stress-ng
0.15.06
About: stress-ng will stress test a computer system in various selectable ways. It was designed to exercise various physical subsystems of a computer as well as the various operating system kernel interfaces.
![]() ![]() |
stress-ng will stress test a computer system in various selectable ways. It was designed to exercise various physical subsystems of a computer as well as the various operating system kernel interfaces. Stress-ng features:
stress-ng was originally intended to make a machine work hard and trip hardware issues such as thermal overruns as well as operating system bugs that only occur when a system is being thrashed hard. Use stress-ng with caution as some of the tests can make a system run hot on poorly designed hardware and also can cause excessive system thrashing which may be difficult to stop.
stress-ng can also measure test throughput rates; this can be useful to observe performance changes across different operating system releases or types of hardware. However, it has never been intended to be used as a precise benchmark test suite, so do NOT use it in this manner.
Running stress-ng with root privileges will adjust out of memory settings on Linux systems to make the stressors unkillable in low memory situations, so use this judiciously. With the appropriate privilege, stress-ng can allow the ionice class and ionice levels to be adjusted, again, this should be used with care.
Tarballs of each version of stress-ng can be downloaded using the URL:
https://github.com/ColinIanKing/stress-ng/tarball/version
where version is the relevant version number, for example:
https://github.com/ColinIanKing/stress-ng/tarball/V0.13.05
docker run --rm ghcr.io/colinianking/stress-ng --help
or
docker run --rm colinianking/stress-ng --help
Recent versions of stress-ng are available in the Ubuntu stress-ng ppa for various Ubuntu releases:
https://launchpad.net/~colin-king/+archive/ubuntu/stress-ng
sudo add-apt-repository ppa:colin-king/stress-ng
sudo apt update
sudo apt install stress-ng
To build, the following libraries will ensure a fully functional stress-ng build: (note libattr is not required for more recent disto releases).
Debian, Ubuntu:
RHEL, Fedora, Centos:
RHEL, Fedora, Centos (static builds):
SUSE:
ClearLinux:
Alpine Linux:
NOTE: the build will try to detect build dependencies and will build an image with functionality disabled if the support libraries are not installed.
At build-time stress-ng will detect kernel features that are available on the target build system and enable stress tests appropriately. Stress-ng has been build-tested on Ubuntu, Debian, Debian GNU/Hurd, Slackware, RHEL, SLES, Centos, kFreeBSD, OpenBSD, NetBSD, FreeBSD, Debian kFreeBSD, DragonFly BSD, OS X, Minix, Solaris 11.3, OpenIndiana and Hiaku. Ports to other POSIX/UNIX like operating systems should be relatively easy.
NOTE: ALWAYS run make clean
after fetching changes from
the git repository to force the build to regenerate the build
configuration file.
To build on BSD systems, one requires gcc and GNU make:
CC=gcc gmake clean
CC=gcc gmake
To build on OS X systems, just use:
make clean
make
To build on MINIX, gmake and clang are required:
CC=clang gmake clean
CC=clang gmake
To build on SunOS, one requires GCC and GNU make, build using:
CC=gcc gmake clean
CC=gcc gmake
To build on Dilos, one requires GCC and GNU make, build using:
CC=gcc gmake clean
CC=gcc gmake
To build on Haiku Alpha 4:
make clean
make
To build a static image (example, for Android), use:
make clean
STATIC=1 make
To build with full warnings enabled:
make clean
PEDANTIC=1 make
To build with the Tiny C compiler:
make clean
CC=tcc make
To build with the PCC portable C compiler use:
make clean
CC=pcc make
To build with the musl C library:
make clean
CC=musl-gcc make
To build with the Intel C compiler icc use:
make clean
CC=icc make
To build with the Intel C compiler icx use:
make clean
CC=icx make
Send patches to colin.i.king@gmail.com or merge requests at https://github.com/ColinIanKing/stress-ng
The Ubuntu stress-ng reference guide contains a brief overview and worked examples.
Run 4 CPU, 2 virtual memory, 1 disk and 8 fork stressors for 2 minutes and print measurements:
stress-ng --cpu 4 --vm 2 --hdd 1 --fork 8 --timeout 2m --metrics
stress-ng: info: [573366] setting to a 120 second (2 mins, 0.00 secs) run per stressor
stress-ng: info: [573366] dispatching hogs: 4 cpu, 2 vm, 1 hdd, 8 fork
stress-ng: info: [573366] successful run completed in 123.78s (2 mins, 3.78 secs)
stress-ng: info: [573366] stressor bogo ops real time usr time sys time bogo ops/s bogo ops/s CPU used per
stress-ng: info: [573366] (secs) (secs) (secs) (real time) (usr+sys time) instance (%)
stress-ng: info: [573366] cpu 515396 120.00 453.02 0.18 4294.89 1137.24 94.42
stress-ng: info: [573366] vm 2261023 120.01 223.80 1.80 18840.15 10022.27 93.99
stress-ng: info: [573366] hdd 367558 123.78 10.63 11.67 2969.49 16482.42 18.02
stress-ng: info: [573366] fork 598058 120.00 68.24 65.88 4983.80 4459.13 13.97
Run matrix stressor on all online CPUs for 60 seconds and measure temperature:
stress-ng --matrix -1 --tz -t 60
stress-ng: info: [1171459] setting to a 60 second run per stressor
stress-ng: info: [1171459] dispatching hogs: 8 matrix
stress-ng: info: [1171459] successful run completed in 60.01s (1 min, 0.01 secs)
stress-ng: info: [1171459] matrix:
stress-ng: info: [1171459] acpitz0 75.00 C (348.15 K)
stress-ng: info: [1171459] acpitz1 75.00 C (348.15 K)
stress-ng: info: [1171459] pch_skylake 60.17 C (333.32 K)
stress-ng: info: [1171459] x86_pkg_temp 62.72 C (335.87 K)
Run a mix of 4 I/O stressors and check for changes in disk S.M.A.R.T. metadata:
sudo stress-ng --iomix 4 --smart -t 30s
stress-ng: info: [1171471] setting to a 30 second run per stressor
stress-ng: info: [1171471] dispatching hogs: 4 iomix
stress-ng: info: [1171471] successful run completed in 30.37s
stress-ng: info: [1171471] Device ID S.M.A.R.T. Attribute Value Change
stress-ng: info: [1171471] sdc 01 Read Error Rate 88015771 71001
stress-ng: info: [1171471] sdc 07 Seek Error Rate 59658169 92
stress-ng: info: [1171471] sdc c3 Hardware ECC Recovered 88015771 71001
stress-ng: info: [1171471] sdc f1 Total LBAs Written 481904395 877
stress-ng: info: [1171471] sdc f2 Total LBAs Read 3768039248 5139
stress-ng: info: [1171471] sdd be Temperature Difference 3670049 1
Benchmark system calls using the VDSO:
stress-ng --vdso 1 -t 5 --metrics
stress-ng: info: [1171584] setting to a 5 second run per stressor
stress-ng: info: [1171584] dispatching hogs: 1 vdso
stress-ng: info: [1171585] stress-ng-vdso: exercising vDSO functions: clock_gettime time gettimeofday getcpu
stress-ng: info: [1171585] stress-ng-vdso: 9.88 nanoseconds per call (excluding 1.73 nanoseconds test overhead)
stress-ng: info: [1171584] successful run completed in 5.10s
stress-ng: info: [1171584] stressor bogo ops real time usr time sys time bogo ops/s bogo ops/s CPU used per
stress-ng: info: [1171584] (secs) (secs) (secs) (real time) (usr+sys time) instance (%)
stress-ng: info: [1171584] vdso 430633496 5.10 5.10 0.00 84375055.96 84437940.39 99.93
stress-ng: info: [1171584] vdso 9.88 nanoseconds per call (average per stressor)
Generate and measure branch misses using perf metrics:
sudo stress-ng --branch 1 --perf -t 10 --stdout | grep Branch
stress-ng: info: [1171714] 604,703,327 Branch Instructions 53.30 M/sec
stress-ng: info: [1171714] 598,760,234 Branch Misses 52.77 M/sec (99.02%)
stress-ng has found Kernel and QEMU bugs/regressions and appropriate fixes have been landed to address these issues:
I am keen to add to the stress-ng project page any citations to research or projects that use stress-ng. I also appreciate information concerning kernel bugs or performance regressions found with stress-ng.
Many thanks to the following contributors to stress-ng (in alphabetical order):
Abdul Haleem, Aboorva Devarajan, Adriand Martin, Adrian Ratiu, Aleksandar N. Kostadinov, Alexander Kanavin, Alexandru Ardelean, Alfonso Sánchez-Beato, Allen H, André Wild, Anton Eliasson, Arjan van de Ven, Baruch Siach, Bryan W. Lewis, Camille Constans, Carlos Santos, Christian Ehrhardt, Christopher Brown, Chunyu Hu, Danilo Krummrich, Davidson Francis, David Turner, Dominik B Czarnota, Dorinda Bassey, Eric Lin, Erik Stahlman, Fabien Malfoy, Fabrice Fontaine, Florian Weimer, Francis Laniel, Guilherme Janczak, Iyán Méndez Veiga, James Hunt, Jan Luebbe, Jianshen Liu, John Kacur, Jules Maselbas, Julien Olivain, Kenny Gong, Khalid Elmously, Khem Raj, Luca Pizzamiglio, Luis Henriques, Matthew Tippett, Mauricio Faria de Oliveira, Maxime Chevallier, Maya Rashish, Mayuresh Chitale, Meysam Azad, Mike Koreneff, Nick Hanley, Paul Menzel, Piyush Goyal, Ralf Ramsauer, Rosen Penev, Siddhesh Poyarekar, Thadeu Lima de Souza Cascardo, Thia Wyrod, Thinh Tran, Tim Gardner, Tim Gates, Tim Orling, Tommi Rantala, Witold Baryluk, Yong-Xuan Wang, Zhiyi Sun.