NZMATH  1.2.0
About: NZMATH is a Python based number theory oriented calculation system.
  Fossies Dox: NZMATH-1.2.0.tar.gz  ("inofficial" and yet experimental doxygen-generated source code documentation)  

nzmath.ring.QuotientField Class Reference
Inheritance diagram for nzmath.ring.QuotientField:
[legend]
Collaboration diagram for nzmath.ring.QuotientField:
[legend]

Public Member Functions

def __init__ (self, domain)
 
- Public Member Functions inherited from nzmath.ring.Field
def __init__ (self)
 
def createElement (self, *args)
 
def isfield (self)
 
def gcd (self, a, b)
 
def getQuotientField (self)
 
- Public Member Functions inherited from nzmath.ring.CommutativeRing
def isdomain (self)
 
def isnoetherian (self)
 
def isufd (self)
 
def ispid (self)
 
def iseuclidean (self)
 
def registerModuleAction (self, action_ring, action)
 
def hasaction (self, action_ring)
 
def getaction (self, action_ring)
 
- Public Member Functions inherited from nzmath.ring.Ring
def createElement (self, seed)
 
def getCharacteristic (self)
 
def issubring (self, other)
 
def issuperring (self, other)
 
def getCommonSuperring (self, other)
 
def __eq__ (self, other)
 
def __hash__ (self)
 
def __ne__ (self, other)
 

Public Attributes

 basedomain
 
- Public Attributes inherited from nzmath.ring.CommutativeRing
 properties
 

Detailed Description

QuotientField is a class of quotient field.

Definition at line 234 of file ring.py.

Constructor & Destructor Documentation

◆ __init__()

def nzmath.ring.QuotientField.__init__ (   self,
  domain 
)
Create quotient field from given domain.
Initialize 'basedomain' attribute by the given 'domain'.

Definition at line 239 of file ring.py.

Member Data Documentation

◆ basedomain

nzmath.ring.QuotientField.basedomain

The documentation for this class was generated from the following file: