kind := "FUNCTION", 6798 name := "Points", 6799 sin := [ [ grp^ell, "E" ] ], 6800 sou := [ [ list, "L" ] ], 6801 short := "Returns all Points of E as a list.", 6802 ex := [ "EC:= EllipticCurve(5,[1,2]);;\nPoints(EC);\n" ], 6803 hash := "1d3c71", 6804 sig := "Points(<grp^ell> E)", 6805 sog := " -> <list> L", 6806 docsrc := "elliptic.g", 6807 sinflat := [ grp^ell ], 6808 souflat := [ list ], 6809 soghash := "38b62b", 6810 sig4hash := "Points(grp^ell)" ), 6811 rec( 6812 kind := "FUNCTION", 6813 name := "MakePoint", 6814 sin := [ [ grp^ell, "EC" ], [ list, "L" ] ], 6815 sou := [ [ elt-grp^ell, "P" ] ], 6816 short := "Returns,if possible, a point on EC, defined by the coordinates given in L.", 6817 ex := [ "EC:= EllipticCurve(5,[1,2]);;\nMakePoint(EC,[4,0]);\n" ], 6818 hash := "8be19d", 6819 sig := "MakePoint(<grp^ell> EC, <list> L)", 6820 sog := " -> <elt-grp^ell> P", 6821 docsrc := "elliptic.g", 6822 sinflat := [ grp^ell, list ], 6823 souflat := [ elt-grp^ell ], 6824 soghash := "277ec0", 6825 sig4hash := "MakePoint(grp^ell,list)" ), 6826 rec( 6827 kind := "FUNCTION", 6828 name := "MakePoints", 6829 sin := [ [ grp^ell, "EC" ], [ elt-fld^fin, "x" ] ], 6830 sou := [ [ elt-grp^ell, "P" ] ], 6831 short := "Returns the points on EC with x-coordinate x.", 6832 ex := [ "EC:= EllipticCurve(5,[1,2]);;\nMakePoints(EC,1);\n" ], 6833 hash := "2e50e8", 6834 sig := "MakePoints(<grp^ell> EC, <elt-fld^fin> x)", 6835 sog := " -> <elt-grp^ell> P", 6836 docsrc := "elliptic.g", 6837 sinflat := [ grp^ell, elt-fld^fin ], 6838 souflat := [ elt-grp^ell ], 6839 soghash := "277ec0", 6840 sig4hash := "MakePoints(grp^ell,elt-fld^fin)" ), 6841 rec( 6842 kind := "FUNCTION", 6843 name := "RandomPoint", 6844 sin := [ [ grp^ell, "EC" ] ], 6845 sou := [ [ elt-grp^ell, "P" ] ], 6846 short := "Returns a random point of EC, but never the point at infinity.", 6847 ex := [ "EC:= EllipticCurve(5,[1,2]);;\nRandomPoint(EC);\n" ], 6848 hash := "52a693", 6849 sig := "RandomPoint(<grp^ell> EC)", 6850 sog := " -> <elt-grp^ell> P", 6851 docsrc := "elliptic.g", 6852 sinflat := [ grp^ell ], 6853 souflat := [ elt-grp^ell ], 6854 soghash := "277ec0", 6855 sig4hash := "RandomPoint(grp^ell)" ), 6856 rec( 6857 kind := "FUNCTION", 6858 name := "RandomPointWithInf", 6859 sin := [ [ grp^ell, "EC" ] ], 6860 sou := [ [ elt-grp^ell, "P" ] ], 6861 short := "Returns a random point of EC.", 6862 ex := [ "EC:= EllipticCurve(5,[1,2]);;\nRandomPointWithInf(EC);\n" ], 6863 hash := "9e54fd", 6864 sig := "RandomPointWithInf(<grp^ell> EC)", 6865 sog := " -> <elt-grp^ell> P", 6866 docsrc := "elliptic.g", 6867 sinflat := [ grp^ell ], 6868 souflat := [ elt-grp^ell ], 6869 soghash := "277ec0", 6870 sig4hash := "RandomPointWithInf(grp^ell)" ), 6871 rec( 6872 kind := "FUNCTION", 6873 name := "Point", 6874 sin := [ [ elt-pls/fld^fun, "p" ], [ elt-grp^ell, "EC" ] ], 6875 sou := [ [ elt-grp^ell, "P" ] ], 6876 short := "Returns the point on EC corresponding to p.", 6877 ex := [ "EC:= EllipticCurve(5,[1,2]);;\nRandomPoint(EC);\n" ], 6878 hash := "17c2d1", 6879 sig := "Point(<elt-pls/fld^fun> p, <elt-grp^ell> EC)", 6880 sog := " -> <elt-grp^ell> P", 6881 docsrc := "elliptic.g", 6882 sinflat := [ elt-pls/fld^fun, elt-grp^ell ], 6883 souflat := [ elt-grp^ell ], 6884 soghash := "277ec0", 6885 sig4hash := "Point(elt-pls/fld^fun,elt-grp^ell)" ), 6886 rec( 6887 kind := "FUNCTION", 6888 name := "EllipticFunctionField", 6889 sin := [ [ grp^ell, "EC" ] ], 6890 sou := [ [ fld^fun, "F" ] ], 6891 short := "Returns the function field of genus one corresponding to EC.", 6892 ex := [ "EC:= EllipticCurve(5,[1,2]);;\nRandomPoint(EC);\n" ], 6893 hash := "3ae997", 6894 sig := "EllipticFunctionField(<grp^ell> EC)", 6895 sog := " -> <fld^fun> F", 6896 docsrc := "elliptic.g", 6897 sinflat := [ grp^ell ], 6898 souflat := [ fld^fun ], 6899 soghash := "d1dc27", 6900 sig4hash := "EllipticFunctionField(grp^ell)" ), 6901 rec( 6902 kind := "FUNCTION", 6903 name := "ShortWeierstrassNormalForm", 6904 sin := [ [ grp^ell, "EC" ] ], 6905 sou := [ [ grp^ell, "EC2" ] ], 6906 short := "Returns the isomorphic curve EC2 defined by a polynomial of the form y^2=x^3+a*x+b.", 6907 ex := [ "EC:= EllipticCurve(5,[1,2]);;\nRandomPoint(EC);\n" ], 6908 hash := "454b97", 6909 sig := "ShortWeierstrassNormalForm(<grp^ell> EC)", 6910 sog := " -> <grp^ell> EC2", 6911 docsrc := "elliptic.g", 6912 sinflat := [ grp^ell ], 6913 souflat := [ grp^ell ], 6914 soghash := "82fd04", 6915 sig4hash := "ShortWeierstrassNormalForm(grp^ell)" ), 6916 rec( 6917 kind := "FUNCTION", 6918 name := "jInvariant", 6919 sin := [ [ elt-grp^ell, "EC" ] ], 6920 sou := [ [ elt-fld^fin, "j" ] ], 6921 short := "Returns the j-invariant of EC.", 6922 ex := [ "EC:= EllipticCurve(5,[1,2]);;\njInvariant(EC);\n" ], 6923 hash := "2afd97", 6924 sig := "jInvariant(<elt-grp^ell> EC)", 6925 sog := " -> <elt-fld^fin> j", 6926 docsrc := "elliptic.g", 6927 sinflat := [ elt-grp^ell ], 6928 souflat := [ elt-fld^fin ], 6929 soghash := "97e752", 6930 sig4hash := "jInvariant(elt-grp^ell)" ), 6931 rec( 6932 kind := "FUNCTION", 6933 name := "Subgroup", 6934 sin := [ [ elt-grp^ell, "EC" ] ], 6935 sou := [ [ list, "L" ] ], 6936 short := "Returns the subgroup generated by EC.", 6937 ex := [ "EC:= EllipticCurve(5,[1,2]);;\nP:= RandomPoint(EC);;\nSubgroup(P);\n" ], 6938 hash := "06161c", 6939 sig := "Subgroup(<elt-grp^ell> EC)", 6940 sog := " -> <list> L", 6941 docsrc := "elliptic.g", 6942 sinflat := [ elt-grp^ell ], 6943 souflat := [ list ], 6944 soghash := "38b62b", 6945 sig4hash := "Subgroup(elt-grp^ell)" ), 6946 rec( 6947 kind := "FUNCTION", 6948 name := "DiscreteLog", 6949 sin := [ [ elt-grp^ell, "P" ], [ elt-grp^ell, "Q" ] ], 6950 sou := [ [ elt-ord^rat, "n" ] ], 6951 short := "Returns, if possible, n satisfying n*P = Q.", 6952 ex := [ "EC:= EllipticCurve(5,[1,2]);;\nP:= Generator(EC)[1];;\nQ:= RandomPoint(EC);;\nDiscreteLog(P,Q);\n" ], 6953 hash := "fc2dbf", 6954 sig := "DiscreteLog(<elt-grp^ell> P, <elt-grp^ell> Q)", 6955 sog := " -> <elt-ord^rat> n", 6956 docsrc := "elliptic.g", 6957 sinflat := [ elt-grp^ell, elt-grp^ell ], 6958 souflat := [ elt-ord^rat ], 6959 soghash := "898213", 6960 sig4hash := "DiscreteLog(elt-grp^ell,elt-grp^ell)" ), 6961 rec( 6962 kind := "FUNCTION", 6963 name := "Discriminant", 6964 sin := [ [ grp^ell, "EC" ] ], 6965 sou := [ [ elt-fld^fin, "d" ] ], 6966 short := "The discriminant of EC.", 6967 ex := [ "EC:= EllipticCurve(5,[1,2]);;\nDiscriminant(EC);\n" ], 6968 hash := "3836b4", 6969 sig := "Discriminant(<grp^ell> EC)", 6970 sog := " -> <elt-fld^fin> d", 6971 docsrc := "elliptic.g", 6972 sinflat := [ grp^ell ], 6973 souflat := [ elt-fld^fin ], 6974 soghash := "97e752", 6975 sig4hash := "Discriminant(grp^ell)" ), 6976 rec( 6977 kind := "FUNCTION", 6978 name := "Divisor", 6979 sin := [ [ elt-grp^ell, "P" ] ], 6980 sou := [ [ elt-dvs/fld^fun, "D" ] ], 6981 short := "The divisor corresponding to P.", 6982 ex := [ "EC:= EllipticCurve(5,[1,2]);;\nP:= RandomPoint(EC);;\nDivisor(P);" ], 6983 hash := "16397d", 6984 sig := "Divisor(<elt-grp^ell> P)", 6985 sog := " -> <elt-dvs/fld^fun> D", 6986 docsrc := "elliptic.g", 6987 sinflat := [ elt-grp^ell ], 6988 souflat := [ elt-dvs/fld^fun ], 6989 soghash := "34cafb", 6990 sig4hash := "Divisor(elt-grp^ell)" ), 6991 rec( 6992 kind := "FUNCTION", 6993 name := "BaseRing", 6994 sin := [ [ grp^ell, "EC" ] ], 6995 sou := [ [ fld^fin, "F" ] ], 6996 short := "The field over which EC is defined.", 6997 ex := [ "EC:= EllipticCurve(5,[1,2]);;\nF:= BaseRing(EC);;\n" ], 6998 hash := "a5a791", 6999 sig := "BaseRing(<grp^ell> EC)", 7000 sog := " -> <fld^fin> F", 7001 docsrc := "elliptic.g", 7002 sinflat := [ grp^ell ], 7003 souflat := [ fld^fin ], 7004 soghash := "267be8", 7005 sig4hash := "BaseRing(grp^ell)" ), 7006 rec( 7007 kind := "FUNCTION", 7008 name := "Order", 7009 sin := [ [ elt-grp^ell, "P" ] ], 7010 sou := [ [ elt-ord^rat, "n" ] ], 7011 short := "The order of the point P, only works for \"small\" curves. ", 7012 ex := [ "EC:= EllipticCurve(5,[1,2]);;\nP:= RandomPoint(EC);;\nOrder(P);\n" ], 7013 see := [ ], 7014 hash := "8ee1cd", 7015 sig := "Order(<elt-grp^ell> P)", 7016 sog := " -> <elt-ord^rat> n", 7017 docsrc := "elliptic.g", 7018 sinflat := [ elt-grp^ell ], 7019 souflat := [ elt-ord^rat ], 7020 soghash := "898213", 7021 sig4hash := "Order(elt-grp^ell)" ), 7022 rec( 7023 kind := "FUNCTION", 7024 name := "Generator", 7025 sin := [ [ grp^ell, "EC" ] ], 7026 sou := [ [ list, "L" ] ], 7027 short := "Returns a list of generator(s) of EC, only works for \"small\" curves. ", 7028 ex := [ "EC:= EllipticCurve(5,[1,2]);;\nL:= Generator(EC);\n" ], 7029 see := [ ], 7030 hash := "4af2c5", 7031 sig := "Generator(<grp^ell> EC)", 7032 sog := " -> <list> L", 7033 docsrc := "elliptic.g", 7034 sinflat := [ grp^ell ], 7035 souflat := [ list ], 7036 soghash := "38b62b", 7037 sig4hash := "Generator(grp^ell)" ), 7038 rec( 7039 kind := "FUNCTION", 7040 name := "Place", 7041 sin := [ [ elt-grp^ell, "P" ] ], 7042 sou := [ [ elt-pls/fld^fun, "p" ] ], 7043 short := "The place of degree one corresponding to P ", 7044 ex := [ "EC:= EllipticCurve(5,[1,2]);;\nP:= RandomPoint(EC);;\nPlace(P);\n" ], 7045 see := [ ], 7046 hash := "2a4d61", 7047 sig := "Place(<elt-grp^ell> P)", 7048 sog := " -> <elt-pls/fld^fun> p", 7049 docsrc := "elliptic.g", 7050 sinflat := [ elt-grp^ell ], 7051 souflat := [ elt-pls/fld^fun ], 7052 soghash := "3691ff", 7053 sig4hash := "Place(elt-grp^ell)" ), 7054 rec( 7055 kind := "FUNCTION", 7056 name := "Size", 7057 sin := [ [ grp^ell, "P" ] ], 7058 sou := [ [ elt-ord^rat, "n" ] ], 7059 short := "The number of points belonging to EC, only works for \"small\" curves. ", 7060 ex := [ "EC:= EllipticCurve(5,[1,2]);;\nSize(EC);\n" ], 7061 see := [ ], 7062 hash := "f68093", 7063 sig := "Size(<grp^ell> P)", 7064 sog := " -> <elt-ord^rat> n", 7065 docsrc := "elliptic.g", 7066 sinflat := [ grp^ell ], 7067 souflat := [ elt-ord^rat ], 7068 soghash := "898213", 7069 sig4hash := "Size(grp^ell)" ), 7070 rec( 7071 kind := "FUNCTION", 7072 name := "Coerce", 7073 sin := [ [ grp^ell, "EC" ], [ elt-grp^ell, "P" ] ], 7074 sou := [ [ elt-grp^ell, "P2" ] ], 7075 short := "Coerces P into EC. ", 7076 ex := [ "EC:= EllipticCurve(5,[1,2]);;\nP:= RandomPoint(EC);\nCoerce(EllipticCurve(5^2,[1,2]),P);" ], 7077 see := [ ], 7078 hash := "65cacd", 7079 sig := "Coerce(<grp^ell> EC, <elt-grp^ell> P)", 7080 sog := " -> <elt-grp^ell> P2", 7081 docsrc := "elliptic.g", 7082 sinflat := [ grp^ell, elt-grp^ell ], 7083 souflat := [ elt-grp^ell ], 7084 soghash := "277ec0", 7085 sig4hash := "Coerce(grp^ell,elt-grp^ell)" ), 7086 rec( 7087 kind := "FUNCTION", 7088 name := "Coerce", 7089 sin := [ [ grp^ell, "EC" ], [ list, "L" ] ], 7090 sou := [ [ elt-grp^ell, "P" ] ], 7091 short := "Coerces L into EC. ", 7092 ex := [ "EC:= EllipticCurve(5,[1,2]);;\nP:= RandomPoint(EC);\nCoerce(EllipticCurve(5^2,[1,2]),P);" ], 7093 see := [ ], 7094 hash := "be3460", 7095 sig := "Coerce(<grp^ell> EC, <list> L)", 7096 sog := " -> <elt-grp^ell> P", 7097 docsrc := "elliptic.g", 7098 sinflat := [ grp^ell, list ], 7099 souflat := [ elt-grp^ell ], 7100 soghash := "277ec0", 7101 sig4hash := "Coerce(grp^ell,list)" ), 7102 rec( 7103 kind := "FUNCTION", 7104 name := "Zero", 7105 sin := [ [ grp^ell, "EC" ] ], 7106 sou := [ [ elt-grp^ell, "P" ] ], 7107 short := "Returns the point at infinity. ", 7108 ex := [ "EC:= EllipticCurve(5,[1,2]);;\nP:= Zero(EC);\n" ], 7109 see := [ ], 7110 hash := "60e26c", 7111 sig := "Zero(<grp^ell> EC)", 7112 sog := " -> <elt-grp^ell> P", 7113 docsrc := "elliptic.g", 7114 sinflat := [ grp^ell ], 7115 souflat := [ elt-grp^ell ], 7116 soghash := "277ec0", 7117 sig4hash := "Zero(grp^ell)" ), 7118 rec( 7119 kind := "FUNCTION", 7120 name := "Parent", 7121 sin := [ [ elt-grp^ell, "P" ] ], 7122 sou := [ [ grp^ell, "EC" ] ], 7123 short := "The default parent of P ", 7124 ex := [ "EC:= EllipticCurve(5,[1,2]);;\nP:= RandomPoint(EC);;\nParent(P)=EC;\n" ], 7125 see := [ ], 7126 hash := "566c1e", 7127 sig := "Parent(<elt-grp^ell> P)", 7128 sog := " -> <grp^ell> EC", 7129 docsrc := "elliptic.g", 7130 sinflat := [ elt-grp^ell ], 7131 souflat := [ grp^ell ], 7132 soghash := "82fd04", 7133 sig4hash := "Parent(elt-grp^ell)" ), 7134 rec( 7135 kind := "KEYWORD", 7136 name := "Algebraic Structures", 7137 short := "In this section we show how to generate matrices, modules or groups.", 7138 see := [ "fcb739", "f8c01e", "9eede6" ], 7139 ex := [ ], 7140 hash := "22d77a", 7141 sig := "Algebraic Structures", 7142 sog := "", 7143 docsrc := "install_doc/algstruc.g", 7144 soghash := "da39a3", 7145 sig4hash := "Algebraic Structures" ), 7146 rec( 7147 kind := "KEYWORD", 7148 name := "Linear Algebra", 7149 short := "", 7150 see := [ "cff7d0" ], 7151 ex := [ ], 7152 hash := "fcb739", 7153 sig := "Linear Algebra", 7154 sog := "", 7155 docsrc := "install_doc/algstruc.g", 7156 soghash := "da39a3", 7157 sig4hash := "Linear Algebra" ), 7158 rec( 7159 kind := "KEYWORD", 7160 name := "Matrices", 7161 short := "To construct a matrix first we need a ring from which are the coefficients. For example Q,R and C are predefined for the rational, real and complex numbers. We can also build matrices over function or number fields. Then we need also the number of rows and columns and finitely a list consisting of the entries.We can compute the kernel N of a matrix M (as a matrix which islinear map in the kernel of M) or the Nullspace of N.", 7162 ex := [ "k := RationalFunctionField(FiniteField(5,2));\nP := PolynomialAlgebra(k);\nF := FunctionField(P.1^3 + k.1^3 + k.1 + 1);\nM := Matrix(F, 2,2, [ F.1+k.1, 2, F.1+k.1,2]);\n", "N := Matrix(Q, 2,3, [1,2,3,5,0,1]);\nKernelMatrix(N);\nw := KernelMatrix(Transpose(N));\nN*Transpose(w);\nv := Transpose(Matrix(Q, 3,1, [1,2,3]));\nSolution(N,v);\n", "T := Matrix(Q, 2,2,[1,2,1,2]);\nKernelMatrix(T);\n" ], 7163 hash := "cff7d0", 7164 sig := "Matrices", 7165 sog := "", 7166 docsrc := "install_doc/algstruc.g", 7167 soghash := "da39a3", 7168 sig4hash := "Matrices" ), 7169 rec( 7170 kind := "KEYWORD", 7171 name := "Abelian Groups", 7172 short := "In KASH3 we can work with abelian and symmetric groups. We can for example generate abelian groups and compute the direct sum. For elements of a symmetric group we can make use of cycles.", 7173 ex := [ "G := AbelianGroup([2,3,3]);\nH := AbelianGroup([5,3,3,7]);\nGH := DirectSum(H,G);\nFG1 := FreeAbelianGroup(3);\nFG2 := FreeAbelianGroup(5);\nG1G2:= DirectSum(FG1,FG2);\n" ], 7174 hash := "f8c01e", 7175 sig := "Abelian Groups", 7176 sog := "", 7177 docsrc := "install_doc/algstruc.g", 7178 soghash := "da39a3", 7179 sig4hash := "Abelian Groups" ), 7180 rec( 7181 kind := "KEYWORD", 7182 name := "Modules and Lattices", 7183 short := "In KASH3 we can construct for example modules in number fields over orders. Lattices are represented as matrices. We can compute the Gram matrix and a LLL-reduced basis of a lattice.", 7184 ex := [ "o2 := MaximalOrder(X^2-2);\nPo2:= PolynomialAlgebra(o2);\nO := EquationOrder(Po2.1^3-3);\nM := Module(O);\nN := Matrix(Q,3,3,[1/2,3,2,3,0,1,2,9/2,2]);\nG := GramMatrix(N);LLL(N);" ], 7185 hash := "9eede6", 7186 sig := "Modules and Lattices", 7187 sog := "", 7188 docsrc := "install_doc/algstruc.g", 7189 soghash := "da39a3", 7190 sig4hash := "Modules and Lattices" ), 7191 rec( 7192 kind := "KEYWORD", 7193 name := "Preface", 7194 short := "This is the current release of KANT, the KANT SHell. The quasi-acronym KANT stands for Computational Algebraic Number Theory with a slight twist hinting at its German origin. ", 7195 see := [ "79fde2", "90ccd6", "76ce42", "bdc1fd", "a420ab" ], 7196 ex := [ ], 7197 hash := "707dde", 7198 sig := "Preface", 7199 sog := "", 7200 docsrc := "install_doc/intro.g", 7201 soghash := "da39a3", 7202 sig4hash := "Preface" ), 7203 rec( 7204 kind := "KEYWORD", 7205 name := "Functionality", 7206 short := "KANT is a program library for computations in algebraic number fields, algebraic function fields and local fields. In the number field case, algebraic integers are considered to be elements of a specified order of an appropriate field F. The available algorithms provide the user with the means to compute many invariants of F. It is possible to solve tasks like calculating the solutions of Diophantine equations related to F. Furthermore subfields of F can be generated and F can be embedded into an overfield. The potential of moving elements between different fields (orders) is a significant feature of our system. In the function field case, for example, genus computations and the construction of Riemann-Roch spaces are available. ", 7207 ex := [ ], 7208 hash := "79fde2", 7209 sig := "Functionality", 7210 sog := "", 7211 docsrc := "install_doc/intro.g", 7212 soghash := "da39a3", 7213 sig4hash := "Functionality" ), 7214 rec( 7215 kind := "KEYWORD", 7216 name := "History", 7217 short := "KANT was developed at the University of Duesseldorf from 1987 until 1993 and at Technische Universitaet Berlin afterwards. During these years the performance of existing algorithms and their implementations grew dramatically. While calculations in number fields of degree 4 and greater were nearly impossible before 1970 and number fields of degree more than 10 were beyond reach until 1990, it is now possible to compute in number fields of degree well over 20, and -- in special cases -- even beyond 1000. This also characterizes one of the principles of KANT, namely to support computations in number fields of arbitrary degree rather than fixing the degree and pushing the size of the discriminant to the limit. ", 7218 ex := [ ], 7219 hash := "90ccd6", 7220 sig := "History", 7221 sog := "", 7222 docsrc := "install_doc/intro.g", 7223 soghash := "da39a3", 7224 sig4hash := "History" ), 7225 rec( 7226 kind := "KEYWORD", 7227 name := "KANT", 7228 short := "KANT consists of a C--library of thousands of functions for doing arithmetic in number fields, function fields, and local fields. Of course, the necessary auxiliaries from linear algebra over rings, especially lattices, are also included. The set of these functions is based on the core of the computer algebra system MAGMA from which we adopt our storage management, base arithmetic, arithmetic for finite fields, polynomial arithmetic and a variety of other tools. ", 7229 ex := [ ], 7230 hash := "76ce42", 7231 sig := "KANT", 7232 sog := "", 7233 docsrc := "install_doc/intro.g", 7234 soghash := "da39a3", 7235 sig4hash := "KANT" ), 7236 rec( 7237 kind := "KEYWORD", 7238 name := "Shell", 7239 short := "To make KANT easier to use we developed a shell called KASH. This shell is based on that of the group theory package GAP3 and the handling is similar to that of MAPLE. We put great effort into enabling the user to handle the number theoretical objects in the very same way as one would do using pencil and paper. For example, there is just one command Factorization for the factorization of elements from a factorial monoid like rational integers in Z, polynomials over a field, or ideals from a Dedekind ring.", 7240 ex := [ ], 7241 hash := "bdc1fd", 7242 sig := "Shell", 7243 sog := "", 7244 docsrc := "install_doc/intro.g", 7245 soghash := "da39a3", 7246 sig4hash := "Shell" ), 7247 rec( 7248 kind := "KEYWORD", 7249 name := "Programming Language", 7250 short := "KASH3 uses the GAP3 shell as a user interface. The programming language of GAP3 is an imperative language with some functional and some object oriented features. In KASH3 additional features like Methods, Maps, and Extendable Objects are available. The following describes the imperative control structures of the GAP3/KASH3 programming language.\n\nBy convention the names of KASH3 functions, which change the arguments (in the GAP3/KASH3 programming language all complex data structures are passed to functions by reference), end in '_'.", 7251 see := [ "958f57", "6517f8", "c0ac48", "43eef9", "c218e3", "63143b", "04d6e2" ], 7252 ex := [ ], 7253 hash := "749950", 7254 sig := "Programming Language", 7255 sog := "", 7256 docsrc := "install_doc/intro.g", 7257 soghash := "da39a3", 7258 sig4hash := "Programming Language" ), 7259 rec( 7260 kind := "KEYWORD", 7261 name := "Inside KASH3", 7262 short := "KASH3 contains several advanced features that facilitate extending its functionality. Some of these come from the GAP3 programming language, in particular the overloading of operators using records. Extendable objects are also build on records. They allow storing additional information in objects on the shell level. Together with the type system this also allows inheritance of functionality to objects of new types. The type system also makes it possible to overload functions ('InstallMethods'). Overloading and the type system are tied in with the help system.", 7263 see := [ "93b9e2", "74e8bb", "d691ad", "80071c", "9e9cf3", "7e4ac6" ], 7264 ex := [ ], 7265 hash := "e854e6", 7266 sig := "Inside KASH3", 7267 sog := "", 7268 docsrc := "install_doc/intro.g", 7269 soghash := "da39a3", 7270 sig4hash := "Inside KASH3" ), 7271 rec( 7272 kind := "KEYWORD", 7273 name := "Generic Functions", 7274 short := "Some functions are implemented for a variety of structures. A few of them are not documented for all possible signatures. You find the most important of those listed below.", 7275 see := [ "8f26c3", "b27abc", "21391a", "9b3d76", "47a76e", "bb3c97", "cc360c", "3fac1b" ], 7276 ex := [ ], 7277 hash := "83082f", 7278 sig := "Generic Functions", 7279 sog := "", 7280 docsrc := "install_doc/intro.g", 7281 soghash := "da39a3", 7282 sig4hash := "Generic Functions" ), 7283 rec( 7284 kind := "KEYWORD", 7285 name := "Methods", 7286 short := "Methods allow overloading of functions. A method is installed by calling 'InstallMethod' with a documentation record and a function. The documentation record specifies the name and the signature under which the given function will be called.", 7287 see := [ "cfb542" ], 7288 ex := [ ], 7289 hash := "7e4ac6", 7290 sig := "Methods", 7291 sog := "", 7292 docsrc := "install_doc/intro.g", 7293 soghash := "da39a3", 7294 sig4hash := "Methods" ), 7295 rec( 7296 kind := "KEYWORD", 7297 name := "Introduction to KASH3", 7298 short := "", 7299 see := [ "707dde", "010b85", "a26b37", "08ba89", "e854e6", "4c47dd" ], 7300 ex := [ ], 7301 hash := "79731e", 7302 sig := "Introduction to KASH3", 7303 sog := "", 7304 docsrc := "install_doc/intro.g", 7305 soghash := "da39a3", 7306 sig4hash := "Introduction to KASH3" ), 7307 rec( 7308 kind := "KEYWORD", 7309 name := "Getting Started", 7310 short := "The following gives a short introduction to KASH3. We explain the basic types supported by KASH3 and how to effectively use them. As the main points of the KASH3 shell are given in conjunction with the type specific information, special attention should be paid to the examples.", 7311 see := [ "b520c7", "058bfd", "2582ff", "842b64", "a1fdaa", "58ab0e", "8d5179", "6e06f6", "57c950", "0d5fda", "b5fb63", "538a8c", "c92634", "cff7d0" ], 7312 ex := [ ], 7313 hash := "010b85", 7314 sig := "Getting Started", 7315 sog := "", 7316 docsrc := "install_doc/start.g", 7317 soghash := "da39a3", 7318 sig4hash := "Getting Started" ), 7319 rec( 7320 kind := "KEYWORD", 7321 name := "Starting and Leaving", 7322 short := "If KASH3 is correctly installed, then you start KASH3 by simply typing 'kash3' at the prompt of your operating system. If you are successful in starting KASH3, the KASH3 banner should appear, at which time a command or function call may be entered. To exit KASH3 type 'quit;' at the prompt (the semicolon is necessary!). ", 7323 ex := [ "quit;" ], 7324 hash := "b520c7", 7325 sig := "Starting and Leaving", 7326 sog := "", 7327 docsrc := "install_doc/start.g", 7328 soghash := "da39a3", 7329 sig4hash := "Starting and Leaving" ), 7330 rec( 7331 kind := "KEYWORD", 7332 name := "First Steps", 7333 short := "A simple calculation with KASH3 is as easy as one can imagine. You type the problem just after the prompt, terminate it with a semicolon and then pass the problem to the program with the 'return' key. For example, to multiply the difference between 9 and 7 by the sum of 5 and 6, that is to calculate '(9 - 7)*(5 + 6)', you type exactly this last sequence of symbols followed by ';' and 'return'. If you omitted the semicolon at the end of the line but had already typed 'return', then KASH3 has read everything you typed, but does not know that the command is complete. The program is waiting for further input and indicates this with a partial prompt. This little problem is solved by simply typing the missing semicolon on the next line of input. Then the result is printed and the normal prompt returns. Whenever you see this partial prompt and you cannot decide what KASH3 is still waiting for, then you have to type semicolons until the normal prompt returns.", 7334 ex := [ "(9 - 7) * (5 + 6);" ], 7335 hash := "058bfd", 7336 sig := "First Steps", 7337 sog := "", 7338 docsrc := "install_doc/start.g", 7339 soghash := "da39a3", 7340 sig4hash := "First Steps" ), 7341 rec( 7342 kind := "KEYWORD", 7343 name := "Inline Help", 7344 short := "For inline help, '?' is a valuable tool. A single question mark followed by the name of a function or type or statement or keyword causes the description of the identifier found in the reference manual to appear on the screen. If a list of all functions beginning with a particular string is desired, use '?^' followed by the string to match. If no match is found, the response 'No matches. Maybe try ?*<string>.' will be displayed. '?*' followed by something searches for all of its occurences in the documentation. \n\nA query can also be started by ending a line with '?' and its modifier instead of starting it with '?'. In both cases the function 'Help' with the entered line (without the ?) as a parameter.", 7345 ex := [ ], 7346 hash := "2582ff", 7347 sig := "Inline Help", 7348 sog := "", 7349 docsrc := "install_doc/start.g", 7350 soghash := "da39a3", 7351 sig4hash := "Inline Help" ), 7352 rec( 7353 kind := "KEYWORD", 7354 name := "Operations", 7355 short := "In an expression like '(9 - 7) * (5 + 6)' the constants '5', '6', '7', and '9' are being composed by the operators '+', '*' and '-' to result in a new value. \n\nThere are three kinds of operators in KASH3, arithmetical operators, comparison operators, and logical operators.KASH3 knows a precedence between operators that may be overridden by parentheses. \n\nYou have already seen that it is possible to form the sums, differences, and products. The remaining arithmetical operators are exponentiation '^' and 'mod'.\n\nA comparison result is a boolean value. Integers, rationals and real numbers are comparable via '=', '<', '<=', '>=', '>' and '<>'; algebraic elements, ideals, matrices and complex numbers can be compared via '=' and '<>'. Membership of an element in a structure can be tested eith 'in'.\n\nThe boolean values 'TRUE' and 'FALSE' can be manipulated via logical operators, i.e., the unary operator 'not' and the binary operators 'and' and 'or'.", 7356 ex := [ "12345/25;", "7^69;" ], 7357 hash := "a1fdaa", 7358 sig := "Operations", 7359 sog := "", 7360 docsrc := "install_doc/start.g", 7361 soghash := "da39a3", 7362 sig4hash := "Operations" ), 7363 rec( 7364 kind := "KEYWORD", 7365 name := "Variables and Assignments", 7366 short := "Values may be assigned to variables. A variable enables you to refer to an object via a name. The assignment operator is ':='. Do not confuse the assignment operator ':=' with the single equality sign '=' which in KASH3 is only used for the test of equality.\nAfter an assignment, the assigned value is echoed on the next line. The printing of the value of a statement may be in every case prevented by typing a double semicolon. \nAfter the assignment, the variable evaluates to that value if evaluated. Thus it is possible to refer to that value by the name of the variable in any situation. \nA variable name may be sequences of letters and digits containing at least one letter. For example 'abc' and 'a1b2' are valid names. Since KASH3 distinguishes upper and lower case, 'a' and 'A' are different names. Keywords such as 'quit' must not be used as names.", 7367 ex := [ "a:=32233; A:=76; a+A;" ], 7368 hash := "58ab0e", 7369 sig := "Variables and Assignments", 7370 sog := "", 7371 docsrc := "install_doc/start.g", 7372 soghash := "da39a3", 7373 sig4hash := "Variables and Assignments" ), 7374 rec( 7375 kind := "KEYWORD", 7376 name := "Integers and Rationals", 7377 short := "KASH3 integers are entered as a sequence of digits optionally preceded by a '+' sign for positive integers or a '-' sign for negative integers. In KASH3, the size of integers is only limited by the amount of available memory. The binary operations '+', '-', '*', '/' allow combinations of arguments from the integers, the rationals, and real and complex fields; automatic coercion is applied where necessary. \n\nSince integers are naturally embedded in the field of real numbers, all real functions are applicable to integers.\nRationals can be created by simply typing in the fraction using the symbol '/' to denote the division bar. The value is not converted to decimal form, however the reduced form of the fraction is found. Similarly all real functions are applicable to rationals.", 7378 ex := [ "4/6;" ], 7379 hash := "8d5179", 7380 sig := "Integers and Rationals", 7381 sog := "", 7382 docsrc := "install_doc/start.g", 7383 soghash := "da39a3", 7384 sig4hash := "Integers and Rationals" ), 7385 rec( 7386 kind := "KEYWORD", 7387 name := "Reals and Complex", 7388 short := "Real numbers can only be stored in the computer effectively in the form of approximations. KASH3 provides a number of facilities for calculating with such approximations to (at least) a given, but arbitrary, precision. Real numbers have a default precision of 20. One can change the precision to arbitrary 'n' (See example below!).\nKASH3 provides the following real functions; refer to the reference manual for detailed descriptions and examples. \nIn KASH3, complex numbers have the same precision as real numbers. This precision can be modified by calling the 'Precision' function (see example). A complex number can be designated using the function Element, which requires two real arguments (See example).\nMost real functions can be applied to complex numbers. Additionally, KASH3 provides the several complex functions.", 7389 ex := [ "Precision(); # the default precision of the real and complex numbers", "R; # the default real field", "Precision(40); # set the default precision of real and complex numbers to 40", "C; # the default complex field", "z := 1+2*I; # a complex number,\nz*z; " ], 7390 hash := "6e06f6", 7391 sig := "Reals and Complex", 7392 sog := "", 7393 docsrc := "install_doc/start.g", 7394 soghash := "da39a3", 7395 sig4hash := "Reals and Complex" ), 7396 rec( 7397 kind := "KEYWORD", 7398 name := "Lists", 7399 short := "A 'list' is a collection of objects separated by commas and enclosed in brackets.", 7400 ex := [ "primes:= [2, 3, 5, 7, 11, 13, 17, 19]; # a list containing 8 elements\nAppend_(primes, [23, 29]); # append two numbers to the list\nprimes[5]; # the 5th element in the list\nprimes[9] := 77; # set the 9th list entry to 77\n", "L := [1,2,TRUE,3/4, X^2+2]; # a list of elements of different types" ], 7401 see := [ "ec51e2", "ab7b5e", "f55fdd", "59fe3e" ], 7402 hash := "57c950", 7403 sig := "Lists", 7404 sog := "", 7405 docsrc := "install_doc/start.g", 7406 soghash := "da39a3", 7407 sig4hash := "Lists" ), 7408 rec( 7409 kind := "KEYWORD", 7410 name := "Ranges", 7411 short := "A range is a finite sequence of integers which is another special kind of list. A range is described by its minimum (the first entry), its second entry and its maximum, separated by a comma resp. two dots and enclosed in brackets. In the usual case of an ascending list of consecutive integers the second entry may be omitted. ", 7412 ex := [ "L := [1..100]; # list of all positive integers less than or equal to 100", "L := [2,4..100]; # list of all even integers between 2 and 100" ], 7413 hash := "0d5fda", 7414 sig := "Ranges", 7415 sog := "", 7416 docsrc := "install_doc/start.g", 7417 soghash := "da39a3", 7418 sig4hash := "Ranges" ), 7419 rec( 7420 kind := "KEYWORD", 7421 name := "Sequences", 7422 short := "A sequence is a list containing elements from the same 'universe'. Writing different types in a sequence is not allowed.", 7423 ex := [ "Sequence([1,5,7]); # List of integers 1,5 and 7", "Sequence([1,Q]); # not a sequence" ], 7424 hash := "b5fb63", 7425 sig := "Sequences", 7426 sog := "", 7427 docsrc := "install_doc/start.g", 7428 soghash := "da39a3", 7429 sig4hash := "Sequences" ), 7430 rec( 7431 kind := "KEYWORD", 7432 name := "Tuples", 7433 short := "A tuple is a list containing any elements. A tuple is an element of a Cartesian product. The types of the elements of the factors of this product may be specified. Once a tuple is created, insertions are possible only if the type of the new element is the same as the type of the element that will be replaced.", 7434 ex := [ "x_a:=Tuple([1,3.2,\"text\"]);\nType(x_a);\nParent(x_a);" ], 7435 hash := "538a8c", 7436 sig := "Tuples", 7437 sog := "", 7438 docsrc := "install_doc/start.g", 7439 soghash := "da39a3", 7440 sig4hash := "Tuples" ), 7441 rec( 7442 kind := "KEYWORD", 7443 name := "Generators", 7444 short := "The generators of many of the structures can be accessed with the '.' operator. In most cases the respective elements are also printed in this representation.", 7445 ex := [ "x_a := FreeAbelianGroup(3);\nElement(x_a,[1,2,3]);\nx_a.2;" ], 7446 hash := "a3e705", 7447 sig := "Generators", 7448 sog := "", 7449 docsrc := "install_doc/start.g", 7450 soghash := "da39a3", 7451 sig4hash := "Generators" ), 7452 rec( 7453 kind := "KEYWORD", 7454 name := "Polynomials", 7455 short := "At the moment, KASH3 can only handle univariate polynomials. The polynomial ring 'ZX' over the integers and its indeterminate 'X=ZX.1' are predefined constants. Use the 'Evaluation' routine to calculate the value of a polynomial when the variable 'X' is substituted by certain values. To create the polynomial algebra 'S[x]' with coefficients from a designated ring 'S', the routine 'PolynomialAlgebra' should be used. This routine requires one argument, namely the coefficient ring of the polynomial algebra.\n Recall that 'Q' is the predefined constant for the ring .\nNote that KASH3 always declares the variable by 'P.1', if 'P' is the name of your polynomial algebra.", 7456 ex := [ "f := X^3 + X + 1; # a polynomial over Z\nf+f;\nf*f;\n Evaluate(f,10); # Evaluation of f at 10", "Qx := PolynomialAlgebra(Q); # Univariate Polynomial Ring over Rational Field\nQx.1^5+7/3; # A polynomial over Q" ], 7457 hash := "c92634", 7458 sig := "Polynomials", 7459 sog := "", 7460 docsrc := "install_doc/start.g", 7461 soghash := "da39a3", 7462 sig4hash := "Polynomials" ), 7463 rec( 7464 kind := "KEYWORD", 7465 name := "Introduction to Number Fields", 7466 short := "This section describes the central part of KASH3. After learning how to do simple arithmetic in algebraic number fields using KASH3, you will be able to compute the main invariants of algebraic number fields.", 7467 see := [ "a26b37", "ab46c5", "afac3c", "ead637", "65d8e9" ], 7468 ex := [ ], 7469 hash := "ed35c2", 7470 sig := "Introduction to Number Fields", 7471 sog := "", 7472 docsrc := "install_doc/number_field.g", 7473 soghash := "da39a3", 7474 sig4hash := "Introduction to Number Fields" ), 7475 rec( 7476 kind := "KEYWORD", 7477 name := "Number Fields", 7478 short := "We call 'alpha in C' an algebraic integer if there exists a monic irreducible polynomial 'f(x) in Z[x]' with 'f(alpha) = 0'. An algebraic number field 'F' is a finite extension of the field of rationals 'Q'. There always exists an algebraic integer 'rho in C' such that 'F = Q(rho)'. The set of algebraic integers in 'F' forms a ring which is denoted by 'O = O_F'. An order 'o' in 'F' is a unital subring of 'O' which, as a 'Z-module', is finitely generated and of rank '[F:Q]'. Of course, 'O' is an order which we call the maximal order of 'F' (see Orders of Number Fields for details). In KASH3, any computations in an algebraic number field 'F' are performed with respect to a certain order in 'F'.", 7479 ex := [ "f := X^5 + 4*X^4 - 56*X^2 -16*X + 192;\n# we want to do arithmetic in the field F = Q(rho),\n# where 'rho' is a root of irreducible polynomial f\no := EquationOrder(f);\n # Define the ring Z[x]/(f(x))" ], 7480 see := [ "8bd6eb", "f49308", "1cd502" ], 7481 hash := "a26b37", 7482 sig := "Number Fields", 7483 sog := "", 7484 docsrc := "install_doc/number_field.g", 7485 soghash := "da39a3", 7486 sig4hash := "Number Fields" ), 7487 rec( 7488 kind := "KEYWORD", 7489 name := "Orders of Number Fields", 7490 short := "KASH3 makes it easy to compute in arbitrary orders of number fields. Given the minimal polynomial 'f' of an algebraic integer 'rho' one obtains the equation order 'Z[rho]' easily as 'Z[x]/(rho)'. In order to compute a maximal order 'O' of the number field 'F=Q(rho)', one has to compute an integral bases of 'F'. Maximal orders are not given by polynomials but a transformation matrix, which transforms a power basis '(1,rho,...,rho^4)' to a basis '(w_1,...,w_5)' of the maximal order. The 'MaximalOrder' function computes an integral basis '(w_1,...,w_5)'. Using the 'Element' function one can enter algebraic numbers with respect to this basis.", 7491 ex := [ "f := X^5 + 4*X^4 - 56*X^2 -16*X + 192;\no := EquationOrder(f);\nO := MaximalOrder(o); # maximal order of 'o'\nw1 := Element(O,[1,0,0,0,0]);\nw2 := Element(O,[0,1,0,0,0]);\nw3 := Element(O,[0,0,1,0,0]);\nw4 := Element(O,[0,0,0,1,0]);\nw5 := Element(O,[0,0,0,0,1]);\n" ], 7492 hash := "ab46c5", 7493 sig := "Orders of Number Fields", 7494 sog := "", 7495 docsrc := "install_doc/number_field.g", 7496 soghash := "da39a3", 7497 sig4hash := "Orders of Number Fields" ), 7498 rec( 7499 kind := "KEYWORD", 7500 name := "Unit Groups", 7501 short := "KASH3 provides several functions dealing with the units of an order. In order to compute a system of fundamental units the 'UnitGroup' function should be used. It returns the unit group as a finitely generated abelian group and a map from this abelian group to the order.The function 'TorsionUnitGroup' returns the torsion subgroup of the unit group", 7502 ex := [ "f := X^5 + 4*X^4 - 56*X^2 -16*X + 192;o := EquationOrder(f);\nO := MaximalOrder(o);\nU := UnitGroup(O);\nApply(x->U.ext1(x),List(Generators(U))); " ], 7503 hash := "afac3c", 7504 sig := "Unit Groups", 7505 sog := "", 7506 docsrc := "install_doc/number_field.g", 7507 soghash := "da39a3", 7508 sig4hash := "Unit Groups" ), 7509 rec( 7510 kind := "KEYWORD", 7511 name := "Ideals", 7512 short := "In KASH3 an ideal is an object which is, like an algebraic number, defined over a certain order. There are many ways to create an ideal in KASH3. The most basic one is to use the function 'Ideal'. The sum and the difference of two ideals are the smallest ideals which contain both operands. The product of two ideals is the ideal formed by all products of an element of the first ideal with an element of the second one. KASH3 can also handle fractional ideals (a fractional ideal is an integral ideal divided by a certain non--zero integer). This feature allows ideals to be inverted if the underlying order is the maximal one (remember that in a Dedekind ring the fractional ideals form a group under multiplication).", 7513 ex := [ ], 7514 hash := "ead637", 7515 sig := "Ideals", 7516 sog := "", 7517 docsrc := "install_doc/number_field.g", 7518 soghash := "da39a3", 7519 sig4hash := "Ideals" ), 7520 rec( 7521 kind := "KEYWORD", 7522 name := "Class Groups", 7523 short := "The task of computing the ideal class group is solved by invoking the 'ClassGroup' function. As a result an abelian group 'G' that the class group is isomorphic to, extended the by the map from 'G' into the set of Ideals in 'O'. Using the 'ClassGroupCyclicFactorGenerators' routine one can obtain a list of ideals representing generators of the cyclic factors of ideal class group. Notice that you must first compute the class group before you can use the 'ClassGroupCyclicFactorGenerators' routine.\n The Minkowski bound is used to compute a class group in KASH3. This bound always guarantees correct results. However, when the field discriminant is 'large', the Minkowski bound causes very time consuming computations requiring a large amount of memory. You can pass a smaller bound to the 'OrderClassGroup' function calling it with optional arguments.", 7524 ex := [ "f := X^5 + 4*X^4 - 56*X^2 -16*X + 192;\no := EquationOrder(f);\nO := MaximalOrder(o);\nCl := ClassGroup(O);\n" ], 7525 hash := "65d8e9", 7526 sig := "Class Groups", 7527 sog := "", 7528 docsrc := "install_doc/number_field.g", 7529 soghash := "da39a3", 7530 sig4hash := "Class Groups" ), 7531 rec( 7532 kind := "KEYWORD", 7533 name := "Global Function Fields", 7534 short := "In this section the basic steps necessary for the creation of an algebraic function field and for doing simple operations are explained. The concepts are quite similar to the algebraic number field case, so you may also have a look at the first sections dealing with algebraic number fields.", 7535 see := [ "08ba89", "54eb9f", "51a70b" ], 7536 ex := [ ], 7537 hash := "9b982b", 7538 sig := "Global Function Fields", 7539 sog := "", 7540 docsrc := "install_doc/function_field.g", 7541 soghash := "da39a3", 7542 sig4hash := "Global Function Fields" ), 7543 rec( 7544 kind := "KEYWORD", 7545 name := "Function Fields", 7546 short := "In KASH3, creation of an algebraic function field begins with choosing a bivariate polynomial 'f' over 'k', which is separable and monic in the second variable, such that 'f(T,y) = 0'. For this there have to be defined the field 'k', the polynomial rings 'k[T]' and 'k[T][y]', respectively (see example). It is afterwards possible to define an algebraic function field. We test first whether the bivariate polynomial is irreducible and separable in the second variable. Then as a first application, one can compute the genus of the function field by calling 'Genus' function.", 7547 ex := [ "k := FiniteField(25);\nkT := RationalFunctionField(k);\nkTy := PolynomialAlgebra(kT);\nT := kT.1;; y := kTy.1;;\nf := y^3 + T^4 + 1;\nK := FunctionField(f);\nGenus(K);" ], 7548 hash := "08ba89", 7549 sig := "Function Fields", 7550 sog := "", 7551 docsrc := "install_doc/function_field.g", 7552 soghash := "da39a3", 7553 sig4hash := "Function Fields" ), 7554 rec( 7555 kind := "KEYWORD", 7556 name := "Finite and Infinite Maximal Orders", 7557 short := "According to their coefficient rings 'k[T]' or 'O at infinity' orders are called finite or infinite. By an equation order (or coordinate ring) over 'k[T]' we mean the quotient ring 'k[T][y] / f(T,y)k[T][y]'. Equation orders over 'O at infinity' are defined analogously for suitable, field generating polynomials (See examples for different orders).\nOne can define elements of orders by calling 'Element'. Since the orders have bases, it is enough to specify coefficients of linear combinations of the basis elements (see example). Afterwards one can perform the operations with these elements as usual.\nUsually one wants to work with the maximal orders since only these are Dedekind rings. For convenience there is a function which expects the defining polynomial and which first checks for irreducibility and separability and defines then the algebraic function field 'F' and the maximal orders 'o' and 'oi' (see example below).", 7558 ex := [ "ff := FiniteField(5);\nfx := FunctionField(ff);\nfxy := PolynomialAlgebra(fx);\nF := FunctionField(fxy.1^3+fx.1^4+1);\no:=MaximalOrderFinite(F);\noi:=MaximalOrderInfinite(F);\na:=Element(o,[0,1,0]); b:=Element(oi,[0,1/fx.1,1/fx.1^2+1]);\na^3+fx.1^4+1;\na+b;\nCoerce(o,a);" ], 7559 hash := "54eb9f", 7560 sig := "Finite and Infinite Maximal Orders", 7561 sog := "", 7562 docsrc := "install_doc/function_field.g", 7563 soghash := "da39a3", 7564 sig4hash := "Finite and Infinite Maximal Orders" ), 7565 rec( 7566 kind := "KEYWORD", 7567 name := "Ideals and Divisors", 7568 short := "There are two representations for ideals, first by two generating elements and second by a module basis over the coefficient ring of the order. Multiplicative arithmetic is supported and you may also take the sum of two ideals, which is the same as to compute the gcd of these ideals.", 7569 ex := [ ], 7570 hash := "51a70b", 7571 sig := "Ideals and Divisors", 7572 sog := "", 7573 docsrc := "install_doc/function_field.g", 7574 soghash := "da39a3", 7575 sig4hash := "Ideals and Divisors" ), 7576 rec( 7577 kind := "KEYWORD", 7578 name := "Outside KASH3", 7579 short := "KASH3 supports sophisticated access function to the world outside of KASH. We will discuss input/output functions to access the file system and the system environment as well as functions to access the QaoS databases.\nFurthermore, for historical reasons we provide a so called GAP compatibility mode.", 7580 see := [ "6ce6c5", "bc0792", "61074f", "7d5323" ], 7581 ex := [ ], 7582 hash := "4c47dd", 7583 sig := "Outside KASH3", 7584 sog := "", 7585 docsrc := "install_doc/gapstuff.g", 7586 soghash := "da39a3", 7587 sig4hash := "Outside KASH3" ), 7588 rec( 7589 kind := "KEYWORD", 7590 name := "Files", 7591 short := "Basically KASH is aware of both writing to files and reading from files. While the former may be used to output arbitrary data formats, the latter is restricted to files with valid KASH syntax.\nIndeed, the primary intention for output to files is logging. In constrast, reading files (thusly, evaluating their contents) is primarily suitable for storing user function definitions or even variable bindings permanently.", 7592 see := [ "954a96", "cc967a", "594a6f", "b720bf", "6c53a7", "d039f9" ], 7593 ex := [ ], 7594 hash := "6ce6c5", 7595 sig := "Files", 7596 sog := "", 7597 docsrc := "install_doc/gapstuff.g", 7598 soghash := "da39a3", 7599 sig4hash := "Files" ), 7600 rec( 7601 kind := "KEYWORD", 7602 name := "System", 7603 short := "KASH offers access to the system environment, read the underlying shell, from within a running session.\nNote: Having bound the Exec() and Pipe() functions _IS A SECURITY RISK_! Everybody who has access to your KASH session is also able to run commands in the name of your uid.\nYou may consider unbinding the function definitions globally.", 7604 see := [ "8e4ba1", "e6f248", "bb8323" ], 7605 ex := [ ], 7606 hash := "bc0792", 7607 sig := "System", 7608 sog := "", 7609 docsrc := "install_doc/gapstuff.g", 7610 soghash := "da39a3", 7611 sig4hash := "System" ), 7612 rec( 7613 kind := "KEYWORD", 7614 name := "Database", 7615 short := "KASH can read various algebraic objects from the QaoS databases in Berlin. You can establish criteria and query for meeting objects.\nNote: The system KASH runs on must have access to the WWW and you must have cURL installed and configured properly.", 7616 see := [ "4d7a41", "d038c9" ], 7617 ex := [ ], 7618 hash := "61074f", 7619 sig := "Database", 7620 sog := "", 7621 docsrc := "install_doc/gapstuff.g", 7622 soghash := "da39a3", 7623 sig4hash := "Database" ), 7624 rec( 7625 kind := "KEYWORD", 7626 name := "GAP compatibility mode", 7627 short := "KASH can operate in a so called GAP compatibilty mode. This provides additional group theoretic functions and objects as in GAP3.\nYou can enter the GAP emulation mode with the command `GAP();'. Leaving the GAP mode is not possible until the end of your session.\nNote: Also, since GAP does not follow our type system, many of the usual GAP functions might not succeed or even work!", 7628 see := [ "fd2d29", "bd102f", "7cc48c", "7acb1d", "2d83c5" ], 7629 ex := [ ], 7630 hash := "7d5323", 7631 sig := "GAP compatibility mode", 7632 sog := "", 7633 docsrc := "install_doc/gapstuff.g", 7634 soghash := "da39a3", 7635 sig4hash := "GAP compatibility mode" ), 7636 rec( 7637 kind := "KEYWORD", 7638 name := "Creating GAP groups/objects", 7639 short := "The main constructor function for GAP objects (read groups) is `Group()'. There are other several built-in ``templates'' for groups which we assume are known from GAP.", 7640 ex := [ "GAP();\nGroup((1,2),(3,4));CyclicGroup(4);" ], 7641 hash := "fd2d29", 7642 sig := "Creating GAP groups/objects", 7643 sog := "", 7644 docsrc := "install_doc/gapstuff.g", 7645 soghash := "da39a3", 7646 sig4hash := "Creating GAP groups/objects" ), 7647 rec( 7648 kind := "KEYWORD", 7649 name := "Accessing GAP groups/objects", 7650 short := "Some of the usual GAP accessor functions are available.\n`Generators', `Elements', `Normalizer', `Centralizer', `Stabilizer', `Centre'.", 7651 ex := [ ], 7652 hash := "bd102f", 7653 sig := "Accessing GAP groups/objects", 7654 sog := "", 7655 docsrc := "install_doc/gapstuff.g", 7656 soghash := "da39a3", 7657 sig4hash := "Accessing GAP groups/objects" ), 7658 rec( 7659 kind := "KEYWORD", 7660 name := "Properties of GAP groups/objects", 7661 short := "Some of the usual GAP predicates are available.\n`IsAbelian', `IsSolvable', `IsCyclic', ...", 7662 ex := [ ], 7663 hash := "7cc48c", 7664 sig := "Properties of GAP groups/objects", 7665 sog := "", 7666 docsrc := "install_doc/gapstuff.g", 7667 soghash := "da39a3", 7668 sig4hash := "Properties of GAP groups/objects" ), 7669 rec( 7670 kind := "KEYWORD", 7671 name := "Converting GAP groups/objects to KASH3", 7672 short := "Unfortuneately, (automated) conversion of arbitrary groups is not possible.\nFor the special case of Abelian groups, use the usual constructors, such as 'AbelianGroup', or 'FreeAbelianGroup'.\nThis might change in the future.", 7673 ex := [ ], 7674 hash := "7acb1d", 7675 sig := "Converting GAP groups/objects to KASH3", 7676 sog := "", 7677 docsrc := "install_doc/gapstuff.g", 7678 soghash := "da39a3", 7679 sig4hash := "Converting GAP groups/objects to KASH3" ), 7680 rec( 7681 kind := "KEYWORD", 7682 name := "Known failures in GAP compat mode", 7683 short := "Some of the GAP functions are known to fail due to different type systems. This is a (incomplete) list thereof:\nElementaryAbelianGroup(<elt-ord^rat>)\n", 7684 ex := [ ], 7685 hash := "2d83c5", 7686 sig := "Known failures in GAP compat mode", 7687 sog := "", 7688 docsrc := "install_doc/gapstuff.g", 7689 soghash := "da39a3", 7690 sig4hash := "Known failures in GAP compat mode" ), 7691 rec( 7692 kind := "FUNCTION", 7693 sin := [ [ fld^fin, "F" ], [ fld^fin, "S" ] ], 7694 sou := [ [ elt-fld^fin ] ], 7695 name := "Generator", 7696 short := "Given a finite field F and a subfield S of F, return the (algebra) generator of F over S.", 7697 ex := [ "x_F := FiniteField(25);\nx_S := FiniteField(5);\nGenerator(x_F, x_S);" ], 7698 hash := "1352b4", 7699 sig := "Generator(<fld^fin> F, <fld^fin> S)", 7700 sog := " -> <elt-fld^fin>", 7701 docsrc := "<internal>", 7702 sinflat := [ fld^fin, fld^fin ], 7703 souflat := [ elt-fld^fin ], 7704 soghash := "da39a3", 7705 sig4hash := "Generator(fld^fin,fld^fin)" ), 7706 rec( 7707 kind := "FUNCTION", 7708 sin := [ [ fld^fin, "F" ] ], 7709 sou := [ [ elt-fld^fin ] ], 7710 name := "Generator", 7711 short := "Given a finite field F, return the (algebra) generator of F over its ground field.", 7712 ex := [ "x_F := FiniteField(25);\nGenerator(x_F);" ], 7713 hash := "1a564a", 7714 sig := "Generator(<fld^fin> F)", 7715 sog := " -> <elt-fld^fin>", 7716 docsrc := "<internal>", 7717 sinflat := [ fld^fin ], 7718 souflat := [ elt-fld^fin ], 7719 soghash := "da39a3", 7720 sig4hash := "Generator(fld^fin)" ), 7721 rec( 7722 kind := "FUNCTION", 7723 sin := [ [ res^rat, "R" ] ], 7724 sou := [ [ elt-res^rat ] ], 7725 name := "Generator", 7726 short := "The generator of R.", 7727 ex := [ "x_R := ResidueClassRing(2^23);\nGenerator(x_R);" ], 7728 hash := "61057a", 7729 sig := "Generator(<res^rat> R)", 7730 sog := " -> <elt-res^rat>", 7731 docsrc := "<internal>", 7732 sinflat := [ res^rat ], 7733 souflat := [ elt-res^rat ], 7734 soghash := "da39a3", 7735 sig4hash := "Generator(res^rat)" ), 7736 rec( 7737 kind := "FUNCTION", 7738 sin := [ [ ord^rat, "R" ] ], 7739 sou := [ [ elt-ord^rat ] ], 7740 name := "Generator", 7741 short := "The generator of R.", 7742 ex := [ "x_Z := IntegerRing();\nGenerator(x_Z);" ], 7743 hash := "cc954c", 7744 sig := "Generator(<ord^rat> R)", 7745 sog := " -> <elt-ord^rat>", 7746 docsrc := "<internal>", 7747 sinflat := [ ord^rat ], 7748 souflat := [ elt-ord^rat ], 7749 soghash := "da39a3", 7750 sig4hash := "Generator(ord^rat)" ), 7751 rec( 7752 kind := "FUNCTION", 7753 sin := [ [ alg^pol, "R" ] ], 7754 sou := [ [ elt-alg^pol ] ], 7755 name := "Generator", 7756 short := "The generator of R.", 7757 ex := [ "x_R := PolynomialAlgebra( IntegerRing() );\nGenerator(x_R);" ], 7758 hash := "716b03", 7759 sig := "Generator(<alg^pol> R)", 7760 sog := " -> <elt-alg^pol>", 7761 docsrc := "<internal>", 7762 sinflat := [ alg^pol ], 7763 souflat := [ elt-alg^pol ], 7764 soghash := "da39a3", 7765 sig4hash := "Generator(alg^pol)" ), 7766 rec( 7767 kind := "FUNCTION", 7768 sin := [ [ seq(elt-alg^boo), "x" ], [ seq(elt-alg^boo), "y" ] ], 7769 sou := [ [ seq() ] ], 7770 name := "And", 7771 short := "The pointwise logical AND of the elements of x and y.", 7772 ex := [ "And( [ TRUE, TRUE, FALSE ], [ TRUE, FALSE, FALSE ] );" ], 7773 hash := "33ff40", 7774 sig := "And(<seq(elt-alg^boo)> x, <seq(elt-alg^boo)> y)", 7775 sog := " -> <seq()>", 7776 docsrc := "<internal>", 7777 sinflat := [ seq(elt-alg^boo), seq(elt-alg^boo) ], 7778 souflat := [ seq() ], 7779 soghash := "da39a3", 7780 sig4hash := "And(seq(elt-alg^boo),seq(elt-alg^boo))" ), 7781 rec( 7782 kind := "FUNCTION", 7783 sin := [ [ seq(), "x" ], [ seq(elt-alg^boo), "y" ] ], 7784 name := "And_", 7785 short := "The pointwise logical AND of the elements of x and y.", 7786 ex := [ "x_L := [ TRUE, TRUE, FALSE ];\nAnd_( x_L, [ TRUE, FALSE, FALSE ] );\nx_L;" ], 7787 hash := "a9e585", 7788 sig := "And_(<seq()> x, <seq(elt-alg^boo)> y)", 7789 sog := "", 7790 docsrc := "<internal>", 7791 sinflat := [ seq(), seq(elt-alg^boo) ], 7792 soghash := "da39a3", 7793 sig4hash := "And_(seq(),seq(elt-alg^boo))" ), 7794 rec( 7795 kind := "FUNCTION", 7796 sin := [ [ elt-fld^fra, "a" ] ], 7797 sou := [ [ elt-fld^rea ] ], 7798 name := "T2Norm", 7799 short := "Returns the T_2-norm of a.", 7800 ex := [ ], 7801 hash := "82f7c4", 7802 sig := "T2Norm(<elt-fld^fra> a)", 7803 sog := " -> <elt-fld^rea>", 7804 docsrc := "<internal>", 7805 sinflat := [ elt-fld^fra ], 7806 souflat := [ elt-fld^rea ], 7807 soghash := "7f2490", 7808 sig4hash := "T2Norm(elt-fld^fra)" ), 7809 rec( 7810 kind := "FUNCTION", 7811 sin := [ [ elt-ord^num, "a" ] ], 7812 sou := [ [ elt-fld^rea ] ], 7813 name := "T2Norm", 7814 short := "Returns the T_2-norm of a.", 7815 ex := [ "x_R := PolynomialAlgebra( IntegerRing() );\nx_x := Generator(x_R, 1);\nx_O := EquationOrder(x_x^2 - 18);\nx_a := Generator(x_O, 2);\nT2Norm(x_a);" ], 7816 hash := "dfa314", 7817 sig := "T2Norm(<elt-ord^num> a)", 7818 sog := " -> <elt-fld^rea>", 7819 docsrc := "<internal>", 7820 sinflat := [ elt-ord^num ], 7821 souflat := [ elt-fld^rea ], 7822 soghash := "da39a3", 7823 sig4hash := "T2Norm(elt-ord^num)" ), 7824 rec( 7825 kind := "FUNCTION", 7826 sin := [ [ any, "M" ], [ any, "x" ] ], 7827 sou := [ [ any ] ], 7828 name := "Coerce", 7829 short := "Coerce x into M.", 7830 ex := [ "x_Z := IntegerRing();\nx_R := PolynomialAlgebra( x_Z );\nx_a := Coerce( x_R, Zero(x_Z) );\nType(x_a);\nx_b := Coerce( x_Z, x_a );\nType(x_b);" ], 7831 hash := "8f26c3", 7832 sig := "Coerce(<any> M, <any> x)", 7833 sog := " -> <any>", 7834 docsrc := "<internal>", 7835 sinflat := [ any, any ], 7836 souflat := [ any ], 7837 soghash := "da39a3", 7838 sig4hash := "Coerce(any,any)" ), 7839 rec( 7840 kind := "FUNCTION", 7841 sin := [ [ fld^fra, "F" ], [ elt-ids^fra/ord^num, "I" ] ], 7842 sou := [ [ elt-ids^fra/ord^num ] ], 7843 name := "CoerceIdeal", 7844 short := "Return the ideal I as an ideal of F or O.", 7845 ex := [ ], 7846 hash := "55e26b", 7847 sig := "CoerceIdeal(<fld^fra> F, <elt-ids^fra/ord^num> I)", 7848 sog := " -> <elt-ids^fra/ord^num>", 7849 docsrc := "<internal>", 7850 sinflat := [ fld^fra, elt-ids^fra/ord^num ], 7851 souflat := [ elt-ids^fra/ord^num ], 7852 soghash := "ca011c", 7853 sig4hash := "CoerceIdeal(fld^fra,elt-ids^fra/ord^num)" ), 7854 rec( 7855 kind := "FUNCTION", 7856 sin := [ [ ord^num, "O" ], [ elt-ids^fra/ord^num, "I" ] ], 7857 sou := [ [ elt-ids^int/ord^num ] ], 7858 name := "CoerceIdeal", 7859 short := "Return the ideal I as an ideal of F or O.", 7860 ex := [ "x_R := PolynomialAlgebra( IntegerRing() );\nx_x := Generator(x_R, 1);\nx_O := MaximalOrder(x_x^2 - 18);\nx_a := Element(x_O, [0,1] );\nx_I := Factorization( 3*x_O )[1][1];\nx_Ox := PolynomialAlgebra( x_O );\nx_x := Generator(x_Ox, 1);\nx_OO := MaximalOrder( x_x^3 - 27*x_a );\nx_II := CoerceIdeal(x_OO, x_I);" ], 7861 hash := "6f0af0", 7862 sig := "CoerceIdeal(<ord^num> O, <elt-ids^fra/ord^num> I)", 7863 sog := " -> <elt-ids^int/ord^num>", 7864 docsrc := "<internal>", 7865 sinflat := [ ord^num, elt-ids^fra/ord^num ], 7866 souflat := [ elt-ids^int/ord^num ], 7867 soghash := "da39a3", 7868 sig4hash := "CoerceIdeal(ord^num,elt-ids^fra/ord^num)" ), 7869 rec( 7870 kind := "FUNCTION", 7871 sin := [ [ ord^fun, "O" ], [ elt-ids^int/ord^fun, "I" ] ], 7872 sou := [ [ elt-ids^int/ord^fun ] ], 7873 name := "CoerceIdeal", 7874 short := "Return the ideal I as an ideal of F or O.", 7875 ex := [ "x_k := FiniteField(5);\nx_kx := PolynomialAlgebra(x_k);\nx_kxy := PolynomialAlgebra(x_kx);\nx_x := Generator(x_kx, 1);\nx_y := Generator(x_kxy, 1);\nx_F := FunctionField(x_y^2 - x_x^3 + 1);\nx_O := MaximalOrderFinite(x_F);\nx_a := Element(x_O, [0,1] );\nx_I := Factorization( x_x*x_O )[1][1];\nx_Fz := PolynomialAlgebra( x_F );\nx_z := Generator(x_Fz, 1);\nx_G := FunctionField(x_z^3 - x_a);\nx_OO := MaximalOrderFinite(x_G);\nx_II := CoerceIdeal(x_OO, x_I);" ], 7876 hash := "71e03d", 7877 sig := "CoerceIdeal(<ord^fun> O, <elt-ids^int/ord^fun> I)", 7878 sog := " -> <elt-ids^int/ord^fun>", 7879 docsrc := "<internal>", 7880 sinflat := [ ord^fun, elt-ids^int/ord^fun ], 7881 souflat := [ elt-ids^int/ord^fun ], 7882 soghash := "da39a3", 7883 sig4hash := "CoerceIdeal(ord^fun,elt-ids^int/ord^fun)" ), 7884 rec( 7885 kind := "FUNCTION", 7886 sin := [ [ seq(), "S" ] ], 7887 sou := [ [ elt-ord^rat ] ], 7888 name := "Size", 7889 short := "The length of the sequence Q.", 7890 ex := [ "Size([]);\nSize([3]);\nSize([1,2,3]);\nSize([1..10]);" ], 7891 hash := "c16201", 7892 sig := "Size(<seq()> S)", 7893 sog := " -> <elt-ord^rat>", 7894 docsrc := "<internal>", 7895 sinflat := [ seq() ], 7896 souflat := [ elt-ord^rat ], 7897 soghash := "da39a3", 7898 sig4hash := "Size(seq())" ), 7899 rec( 7900 kind := "FUNCTION", 7901 sin := [ [ alg^mat, "A" ] ], 7902 sou := [ [ elt-ord^rat ] ], 7903 name := "Size", 7904 short := "The cardinality of ring R (if finite).", 7905 ex := [ "x_R := MatrixAlgebra( FiniteField(5), 3);\nSize(x_R);" ], 7906 hash := "aa88e2", 7907 sig := "Size(<alg^mat> A)", 7908 sog := " -> <elt-ord^rat>", 7909 docsrc := "<internal>", 7910 sinflat := [ alg^mat ], 7911 souflat := [ elt-ord^rat ], 7912 soghash := "da39a3", 7913 sig4hash := "Size(alg^mat)" ), 7914 rec( 7915 kind := "FUNCTION", 7916 sin := [ [ rng, "R" ] ], 7917 sou := [ [ elt-ord^rat ] ], 7918 name := "Size", 7919 short := "The cardinality of ring R (if finite).", 7920 ex := [ "x_R := FiniteField(5);\nSize(x_R);\nx_R := IntegerRing();\nSize(x_R);" ], 7921 hash := "ee3f72", 7922 sig := "Size(<rng> R)", 7923 sog := " -> <elt-ord^rat>", 7924 docsrc := "<internal>", 7925 sinflat := [ rng ], 7926 souflat := [ elt-ord^rat ], 7927 soghash := "da39a3", 7928 sig4hash := "Size(rng)" ), 7929 rec( 7930 kind := "FUNCTION", 7931 sin := [ [ tup(), "T" ] ], 7932 sou := [ [ elt-ord^rat ] ], 7933 name := "Size", 7934 short := "The length (number of components) of T.", 7935 ex := [ "x_t := Tuple( [ 1, FiniteField(5), Pi(RealField()) ] );\nSize(x_t);" ], 7936 hash := "93f01f", 7937 sig := "Size(<tup()> T)", 7938 sog := " -> <elt-ord^rat>", 7939 docsrc := "<internal>", 7940 sinflat := [ tup() ], 7941 souflat := [ elt-ord^rat ], 7942 soghash := "da39a3", 7943 sig4hash := "Size(tup())" ), 7944 rec( 7945 kind := "FUNCTION", 7946 sin := [ [ map(), "T" ] ], 7947 sou := [ [ elt-ord^rat ] ], 7948 name := "Size", 7949 short := "The number of rows in the coset table T.", 7950 ex := [ ], 7951 hash := "4e3050", 7952 sig := "Size(<map()> T)", 7953 sog := " -> <elt-ord^rat>", 7954 docsrc := "<internal>", 7955 sinflat := [ map() ], 7956 souflat := [ elt-ord^rat ], 7957 soghash := "898213", 7958 sig4hash := "Size(map())" ), 7959 rec( 7960 kind := "FUNCTION", 7961 sin := [ [ str, "C" ] ], 7962 sou := [ [ elt-ord^rat ] ], 7963 name := "Size", 7964 short := "The cardinality of C.", 7965 ex := [ "x_z5 := pAdicRing(5,30);\nx_r5 := Quotient(x_z5, 5^10);\nSize( x_r5 );" ], 7966 hash := "51e100", 7967 sig := "Size(<str> C)", 7968 sog := " -> <elt-ord^rat>", 7969 docsrc := "<internal>", 7970 sinflat := [ str ], 7971 souflat := [ elt-ord^rat ], 7972 soghash := "da39a3", 7973 sig4hash := "Size(str)" ), 7974 rec( 7975 kind := "FUNCTION", 7976 sin := [ [ fld^fin, "R" ] ], 7977 sou := [ [ elt-ord^rat ] ], 7978 name := "Size", 7979 short := "The cardinality of R.", 7980 ex := [ "Size( FiniteField( 2 ) );" ], 7981 hash := "96758c", 7982 sig := "Size(<fld^fin> R)", 7983 sog := " -> <elt-ord^rat>", 7984 docsrc := "<internal>", 7985 sinflat := [ fld^fin ], 7986 souflat := [ elt-ord^rat ], 7987 soghash := "da39a3", 7988 sig4hash := "Size(fld^fin)" ), 7989 rec( 7990 kind := "FUNCTION", 7991 sin := [ [ res^rat, "R" ] ], 7992 sou := [ [ elt-ord^rat ] ], 7993 name := "Size", 7994 short := "The cardinality of R.", 7995 ex := [ "x_R := ResidueClassRing(2^23);\nSize( x_R );" ], 7996 hash := "46626e", 7997 sig := "Size(<res^rat> R)", 7998 sog := " -> <elt-ord^rat>", 7999 docsrc := "<internal>", 8000 sinflat := [ res^rat ], 8001 souflat := [ elt-ord^rat ], 8002 soghash := "da39a3", 8003 sig4hash := "Size(res^rat)" ), 8004 rec( 8005 kind := "FUNCTION", 8006 sin := [ [ res^pad, "R" ] ], 8007 sou := [ [ elt-ord^rat ] ], 8008 name := "Size", 8009 short := "The cardinality of R.", 8010 ex := [ "x_z5 := pAdicRing(5,30);\nx_r5 := Quotient(x_z5, 5^10);\nSize( x_r5 );" ], 8011 hash := "ea70c0", 8012 sig := "Size(<res^pad> R)", 8013 sog := " -> <elt-ord^rat>", 8014 docsrc := "<internal>", 8015 sinflat := [ res^pad ], 8016 souflat := [ elt-ord^rat ], 8017 soghash := "da39a3", 8018 sig4hash := "Size(res^pad)" ), 8019 rec( 8020 kind := "FUNCTION", 8021 sin := [ [ grp^abl, "G" ] ], 8022 sou := [ [ elt-ord^rat ] ], 8023 name := "Size", 8024 short := "The cardinality of M (if finite).", 8025 ex := [ "x_G := AbelianGroup( [2,5] );\nSize( x_G );" ], 8026 hash := "ee0a32", 8027 sig := "Size(<grp^abl> G)", 8028 sog := " -> <elt-ord^rat>", 8029 docsrc := "<internal>", 8030 sinflat := [ grp^abl ], 8031 souflat := [ elt-ord^rat ], 8032 soghash := "da39a3", 8033 sig4hash := "Size(grp^abl)" ), 8034 rec( 8035 kind := "FUNCTION", 8036 sin := [ [ mdl^vec, "M" ] ], 8037 sou := [ [ elt-ord^rat ] ], 8038 name := "Size", 8039 short := "The cardinality of M (if finite).", 8040 ex := [ "x_V := VectorSpace( FiniteField( 5 ), 3 );\nSize( x_V );" ], 8041 hash := "de2e6c", 8042 sig := "Size(<mdl^vec> M)", 8043 sog := " -> <elt-ord^rat>", 8044 docsrc := "<internal>", 8045 sinflat := [ mdl^vec ], 8046 souflat := [ elt-ord^rat ], 8047 soghash := "da39a3", 8048 sig4hash := "Size(mdl^vec)" ), 8049 rec( 8050 kind := "FUNCTION", 8051 sin := [ [ mdl^mat, "M" ] ], 8052 sou := [ [ elt-ord^rat ] ], 8053 name := "Size", 8054 short := "The cardinality of M (if finite).", 8055 ex := [ "" ], 8056 hash := "bd482b", 8057 sig := "Size(<mdl^mat> M)", 8058 sog := " -> <elt-ord^rat>", 8059 docsrc := "<internal>", 8060 sinflat := [ mdl^mat ], 8061 souflat := [ elt-ord^rat ], 8062 soghash := "da39a3", 8063 sig4hash := "Size(mdl^mat)" ), 8064 rec( 8065 kind := "FUNCTION", 8066 sin := [ [ mdl, "M" ] ], 8067 sou := [ [ elt-ord^rat ] ], 8068 name := "Size", 8069 short := "The cardinality of M (if finite).", 8070 ex := [ ], 8071 hash := "2ee348", 8072 sig := "Size(<mdl> M)", 8073 sog := " -> <elt-ord^rat>", 8074 docsrc := "<internal>", 8075 sinflat := [ mdl ], 8076 souflat := [ elt-ord^rat ], 8077 soghash := "da39a3", 8078 sig4hash := "Size(mdl)" ), 8079 rec( 8080 kind := "FUNCTION", 8081 sin := [ [ alg^boo, "M" ] ], 8082 sou := [ [ elt-ord^rat ] ], 8083 name := "Size", 8084 short := "The cardinality of M (if finite).", 8085 ex := [ "Size( Booleans() );" ], 8086 hash := "cf4269", 8087 sig := "Size(<alg^boo> M)", 8088 sog := " -> <elt-ord^rat>", 8089 docsrc := "<internal>", 8090 sinflat := [ alg^boo ], 8091 souflat := [ elt-ord^rat ], 8092 soghash := "da39a3", 8093 sig4hash := "Size(alg^boo)" ), 8094 rec( 8095 kind := "FUNCTION", 8096 sin := [ [ seq(elt-alg^boo), "S" ] ], 8097 sou := [ [ elt-alg^boo ] ], 8098 name := "And", 8099 ex := [ "And( Sequence( [TRUE, TRUE, TRUE ] ) );\nAnd( [TRUE, TRUE, TRUE] );" ], 8100 hash := "120c98", 8101 sig := "And(<seq(elt-alg^boo)> S)", 8102 sog := " -> <elt-alg^boo>", 8103 docsrc := "<internal>", 8104 sinflat := [ seq(elt-alg^boo) ], 8105 souflat := [ elt-alg^boo ], 8106 soghash := "da39a3", 8107 sig4hash := "And(seq(elt-alg^boo))" ), 8108 rec( 8109 kind := "FUNCTION", 8110 sin := [ [ seq(seq()), "S" ] ], 8111 sou := [ [ seq() ] ], 8112 name := "Concatenation", 8113 short := "The concatenation of all elements of S.", 8114 ex := [ "x_L := Concatenation( Sequence( [ Sequence( [1,2] ), Sequence( [2,3] ) ] ) );\nType(x_L);\nx_L := Concatenation( [ [1,2], [2,3] ] );\nType(x_L);" ], 8115 hash := "86383f", 8116 sig := "Concatenation(<seq(seq())> S)", 8117 sog := " -> <seq()>", 8118 docsrc := "<internal>", 8119 sinflat := [ seq(seq()) ], 8120 souflat := [ seq() ], 8121 soghash := "da39a3", 8122 sig4hash := "Concatenation(seq(seq()))" ), 8123 rec( 8124 kind := "FUNCTION", 8125 sin := [ [ seq(string), "S" ] ], 8126 sou := [ [ string ] ], 8127 name := "Concatenation", 8128 short := "The concatenation of all elements of S.", 8129 ex := [ "Concatenation( Sequence( [ \"Good\", \" \", \"Morning!\" ] ) );\nConcatenation( [ \"Good\", \" \", \"Morning!\" ] );" ], 8130 hash := "5b5c8d", 8131 sig := "Concatenation(<seq(string)> S)", 8132 sog := " -> <string>", 8133 docsrc := "<internal>", 8134 sinflat := [ seq(string) ], 8135 souflat := [ string ], 8136 soghash := "da39a3", 8137 sig4hash := "Concatenation(seq(string))" ), 8138 rec( 8139 kind := "FUNCTION", 8140 sin := [ [ seq(elt-alg^boo), "S" ] ], 8141 sou := [ [ elt-alg^boo ] ], 8142 name := "Or", 8143 ex := [ "Or( Sequence( [ TRUE, FALSE, FALSE ] ) );\nOr( [ TRUE, FALSE, FALSE ] );" ], 8144 hash := "1f60ed", 8145 sig := "Or(<seq(elt-alg^boo)> S)", 8146 sog := " -> <elt-alg^boo>", 8147 docsrc := "<internal>", 8148 sinflat := [ seq(elt-alg^boo) ], 8149 souflat := [ elt-alg^boo ], 8150 soghash := "da39a3", 8151 sig4hash := "Or(seq(elt-alg^boo))" ), 8152 rec( 8153 kind := "OPERATION", 8154 sin := [ [ elt-ord^rat, "x" ], [ elt-ord^rat, "y" ] ], 8155 sou := [ [ elt-ord^rat ] ], 8156 name := "*", 8157 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8158 ex := [ ], 8159 hash := "5d2a18", 8160 sig := "<elt-ord^rat> x * <elt-ord^rat> y", 8161 sog := " -> <elt-ord^rat>", 8162 docsrc := "<internal>", 8163 sinflat := [ elt-ord^rat, elt-ord^rat ], 8164 souflat := [ elt-ord^rat ], 8165 soghash := "898213", 8166 sig4hash := "*(elt-ord^rat,elt-ord^rat)" ), 8167 rec( 8168 kind := "OPERATION", 8169 sin := [ [ elt-fld^rat, "x" ], [ elt-fld^rat, "y" ] ], 8170 sou := [ [ elt-fld^rat ] ], 8171 name := "*", 8172 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8173 ex := [ ], 8174 hash := "97f2d4", 8175 sig := "<elt-fld^rat> x * <elt-fld^rat> y", 8176 sog := " -> <elt-fld^rat>", 8177 docsrc := "<internal>", 8178 sinflat := [ elt-fld^rat, elt-fld^rat ], 8179 souflat := [ elt-fld^rat ], 8180 soghash := "89f5fc", 8181 sig4hash := "*(elt-fld^rat,elt-fld^rat)" ), 8182 rec( 8183 kind := "OPERATION", 8184 sin := [ [ elt-mdl^vec, "v" ], [ elt-alg^mat, "X" ] ], 8185 sou := [ [ elt-mdl^vec ] ], 8186 name := "*", 8187 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8188 ex := [ ], 8189 hash := "6708e8", 8190 sig := "<elt-mdl^vec> v * <elt-alg^mat> X", 8191 sog := " -> <elt-mdl^vec>", 8192 docsrc := "<internal>", 8193 sinflat := [ elt-mdl^vec, elt-alg^mat ], 8194 souflat := [ elt-mdl^vec ], 8195 soghash := "b46581", 8196 sig4hash := "*(elt-mdl^vec,elt-alg^mat)" ), 8197 rec( 8198 kind := "OPERATION", 8199 sin := [ [ string, "x" ], [ string, "y" ] ], 8200 sou := [ [ string ] ], 8201 name := "*", 8202 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8203 ex := [ ], 8204 hash := "8d5ec6", 8205 sig := "<string> x * <string> y", 8206 sog := " -> <string>", 8207 docsrc := "<internal>", 8208 sinflat := [ string, string ], 8209 souflat := [ string ], 8210 soghash := "ecb252", 8211 sig4hash := "*(string,string)" ), 8212 rec( 8213 kind := "OPERATION", 8214 sin := [ [ elt-fld^rea, "x" ], [ elt-fld^rea, "y" ] ], 8215 sou := [ [ elt-fld^rea ] ], 8216 name := "*", 8217 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8218 ex := [ ], 8219 hash := "a6ea5b", 8220 sig := "<elt-fld^rea> x * <elt-fld^rea> y", 8221 sog := " -> <elt-fld^rea>", 8222 docsrc := "<internal>", 8223 sinflat := [ elt-fld^rea, elt-fld^rea ], 8224 souflat := [ elt-fld^rea ], 8225 soghash := "7f2490", 8226 sig4hash := "*(elt-fld^rea,elt-fld^rea)" ), 8227 rec( 8228 kind := "OPERATION", 8229 sin := [ [ elt-fld^com, "x" ], [ elt-fld^com, "y" ] ], 8230 sou := [ [ elt-fld^com ] ], 8231 name := "*", 8232 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8233 ex := [ ], 8234 hash := "f2b426", 8235 sig := "<elt-fld^com> x * <elt-fld^com> y", 8236 sog := " -> <elt-fld^com>", 8237 docsrc := "<internal>", 8238 sinflat := [ elt-fld^com, elt-fld^com ], 8239 souflat := [ elt-fld^com ], 8240 soghash := "0d772f", 8241 sig4hash := "*(elt-fld^com,elt-fld^com)" ), 8242 rec( 8243 kind := "OPERATION", 8244 sin := [ [ elt-fld^fin, "x" ], [ elt-fld^fin, "y" ] ], 8245 sou := [ [ elt-fld^fin ] ], 8246 name := "*", 8247 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8248 ex := [ ], 8249 hash := "a946db", 8250 sig := "<elt-fld^fin> x * <elt-fld^fin> y", 8251 sog := " -> <elt-fld^fin>", 8252 docsrc := "<internal>", 8253 sinflat := [ elt-fld^fin, elt-fld^fin ], 8254 souflat := [ elt-fld^fin ], 8255 soghash := "97e752", 8256 sig4hash := "*(elt-fld^fin,elt-fld^fin)" ), 8257 rec( 8258 kind := "OPERATION", 8259 sin := [ [ elt-alg^mat, "x" ], [ elt-alg^mat, "y" ] ], 8260 sou := [ [ elt-alg^mat ] ], 8261 name := "*", 8262 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8263 ex := [ ], 8264 hash := "1a92f7", 8265 sig := "<elt-alg^mat> x * <elt-alg^mat> y", 8266 sog := " -> <elt-alg^mat>", 8267 docsrc := "<internal>", 8268 sinflat := [ elt-alg^mat, elt-alg^mat ], 8269 souflat := [ elt-alg^mat ], 8270 soghash := "8dbb64", 8271 sig4hash := "*(elt-alg^mat,elt-alg^mat)" ), 8272 rec( 8273 kind := "OPERATION", 8274 sin := [ [ elt-alg^pol, "x" ], [ elt-alg^pol, "y" ] ], 8275 sou := [ [ elt-alg^pol ] ], 8276 name := "*", 8277 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8278 ex := [ ], 8279 hash := "6b513a", 8280 sig := "<elt-alg^pol> x * <elt-alg^pol> y", 8281 sog := " -> <elt-alg^pol>", 8282 docsrc := "<internal>", 8283 sinflat := [ elt-alg^pol, elt-alg^pol ], 8284 souflat := [ elt-alg^pol ], 8285 soghash := "ba7338", 8286 sig4hash := "*(elt-alg^pol,elt-alg^pol)" ), 8287 rec( 8288 kind := "OPERATION", 8289 sin := [ [ elt-fld^pol, "x" ], [ elt-fld^pol, "y" ] ], 8290 sou := [ [ elt-fld^pol ] ], 8291 name := "*", 8292 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8293 ex := [ ], 8294 hash := "fdca38", 8295 sig := "<elt-fld^pol> x * <elt-fld^pol> y", 8296 sog := " -> <elt-fld^pol>", 8297 docsrc := "<internal>", 8298 sinflat := [ elt-fld^pol, elt-fld^pol ], 8299 souflat := [ elt-fld^pol ], 8300 soghash := "540d59", 8301 sig4hash := "*(elt-fld^pol,elt-fld^pol)" ), 8302 rec( 8303 kind := "OPERATION", 8304 sin := [ [ elt-rng, "x" ], [ elt-rng, "y" ] ], 8305 sou := [ [ elt-rng ] ], 8306 name := "*", 8307 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8308 ex := [ ], 8309 hash := "548853", 8310 sig := "<elt-rng> x * <elt-rng> y", 8311 sog := " -> <elt-rng>", 8312 docsrc := "<internal>", 8313 sinflat := [ elt-rng, elt-rng ], 8314 souflat := [ elt-rng ], 8315 soghash := "7ef0ef", 8316 sig4hash := "*(elt-rng,elt-rng)" ), 8317 rec( 8318 kind := "OPERATION", 8319 sin := [ [ elt-res^pol, "x" ], [ elt-res^pol, "y" ] ], 8320 sou := [ [ elt-res^pol ] ], 8321 name := "*", 8322 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8323 ex := [ ], 8324 hash := "5345a1", 8325 sig := "<elt-res^pol> x * <elt-res^pol> y", 8326 sog := " -> <elt-res^pol>", 8327 docsrc := "<internal>", 8328 sinflat := [ elt-res^pol, elt-res^pol ], 8329 souflat := [ elt-res^pol ], 8330 soghash := "8ffe0c", 8331 sig4hash := "*(elt-res^pol,elt-res^pol)" ), 8332 rec( 8333 kind := "OPERATION", 8334 sin := [ [ elt-mdl^mat, "x" ], [ elt-mdl^mat, "y" ] ], 8335 sou := [ [ elt-mdl^mat ] ], 8336 name := "*", 8337 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8338 ex := [ ], 8339 hash := "e292e9", 8340 sig := "<elt-mdl^mat> x * <elt-mdl^mat> y", 8341 sog := " -> <elt-mdl^mat>", 8342 docsrc := "<internal>", 8343 sinflat := [ elt-mdl^mat, elt-mdl^mat ], 8344 souflat := [ elt-mdl^mat ], 8345 soghash := "5284ac", 8346 sig4hash := "*(elt-mdl^mat,elt-mdl^mat)" ), 8347 rec( 8348 kind := "OPERATION", 8349 sin := [ [ elt-alg^mat, "x" ], [ elt-mdl^mat, "y" ] ], 8350 sou := [ [ elt-mdl^mat ] ], 8351 name := "*", 8352 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8353 ex := [ ], 8354 hash := "b38c0e", 8355 sig := "<elt-alg^mat> x * <elt-mdl^mat> y", 8356 sog := " -> <elt-mdl^mat>", 8357 docsrc := "<internal>", 8358 sinflat := [ elt-alg^mat, elt-mdl^mat ], 8359 souflat := [ elt-mdl^mat ], 8360 soghash := "5284ac", 8361 sig4hash := "*(elt-alg^mat,elt-mdl^mat)" ), 8362 rec( 8363 kind := "OPERATION", 8364 sin := [ [ elt-mdl^mat, "x" ], [ elt-alg^mat, "y" ] ], 8365 sou := [ [ elt-mdl^mat ] ], 8366 name := "*", 8367 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8368 ex := [ ], 8369 hash := "f03e60", 8370 sig := "<elt-mdl^mat> x * <elt-alg^mat> y", 8371 sog := " -> <elt-mdl^mat>", 8372 docsrc := "<internal>", 8373 sinflat := [ elt-mdl^mat, elt-alg^mat ], 8374 souflat := [ elt-mdl^mat ], 8375 soghash := "5284ac", 8376 sig4hash := "*(elt-mdl^mat,elt-alg^mat)" ), 8377 rec( 8378 kind := "OPERATION", 8379 sin := [ [ elt-res^rat, "x" ], [ elt-res^rat, "y" ] ], 8380 sou := [ [ elt-res^rat ] ], 8381 name := "*", 8382 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8383 ex := [ ], 8384 hash := "1b536b", 8385 sig := "<elt-res^rat> x * <elt-res^rat> y", 8386 sog := " -> <elt-res^rat>", 8387 docsrc := "<internal>", 8388 sinflat := [ elt-res^rat, elt-res^rat ], 8389 souflat := [ elt-res^rat ], 8390 soghash := "7a2c2e", 8391 sig4hash := "*(elt-res^rat,elt-res^rat)" ), 8392 rec( 8393 kind := "OPERATION", 8394 sin := [ [ elt-res^pad, "x" ], [ elt-res^pad, "y" ] ], 8395 sou := [ [ elt-res^pad ] ], 8396 name := "*", 8397 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8398 ex := [ ], 8399 hash := "94b4b7", 8400 sig := "<elt-res^pad> x * <elt-res^pad> y", 8401 sog := " -> <elt-res^pad>", 8402 docsrc := "<internal>", 8403 sinflat := [ elt-res^pad, elt-res^pad ], 8404 souflat := [ elt-res^pad ], 8405 soghash := "0061b4", 8406 sig4hash := "*(elt-res^pad,elt-res^pad)" ), 8407 rec( 8408 kind := "OPERATION", 8409 sin := [ [ elt-ord^pad, "x" ], [ elt-ord^pad, "y" ] ], 8410 sou := [ [ elt-ord^pad ] ], 8411 name := "*", 8412 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8413 ex := [ ], 8414 hash := "296081", 8415 sig := "<elt-ord^pad> x * <elt-ord^pad> y", 8416 sog := " -> <elt-ord^pad>", 8417 docsrc := "<internal>", 8418 sinflat := [ elt-ord^pad, elt-ord^pad ], 8419 souflat := [ elt-ord^pad ], 8420 soghash := "9ee81d", 8421 sig4hash := "*(elt-ord^pad,elt-ord^pad)" ), 8422 rec( 8423 kind := "OPERATION", 8424 sin := [ [ elt-fld^pad, "x" ], [ elt-fld^pad, "y" ] ], 8425 sou := [ [ elt-fld^pad ] ], 8426 name := "*", 8427 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8428 ex := [ ], 8429 hash := "e28cd6", 8430 sig := "<elt-fld^pad> x * <elt-fld^pad> y", 8431 sog := " -> <elt-fld^pad>", 8432 docsrc := "<internal>", 8433 sinflat := [ elt-fld^pad, elt-fld^pad ], 8434 souflat := [ elt-fld^pad ], 8435 soghash := "8c3f71", 8436 sig4hash := "*(elt-fld^pad,elt-fld^pad)" ), 8437 rec( 8438 kind := "OPERATION", 8439 sin := [ [ elt-fld^fra, "x" ], [ elt-fld^fra, "y" ] ], 8440 sou := [ [ elt-fld^fra ] ], 8441 name := "*", 8442 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8443 ex := [ ], 8444 hash := "c6d89b", 8445 sig := "<elt-fld^fra> x * <elt-fld^fra> y", 8446 sog := " -> <elt-fld^fra>", 8447 docsrc := "<internal>", 8448 sinflat := [ elt-fld^fra, elt-fld^fra ], 8449 souflat := [ elt-fld^fra ], 8450 soghash := "74ef48", 8451 sig4hash := "*(elt-fld^fra,elt-fld^fra)" ), 8452 rec( 8453 kind := "OPERATION", 8454 sin := [ [ elt-ord^num, "x" ], [ elt-ord^num, "y" ] ], 8455 sou := [ [ elt-ord^num ] ], 8456 name := "*", 8457 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8458 ex := [ ], 8459 hash := "1322a4", 8460 sig := "<elt-ord^num> x * <elt-ord^num> y", 8461 sog := " -> <elt-ord^num>", 8462 docsrc := "<internal>", 8463 sinflat := [ elt-ord^num, elt-ord^num ], 8464 souflat := [ elt-ord^num ], 8465 soghash := "6b03f8", 8466 sig4hash := "*(elt-ord^num,elt-ord^num)" ), 8467 rec( 8468 kind := "OPERATION", 8469 sin := [ [ elt-res^num, "x" ], [ elt-res^num, "y" ] ], 8470 sou := [ [ elt-res^num ] ], 8471 name := "*", 8472 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8473 ex := [ ], 8474 hash := "e63d5b", 8475 sig := "<elt-res^num> x * <elt-res^num> y", 8476 sog := " -> <elt-res^num>", 8477 docsrc := "<internal>", 8478 sinflat := [ elt-res^num, elt-res^num ], 8479 souflat := [ elt-res^num ], 8480 soghash := "a87f47", 8481 sig4hash := "*(elt-res^num,elt-res^num)" ), 8482 rec( 8483 kind := "OPERATION", 8484 sin := [ [ elt-ids^fra/ord^num, "x" ], [ elt-ids^fra/ord^num, "y" ] ], 8485 sou := [ [ elt-ids^fra/ord^num ] ], 8486 name := "*", 8487 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8488 ex := [ ], 8489 hash := "edab48", 8490 sig := "<elt-ids^fra/ord^num> x * <elt-ids^fra/ord^num> y", 8491 sog := " -> <elt-ids^fra/ord^num>", 8492 docsrc := "<internal>", 8493 sinflat := [ elt-ids^fra/ord^num, elt-ids^fra/ord^num ], 8494 souflat := [ elt-ids^fra/ord^num ], 8495 soghash := "ca011c", 8496 sig4hash := "*(elt-ids^fra/ord^num,elt-ids^fra/ord^num)" ), 8497 rec( 8498 kind := "OPERATION", 8499 sin := [ [ elt-ids^int/ord^fun, "x" ], [ elt-ids^int/ord^fun, "y" ] ], 8500 sou := [ [ elt-ids^int/ord^fun ] ], 8501 name := "*", 8502 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8503 ex := [ ], 8504 hash := "dbaff7", 8505 sig := "<elt-ids^int/ord^fun> x * <elt-ids^int/ord^fun> y", 8506 sog := " -> <elt-ids^int/ord^fun>", 8507 docsrc := "<internal>", 8508 sinflat := [ elt-ids^int/ord^fun, elt-ids^int/ord^fun ], 8509 souflat := [ elt-ids^int/ord^fun ], 8510 soghash := "918914", 8511 sig4hash := "*(elt-ids^int/ord^fun,elt-ids^int/ord^fun)" ), 8512 rec( 8513 kind := "OPERATION", 8514 sin := [ [ elt-rng^ser, "x" ], [ elt-rng^ser, "y" ] ], 8515 sou := [ [ elt-rng^ser ] ], 8516 name := "*", 8517 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8518 ex := [ ], 8519 hash := "1362af", 8520 sig := "<elt-rng^ser> x * <elt-rng^ser> y", 8521 sog := " -> <elt-rng^ser>", 8522 docsrc := "<internal>", 8523 sinflat := [ elt-rng^ser, elt-rng^ser ], 8524 souflat := [ elt-rng^ser ], 8525 soghash := "28734d", 8526 sig4hash := "*(elt-rng^ser,elt-rng^ser)" ), 8527 rec( 8528 kind := "OPERATION", 8529 sin := [ [ res^rat, "x" ], [ res^rat, "y" ] ], 8530 sou := [ [ res^rat ] ], 8531 name := "*", 8532 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8533 ex := [ ], 8534 hash := "7d6800", 8535 sig := "<res^rat> x * <res^rat> y", 8536 sog := " -> <res^rat>", 8537 docsrc := "<internal>", 8538 sinflat := [ res^rat, res^rat ], 8539 souflat := [ res^rat ], 8540 soghash := "a3bb08", 8541 sig4hash := "*(res^rat,res^rat)" ), 8542 rec( 8543 kind := "OPERATION", 8544 sin := [ [ ord^rat, "x" ], [ ord^rat, "y" ] ], 8545 sou := [ [ ord^rat ] ], 8546 name := "*", 8547 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8548 ex := [ ], 8549 hash := "a8d39a", 8550 sig := "<ord^rat> x * <ord^rat> y", 8551 sog := " -> <ord^rat>", 8552 docsrc := "<internal>", 8553 sinflat := [ ord^rat, ord^rat ], 8554 souflat := [ ord^rat ], 8555 soghash := "ef1cfa", 8556 sig4hash := "*(ord^rat,ord^rat)" ), 8557 rec( 8558 kind := "OPERATION", 8559 sin := [ [ alg^pol, "x" ], [ alg^pol, "y" ] ], 8560 sou := [ [ alg^pol ] ], 8561 name := "*", 8562 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8563 ex := [ ], 8564 hash := "567a74", 8565 sig := "<alg^pol> x * <alg^pol> y", 8566 sog := " -> <alg^pol>", 8567 docsrc := "<internal>", 8568 sinflat := [ alg^pol, alg^pol ], 8569 souflat := [ alg^pol ], 8570 soghash := "75868e", 8571 sig4hash := "*(alg^pol,alg^pol)" ), 8572 rec( 8573 kind := "OPERATION", 8574 sin := [ [ elt-fld^fun, "x" ], [ elt-fld^fun, "y" ] ], 8575 sou := [ [ elt-fld^fun ] ], 8576 name := "*", 8577 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8578 ex := [ ], 8579 hash := "675095", 8580 sig := "<elt-fld^fun> x * <elt-fld^fun> y", 8581 sog := " -> <elt-fld^fun>", 8582 docsrc := "<internal>", 8583 sinflat := [ elt-fld^fun, elt-fld^fun ], 8584 souflat := [ elt-fld^fun ], 8585 soghash := "23d8b4", 8586 sig4hash := "*(elt-fld^fun,elt-fld^fun)" ), 8587 rec( 8588 kind := "OPERATION", 8589 sin := [ [ elt-ord^fun, "x" ], [ elt-ord^fun, "y" ] ], 8590 sou := [ [ elt-ord^fun ] ], 8591 name := "*", 8592 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8593 ex := [ ], 8594 hash := "a5b5a6", 8595 sig := "<elt-ord^fun> x * <elt-ord^fun> y", 8596 sog := " -> <elt-ord^fun>", 8597 docsrc := "<internal>", 8598 sinflat := [ elt-ord^fun, elt-ord^fun ], 8599 souflat := [ elt-ord^fun ], 8600 soghash := "0fe368", 8601 sig4hash := "*(elt-ord^fun,elt-ord^fun)" ), 8602 rec( 8603 kind := "OPERATION", 8604 sin := [ [ elt-dif/fld^fun, "x" ], [ elt-rng, "y" ] ], 8605 sou := [ [ elt-dif/fld^fun ] ], 8606 name := "*", 8607 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8608 ex := [ ], 8609 hash := "3b4186", 8610 sig := "<elt-dif/fld^fun> x * <elt-rng> y", 8611 sog := " -> <elt-dif/fld^fun>", 8612 docsrc := "<internal>", 8613 sinflat := [ elt-dif/fld^fun, elt-rng ], 8614 souflat := [ elt-dif/fld^fun ], 8615 soghash := "fb8974", 8616 sig4hash := "*(elt-dif/fld^fun,elt-rng)" ), 8617 rec( 8618 kind := "OPERATION", 8619 sin := [ [ elt-rng, "x" ], [ elt-dif/fld^fun, "y" ] ], 8620 sou := [ [ elt-dif/fld^fun ] ], 8621 name := "*", 8622 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8623 ex := [ ], 8624 hash := "cd7ab2", 8625 sig := "<elt-rng> x * <elt-dif/fld^fun> y", 8626 sog := " -> <elt-dif/fld^fun>", 8627 docsrc := "<internal>", 8628 sinflat := [ elt-rng, elt-dif/fld^fun ], 8629 souflat := [ elt-dif/fld^fun ], 8630 soghash := "fb8974", 8631 sig4hash := "*(elt-rng,elt-dif/fld^fun)" ), 8632 rec( 8633 kind := "OPERATION", 8634 sin := [ [ elt-ord^inf, "x" ], [ any, "y" ] ], 8635 sou := [ [ elt-ord^inf ] ], 8636 name := "*", 8637 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8638 ex := [ ], 8639 hash := "39cdfc", 8640 sig := "<elt-ord^inf> x * <any> y", 8641 sog := " -> <elt-ord^inf>", 8642 docsrc := "<internal>", 8643 sinflat := [ elt-ord^inf, any ], 8644 souflat := [ elt-ord^inf ], 8645 soghash := "08787a", 8646 sig4hash := "*(elt-ord^inf,any)" ), 8647 rec( 8648 kind := "OPERATION", 8649 sin := [ [ any, "x" ], [ elt-ord^inf, "y" ] ], 8650 sou := [ [ elt-ord^inf ] ], 8651 name := "*", 8652 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8653 ex := [ ], 8654 hash := "1eaf4c", 8655 sig := "<any> x * <elt-ord^inf> y", 8656 sog := " -> <elt-ord^inf>", 8657 docsrc := "<internal>", 8658 sinflat := [ any, elt-ord^inf ], 8659 souflat := [ elt-ord^inf ], 8660 soghash := "08787a", 8661 sig4hash := "*(any,elt-ord^inf)" ), 8662 rec( 8663 kind := "OPERATION", 8664 sin := [ [ elt-ord^inf, "x" ], [ elt-ord^inf, "y" ] ], 8665 sou := [ [ elt-ord^inf ] ], 8666 name := "*", 8667 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8668 ex := [ ], 8669 hash := "c5c1d4", 8670 sig := "<elt-ord^inf> x * <elt-ord^inf> y", 8671 sog := " -> <elt-ord^inf>", 8672 docsrc := "<internal>", 8673 sinflat := [ elt-ord^inf, elt-ord^inf ], 8674 souflat := [ elt-ord^inf ], 8675 soghash := "08787a", 8676 sig4hash := "*(elt-ord^inf,elt-ord^inf)" ), 8677 rec( 8678 kind := "OPERATION", 8679 sin := [ [ elt-mdl^vec, "v" ], [ elt-mdl^mat, "X" ] ], 8680 sou := [ [ elt-mdl^vec ] ], 8681 name := "*", 8682 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8683 ex := [ ], 8684 hash := "088b6b", 8685 sig := "<elt-mdl^vec> v * <elt-mdl^mat> X", 8686 sog := " -> <elt-mdl^vec>", 8687 docsrc := "<internal>", 8688 sinflat := [ elt-mdl^vec, elt-mdl^mat ], 8689 souflat := [ elt-mdl^vec ], 8690 soghash := "b46581", 8691 sig4hash := "*(elt-mdl^vec,elt-mdl^mat)" ), 8692 rec( 8693 kind := "OPERATION", 8694 sin := [ [ elt-mdl, "v" ], [ elt-mdl^mat, "X" ] ], 8695 sou := [ [ elt-mdl ] ], 8696 name := "*", 8697 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8698 ex := [ ], 8699 hash := "99775d", 8700 sig := "<elt-mdl> v * <elt-mdl^mat> X", 8701 sog := " -> <elt-mdl>", 8702 docsrc := "<internal>", 8703 sinflat := [ elt-mdl, elt-mdl^mat ], 8704 souflat := [ elt-mdl ], 8705 soghash := "97b5cd", 8706 sig4hash := "*(elt-mdl,elt-mdl^mat)" ), 8707 rec( 8708 kind := "OPERATION", 8709 sin := [ [ elt-mdl, "v" ], [ elt-alg^mat, "X" ] ], 8710 sou := [ [ elt-mdl ] ], 8711 name := "*", 8712 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8713 ex := [ ], 8714 hash := "e98dea", 8715 sig := "<elt-mdl> v * <elt-alg^mat> X", 8716 sog := " -> <elt-mdl>", 8717 docsrc := "<internal>", 8718 sinflat := [ elt-mdl, elt-alg^mat ], 8719 souflat := [ elt-mdl ], 8720 soghash := "97b5cd", 8721 sig4hash := "*(elt-mdl,elt-alg^mat)" ), 8722 rec( 8723 kind := "OPERATION", 8724 sin := [ [ mdl^vec, "M" ], [ elt-alg^mat, "X" ] ], 8725 sou := [ [ mdl^vec ] ], 8726 name := "*", 8727 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8728 ex := [ ], 8729 hash := "579958", 8730 sig := "<mdl^vec> M * <elt-alg^mat> X", 8731 sog := " -> <mdl^vec>", 8732 docsrc := "<internal>", 8733 sinflat := [ mdl^vec, elt-alg^mat ], 8734 souflat := [ mdl^vec ], 8735 soghash := "886ffa", 8736 sig4hash := "*(mdl^vec,elt-alg^mat)" ), 8737 rec( 8738 kind := "OPERATION", 8739 sin := [ [ mdl^vec, "M" ], [ elt-mdl^mat, "X" ] ], 8740 sou := [ [ mdl^vec ] ], 8741 name := "*", 8742 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8743 ex := [ ], 8744 hash := "a3fe4c", 8745 sig := "<mdl^vec> M * <elt-mdl^mat> X", 8746 sog := " -> <mdl^vec>", 8747 docsrc := "<internal>", 8748 sinflat := [ mdl^vec, elt-mdl^mat ], 8749 souflat := [ mdl^vec ], 8750 soghash := "886ffa", 8751 sig4hash := "*(mdl^vec,elt-mdl^mat)" ), 8752 rec( 8753 kind := "OPERATION", 8754 sin := [ [ seq(), "A" ], [ seq(), "B" ] ], 8755 sou := [ [ seq() ] ], 8756 name := "*", 8757 short := "The product of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 8758 ex := [ ], 8759 hash := "b9714c", 8760 sig := "<seq()> A * <seq()> B", 8761 sog := " -> <seq()>", 8762 docsrc := "<internal>", 8763 sinflat := [ seq(), seq() ], 8764 souflat := [ seq() ], 8765 soghash := "4bf3a0", 8766 sig4hash := "*(seq(),seq())" ), 8767 rec( 8768 kind := "OPERATION", 8769 sin := [ [ elt-grp^abl, "x" ], [ elt-ord^rat, "p" ] ], 8770 sou := [ [ elt-grp^abl ] ], 8771 name := "*", 8772 short := "The scalar product p * x (i.e., the power x^p in additive notation).", 8773 ex := [ ], 8774 hash := "1b29b5", 8775 sig := "<elt-grp^abl> x * <elt-ord^rat> p", 8776 sog := " -> <elt-grp^abl>", 8777 docsrc := "<internal>", 8778 sinflat := [ elt-grp^abl, elt-ord^rat ], 8779 souflat := [ elt-grp^abl ], 8780 soghash := "b42d93", 8781 sig4hash := "*(elt-grp^abl,elt-ord^rat)" ), 8782 rec( 8783 kind := "OPERATION", 8784 sin := [ [ elt-ord^rat, "p" ], [ elt-grp^abl, "x" ] ], 8785 sou := [ [ elt-grp^abl ] ], 8786 name := "*", 8787 short := "The scalar product p * x (i.e., the power x^p in additive notation).", 8788 ex := [ ], 8789 hash := "8646f9", 8790 sig := "<elt-ord^rat> p * <elt-grp^abl> x", 8791 sog := " -> <elt-grp^abl>", 8792 docsrc := "<internal>", 8793 sinflat := [ elt-ord^rat, elt-grp^abl ], 8794 souflat := [ elt-grp^abl ], 8795 soghash := "b42d93", 8796 sig4hash := "*(elt-ord^rat,elt-grp^abl)" ), 8797 rec( 8798 kind := "OPERATION", 8799 sin := [ [ elt-mdl^mat, "X" ], [ elt-rng, "c" ] ], 8800 sou := [ [ elt-mdl^mat ] ], 8801 name := "*", 8802 short := "Product of X and the scalar c", 8803 ex := [ ], 8804 hash := "135a15", 8805 sig := "<elt-mdl^mat> X * <elt-rng> c", 8806 sog := " -> <elt-mdl^mat>", 8807 docsrc := "<internal>", 8808 sinflat := [ elt-mdl^mat, elt-rng ], 8809 souflat := [ elt-mdl^mat ], 8810 soghash := "5284ac", 8811 sig4hash := "*(elt-mdl^mat,elt-rng)" ), 8812 rec( 8813 kind := "OPERATION", 8814 sin := [ [ elt-rng, "c" ], [ elt-mdl^mat, "X" ] ], 8815 sou := [ [ elt-mdl^mat ] ], 8816 name := "*", 8817 short := "Product of X and the scalar c", 8818 ex := [ ], 8819 hash := "7e460e", 8820 sig := "<elt-rng> c * <elt-mdl^mat> X", 8821 sog := " -> <elt-mdl^mat>", 8822 docsrc := "<internal>", 8823 sinflat := [ elt-rng, elt-mdl^mat ], 8824 souflat := [ elt-mdl^mat ], 8825 soghash := "5284ac", 8826 sig4hash := "*(elt-rng,elt-mdl^mat)" ), 8827 rec( 8828 kind := "OPERATION", 8829 sin := [ [ elt-mdl^vec, "u" ], [ elt-rng, "c" ] ], 8830 sou := [ [ elt-mdl^vec ] ], 8831 name := "*", 8832 short := "Product of u and the scalar c.", 8833 ex := [ ], 8834 hash := "103b26", 8835 sig := "<elt-mdl^vec> u * <elt-rng> c", 8836 sog := " -> <elt-mdl^vec>", 8837 docsrc := "<internal>", 8838 sinflat := [ elt-mdl^vec, elt-rng ], 8839 souflat := [ elt-mdl^vec ], 8840 soghash := "b46581", 8841 sig4hash := "*(elt-mdl^vec,elt-rng)" ), 8842 rec( 8843 kind := "OPERATION", 8844 sin := [ [ elt-rng, "c" ], [ elt-mdl^vec, "u" ] ], 8845 sou := [ [ elt-mdl^vec ] ], 8846 name := "*", 8847 short := "Product of u and the scalar c.", 8848 ex := [ ], 8849 hash := "268863", 8850 sig := "<elt-rng> c * <elt-mdl^vec> u", 8851 sog := " -> <elt-mdl^vec>", 8852 docsrc := "<internal>", 8853 sinflat := [ elt-rng, elt-mdl^vec ], 8854 souflat := [ elt-mdl^vec ], 8855 soghash := "b46581", 8856 sig4hash := "*(elt-rng,elt-mdl^vec)" ), 8857 rec( 8858 kind := "OPERATION", 8859 sin := [ [ elt-mdl, "u" ], [ elt-rng, "c" ] ], 8860 sou := [ [ elt-mdl ] ], 8861 name := "*", 8862 short := "Product of u and the scalar c.", 8863 ex := [ ], 8864 hash := "c00cab", 8865 sig := "<elt-mdl> u * <elt-rng> c", 8866 sog := " -> <elt-mdl>", 8867 docsrc := "<internal>", 8868 sinflat := [ elt-mdl, elt-rng ], 8869 souflat := [ elt-mdl ], 8870 soghash := "97b5cd", 8871 sig4hash := "*(elt-mdl,elt-rng)" ), 8872 rec( 8873 kind := "OPERATION", 8874 sin := [ [ elt-rng, "c" ], [ elt-mdl, "u" ] ], 8875 sou := [ [ elt-mdl ] ], 8876 name := "*", 8877 short := "Product of u and the scalar c.", 8878 ex := [ ], 8879 hash := "7646a5", 8880 sig := "<elt-rng> c * <elt-mdl> u", 8881 sog := " -> <elt-mdl>", 8882 docsrc := "<internal>", 8883 sinflat := [ elt-rng, elt-mdl ], 8884 souflat := [ elt-mdl ], 8885 soghash := "97b5cd", 8886 sig4hash := "*(elt-rng,elt-mdl)" ), 8887 rec( 8888 kind := "OPERATION", 8889 sin := [ [ elt-rng, "c" ], [ elt-mdl^ded, "u" ] ], 8890 sou := [ [ elt-mdl^ded ] ], 8891 name := "*", 8892 short := "Product of u and the scalar c.", 8893 ex := [ ], 8894 hash := "86055e", 8895 sig := "<elt-rng> c * <elt-mdl^ded> u", 8896 sog := " -> <elt-mdl^ded>", 8897 docsrc := "<internal>", 8898 sinflat := [ elt-rng, elt-mdl^ded ], 8899 souflat := [ elt-mdl^ded ], 8900 soghash := "2fccf1", 8901 sig4hash := "*(elt-rng,elt-mdl^ded)" ), 8902 rec( 8903 kind := "OPERATION", 8904 sin := [ [ elt-mdl^ded, "u" ], [ elt-rng, "c" ] ], 8905 sou := [ [ elt-mdl^ded ] ], 8906 name := "*", 8907 short := "Product of u and the scalar c.", 8908 ex := [ ], 8909 hash := "062463", 8910 sig := "<elt-mdl^ded> u * <elt-rng> c", 8911 sog := " -> <elt-mdl^ded>", 8912 docsrc := "<internal>", 8913 sinflat := [ elt-mdl^ded, elt-rng ], 8914 souflat := [ elt-mdl^ded ], 8915 soghash := "2fccf1", 8916 sig4hash := "*(elt-mdl^ded,elt-rng)" ), 8917 rec( 8918 kind := "OPERATION", 8919 sin := [ [ map(), "f" ], [ map(), "g" ] ], 8920 sou := [ [ map() ] ], 8921 name := "*", 8922 short := "The composition of maps f and g.", 8923 ex := [ ], 8924 hash := "8bab25", 8925 sig := "<map()> f * <map()> g", 8926 sog := " -> <map()>", 8927 docsrc := "<internal>", 8928 sinflat := [ map(), map() ], 8929 souflat := [ map() ], 8930 soghash := "63931a", 8931 sig4hash := "*(map(),map())" ), 8932 rec( 8933 kind := "OPERATION", 8934 sin := [ [ ord^num, "O" ], [ elt-rng, "e" ] ], 8935 sou := [ [ elt-ids^fra/ord^num ] ], 8936 name := "*", 8937 short := "The ideal e*O.", 8938 ex := [ ], 8939 hash := "6bcd2e", 8940 sig := "<ord^num> O * <elt-rng> e", 8941 sog := " -> <elt-ids^fra/ord^num>", 8942 docsrc := "<internal>", 8943 sinflat := [ ord^num, elt-rng ], 8944 souflat := [ elt-ids^fra/ord^num ], 8945 soghash := "ca011c", 8946 sig4hash := "*(ord^num,elt-rng)" ), 8947 rec( 8948 kind := "OPERATION", 8949 sin := [ [ elt-rng, "e" ], [ ord^num, "O" ] ], 8950 sou := [ [ elt-ids^fra/ord^num ] ], 8951 name := "*", 8952 short := "The ideal e*O.", 8953 ex := [ ], 8954 hash := "9d9291", 8955 sig := "<elt-rng> e * <ord^num> O", 8956 sog := " -> <elt-ids^fra/ord^num>", 8957 docsrc := "<internal>", 8958 sinflat := [ elt-rng, ord^num ], 8959 souflat := [ elt-ids^fra/ord^num ], 8960 soghash := "ca011c", 8961 sig4hash := "*(elt-rng,ord^num)" ), 8962 rec( 8963 kind := "OPERATION", 8964 sin := [ [ ord^fun, "O" ], [ elt-rng, "e" ] ], 8965 sou := [ [ elt-ids^int/ord^fun ] ], 8966 name := "*", 8967 short := "The ideal e*O.", 8968 ex := [ ], 8969 hash := "a3f4c7", 8970 sig := "<ord^fun> O * <elt-rng> e", 8971 sog := " -> <elt-ids^int/ord^fun>", 8972 docsrc := "<internal>", 8973 sinflat := [ ord^fun, elt-rng ], 8974 souflat := [ elt-ids^int/ord^fun ], 8975 soghash := "918914", 8976 sig4hash := "*(ord^fun,elt-rng)" ), 8977 rec( 8978 kind := "OPERATION", 8979 sin := [ [ elt-rng, "e" ], [ ord^fun, "O" ] ], 8980 sou := [ [ elt-ids^int/ord^fun ] ], 8981 name := "*", 8982 short := "The ideal e*O.", 8983 ex := [ ], 8984 hash := "b39c6c", 8985 sig := "<elt-rng> e * <ord^fun> O", 8986 sog := " -> <elt-ids^int/ord^fun>", 8987 docsrc := "<internal>", 8988 sinflat := [ elt-rng, ord^fun ], 8989 souflat := [ elt-ids^int/ord^fun ], 8990 soghash := "918914", 8991 sig4hash := "*(elt-rng,ord^fun)" ), 8992 rec( 8993 kind := "OPERATION", 8994 sin := [ [ elt-rng, "c" ], [ elt-ids^fra/ord^num, "I" ] ], 8995 sou := [ [ elt-ids^fra/ord^num ] ], 8996 name := "*", 8997 short := "Product of the ideal I and the scalar c.", 8998 ex := [ ], 8999 hash := "c2fce0", 9000 sig := "<elt-rng> c * <elt-ids^fra/ord^num> I", 9001 sog := " -> <elt-ids^fra/ord^num>", 9002 docsrc := "<internal>", 9003 sinflat := [ elt-rng, elt-ids^fra/ord^num ], 9004 souflat := [ elt-ids^fra/ord^num ], 9005 soghash := "ca011c", 9006 sig4hash := "*(elt-rng,elt-ids^fra/ord^num)" ), 9007 rec( 9008 kind := "OPERATION", 9009 sin := [ [ elt-ids^fra/ord^num, "I" ], [ elt-rng, "c" ] ], 9010 sou := [ [ elt-ids^fra/ord^num ] ], 9011 name := "*", 9012 short := "Product of the ideal I and the scalar c.", 9013 ex := [ ], 9014 hash := "e5b910", 9015 sig := "<elt-ids^fra/ord^num> I * <elt-rng> c", 9016 sog := " -> <elt-ids^fra/ord^num>", 9017 docsrc := "<internal>", 9018 sinflat := [ elt-ids^fra/ord^num, elt-rng ], 9019 souflat := [ elt-ids^fra/ord^num ], 9020 soghash := "ca011c", 9021 sig4hash := "*(elt-ids^fra/ord^num,elt-rng)" ), 9022 rec( 9023 kind := "OPERATION", 9024 sin := [ [ elt-rng, "c" ], [ elt-ids^int/ord^fun, "I" ] ], 9025 sou := [ [ elt-ids^int/ord^fun ] ], 9026 name := "*", 9027 short := "Product of the ideal I and the scalar c.", 9028 ex := [ ], 9029 hash := "187ae4", 9030 sig := "<elt-rng> c * <elt-ids^int/ord^fun> I", 9031 sog := " -> <elt-ids^int/ord^fun>", 9032 docsrc := "<internal>", 9033 sinflat := [ elt-rng, elt-ids^int/ord^fun ], 9034 souflat := [ elt-ids^int/ord^fun ], 9035 soghash := "918914", 9036 sig4hash := "*(elt-rng,elt-ids^int/ord^fun)" ), 9037 rec( 9038 kind := "OPERATION", 9039 sin := [ [ elt-ids^int/ord^fun, "I" ], [ elt-rng, "c" ] ], 9040 sou := [ [ elt-ids^int/ord^fun ] ], 9041 name := "*", 9042 short := "Product of the ideal I and the scalar c.", 9043 ex := [ ], 9044 hash := "42f968", 9045 sig := "<elt-ids^int/ord^fun> I * <elt-rng> c", 9046 sog := " -> <elt-ids^int/ord^fun>", 9047 docsrc := "<internal>", 9048 sinflat := [ elt-ids^int/ord^fun, elt-rng ], 9049 souflat := [ elt-ids^int/ord^fun ], 9050 soghash := "918914", 9051 sig4hash := "*(elt-ids^int/ord^fun,elt-rng)" ), 9052 rec( 9053 kind := "OPERATION", 9054 sin := [ [ elt-ord^rat, "x" ], [ elt-dvs/fld^fun, "D" ] ], 9055 sou := [ [ elt-ord^rat ] ], 9056 name := "*", 9057 short := "The product of the integer x and the divisor D or place P.", 9058 ex := [ ], 9059 hash := "2dd4da", 9060 sig := "<elt-ord^rat> x * <elt-dvs/fld^fun> D", 9061 sog := " -> <elt-ord^rat>", 9062 docsrc := "<internal>", 9063 sinflat := [ elt-ord^rat, elt-dvs/fld^fun ], 9064 souflat := [ elt-ord^rat ], 9065 soghash := "898213", 9066 sig4hash := "*(elt-ord^rat,elt-dvs/fld^fun)" ), 9067 rec( 9068 kind := "OPERATION", 9069 sin := [ [ elt-ord^rat, "x" ], [ elt-pls/fld^fun, "P" ] ], 9070 sou := [ [ elt-dvs/fld^fun ] ], 9071 name := "*", 9072 short := "The product of the integer x and the divisor D or place P.", 9073 ex := [ ], 9074 hash := "141812", 9075 sig := "<elt-ord^rat> x * <elt-pls/fld^fun> P", 9076 sog := " -> <elt-dvs/fld^fun>", 9077 docsrc := "<internal>", 9078 sinflat := [ elt-ord^rat, elt-pls/fld^fun ], 9079 souflat := [ elt-dvs/fld^fun ], 9080 soghash := "34cafb", 9081 sig4hash := "*(elt-ord^rat,elt-pls/fld^fun)" ), 9082 rec( 9083 kind := "OPERATION", 9084 sin := [ [ elt-ids^int/ord^num, "I" ], [ elt-mdl^ded, "u" ] ], 9085 sou := [ [ mdl^ded ] ], 9086 name := "*", 9087 short := "the module I*u.", 9088 ex := [ ], 9089 hash := "6869ff", 9090 sig := "<elt-ids^int/ord^num> I * <elt-mdl^ded> u", 9091 sog := " -> <mdl^ded>", 9092 docsrc := "<internal>", 9093 sinflat := [ elt-ids^int/ord^num, elt-mdl^ded ], 9094 souflat := [ mdl^ded ], 9095 soghash := "5ba52c", 9096 sig4hash := "*(elt-ids^int/ord^num,elt-mdl^ded)" ), 9097 rec( 9098 kind := "OPERATION", 9099 sin := [ [ elt-mdl^ded, "u" ], [ elt-ids^int/ord^num, "I" ] ], 9100 sou := [ [ mdl^ded ] ], 9101 name := "*", 9102 short := "the module I*u.", 9103 ex := [ ], 9104 hash := "e0443c", 9105 sig := "<elt-mdl^ded> u * <elt-ids^int/ord^num> I", 9106 sog := " -> <mdl^ded>", 9107 docsrc := "<internal>", 9108 sinflat := [ elt-mdl^ded, elt-ids^int/ord^num ], 9109 souflat := [ mdl^ded ], 9110 soghash := "5ba52c", 9111 sig4hash := "*(elt-mdl^ded,elt-ids^int/ord^num)" ), 9112 rec( 9113 kind := "OPERATION", 9114 sin := [ [ elt-ids^int/ord^fun, "I" ], [ elt-mdl^ded, "u" ] ], 9115 sou := [ [ mdl^ded ] ], 9116 name := "*", 9117 short := "the module I*u.", 9118 ex := [ ], 9119 hash := "1a0a18", 9120 sig := "<elt-ids^int/ord^fun> I * <elt-mdl^ded> u", 9121 sog := " -> <mdl^ded>", 9122 docsrc := "<internal>", 9123 sinflat := [ elt-ids^int/ord^fun, elt-mdl^ded ], 9124 souflat := [ mdl^ded ], 9125 soghash := "5ba52c", 9126 sig4hash := "*(elt-ids^int/ord^fun,elt-mdl^ded)" ), 9127 rec( 9128 kind := "OPERATION", 9129 sin := [ [ elt-mdl^ded, "u" ], [ elt-ids^int/ord^fun, "I" ] ], 9130 sou := [ [ mdl^ded ] ], 9131 name := "*", 9132 short := "the module I*u.", 9133 ex := [ ], 9134 hash := "ee8c2e", 9135 sig := "<elt-mdl^ded> u * <elt-ids^int/ord^fun> I", 9136 sog := " -> <mdl^ded>", 9137 docsrc := "<internal>", 9138 sinflat := [ elt-mdl^ded, elt-ids^int/ord^fun ], 9139 souflat := [ mdl^ded ], 9140 soghash := "5ba52c", 9141 sig4hash := "*(elt-mdl^ded,elt-ids^int/ord^fun)" ), 9142 rec( 9143 kind := "OPERATION", 9144 sin := [ [ mdl^ded, "M" ], [ elt-ids^int/ord^num, "I" ] ], 9145 sou := [ [ mdl^ded ] ], 9146 name := "*", 9147 short := "the module I*M.", 9148 ex := [ ], 9149 hash := "ce5458", 9150 sig := "<mdl^ded> M * <elt-ids^int/ord^num> I", 9151 sog := " -> <mdl^ded>", 9152 docsrc := "<internal>", 9153 sinflat := [ mdl^ded, elt-ids^int/ord^num ], 9154 souflat := [ mdl^ded ], 9155 soghash := "5ba52c", 9156 sig4hash := "*(mdl^ded,elt-ids^int/ord^num)" ), 9157 rec( 9158 kind := "OPERATION", 9159 sin := [ [ elt-ids^int/ord^num, "I" ], [ mdl^ded, "M" ] ], 9160 sou := [ [ mdl^ded ] ], 9161 name := "*", 9162 short := "the module I*M.", 9163 ex := [ ], 9164 hash := "487c0f", 9165 sig := "<elt-ids^int/ord^num> I * <mdl^ded> M", 9166 sog := " -> <mdl^ded>", 9167 docsrc := "<internal>", 9168 sinflat := [ elt-ids^int/ord^num, mdl^ded ], 9169 souflat := [ mdl^ded ], 9170 soghash := "5ba52c", 9171 sig4hash := "*(elt-ids^int/ord^num,mdl^ded)" ), 9172 rec( 9173 kind := "OPERATION", 9174 sin := [ [ mdl^ded, "M" ], [ elt-ids^int/ord^fun, "I" ] ], 9175 sou := [ [ mdl^ded ] ], 9176 name := "*", 9177 short := "the module I*M.", 9178 ex := [ ], 9179 hash := "a8a50b", 9180 sig := "<mdl^ded> M * <elt-ids^int/ord^fun> I", 9181 sog := " -> <mdl^ded>", 9182 docsrc := "<internal>", 9183 sinflat := [ mdl^ded, elt-ids^int/ord^fun ], 9184 souflat := [ mdl^ded ], 9185 soghash := "5ba52c", 9186 sig4hash := "*(mdl^ded,elt-ids^int/ord^fun)" ), 9187 rec( 9188 kind := "OPERATION", 9189 sin := [ [ elt-ids^int/ord^fun, "I" ], [ mdl^ded, "M" ] ], 9190 sou := [ [ mdl^ded ] ], 9191 name := "*", 9192 short := "the module I*M.", 9193 ex := [ ], 9194 hash := "63c9db", 9195 sig := "<elt-ids^int/ord^fun> I * <mdl^ded> M", 9196 sog := " -> <mdl^ded>", 9197 docsrc := "<internal>", 9198 sinflat := [ elt-ids^int/ord^fun, mdl^ded ], 9199 souflat := [ mdl^ded ], 9200 soghash := "5ba52c", 9201 sig4hash := "*(elt-ids^int/ord^fun,mdl^ded)" ), 9202 rec( 9203 kind := "OPERATION", 9204 sin := [ [ elt-rng, "a" ], [ mdl^ded, "M" ] ], 9205 sou := [ [ mdl^ded ] ], 9206 name := "*", 9207 short := "the module a*M.", 9208 ex := [ ], 9209 hash := "3943fc", 9210 sig := "<elt-rng> a * <mdl^ded> M", 9211 sog := " -> <mdl^ded>", 9212 docsrc := "<internal>", 9213 sinflat := [ elt-rng, mdl^ded ], 9214 souflat := [ mdl^ded ], 9215 soghash := "5ba52c", 9216 sig4hash := "*(elt-rng,mdl^ded)" ), 9217 rec( 9218 kind := "OPERATION", 9219 sin := [ [ mdl^ded, "M" ], [ elt-rng, "a" ] ], 9220 sou := [ [ mdl^ded ] ], 9221 name := "*", 9222 short := "the module a*M.", 9223 ex := [ ], 9224 hash := "c5f8b8", 9225 sig := "<mdl^ded> M * <elt-rng> a", 9226 sog := " -> <mdl^ded>", 9227 docsrc := "<internal>", 9228 sinflat := [ mdl^ded, elt-rng ], 9229 souflat := [ mdl^ded ], 9230 soghash := "5ba52c", 9231 sig4hash := "*(mdl^ded,elt-rng)" ), 9232 rec( 9233 kind := "OPERATION", 9234 sin := [ [ elt-dvs/fld^num, "d" ], [ elt-ord^rat, "k" ] ], 9235 sou := [ [ elt-dvs/fld^num ] ], 9236 name := "*", 9237 short := "k lots of the divisor d of a number field.", 9238 ex := [ ], 9239 hash := "60328f", 9240 sig := "<elt-dvs/fld^num> d * <elt-ord^rat> k", 9241 sog := " -> <elt-dvs/fld^num>", 9242 docsrc := "<internal>", 9243 sinflat := [ elt-dvs/fld^num, elt-ord^rat ], 9244 souflat := [ elt-dvs/fld^num ], 9245 soghash := "87f535", 9246 sig4hash := "*(elt-dvs/fld^num,elt-ord^rat)" ), 9247 rec( 9248 kind := "OPERATION", 9249 sin := [ [ elt-ord^rat, "k" ], [ elt-dvs/fld^num, "d" ] ], 9250 sou := [ [ elt-dvs/fld^num ] ], 9251 name := "*", 9252 short := "k lots of the divisor d of a number field.", 9253 ex := [ ], 9254 hash := "8dd900", 9255 sig := "<elt-ord^rat> k * <elt-dvs/fld^num> d", 9256 sog := " -> <elt-dvs/fld^num>", 9257 docsrc := "<internal>", 9258 sinflat := [ elt-ord^rat, elt-dvs/fld^num ], 9259 souflat := [ elt-dvs/fld^num ], 9260 soghash := "87f535", 9261 sig4hash := "*(elt-ord^rat,elt-dvs/fld^num)" ), 9262 rec( 9263 kind := "OPERATION", 9264 sin := [ [ elt-pls/fld^num, "p" ], [ elt-ord^rat, "k" ] ], 9265 sou := [ [ elt-dvs/fld^num ] ], 9266 name := "*", 9267 short := "k lots of the divisor d of a number field.", 9268 ex := [ ], 9269 hash := "09db15", 9270 sig := "<elt-pls/fld^num> p * <elt-ord^rat> k", 9271 sog := " -> <elt-dvs/fld^num>", 9272 docsrc := "<internal>", 9273 sinflat := [ elt-pls/fld^num, elt-ord^rat ], 9274 souflat := [ elt-dvs/fld^num ], 9275 soghash := "87f535", 9276 sig4hash := "*(elt-pls/fld^num,elt-ord^rat)" ), 9277 rec( 9278 kind := "OPERATION", 9279 sin := [ [ elt-ord^rat, "k" ], [ elt-pls/fld^num, "p" ] ], 9280 sou := [ [ elt-dvs/fld^num ] ], 9281 name := "*", 9282 short := "k lots of the divisor d of a number field.", 9283 ex := [ ], 9284 hash := "03e031", 9285 sig := "<elt-ord^rat> k * <elt-pls/fld^num> p", 9286 sog := " -> <elt-dvs/fld^num>", 9287 docsrc := "<internal>", 9288 sinflat := [ elt-ord^rat, elt-pls/fld^num ], 9289 souflat := [ elt-dvs/fld^num ], 9290 soghash := "87f535", 9291 sig4hash := "*(elt-ord^rat,elt-pls/fld^num)" ), 9292 rec( 9293 kind := "OPERATION", 9294 sin := [ [ elt-mdl^vec, "x" ], [ elt-mdl^vec, "y" ] ], 9295 sou := [ [ elt-mdl^vec ] ], 9296 name := "*", 9297 short := "The componentwise product of x and y.", 9298 ex := [ ], 9299 hash := "dea687", 9300 sig := "<elt-mdl^vec> x * <elt-mdl^vec> y", 9301 sog := " -> <elt-mdl^vec>", 9302 docsrc := "<internal>", 9303 sinflat := [ elt-mdl^vec, elt-mdl^vec ], 9304 souflat := [ elt-mdl^vec ], 9305 soghash := "b46581", 9306 sig4hash := "*(elt-mdl^vec,elt-mdl^vec)" ), 9307 rec( 9308 kind := "OPERATION", 9309 sin := [ [ elt-ord^rat, "x" ], [ elt-ord^rat, "y" ] ], 9310 sou := [ [ elt-ord^rat ] ], 9311 name := "+", 9312 short := "Sum of x and y.", 9313 ex := [ ], 9314 hash := "6a788f", 9315 sig := "<elt-ord^rat> x + <elt-ord^rat> y", 9316 sog := " -> <elt-ord^rat>", 9317 docsrc := "<internal>", 9318 sinflat := [ elt-ord^rat, elt-ord^rat ], 9319 souflat := [ elt-ord^rat ], 9320 soghash := "898213", 9321 sig4hash := "+(elt-ord^rat,elt-ord^rat)" ), 9322 rec( 9323 kind := "OPERATION", 9324 sin := [ [ elt-fld^rat, "x" ], [ elt-fld^rat, "y" ] ], 9325 sou := [ [ elt-fld^rat ] ], 9326 name := "+", 9327 short := "Sum of x and y.", 9328 ex := [ ], 9329 hash := "885945", 9330 sig := "<elt-fld^rat> x + <elt-fld^rat> y", 9331 sog := " -> <elt-fld^rat>", 9332 docsrc := "<internal>", 9333 sinflat := [ elt-fld^rat, elt-fld^rat ], 9334 souflat := [ elt-fld^rat ], 9335 soghash := "89f5fc", 9336 sig4hash := "+(elt-fld^rat,elt-fld^rat)" ), 9337 rec( 9338 kind := "OPERATION", 9339 sin := [ [ elt-alg^pol, "x" ], [ elt-alg^pol, "y" ] ], 9340 sou := [ [ elt-alg^pol ] ], 9341 name := "+", 9342 short := "Sum of x and y.", 9343 ex := [ ], 9344 hash := "a9c98d", 9345 sig := "<elt-alg^pol> x + <elt-alg^pol> y", 9346 sog := " -> <elt-alg^pol>", 9347 docsrc := "<internal>", 9348 sinflat := [ elt-alg^pol, elt-alg^pol ], 9349 souflat := [ elt-alg^pol ], 9350 soghash := "ba7338", 9351 sig4hash := "+(elt-alg^pol,elt-alg^pol)" ), 9352 rec( 9353 kind := "OPERATION", 9354 sin := [ [ elt-fld^pol, "x" ], [ elt-fld^pol, "y" ] ], 9355 sou := [ [ elt-fld^pol ] ], 9356 name := "+", 9357 short := "Sum of x and y.", 9358 ex := [ ], 9359 hash := "006396", 9360 sig := "<elt-fld^pol> x + <elt-fld^pol> y", 9361 sog := " -> <elt-fld^pol>", 9362 docsrc := "<internal>", 9363 sinflat := [ elt-fld^pol, elt-fld^pol ], 9364 souflat := [ elt-fld^pol ], 9365 soghash := "540d59", 9366 sig4hash := "+(elt-fld^pol,elt-fld^pol)" ), 9367 rec( 9368 kind := "OPERATION", 9369 sin := [ [ elt-rng, "x" ], [ elt-rng, "y" ] ], 9370 sou := [ [ elt-rng ] ], 9371 name := "+", 9372 short := "Sum of x and y.", 9373 ex := [ ], 9374 hash := "5e69c1", 9375 sig := "<elt-rng> x + <elt-rng> y", 9376 sog := " -> <elt-rng>", 9377 docsrc := "<internal>", 9378 sinflat := [ elt-rng, elt-rng ], 9379 souflat := [ elt-rng ], 9380 soghash := "7ef0ef", 9381 sig4hash := "+(elt-rng,elt-rng)" ), 9382 rec( 9383 kind := "OPERATION", 9384 sin := [ [ elt-res^pol, "x" ], [ elt-res^pol, "y" ] ], 9385 sou := [ [ elt-res^pol ] ], 9386 name := "+", 9387 short := "Sum of x and y.", 9388 ex := [ ], 9389 hash := "90cf6e", 9390 sig := "<elt-res^pol> x + <elt-res^pol> y", 9391 sog := " -> <elt-res^pol>", 9392 docsrc := "<internal>", 9393 sinflat := [ elt-res^pol, elt-res^pol ], 9394 souflat := [ elt-res^pol ], 9395 soghash := "8ffe0c", 9396 sig4hash := "+(elt-res^pol,elt-res^pol)" ), 9397 rec( 9398 kind := "OPERATION", 9399 sin := [ [ elt-alg^mat, "x" ], [ elt-alg^mat, "y" ] ], 9400 sou := [ [ elt-alg^mat ] ], 9401 name := "+", 9402 short := "Sum of x and y.", 9403 ex := [ ], 9404 hash := "14eea5", 9405 sig := "<elt-alg^mat> x + <elt-alg^mat> y", 9406 sog := " -> <elt-alg^mat>", 9407 docsrc := "<internal>", 9408 sinflat := [ elt-alg^mat, elt-alg^mat ], 9409 souflat := [ elt-alg^mat ], 9410 soghash := "8dbb64", 9411 sig4hash := "+(elt-alg^mat,elt-alg^mat)" ), 9412 rec( 9413 kind := "OPERATION", 9414 sin := [ [ elt-mdl^vec, "x" ], [ elt-mdl^vec, "y" ] ], 9415 sou := [ [ elt-mdl^vec ] ], 9416 name := "+", 9417 short := "Sum of x and y.", 9418 ex := [ ], 9419 hash := "fdb426", 9420 sig := "<elt-mdl^vec> x + <elt-mdl^vec> y", 9421 sog := " -> <elt-mdl^vec>", 9422 docsrc := "<internal>", 9423 sinflat := [ elt-mdl^vec, elt-mdl^vec ], 9424 souflat := [ elt-mdl^vec ], 9425 soghash := "b46581", 9426 sig4hash := "+(elt-mdl^vec,elt-mdl^vec)" ), 9427 rec( 9428 kind := "OPERATION", 9429 sin := [ [ elt-mdl^mat, "x" ], [ elt-mdl^mat, "y" ] ], 9430 sou := [ [ elt-mdl^mat ] ], 9431 name := "+", 9432 short := "Sum of x and y.", 9433 ex := [ ], 9434 hash := "d1103e", 9435 sig := "<elt-mdl^mat> x + <elt-mdl^mat> y", 9436 sog := " -> <elt-mdl^mat>", 9437 docsrc := "<internal>", 9438 sinflat := [ elt-mdl^mat, elt-mdl^mat ], 9439 souflat := [ elt-mdl^mat ], 9440 soghash := "5284ac", 9441 sig4hash := "+(elt-mdl^mat,elt-mdl^mat)" ), 9442 rec( 9443 kind := "OPERATION", 9444 sin := [ [ elt-mdl, "x" ], [ elt-mdl, "y" ] ], 9445 sou := [ [ elt-mdl ] ], 9446 name := "+", 9447 short := "Sum of x and y.", 9448 ex := [ ], 9449 hash := "e8fd95", 9450 sig := "<elt-mdl> x + <elt-mdl> y", 9451 sog := " -> <elt-mdl>", 9452 docsrc := "<internal>", 9453 sinflat := [ elt-mdl, elt-mdl ], 9454 souflat := [ elt-mdl ], 9455 soghash := "97b5cd", 9456 sig4hash := "+(elt-mdl,elt-mdl)" ), 9457 rec( 9458 kind := "OPERATION", 9459 sin := [ [ elt-fld^rea, "x" ], [ elt-fld^rea, "y" ] ], 9460 sou := [ [ elt-fld^rea ] ], 9461 name := "+", 9462 short := "Sum of x and y.", 9463 ex := [ ], 9464 hash := "bbfd6e", 9465 sig := "<elt-fld^rea> x + <elt-fld^rea> y", 9466 sog := " -> <elt-fld^rea>", 9467 docsrc := "<internal>", 9468 sinflat := [ elt-fld^rea, elt-fld^rea ], 9469 souflat := [ elt-fld^rea ], 9470 soghash := "7f2490", 9471 sig4hash := "+(elt-fld^rea,elt-fld^rea)" ), 9472 rec( 9473 kind := "OPERATION", 9474 sin := [ [ elt-fld^com, "x" ], [ elt-fld^com, "y" ] ], 9475 sou := [ [ elt-fld^com ] ], 9476 name := "+", 9477 short := "Sum of x and y.", 9478 ex := [ ], 9479 hash := "9aa461", 9480 sig := "<elt-fld^com> x + <elt-fld^com> y", 9481 sog := " -> <elt-fld^com>", 9482 docsrc := "<internal>", 9483 sinflat := [ elt-fld^com, elt-fld^com ], 9484 souflat := [ elt-fld^com ], 9485 soghash := "0d772f", 9486 sig4hash := "+(elt-fld^com,elt-fld^com)" ), 9487 rec( 9488 kind := "OPERATION", 9489 sin := [ [ elt-fld^fin, "x" ], [ elt-fld^fin, "y" ] ], 9490 sou := [ [ elt-fld^fin ] ], 9491 name := "+", 9492 short := "Sum of x and y.", 9493 ex := [ ], 9494 hash := "94dbb3", 9495 sig := "<elt-fld^fin> x + <elt-fld^fin> y", 9496 sog := " -> <elt-fld^fin>", 9497 docsrc := "<internal>", 9498 sinflat := [ elt-fld^fin, elt-fld^fin ], 9499 souflat := [ elt-fld^fin ], 9500 soghash := "97e752", 9501 sig4hash := "+(elt-fld^fin,elt-fld^fin)" ), 9502 rec( 9503 kind := "OPERATION", 9504 sin := [ [ elt-res^rat, "x" ], [ elt-res^rat, "y" ] ], 9505 sou := [ [ elt-res^rat ] ], 9506 name := "+", 9507 short := "Sum of x and y.", 9508 ex := [ ], 9509 hash := "5f9aec", 9510 sig := "<elt-res^rat> x + <elt-res^rat> y", 9511 sog := " -> <elt-res^rat>", 9512 docsrc := "<internal>", 9513 sinflat := [ elt-res^rat, elt-res^rat ], 9514 souflat := [ elt-res^rat ], 9515 soghash := "7a2c2e", 9516 sig4hash := "+(elt-res^rat,elt-res^rat)" ), 9517 rec( 9518 kind := "OPERATION", 9519 sin := [ [ elt-res^pad, "x" ], [ elt-res^pad, "y" ] ], 9520 sou := [ [ elt-res^pad ] ], 9521 name := "+", 9522 short := "Sum of x and y.", 9523 ex := [ ], 9524 hash := "f9e752", 9525 sig := "<elt-res^pad> x + <elt-res^pad> y", 9526 sog := " -> <elt-res^pad>", 9527 docsrc := "<internal>", 9528 sinflat := [ elt-res^pad, elt-res^pad ], 9529 souflat := [ elt-res^pad ], 9530 soghash := "0061b4", 9531 sig4hash := "+(elt-res^pad,elt-res^pad)" ), 9532 rec( 9533 kind := "OPERATION", 9534 sin := [ [ elt-ord^pad, "x" ], [ elt-ord^pad, "y" ] ], 9535 sou := [ [ elt-ord^pad ] ], 9536 name := "+", 9537 short := "Sum of x and y.", 9538 ex := [ ], 9539 hash := "f63716", 9540 sig := "<elt-ord^pad> x + <elt-ord^pad> y", 9541 sog := " -> <elt-ord^pad>", 9542 docsrc := "<internal>", 9543 sinflat := [ elt-ord^pad, elt-ord^pad ], 9544 souflat := [ elt-ord^pad ], 9545 soghash := "9ee81d", 9546 sig4hash := "+(elt-ord^pad,elt-ord^pad)" ), 9547 rec( 9548 kind := "OPERATION", 9549 sin := [ [ elt-fld^pad, "x" ], [ elt-fld^pad, "y" ] ], 9550 sou := [ [ elt-fld^pad ] ], 9551 name := "+", 9552 short := "Sum of x and y.", 9553 ex := [ ], 9554 hash := "bf9496", 9555 sig := "<elt-fld^pad> x + <elt-fld^pad> y", 9556 sog := " -> <elt-fld^pad>", 9557 docsrc := "<internal>", 9558 sinflat := [ elt-fld^pad, elt-fld^pad ], 9559 souflat := [ elt-fld^pad ], 9560 soghash := "8c3f71", 9561 sig4hash := "+(elt-fld^pad,elt-fld^pad)" ), 9562 rec( 9563 kind := "OPERATION", 9564 sin := [ [ elt-fld^fra, "x" ], [ elt-fld^fra, "y" ] ], 9565 sou := [ [ elt-fld^fra ] ], 9566 name := "+", 9567 short := "Sum of x and y.", 9568 ex := [ ], 9569 hash := "69d342", 9570 sig := "<elt-fld^fra> x + <elt-fld^fra> y", 9571 sog := " -> <elt-fld^fra>", 9572 docsrc := "<internal>", 9573 sinflat := [ elt-fld^fra, elt-fld^fra ], 9574 souflat := [ elt-fld^fra ], 9575 soghash := "74ef48", 9576 sig4hash := "+(elt-fld^fra,elt-fld^fra)" ), 9577 rec( 9578 kind := "OPERATION", 9579 sin := [ [ elt-rng^ser, "x" ], [ elt-rng^ser, "y" ] ], 9580 sou := [ [ elt-rng^ser ] ], 9581 name := "+", 9582 short := "Sum of x and y.", 9583 ex := [ ], 9584 hash := "bd9934", 9585 sig := "<elt-rng^ser> x + <elt-rng^ser> y", 9586 sog := " -> <elt-rng^ser>", 9587 docsrc := "<internal>", 9588 sinflat := [ elt-rng^ser, elt-rng^ser ], 9589 souflat := [ elt-rng^ser ], 9590 soghash := "28734d", 9591 sig4hash := "+(elt-rng^ser,elt-rng^ser)" ), 9592 rec( 9593 kind := "OPERATION", 9594 sin := [ [ elt-grp^abl, "x" ], [ elt-grp^abl, "y" ] ], 9595 sou := [ [ elt-grp^abl ] ], 9596 name := "+", 9597 short := "Sum of x and y.", 9598 ex := [ ], 9599 hash := "430302", 9600 sig := "<elt-grp^abl> x + <elt-grp^abl> y", 9601 sog := " -> <elt-grp^abl>", 9602 docsrc := "<internal>", 9603 sinflat := [ elt-grp^abl, elt-grp^abl ], 9604 souflat := [ elt-grp^abl ], 9605 soghash := "b42d93", 9606 sig4hash := "+(elt-grp^abl,elt-grp^abl)" ), 9607 rec( 9608 kind := "OPERATION", 9609 sin := [ [ elt-ord^num, "x" ], [ elt-ord^num, "y" ] ], 9610 sou := [ [ elt-ord^num ] ], 9611 name := "+", 9612 short := "Sum of x and y.", 9613 ex := [ ], 9614 hash := "fe5666", 9615 sig := "<elt-ord^num> x + <elt-ord^num> y", 9616 sog := " -> <elt-ord^num>", 9617 docsrc := "<internal>", 9618 sinflat := [ elt-ord^num, elt-ord^num ], 9619 souflat := [ elt-ord^num ], 9620 soghash := "6b03f8", 9621 sig4hash := "+(elt-ord^num,elt-ord^num)" ), 9622 rec( 9623 kind := "OPERATION", 9624 sin := [ [ ord^num, "x" ], [ ord^num, "y" ] ], 9625 sou := [ [ ord^num ] ], 9626 name := "+", 9627 short := "Sum of x and y.", 9628 ex := [ ], 9629 hash := "b19e9b", 9630 sig := "<ord^num> x + <ord^num> y", 9631 sog := " -> <ord^num>", 9632 docsrc := "<internal>", 9633 sinflat := [ ord^num, ord^num ], 9634 souflat := [ ord^num ], 9635 soghash := "2920b8", 9636 sig4hash := "+(ord^num,ord^num)" ), 9637 rec( 9638 kind := "OPERATION", 9639 sin := [ [ ord^fun, "x" ], [ ord^fun, "y" ] ], 9640 sou := [ [ ord^fun ] ], 9641 name := "+", 9642 short := "Sum of x and y.", 9643 ex := [ ], 9644 hash := "d27408", 9645 sig := "<ord^fun> x + <ord^fun> y", 9646 sog := " -> <ord^fun>", 9647 docsrc := "<internal>", 9648 sinflat := [ ord^fun, ord^fun ], 9649 souflat := [ ord^fun ], 9650 soghash := "ab041b", 9651 sig4hash := "+(ord^fun,ord^fun)" ), 9652 rec( 9653 kind := "OPERATION", 9654 sin := [ [ elt-res^num, "x" ], [ elt-res^num, "y" ] ], 9655 sou := [ [ elt-res^num ] ], 9656 name := "+", 9657 short := "Sum of x and y.", 9658 ex := [ ], 9659 hash := "ff2f7d", 9660 sig := "<elt-res^num> x + <elt-res^num> y", 9661 sog := " -> <elt-res^num>", 9662 docsrc := "<internal>", 9663 sinflat := [ elt-res^num, elt-res^num ], 9664 souflat := [ elt-res^num ], 9665 soghash := "a87f47", 9666 sig4hash := "+(elt-res^num,elt-res^num)" ), 9667 rec( 9668 kind := "OPERATION", 9669 sin := [ [ elt-fld^fun, "x" ], [ elt-fld^fun, "y" ] ], 9670 sou := [ [ elt-fld^fun ] ], 9671 name := "+", 9672 short := "Sum of x and y.", 9673 ex := [ ], 9674 hash := "99b3fa", 9675 sig := "<elt-fld^fun> x + <elt-fld^fun> y", 9676 sog := " -> <elt-fld^fun>", 9677 docsrc := "<internal>", 9678 sinflat := [ elt-fld^fun, elt-fld^fun ], 9679 souflat := [ elt-fld^fun ], 9680 soghash := "23d8b4", 9681 sig4hash := "+(elt-fld^fun,elt-fld^fun)" ), 9682 rec( 9683 kind := "OPERATION", 9684 sin := [ [ elt-ord^fun, "x" ], [ elt-ord^fun, "y" ] ], 9685 sou := [ [ elt-ord^fun ] ], 9686 name := "+", 9687 short := "Sum of x and y.", 9688 ex := [ ], 9689 hash := "b9a29c", 9690 sig := "<elt-ord^fun> x + <elt-ord^fun> y", 9691 sog := " -> <elt-ord^fun>", 9692 docsrc := "<internal>", 9693 sinflat := [ elt-ord^fun, elt-ord^fun ], 9694 souflat := [ elt-ord^fun ], 9695 soghash := "0fe368", 9696 sig4hash := "+(elt-ord^fun,elt-ord^fun)" ), 9697 rec( 9698 kind := "OPERATION", 9699 sin := [ [ elt-dvs/fld^fun, "x" ], [ elt-dvs/fld^fun, "y" ] ], 9700 sou := [ [ elt-dvs/fld^fun ] ], 9701 name := "+", 9702 short := "Sum of x and y.", 9703 ex := [ ], 9704 hash := "116c84", 9705 sig := "<elt-dvs/fld^fun> x + <elt-dvs/fld^fun> y", 9706 sog := " -> <elt-dvs/fld^fun>", 9707 docsrc := "<internal>", 9708 sinflat := [ elt-dvs/fld^fun, elt-dvs/fld^fun ], 9709 souflat := [ elt-dvs/fld^fun ], 9710 soghash := "34cafb", 9711 sig4hash := "+(elt-dvs/fld^fun,elt-dvs/fld^fun)" ), 9712 rec( 9713 kind := "OPERATION", 9714 sin := [ [ elt-pls/fld^fun, "x" ], [ elt-dvs/fld^fun, "y" ] ], 9715 sou := [ [ elt-dvs/fld^fun ] ], 9716 name := "+", 9717 short := "Sum of x and y.", 9718 ex := [ ], 9719 hash := "9a6451", 9720 sig := "<elt-pls/fld^fun> x + <elt-dvs/fld^fun> y", 9721 sog := " -> <elt-dvs/fld^fun>", 9722 docsrc := "<internal>", 9723 sinflat := [ elt-pls/fld^fun, elt-dvs/fld^fun ], 9724 souflat := [ elt-dvs/fld^fun ], 9725 soghash := "34cafb", 9726 sig4hash := "+(elt-pls/fld^fun,elt-dvs/fld^fun)" ), 9727 rec( 9728 kind := "OPERATION", 9729 sin := [ [ elt-dvs/fld^fun, "x" ], [ elt-pls/fld^fun, "y" ] ], 9730 sou := [ [ elt-dvs/fld^fun ] ], 9731 name := "+", 9732 short := "Sum of x and y.", 9733 ex := [ ], 9734 hash := "6c8bc0", 9735 sig := "<elt-dvs/fld^fun> x + <elt-pls/fld^fun> y", 9736 sog := " -> <elt-dvs/fld^fun>", 9737 docsrc := "<internal>", 9738 sinflat := [ elt-dvs/fld^fun, elt-pls/fld^fun ], 9739 souflat := [ elt-dvs/fld^fun ], 9740 soghash := "34cafb", 9741 sig4hash := "+(elt-dvs/fld^fun,elt-pls/fld^fun)" ), 9742 rec( 9743 kind := "OPERATION", 9744 sin := [ [ elt-pls/fld^fun, "x" ], [ elt-pls/fld^fun, "y" ] ], 9745 sou := [ [ elt-dvs/fld^fun ] ], 9746 name := "+", 9747 short := "Sum of x and y.", 9748 ex := [ ], 9749 hash := "a848e9", 9750 sig := "<elt-pls/fld^fun> x + <elt-pls/fld^fun> y", 9751 sog := " -> <elt-dvs/fld^fun>", 9752 docsrc := "<internal>", 9753 sinflat := [ elt-pls/fld^fun, elt-pls/fld^fun ], 9754 souflat := [ elt-dvs/fld^fun ], 9755 soghash := "34cafb", 9756 sig4hash := "+(elt-pls/fld^fun,elt-pls/fld^fun)" ), 9757 rec( 9758 kind := "OPERATION", 9759 sin := [ [ elt-dif/fld^fun, "x" ], [ elt-dif/fld^fun, "y" ] ], 9760 sou := [ [ elt-dif/fld^fun ] ], 9761 name := "+", 9762 short := "Sum of x and y.", 9763 ex := [ ], 9764 hash := "1f37ab", 9765 sig := "<elt-dif/fld^fun> x + <elt-dif/fld^fun> y", 9766 sog := " -> <elt-dif/fld^fun>", 9767 docsrc := "<internal>", 9768 sinflat := [ elt-dif/fld^fun, elt-dif/fld^fun ], 9769 souflat := [ elt-dif/fld^fun ], 9770 soghash := "fb8974", 9771 sig4hash := "+(elt-dif/fld^fun,elt-dif/fld^fun)" ), 9772 rec( 9773 kind := "OPERATION", 9774 sin := [ [ elt-ord^inf, "x" ], [ any, "y" ] ], 9775 sou := [ [ elt-ord^inf ] ], 9776 name := "+", 9777 short := "Sum of x and y.", 9778 ex := [ ], 9779 hash := "1361ce", 9780 sig := "<elt-ord^inf> x + <any> y", 9781 sog := " -> <elt-ord^inf>", 9782 docsrc := "<internal>", 9783 sinflat := [ elt-ord^inf, any ], 9784 souflat := [ elt-ord^inf ], 9785 soghash := "08787a", 9786 sig4hash := "+(elt-ord^inf,any)" ), 9787 rec( 9788 kind := "OPERATION", 9789 sin := [ [ any, "x" ], [ elt-ord^inf, "y" ] ], 9790 sou := [ [ elt-ord^inf ] ], 9791 name := "+", 9792 short := "Sum of x and y.", 9793 ex := [ ], 9794 hash := "28c8d2", 9795 sig := "<any> x + <elt-ord^inf> y", 9796 sog := " -> <elt-ord^inf>", 9797 docsrc := "<internal>", 9798 sinflat := [ any, elt-ord^inf ], 9799 souflat := [ elt-ord^inf ], 9800 soghash := "08787a", 9801 sig4hash := "+(any,elt-ord^inf)" ), 9802 rec( 9803 kind := "OPERATION", 9804 sin := [ [ elt-ord^inf, "x" ], [ elt-ord^inf, "y" ] ], 9805 sou := [ [ elt-ord^inf ] ], 9806 name := "+", 9807 short := "Sum of x and y.", 9808 ex := [ ], 9809 hash := "ba191d", 9810 sig := "<elt-ord^inf> x + <elt-ord^inf> y", 9811 sog := " -> <elt-ord^inf>", 9812 docsrc := "<internal>", 9813 sinflat := [ elt-ord^inf, elt-ord^inf ], 9814 souflat := [ elt-ord^inf ], 9815 soghash := "08787a", 9816 sig4hash := "+(elt-ord^inf,elt-ord^inf)" ), 9817 rec( 9818 kind := "OPERATION", 9819 sin := [ [ elt-mdl^ded, "x" ], [ elt-mdl^ded, "y" ] ], 9820 sou := [ [ elt-mdl^ded ] ], 9821 name := "+", 9822 short := "Sum of x and y.", 9823 ex := [ ], 9824 hash := "1f84f1", 9825 sig := "<elt-mdl^ded> x + <elt-mdl^ded> y", 9826 sog := " -> <elt-mdl^ded>", 9827 docsrc := "<internal>", 9828 sinflat := [ elt-mdl^ded, elt-mdl^ded ], 9829 souflat := [ elt-mdl^ded ], 9830 soghash := "2fccf1", 9831 sig4hash := "+(elt-mdl^ded,elt-mdl^ded)" ), 9832 rec( 9833 kind := "OPERATION", 9834 sin := [ [ elt-ids^fra/ord^num, "I" ], [ elt-ids^fra/ord^num, "J" ] ], 9835 sou := [ [ elt-ids^fra/ord^num ] ], 9836 name := "+", 9837 short := "Sum of ideals I and J; I and J must be defined over the same order.", 9838 ex := [ ], 9839 hash := "e139be", 9840 sig := "<elt-ids^fra/ord^num> I + <elt-ids^fra/ord^num> J", 9841 sog := " -> <elt-ids^fra/ord^num>", 9842 docsrc := "<internal>", 9843 sinflat := [ elt-ids^fra/ord^num, elt-ids^fra/ord^num ], 9844 souflat := [ elt-ids^fra/ord^num ], 9845 soghash := "ca011c", 9846 sig4hash := "+(elt-ids^fra/ord^num,elt-ids^fra/ord^num)" ), 9847 rec( 9848 kind := "OPERATION", 9849 sin := [ [ elt-ids^int/ord^fun, "I" ], [ elt-ids^int/ord^fun, "J" ] ], 9850 sou := [ [ elt-ids^int/ord^fun ] ], 9851 name := "+", 9852 short := "Sum of ideals I and J; I and J must be defined over the same order.", 9853 ex := [ ], 9854 hash := "da2302", 9855 sig := "<elt-ids^int/ord^fun> I + <elt-ids^int/ord^fun> J", 9856 sog := " -> <elt-ids^int/ord^fun>", 9857 docsrc := "<internal>", 9858 sinflat := [ elt-ids^int/ord^fun, elt-ids^int/ord^fun ], 9859 souflat := [ elt-ids^int/ord^fun ], 9860 soghash := "918914", 9861 sig4hash := "+(elt-ids^int/ord^fun,elt-ids^int/ord^fun)" ), 9862 rec( 9863 kind := "OPERATION", 9864 sin := [ [ seq(), "A" ], [ seq(), "B" ] ], 9865 sou := [ [ seq() ] ], 9866 name := "+", 9867 short := "The sum of the integers whose factorization tuples are A and B, represented as a factorization tuple.", 9868 ex := [ ], 9869 hash := "2184f2", 9870 sig := "<seq()> A + <seq()> B", 9871 sog := " -> <seq()>", 9872 docsrc := "<internal>", 9873 sinflat := [ seq(), seq() ], 9874 souflat := [ seq() ], 9875 soghash := "4bf3a0", 9876 sig4hash := "+(seq(),seq())" ), 9877 rec( 9878 kind := "OPERATION", 9879 sin := [ [ mdl^vec, "M" ], [ mdl^vec, "N" ] ], 9880 sou := [ [ mdl^vec ] ], 9881 name := "+", 9882 short := "The sum of ideals I and J.", 9883 ex := [ ], 9884 hash := "057455", 9885 sig := "<mdl^vec> M + <mdl^vec> N", 9886 sog := " -> <mdl^vec>", 9887 docsrc := "<internal>", 9888 sinflat := [ mdl^vec, mdl^vec ], 9889 souflat := [ mdl^vec ], 9890 soghash := "886ffa", 9891 sig4hash := "+(mdl^vec,mdl^vec)" ), 9892 rec( 9893 kind := "OPERATION", 9894 sin := [ [ mdl^mat, "M" ], [ mdl^mat, "N" ] ], 9895 sou := [ [ mdl^mat ] ], 9896 name := "+", 9897 short := "The sum of ideals I and J.", 9898 ex := [ ], 9899 hash := "889a24", 9900 sig := "<mdl^mat> M + <mdl^mat> N", 9901 sog := " -> <mdl^mat>", 9902 docsrc := "<internal>", 9903 sinflat := [ mdl^mat, mdl^mat ], 9904 souflat := [ mdl^mat ], 9905 soghash := "5c8c42", 9906 sig4hash := "+(mdl^mat,mdl^mat)" ), 9907 rec( 9908 kind := "OPERATION", 9909 sin := [ [ mdl, "M" ], [ mdl, "N" ] ], 9910 sou := [ [ mdl ] ], 9911 name := "+", 9912 short := "The sum of ideals I and J.", 9913 ex := [ ], 9914 hash := "a58e00", 9915 sig := "<mdl> M + <mdl> N", 9916 sog := " -> <mdl>", 9917 docsrc := "<internal>", 9918 sinflat := [ mdl, mdl ], 9919 souflat := [ mdl ], 9920 soghash := "acbc30", 9921 sig4hash := "+(mdl,mdl)" ), 9922 rec( 9923 kind := "OPERATION", 9924 sin := [ [ alg^pol, "I" ], [ alg^pol, "J" ] ], 9925 sou := [ [ alg^pol ] ], 9926 name := "+", 9927 short := "The sum of ideals I and J.", 9928 ex := [ ], 9929 hash := "fed97c", 9930 sig := "<alg^pol> I + <alg^pol> J", 9931 sog := " -> <alg^pol>", 9932 docsrc := "<internal>", 9933 sinflat := [ alg^pol, alg^pol ], 9934 souflat := [ alg^pol ], 9935 soghash := "75868e", 9936 sig4hash := "+(alg^pol,alg^pol)" ), 9937 rec( 9938 kind := "OPERATION", 9939 sin := [ [ mdl^ded, "M1" ], [ mdl^ded, "M2" ] ], 9940 sou := [ [ mdl^ded ] ], 9941 name := "+", 9942 short := "The sum of modules M and N.", 9943 ex := [ ], 9944 hash := "b209ca", 9945 sig := "<mdl^ded> M1 + <mdl^ded> M2", 9946 sog := " -> <mdl^ded>", 9947 docsrc := "<internal>", 9948 sinflat := [ mdl^ded, mdl^ded ], 9949 souflat := [ mdl^ded ], 9950 soghash := "5ba52c", 9951 sig4hash := "+(mdl^ded,mdl^ded)" ), 9952 rec( 9953 kind := "OPERATION", 9954 sin := [ [ res^rat, "R" ], [ res^rat, "S" ] ], 9955 sou := [ [ res^rat ] ], 9956 name := "+", 9957 short := "Sum of rings R and S.", 9958 ex := [ ], 9959 hash := "130ccf", 9960 sig := "<res^rat> R + <res^rat> S", 9961 sog := " -> <res^rat>", 9962 docsrc := "<internal>", 9963 sinflat := [ res^rat, res^rat ], 9964 souflat := [ res^rat ], 9965 soghash := "a3bb08", 9966 sig4hash := "+(res^rat,res^rat)" ), 9967 rec( 9968 kind := "OPERATION", 9969 sin := [ [ ord^rat, "R" ], [ ord^rat, "S" ] ], 9970 sou := [ [ ord^rat ] ], 9971 name := "+", 9972 short := "Sum of rings R and S.", 9973 ex := [ ], 9974 hash := "564416", 9975 sig := "<ord^rat> R + <ord^rat> S", 9976 sog := " -> <ord^rat>", 9977 docsrc := "<internal>", 9978 sinflat := [ ord^rat, ord^rat ], 9979 souflat := [ ord^rat ], 9980 soghash := "ef1cfa", 9981 sig4hash := "+(ord^rat,ord^rat)" ), 9982 rec( 9983 kind := "OPERATION", 9984 sin := [ [ fld^fin, "F" ], [ fld^fin, "E" ] ], 9985 sou := [ [ fld^fin ] ], 9986 name := "+", 9987 short := "Sum of finite fields F and E.", 9988 ex := [ ], 9989 hash := "883c6f", 9990 sig := "<fld^fin> F + <fld^fin> E", 9991 sog := " -> <fld^fin>", 9992 docsrc := "<internal>", 9993 sinflat := [ fld^fin, fld^fin ], 9994 souflat := [ fld^fin ], 9995 soghash := "267be8", 9996 sig4hash := "+(fld^fin,fld^fin)" ), 9997 rec( 9998 kind := "OPERATION", 9999 sin := [ [ elt-rng, "x" ] ], 10000 sou := [ [ elt-rng ] ], 10001 name := "+", 10002 short := "Return +x (i.e. x).", 10003 ex := [ ], 10004 hash := "c11247", 10005 sig := " + <elt-rng> x", 10006 sog := " -> <elt-rng>", 10007 docsrc := "<internal>", 10008 sinflat := [ elt-rng ], 10009 souflat := [ elt-rng ], 10010 soghash := "7ef0ef", 10011 sig4hash := "+(elt-rng)" ), 10012 rec( 10013 kind := "OPERATION", 10014 sin := [ [ elt-dvs/fld^num, "d1" ], [ elt-dvs/fld^num, "d2" ] ], 10015 sou := [ [ elt-dvs/fld^num ] ], 10016 name := "+", 10017 short := "The sum of the divisors (and places) of a number field.", 10018 ex := [ ], 10019 hash := "dc0712", 10020 sig := "<elt-dvs/fld^num> d1 + <elt-dvs/fld^num> d2", 10021 sog := " -> <elt-dvs/fld^num>", 10022 docsrc := "<internal>", 10023 sinflat := [ elt-dvs/fld^num, elt-dvs/fld^num ], 10024 souflat := [ elt-dvs/fld^num ], 10025 soghash := "87f535", 10026 sig4hash := "+(elt-dvs/fld^num,elt-dvs/fld^num)" ), 10027 rec( 10028 kind := "OPERATION", 10029 sin := [ [ elt-dvs/fld^num, "d" ], [ elt-pls/fld^num, "p" ] ], 10030 sou := [ [ elt-dvs/fld^num ] ], 10031 name := "+", 10032 short := "The sum of the divisors (and places) of a number field.", 10033 ex := [ ], 10034 hash := "f3a0cf", 10035 sig := "<elt-dvs/fld^num> d + <elt-pls/fld^num> p", 10036 sog := " -> <elt-dvs/fld^num>", 10037 docsrc := "<internal>", 10038 sinflat := [ elt-dvs/fld^num, elt-pls/fld^num ], 10039 souflat := [ elt-dvs/fld^num ], 10040 soghash := "87f535", 10041 sig4hash := "+(elt-dvs/fld^num,elt-pls/fld^num)" ), 10042 rec( 10043 kind := "OPERATION", 10044 sin := [ [ elt-pls/fld^num, "p" ], [ elt-dvs/fld^num, "d" ] ], 10045 sou := [ [ elt-dvs/fld^num ] ], 10046 name := "+", 10047 short := "The sum of the divisors (and places) of a number field.", 10048 ex := [ ], 10049 hash := "38af93", 10050 sig := "<elt-pls/fld^num> p + <elt-dvs/fld^num> d", 10051 sog := " -> <elt-dvs/fld^num>", 10052 docsrc := "<internal>", 10053 sinflat := [ elt-pls/fld^num, elt-dvs/fld^num ], 10054 souflat := [ elt-dvs/fld^num ], 10055 soghash := "87f535", 10056 sig4hash := "+(elt-pls/fld^num,elt-dvs/fld^num)" ), 10057 rec( 10058 kind := "OPERATION", 10059 sin := [ [ elt-pls/fld^num, "p1" ], [ elt-pls/fld^num, "p2" ] ], 10060 sou := [ [ elt-dvs/fld^num ] ], 10061 name := "+", 10062 short := "The sum of the divisors (and places) of a number field.", 10063 ex := [ ], 10064 hash := "719540", 10065 sig := "<elt-pls/fld^num> p1 + <elt-pls/fld^num> p2", 10066 sog := " -> <elt-dvs/fld^num>", 10067 docsrc := "<internal>", 10068 sinflat := [ elt-pls/fld^num, elt-pls/fld^num ], 10069 souflat := [ elt-dvs/fld^num ], 10070 soghash := "87f535", 10071 sig4hash := "+(elt-pls/fld^num,elt-pls/fld^num)" ), 10072 rec( 10073 kind := "OPERATION", 10074 sin := [ [ elt-ord^rat, "x" ] ], 10075 sou := [ [ elt-ord^rat ] ], 10076 name := "-", 10077 short := "Negation of x.", 10078 ex := [ ], 10079 hash := "1eb812", 10080 sig := " - <elt-ord^rat> x", 10081 sog := " -> <elt-ord^rat>", 10082 docsrc := "<internal>", 10083 sinflat := [ elt-ord^rat ], 10084 souflat := [ elt-ord^rat ], 10085 soghash := "898213", 10086 sig4hash := "-(elt-ord^rat)" ), 10087 rec( 10088 kind := "OPERATION", 10089 sin := [ [ elt-fld^rat, "x" ] ], 10090 sou := [ [ elt-fld^rat ] ], 10091 name := "-", 10092 short := "Negation of x.", 10093 ex := [ ], 10094 hash := "d5bdc1", 10095 sig := " - <elt-fld^rat> x", 10096 sog := " -> <elt-fld^rat>", 10097 docsrc := "<internal>", 10098 sinflat := [ elt-fld^rat ], 10099 souflat := [ elt-fld^rat ], 10100 soghash := "89f5fc", 10101 sig4hash := "-(elt-fld^rat)" ), 10102 rec( 10103 kind := "OPERATION", 10104 sin := [ [ elt-fld^rea, "x" ] ], 10105 sou := [ [ elt-fld^rea ] ], 10106 name := "-", 10107 short := "Negation of x.", 10108 ex := [ ], 10109 hash := "64d3bf", 10110 sig := " - <elt-fld^rea> x", 10111 sog := " -> <elt-fld^rea>", 10112 docsrc := "<internal>", 10113 sinflat := [ elt-fld^rea ], 10114 souflat := [ elt-fld^rea ], 10115 soghash := "7f2490", 10116 sig4hash := "-(elt-fld^rea)" ), 10117 rec( 10118 kind := "OPERATION", 10119 sin := [ [ elt-fld^com, "x" ] ], 10120 sou := [ [ elt-fld^com ] ], 10121 name := "-", 10122 short := "Negation of x.", 10123 ex := [ ], 10124 hash := "6ed7ac", 10125 sig := " - <elt-fld^com> x", 10126 sog := " -> <elt-fld^com>", 10127 docsrc := "<internal>", 10128 sinflat := [ elt-fld^com ], 10129 souflat := [ elt-fld^com ], 10130 soghash := "0d772f", 10131 sig4hash := "-(elt-fld^com)" ), 10132 rec( 10133 kind := "OPERATION", 10134 sin := [ [ elt-fld^fin, "x" ] ], 10135 sou := [ [ elt-fld^fin ] ], 10136 name := "-", 10137 short := "Negation of x.", 10138 ex := [ ], 10139 hash := "9bd2a8", 10140 sig := " - <elt-fld^fin> x", 10141 sog := " -> <elt-fld^fin>", 10142 docsrc := "<internal>", 10143 sinflat := [ elt-fld^fin ], 10144 souflat := [ elt-fld^fin ], 10145 soghash := "97e752", 10146 sig4hash := "-(elt-fld^fin)" ), 10147 rec( 10148 kind := "OPERATION", 10149 sin := [ [ elt-alg^pol, "x" ] ], 10150 sou := [ [ elt-alg^pol ] ], 10151 name := "-", 10152 short := "Negation of x.", 10153 ex := [ ], 10154 hash := "b2084c", 10155 sig := " - <elt-alg^pol> x", 10156 sog := " -> <elt-alg^pol>", 10157 docsrc := "<internal>", 10158 sinflat := [ elt-alg^pol ], 10159 souflat := [ elt-alg^pol ], 10160 soghash := "ba7338", 10161 sig4hash := "-(elt-alg^pol)" ), 10162 rec( 10163 kind := "OPERATION", 10164 sin := [ [ elt-fld^pol, "x" ] ], 10165 sou := [ [ elt-fld^pol ] ], 10166 name := "-", 10167 short := "Negation of x.", 10168 ex := [ ], 10169 hash := "3c64b7", 10170 sig := " - <elt-fld^pol> x", 10171 sog := " -> <elt-fld^pol>", 10172 docsrc := "<internal>", 10173 sinflat := [ elt-fld^pol ], 10174 souflat := [ elt-fld^pol ], 10175 soghash := "540d59", 10176 sig4hash := "-(elt-fld^pol)" ), 10177 rec( 10178 kind := "OPERATION", 10179 sin := [ [ elt-rng, "x" ] ], 10180 sou := [ [ elt-rng ] ], 10181 name := "-", 10182 short := "Negation of x.", 10183 ex := [ ], 10184 hash := "545d6d", 10185 sig := " - <elt-rng> x", 10186 sog := " -> <elt-rng>", 10187 docsrc := "<internal>", 10188 sinflat := [ elt-rng ], 10189 souflat := [ elt-rng ], 10190 soghash := "7ef0ef", 10191 sig4hash := "-(elt-rng)" ), 10192 rec( 10193 kind := "OPERATION", 10194 sin := [ [ elt-res^pol, "x" ] ], 10195 sou := [ [ elt-res^pol ] ], 10196 name := "-", 10197 short := "Negation of x.", 10198 ex := [ ], 10199 hash := "772456", 10200 sig := " - <elt-res^pol> x", 10201 sog := " -> <elt-res^pol>", 10202 docsrc := "<internal>", 10203 sinflat := [ elt-res^pol ], 10204 souflat := [ elt-res^pol ], 10205 soghash := "8ffe0c", 10206 sig4hash := "-(elt-res^pol)" ), 10207 rec( 10208 kind := "OPERATION", 10209 sin := [ [ elt-mdl^vec, "x" ] ], 10210 sou := [ [ elt-mdl^vec ] ], 10211 name := "-", 10212 short := "Negation of x.", 10213 ex := [ ], 10214 hash := "2371d9", 10215 sig := " - <elt-mdl^vec> x", 10216 sog := " -> <elt-mdl^vec>", 10217 docsrc := "<internal>", 10218 sinflat := [ elt-mdl^vec ], 10219 souflat := [ elt-mdl^vec ], 10220 soghash := "b46581", 10221 sig4hash := "-(elt-mdl^vec)" ), 10222 rec( 10223 kind := "OPERATION", 10224 sin := [ [ elt-mdl^mat, "x" ] ], 10225 sou := [ [ elt-mdl^mat ] ], 10226 name := "-", 10227 short := "Negation of x.", 10228 ex := [ ], 10229 hash := "dc0dae", 10230 sig := " - <elt-mdl^mat> x", 10231 sog := " -> <elt-mdl^mat>", 10232 docsrc := "<internal>", 10233 sinflat := [ elt-mdl^mat ], 10234 souflat := [ elt-mdl^mat ], 10235 soghash := "5284ac", 10236 sig4hash := "-(elt-mdl^mat)" ), 10237 rec( 10238 kind := "OPERATION", 10239 sin := [ [ elt-mdl, "x" ] ], 10240 sou := [ [ elt-mdl ] ], 10241 name := "-", 10242 short := "Negation of x.", 10243 ex := [ ], 10244 hash := "d7d7b2", 10245 sig := " - <elt-mdl> x", 10246 sog := " -> <elt-mdl>", 10247 docsrc := "<internal>", 10248 sinflat := [ elt-mdl ], 10249 souflat := [ elt-mdl ], 10250 soghash := "97b5cd", 10251 sig4hash := "-(elt-mdl)" ), 10252 rec( 10253 kind := "OPERATION", 10254 sin := [ [ elt-res^rat, "x" ] ], 10255 sou := [ [ elt-res^rat ] ], 10256 name := "-", 10257 short := "Negation of x.", 10258 ex := [ ], 10259 hash := "2bbd7f", 10260 sig := " - <elt-res^rat> x", 10261 sog := " -> <elt-res^rat>", 10262 docsrc := "<internal>", 10263 sinflat := [ elt-res^rat ], 10264 souflat := [ elt-res^rat ], 10265 soghash := "7a2c2e", 10266 sig4hash := "-(elt-res^rat)" ), 10267 rec( 10268 kind := "OPERATION", 10269 sin := [ [ elt-res^pad, "x" ] ], 10270 sou := [ [ elt-res^pad ] ], 10271 name := "-", 10272 short := "Negation of x.", 10273 ex := [ ], 10274 hash := "40738e", 10275 sig := " - <elt-res^pad> x", 10276 sog := " -> <elt-res^pad>", 10277 docsrc := "<internal>", 10278 sinflat := [ elt-res^pad ], 10279 souflat := [ elt-res^pad ], 10280 soghash := "0061b4", 10281 sig4hash := "-(elt-res^pad)" ), 10282 rec( 10283 kind := "OPERATION", 10284 sin := [ [ elt-ord^pad, "x" ] ], 10285 sou := [ [ elt-ord^pad ] ], 10286 name := "-", 10287 short := "Negation of x.", 10288 ex := [ ], 10289 hash := "67ab80", 10290 sig := " - <elt-ord^pad> x", 10291 sog := " -> <elt-ord^pad>", 10292 docsrc := "<internal>", 10293 sinflat := [ elt-ord^pad ], 10294 souflat := [ elt-ord^pad ], 10295 soghash := "9ee81d", 10296 sig4hash := "-(elt-ord^pad)" ), 10297 rec( 10298 kind := "OPERATION", 10299 sin := [ [ elt-fld^pad, "x" ] ], 10300 sou := [ [ elt-fld^pad ] ], 10301 name := "-", 10302 short := "Negation of x.", 10303 ex := [ ], 10304 hash := "e6e4de", 10305 sig := " - <elt-fld^pad> x", 10306 sog := " -> <elt-fld^pad>", 10307 docsrc := "<internal>", 10308 sinflat := [ elt-fld^pad ], 10309 souflat := [ elt-fld^pad ], 10310 soghash := "8c3f71", 10311 sig4hash := "-(elt-fld^pad)" ), 10312 rec( 10313 kind := "OPERATION", 10314 sin := [ [ elt-fld^fra, "x" ] ], 10315 sou := [ [ elt-fld^fra ] ], 10316 name := "-", 10317 short := "Negation of x.", 10318 ex := [ ], 10319 hash := "b89a5e", 10320 sig := " - <elt-fld^fra> x", 10321 sog := " -> <elt-fld^fra>", 10322 docsrc := "<internal>", 10323 sinflat := [ elt-fld^fra ], 10324 souflat := [ elt-fld^fra ], 10325 soghash := "74ef48", 10326 sig4hash := "-(elt-fld^fra)" ), 10327 rec( 10328 kind := "OPERATION", 10329 sin := [ [ elt-rng^ser, "x" ] ], 10330 sou := [ [ elt-rng^ser ] ], 10331 name := "-", 10332 short := "Negation of x.", 10333 ex := [ ], 10334 hash := "5f9914", 10335 sig := " - <elt-rng^ser> x", 10336 sog := " -> <elt-rng^ser>", 10337 docsrc := "<internal>", 10338 sinflat := [ elt-rng^ser ], 10339 souflat := [ elt-rng^ser ], 10340 soghash := "28734d", 10341 sig4hash := "-(elt-rng^ser)" ), 10342 rec( 10343 kind := "OPERATION", 10344 sin := [ [ elt-grp^abl, "x" ] ], 10345 sou := [ [ elt-grp^abl ] ], 10346 name := "-", 10347 short := "Negation of x.", 10348 ex := [ ], 10349 hash := "191cfd", 10350 sig := " - <elt-grp^abl> x", 10351 sog := " -> <elt-grp^abl>", 10352 docsrc := "<internal>", 10353 sinflat := [ elt-grp^abl ], 10354 souflat := [ elt-grp^abl ], 10355 soghash := "b42d93", 10356 sig4hash := "-(elt-grp^abl)" ), 10357 rec( 10358 kind := "OPERATION", 10359 sin := [ [ elt-ord^num, "x" ] ], 10360 sou := [ [ elt-ord^num ] ], 10361 name := "-", 10362 short := "Negation of x.", 10363 ex := [ ], 10364 hash := "47a5d6", 10365 sig := " - <elt-ord^num> x", 10366 sog := " -> <elt-ord^num>", 10367 docsrc := "<internal>", 10368 sinflat := [ elt-ord^num ], 10369 souflat := [ elt-ord^num ], 10370 soghash := "6b03f8", 10371 sig4hash := "-(elt-ord^num)" ), 10372 rec( 10373 kind := "OPERATION", 10374 sin := [ [ elt-res^num, "x" ] ], 10375 sou := [ [ elt-res^num ] ], 10376 name := "-", 10377 short := "Negation of x.", 10378 ex := [ ], 10379 hash := "a53da3", 10380 sig := " - <elt-res^num> x", 10381 sog := " -> <elt-res^num>", 10382 docsrc := "<internal>", 10383 sinflat := [ elt-res^num ], 10384 souflat := [ elt-res^num ], 10385 soghash := "a87f47", 10386 sig4hash := "-(elt-res^num)" ), 10387 rec( 10388 kind := "OPERATION", 10389 sin := [ [ elt-fld^fun, "x" ] ], 10390 sou := [ [ elt-fld^fun ] ], 10391 name := "-", 10392 short := "Negation of x.", 10393 ex := [ ], 10394 hash := "d9093f", 10395 sig := " - <elt-fld^fun> x", 10396 sog := " -> <elt-fld^fun>", 10397 docsrc := "<internal>", 10398 sinflat := [ elt-fld^fun ], 10399 souflat := [ elt-fld^fun ], 10400 soghash := "23d8b4", 10401 sig4hash := "-(elt-fld^fun)" ), 10402 rec( 10403 kind := "OPERATION", 10404 sin := [ [ elt-ord^fun, "x" ] ], 10405 sou := [ [ elt-ord^fun ] ], 10406 name := "-", 10407 short := "Negation of x.", 10408 ex := [ ], 10409 hash := "a4c200", 10410 sig := " - <elt-ord^fun> x", 10411 sog := " -> <elt-ord^fun>", 10412 docsrc := "<internal>", 10413 sinflat := [ elt-ord^fun ], 10414 souflat := [ elt-ord^fun ], 10415 soghash := "0fe368", 10416 sig4hash := "-(elt-ord^fun)" ), 10417 rec( 10418 kind := "OPERATION", 10419 sin := [ [ elt-dvs/fld^fun, "x" ] ], 10420 sou := [ [ elt-dvs/fld^fun ] ], 10421 name := "-", 10422 short := "Negation of x.", 10423 ex := [ ], 10424 hash := "80ef57", 10425 sig := " - <elt-dvs/fld^fun> x", 10426 sog := " -> <elt-dvs/fld^fun>", 10427 docsrc := "<internal>", 10428 sinflat := [ elt-dvs/fld^fun ], 10429 souflat := [ elt-dvs/fld^fun ], 10430 soghash := "34cafb", 10431 sig4hash := "-(elt-dvs/fld^fun)" ), 10432 rec( 10433 kind := "OPERATION", 10434 sin := [ [ elt-pls/fld^fun, "x" ] ], 10435 sou := [ [ elt-dvs/fld^fun ] ], 10436 name := "-", 10437 short := "Negation of x.", 10438 ex := [ ], 10439 hash := "9da624", 10440 sig := " - <elt-pls/fld^fun> x", 10441 sog := " -> <elt-dvs/fld^fun>", 10442 docsrc := "<internal>", 10443 sinflat := [ elt-pls/fld^fun ], 10444 souflat := [ elt-dvs/fld^fun ], 10445 soghash := "34cafb", 10446 sig4hash := "-(elt-pls/fld^fun)" ), 10447 rec( 10448 kind := "OPERATION", 10449 sin := [ [ elt-dif/fld^fun, "x" ] ], 10450 sou := [ [ elt-dif/fld^fun ] ], 10451 name := "-", 10452 short := "Negation of x.", 10453 ex := [ ], 10454 hash := "890b10", 10455 sig := " - <elt-dif/fld^fun> x", 10456 sog := " -> <elt-dif/fld^fun>", 10457 docsrc := "<internal>", 10458 sinflat := [ elt-dif/fld^fun ], 10459 souflat := [ elt-dif/fld^fun ], 10460 soghash := "fb8974", 10461 sig4hash := "-(elt-dif/fld^fun)" ), 10462 rec( 10463 kind := "OPERATION", 10464 sin := [ [ elt-ord^inf, "x" ] ], 10465 sou := [ [ elt-ord^inf ] ], 10466 name := "-", 10467 short := "Negation of x.", 10468 ex := [ ], 10469 hash := "55a86d", 10470 sig := " - <elt-ord^inf> x", 10471 sog := " -> <elt-ord^inf>", 10472 docsrc := "<internal>", 10473 sinflat := [ elt-ord^inf ], 10474 souflat := [ elt-ord^inf ], 10475 soghash := "08787a", 10476 sig4hash := "-(elt-ord^inf)" ), 10477 rec( 10478 kind := "OPERATION", 10479 sin := [ [ elt-alg^mat, "x" ] ], 10480 sou := [ [ elt-alg^mat ] ], 10481 name := "-", 10482 short := "Negation of x.", 10483 ex := [ ], 10484 hash := "d311d7", 10485 sig := " - <elt-alg^mat> x", 10486 sog := " -> <elt-alg^mat>", 10487 docsrc := "<internal>", 10488 sinflat := [ elt-alg^mat ], 10489 souflat := [ elt-alg^mat ], 10490 soghash := "8dbb64", 10491 sig4hash := "-(elt-alg^mat)" ), 10492 rec( 10493 kind := "OPERATION", 10494 sin := [ [ elt-mdl^ded, "x" ] ], 10495 sou := [ [ elt-mdl^ded ] ], 10496 name := "-", 10497 short := "Negation of x.", 10498 ex := [ ], 10499 hash := "5f76dc", 10500 sig := " - <elt-mdl^ded> x", 10501 sog := " -> <elt-mdl^ded>", 10502 docsrc := "<internal>", 10503 sinflat := [ elt-mdl^ded ], 10504 souflat := [ elt-mdl^ded ], 10505 soghash := "2fccf1", 10506 sig4hash := "-(elt-mdl^ded)" ), 10507 rec( 10508 kind := "OPERATION", 10509 sin := [ [ elt-ord^rat, "x" ], [ elt-ord^rat, "y" ] ], 10510 sou := [ [ elt-ord^rat ] ], 10511 name := "-", 10512 short := "Difference of f and the scalar c.", 10513 ex := [ ], 10514 hash := "23ff06", 10515 sig := "<elt-ord^rat> x - <elt-ord^rat> y", 10516 sog := " -> <elt-ord^rat>", 10517 docsrc := "<internal>", 10518 sinflat := [ elt-ord^rat, elt-ord^rat ], 10519 souflat := [ elt-ord^rat ], 10520 soghash := "898213", 10521 sig4hash := "-(elt-ord^rat,elt-ord^rat)" ), 10522 rec( 10523 kind := "OPERATION", 10524 sin := [ [ elt-fld^rat, "x" ], [ elt-fld^rat, "y" ] ], 10525 sou := [ [ elt-fld^rat ] ], 10526 name := "-", 10527 short := "Difference of f and the scalar c.", 10528 ex := [ ], 10529 hash := "acacf0", 10530 sig := "<elt-fld^rat> x - <elt-fld^rat> y", 10531 sog := " -> <elt-fld^rat>", 10532 docsrc := "<internal>", 10533 sinflat := [ elt-fld^rat, elt-fld^rat ], 10534 souflat := [ elt-fld^rat ], 10535 soghash := "89f5fc", 10536 sig4hash := "-(elt-fld^rat,elt-fld^rat)" ), 10537 rec( 10538 kind := "OPERATION", 10539 sin := [ [ elt-fld^rea, "x" ], [ elt-fld^rea, "y" ] ], 10540 sou := [ [ elt-fld^rea ] ], 10541 name := "-", 10542 short := "Difference of f and the scalar c.", 10543 ex := [ ], 10544 hash := "cc9e0a", 10545 sig := "<elt-fld^rea> x - <elt-fld^rea> y", 10546 sog := " -> <elt-fld^rea>", 10547 docsrc := "<internal>", 10548 sinflat := [ elt-fld^rea, elt-fld^rea ], 10549 souflat := [ elt-fld^rea ], 10550 soghash := "7f2490", 10551 sig4hash := "-(elt-fld^rea,elt-fld^rea)" ), 10552 rec( 10553 kind := "OPERATION", 10554 sin := [ [ elt-fld^com, "x" ], [ elt-fld^com, "y" ] ], 10555 sou := [ [ elt-fld^com ] ], 10556 name := "-", 10557 short := "Difference of f and the scalar c.", 10558 ex := [ ], 10559 hash := "1c07a1", 10560 sig := "<elt-fld^com> x - <elt-fld^com> y", 10561 sog := " -> <elt-fld^com>", 10562 docsrc := "<internal>", 10563 sinflat := [ elt-fld^com, elt-fld^com ], 10564 souflat := [ elt-fld^com ], 10565 soghash := "0d772f", 10566 sig4hash := "-(elt-fld^com,elt-fld^com)" ), 10567 rec( 10568 kind := "OPERATION", 10569 sin := [ [ elt-alg^pol, "x" ], [ elt-alg^pol, "y" ] ], 10570 sou := [ [ elt-alg^pol ] ], 10571 name := "-", 10572 short := "Difference of f and the scalar c.", 10573 ex := [ ], 10574 hash := "c89f1d", 10575 sig := "<elt-alg^pol> x - <elt-alg^pol> y", 10576 sog := " -> <elt-alg^pol>", 10577 docsrc := "<internal>", 10578 sinflat := [ elt-alg^pol, elt-alg^pol ], 10579 souflat := [ elt-alg^pol ], 10580 soghash := "ba7338", 10581 sig4hash := "-(elt-alg^pol,elt-alg^pol)" ), 10582 rec( 10583 kind := "OPERATION", 10584 sin := [ [ elt-fld^pol, "x" ], [ elt-fld^pol, "y" ] ], 10585 sou := [ [ elt-fld^pol ] ], 10586 name := "-", 10587 short := "Difference of f and the scalar c.", 10588 ex := [ ], 10589 hash := "df84c5", 10590 sig := "<elt-fld^pol> x - <elt-fld^pol> y", 10591 sog := " -> <elt-fld^pol>", 10592 docsrc := "<internal>", 10593 sinflat := [ elt-fld^pol, elt-fld^pol ], 10594 souflat := [ elt-fld^pol ], 10595 soghash := "540d59", 10596 sig4hash := "-(elt-fld^pol,elt-fld^pol)" ), 10597 rec( 10598 kind := "OPERATION", 10599 sin := [ [ elt-rng, "x" ], [ elt-rng, "y" ] ], 10600 sou := [ [ elt-rng ] ], 10601 name := "-", 10602 short := "Difference of f and the scalar c.", 10603 ex := [ ], 10604 hash := "9efff3", 10605 sig := "<elt-rng> x - <elt-rng> y", 10606 sog := " -> <elt-rng>", 10607 docsrc := "<internal>", 10608 sinflat := [ elt-rng, elt-rng ], 10609 souflat := [ elt-rng ], 10610 soghash := "7ef0ef", 10611 sig4hash := "-(elt-rng,elt-rng)" ), 10612 rec( 10613 kind := "OPERATION", 10614 sin := [ [ elt-res^pol, "x" ], [ elt-res^pol, "y" ] ], 10615 sou := [ [ elt-res^pol ] ], 10616 name := "-", 10617 short := "Difference of f and the scalar c.", 10618 ex := [ ], 10619 hash := "6ce3e4", 10620 sig := "<elt-res^pol> x - <elt-res^pol> y", 10621 sog := " -> <elt-res^pol>", 10622 docsrc := "<internal>", 10623 sinflat := [ elt-res^pol, elt-res^pol ], 10624 souflat := [ elt-res^pol ], 10625 soghash := "8ffe0c", 10626 sig4hash := "-(elt-res^pol,elt-res^pol)" ), 10627 rec( 10628 kind := "OPERATION", 10629 sin := [ [ elt-fld^fin, "x" ], [ elt-fld^fin, "y" ] ], 10630 sou := [ [ elt-fld^fin ] ], 10631 name := "-", 10632 short := "Difference of f and the scalar c.", 10633 ex := [ ], 10634 hash := "5f50a9", 10635 sig := "<elt-fld^fin> x - <elt-fld^fin> y", 10636 sog := " -> <elt-fld^fin>", 10637 docsrc := "<internal>", 10638 sinflat := [ elt-fld^fin, elt-fld^fin ], 10639 souflat := [ elt-fld^fin ], 10640 soghash := "97e752", 10641 sig4hash := "-(elt-fld^fin,elt-fld^fin)" ), 10642 rec( 10643 kind := "OPERATION", 10644 sin := [ [ elt-alg^mat, "x" ], [ elt-alg^mat, "y" ] ], 10645 sou := [ [ elt-alg^mat ] ], 10646 name := "-", 10647 short := "Difference of f and the scalar c.", 10648 ex := [ ], 10649 hash := "fd316b", 10650 sig := "<elt-alg^mat> x - <elt-alg^mat> y", 10651 sog := " -> <elt-alg^mat>", 10652 docsrc := "<internal>", 10653 sinflat := [ elt-alg^mat, elt-alg^mat ], 10654 souflat := [ elt-alg^mat ], 10655 soghash := "8dbb64", 10656 sig4hash := "-(elt-alg^mat,elt-alg^mat)" ), 10657 rec( 10658 kind := "OPERATION", 10659 sin := [ [ elt-mdl^vec, "x" ], [ elt-mdl^vec, "y" ] ], 10660 sou := [ [ elt-mdl^vec ] ], 10661 name := "-", 10662 short := "Difference of f and the scalar c.", 10663 ex := [ ], 10664 hash := "c8309c", 10665 sig := "<elt-mdl^vec> x - <elt-mdl^vec> y", 10666 sog := " -> <elt-mdl^vec>", 10667 docsrc := "<internal>", 10668 sinflat := [ elt-mdl^vec, elt-mdl^vec ], 10669 souflat := [ elt-mdl^vec ], 10670 soghash := "b46581", 10671 sig4hash := "-(elt-mdl^vec,elt-mdl^vec)" ), 10672 rec( 10673 kind := "OPERATION", 10674 sin := [ [ elt-mdl^mat, "x" ], [ elt-mdl^mat, "y" ] ], 10675 sou := [ [ elt-mdl^mat ] ], 10676 name := "-", 10677 short := "Difference of f and the scalar c.", 10678 ex := [ ], 10679 hash := "87c7ba", 10680 sig := "<elt-mdl^mat> x - <elt-mdl^mat> y", 10681 sog := " -> <elt-mdl^mat>", 10682 docsrc := "<internal>", 10683 sinflat := [ elt-mdl^mat, elt-mdl^mat ], 10684 souflat := [ elt-mdl^mat ], 10685 soghash := "5284ac", 10686 sig4hash := "-(elt-mdl^mat,elt-mdl^mat)" ), 10687 rec( 10688 kind := "OPERATION", 10689 sin := [ [ elt-mdl, "x" ], [ elt-mdl, "y" ] ], 10690 sou := [ [ elt-mdl ] ], 10691 name := "-", 10692 short := "Difference of f and the scalar c.", 10693 ex := [ ], 10694 hash := "18316f", 10695 sig := "<elt-mdl> x - <elt-mdl> y", 10696 sog := " -> <elt-mdl>", 10697 docsrc := "<internal>", 10698 sinflat := [ elt-mdl, elt-mdl ], 10699 souflat := [ elt-mdl ], 10700 soghash := "97b5cd", 10701 sig4hash := "-(elt-mdl,elt-mdl)" ), 10702 rec( 10703 kind := "OPERATION", 10704 sin := [ [ elt-res^rat, "x" ], [ elt-res^rat, "y" ] ], 10705 sou := [ [ elt-res^rat ] ], 10706 name := "-", 10707 short := "Difference of f and the scalar c.", 10708 ex := [ ], 10709 hash := "72c468", 10710 sig := "<elt-res^rat> x - <elt-res^rat> y", 10711 sog := " -> <elt-res^rat>", 10712 docsrc := "<internal>", 10713 sinflat := [ elt-res^rat, elt-res^rat ], 10714 souflat := [ elt-res^rat ], 10715 soghash := "7a2c2e", 10716 sig4hash := "-(elt-res^rat,elt-res^rat)" ), 10717 rec( 10718 kind := "OPERATION", 10719 sin := [ [ elt-res^pad, "x" ], [ elt-res^pad, "y" ] ], 10720 sou := [ [ elt-res^pad ] ], 10721 name := "-", 10722 short := "Difference of f and the scalar c.", 10723 ex := [ ], 10724 hash := "c77aaf", 10725 sig := "<elt-res^pad> x - <elt-res^pad> y", 10726 sog := " -> <elt-res^pad>", 10727 docsrc := "<internal>", 10728 sinflat := [ elt-res^pad, elt-res^pad ], 10729 souflat := [ elt-res^pad ], 10730 soghash := "0061b4", 10731 sig4hash := "-(elt-res^pad,elt-res^pad)" ), 10732 rec( 10733 kind := "OPERATION", 10734 sin := [ [ elt-ord^pad, "x" ], [ elt-ord^pad, "y" ] ], 10735 sou := [ [ elt-ord^pad ] ], 10736 name := "-", 10737 short := "Difference of f and the scalar c.", 10738 ex := [ ], 10739 hash := "3eb458", 10740 sig := "<elt-ord^pad> x - <elt-ord^pad> y", 10741 sog := " -> <elt-ord^pad>", 10742 docsrc := "<internal>", 10743 sinflat := [ elt-ord^pad, elt-ord^pad ], 10744 souflat := [ elt-ord^pad ], 10745 soghash := "9ee81d", 10746 sig4hash := "-(elt-ord^pad,elt-ord^pad)" ), 10747 rec( 10748 kind := "OPERATION", 10749 sin := [ [ elt-fld^pad, "x" ], [ elt-fld^pad, "y" ] ], 10750 sou := [ [ elt-fld^pad ] ], 10751 name := "-", 10752 short := "Difference of f and the scalar c.", 10753 ex := [ ], 10754 hash := "b8e53c", 10755 sig := "<elt-fld^pad> x - <elt-fld^pad> y", 10756 sog := " -> <elt-fld^pad>", 10757 docsrc := "<internal>", 10758 sinflat := [ elt-fld^pad, elt-fld^pad ], 10759 souflat := [ elt-fld^pad ], 10760 soghash := "8c3f71", 10761 sig4hash := "-(elt-fld^pad,elt-fld^pad)" ), 10762 rec( 10763 kind := "OPERATION", 10764 sin := [ [ elt-fld^fra, "x" ], [ elt-fld^fra, "y" ] ], 10765 sou := [ [ elt-fld^fra ] ], 10766 name := "-", 10767 short := "Difference of f and the scalar c.", 10768 ex := [ ], 10769 hash := "d19437", 10770 sig := "<elt-fld^fra> x - <elt-fld^fra> y", 10771 sog := " -> <elt-fld^fra>", 10772 docsrc := "<internal>", 10773 sinflat := [ elt-fld^fra, elt-fld^fra ], 10774 souflat := [ elt-fld^fra ], 10775 soghash := "74ef48", 10776 sig4hash := "-(elt-fld^fra,elt-fld^fra)" ), 10777 rec( 10778 kind := "OPERATION", 10779 sin := [ [ elt-rng^ser, "x" ], [ elt-rng^ser, "y" ] ], 10780 sou := [ [ elt-rng^ser ] ], 10781 name := "-", 10782 short := "Difference of f and the scalar c.", 10783 ex := [ ], 10784 hash := "66baf1", 10785 sig := "<elt-rng^ser> x - <elt-rng^ser> y", 10786 sog := " -> <elt-rng^ser>", 10787 docsrc := "<internal>", 10788 sinflat := [ elt-rng^ser, elt-rng^ser ], 10789 souflat := [ elt-rng^ser ], 10790 soghash := "28734d", 10791 sig4hash := "-(elt-rng^ser,elt-rng^ser)" ), 10792 rec( 10793 kind := "OPERATION", 10794 sin := [ [ elt-grp^abl, "x" ], [ elt-grp^abl, "y" ] ], 10795 sou := [ [ elt-grp^abl ] ], 10796 name := "-", 10797 short := "Difference of f and the scalar c.", 10798 ex := [ ], 10799 hash := "f0ca70", 10800 sig := "<elt-grp^abl> x - <elt-grp^abl> y", 10801 sog := " -> <elt-grp^abl>", 10802 docsrc := "<internal>", 10803 sinflat := [ elt-grp^abl, elt-grp^abl ], 10804 souflat := [ elt-grp^abl ], 10805 soghash := "b42d93", 10806 sig4hash := "-(elt-grp^abl,elt-grp^abl)" ), 10807 rec( 10808 kind := "OPERATION", 10809 sin := [ [ elt-ord^num, "x" ], [ elt-ord^num, "y" ] ], 10810 sou := [ [ elt-ord^num ] ], 10811 name := "-", 10812 short := "Difference of f and the scalar c.", 10813 ex := [ ], 10814 hash := "20475b", 10815 sig := "<elt-ord^num> x - <elt-ord^num> y", 10816 sog := " -> <elt-ord^num>", 10817 docsrc := "<internal>", 10818 sinflat := [ elt-ord^num, elt-ord^num ], 10819 souflat := [ elt-ord^num ], 10820 soghash := "6b03f8", 10821 sig4hash := "-(elt-ord^num,elt-ord^num)" ), 10822 rec( 10823 kind := "OPERATION", 10824 sin := [ [ elt-res^num, "x" ], [ elt-res^num, "y" ] ], 10825 sou := [ [ elt-res^num ] ], 10826 name := "-", 10827 short := "Difference of f and the scalar c.", 10828 ex := [ ], 10829 hash := "f307dc", 10830 sig := "<elt-res^num> x - <elt-res^num> y", 10831 sog := " -> <elt-res^num>", 10832 docsrc := "<internal>", 10833 sinflat := [ elt-res^num, elt-res^num ], 10834 souflat := [ elt-res^num ], 10835 soghash := "a87f47", 10836 sig4hash := "-(elt-res^num,elt-res^num)" ), 10837 rec( 10838 kind := "OPERATION", 10839 sin := [ [ elt-fld^fun, "x" ], [ elt-fld^fun, "y" ] ], 10840 sou := [ [ elt-fld^fun ] ], 10841 name := "-", 10842 short := "Difference of f and the scalar c.", 10843 ex := [ ], 10844 hash := "584386", 10845 sig := "<elt-fld^fun> x - <elt-fld^fun> y", 10846 sog := " -> <elt-fld^fun>", 10847 docsrc := "<internal>", 10848 sinflat := [ elt-fld^fun, elt-fld^fun ], 10849 souflat := [ elt-fld^fun ], 10850 soghash := "23d8b4", 10851 sig4hash := "-(elt-fld^fun,elt-fld^fun)" ), 10852 rec( 10853 kind := "OPERATION", 10854 sin := [ [ elt-ord^fun, "x" ], [ elt-ord^fun, "y" ] ], 10855 sou := [ [ elt-ord^fun ] ], 10856 name := "-", 10857 short := "Difference of f and the scalar c.", 10858 ex := [ ], 10859 hash := "a41a54", 10860 sig := "<elt-ord^fun> x - <elt-ord^fun> y", 10861 sog := " -> <elt-ord^fun>", 10862 docsrc := "<internal>", 10863 sinflat := [ elt-ord^fun, elt-ord^fun ], 10864 souflat := [ elt-ord^fun ], 10865 soghash := "0fe368", 10866 sig4hash := "-(elt-ord^fun,elt-ord^fun)" ), 10867 rec( 10868 kind := "OPERATION", 10869 sin := [ [ elt-dvs/fld^fun, "x" ], [ elt-dvs/fld^fun, "y" ] ], 10870 sou := [ [ elt-dvs/fld^fun ] ], 10871 name := "-", 10872 short := "Difference of f and the scalar c.", 10873 ex := [ ], 10874 hash := "7cc02b", 10875 sig := "<elt-dvs/fld^fun> x - <elt-dvs/fld^fun> y", 10876 sog := " -> <elt-dvs/fld^fun>", 10877 docsrc := "<internal>", 10878 sinflat := [ elt-dvs/fld^fun, elt-dvs/fld^fun ], 10879 souflat := [ elt-dvs/fld^fun ], 10880 soghash := "34cafb", 10881 sig4hash := "-(elt-dvs/fld^fun,elt-dvs/fld^fun)" ), 10882 rec( 10883 kind := "OPERATION", 10884 sin := [ [ elt-pls/fld^fun, "x" ], [ elt-dvs/fld^fun, "y" ] ], 10885 sou := [ [ elt-dvs/fld^fun ] ], 10886 name := "-", 10887 short := "Difference of f and the scalar c.", 10888 ex := [ ], 10889 hash := "fb76d0", 10890 sig := "<elt-pls/fld^fun> x - <elt-dvs/fld^fun> y", 10891 sog := " -> <elt-dvs/fld^fun>", 10892 docsrc := "<internal>", 10893 sinflat := [ elt-pls/fld^fun, elt-dvs/fld^fun ], 10894 souflat := [ elt-dvs/fld^fun ], 10895 soghash := "34cafb", 10896 sig4hash := "-(elt-pls/fld^fun,elt-dvs/fld^fun)" ), 10897 rec( 10898 kind := "OPERATION", 10899 sin := [ [ elt-dvs/fld^fun, "x" ], [ elt-pls/fld^fun, "y" ] ], 10900 sou := [ [ elt-dvs/fld^fun ] ], 10901 name := "-", 10902 short := "Difference of f and the scalar c.", 10903 ex := [ ], 10904 hash := "c401e7", 10905 sig := "<elt-dvs/fld^fun> x - <elt-pls/fld^fun> y", 10906 sog := " -> <elt-dvs/fld^fun>", 10907 docsrc := "<internal>", 10908 sinflat := [ elt-dvs/fld^fun, elt-pls/fld^fun ], 10909 souflat := [ elt-dvs/fld^fun ], 10910 soghash := "34cafb", 10911 sig4hash := "-(elt-dvs/fld^fun,elt-pls/fld^fun)" ), 10912 rec( 10913 kind := "OPERATION", 10914 sin := [ [ elt-pls/fld^fun, "x" ], [ elt-pls/fld^fun, "y" ] ], 10915 sou := [ [ elt-dvs/fld^fun ] ], 10916 name := "-", 10917 short := "Difference of f and the scalar c.", 10918 ex := [ ], 10919 hash := "a2c7a5", 10920 sig := "<elt-pls/fld^fun> x - <elt-pls/fld^fun> y", 10921 sog := " -> <elt-dvs/fld^fun>", 10922 docsrc := "<internal>", 10923 sinflat := [ elt-pls/fld^fun, elt-pls/fld^fun ], 10924 souflat := [ elt-dvs/fld^fun ], 10925 soghash := "34cafb", 10926 sig4hash := "-(elt-pls/fld^fun,elt-pls/fld^fun)" ), 10927 rec( 10928 kind := "OPERATION", 10929 sin := [ [ elt-dif/fld^fun, "x" ], [ elt-dif/fld^fun, "y" ] ], 10930 sou := [ [ elt-dif/fld^fun ] ], 10931 name := "-", 10932 short := "Difference of f and the scalar c.", 10933 ex := [ ], 10934 hash := "4ce650", 10935 sig := "<elt-dif/fld^fun> x - <elt-dif/fld^fun> y", 10936 sog := " -> <elt-dif/fld^fun>", 10937 docsrc := "<internal>", 10938 sinflat := [ elt-dif/fld^fun, elt-dif/fld^fun ], 10939 souflat := [ elt-dif/fld^fun ], 10940 soghash := "fb8974", 10941 sig4hash := "-(elt-dif/fld^fun,elt-dif/fld^fun)" ), 10942 rec( 10943 kind := "OPERATION", 10944 sin := [ [ elt-ord^inf, "x" ], [ any, "y" ] ], 10945 sou := [ [ elt-ord^inf ] ], 10946 name := "-", 10947 short := "Difference of f and the scalar c.", 10948 ex := [ ], 10949 hash := "63b663", 10950 sig := "<elt-ord^inf> x - <any> y", 10951 sog := " -> <elt-ord^inf>", 10952 docsrc := "<internal>", 10953 sinflat := [ elt-ord^inf, any ], 10954 souflat := [ elt-ord^inf ], 10955 soghash := "08787a", 10956 sig4hash := "-(elt-ord^inf,any)" ), 10957 rec( 10958 kind := "OPERATION", 10959 sin := [ [ any, "x" ], [ elt-ord^inf, "y" ] ], 10960 sou := [ [ elt-ord^inf ] ], 10961 name := "-", 10962 short := "Difference of f and the scalar c.", 10963 ex := [ ], 10964 hash := "ff2ad4", 10965 sig := "<any> x - <elt-ord^inf> y", 10966 sog := " -> <elt-ord^inf>", 10967 docsrc := "<internal>", 10968 sinflat := [ any, elt-ord^inf ], 10969 souflat := [ elt-ord^inf ], 10970 soghash := "08787a", 10971 sig4hash := "-(any,elt-ord^inf)" ), 10972 rec( 10973 kind := "OPERATION", 10974 sin := [ [ elt-ord^inf, "x" ], [ elt-ord^inf, "y" ] ], 10975 sou := [ [ elt-ord^inf ] ], 10976 name := "-", 10977 short := "Difference of f and the scalar c.", 10978 ex := [ ], 10979 hash := "17cebe", 10980 sig := "<elt-ord^inf> x - <elt-ord^inf> y", 10981 sog := " -> <elt-ord^inf>", 10982 docsrc := "<internal>", 10983 sinflat := [ elt-ord^inf, elt-ord^inf ], 10984 souflat := [ elt-ord^inf ], 10985 soghash := "08787a", 10986 sig4hash := "-(elt-ord^inf,elt-ord^inf)" ), 10987 rec( 10988 kind := "OPERATION", 10989 sin := [ [ elt-mdl^ded, "x" ], [ elt-mdl^ded, "y" ] ], 10990 sou := [ [ elt-mdl^ded ] ], 10991 name := "-", 10992 short := "Difference of f and the scalar c.", 10993 ex := [ ], 10994 hash := "71a37f", 10995 sig := "<elt-mdl^ded> x - <elt-mdl^ded> y", 10996 sog := " -> <elt-mdl^ded>", 10997 docsrc := "<internal>", 10998 sinflat := [ elt-mdl^ded, elt-mdl^ded ], 10999 souflat := [ elt-mdl^ded ], 11000 soghash := "2fccf1", 11001 sig4hash := "-(elt-mdl^ded,elt-mdl^ded)" ), 11002 rec( 11003 kind := "OPERATION", 11004 sin := [ [ seq(), "A" ], [ seq(), "B" ] ], 11005 sou := [ [ seq() ] ], 11006 name := "-", 11007 short := "Difference of f and the scalar c.", 11008 ex := [ ], 11009 hash := "64a650", 11010 sig := "<seq()> A - <seq()> B", 11011 sog := " -> <seq()>", 11012 docsrc := "<internal>", 11013 sinflat := [ seq(), seq() ], 11014 souflat := [ seq() ], 11015 soghash := "4bf3a0", 11016 sig4hash := "-(seq(),seq())" ), 11017 rec( 11018 kind := "OPERATION", 11019 sin := [ [ elt-dvs/fld^num, "d" ] ], 11020 sou := [ [ elt-dvs/fld^num ] ], 11021 name := "-", 11022 short := "The negative of or difference between the number field divisors (and places).", 11023 ex := [ ], 11024 hash := "6ee450", 11025 sig := " - <elt-dvs/fld^num> d", 11026 sog := " -> <elt-dvs/fld^num>", 11027 docsrc := "<internal>", 11028 sinflat := [ elt-dvs/fld^num ], 11029 souflat := [ elt-dvs/fld^num ], 11030 soghash := "87f535", 11031 sig4hash := "-(elt-dvs/fld^num)" ), 11032 rec( 11033 kind := "OPERATION", 11034 sin := [ [ elt-pls/fld^num, "p" ] ], 11035 sou := [ [ elt-dvs/fld^num ] ], 11036 name := "-", 11037 short := "The negative of or difference between the number field divisors (and places).", 11038 ex := [ ], 11039 hash := "d78dd5", 11040 sig := " - <elt-pls/fld^num> p", 11041 sog := " -> <elt-dvs/fld^num>", 11042 docsrc := "<internal>", 11043 sinflat := [ elt-pls/fld^num ], 11044 souflat := [ elt-dvs/fld^num ], 11045 soghash := "87f535", 11046 sig4hash := "-(elt-pls/fld^num)" ), 11047 rec( 11048 kind := "OPERATION", 11049 sin := [ [ elt-dvs/fld^num, "d1" ], [ elt-dvs/fld^num, "d2" ] ], 11050 sou := [ [ elt-dvs/fld^num ] ], 11051 name := "-", 11052 short := "The negative of or difference between the number field divisors (and places).", 11053 ex := [ ], 11054 hash := "9a31fa", 11055 sig := "<elt-dvs/fld^num> d1 - <elt-dvs/fld^num> d2", 11056 sog := " -> <elt-dvs/fld^num>", 11057 docsrc := "<internal>", 11058 sinflat := [ elt-dvs/fld^num, elt-dvs/fld^num ], 11059 souflat := [ elt-dvs/fld^num ], 11060 soghash := "87f535", 11061 sig4hash := "-(elt-dvs/fld^num,elt-dvs/fld^num)" ), 11062 rec( 11063 kind := "OPERATION", 11064 sin := [ [ elt-dvs/fld^num, "d" ], [ elt-pls/fld^num, "p" ] ], 11065 sou := [ [ elt-dvs/fld^num ] ], 11066 name := "-", 11067 short := "The negative of or difference between the number field divisors (and places).", 11068 ex := [ ], 11069 hash := "1e319c", 11070 sig := "<elt-dvs/fld^num> d - <elt-pls/fld^num> p", 11071 sog := " -> <elt-dvs/fld^num>", 11072 docsrc := "<internal>", 11073 sinflat := [ elt-dvs/fld^num, elt-pls/fld^num ], 11074 souflat := [ elt-dvs/fld^num ], 11075 soghash := "87f535", 11076 sig4hash := "-(elt-dvs/fld^num,elt-pls/fld^num)" ), 11077 rec( 11078 kind := "OPERATION", 11079 sin := [ [ elt-pls/fld^num, "p" ], [ elt-dvs/fld^num, "d" ] ], 11080 sou := [ [ elt-dvs/fld^num ] ], 11081 name := "-", 11082 short := "The negative of or difference between the number field divisors (and places).", 11083 ex := [ ], 11084 hash := "bbb6f8", 11085 sig := "<elt-pls/fld^num> p - <elt-dvs/fld^num> d", 11086 sog := " -> <elt-dvs/fld^num>", 11087 docsrc := "<internal>", 11088 sinflat := [ elt-pls/fld^num, elt-dvs/fld^num ], 11089 souflat := [ elt-dvs/fld^num ], 11090 soghash := "87f535", 11091 sig4hash := "-(elt-pls/fld^num,elt-dvs/fld^num)" ), 11092 rec( 11093 kind := "OPERATION", 11094 sin := [ [ elt-pls/fld^num, "p1" ], [ elt-pls/fld^num, "p2" ] ], 11095 sou := [ [ elt-dvs/fld^num ] ], 11096 name := "-", 11097 short := "The negative of or difference between the number field divisors (and places).", 11098 ex := [ ], 11099 hash := "c757b8", 11100 sig := "<elt-pls/fld^num> p1 - <elt-pls/fld^num> p2", 11101 sog := " -> <elt-dvs/fld^num>", 11102 docsrc := "<internal>", 11103 sinflat := [ elt-pls/fld^num, elt-pls/fld^num ], 11104 souflat := [ elt-dvs/fld^num ], 11105 soghash := "87f535", 11106 sig4hash := "-(elt-pls/fld^num,elt-pls/fld^num)" ), 11107 rec( 11108 kind := "FUNCTION", 11109 sin := [ [ grp^abl, "G" ], [ elt-ord^rat, "i" ] ], 11110 sou := [ [ elt-grp^abl ] ], 11111 name := "Generator", 11112 short := "The i-th basis element.", 11113 ex := [ "x_G := AbelianGroup( [2,5] );\nGenerator(x_G, 1);\nGenerator(x_G, 2);\nNumberOfGenerators(x_G);" ], 11114 hash := "bef35b", 11115 sig := "Generator(<grp^abl> G, <elt-ord^rat> i)", 11116 sog := " -> <elt-grp^abl>", 11117 docsrc := "<internal>", 11118 sinflat := [ grp^abl, elt-ord^rat ], 11119 souflat := [ elt-grp^abl ], 11120 soghash := "da39a3", 11121 sig4hash := "Generator(grp^abl,elt-ord^rat)" ), 11122 rec( 11123 kind := "FUNCTION", 11124 sin := [ [ mdl^vec, "M" ], [ elt-ord^rat, "i" ] ], 11125 sou := [ [ elt-mdl^vec ] ], 11126 name := "Generator", 11127 short := "The i-th basis element.", 11128 ex := [ "x_V := VectorSpace( FiniteField( 5 ), 3);\nGenerator(x_V, 1);\nGenerator(x_V, 2);\nGenerator(x_V, 3);\nNumberOfGenerators(x_V);" ], 11129 hash := "228580", 11130 sig := "Generator(<mdl^vec> M, <elt-ord^rat> i)", 11131 sog := " -> <elt-mdl^vec>", 11132 docsrc := "<internal>", 11133 sinflat := [ mdl^vec, elt-ord^rat ], 11134 souflat := [ elt-mdl^vec ], 11135 soghash := "da39a3", 11136 sig4hash := "Generator(mdl^vec,elt-ord^rat)" ), 11137 rec( 11138 kind := "FUNCTION", 11139 sin := [ [ mdl^mat, "M" ], [ elt-ord^rat, "i" ] ], 11140 sou := [ [ elt-mdl^mat ] ], 11141 name := "Generator", 11142 short := "The i-th basis element.", 11143 ex := [ "x_M := RMatrixSpace( FiniteField( 5 ), 3, 3 );\nGenerator(x_M, 1);\nGenerator(x_M, 2);\nGenerator(x_M, 3);\nGenerator(x_M, 4);\nNumberOfGenerators(x_M);" ], 11144 hash := "20711c", 11145 sig := "Generator(<mdl^mat> M, <elt-ord^rat> i)", 11146 sog := " -> <elt-mdl^mat>", 11147 docsrc := "<internal>", 11148 sinflat := [ mdl^mat, elt-ord^rat ], 11149 souflat := [ elt-mdl^mat ], 11150 soghash := "da39a3", 11151 sig4hash := "Generator(mdl^mat,elt-ord^rat)" ), 11152 rec( 11153 kind := "FUNCTION", 11154 sin := [ [ mdl, "M" ], [ elt-ord^rat, "i" ] ], 11155 sou := [ [ elt-mdl ] ], 11156 name := "Generator", 11157 short := "The i-th basis element.", 11158 ex := [ "x_V := VectorSpace( FiniteField( 5 ), 3);\nGenerator(x_V, 1);\nGenerator(x_V, 2);\nGenerator(x_V, 3);\nNumberOfGenerators(x_V);" ], 11159 hash := "6ff760", 11160 sig := "Generator(<mdl> M, <elt-ord^rat> i)", 11161 sog := " -> <elt-mdl>", 11162 docsrc := "<internal>", 11163 sinflat := [ mdl, elt-ord^rat ], 11164 souflat := [ elt-mdl ], 11165 soghash := "da39a3", 11166 sig4hash := "Generator(mdl,elt-ord^rat)" ), 11167 rec( 11168 kind := "FUNCTION", 11169 sin := [ [ fld^fra, "F" ], [ elt-ord^rat, "i" ] ], 11170 sou := [ [ elt-fld^fra ] ], 11171 name := "Generator", 11172 short := "The i-th basis element.", 11173 ex := [ ], 11174 hash := "7421d8", 11175 sig := "Generator(<fld^fra> F, <elt-ord^rat> i)", 11176 sog := " -> <elt-fld^fra>", 11177 docsrc := "<internal>", 11178 sinflat := [ fld^fra, elt-ord^rat ], 11179 souflat := [ elt-fld^fra ], 11180 soghash := "74ef48", 11181 sig4hash := "Generator(fld^fra,elt-ord^rat)" ), 11182 rec( 11183 kind := "FUNCTION", 11184 sin := [ [ ord^num, "O" ], [ elt-ord^rat, "i" ] ], 11185 sou := [ [ elt-fld^fra ] ], 11186 name := "Generator", 11187 short := "The i-th basis element.", 11188 ex := [ "x_R := PolynomialAlgebra( IntegerRing() );\nx_x := Generator(x_R, 1);\nx_O := MaximalOrder( x_x^2 - 5 );\nGenerator(x_O, 1);\nGenerator(x_O, 2);\n" ], 11189 hash := "4b4b22", 11190 sig := "Generator(<ord^num> O, <elt-ord^rat> i)", 11191 sog := " -> <elt-fld^fra>", 11192 docsrc := "<internal>", 11193 sinflat := [ ord^num, elt-ord^rat ], 11194 souflat := [ elt-fld^fra ], 11195 soghash := "da39a3", 11196 sig4hash := "Generator(ord^num,elt-ord^rat)" ), 11197 rec( 11198 kind := "FUNCTION", 11199 sin := [ [ ord^fun, "O" ], [ elt-ord^rat, "i" ] ], 11200 sou := [ [ elt-fld^fra ] ], 11201 name := "Generator", 11202 short := "The i-th basis element.", 11203 ex := [ ], 11204 hash := "12da23", 11205 sig := "Generator(<ord^fun> O, <elt-ord^rat> i)", 11206 sog := " -> <elt-fld^fra>", 11207 docsrc := "<internal>", 11208 sinflat := [ ord^fun, elt-ord^rat ], 11209 souflat := [ elt-fld^fra ], 11210 soghash := "74ef48", 11211 sig4hash := "Generator(ord^fun,elt-ord^rat)" ), 11212 rec( 11213 kind := "FUNCTION", 11214 sin := [ [ fld^num, "K" ], [ elt-ord^rat, "i" ] ], 11215 sou := [ [ elt-fld^num ] ], 11216 name := "Generator", 11217 short := "A primitive element of K (i must be 1).", 11218 ex := [ "x_R := PolynomialAlgebra( IntegerRing() );\nx_x := Generator(x_R, 1);\nx_F := NumberField( x_x^2 - 5 );\nx_a := Generator(x_F, 1);\nx_a^2;\nParent(x_a);", "x_R := PolynomialAlgebra( IntegerRing() );\nx_x := Generator(x_R, 1);\nx_F := NumberField( [x_x^2 - 5, x_x^2 - 7 ] );\nx_a := Generator(x_F, 1);\nx_b := Generator(x_F, 2);\nx_a^2;\nx_b^2;\nParent(x_a);\nParent(x_b);" ], 11219 hash := "eae08f", 11220 sig := "Generator(<fld^num> K, <elt-ord^rat> i)", 11221 sog := " -> <elt-fld^num>", 11222 docsrc := "<internal>", 11223 sinflat := [ fld^num, elt-ord^rat ], 11224 souflat := [ elt-fld^num ], 11225 soghash := "da39a3", 11226 sig4hash := "Generator(fld^num,elt-ord^rat)" ), 11227 rec( 11228 kind := "FUNCTION", 11229 sin := [ [ fld^fun, "K" ], [ elt-ord^rat, "i" ] ], 11230 sou := [ [ elt-fld^fun ] ], 11231 name := "Generator", 11232 short := "A primitive element of K (i must be 1).", 11233 ex := [ "x_k := FiniteField(5);\nx_kx := PolynomialAlgebra(x_k);\nx_kxy := PolynomialAlgebra( x_kx );\nx_x := Generator(x_kx, 1);\nx_y := Generator(x_kxy, 1);\nx_F := FunctionField( x_y^2 - x_x^3 + 1 );\nx_a := Generator(x_F, 1);\nx_a^2;\nParent(x_a);", "x_k := FiniteField(5);\nx_kx := PolynomialAlgebra(x_k);\nx_kxy := PolynomialAlgebra( x_kx );\nx_x := Generator(x_kx, 1);\nx_y := Generator(x_kxy, 1);\nx_F := FunctionField( [x_y^2 - x_x - 1, x_y^2 - x_x - 2 ] );\nx_a := Generator(x_F, 1);\nx_b := Generator(x_F, 2);\nx_a^2;\nx_b^2;\nParent(x_a);\nParent(x_b);" ], 11234 hash := "d97a93", 11235 sig := "Generator(<fld^fun> K, <elt-ord^rat> i)", 11236 sog := " -> <elt-fld^fun>", 11237 docsrc := "<internal>", 11238 sinflat := [ fld^fun, elt-ord^rat ], 11239 souflat := [ elt-fld^fun ], 11240 soghash := "da39a3", 11241 sig4hash := "Generator(fld^fun,elt-ord^rat)" ), 11242 rec( 11243 kind := "FUNCTION", 11244 sin := [ [ fld^com, "K" ], [ elt-ord^rat, "i" ] ], 11245 sou := [ [ elt-fld^com ] ], 11246 name := "Generator", 11247 short := "A primitive element of K (i must be 1).", 11248 ex := [ "x_C := ComplexField(100);\nx_i := Generator(x_C, 1);\nx_i^2;" ], 11249 hash := "2c586c", 11250 sig := "Generator(<fld^com> K, <elt-ord^rat> i)", 11251 sog := " -> <elt-fld^com>", 11252 docsrc := "<internal>", 11253 sinflat := [ fld^com, elt-ord^rat ], 11254 souflat := [ elt-fld^com ], 11255 soghash := "da39a3", 11256 sig4hash := "Generator(fld^com,elt-ord^rat)" ), 11257 rec( 11258 kind := "FUNCTION", 11259 sin := [ [ fld^rat, "K" ], [ elt-ord^rat, "i" ] ], 11260 sou := [ [ elt-fld^rat ] ], 11261 name := "Generator", 11262 short := "A primitive element of K (i must be 1).", 11263 ex := [ "x_Q := RationalField();\nGenerator( x_Q, 1 );" ], 11264 hash := "75db40", 11265 sig := "Generator(<fld^rat> K, <elt-ord^rat> i)", 11266 sog := " -> <elt-fld^rat>", 11267 docsrc := "<internal>", 11268 sinflat := [ fld^rat, elt-ord^rat ], 11269 souflat := [ elt-fld^rat ], 11270 soghash := "da39a3", 11271 sig4hash := "Generator(fld^rat,elt-ord^rat)" ), 11272 rec( 11273 kind := "FUNCTION", 11274 sin := [ [ alg^pol, "A" ], [ elt-ord^rat, "i" ] ], 11275 sou := [ [ elt-alg^pol ] ], 11276 name := "Generator", 11277 short := "The uniformizing or inertial element of the local structure, depending on whether i is 1 or 2.", 11278 ex := [ "x_R := PolynomialAlgebra( IntegerRing() );\nGenerator(x_R, 1);" ], 11279 hash := "416e8f", 11280 sig := "Generator(<alg^pol> A, <elt-ord^rat> i)", 11281 sog := " -> <elt-alg^pol>", 11282 docsrc := "<internal>", 11283 sinflat := [ alg^pol, elt-ord^rat ], 11284 souflat := [ elt-alg^pol ], 11285 soghash := "da39a3", 11286 sig4hash := "Generator(alg^pol,elt-ord^rat)" ), 11287 rec( 11288 kind := "FUNCTION", 11289 sin := [ [ res^pol, "A" ], [ elt-ord^rat, "i" ] ], 11290 sou := [ [ elt-res^pol ] ], 11291 name := "Generator", 11292 short := "The uniformizing or inertial element of the local structure, depending on whether i is 1 or 2.", 11293 ex := [ "x_R := PolynomialAlgebra( IntegerRing() );\nx_x := Generator(x_R, 1);\nx_Q := Quotient(x_R, x_x^2 + 1 );\nx_a := Generator(x_Q, 1);\nx_a^2;" ], 11294 hash := "50625c", 11295 sig := "Generator(<res^pol> A, <elt-ord^rat> i)", 11296 sog := " -> <elt-res^pol>", 11297 docsrc := "<internal>", 11298 sinflat := [ res^pol, elt-ord^rat ], 11299 souflat := [ elt-res^pol ], 11300 soghash := "da39a3", 11301 sig4hash := "Generator(res^pol,elt-ord^rat)" ), 11302 rec( 11303 kind := "FUNCTION", 11304 sin := [ [ res^pad, "R" ], [ elt-ord^rat, "i" ] ], 11305 sou := [ [ elt-res^pad ] ], 11306 name := "Generator", 11307 short := "The primitive element of R.", 11308 ex := [ "x_z5 := pAdicRing(5,30);\nx_r5 := Quotient(x_z5, 5^10);\nGenerator(x_r5, 1);" ], 11309 hash := "56efc7", 11310 sig := "Generator(<res^pad> R, <elt-ord^rat> i)", 11311 sog := " -> <elt-res^pad>", 11312 docsrc := "<internal>", 11313 sinflat := [ res^pad, elt-ord^rat ], 11314 souflat := [ elt-res^pad ], 11315 soghash := "da39a3", 11316 sig4hash := "Generator(res^pad,elt-ord^rat)" ), 11317 rec( 11318 kind := "FUNCTION", 11319 sin := [ [ ord^pad, "R" ], [ elt-ord^rat, "i" ] ], 11320 sou := [ [ elt-ord^pad ] ], 11321 name := "Generator", 11322 short := "The primitive element of R.", 11323 ex := [ "x_z5 := pAdicRing(5,30);\nGenerator(x_z5,1);" ], 11324 hash := "d717ba", 11325 sig := "Generator(<ord^pad> R, <elt-ord^rat> i)", 11326 sog := " -> <elt-ord^pad>", 11327 docsrc := "<internal>", 11328 sinflat := [ ord^pad, elt-ord^rat ], 11329 souflat := [ elt-ord^pad ], 11330 soghash := "da39a3", 11331 sig4hash := "Generator(ord^pad,elt-ord^rat)" ), 11332 rec( 11333 kind := "FUNCTION", 11334 sin := [ [ fld^pad, "R" ], [ elt-ord^rat, "i" ] ], 11335 sou := [ [ elt-fld^pad ] ], 11336 name := "Generator", 11337 short := "The primitive element of R.", 11338 ex := [ "x_q5 := pAdicField(5,30);\nGenerator(x_q5,1);" ], 11339 hash := "af0655", 11340 sig := "Generator(<fld^pad> R, <elt-ord^rat> i)", 11341 sog := " -> <elt-fld^pad>", 11342 docsrc := "<internal>", 11343 sinflat := [ fld^pad, elt-ord^rat ], 11344 souflat := [ elt-fld^pad ], 11345 soghash := "da39a3", 11346 sig4hash := "Generator(fld^pad,elt-ord^rat)" ), 11347 rec( 11348 kind := "FUNCTION", 11349 sin := [ [ fld^fin, "R" ], [ elt-ord^rat, "i" ] ], 11350 sou := [ [ elt-fld^fin ] ], 11351 name := "Generator", 11352 short := "The ith vector generating M as an element of the vector space over the field.", 11353 ex := [ "x_F := FiniteField(125);\nGenerator(x_F, 1);" ], 11354 hash := "b4dc97", 11355 sig := "Generator(<fld^fin> R, <elt-ord^rat> i)", 11356 sog := " -> <elt-fld^fin>", 11357 docsrc := "<internal>", 11358 sinflat := [ fld^fin, elt-ord^rat ], 11359 souflat := [ elt-fld^fin ], 11360 soghash := "da39a3", 11361 sig4hash := "Generator(fld^fin,elt-ord^rat)" ), 11362 rec( 11363 kind := "FUNCTION", 11364 sin := [ [ rng^ser, "R" ], [ elt-ord^rat, "i" ] ], 11365 sou := [ [ elt-rng^ser ] ], 11366 name := "Generator", 11367 short := "The ith vector generating M as an element of the vector space over the field.", 11368 ex := [ "x_R := PowerSeriesRing( FiniteField( 5 ) );\nGenerator(x_R, 1);" ], 11369 hash := "bfcc9d", 11370 sig := "Generator(<rng^ser> R, <elt-ord^rat> i)", 11371 sog := " -> <elt-rng^ser>", 11372 docsrc := "<internal>", 11373 sinflat := [ rng^ser, elt-ord^rat ], 11374 souflat := [ elt-rng^ser ], 11375 soghash := "da39a3", 11376 sig4hash := "Generator(rng^ser,elt-ord^rat)" ), 11377 rec( 11378 kind := "FUNCTION", 11379 sin := [ [ rng, "R" ], [ elt-ord^rat, "i" ] ], 11380 sou := [ [ elt-rng ] ], 11381 name := "Generator", 11382 short := "The ith vector generating M as an element of the vector space over the field.", 11383 ex := [ ], 11384 hash := "676767", 11385 sig := "Generator(<rng> R, <elt-ord^rat> i)", 11386 sog := " -> <elt-rng>", 11387 docsrc := "<internal>", 11388 sinflat := [ rng, elt-ord^rat ], 11389 souflat := [ elt-rng ], 11390 soghash := "7ef0ef", 11391 sig4hash := "Generator(rng,elt-ord^rat)" ), 11392 rec( 11393 kind := "FUNCTION", 11394 sin := [ [ mdl^ded, "M" ], [ elt-ord^rat, "i" ] ], 11395 sou := [ [ elt-mdl^vec ] ], 11396 name := "Generator", 11397 short := "The ith vector generating M as an element of the vector space over the field.", 11398 ex := [ "x_R := PolynomialAlgebra( IntegerRing() );\nx_x := Generator(x_R, 1);\nx_O := MaximalOrder(x_x^2 - 18);\nx_a := Element(x_O, [0,1]);\nx_Ox := PolynomialAlgebra( x_O );\nx_x := Generator(x_Ox, 1);\nx_OO := MaximalOrder( x_x^3 - 27*x_a );\nx_I := Factorization( 3*x_OO )[1][1];\nx_M := Module(x_I);\nxL := List( [1..3], i->Generator(x_M, i) );" ], 11399 hash := "4c2cbf", 11400 sig := "Generator(<mdl^ded> M, <elt-ord^rat> i)", 11401 sog := " -> <elt-mdl^vec>", 11402 docsrc := "<internal>", 11403 sinflat := [ mdl^ded, elt-ord^rat ], 11404 souflat := [ elt-mdl^vec ], 11405 soghash := "da39a3", 11406 sig4hash := "Generator(mdl^ded,elt-ord^rat)" ), 11407 rec( 11408 kind := "OPERATION", 11409 sin := [ [ grp^abl, "G" ], [ elt-ord^rat, "i" ] ], 11410 sou := [ [ elt-grp^abl ] ], 11411 name := ".", 11412 short := "The i-th basis element.", 11413 ex := [ ], 11414 hash := "c61e27", 11415 sig := "<grp^abl> G . <elt-ord^rat> i", 11416 sog := " -> <elt-grp^abl>", 11417 docsrc := "<internal>", 11418 sinflat := [ grp^abl, elt-ord^rat ], 11419 souflat := [ elt-grp^abl ], 11420 soghash := "b42d93", 11421 sig4hash := ".(grp^abl,elt-ord^rat)" ), 11422 rec( 11423 kind := "OPERATION", 11424 sin := [ [ mdl^vec, "M" ], [ elt-ord^rat, "i" ] ], 11425 sou := [ [ elt-mdl^vec ] ], 11426 name := ".", 11427 short := "The i-th basis element.", 11428 ex := [ ], 11429 hash := "ff057b", 11430 sig := "<mdl^vec> M . <elt-ord^rat> i", 11431 sog := " -> <elt-mdl^vec>", 11432 docsrc := "<internal>", 11433 sinflat := [ mdl^vec, elt-ord^rat ], 11434 souflat := [ elt-mdl^vec ], 11435 soghash := "b46581", 11436 sig4hash := ".(mdl^vec,elt-ord^rat)" ), 11437 rec( 11438 kind := "OPERATION", 11439 sin := [ [ mdl^mat, "M" ], [ elt-ord^rat, "i" ] ], 11440 sou := [ [ elt-mdl^mat ] ], 11441 name := ".", 11442 short := "The i-th basis element.", 11443 ex := [ ], 11444 hash := "737a5c", 11445 sig := "<mdl^mat> M . <elt-ord^rat> i", 11446 sog := " -> <elt-mdl^mat>", 11447 docsrc := "<internal>", 11448 sinflat := [ mdl^mat, elt-ord^rat ], 11449 souflat := [ elt-mdl^mat ], 11450 soghash := "5284ac", 11451 sig4hash := ".(mdl^mat,elt-ord^rat)" ), 11452 rec( 11453 kind := "OPERATION", 11454 sin := [ [ mdl, "M" ], [ elt-ord^rat, "i" ] ], 11455 sou := [ [ elt-mdl ] ], 11456 name := ".", 11457 short := "The i-th basis element.", 11458 ex := [ ], 11459 hash := "3d04c7", 11460 sig := "<mdl> M . <elt-ord^rat> i", 11461 sog := " -> <elt-mdl>", 11462 docsrc := "<internal>", 11463 sinflat := [ mdl, elt-ord^rat ], 11464 souflat := [ elt-mdl ], 11465 soghash := "97b5cd", 11466 sig4hash := ".(mdl,elt-ord^rat)" ), 11467 rec( 11468 kind := "OPERATION", 11469 sin := [ [ fld^fra, "F" ], [ elt-ord^rat, "i" ] ], 11470 sou := [ [ elt-fld^fra ] ], 11471 name := ".", 11472 short := "The i-th basis element.", 11473 ex := [ ], 11474 hash := "0c7daf", 11475 sig := "<fld^fra> F . <elt-ord^rat> i", 11476 sog := " -> <elt-fld^fra>", 11477 docsrc := "<internal>", 11478 sinflat := [ fld^fra, elt-ord^rat ], 11479 souflat := [ elt-fld^fra ], 11480 soghash := "74ef48", 11481 sig4hash := ".(fld^fra,elt-ord^rat)" ), 11482 rec( 11483 kind := "OPERATION", 11484 sin := [ [ ord^num, "O" ], [ elt-ord^rat, "i" ] ], 11485 sou := [ [ elt-fld^fra ] ], 11486 name := ".", 11487 short := "The i-th basis element.", 11488 ex := [ ], 11489 hash := "f2726a", 11490 sig := "<ord^num> O . <elt-ord^rat> i", 11491 sog := " -> <elt-fld^fra>", 11492 docsrc := "<internal>", 11493 sinflat := [ ord^num, elt-ord^rat ], 11494 souflat := [ elt-fld^fra ], 11495 soghash := "74ef48", 11496 sig4hash := ".(ord^num,elt-ord^rat)" ), 11497 rec( 11498 kind := "OPERATION", 11499 sin := [ [ ord^fun, "O" ], [ elt-ord^rat, "i" ] ], 11500 sou := [ [ elt-fld^fra ] ], 11501 name := ".", 11502 short := "The i-th basis element.", 11503 ex := [ ], 11504 hash := "f77154", 11505 sig := "<ord^fun> O . <elt-ord^rat> i", 11506 sog := " -> <elt-fld^fra>", 11507 docsrc := "<internal>", 11508 sinflat := [ ord^fun, elt-ord^rat ], 11509 souflat := [ elt-fld^fra ], 11510 soghash := "74ef48", 11511 sig4hash := ".(ord^fun,elt-ord^rat)" ), 11512 rec( 11513 kind := "OPERATION", 11514 sin := [ [ fld^num, "K" ], [ elt-ord^rat, "i" ] ], 11515 sou := [ [ elt-fld^num ] ], 11516 name := ".", 11517 short := "A primitive element of K (i must be 1).", 11518 ex := [ ], 11519 hash := "c2bf1d", 11520 sig := "<fld^num> K . <elt-ord^rat> i", 11521 sog := " -> <elt-fld^num>", 11522 docsrc := "<internal>", 11523 sinflat := [ fld^num, elt-ord^rat ], 11524 souflat := [ elt-fld^num ], 11525 soghash := "7a0611", 11526 sig4hash := ".(fld^num,elt-ord^rat)" ), 11527 rec( 11528 kind := "OPERATION", 11529 sin := [ [ fld^fun, "K" ], [ elt-ord^rat, "i" ] ], 11530 sou := [ [ elt-fld^fun ] ], 11531 name := ".", 11532 short := "A primitive element of K (i must be 1).", 11533 ex := [ ], 11534 hash := "9ce6f1", 11535 sig := "<fld^fun> K . <elt-ord^rat> i", 11536 sog := " -> <elt-fld^fun>", 11537 docsrc := "<internal>", 11538 sinflat := [ fld^fun, elt-ord^rat ], 11539 souflat := [ elt-fld^fun ], 11540 soghash := "23d8b4", 11541 sig4hash := ".(fld^fun,elt-ord^rat)" ), 11542 rec( 11543 kind := "OPERATION", 11544 sin := [ [ fld^com, "K" ], [ elt-ord^rat, "i" ] ], 11545 sou := [ [ elt-fld^com ] ], 11546 name := ".", 11547 short := "A primitive element of K (i must be 1).", 11548 ex := [ ], 11549 hash := "48446e", 11550 sig := "<fld^com> K . <elt-ord^rat> i", 11551 sog := " -> <elt-fld^com>", 11552 docsrc := "<internal>", 11553 sinflat := [ fld^com, elt-ord^rat ], 11554 souflat := [ elt-fld^com ], 11555 soghash := "0d772f", 11556 sig4hash := ".(fld^com,elt-ord^rat)" ), 11557 rec( 11558 kind := "OPERATION", 11559 sin := [ [ fld^rat, "K" ], [ elt-ord^rat, "i" ] ], 11560 sou := [ [ elt-fld^rat ] ], 11561 name := ".", 11562 short := "A primitive element of K (i must be 1).", 11563 ex := [ ], 11564 hash := "ddfe0a", 11565 sig := "<fld^rat> K . <elt-ord^rat> i", 11566 sog := " -> <elt-fld^rat>", 11567 docsrc := "<internal>", 11568 sinflat := [ fld^rat, elt-ord^rat ], 11569 souflat := [ elt-fld^rat ], 11570 soghash := "89f5fc", 11571 sig4hash := ".(fld^rat,elt-ord^rat)" ), 11572 rec( 11573 kind := "OPERATION", 11574 sin := [ [ alg^pol, "A" ], [ elt-ord^rat, "i" ] ], 11575 sou := [ [ elt-alg^pol ] ], 11576 name := ".", 11577 short := "The uniformizing or inertial element of the local structure, depending on whether i is 1 or 2.", 11578 ex := [ ], 11579 hash := "6e0860", 11580 sig := "<alg^pol> A . <elt-ord^rat> i", 11581 sog := " -> <elt-alg^pol>", 11582 docsrc := "<internal>", 11583 sinflat := [ alg^pol, elt-ord^rat ], 11584 souflat := [ elt-alg^pol ], 11585 soghash := "ba7338", 11586 sig4hash := ".(alg^pol,elt-ord^rat)" ), 11587 rec( 11588 kind := "OPERATION", 11589 sin := [ [ res^pol, "A" ], [ elt-ord^rat, "i" ] ], 11590 sou := [ [ elt-res^pol ] ], 11591 name := ".", 11592 short := "The uniformizing or inertial element of the local structure, depending on whether i is 1 or 2.", 11593 ex := [ ], 11594 hash := "cdd7b9", 11595 sig := "<res^pol> A . <elt-ord^rat> i", 11596 sog := " -> <elt-res^pol>", 11597 docsrc := "<internal>", 11598 sinflat := [ res^pol, elt-ord^rat ], 11599 souflat := [ elt-res^pol ], 11600 soghash := "8ffe0c", 11601 sig4hash := ".(res^pol,elt-ord^rat)" ), 11602 rec( 11603 kind := "OPERATION", 11604 sin := [ [ res^pad, "R" ], [ elt-ord^rat, "i" ] ], 11605 sou := [ [ elt-res^pad ] ], 11606 name := ".", 11607 short := "The primitive element of R.", 11608 ex := [ ], 11609 hash := "b132f6", 11610 sig := "<res^pad> R . <elt-ord^rat> i", 11611 sog := " -> <elt-res^pad>", 11612 docsrc := "<internal>", 11613 sinflat := [ res^pad, elt-ord^rat ], 11614 souflat := [ elt-res^pad ], 11615 soghash := "0061b4", 11616 sig4hash := ".(res^pad,elt-ord^rat)" ), 11617 rec( 11618 kind := "OPERATION", 11619 sin := [ [ ord^pad, "R" ], [ elt-ord^rat, "i" ] ], 11620 sou := [ [ elt-ord^pad ] ], 11621 name := ".", 11622 short := "The primitive element of R.", 11623 ex := [ ], 11624 hash := "54aba9", 11625 sig := "<ord^pad> R . <elt-ord^rat> i", 11626 sog := " -> <elt-ord^pad>", 11627 docsrc := "<internal>", 11628 sinflat := [ ord^pad, elt-ord^rat ], 11629 souflat := [ elt-ord^pad ], 11630 soghash := "9ee81d", 11631 sig4hash := ".(ord^pad,elt-ord^rat)" ), 11632 rec( 11633 kind := "OPERATION", 11634 sin := [ [ fld^pad, "R" ], [ elt-ord^rat, "i" ] ], 11635 sou := [ [ elt-fld^pad ] ], 11636 name := ".", 11637 short := "The primitive element of R.", 11638 ex := [ ], 11639 hash := "c647c8", 11640 sig := "<fld^pad> R . <elt-ord^rat> i", 11641 sog := " -> <elt-fld^pad>", 11642 docsrc := "<internal>", 11643 sinflat := [ fld^pad, elt-ord^rat ], 11644 souflat := [ elt-fld^pad ], 11645 soghash := "8c3f71", 11646 sig4hash := ".(fld^pad,elt-ord^rat)" ), 11647 rec( 11648 kind := "OPERATION", 11649 sin := [ [ fld^fin, "R" ], [ elt-ord^rat, "i" ] ], 11650 sou := [ [ elt-fld^fin ] ], 11651 name := ".", 11652 short := "The ith vector generating M as an element of the vector space over the field.", 11653 ex := [ ], 11654 hash := "58e6f5", 11655 sig := "<fld^fin> R . <elt-ord^rat> i", 11656 sog := " -> <elt-fld^fin>", 11657 docsrc := "<internal>", 11658 sinflat := [ fld^fin, elt-ord^rat ], 11659 souflat := [ elt-fld^fin ], 11660 soghash := "97e752", 11661 sig4hash := ".(fld^fin,elt-ord^rat)" ), 11662 rec( 11663 kind := "OPERATION", 11664 sin := [ [ rng^ser, "R" ], [ elt-ord^rat, "i" ] ], 11665 sou := [ [ elt-rng^ser ] ], 11666 name := ".", 11667 short := "The ith vector generating M as an element of the vector space over the field.", 11668 ex := [ ], 11669 hash := "dfffc7", 11670 sig := "<rng^ser> R . <elt-ord^rat> i", 11671 sog := " -> <elt-rng^ser>", 11672 docsrc := "<internal>", 11673 sinflat := [ rng^ser, elt-ord^rat ], 11674 souflat := [ elt-rng^ser ], 11675 soghash := "28734d", 11676 sig4hash := ".(rng^ser,elt-ord^rat)" ), 11677 rec( 11678 kind := "OPERATION", 11679 sin := [ [ rng, "R" ], [ elt-ord^rat, "i" ] ], 11680 sou := [ [ elt-rng ] ], 11681 name := ".", 11682 short := "The ith vector generating M as an element of the vector space over the field.", 11683 ex := [ ], 11684 hash := "1ca758", 11685 sig := "<rng> R . <elt-ord^rat> i", 11686 sog := " -> <elt-rng>", 11687 docsrc := "<internal>", 11688 sinflat := [ rng, elt-ord^rat ], 11689 souflat := [ elt-rng ], 11690 soghash := "7ef0ef", 11691 sig4hash := ".(rng,elt-ord^rat)" ), 11692 rec( 11693 kind := "OPERATION", 11694 sin := [ [ mdl^ded, "M" ], [ elt-ord^rat, "i" ] ], 11695 sou := [ [ elt-mdl^vec ] ], 11696 name := ".", 11697 short := "The ith vector generating M as an element of the vector space over the field.", 11698 ex := [ ], 11699 hash := "5104be", 11700 sig := "<mdl^ded> M . <elt-ord^rat> i", 11701 sog := " -> <elt-mdl^vec>", 11702 docsrc := "<internal>", 11703 sinflat := [ mdl^ded, elt-ord^rat ], 11704 souflat := [ elt-mdl^vec ], 11705 soghash := "b46581", 11706 sig4hash := ".(mdl^ded,elt-ord^rat)" ), 11707 rec( 11708 kind := "OPERATION", 11709 sin := [ [ elt-ord^rat, "x" ], [ elt-ord^rat, "y" ] ], 11710 sou := [ [ elt-fld^rat ] ], 11711 name := "/", 11712 short := "Quotient of x by y.", 11713 ex := [ ], 11714 hash := "77833f", 11715 sig := "<elt-ord^rat> x / <elt-ord^rat> y", 11716 sog := " -> <elt-fld^rat>", 11717 docsrc := "<internal>", 11718 sinflat := [ elt-ord^rat, elt-ord^rat ], 11719 souflat := [ elt-fld^rat ], 11720 soghash := "89f5fc", 11721 sig4hash := "/(elt-ord^rat,elt-ord^rat)" ), 11722 rec( 11723 kind := "OPERATION", 11724 sin := [ [ elt-fld^rat, "x" ], [ elt-fld^rat, "y" ] ], 11725 sou := [ [ elt-fld^rat ] ], 11726 name := "/", 11727 short := "Quotient of x by y.", 11728 ex := [ ], 11729 hash := "78c4e6", 11730 sig := "<elt-fld^rat> x / <elt-fld^rat> y", 11731 sog := " -> <elt-fld^rat>", 11732 docsrc := "<internal>", 11733 sinflat := [ elt-fld^rat, elt-fld^rat ], 11734 souflat := [ elt-fld^rat ], 11735 soghash := "89f5fc", 11736 sig4hash := "/(elt-fld^rat,elt-fld^rat)" ), 11737 rec( 11738 kind := "OPERATION", 11739 sin := [ [ elt-fld^rea, "x" ], [ elt-fld^rea, "y" ] ], 11740 sou := [ [ elt-fld^rea ] ], 11741 name := "/", 11742 short := "Quotient of x by y.", 11743 ex := [ ], 11744 hash := "ba88f2", 11745 sig := "<elt-fld^rea> x / <elt-fld^rea> y", 11746 sog := " -> <elt-fld^rea>", 11747 docsrc := "<internal>", 11748 sinflat := [ elt-fld^rea, elt-fld^rea ], 11749 souflat := [ elt-fld^rea ], 11750 soghash := "7f2490", 11751 sig4hash := "/(elt-fld^rea,elt-fld^rea)" ), 11752 rec( 11753 kind := "OPERATION", 11754 sin := [ [ elt-fld^com, "x" ], [ elt-fld^com, "y" ] ], 11755 sou := [ [ elt-fld^com ] ], 11756 name := "/", 11757 short := "Quotient of x by y.", 11758 ex := [ ], 11759 hash := "5412b3", 11760 sig := "<elt-fld^com> x / <elt-fld^com> y", 11761 sog := " -> <elt-fld^com>", 11762 docsrc := "<internal>", 11763 sinflat := [ elt-fld^com, elt-fld^com ], 11764 souflat := [ elt-fld^com ], 11765 soghash := "0d772f", 11766 sig4hash := "/(elt-fld^com,elt-fld^com)" ), 11767 rec( 11768 kind := "OPERATION", 11769 sin := [ [ elt-fld^fin, "x" ], [ elt-fld^fin, "y" ] ], 11770 sou := [ [ elt-fld^fin ] ], 11771 name := "/", 11772 short := "Quotient of x by y.", 11773 ex := [ ], 11774 hash := "829cf9", 11775 sig := "<elt-fld^fin> x / <elt-fld^fin> y", 11776 sog := " -> <elt-fld^fin>", 11777 docsrc := "<internal>", 11778 sinflat := [ elt-fld^fin, elt-fld^fin ], 11779 souflat := [ elt-fld^fin ], 11780 soghash := "97e752", 11781 sig4hash := "/(elt-fld^fin,elt-fld^fin)" ), 11782 rec( 11783 kind := "OPERATION", 11784 sin := [ [ elt-alg^pol, "x" ], [ elt-alg^pol, "y" ] ], 11785 sou := [ [ elt-fld^pol ] ], 11786 name := "/", 11787 short := "Quotient of x by y.", 11788 ex := [ ], 11789 hash := "fb7bf1", 11790 sig := "<elt-alg^pol> x / <elt-alg^pol> y", 11791 sog := " -> <elt-fld^pol>", 11792 docsrc := "<internal>", 11793 sinflat := [ elt-alg^pol, elt-alg^pol ], 11794 souflat := [ elt-fld^pol ], 11795 soghash := "540d59", 11796 sig4hash := "/(elt-alg^pol,elt-alg^pol)" ), 11797 rec( 11798 kind := "OPERATION", 11799 sin := [ [ elt-rng, "x" ], [ elt-rng, "y" ] ], 11800 sou := [ [ elt-rng ] ], 11801 name := "/", 11802 short := "Quotient of x by y.", 11803 ex := [ ], 11804 hash := "0cce58", 11805 sig := "<elt-rng> x / <elt-rng> y", 11806 sog := " -> <elt-rng>", 11807 docsrc := "<internal>", 11808 sinflat := [ elt-rng, elt-rng ], 11809 souflat := [ elt-rng ], 11810 soghash := "7ef0ef", 11811 sig4hash := "/(elt-rng,elt-rng)" ), 11812 rec( 11813 kind := "OPERATION", 11814 sin := [ [ elt-res^rat, "x" ], [ elt-res^rat, "y" ] ], 11815 sou := [ [ elt-res^rat ] ], 11816 name := "/", 11817 short := "Quotient of x by y.", 11818 ex := [ ], 11819 hash := "22ce53", 11820 sig := "<elt-res^rat> x / <elt-res^rat> y", 11821 sog := " -> <elt-res^rat>", 11822 docsrc := "<internal>", 11823 sinflat := [ elt-res^rat, elt-res^rat ], 11824 souflat := [ elt-res^rat ], 11825 soghash := "7a2c2e", 11826 sig4hash := "/(elt-res^rat,elt-res^rat)" ), 11827 rec( 11828 kind := "OPERATION", 11829 sin := [ [ elt-ord^pad, "x" ], [ elt-ord^pad, "y" ] ], 11830 sou := [ [ elt-ord^pad ] ], 11831 name := "/", 11832 short := "Quotient of x by y.", 11833 ex := [ ], 11834 hash := "109b0a", 11835 sig := "<elt-ord^pad> x / <elt-ord^pad> y", 11836 sog := " -> <elt-ord^pad>", 11837 docsrc := "<internal>", 11838 sinflat := [ elt-ord^pad, elt-ord^pad ], 11839 souflat := [ elt-ord^pad ], 11840 soghash := "9ee81d", 11841 sig4hash := "/(elt-ord^pad,elt-ord^pad)" ), 11842 rec( 11843 kind := "OPERATION", 11844 sin := [ [ elt-fld^pad, "x" ], [ elt-fld^pad, "y" ] ], 11845 sou := [ [ elt-fld^pad ] ], 11846 name := "/", 11847 short := "Quotient of x by y.", 11848 ex := [ ], 11849 hash := "5d0a7e", 11850 sig := "<elt-fld^pad> x / <elt-fld^pad> y", 11851 sog := " -> <elt-fld^pad>", 11852 docsrc := "<internal>", 11853 sinflat := [ elt-fld^pad, elt-fld^pad ], 11854 souflat := [ elt-fld^pad ], 11855 soghash := "8c3f71", 11856 sig4hash := "/(elt-fld^pad,elt-fld^pad)" ), 11857 rec( 11858 kind := "OPERATION", 11859 sin := [ [ elt-res^pol, "x" ], [ elt-res^pol, "y" ] ], 11860 sou := [ [ elt-res^pol ] ], 11861 name := "/", 11862 short := "Quotient of x by y.", 11863 ex := [ ], 11864 hash := "49bff8", 11865 sig := "<elt-res^pol> x / <elt-res^pol> y", 11866 sog := " -> <elt-res^pol>", 11867 docsrc := "<internal>", 11868 sinflat := [ elt-res^pol, elt-res^pol ], 11869 souflat := [ elt-res^pol ], 11870 soghash := "8ffe0c", 11871 sig4hash := "/(elt-res^pol,elt-res^pol)" ), 11872 rec( 11873 kind := "OPERATION", 11874 sin := [ [ elt-fld^fra, "x" ], [ elt-fld^fra, "y" ] ], 11875 sou := [ [ elt-fld^fra ] ], 11876 name := "/", 11877 short := "Quotient of x by y.", 11878 ex := [ ], 11879 hash := "1e1fcb", 11880 sig := "<elt-fld^fra> x / <elt-fld^fra> y", 11881 sog := " -> <elt-fld^fra>", 11882 docsrc := "<internal>", 11883 sinflat := [ elt-fld^fra, elt-fld^fra ], 11884 souflat := [ elt-fld^fra ], 11885 soghash := "74ef48", 11886 sig4hash := "/(elt-fld^fra,elt-fld^fra)" ), 11887 rec( 11888 kind := "OPERATION", 11889 sin := [ [ elt-fld^fra, "x" ], [ elt-ord^rat, "y" ] ], 11890 sou := [ [ elt-fld^fra ] ], 11891 name := "/", 11892 short := "Quotient of x by y.", 11893 ex := [ ], 11894 hash := "781c13", 11895 sig := "<elt-fld^fra> x / <elt-ord^rat> y", 11896 sog := " -> <elt-fld^fra>", 11897 docsrc := "<internal>", 11898 sinflat := [ elt-fld^fra, elt-ord^rat ], 11899 souflat := [ elt-fld^fra ], 11900 soghash := "74ef48", 11901 sig4hash := "/(elt-fld^fra,elt-ord^rat)" ), 11902 rec( 11903 kind := "OPERATION", 11904 sin := [ [ elt-ord^num, "x" ], [ elt-ord^num, "y" ] ], 11905 sou := [ [ elt-fld^fra ] ], 11906 name := "/", 11907 short := "Quotient of x by y.", 11908 ex := [ ], 11909 hash := "238a94", 11910 sig := "<elt-ord^num> x / <elt-ord^num> y", 11911 sog := " -> <elt-fld^fra>", 11912 docsrc := "<internal>", 11913 sinflat := [ elt-ord^num, elt-ord^num ], 11914 souflat := [ elt-fld^fra ], 11915 soghash := "74ef48", 11916 sig4hash := "/(elt-ord^num,elt-ord^num)" ), 11917 rec( 11918 kind := "OPERATION", 11919 sin := [ [ elt-ord^num, "x" ], [ elt-ord^rat, "y" ] ], 11920 sou := [ [ elt-fld^fra ] ], 11921 name := "/", 11922 short := "Quotient of x by y.", 11923 ex := [ ], 11924 hash := "ca36a7", 11925 sig := "<elt-ord^num> x / <elt-ord^rat> y", 11926 sog := " -> <elt-fld^fra>", 11927 docsrc := "<internal>", 11928 sinflat := [ elt-ord^num, elt-ord^rat ], 11929 souflat := [ elt-fld^fra ], 11930 soghash := "74ef48", 11931 sig4hash := "/(elt-ord^num,elt-ord^rat)" ), 11932 rec( 11933 kind := "OPERATION", 11934 sin := [ [ elt-ids^fra/ord^num, "x" ], [ elt-ids^fra/ord^num, "y" ] ], 11935 sou := [ [ elt-ids^fra/ord^num ] ], 11936 name := "/", 11937 short := "Quotient of x by y.", 11938 ex := [ ], 11939 hash := "e51526", 11940 sig := "<elt-ids^fra/ord^num> x / <elt-ids^fra/ord^num> y", 11941 sog := " -> <elt-ids^fra/ord^num>", 11942 docsrc := "<internal>", 11943 sinflat := [ elt-ids^fra/ord^num, elt-ids^fra/ord^num ], 11944 souflat := [ elt-ids^fra/ord^num ], 11945 soghash := "ca011c", 11946 sig4hash := "/(elt-ids^fra/ord^num,elt-ids^fra/ord^num)" ), 11947 rec( 11948 kind := "OPERATION", 11949 sin := [ [ elt-fld^fun, "x" ], [ elt-fld^fun, "y" ] ], 11950 sou := [ [ elt-fld^fun ] ], 11951 name := "/", 11952 short := "Quotient of x by y.", 11953 ex := [ ], 11954 hash := "553b27", 11955 sig := "<elt-fld^fun> x / <elt-fld^fun> y", 11956 sog := " -> <elt-fld^fun>", 11957 docsrc := "<internal>", 11958 sinflat := [ elt-fld^fun, elt-fld^fun ], 11959 souflat := [ elt-fld^fun ], 11960 soghash := "23d8b4", 11961 sig4hash := "/(elt-fld^fun,elt-fld^fun)" ), 11962 rec( 11963 kind := "OPERATION", 11964 sin := [ [ elt-ord^fun, "x" ], [ elt-ord^fun, "y" ] ], 11965 sou := [ [ elt-fld^fun ] ], 11966 name := "/", 11967 short := "Quotient of x by y.", 11968 ex := [ ], 11969 hash := "e6b0c9", 11970 sig := "<elt-ord^fun> x / <elt-ord^fun> y", 11971 sog := " -> <elt-fld^fun>", 11972 docsrc := "<internal>", 11973 sinflat := [ elt-ord^fun, elt-ord^fun ], 11974 souflat := [ elt-fld^fun ], 11975 soghash := "23d8b4", 11976 sig4hash := "/(elt-ord^fun,elt-ord^fun)" ), 11977 rec( 11978 kind := "OPERATION", 11979 sin := [ [ elt-ord^fun, "x" ], [ elt-rng, "y" ] ], 11980 sou := [ [ elt-fld^fun ] ], 11981 name := "/", 11982 short := "Quotient of x by y.", 11983 ex := [ ], 11984 hash := "3d7eec", 11985 sig := "<elt-ord^fun> x / <elt-rng> y", 11986 sog := " -> <elt-fld^fun>", 11987 docsrc := "<internal>", 11988 sinflat := [ elt-ord^fun, elt-rng ], 11989 souflat := [ elt-fld^fun ], 11990 soghash := "23d8b4", 11991 sig4hash := "/(elt-ord^fun,elt-rng)" ), 11992 rec( 11993 kind := "OPERATION", 11994 sin := [ [ elt-fld^fun, "x" ], [ elt-rng, "y" ] ], 11995 sou := [ [ elt-fld^fun ] ], 11996 name := "/", 11997 short := "Quotient of x by y.", 11998 ex := [ ], 11999 hash := "e9735a", 12000 sig := "<elt-fld^fun> x / <elt-rng> y", 12001 sog := " -> <elt-fld^fun>", 12002 docsrc := "<internal>", 12003 sinflat := [ elt-fld^fun, elt-rng ], 12004 souflat := [ elt-fld^fun ], 12005 soghash := "23d8b4", 12006 sig4hash := "/(elt-fld^fun,elt-rng)" ), 12007 rec( 12008 kind := "OPERATION", 12009 sin := [ [ elt-dif/fld^fun, "x" ], [ elt-dif/fld^fun, "y" ] ], 12010 sou := [ [ elt-fld^fun ] ], 12011 name := "/", 12012 short := "Quotient of x by y.", 12013 ex := [ ], 12014 hash := "08af13", 12015 sig := "<elt-dif/fld^fun> x / <elt-dif/fld^fun> y", 12016 sog := " -> <elt-fld^fun>", 12017 docsrc := "<internal>", 12018 sinflat := [ elt-dif/fld^fun, elt-dif/fld^fun ], 12019 souflat := [ elt-fld^fun ], 12020 soghash := "23d8b4", 12021 sig4hash := "/(elt-dif/fld^fun,elt-dif/fld^fun)" ), 12022 rec( 12023 kind := "OPERATION", 12024 sin := [ [ elt-dif/fld^fun, "x" ], [ elt-rng, "y" ] ], 12025 sou := [ [ elt-dif/fld^fun ] ], 12026 name := "/", 12027 short := "Quotient of x by y.", 12028 ex := [ ], 12029 hash := "8e0999", 12030 sig := "<elt-dif/fld^fun> x / <elt-rng> y", 12031 sog := " -> <elt-dif/fld^fun>", 12032 docsrc := "<internal>", 12033 sinflat := [ elt-dif/fld^fun, elt-rng ], 12034 souflat := [ elt-dif/fld^fun ], 12035 soghash := "fb8974", 12036 sig4hash := "/(elt-dif/fld^fun,elt-rng)" ), 12037 rec( 12038 kind := "OPERATION", 12039 sin := [ [ elt-ids^int/ord^fun, "x" ], [ elt-ids^int/ord^fun, "y" ] ], 12040 sou := [ [ elt-ids^int/ord^fun ] ], 12041 name := "/", 12042 short := "Quotient of x by y.", 12043 ex := [ ], 12044 hash := "cb6ee8", 12045 sig := "<elt-ids^int/ord^fun> x / <elt-ids^int/ord^fun> y", 12046 sog := " -> <elt-ids^int/ord^fun>", 12047 docsrc := "<internal>", 12048 sinflat := [ elt-ids^int/ord^fun, elt-ids^int/ord^fun ], 12049 souflat := [ elt-ids^int/ord^fun ], 12050 soghash := "918914", 12051 sig4hash := "/(elt-ids^int/ord^fun,elt-ids^int/ord^fun)" ), 12052 rec( 12053 kind := "OPERATION", 12054 sin := [ [ elt-rng, "x" ], [ elt-ids^int/ord^fun, "y" ] ], 12055 sou := [ [ elt-ids^int/ord^fun ] ], 12056 name := "/", 12057 short := "Quotient of x by y.", 12058 ex := [ ], 12059 hash := "e5f5c1", 12060 sig := "<elt-rng> x / <elt-ids^int/ord^fun> y", 12061 sog := " -> <elt-ids^int/ord^fun>", 12062 docsrc := "<internal>", 12063 sinflat := [ elt-rng, elt-ids^int/ord^fun ], 12064 souflat := [ elt-ids^int/ord^fun ], 12065 soghash := "918914", 12066 sig4hash := "/(elt-rng,elt-ids^int/ord^fun)" ), 12067 rec( 12068 kind := "OPERATION", 12069 sin := [ [ elt-ord^inf, "x" ], [ any, "y" ] ], 12070 sou := [ [ elt-ord^inf ] ], 12071 name := "/", 12072 short := "Quotient of x by y.", 12073 ex := [ ], 12074 hash := "44a57f", 12075 sig := "<elt-ord^inf> x / <any> y", 12076 sog := " -> <elt-ord^inf>", 12077 docsrc := "<internal>", 12078 sinflat := [ elt-ord^inf, any ], 12079 souflat := [ elt-ord^inf ], 12080 soghash := "08787a", 12081 sig4hash := "/(elt-ord^inf,any)" ), 12082 rec( 12083 kind := "OPERATION", 12084 sin := [ [ any, "x" ], [ elt-ord^inf, "y" ] ], 12085 sou := [ [ any ] ], 12086 name := "/", 12087 short := "Quotient of x by y.", 12088 ex := [ ], 12089 hash := "065a64", 12090 sig := "<any> x / <elt-ord^inf> y", 12091 sog := " -> <any>", 12092 docsrc := "<internal>", 12093 sinflat := [ any, elt-ord^inf ], 12094 souflat := [ any ], 12095 soghash := "c5fe02", 12096 sig4hash := "/(any,elt-ord^inf)" ), 12097 rec( 12098 kind := "OPERATION", 12099 sin := [ [ elt-ord^inf, "x" ], [ elt-ord^inf, "y" ] ], 12100 sou := [ [ elt-ord^inf ] ], 12101 name := "/", 12102 short := "Quotient of x by y.", 12103 ex := [ ], 12104 hash := "ca50f2", 12105 sig := "<elt-ord^inf> x / <elt-ord^inf> y", 12106 sog := " -> <elt-ord^inf>", 12107 docsrc := "<internal>", 12108 sinflat := [ elt-ord^inf, elt-ord^inf ], 12109 souflat := [ elt-ord^inf ], 12110 soghash := "08787a", 12111 sig4hash := "/(elt-ord^inf,elt-ord^inf)" ), 12112 rec( 12113 kind := "OPERATION", 12114 sin := [ [ elt-res^num, "x" ], [ elt-res^num, "y" ] ], 12115 sou := [ [ elt-res^num ] ], 12116 name := "/", 12117 short := "Quotient of x by y.", 12118 ex := [ ], 12119 hash := "7ccbe9", 12120 sig := "<elt-res^num> x / <elt-res^num> y", 12121 sog := " -> <elt-res^num>", 12122 docsrc := "<internal>", 12123 sinflat := [ elt-res^num, elt-res^num ], 12124 souflat := [ elt-res^num ], 12125 soghash := "a87f47", 12126 sig4hash := "/(elt-res^num,elt-res^num)" ), 12127 rec( 12128 kind := "OPERATION", 12129 sin := [ [ seq(), "A" ], [ seq(), "B" ] ], 12130 sou := [ [ seq() ] ], 12131 name := "/", 12132 short := "The quotient of the integers whose factorization tuples are A and B, represented as a factorization tuple (the division must be exact).", 12133 ex := [ ], 12134 hash := "63f63f", 12135 sig := "<seq()> A / <seq()> B", 12136 sog := " -> <seq()>", 12137 docsrc := "<internal>", 12138 sinflat := [ seq(), seq() ], 12139 souflat := [ seq() ], 12140 soghash := "4bf3a0", 12141 sig4hash := "/(seq(),seq())" ), 12142 rec( 12143 kind := "OPERATION", 12144 sin := [ [ elt-alg^pol, "f" ], [ elt-rng, "c" ] ], 12145 sou := [ [ elt-alg^pol ] ], 12146 name := "/", 12147 short := "Product of X and the scalar (1 / c).", 12148 ex := [ ], 12149 hash := "e1edd4", 12150 sig := "<elt-alg^pol> f / <elt-rng> c", 12151 sog := " -> <elt-alg^pol>", 12152 docsrc := "<internal>", 12153 sinflat := [ elt-alg^pol, elt-rng ], 12154 souflat := [ elt-alg^pol ], 12155 soghash := "ba7338", 12156 sig4hash := "/(elt-alg^pol,elt-rng)" ), 12157 rec( 12158 kind := "OPERATION", 12159 sin := [ [ elt-mdl^mat, "X" ], [ elt-rng, "c" ] ], 12160 sou := [ [ elt-mdl^mat ] ], 12161 name := "/", 12162 short := "Product of X and the scalar (1 / c).", 12163 ex := [ ], 12164 hash := "71a89b", 12165 sig := "<elt-mdl^mat> X / <elt-rng> c", 12166 sog := " -> <elt-mdl^mat>", 12167 docsrc := "<internal>", 12168 sinflat := [ elt-mdl^mat, elt-rng ], 12169 souflat := [ elt-mdl^mat ], 12170 soghash := "5284ac", 12171 sig4hash := "/(elt-mdl^mat,elt-rng)" ), 12172 rec( 12173 kind := "OPERATION", 12174 sin := [ [ elt-mdl^vec, "u" ], [ elt-rng, "c" ] ], 12175 sou := [ [ elt-mdl^vec ] ], 12176 name := "/", 12177 short := "Product of u and the scalar (1 / c).", 12178 ex := [ ], 12179 hash := "47d84d", 12180 sig := "<elt-mdl^vec> u / <elt-rng> c", 12181 sog := " -> <elt-mdl^vec>", 12182 docsrc := "<internal>", 12183 sinflat := [ elt-mdl^vec, elt-rng ], 12184 souflat := [ elt-mdl^vec ], 12185 soghash := "b46581", 12186 sig4hash := "/(elt-mdl^vec,elt-rng)" ), 12187 rec( 12188 kind := "OPERATION", 12189 sin := [ [ elt-mdl, "u" ], [ elt-rng, "c" ] ], 12190 sou := [ [ elt-mdl ] ], 12191 name := "/", 12192 short := "Product of u and the scalar (1 / c).", 12193 ex := [ ], 12194 hash := "c6023b", 12195 sig := "<elt-mdl> u / <elt-rng> c", 12196 sog := " -> <elt-mdl>", 12197 docsrc := "<internal>", 12198 sinflat := [ elt-mdl, elt-rng ], 12199 souflat := [ elt-mdl ], 12200 soghash := "97b5cd", 12201 sig4hash := "/(elt-mdl,elt-rng)" ), 12202 rec( 12203 kind := "OPERATION", 12204 sin := [ [ elt-mdl^ded, "u" ], [ elt-rng, "c" ] ], 12205 sou := [ [ elt-mdl^ded ] ], 12206 name := "/", 12207 short := "Product of u and the scalar (1 / c).", 12208 ex := [ ], 12209 hash := "3d613e", 12210 sig := "<elt-mdl^ded> u / <elt-rng> c", 12211 sog := " -> <elt-mdl^ded>", 12212 docsrc := "<internal>", 12213 sinflat := [ elt-mdl^ded, elt-rng ], 12214 souflat := [ elt-mdl^ded ], 12215 soghash := "2fccf1", 12216 sig4hash := "/(elt-mdl^ded,elt-rng)" ), 12217 rec( 12218 kind := "OPERATION", 12219 sin := [ [ grp^abl, "G" ], [ grp^abl, "N" ] ], 12220 sou := [ [ grp^abl ] ], 12221 name := "/", 12222 short := "Construct the quotient of the group G by the normal subgroup N.", 12223 ex := [ ], 12224 hash := "44eb5e", 12225 sig := "<grp^abl> G / <grp^abl> N", 12226 sog := " -> <grp^abl>", 12227 docsrc := "<internal>", 12228 sinflat := [ grp^abl, grp^abl ], 12229 souflat := [ grp^abl ], 12230 soghash := "cde424", 12231 sig4hash := "/(grp^abl,grp^abl)" ), 12232 rec( 12233 kind := "OPERATION", 12234 sin := [ [ mdl^vec, "M" ], [ mdl^vec, "N" ] ], 12235 sou := [ [ mdl^vec ], [ map() ] ], 12236 opt := [ [ elt-ord^rat, "Results", "1 <= Results <= 2" ] ], 12237 name := "/", 12238 short := " The quotient of x by y.", 12239 ex := [ ], 12240 hash := "0a5141", 12241 sig := "<mdl^vec> M / <mdl^vec> N", 12242 sog := " -> <mdl^vec>, <map()>", 12243 docsrc := "<internal>", 12244 sinflat := [ mdl^vec, mdl^vec ], 12245 souflat := [ mdl^vec, map() ], 12246 soghash := "09f404", 12247 sig4hash := "/(mdl^vec,mdl^vec)" ), 12248 rec( 12249 kind := "OPERATION", 12250 sin := [ [ mdl^mat, "M" ], [ mdl^mat, "N" ] ], 12251 sou := [ [ mdl^mat ] ], 12252 name := "/", 12253 short := " The quotient of x by y.", 12254 ex := [ ], 12255 hash := "857ad1", 12256 sig := "<mdl^mat> M / <mdl^mat> N", 12257 sog := " -> <mdl^mat>", 12258 docsrc := "<internal>", 12259 sinflat := [ mdl^mat, mdl^mat ], 12260 souflat := [ mdl^mat ], 12261 soghash := "5c8c42", 12262 sig4hash := "/(mdl^mat,mdl^mat)" ), 12263 rec( 12264 kind := "OPERATION", 12265 sin := [ [ mdl, "M" ], [ mdl, "N" ] ], 12266 sou := [ [ mdl ] ], 12267 name := "/", 12268 short := " The quotient of x by y.", 12269 ex := [ ], 12270 hash := "8c651b", 12271 sig := "<mdl> M / <mdl> N", 12272 sog := " -> <mdl>", 12273 docsrc := "<internal>", 12274 sinflat := [ mdl, mdl ], 12275 souflat := [ mdl ], 12276 soghash := "acbc30", 12277 sig4hash := "/(mdl,mdl)" ), 12278 rec( 12279 kind := "OPERATION", 12280 sin := [ [ elt-rng^ser, "x" ], [ elt-rng^ser, "y" ] ], 12281 sou := [ [ elt-rng^ser ] ], 12282 name := "/", 12283 short := " The quotient of x by y.", 12284 ex := [ ], 12285 hash := "3105af", 12286 sig := "<elt-rng^ser> x / <elt-rng^ser> y", 12287 sog := " -> <elt-rng^ser>", 12288 docsrc := "<internal>", 12289 sinflat := [ elt-rng^ser, elt-rng^ser ], 12290 souflat := [ elt-rng^ser ], 12291 soghash := "28734d", 12292 sig4hash := "/(elt-rng^ser,elt-rng^ser)" ), 12293 rec( 12294 kind := "OPERATION", 12295 sin := [ [ elt-ids^fra/ord^num, "I" ], [ elt-rng, "x" ] ], 12296 sou := [ [ elt-ids^fra/ord^num ] ], 12297 name := "/", 12298 short := "The (possibly fractional) ideal I/x.", 12299 ex := [ ], 12300 hash := "5a626d", 12301 sig := "<elt-ids^fra/ord^num> I / <elt-rng> x", 12302 sog := " -> <elt-ids^fra/ord^num>", 12303 docsrc := "<internal>", 12304 sinflat := [ elt-ids^fra/ord^num, elt-rng ], 12305 souflat := [ elt-ids^fra/ord^num ], 12306 soghash := "ca011c", 12307 sig4hash := "/(elt-ids^fra/ord^num,elt-rng)" ), 12308 rec( 12309 kind := "OPERATION", 12310 sin := [ [ elt-ids^int/ord^fun, "I" ], [ elt-rng, "x" ] ], 12311 sou := [ [ elt-ids^int/ord^fun ] ], 12312 name := "/", 12313 short := "The (possibly fractional) ideal I/x.", 12314 ex := [ ], 12315 hash := "c6a6b4", 12316 sig := "<elt-ids^int/ord^fun> I / <elt-rng> x", 12317 sog := " -> <elt-ids^int/ord^fun>", 12318 docsrc := "<internal>", 12319 sinflat := [ elt-ids^int/ord^fun, elt-rng ], 12320 souflat := [ elt-ids^int/ord^fun ], 12321 soghash := "918914", 12322 sig4hash := "/(elt-ids^int/ord^fun,elt-rng)" ), 12323 rec( 12324 kind := "FUNCTION", 12325 sin := [ [ any, "x" ], [ map(), "f" ] ], 12326 sou := [ [ any ] ], 12327 name := "Preimage", 12328 short := "The preimage of x under f.", 12329 ex := [ "x_R := PolynomialAlgebra( IntegerRing() );\nx_x := Generator(x_R, 1);\nx_O := MaximalOrder( x_x^5-5*x_x^3+7*x_x^2-15*x_x+16 );\nx_G := ClassGroup(x_O);\nx_f := x_G.ext1;\nx_I := Factorization( 7*x_O )[1][1];\nx_g := Preimage(x_I, x_f);\nx_J := x_f(x_g);\nIsPrincipal(x_I / x_J);" ], 12330 hash := "90f13e", 12331 sig := "Preimage(<any> x, <map()> f)", 12332 sog := " -> <any>", 12333 docsrc := "<internal>", 12334 sinflat := [ any, map() ], 12335 souflat := [ any ], 12336 soghash := "da39a3", 12337 sig4hash := "Preimage(any,map())" ), 12338 rec( 12339 kind := "FUNCTION", 12340 sin := [ [ grp^abl, "G" ] ], 12341 sou := [ [ seq() ], [ seq() ] ], 12342 opt := [ [ elt-ord^rat, "Results", "1 <= Results <= 2" ] ], 12343 name := "AbelianBasis", 12344 ex := [ "x_G := AbelianGroup([2, 5, 5]);\nAbelianBasis(x_G);" ], 12345 hash := "7fa635", 12346 sig := "AbelianBasis(<grp^abl> G [, optargs])", 12347 sog := " -> <seq()>, <seq()>", 12348 docsrc := "<internal>", 12349 sinflat := [ grp^abl ], 12350 souflat := [ seq(), seq() ], 12351 soghash := "da39a3", 12352 sig4hash := "AbelianBasis(grp^abl)", 12353 short := "An abelian basis and the abelian invariants for the abelian group G." ), 12354 rec(