"Fossies" - the Fresh Open Source Software Archive

Member "doc_html/Algebraic_foundations/classField.html" (8 Nov 2019, 12729 Bytes) of package /linux/misc/CGAL-4.14.2-doc_html.tar.xz:


Caution: In this restricted "Fossies" environment the current HTML page may not be correctly presentated and may have some non-functional links. You can here alternatively try to browse the pure source code or just view or download the uninterpreted raw source code. If the rendering is insufficient you may try to find and view the page on the CGAL-4.14.2-doc_html.tar.xz project site itself.

\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)

CGAL 4.14.2 - Algebraic Foundations
Field Concept Reference

Definition

A model of Field is an IntegralDomain in which every non-zero element has a multiplicative inverse. Thus, one can divide by any non-zero element. Hence division is defined for any divisor != 0. For a Field, we require this division operation to be available through operators / and /=.

Moreover, CGAL::Algebraic_structure_traits< Field > is a model of AlgebraicStructureTraits providing:

Refines:
IntegralDomain
See also
IntegralDomainWithoutDivision
IntegralDomain
UniqueFactorizationDomain
EuclideanRing
Field
FieldWithSqrt
FieldWithKthRoot
FieldWithRootOf
AlgebraicStructureTraits

Operations

Field operator/ (const Field &a, const Field &b)
 
Field operator/= (const Field &b)