w32tex
About: TeX Live provides a comprehensive TeX system including all the major TeX-related programs, macro packages, and fonts that are free software. Windows sources.
  Fossies Dox: w32tex-src.tar.xz  ("unofficial" and yet experimental doxygen-generated source code documentation)  

decNumberLocal.h
Go to the documentation of this file.
1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /* ------------------------------------------------------------------ */
4 /* decNumber package local type, tuning, and macro definitions */
5 /* ------------------------------------------------------------------ */
6 /* Copyright (c) IBM Corporation, 2000-2016. All rights reserved. */
7 /* */
8 /* This software is made available under the terms of the */
9 /* ICU License -- ICU 1.8.1 and later. */
10 /* */
11 /* The description and User's Guide ("The decNumber C Library") for */
12 /* this software is called decNumber.pdf. This document is */
13 /* available, together with arithmetic and format specifications, */
14 /* testcases, and Web links, on the General Decimal Arithmetic page. */
15 /* */
16 /* Please send comments, suggestions, and corrections to the author: */
17 /* mfc@uk.ibm.com */
18 /* Mike Cowlishaw, IBM Fellow */
19 /* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */
20 /* ------------------------------------------------------------------ */
21 /* This header file is included by all modules in the decNumber */
22 /* library, and contains local type definitions, tuning parameters, */
23 /* etc. It should not need to be used by application programs. */
24 /* decNumber.h or one of decDouble (etc.) must be included first. */
25 /* ------------------------------------------------------------------ */
26 
27 #if !defined(DECNUMBERLOC)
28  #define DECNUMBERLOC
29  #define DECVERSION "decNumber 3.61" /* Package Version [16 max.] */
30  #define DECNLAUTHOR "Mike Cowlishaw" /* Who to blame */
31 
32  #include <stdlib.h> /* for abs */
33  #include <string.h> /* for memset, strcpy */
34  #include "decContext.h"
35 
36  /* Conditional code flag -- set this to match hardware platform */
37  #if !defined(DECLITEND)
38  #define DECLITEND 1 /* 1=little-endian, 0=big-endian */
39  #endif
40 
41  /* Conditional code flag -- set this to 1 for best performance */
42  #if !defined(DECUSE64)
43  #define DECUSE64 1 /* 1=use int64s, 0=int32 & smaller only */
44  #endif
45 
46  /* Conditional check flags -- set these to 0 for best performance */
47  #if !defined(DECCHECK)
48  #define DECCHECK 0 /* 1 to enable robust checking */
49  #endif
50  #if !defined(DECALLOC)
51  #define DECALLOC 0 /* 1 to enable memory accounting */
52  #endif
53  #if !defined(DECTRACE)
54  #define DECTRACE 0 /* 1 to trace certain internals, etc. */
55  #endif
56 
57  /* Tuning parameter for decNumber (arbitrary precision) module */
58  #if !defined(DECBUFFER)
59  #define DECBUFFER 36 /* Size basis for local buffers. This */
60  /* should be a common maximum precision */
61  /* rounded up to a multiple of 4; must */
62  /* be zero or positive. */
63  #endif
64 
65  /* ---------------------------------------------------------------- */
66  /* Definitions for all modules (general-purpose) */
67  /* ---------------------------------------------------------------- */
68 
69  /* Local names for common types -- for safety, decNumber modules do */
70  /* not use int or long directly. */
71  #define Flag uint8_t
72  #define Byte int8_t
73  #define uByte uint8_t
74  #define Short int16_t
75  #define uShort uint16_t
76  #define Int int32_t
77  #define uInt uint32_t
78  #define Unit decNumberUnit
79  #if DECUSE64
80  #define Long int64_t
81  #define uLong uint64_t
82  #endif
83 
84  /* Development-use definitions */
85  typedef long int LI; /* for printf arguments only */
86  #define DECNOINT 0 /* 1 to check no internal use of 'int' */
87  /* or stdint types */
88  #if DECNOINT
89  /* if these interfere with your C includes, do not set DECNOINT */
90  #define int ? /* enable to ensure that plain C 'int' */
91  #define long ?? /* .. or 'long' types are not used */
92  #endif
93 
94  /* LONGMUL32HI -- set w=(u*v)>>32, where w, u, and v are uInts */
95  /* (that is, sets w to be the high-order word of the 64-bit result; */
96  /* the low-order word is simply u*v.) */
97  /* This version is derived from Knuth via Hacker's Delight; */
98  /* it seems to optimize better than some others tried */
99  #define LONGMUL32HI(w, u, v) { \
100  uInt u0, u1, v0, v1, w0, w1, w2, t; \
101  u0=u & 0xffff; u1=u>>16; \
102  v0=v & 0xffff; v1=v>>16; \
103  w0=u0*v0; \
104  t=u1*v0 + (w0>>16); \
105  w1=t & 0xffff; w2=t>>16; \
106  w1=u0*v1 + w1; \
107  (w)=u1*v1 + w2 + (w1>>16);}
108 
109  /* ROUNDUP -- round an integer up to a multiple of n */
110  #define ROUNDUP(i, n) ((((i)+(n)-1)/n)*n)
111  #define ROUNDUP4(i) (((i)+3)&~3) /* special for n=4 */
112 
113  /* ROUNDDOWN -- round an integer down to a multiple of n */
114  #define ROUNDDOWN(i, n) (((i)/n)*n)
115  #define ROUNDDOWN4(i) ((i)&~3) /* special for n=4 */
116 
117  /* References to multi-byte sequences under different sizes; these */
118  /* require locally declared variables, but do not violate strict */
119  /* aliasing or alignment (as did the UINTAT simple cast to uInt). */
120  /* Variables needed are uswork, uiwork, etc. [so do not use at same */
121  /* level in an expression, e.g., UBTOUI(x)==UBTOUI(y) may fail]. */
122 
123  /* Return a uInt, etc., from bytes starting at a char* or uByte* */
124  #define UBTOUS(b) (memcpy((void *)&uswork, b, 2), uswork)
125  #define UBTOUI(b) (memcpy((void *)&uiwork, b, 4), uiwork)
126 
127  /* Store a uInt, etc., into bytes starting at a char* or uByte*. */
128  /* Returns i, evaluated, for convenience; has to use uiwork because */
129  /* i may be an expression. */
130  #define UBFROMUS(b, i) (uswork=(i), memcpy(b, (void *)&uswork, 2), uswork)
131  #define UBFROMUI(b, i) (uiwork=(i), memcpy(b, (void *)&uiwork, 4), uiwork)
132 
133  /* X10 and X100 -- multiply integer i by 10 or 100 */
134  /* [shifts are usually faster than multiply; could be conditional] */
135  #define X10(i) (((i)<<1)+((i)<<3))
136  #define X100(i) (((i)<<2)+((i)<<5)+((i)<<6))
137 
138  /* MAXI and MINI -- general max & min (not in ANSI) for integers */
139  #define MAXI(x,y) ((x)<(y)?(y):(x))
140  #define MINI(x,y) ((x)>(y)?(y):(x))
141 
142  /* Useful constants */
143  #define BILLION 1000000000 /* 10**9 */
144  /* CHARMASK: 0x30303030 for ASCII/UTF8; 0xF0F0F0F0 for EBCDIC */
145  #define CHARMASK ((((((((uInt)'0')<<8)+'0')<<8)+'0')<<8)+'0')
146 
147 
148  /* ---------------------------------------------------------------- */
149  /* Definitions for arbitary-precision modules (only valid after */
150  /* decNumber.h has been included) */
151  /* ---------------------------------------------------------------- */
152 
153  /* Limits and constants */
154  #define DECNUMMAXP 999999999 /* maximum precision code can handle */
155  #define DECNUMMAXE 999999999 /* maximum adjusted exponent ditto */
156  #define DECNUMMINE -999999999 /* minimum adjusted exponent ditto */
157  #if (DECNUMMAXP != DEC_MAX_DIGITS)
158  #error Maximum digits mismatch
159  #endif
160  #if (DECNUMMAXE != DEC_MAX_EMAX)
161  #error Maximum exponent mismatch
162  #endif
163  #if (DECNUMMINE != DEC_MIN_EMIN)
164  #error Minimum exponent mismatch
165  #endif
166 
167  /* Set DECDPUNMAX -- the maximum integer that fits in DECDPUN */
168  /* digits, and D2UTABLE -- the initializer for the D2U table */
169  #ifndef DECDPUN
170  // no-op
171  #elif DECDPUN==1
172  #define DECDPUNMAX 9
173  #define D2UTABLE {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, \
174  18,19,20,21,22,23,24,25,26,27,28,29,30,31,32, \
175  33,34,35,36,37,38,39,40,41,42,43,44,45,46,47, \
176  48,49}
177  #elif DECDPUN==2
178  #define DECDPUNMAX 99
179  #define D2UTABLE {0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10, \
180  11,11,12,12,13,13,14,14,15,15,16,16,17,17,18, \
181  18,19,19,20,20,21,21,22,22,23,23,24,24,25}
182  #elif DECDPUN==3
183  #define DECDPUNMAX 999
184  #define D2UTABLE {0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7, \
185  8,8,8,9,9,9,10,10,10,11,11,11,12,12,12,13,13, \
186  13,14,14,14,15,15,15,16,16,16,17}
187  #elif DECDPUN==4
188  #define DECDPUNMAX 9999
189  #define D2UTABLE {0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6, \
190  6,6,6,7,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,11, \
191  11,11,11,12,12,12,12,13}
192  #elif DECDPUN==5
193  #define DECDPUNMAX 99999
194  #define D2UTABLE {0,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,5, \
195  5,5,5,5,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8,9,9,9, \
196  9,9,10,10,10,10}
197  #elif DECDPUN==6
198  #define DECDPUNMAX 999999
199  #define D2UTABLE {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4, \
200  4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,8, \
201  8,8,8,8,8,9}
202  #elif DECDPUN==7
203  #define DECDPUNMAX 9999999
204  #define D2UTABLE {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3, \
205  4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7, \
206  7,7,7,7,7,7}
207  #elif DECDPUN==8
208  #define DECDPUNMAX 99999999
209  #define D2UTABLE {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3, \
210  3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6, \
211  6,6,6,6,6,7}
212  #elif DECDPUN==9
213  #define DECDPUNMAX 999999999
214  #define D2UTABLE {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3, \
215  3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5, \
216  5,5,6,6,6,6}
217  #else
218  #error DECDPUN must be in the range 1-9
219  #endif
220 
221  /* ----- Shared data (in decNumber.c) ----- */
222  /* Public lookup table used by the D2U macro (see below) */
223  #define DECMAXD2U 49
224  /*extern const uByte d2utable[DECMAXD2U+1];*/
225 
226  /* ----- Macros ----- */
227  /* ISZERO -- return true if decNumber dn is a zero */
228  /* [performance-critical in some situations] */
229  #define ISZERO(dn) decNumberIsZero(dn) /* now just a local name */
230 
231  /* D2U -- return the number of Units needed to hold d digits */
232  /* (runtime version, with table lookaside for small d) */
233  #if defined(DECDPUN) && DECDPUN==8
234  #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+7)>>3))
235  #elif defined(DECDPUN) && DECDPUN==4
236  #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+3)>>2))
237  #else
238  #define D2U(d) ((d)<=DECMAXD2U?d2utable[d]:((d)+DECDPUN-1)/DECDPUN)
239  #endif
240  /* SD2U -- static D2U macro (for compile-time calculation) */
241  #define SD2U(d) (((d)+DECDPUN-1)/DECDPUN)
242 
243  /* MSUDIGITS -- returns digits in msu, from digits, calculated */
244  /* using D2U */
245  #define MSUDIGITS(d) ((d)-(D2U(d)-1)*DECDPUN)
246 
247  /* D2N -- return the number of decNumber structs that would be */
248  /* needed to contain that number of digits (and the initial */
249  /* decNumber struct) safely. Note that one Unit is included in the */
250  /* initial structure. Used for allocating space that is aligned on */
251  /* a decNumber struct boundary. */
252  #define D2N(d) \
253  ((((SD2U(d)-1)*sizeof(Unit))+sizeof(decNumber)*2-1)/sizeof(decNumber))
254 
255  /* TODIGIT -- macro to remove the leading digit from the unsigned */
256  /* integer u at column cut (counting from the right, LSD=0) and */
257  /* place it as an ASCII character into the character pointed to by */
258  /* c. Note that cut must be <= 9, and the maximum value for u is */
259  /* 2,000,000,000 (as is needed for negative exponents of */
260  /* subnormals). The unsigned integer pow is used as a temporary */
261  /* variable. */
262  #define TODIGIT(u, cut, c, pow) UPRV_BLOCK_MACRO_BEGIN { \
263  *(c)='0'; \
264  pow=DECPOWERS[cut]*2; \
265  if ((u)>pow) { \
266  pow*=4; \
267  if ((u)>=pow) {(u)-=pow; *(c)+=8;} \
268  pow/=2; \
269  if ((u)>=pow) {(u)-=pow; *(c)+=4;} \
270  pow/=2; \
271  } \
272  if ((u)>=pow) {(u)-=pow; *(c)+=2;} \
273  pow/=2; \
274  if ((u)>=pow) {(u)-=pow; *(c)+=1;} \
275  } UPRV_BLOCK_MACRO_END
276 
277  /* ---------------------------------------------------------------- */
278  /* Definitions for fixed-precision modules (only valid after */
279  /* decSingle.h, decDouble.h, or decQuad.h has been included) */
280  /* ---------------------------------------------------------------- */
281 
282  /* bcdnum -- a structure describing a format-independent finite */
283  /* number, whose coefficient is a string of bcd8 uBytes */
284  typedef struct {
285  uByte *msd; /* -> most significant digit */
286  uByte *lsd; /* -> least ditto */
287  uInt sign; /* 0=positive, DECFLOAT_Sign=negative */
288  Int exponent; /* Unadjusted signed exponent (q), or */
289  /* DECFLOAT_NaN etc. for a special */
290  } bcdnum;
291 
292  /* Test if exponent or bcdnum exponent must be a special, etc. */
293  #define EXPISSPECIAL(exp) ((exp)>=DECFLOAT_MinSp)
294  #define EXPISINF(exp) (exp==DECFLOAT_Inf)
295  #define EXPISNAN(exp) (exp==DECFLOAT_qNaN || exp==DECFLOAT_sNaN)
296  #define NUMISSPECIAL(num) (EXPISSPECIAL((num)->exponent))
297 
298  /* Refer to a 32-bit word or byte in a decFloat (df) by big-endian */
299  /* (array) notation (the 0 word or byte contains the sign bit), */
300  /* automatically adjusting for endianness; similarly address a word */
301  /* in the next-wider format (decFloatWider, or dfw) */
302  #define DECWORDS (DECBYTES/4)
303  #define DECWWORDS (DECWBYTES/4)
304  #if DECLITEND
305  #define DFBYTE(df, off) ((df)->bytes[DECBYTES-1-(off)])
306  #define DFWORD(df, off) ((df)->words[DECWORDS-1-(off)])
307  #define DFWWORD(dfw, off) ((dfw)->words[DECWWORDS-1-(off)])
308  #else
309  #define DFBYTE(df, off) ((df)->bytes[off])
310  #define DFWORD(df, off) ((df)->words[off])
311  #define DFWWORD(dfw, off) ((dfw)->words[off])
312  #endif
313 
314  /* Tests for sign or specials, directly on DECFLOATs */
315  #define DFISSIGNED(df) (DFWORD(df, 0)&0x80000000)
316  #define DFISSPECIAL(df) ((DFWORD(df, 0)&0x78000000)==0x78000000)
317  #define DFISINF(df) ((DFWORD(df, 0)&0x7c000000)==0x78000000)
318  #define DFISNAN(df) ((DFWORD(df, 0)&0x7c000000)==0x7c000000)
319  #define DFISQNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7c000000)
320  #define DFISSNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7e000000)
321 
322  /* Shared lookup tables */
323  extern const uInt DECCOMBMSD[64]; /* Combination field -> MSD */
324  extern const uInt DECCOMBFROM[48]; /* exp+msd -> Combination */
325 
326  /* Private generic (utility) routine */
327  #if DECCHECK || DECTRACE
328  extern void decShowNum(const bcdnum *, const char *);
329  #endif
330 
331  /* Format-dependent macros and constants */
332  #if defined(DECPMAX)
333 
334  /* Useful constants */
335  #define DECPMAX9 (ROUNDUP(DECPMAX, 9)/9) /* 'Pmax' in 10**9s */
336  /* Top words for a zero */
337  #define SINGLEZERO 0x22500000
338  #define DOUBLEZERO 0x22380000
339  #define QUADZERO 0x22080000
340  /* [ZEROWORD is defined to be one of these in the DFISZERO macro] */
341 
342  /* Format-dependent common tests: */
343  /* DFISZERO -- test for (any) zero */
344  /* DFISCCZERO -- test for coefficient continuation being zero */
345  /* DFISCC01 -- test for coefficient contains only 0s and 1s */
346  /* DFISINT -- test for finite and exponent q=0 */
347  /* DFISUINT01 -- test for sign=0, finite, exponent q=0, and */
348  /* MSD=0 or 1 */
349  /* ZEROWORD is also defined here. */
350  /* In DFISZERO the first test checks the least-significant word */
351  /* (most likely to be non-zero); the penultimate tests MSD and */
352  /* DPDs in the signword, and the final test excludes specials and */
353  /* MSD>7. DFISINT similarly has to allow for the two forms of */
354  /* MSD codes. DFISUINT01 only has to allow for one form of MSD */
355  /* code. */
356  #if DECPMAX==7
357  #define ZEROWORD SINGLEZERO
358  /* [test macros not needed except for Zero] */
359  #define DFISZERO(df) ((DFWORD(df, 0)&0x1c0fffff)==0 \
360  && (DFWORD(df, 0)&0x60000000)!=0x60000000)
361  #elif DECPMAX==16
362  #define ZEROWORD DOUBLEZERO
363  #define DFISZERO(df) ((DFWORD(df, 1)==0 \
364  && (DFWORD(df, 0)&0x1c03ffff)==0 \
365  && (DFWORD(df, 0)&0x60000000)!=0x60000000))
366  #define DFISINT(df) ((DFWORD(df, 0)&0x63fc0000)==0x22380000 \
367  ||(DFWORD(df, 0)&0x7bfc0000)==0x6a380000)
368  #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbfc0000)==0x22380000)
369  #define DFISCCZERO(df) (DFWORD(df, 1)==0 \
370  && (DFWORD(df, 0)&0x0003ffff)==0)
371  #define DFISCC01(df) ((DFWORD(df, 0)&~0xfffc9124)==0 \
372  && (DFWORD(df, 1)&~0x49124491)==0)
373  #elif DECPMAX==34
374  #define ZEROWORD QUADZERO
375  #define DFISZERO(df) ((DFWORD(df, 3)==0 \
376  && DFWORD(df, 2)==0 \
377  && DFWORD(df, 1)==0 \
378  && (DFWORD(df, 0)&0x1c003fff)==0 \
379  && (DFWORD(df, 0)&0x60000000)!=0x60000000))
380  #define DFISINT(df) ((DFWORD(df, 0)&0x63ffc000)==0x22080000 \
381  ||(DFWORD(df, 0)&0x7bffc000)==0x6a080000)
382  #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbffc000)==0x22080000)
383  #define DFISCCZERO(df) (DFWORD(df, 3)==0 \
384  && DFWORD(df, 2)==0 \
385  && DFWORD(df, 1)==0 \
386  && (DFWORD(df, 0)&0x00003fff)==0)
387 
388  #define DFISCC01(df) ((DFWORD(df, 0)&~0xffffc912)==0 \
389  && (DFWORD(df, 1)&~0x44912449)==0 \
390  && (DFWORD(df, 2)&~0x12449124)==0 \
391  && (DFWORD(df, 3)&~0x49124491)==0)
392  #endif
393 
394  /* Macros to test if a certain 10 bits of a uInt or pair of uInts */
395  /* are a canonical declet [higher or lower bits are ignored]. */
396  /* declet is at offset 0 (from the right) in a uInt: */
397  #define CANONDPD(dpd) (((dpd)&0x300)==0 || ((dpd)&0x6e)!=0x6e)
398  /* declet is at offset k (a multiple of 2) in a uInt: */
399  #define CANONDPDOFF(dpd, k) (((dpd)&(0x300<<(k)))==0 \
400  || ((dpd)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k)))
401  /* declet is at offset k (a multiple of 2) in a pair of uInts: */
402  /* [the top 2 bits will always be in the more-significant uInt] */
403  #define CANONDPDTWO(hi, lo, k) (((hi)&(0x300>>(32-(k))))==0 \
404  || ((hi)&(0x6e>>(32-(k))))!=(0x6e>>(32-(k))) \
405  || ((lo)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k)))
406 
407  /* Macro to test whether a full-length (length DECPMAX) BCD8 */
408  /* coefficient, starting at uByte u, is all zeros */
409  /* Test just the LSWord first, then the remainder as a sequence */
410  /* of tests in order to avoid same-level use of UBTOUI */
411  #if DECPMAX==7
412  #define ISCOEFFZERO(u) ( \
413  UBTOUI((u)+DECPMAX-4)==0 \
414  && UBTOUS((u)+DECPMAX-6)==0 \
415  && *(u)==0)
416  #elif DECPMAX==16
417  #define ISCOEFFZERO(u) ( \
418  UBTOUI((u)+DECPMAX-4)==0 \
419  && UBTOUI((u)+DECPMAX-8)==0 \
420  && UBTOUI((u)+DECPMAX-12)==0 \
421  && UBTOUI(u)==0)
422  #elif DECPMAX==34
423  #define ISCOEFFZERO(u) ( \
424  UBTOUI((u)+DECPMAX-4)==0 \
425  && UBTOUI((u)+DECPMAX-8)==0 \
426  && UBTOUI((u)+DECPMAX-12)==0 \
427  && UBTOUI((u)+DECPMAX-16)==0 \
428  && UBTOUI((u)+DECPMAX-20)==0 \
429  && UBTOUI((u)+DECPMAX-24)==0 \
430  && UBTOUI((u)+DECPMAX-28)==0 \
431  && UBTOUI((u)+DECPMAX-32)==0 \
432  && UBTOUS(u)==0)
433  #endif
434 
435  /* Macros and masks for the exponent continuation field and MSD */
436  /* Get the exponent continuation from a decFloat *df as an Int */
437  #define GETECON(df) ((Int)((DFWORD((df), 0)&0x03ffffff)>>(32-6-DECECONL)))
438  /* Ditto, from the next-wider format */
439  #define GETWECON(df) ((Int)((DFWWORD((df), 0)&0x03ffffff)>>(32-6-DECWECONL)))
440  /* Get the biased exponent similarly */
441  #define GETEXP(df) ((Int)(DECCOMBEXP[DFWORD((df), 0)>>26]+GETECON(df)))
442  /* Get the unbiased exponent similarly */
443  #define GETEXPUN(df) ((Int)GETEXP(df)-DECBIAS)
444  /* Get the MSD similarly (as uInt) */
445  #define GETMSD(df) (DECCOMBMSD[DFWORD((df), 0)>>26])
446 
447  /* Compile-time computes of the exponent continuation field masks */
448  /* full exponent continuation field: */
449  #define ECONMASK ((0x03ffffff>>(32-6-DECECONL))<<(32-6-DECECONL))
450  /* same, not including its first digit (the qNaN/sNaN selector): */
451  #define ECONNANMASK ((0x01ffffff>>(32-6-DECECONL))<<(32-6-DECECONL))
452 
453  /* Macros to decode the coefficient in a finite decFloat *df into */
454  /* a BCD string (uByte *bcdin) of length DECPMAX uBytes. */
455 
456  /* In-line sequence to convert least significant 10 bits of uInt */
457  /* dpd to three BCD8 digits starting at uByte u. Note that an */
458  /* extra byte is written to the right of the three digits because */
459  /* four bytes are moved at a time for speed; the alternative */
460  /* macro moves exactly three bytes (usually slower). */
461  #define dpd2bcd8(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 4)
462  #define dpd2bcd83(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 3)
463 
464  /* Decode the declets. After extracting each one, it is decoded */
465  /* to BCD8 using a table lookup (also used for variable-length */
466  /* decode). Each DPD decode is 3 bytes BCD8 plus a one-byte */
467  /* length which is not used, here). Fixed-length 4-byte moves */
468  /* are fast, however, almost everywhere, and so are used except */
469  /* for the final three bytes (to avoid overrun). The code below */
470  /* is 36 instructions for Doubles and about 70 for Quads, even */
471  /* on IA32. */
472 
473  /* Two macros are defined for each format: */
474  /* GETCOEFF extracts the coefficient of the current format */
475  /* GETWCOEFF extracts the coefficient of the next-wider format. */
476  /* The latter is a copy of the next-wider GETCOEFF using DFWWORD. */
477 
478  #if DECPMAX==7
479  #define GETCOEFF(df, bcd) { \
480  uInt sourhi=DFWORD(df, 0); \
481  *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
482  dpd2bcd8(bcd+1, sourhi>>10); \
483  dpd2bcd83(bcd+4, sourhi);}
484  #define GETWCOEFF(df, bcd) { \
485  uInt sourhi=DFWWORD(df, 0); \
486  uInt sourlo=DFWWORD(df, 1); \
487  *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
488  dpd2bcd8(bcd+1, sourhi>>8); \
489  dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \
490  dpd2bcd8(bcd+7, sourlo>>20); \
491  dpd2bcd8(bcd+10, sourlo>>10); \
492  dpd2bcd83(bcd+13, sourlo);}
493 
494  #elif DECPMAX==16
495  #define GETCOEFF(df, bcd) { \
496  uInt sourhi=DFWORD(df, 0); \
497  uInt sourlo=DFWORD(df, 1); \
498  *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
499  dpd2bcd8(bcd+1, sourhi>>8); \
500  dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \
501  dpd2bcd8(bcd+7, sourlo>>20); \
502  dpd2bcd8(bcd+10, sourlo>>10); \
503  dpd2bcd83(bcd+13, sourlo);}
504  #define GETWCOEFF(df, bcd) { \
505  uInt sourhi=DFWWORD(df, 0); \
506  uInt sourmh=DFWWORD(df, 1); \
507  uInt sourml=DFWWORD(df, 2); \
508  uInt sourlo=DFWWORD(df, 3); \
509  *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
510  dpd2bcd8(bcd+1, sourhi>>4); \
511  dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \
512  dpd2bcd8(bcd+7, sourmh>>16); \
513  dpd2bcd8(bcd+10, sourmh>>6); \
514  dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \
515  dpd2bcd8(bcd+16, sourml>>18); \
516  dpd2bcd8(bcd+19, sourml>>8); \
517  dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \
518  dpd2bcd8(bcd+25, sourlo>>20); \
519  dpd2bcd8(bcd+28, sourlo>>10); \
520  dpd2bcd83(bcd+31, sourlo);}
521 
522  #elif DECPMAX==34
523  #define GETCOEFF(df, bcd) { \
524  uInt sourhi=DFWORD(df, 0); \
525  uInt sourmh=DFWORD(df, 1); \
526  uInt sourml=DFWORD(df, 2); \
527  uInt sourlo=DFWORD(df, 3); \
528  *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
529  dpd2bcd8(bcd+1, sourhi>>4); \
530  dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \
531  dpd2bcd8(bcd+7, sourmh>>16); \
532  dpd2bcd8(bcd+10, sourmh>>6); \
533  dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \
534  dpd2bcd8(bcd+16, sourml>>18); \
535  dpd2bcd8(bcd+19, sourml>>8); \
536  dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \
537  dpd2bcd8(bcd+25, sourlo>>20); \
538  dpd2bcd8(bcd+28, sourlo>>10); \
539  dpd2bcd83(bcd+31, sourlo);}
540 
541  #define GETWCOEFF(df, bcd) {??} /* [should never be used] */
542  #endif
543 
544  /* Macros to decode the coefficient in a finite decFloat *df into */
545  /* a base-billion uInt array, with the least-significant */
546  /* 0-999999999 'digit' at offset 0. */
547 
548  /* Decode the declets. After extracting each one, it is decoded */
549  /* to binary using a table lookup. Three tables are used; one */
550  /* the usual DPD to binary, the other two pre-multiplied by 1000 */
551  /* and 1000000 to avoid multiplication during decode. These */
552  /* tables can also be used for multiplying up the MSD as the DPD */
553  /* code for 0 through 9 is the identity. */
554  #define DPD2BIN0 DPD2BIN /* for prettier code */
555 
556  #if DECPMAX==7
557  #define GETCOEFFBILL(df, buf) { \
558  uInt sourhi=DFWORD(df, 0); \
559  (buf)[0]=DPD2BIN0[sourhi&0x3ff] \
560  +DPD2BINK[(sourhi>>10)&0x3ff] \
561  +DPD2BINM[DECCOMBMSD[sourhi>>26]];}
562 
563  #elif DECPMAX==16
564  #define GETCOEFFBILL(df, buf) { \
565  uInt sourhi, sourlo; \
566  sourlo=DFWORD(df, 1); \
567  (buf)[0]=DPD2BIN0[sourlo&0x3ff] \
568  +DPD2BINK[(sourlo>>10)&0x3ff] \
569  +DPD2BINM[(sourlo>>20)&0x3ff]; \
570  sourhi=DFWORD(df, 0); \
571  (buf)[1]=DPD2BIN0[((sourhi<<2) | (sourlo>>30))&0x3ff] \
572  +DPD2BINK[(sourhi>>8)&0x3ff] \
573  +DPD2BINM[DECCOMBMSD[sourhi>>26]];}
574 
575  #elif DECPMAX==34
576  #define GETCOEFFBILL(df, buf) { \
577  uInt sourhi, sourmh, sourml, sourlo; \
578  sourlo=DFWORD(df, 3); \
579  (buf)[0]=DPD2BIN0[sourlo&0x3ff] \
580  +DPD2BINK[(sourlo>>10)&0x3ff] \
581  +DPD2BINM[(sourlo>>20)&0x3ff]; \
582  sourml=DFWORD(df, 2); \
583  (buf)[1]=DPD2BIN0[((sourml<<2) | (sourlo>>30))&0x3ff] \
584  +DPD2BINK[(sourml>>8)&0x3ff] \
585  +DPD2BINM[(sourml>>18)&0x3ff]; \
586  sourmh=DFWORD(df, 1); \
587  (buf)[2]=DPD2BIN0[((sourmh<<4) | (sourml>>28))&0x3ff] \
588  +DPD2BINK[(sourmh>>6)&0x3ff] \
589  +DPD2BINM[(sourmh>>16)&0x3ff]; \
590  sourhi=DFWORD(df, 0); \
591  (buf)[3]=DPD2BIN0[((sourhi<<6) | (sourmh>>26))&0x3ff] \
592  +DPD2BINK[(sourhi>>4)&0x3ff] \
593  +DPD2BINM[DECCOMBMSD[sourhi>>26]];}
594 
595  #endif
596 
597  /* Macros to decode the coefficient in a finite decFloat *df into */
598  /* a base-thousand uInt array (of size DECLETS+1, to allow for */
599  /* the MSD), with the least-significant 0-999 'digit' at offset 0.*/
600 
601  /* Decode the declets. After extracting each one, it is decoded */
602  /* to binary using a table lookup. */
603  #if DECPMAX==7
604  #define GETCOEFFTHOU(df, buf) { \
605  uInt sourhi=DFWORD(df, 0); \
606  (buf)[0]=DPD2BIN[sourhi&0x3ff]; \
607  (buf)[1]=DPD2BIN[(sourhi>>10)&0x3ff]; \
608  (buf)[2]=DECCOMBMSD[sourhi>>26];}
609 
610  #elif DECPMAX==16
611  #define GETCOEFFTHOU(df, buf) { \
612  uInt sourhi, sourlo; \
613  sourlo=DFWORD(df, 1); \
614  (buf)[0]=DPD2BIN[sourlo&0x3ff]; \
615  (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \
616  (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \
617  sourhi=DFWORD(df, 0); \
618  (buf)[3]=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \
619  (buf)[4]=DPD2BIN[(sourhi>>8)&0x3ff]; \
620  (buf)[5]=DECCOMBMSD[sourhi>>26];}
621 
622  #elif DECPMAX==34
623  #define GETCOEFFTHOU(df, buf) { \
624  uInt sourhi, sourmh, sourml, sourlo; \
625  sourlo=DFWORD(df, 3); \
626  (buf)[0]=DPD2BIN[sourlo&0x3ff]; \
627  (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \
628  (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \
629  sourml=DFWORD(df, 2); \
630  (buf)[3]=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \
631  (buf)[4]=DPD2BIN[(sourml>>8)&0x3ff]; \
632  (buf)[5]=DPD2BIN[(sourml>>18)&0x3ff]; \
633  sourmh=DFWORD(df, 1); \
634  (buf)[6]=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \
635  (buf)[7]=DPD2BIN[(sourmh>>6)&0x3ff]; \
636  (buf)[8]=DPD2BIN[(sourmh>>16)&0x3ff]; \
637  sourhi=DFWORD(df, 0); \
638  (buf)[9]=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \
639  (buf)[10]=DPD2BIN[(sourhi>>4)&0x3ff]; \
640  (buf)[11]=DECCOMBMSD[sourhi>>26];}
641  #endif
642 
643 
644  /* Macros to decode the coefficient in a finite decFloat *df and */
645  /* add to a base-thousand uInt array (as for GETCOEFFTHOU). */
646  /* After the addition then most significant 'digit' in the array */
647  /* might have a value larger then 10 (with a maximum of 19). */
648  #if DECPMAX==7
649  #define ADDCOEFFTHOU(df, buf) { \
650  uInt sourhi=DFWORD(df, 0); \
651  (buf)[0]+=DPD2BIN[sourhi&0x3ff]; \
652  if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \
653  (buf)[1]+=DPD2BIN[(sourhi>>10)&0x3ff]; \
654  if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \
655  (buf)[2]+=DECCOMBMSD[sourhi>>26];}
656 
657  #elif DECPMAX==16
658  #define ADDCOEFFTHOU(df, buf) { \
659  uInt sourhi, sourlo; \
660  sourlo=DFWORD(df, 1); \
661  (buf)[0]+=DPD2BIN[sourlo&0x3ff]; \
662  if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \
663  (buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \
664  if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \
665  (buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \
666  if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \
667  sourhi=DFWORD(df, 0); \
668  (buf)[3]+=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \
669  if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \
670  (buf)[4]+=DPD2BIN[(sourhi>>8)&0x3ff]; \
671  if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \
672  (buf)[5]+=DECCOMBMSD[sourhi>>26];}
673 
674  #elif DECPMAX==34
675  #define ADDCOEFFTHOU(df, buf) { \
676  uInt sourhi, sourmh, sourml, sourlo; \
677  sourlo=DFWORD(df, 3); \
678  (buf)[0]+=DPD2BIN[sourlo&0x3ff]; \
679  if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \
680  (buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \
681  if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \
682  (buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \
683  if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \
684  sourml=DFWORD(df, 2); \
685  (buf)[3]+=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \
686  if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \
687  (buf)[4]+=DPD2BIN[(sourml>>8)&0x3ff]; \
688  if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \
689  (buf)[5]+=DPD2BIN[(sourml>>18)&0x3ff]; \
690  if (buf[5]>999) {buf[5]-=1000; buf[6]++;} \
691  sourmh=DFWORD(df, 1); \
692  (buf)[6]+=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \
693  if (buf[6]>999) {buf[6]-=1000; buf[7]++;} \
694  (buf)[7]+=DPD2BIN[(sourmh>>6)&0x3ff]; \
695  if (buf[7]>999) {buf[7]-=1000; buf[8]++;} \
696  (buf)[8]+=DPD2BIN[(sourmh>>16)&0x3ff]; \
697  if (buf[8]>999) {buf[8]-=1000; buf[9]++;} \
698  sourhi=DFWORD(df, 0); \
699  (buf)[9]+=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \
700  if (buf[9]>999) {buf[9]-=1000; buf[10]++;} \
701  (buf)[10]+=DPD2BIN[(sourhi>>4)&0x3ff]; \
702  if (buf[10]>999) {buf[10]-=1000; buf[11]++;} \
703  (buf)[11]+=DECCOMBMSD[sourhi>>26];}
704  #endif
705 
706 
707  /* Set a decFloat to the maximum positive finite number (Nmax) */
708  #if DECPMAX==7
709  #define DFSETNMAX(df) \
710  {DFWORD(df, 0)=0x77f3fcff;}
711  #elif DECPMAX==16
712  #define DFSETNMAX(df) \
713  {DFWORD(df, 0)=0x77fcff3f; \
714  DFWORD(df, 1)=0xcff3fcff;}
715  #elif DECPMAX==34
716  #define DFSETNMAX(df) \
717  {DFWORD(df, 0)=0x77ffcff3; \
718  DFWORD(df, 1)=0xfcff3fcf; \
719  DFWORD(df, 2)=0xf3fcff3f; \
720  DFWORD(df, 3)=0xcff3fcff;}
721  #endif
722 
723  /* [end of format-dependent macros and constants] */
724  #endif
725 
726 #else
727  #error decNumberLocal included more than once
728 #endif
unsigned int uInt
Definition: ftzconf.h:221
int Int
Definition: ftraster.c:307
const uint32_t DECCOMBFROM[48]
const uint32_t DECCOMBMSD[64]
long int LI
#define uByte
uint8_t * lsd
int32_t exponent
uint32_t sign
uint8_t * msd