gst-plugins-good  1.20.3
About: GStreamer (Good Plugins) is a library for constructing of graphs of media-handling components. A set of good-quality plug-ins (under LGPL license).
  Fossies Dox: gst-plugins-good-1.20.3.tar.xz  ("unofficial" and yet experimental doxygen-generated source code documentation)  

audiochebband.c
Go to the documentation of this file.
1/*
2 * GStreamer
3 * Copyright (C) 2007-2009 Sebastian Dröge <sebastian.droege@collabora.co.uk>
4 *
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Library General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
9 *
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Library General Public License for more details.
14 *
15 * You should have received a copy of the GNU Library General Public
16 * License along with this library; if not, write to the
17 * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
18 * Boston, MA 02110-1301, USA.
19 */
20
21/*
22 * Chebyshev type 1 filter design based on
23 * "The Scientist and Engineer's Guide to DSP", Chapter 20.
24 * http://www.dspguide.com/
25 *
26 * For type 2 and Chebyshev filters in general read
27 * http://en.wikipedia.org/wiki/Chebyshev_filter
28 *
29 * Transformation from lowpass to bandpass/bandreject:
30 * http://docs.dewresearch.com/DspHelp/html/IDH_LinearSystems_LowpassToBandPassZ.htm
31 * http://docs.dewresearch.com/DspHelp/html/IDH_LinearSystems_LowpassToBandStopZ.htm
32 *
33 */
34
35/**
36 * SECTION:element-audiochebband
37 * @title: audiochebband
38 *
39 * Attenuates all frequencies outside (bandpass) or inside (bandreject) of a frequency
40 * band. The number of poles and the ripple parameter control the rolloff.
41 *
42 * This element has the advantage over the windowed sinc bandpass and bandreject filter that it is
43 * much faster and produces almost as good results. It's only disadvantages are the highly
44 * non-linear phase and the slower rolloff compared to a windowed sinc filter with a large kernel.
45 *
46 * For type 1 the ripple parameter specifies how much ripple in dB is allowed in the passband, i.e.
47 * some frequencies in the passband will be amplified by that value. A higher ripple value will allow
48 * a faster rolloff.
49 *
50 * For type 2 the ripple parameter specifies the stopband attenuation. In the stopband the gain will
51 * be at most this value. A lower ripple value will allow a faster rolloff.
52 *
53 * As a special case, a Chebyshev type 1 filter with no ripple is a Butterworth filter.
54 *
55 * > Be warned that a too large number of poles can produce noise. The most poles are possible with
56 * > a cutoff frequency at a quarter of the sampling rate.
57 *
58 * ## Example launch line
59 * |[
60 * gst-launch-1.0 audiotestsrc freq=1500 ! audioconvert ! audiochebband mode=band-pass lower-frequency=1000 upper-frequency=6000 poles=4 ! audioconvert ! alsasink
61 * gst-launch-1.0 filesrc location="melo1.ogg" ! oggdemux ! vorbisdec ! audioconvert ! audiochebband mode=band-reject lower-frequency=1000 upper-frequency=4000 ripple=0.2 ! audioconvert ! alsasink
62 * gst-launch-1.0 audiotestsrc wave=white-noise ! audioconvert ! audiochebband mode=band-pass lower-frequency=1000 upper-frequency=4000 type=2 ! audioconvert ! alsasink
63 * ]|
64 *
65 */
66
67#ifdef HAVE_CONFIG_H
68#include "config.h"
69#endif
70
71#include <string.h>
72
73#include <gst/gst.h>
74#include <gst/base/gstbasetransform.h>
75#include <gst/audio/audio.h>
76#include <gst/audio/gstaudiofilter.h>
77
78#include <math.h>
79
80#include "math_compat.h"
81
82#include "audiochebband.h"
83
85
86#define GST_CAT_DEFAULT gst_audio_cheb_band_debug
88
89enum
90{
98};
99
100#define gst_audio_cheb_band_parent_class parent_class
101G_DEFINE_TYPE (GstAudioChebBand, gst_audio_cheb_band,
103GST_ELEMENT_REGISTER_DEFINE (audiochebband, "audiochebband",
104 GST_RANK_NONE, GST_TYPE_AUDIO_CHEB_BAND);
105
106static void gst_audio_cheb_band_set_property (GObject * object,
107 guint prop_id, const GValue * value, GParamSpec * pspec);
108static void gst_audio_cheb_band_get_property (GObject * object,
109 guint prop_id, GValue * value, GParamSpec * pspec);
110static void gst_audio_cheb_band_finalize (GObject * object);
111
112static gboolean gst_audio_cheb_band_setup (GstAudioFilter * filter,
113 const GstAudioInfo * info);
114
115enum
116{
120
121#define GST_TYPE_AUDIO_CHEBYSHEV_FREQ_BAND_MODE (gst_audio_cheb_band_mode_get_type ())
122static GType
124{
125 static GType gtype = 0;
126
127 if (gtype == 0) {
128 static const GEnumValue values[] = {
129 {MODE_BAND_PASS, "Band pass (default)",
130 "band-pass"},
131 {MODE_BAND_REJECT, "Band reject",
132 "band-reject"},
133 {0, NULL, NULL}
134 };
135
136 gtype = g_enum_register_static ("GstAudioChebBandMode", values);
137 }
138 return gtype;
139}
140
141/* GObject vmethod implementations */
142
143static void
145{
146 GObjectClass *gobject_class = (GObjectClass *) klass;
147 GstElementClass *gstelement_class = (GstElementClass *) klass;
148 GstAudioFilterClass *filter_class = (GstAudioFilterClass *) klass;
149
150 GST_DEBUG_CATEGORY_INIT (gst_audio_cheb_band_debug, "audiochebband", 0,
151 "audiochebband element");
152
153 gobject_class->set_property = gst_audio_cheb_band_set_property;
154 gobject_class->get_property = gst_audio_cheb_band_get_property;
155 gobject_class->finalize = gst_audio_cheb_band_finalize;
156
157 g_object_class_install_property (gobject_class, PROP_MODE,
158 g_param_spec_enum ("mode", "Mode",
159 "Low pass or high pass mode", GST_TYPE_AUDIO_CHEBYSHEV_FREQ_BAND_MODE,
161 G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS));
162 g_object_class_install_property (gobject_class, PROP_TYPE,
163 g_param_spec_int ("type", "Type", "Type of the chebychev filter", 1, 2, 1,
164 G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS));
165
166 /* FIXME: Don't use the complete possible range but restrict the upper boundary
167 * so automatically generated UIs can use a slider without */
168 g_object_class_install_property (gobject_class, PROP_LOWER_FREQUENCY,
169 g_param_spec_float ("lower-frequency", "Lower frequency",
170 "Start frequency of the band (Hz)", 0.0, 100000.0,
171 0.0,
172 G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS));
173 g_object_class_install_property (gobject_class, PROP_UPPER_FREQUENCY,
174 g_param_spec_float ("upper-frequency", "Upper frequency",
175 "Stop frequency of the band (Hz)", 0.0, 100000.0, 0.0,
176 G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS));
177 g_object_class_install_property (gobject_class, PROP_RIPPLE,
178 g_param_spec_float ("ripple", "Ripple", "Amount of ripple (dB)", 0.0,
179 200.0, 0.25,
180 G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS));
181 /* FIXME: What to do about this upper boundary? With a frequencies near
182 * rate/4 32 poles are completely possible, with frequencies very low
183 * or very high 16 poles already produces only noise */
184 g_object_class_install_property (gobject_class, PROP_POLES,
185 g_param_spec_int ("poles", "Poles",
186 "Number of poles to use, will be rounded up to the next multiply of four",
187 4, 32, 4,
188 G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS));
189
190 gst_element_class_set_static_metadata (gstelement_class,
191 "Band pass & band reject filter", "Filter/Effect/Audio",
192 "Chebyshev band pass and band reject filter",
193 "Sebastian Dröge <sebastian.droege@collabora.co.uk>");
194
195 filter_class->setup = GST_DEBUG_FUNCPTR (gst_audio_cheb_band_setup);
196
197 gst_type_mark_as_plugin_api (GST_TYPE_AUDIO_CHEBYSHEV_FREQ_BAND_MODE, 0);
198}
199
200static void
202{
203 filter->lower_frequency = filter->upper_frequency = 0.0;
204 filter->mode = MODE_BAND_PASS;
205 filter->type = 1;
206 filter->poles = 4;
207 filter->ripple = 0.25;
208
209 g_mutex_init (&filter->lock);
210}
211
212static void
214 gint p, gint rate, gdouble * b0, gdouble * b1, gdouble * b2, gdouble * b3,
215 gdouble * b4, gdouble * a1, gdouble * a2, gdouble * a3, gdouble * a4)
216{
217 gint np = filter->poles / 2;
218 gdouble ripple = filter->ripple;
219
220 /* pole location in s-plane */
221 gdouble rp, ip;
222
223 /* zero location in s-plane */
224 gdouble iz = 0.0;
225
226 /* transfer function coefficients for the z-plane */
227 gdouble x0, x1, x2, y1, y2;
228 gint type = filter->type;
229
230 /* Calculate pole location for lowpass at frequency 1 */
231 {
232 gdouble angle = (G_PI / 2.0) * (2.0 * p - 1) / np;
233
234 rp = -sin (angle);
235 ip = cos (angle);
236 }
237
238 /* If we allow ripple, move the pole from the unit
239 * circle to an ellipse and keep cutoff at frequency 1 */
240 if (ripple > 0 && type == 1) {
241 gdouble es, vx;
242
243 es = sqrt (pow (10.0, ripple / 10.0) - 1.0);
244
245 vx = (1.0 / np) * asinh (1.0 / es);
246 rp = rp * sinh (vx);
247 ip = ip * cosh (vx);
248 } else if (type == 2) {
249 gdouble es, vx;
250
251 es = sqrt (pow (10.0, ripple / 10.0) - 1.0);
252 vx = (1.0 / np) * asinh (es);
253 rp = rp * sinh (vx);
254 ip = ip * cosh (vx);
255 }
256
257 /* Calculate inverse of the pole location to move from
258 * type I to type II */
259 if (type == 2) {
260 gdouble mag2 = rp * rp + ip * ip;
261
262 rp /= mag2;
263 ip /= mag2;
264 }
265
266 /* Calculate zero location for frequency 1 on the
267 * unit circle for type 2 */
268 if (type == 2) {
269 gdouble angle = G_PI / (np * 2.0) + ((p - 1) * G_PI) / (np);
270 gdouble mag2;
271
272 iz = cos (angle);
273 mag2 = iz * iz;
274 iz /= mag2;
275 }
276
277 /* Convert from s-domain to z-domain by
278 * using the bilinear Z-transform, i.e.
279 * substitute s by (2/t)*((z-1)/(z+1))
280 * with t = 2 * tan(0.5).
281 */
282 if (type == 1) {
283 gdouble t, m, d;
284
285 t = 2.0 * tan (0.5);
286 m = rp * rp + ip * ip;
287 d = 4.0 - 4.0 * rp * t + m * t * t;
288
289 x0 = (t * t) / d;
290 x1 = 2.0 * x0;
291 x2 = x0;
292 y1 = (8.0 - 2.0 * m * t * t) / d;
293 y2 = (-4.0 - 4.0 * rp * t - m * t * t) / d;
294 } else {
295 gdouble t, m, d;
296
297 t = 2.0 * tan (0.5);
298 m = rp * rp + ip * ip;
299 d = 4.0 - 4.0 * rp * t + m * t * t;
300
301 x0 = (t * t * iz * iz + 4.0) / d;
302 x1 = (-8.0 + 2.0 * iz * iz * t * t) / d;
303 x2 = x0;
304 y1 = (8.0 - 2.0 * m * t * t) / d;
305 y2 = (-4.0 - 4.0 * rp * t - m * t * t) / d;
306 }
307
308 /* Convert from lowpass at frequency 1 to either bandpass
309 * or band reject.
310 *
311 * For bandpass substitute z^(-1) with:
312 *
313 * -2 -1
314 * -z + alpha * z - beta
315 * ----------------------------
316 * -2 -1
317 * beta * z - alpha * z + 1
318 *
319 * alpha = (2*a*b)/(1+b)
320 * beta = (b-1)/(b+1)
321 * a = cos((w1 + w0)/2) / cos((w1 - w0)/2)
322 * b = tan(1/2) * cot((w1 - w0)/2)
323 *
324 * For bandreject substitute z^(-1) with:
325 *
326 * -2 -1
327 * z - alpha * z + beta
328 * ----------------------------
329 * -2 -1
330 * beta * z - alpha * z + 1
331 *
332 * alpha = (2*a)/(1+b)
333 * beta = (1-b)/(1+b)
334 * a = cos((w1 + w0)/2) / cos((w1 - w0)/2)
335 * b = tan(1/2) * tan((w1 - w0)/2)
336 *
337 */
338 {
339 gdouble a, b, d;
340 gdouble alpha, beta;
341 gdouble w0 = 2.0 * G_PI * (filter->lower_frequency / rate);
342 gdouble w1 = 2.0 * G_PI * (filter->upper_frequency / rate);
343
344 if (filter->mode == MODE_BAND_PASS) {
345 a = cos ((w1 + w0) / 2.0) / cos ((w1 - w0) / 2.0);
346 b = tan (1.0 / 2.0) / tan ((w1 - w0) / 2.0);
347
348 alpha = (2.0 * a * b) / (1.0 + b);
349 beta = (b - 1.0) / (b + 1.0);
350
351 d = 1.0 + beta * (y1 - beta * y2);
352
353 *b0 = (x0 + beta * (-x1 + beta * x2)) / d;
354 *b1 = (alpha * (-2.0 * x0 + x1 + beta * x1 - 2.0 * beta * x2)) / d;
355 *b2 =
356 (-x1 - beta * beta * x1 + 2.0 * beta * (x0 + x2) +
357 alpha * alpha * (x0 - x1 + x2)) / d;
358 *b3 = (alpha * (x1 + beta * (-2.0 * x0 + x1) - 2.0 * x2)) / d;
359 *b4 = (beta * (beta * x0 - x1) + x2) / d;
360 *a1 = (alpha * (2.0 + y1 + beta * y1 - 2.0 * beta * y2)) / d;
361 *a2 =
362 (-y1 - beta * beta * y1 - alpha * alpha * (1.0 + y1 - y2) +
363 2.0 * beta * (-1.0 + y2)) / d;
364 *a3 = (alpha * (y1 + beta * (2.0 + y1) - 2.0 * y2)) / d;
365 *a4 = (-beta * beta - beta * y1 + y2) / d;
366 } else {
367 a = cos ((w1 + w0) / 2.0) / cos ((w1 - w0) / 2.0);
368 b = tan (1.0 / 2.0) * tan ((w1 - w0) / 2.0);
369
370 alpha = (2.0 * a) / (1.0 + b);
371 beta = (1.0 - b) / (1.0 + b);
372
373 d = -1.0 + beta * (beta * y2 + y1);
374
375 *b0 = (-x0 - beta * x1 - beta * beta * x2) / d;
376 *b1 = (alpha * (2.0 * x0 + x1 + beta * x1 + 2.0 * beta * x2)) / d;
377 *b2 =
378 (-x1 - beta * beta * x1 - 2.0 * beta * (x0 + x2) -
379 alpha * alpha * (x0 + x1 + x2)) / d;
380 *b3 = (alpha * (x1 + beta * (2.0 * x0 + x1) + 2.0 * x2)) / d;
381 *b4 = (-beta * beta * x0 - beta * x1 - x2) / d;
382 *a1 = (alpha * (-2.0 + y1 + beta * y1 + 2.0 * beta * y2)) / d;
383 *a2 =
384 -(y1 + beta * beta * y1 + 2.0 * beta * (-1.0 + y2) +
385 alpha * alpha * (-1.0 + y1 + y2)) / d;
386 *a3 = (alpha * (beta * (-2.0 + y1) + y1 + 2.0 * y2)) / d;
387 *a4 = -(-beta * beta + beta * y1 + y2) / d;
388 }
389 }
390}
391
392static void
393generate_coefficients (GstAudioChebBand * filter, const GstAudioInfo * info)
394{
395 gint rate;
396
397 if (info) {
398 rate = GST_AUDIO_INFO_RATE (info);
399 } else {
400 rate = GST_AUDIO_FILTER_RATE (filter);
401 }
402
403 if (rate == 0) {
404 gdouble *a = g_new0 (gdouble, 1);
405 gdouble *b = g_new0 (gdouble, 1);
406
407 a[0] = 1.0;
408 b[0] = 1.0;
410 (filter), a, 1, b, 1);
411 GST_LOG_OBJECT (filter, "rate was not set yet");
412 return;
413 }
414
415 if (filter->upper_frequency <= filter->lower_frequency) {
416 gdouble *a = g_new0 (gdouble, 1);
417 gdouble *b = g_new0 (gdouble, 1);
418
419 a[0] = 1.0;
420 b[0] = (filter->mode == MODE_BAND_PASS) ? 0.0 : 1.0;
422 (filter), a, 1, b, 1);
423
424 GST_LOG_OBJECT (filter, "frequency band had no or negative dimension");
425 return;
426 }
427
428 if (filter->upper_frequency > rate / 2) {
429 filter->upper_frequency = rate / 2;
430 GST_LOG_OBJECT (filter, "clipped upper frequency to nyquist frequency");
431 }
432
433 if (filter->lower_frequency < 0.0) {
434 filter->lower_frequency = 0.0;
435 GST_LOG_OBJECT (filter, "clipped lower frequency to 0.0");
436 }
437
438 /* Calculate coefficients for the chebyshev filter */
439 {
440 gint np = filter->poles;
441 gdouble *a, *b;
442 gint i, p;
443
444 a = g_new0 (gdouble, np + 5);
445 b = g_new0 (gdouble, np + 5);
446
447 /* Calculate transfer function coefficients */
448 a[4] = 1.0;
449 b[4] = 1.0;
450
451 for (p = 1; p <= np / 4; p++) {
452 gdouble b0, b1, b2, b3, b4, a1, a2, a3, a4;
453 gdouble *ta = g_new0 (gdouble, np + 5);
454 gdouble *tb = g_new0 (gdouble, np + 5);
455
456 generate_biquad_coefficients (filter, p, rate,
457 &b0, &b1, &b2, &b3, &b4, &a1, &a2, &a3, &a4);
458
459 memcpy (ta, a, sizeof (gdouble) * (np + 5));
460 memcpy (tb, b, sizeof (gdouble) * (np + 5));
461
462 /* add the new coefficients for the new two poles
463 * to the cascade by multiplication of the transfer
464 * functions */
465 for (i = 4; i < np + 5; i++) {
466 b[i] =
467 b0 * tb[i] + b1 * tb[i - 1] + b2 * tb[i - 2] + b3 * tb[i - 3] +
468 b4 * tb[i - 4];
469 a[i] =
470 ta[i] - a1 * ta[i - 1] - a2 * ta[i - 2] - a3 * ta[i - 3] -
471 a4 * ta[i - 4];
472 }
473 g_free (ta);
474 g_free (tb);
475 }
476
477 /* Move coefficients to the beginning of the array to move from
478 * the transfer function's coefficients to the difference
479 * equation's coefficients */
480 for (i = 0; i <= np; i++) {
481 a[i] = a[i + 4];
482 b[i] = b[i + 4];
483 }
484
485 /* Normalize to unity gain at frequency 0 and frequency
486 * 0.5 for bandreject and unity gain at band center frequency
487 * for bandpass */
488 if (filter->mode == MODE_BAND_REJECT) {
489 /* gain is sqrt(H(0)*H(0.5)) */
490
491 gdouble gain1 =
493 1.0, 0.0);
494 gdouble gain2 =
496 -1.0, 0.0);
497
498 gain1 = sqrt (gain1 * gain2);
499
500 for (i = 0; i <= np; i++) {
501 b[i] /= gain1;
502 }
503 } else {
504 /* gain is H(wc), wc = center frequency */
505
506 gdouble w1 = 2.0 * G_PI * (filter->lower_frequency / rate);
507 gdouble w2 = 2.0 * G_PI * (filter->upper_frequency / rate);
508 gdouble w0 = (w2 + w1) / 2.0;
509 gdouble zr = cos (w0), zi = sin (w0);
510 gdouble gain =
511 gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1, b, np + 1, zr,
512 zi);
513
514 for (i = 0; i <= np; i++) {
515 b[i] /= gain;
516 }
517 }
518
520 (filter), a, np + 1, b, np + 1);
521
522 GST_LOG_OBJECT (filter,
523 "Generated IIR coefficients for the Chebyshev filter");
524 GST_LOG_OBJECT (filter,
525 "mode: %s, type: %d, poles: %d, lower-frequency: %.2f Hz, upper-frequency: %.2f Hz, ripple: %.2f dB",
526 (filter->mode == MODE_BAND_PASS) ? "band-pass" : "band-reject",
527 filter->type, filter->poles, filter->lower_frequency,
528 filter->upper_frequency, filter->ripple);
529
530 GST_LOG_OBJECT (filter, "%.2f dB gain @ 0Hz",
531 20.0 * log10 (gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1, b,
532 np + 1, 1.0, 0.0)));
533 {
534 gdouble w1 = 2.0 * G_PI * (filter->lower_frequency / rate);
535 gdouble w2 = 2.0 * G_PI * (filter->upper_frequency / rate);
536 gdouble w0 = (w2 + w1) / 2.0;
537 gdouble zr, zi;
538
539 zr = cos (w1);
540 zi = sin (w1);
541 GST_LOG_OBJECT (filter, "%.2f dB gain @ %dHz",
542 20.0 * log10 (gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1,
543 b, np + 1, zr, zi)), (int) filter->lower_frequency);
544 zr = cos (w0);
545 zi = sin (w0);
546 GST_LOG_OBJECT (filter, "%.2f dB gain @ %dHz",
547 20.0 * log10 (gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1,
548 b, np + 1, zr, zi)),
549 (int) ((filter->lower_frequency + filter->upper_frequency) / 2.0));
550 zr = cos (w2);
551 zi = sin (w2);
552 GST_LOG_OBJECT (filter, "%.2f dB gain @ %dHz",
553 20.0 * log10 (gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1,
554 b, np + 1, zr, zi)), (int) filter->upper_frequency);
555 }
556 GST_LOG_OBJECT (filter, "%.2f dB gain @ %dHz",
557 20.0 * log10 (gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1, b,
558 np + 1, -1.0, 0.0)), rate / 2);
559 }
560}
561
562static void
564{
565 GstAudioChebBand *filter = GST_AUDIO_CHEB_BAND (object);
566
567 g_mutex_clear (&filter->lock);
568
569 G_OBJECT_CLASS (parent_class)->finalize (object);
570}
571
572static void
573gst_audio_cheb_band_set_property (GObject * object, guint prop_id,
574 const GValue * value, GParamSpec * pspec)
575{
576 GstAudioChebBand *filter = GST_AUDIO_CHEB_BAND (object);
577
578 switch (prop_id) {
579 case PROP_MODE:
580 g_mutex_lock (&filter->lock);
581 filter->mode = g_value_get_enum (value);
582 generate_coefficients (filter, NULL);
583 g_mutex_unlock (&filter->lock);
584 break;
585 case PROP_TYPE:
586 g_mutex_lock (&filter->lock);
587 filter->type = g_value_get_int (value);
588 generate_coefficients (filter, NULL);
589 g_mutex_unlock (&filter->lock);
590 break;
592 g_mutex_lock (&filter->lock);
593 filter->lower_frequency = g_value_get_float (value);
594 generate_coefficients (filter, NULL);
595 g_mutex_unlock (&filter->lock);
596 break;
598 g_mutex_lock (&filter->lock);
599 filter->upper_frequency = g_value_get_float (value);
600 generate_coefficients (filter, NULL);
601 g_mutex_unlock (&filter->lock);
602 break;
603 case PROP_RIPPLE:
604 g_mutex_lock (&filter->lock);
605 filter->ripple = g_value_get_float (value);
606 generate_coefficients (filter, NULL);
607 g_mutex_unlock (&filter->lock);
608 break;
609 case PROP_POLES:
610 g_mutex_lock (&filter->lock);
611 filter->poles = GST_ROUND_UP_4 (g_value_get_int (value));
612 generate_coefficients (filter, NULL);
613 g_mutex_unlock (&filter->lock);
614 break;
615 default:
616 G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
617 break;
618 }
619}
620
621static void
622gst_audio_cheb_band_get_property (GObject * object, guint prop_id,
623 GValue * value, GParamSpec * pspec)
624{
625 GstAudioChebBand *filter = GST_AUDIO_CHEB_BAND (object);
626
627 switch (prop_id) {
628 case PROP_MODE:
629 g_value_set_enum (value, filter->mode);
630 break;
631 case PROP_TYPE:
632 g_value_set_int (value, filter->type);
633 break;
635 g_value_set_float (value, filter->lower_frequency);
636 break;
638 g_value_set_float (value, filter->upper_frequency);
639 break;
640 case PROP_RIPPLE:
641 g_value_set_float (value, filter->ripple);
642 break;
643 case PROP_POLES:
644 g_value_set_int (value, filter->poles);
645 break;
646 default:
647 G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
648 break;
649 }
650}
651
652/* GstAudioFilter vmethod implementations */
653
654static gboolean
655gst_audio_cheb_band_setup (GstAudioFilter * base, const GstAudioInfo * info)
656{
657 GstAudioChebBand *filter = GST_AUDIO_CHEB_BAND (base);
658
659 generate_coefficients (filter, info);
660
661 return GST_AUDIO_FILTER_CLASS (parent_class)->setup (base, info);
662}
static void gst_audio_cheb_band_get_property(GObject *object, guint prop_id, GValue *value, GParamSpec *pspec)
static GType gst_audio_cheb_band_mode_get_type(void)
static void gst_audio_cheb_band_finalize(GObject *object)
GST_ELEMENT_REGISTER_DEFINE(audiochebband, "audiochebband", GST_RANK_NONE,(gst_audio_cheb_band_get_type()))
static void gst_audio_cheb_band_init(GstAudioChebBand *filter)
@ PROP_MODE
Definition: audiochebband.c:92
@ PROP_RIPPLE
Definition: audiochebband.c:96
@ PROP_LOWER_FREQUENCY
Definition: audiochebband.c:94
@ PROP_TYPE
Definition: audiochebband.c:93
@ PROP_UPPER_FREQUENCY
Definition: audiochebband.c:95
@ PROP_0
Definition: audiochebband.c:91
@ PROP_POLES
Definition: audiochebband.c:97
static void gst_audio_cheb_band_set_property(GObject *object, guint prop_id, const GValue *value, GParamSpec *pspec)
static void gst_audio_cheb_band_class_init(GstAudioChebBandClass *klass)
@ MODE_BAND_PASS
@ MODE_BAND_REJECT
GST_DEBUG_CATEGORY_STATIC(gst_audio_cheb_band_debug)
#define GST_TYPE_AUDIO_CHEBYSHEV_FREQ_BAND_MODE
static void generate_biquad_coefficients(GstAudioChebBand *filter, gint p, gint rate, gdouble *b0, gdouble *b1, gdouble *b2, gdouble *b3, gdouble *b4, gdouble *a1, gdouble *a2, gdouble *a3, gdouble *a4)
static void generate_coefficients(GstAudioChebBand *filter, const GstAudioInfo *info)
#define GST_CAT_DEFAULT
Definition: audiochebband.c:86
G_DEFINE_TYPE(GstAudioChebBand, gst_audio_cheb_band,(gst_audio_fx_base_iir_filter_get_type()))
static gboolean gst_audio_cheb_band_setup(GstAudioFilter *filter, const GstAudioInfo *info)
#define GST_TYPE_AUDIO_CHEB_BAND
Definition: audiochebband.h:32
#define GST_AUDIO_CHEB_BAND(obj)
Definition: audiochebband.h:33
gdouble gst_audio_fx_base_iir_filter_calculate_gain(gdouble *a, guint na, gdouble *b, guint nb, gdouble zr, gdouble zi)
void gst_audio_fx_base_iir_filter_set_coefficients(GstAudioFXBaseIIRFilter *filter, gdouble *a, guint na, gdouble *b, guint nb)
#define GST_AUDIO_FX_BASE_IIR_FILTER(obj)
#define GST_TYPE_AUDIO_FX_BASE_IIR_FILTER
#define parent_class
Definition: gstsbcparse.c:83
static GstStaticPadTemplate t
Definition: gstximagesrc.c:58
static gdouble asinh(gdouble x)
Definition: math_compat.h:33
static gdouble sinh(gdouble x)
Definition: math_compat.h:41
static gdouble cosh(gdouble x)
Definition: math_compat.h:49