NZMATH  1.2.0
About: NZMATH is a Python based number theory oriented calculation system.
  Fossies Dox: NZMATH-1.2.0.tar.gz  ("inofficial" and yet experimental doxygen-generated source code documentation)  

nzmath.poly.array Namespace Reference


class  ArrayPoly
class  ArrayPolyMod


def check_zero_poly (coefficients)
def arrange_coefficients (coefficients)
def min_abs_mod (a, b)
def bit_reverse (n, bound)
def ceillog (n, base=2)
def perfect_shuffle (List)
def FFT (f, bound)
def reverse_FFT (values, bound)

Function Documentation

◆ arrange_coefficients()

def nzmath.poly.array.arrange_coefficients (   coefficients)
This function arranges coefficient.
For example, [1,2,0,3,0] => [1,2,0,3].

Definition at line 14 of file

References nzmath.poly.array.check_zero_poly().

◆ bit_reverse()

def nzmath.poly.array.bit_reverse (   n,
This function returns the result reversed bit of n.
bound:number of significant figures of bit.

Definition at line 368 of file

References nzmath.poly.array.ceillog().

Referenced by nzmath.poly.array.perfect_shuffle().

◆ ceillog()

def nzmath.poly.array.ceillog (   n,
  base = 2 
Return ceiling of log(n, 2)

Definition at line 389 of file

Referenced by nzmath.poly.array.bit_reverse(), nzmath.poly.array.ArrayPoly.FFT_mul(), and nzmath.poly.array.ArrayPolyMod.FFT_mul().

◆ check_zero_poly()

def nzmath.poly.array.check_zero_poly (   coefficients)
This function checks whether all elements of coefficients equal
zero or not.  If all elements of coefficients equal zero, this
function returns True.  Else this function returns False.

Definition at line 3 of file

Referenced by nzmath.poly.array.arrange_coefficients().

◆ FFT()

def nzmath.poly.array.FFT (   f,
Fast Fourier Transform.
This function returns the result of valuations of f by fast fourier transform
against number of bound different values.

Definition at line 410 of file

References nzmath.poly.array.min_abs_mod(), nzmath.poly.array.perfect_shuffle(), and nzmath.bigrange.range().

Referenced by nzmath.poly.array.ArrayPoly.FFT_mul(), nzmath.poly.array.ArrayPolyMod.FFT_mul(), and nzmath.poly.array.reverse_FFT().

◆ min_abs_mod()

def nzmath.poly.array.min_abs_mod (   a,
This function returns absolute minimum modulo of a over b.

Definition at line 359 of file

Referenced by nzmath.poly.array.FFT(), and nzmath.poly.array.reverse_FFT().

◆ perfect_shuffle()

def nzmath.poly.array.perfect_shuffle (   List)
This function returns list arranged by divide-and-conquer method.

Definition at line 399 of file

References nzmath.poly.array.bit_reverse(), and nzmath.bigrange.range().

Referenced by nzmath.poly.array.FFT().

◆ reverse_FFT()

def nzmath.poly.array.reverse_FFT (   values,
Reverse Fast Fourier Tfransform.

Definition at line 444 of file

References nzmath.poly.array.FFT(), and nzmath.poly.array.min_abs_mod().

Referenced by nzmath.poly.array.ArrayPoly.FFT_mul(), and nzmath.poly.array.ArrayPolyMod.FFT_mul().