NZMATH  1.2.0 About: NZMATH is a Python based number theory oriented calculation system.   Fossies Dox: NZMATH-1.2.0.tar.gz  ("inofficial" and yet experimental doxygen-generated source code documentation)
nzmath.poly.array Namespace Reference

## Classes

class  ArrayPoly

class  ArrayPolyMod

## Functions

def check_zero_poly (coefficients)

def arrange_coefficients (coefficients)

def min_abs_mod (a, b)

def bit_reverse (n, bound)

def ceillog (n, base=2)

def perfect_shuffle (List)

def FFT (f, bound)

def reverse_FFT (values, bound)

## ◆ arrange_coefficients()

 def nzmath.poly.array.arrange_coefficients ( coefficients )
```This function arranges coefficient.
For example, [1,2,0,3,0] => [1,2,0,3].
```

Definition at line 14 of file array.py.

References nzmath.poly.array.check_zero_poly().

## ◆ bit_reverse()

 def nzmath.poly.array.bit_reverse ( n, bound )
```This function returns the result reversed bit of n.
bound:number of significant figures of bit.
```

Definition at line 368 of file array.py.

References nzmath.poly.array.ceillog().

Referenced by nzmath.poly.array.perfect_shuffle().

## ◆ ceillog()

 def nzmath.poly.array.ceillog ( n, base = `2` )
```Return ceiling of log(n, 2)
```

Definition at line 389 of file array.py.

## ◆ check_zero_poly()

 def nzmath.poly.array.check_zero_poly ( coefficients )
```This function checks whether all elements of coefficients equal
zero or not.  If all elements of coefficients equal zero, this
function returns True.  Else this function returns False.
```

Definition at line 3 of file array.py.

Referenced by nzmath.poly.array.arrange_coefficients().

## ◆ FFT()

 def nzmath.poly.array.FFT ( f, bound )
```Fast Fourier Transform.
This function returns the result of valuations of f by fast fourier transform
against number of bound different values.
```

Definition at line 410 of file array.py.

## ◆ min_abs_mod()

 def nzmath.poly.array.min_abs_mod ( a, b )
```This function returns absolute minimum modulo of a over b.
```

Definition at line 359 of file array.py.

Referenced by nzmath.poly.array.FFT(), and nzmath.poly.array.reverse_FFT().

## ◆ perfect_shuffle()

 def nzmath.poly.array.perfect_shuffle ( List )
```This function returns list arranged by divide-and-conquer method.
```

Definition at line 399 of file array.py.

References nzmath.poly.array.bit_reverse(), and nzmath.bigrange.range().

Referenced by nzmath.poly.array.FFT().

## ◆ reverse_FFT()

 def nzmath.poly.array.reverse_FFT ( values, bound )
```Reverse Fast Fourier Tfransform.
```

Definition at line 444 of file array.py.

References nzmath.poly.array.FFT(), and nzmath.poly.array.min_abs_mod().