NZMATH
1.2.0
About: NZMATH is a Python based number theory oriented calculation system.
![]() ![]() |
Public Member Functions | |
def | __init__ (self, generators, aring) |
def | __add__ (self, other) |
def | __mul__ (self, other) |
def | __eq__ (self, other) |
def | __hash__ (self) |
def | __ne__ (self, other) |
def | __contains__ (self, element) |
def | issubset (self, other) |
def | issuperset (self, other) |
def | reduce (self, element) |
Public Attributes | |
ring | |
generators | |
Ideal class is an abstract class to represent the finitely generated ideals. Because the finitely-generatedness is not a restriction for Noetherian rings and in the most cases only Noetherian rings are used, it is general enough.
def nzmath.ring.Ideal.__init__ | ( | self, | |
generators, | |||
aring | |||
) |
Ideal(generators, ring) creates an ideal of the ring genarated by the generators. generators must be an element of the ring or a list of elements of the ring.
Reimplemented in nzmath.poly.ring.PolynomialIdeal, and nzmath.poly.multiutil.PolynomialIdeal.
def nzmath.ring.Ideal.__add__ | ( | self, | |
other | |||
) |
I + J <=> I.__add__(J) where I+J = {i+j | i in I and j in J}
Definition at line 484 of file ring.py.
References nzmath.matrix.Matrix.__class__, nzmath.matrix.RingMatrix.__class__, nzmath.matrix.RingSquareMatrix.__class__, nzmath.matrix.FieldMatrix.__class__, nzmath.matrix.MatrixRing.__class__, nzmath.matrix.Subspace.__class__, nzmath.poly.ring.PolynomialIdeal.generators, nzmath.ring.Ideal.generators, nzmath.poly.multiutil.PolynomialIdeal.generators, nzmath.finitefield.FinitePrimeFieldElement.ring, and nzmath.ring.Ideal.ring.
def nzmath.ring.Ideal.__contains__ | ( | self, | |
element | |||
) |
e in I <=> I.__contains__(e) for e in the ring, to which the ideal I belongs.
Reimplemented in nzmath.poly.multiutil.PolynomialIdeal, and nzmath.poly.ring.PolynomialIdeal.
def nzmath.ring.Ideal.__eq__ | ( | self, | |
other | |||
) |
I == J <=> I.__eq__(J)
Definition at line 508 of file ring.py.
References nzmath.poly.ring.PolynomialIdeal.issubset(), nzmath.ring.Ideal.issubset(), nzmath.poly.ring.PolynomialIdeal.issuperset(), nzmath.ring.Ideal.issuperset(), nzmath.finitefield.FinitePrimeFieldElement.ring, and nzmath.ring.Ideal.ring.
Referenced by nzmath.ring.Ideal.__ne__().
def nzmath.ring.Ideal.__mul__ | ( | self, | |
other | |||
) |
I * J <=> I.__mul__(J) where I*J = {sum of i*j | i in I and j in J}
Definition at line 495 of file ring.py.
References nzmath.matrix.Matrix.__class__, nzmath.matrix.RingMatrix.__class__, nzmath.matrix.RingSquareMatrix.__class__, nzmath.matrix.FieldMatrix.__class__, nzmath.matrix.MatrixRing.__class__, nzmath.matrix.Subspace.__class__, nzmath.poly.ring.PolynomialIdeal.generators, nzmath.ring.Ideal.generators, nzmath.poly.multiutil.PolynomialIdeal.generators, nzmath.finitefield.FinitePrimeFieldElement.ring, and nzmath.ring.Ideal.ring.
def nzmath.ring.Ideal.__ne__ | ( | self, | |
other | |||
) |
I != J <=> I.__ne__(J)
Definition at line 522 of file ring.py.
References nzmath.poly.univar.PolynomialInterface.__eq__(), nzmath.group.Group.__eq__(), nzmath.poly.ratfunc.RationalFunction.__eq__(), nzmath.quad.ReducedQuadraticForm.__eq__(), nzmath.poly.multivar.TermIndices.__eq__(), nzmath.poly.ring.PolynomialRing.__eq__(), nzmath.poly.formalsum.FormalSumContainerInterface.__eq__(), nzmath.ring.Ring.__eq__(), nzmath.factor.misc.FactoredInteger.__eq__(), nzmath.real.Real.__eq__(), nzmath.imaginary.Complex.__eq__(), nzmath.poly.array.ArrayPoly.__eq__(), nzmath.group.GroupElement.__eq__(), nzmath.matrix.Matrix.__eq__(), nzmath.real.RealField.__eq__(), nzmath.intresidue.IntegerResidueClass.__eq__(), nzmath.finitefield.FinitePrimeField.__eq__(), nzmath.imaginary.ComplexField.__eq__(), nzmath.rational.Rational.__eq__(), nzmath.poly.array.ArrayPolyMod.__eq__(), nzmath.ring.RingElement.__eq__(), nzmath.module.Module.__eq__(), nzmath.permute.Permute.__eq__(), nzmath.intresidue.IntegerResidueClassRing.__eq__(), nzmath.algfield.NumberField.__eq__(), nzmath.poly.formalsum.DictFormalSum.__eq__(), nzmath.poly.univar.BasicPolynomial.__eq__(), nzmath.poly.formalsum.ListFormalSum.__eq__(), nzmath.ring.QuotientFieldElement.__eq__(), nzmath.poly.multiutil.PolynomialRingAnonymousVariables.__eq__(), nzmath.poly.ring.RationalFunctionField.__eq__(), nzmath.finitefield.ExtendedFieldElement.__eq__(), nzmath.ring.Ideal.__eq__(), nzmath.rational.RationalField.__eq__(), nzmath.permute.ExPermute.__eq__(), nzmath.permute.PermGroup.__eq__(), nzmath.prime.Zeta.__eq__(), nzmath.prime.FactoredInteger.__eq__(), nzmath.rational.Integer.__eq__(), nzmath.finitefield.ExtendedField.__eq__(), nzmath.poly.univar.SortedPolynomial.__eq__(), nzmath.rational.IntegerRing.__eq__(), and nzmath.matrix.MatrixRing.__eq__().
def nzmath.ring.Ideal.issubset | ( | self, | |
other | |||
) |
Report whether another ideal contains this ideal.
Reimplemented in nzmath.poly.ring.PolynomialIdeal.
Definition at line 536 of file ring.py.
Referenced by nzmath.ring.Ideal.__eq__().
def nzmath.ring.Ideal.issuperset | ( | self, | |
other | |||
) |
Report whether this ideal contains another ideal.
Reimplemented in nzmath.poly.ring.PolynomialIdeal.
Definition at line 544 of file ring.py.
Referenced by nzmath.ring.Ideal.__eq__().
def nzmath.ring.Ideal.reduce | ( | self, | |
element | |||
) |
Reduce an element with the ideal to simpler representative.
Reimplemented in nzmath.poly.ring.PolynomialIdeal.
nzmath.ring.Ideal.generators |
Definition at line 478 of file ring.py.
Referenced by nzmath.ring.Ideal.__add__(), and nzmath.ring.Ideal.__mul__().
nzmath.ring.Ideal.ring |
Definition at line 476 of file ring.py.
Referenced by nzmath.ring.Ideal.__add__(), nzmath.poly.ring.PolynomialIdeal.__contains__(), nzmath.poly.multiutil.PolynomialIdeal.__contains__(), nzmath.ring.Ideal.__eq__(), nzmath.ring.Ideal.__mul__(), nzmath.poly.ring.PolynomialIdeal.__nonzero__(), nzmath.poly.multiutil.PolynomialIdeal.__nonzero__(), nzmath.poly.ring.PolynomialIdeal.__repr__(), nzmath.poly.multiutil.PolynomialIdeal.__repr__(), nzmath.poly.ring.PolynomialIdeal.__str__(), nzmath.poly.multiutil.PolynomialIdeal.__str__(), nzmath.poly.ring.PolynomialIdeal._euclidean_reduce(), nzmath.ring.ResidueClassRing._getOne(), nzmath.ring.ResidueClassRing._getZero(), nzmath.poly.ring.PolynomialIdeal._normalize_generators(), and nzmath.poly.ring.PolynomialIdeal.reduce().