C10_EXPORT_CAFFE2_OP_TO_C10_CPU(LearningRate, "_caffe2::LearningRate(" "Tensor iterations, " "float base_lr," "str policy, " "float? power = 1.0, " "float? gamma = 1.0, " "int? stepsize = 1, " "float? max_lr = 0.005, " "bool? active_first = True, " "int? active_period = -1, " "int? inactive_period = -1, " "int? max_iter = -1, " "int? num_iter = 0, " "float? start_multiplier = 0, " "float? end_multiplier = 0, " "float? multiplier = 0.5, " "float? multiplier_1 = 1.0, " "float? multiplier_2 = 1.0, " "int[]? sub_policy_num_iters = None, " "float? m1 = 0.5, " "float? n1 = 0, " "float? m2 = 0.5, " "float? n2 = 0, " "float? m3 = 0.5, " "float? start_warmup_multiplier = 0.1, " "int? constant_warmup_num_iter = 10000000, " "int? linear_warmup_num_iter = 10000000, " "float? cyclical_max_lr = 0.05, " "int? cyclical_step_size = 1000000, " "float? cyclical_decay = 0.999, " "float? cosine_min_lr = 0.01, " "float? cosine_max_lr = 0.05, " "int? cosine_period = 50, " "float? cosine_t_mult = 1.0, " "float? cosine_lr_shrink = 0.99, " "float? decay = 1.0) -> Tensor output", LearningRateOpFloatCPU)
SparseLengths8BitsRowwiseOp< CPUContext, 0, 1 >::LENGTHS SetDoc(R"DOC(
Variation of SparseLengthsMean operator, where DATA is
stored using 8bits. DATA was quantized with 8Bit row-wise
quantization (see doc to FloatToRowwiseQuantized8Bits operator). To
restore DATA from 8Bit, we use additional input that stores scales
and biases.
)DOC") .Input(0