NZMATH  1.2.0
About: NZMATH is a Python based number theory oriented calculation system.
  Fossies Dox: NZMATH-1.2.0.tar.gz  ("inofficial" and yet experimental doxygen-generated source code documentation)  

nzmath.ring.Ideal Class Reference
Inheritance diagram for nzmath.ring.Ideal:
[legend]
Collaboration diagram for nzmath.ring.Ideal:
[legend]

Public Member Functions

def __init__ (self, generators, aring)
 
def __add__ (self, other)
 
def __mul__ (self, other)
 
def __eq__ (self, other)
 
def __hash__ (self)
 
def __ne__ (self, other)
 
def __contains__ (self, element)
 
def issubset (self, other)
 
def issuperset (self, other)
 
def reduce (self, element)
 

Public Attributes

 ring
 
 generators
 

Detailed Description

Ideal class is an abstract class to represent the finitely
generated ideals.  Because the finitely-generatedness is not a
restriction for Noetherian rings and in the most cases only
Noetherian rings are used, it is general enough.

Definition at line 460 of file ring.py.

Constructor & Destructor Documentation

◆ __init__()

def nzmath.ring.Ideal.__init__ (   self,
  generators,
  aring 
)
Ideal(generators, ring) creates an ideal of the ring genarated
by the generators.  generators must be an element of the ring
or a list of elements of the ring.

Reimplemented in nzmath.poly.ring.PolynomialIdeal, and nzmath.poly.multiutil.PolynomialIdeal.

Definition at line 468 of file ring.py.

Member Function Documentation

◆ __add__()

◆ __contains__()

def nzmath.ring.Ideal.__contains__ (   self,
  element 
)
e in I  <=>  I.__contains__(e)

for e in the ring, to which the ideal I belongs.

Reimplemented in nzmath.poly.multiutil.PolynomialIdeal, and nzmath.poly.ring.PolynomialIdeal.

Definition at line 528 of file ring.py.

◆ __eq__()

◆ __hash__()

def nzmath.ring.Ideal.__hash__ (   self)

Definition at line 519 of file ring.py.

◆ __mul__()

◆ __ne__()

def nzmath.ring.Ideal.__ne__ (   self,
  other 
)
I != J <=> I.__ne__(J)

Definition at line 522 of file ring.py.

References nzmath.poly.univar.PolynomialInterface.__eq__(), nzmath.group.Group.__eq__(), nzmath.poly.ratfunc.RationalFunction.__eq__(), nzmath.quad.ReducedQuadraticForm.__eq__(), nzmath.poly.multivar.TermIndices.__eq__(), nzmath.poly.ring.PolynomialRing.__eq__(), nzmath.poly.formalsum.FormalSumContainerInterface.__eq__(), nzmath.ring.Ring.__eq__(), nzmath.factor.misc.FactoredInteger.__eq__(), nzmath.real.Real.__eq__(), nzmath.imaginary.Complex.__eq__(), nzmath.poly.array.ArrayPoly.__eq__(), nzmath.group.GroupElement.__eq__(), nzmath.matrix.Matrix.__eq__(), nzmath.real.RealField.__eq__(), nzmath.intresidue.IntegerResidueClass.__eq__(), nzmath.finitefield.FinitePrimeField.__eq__(), nzmath.imaginary.ComplexField.__eq__(), nzmath.rational.Rational.__eq__(), nzmath.poly.array.ArrayPolyMod.__eq__(), nzmath.ring.RingElement.__eq__(), nzmath.module.Module.__eq__(), nzmath.permute.Permute.__eq__(), nzmath.intresidue.IntegerResidueClassRing.__eq__(), nzmath.algfield.NumberField.__eq__(), nzmath.poly.formalsum.DictFormalSum.__eq__(), nzmath.poly.univar.BasicPolynomial.__eq__(), nzmath.poly.formalsum.ListFormalSum.__eq__(), nzmath.ring.QuotientFieldElement.__eq__(), nzmath.poly.multiutil.PolynomialRingAnonymousVariables.__eq__(), nzmath.poly.ring.RationalFunctionField.__eq__(), nzmath.finitefield.ExtendedFieldElement.__eq__(), nzmath.ring.Ideal.__eq__(), nzmath.rational.RationalField.__eq__(), nzmath.permute.ExPermute.__eq__(), nzmath.permute.PermGroup.__eq__(), nzmath.prime.Zeta.__eq__(), nzmath.prime.FactoredInteger.__eq__(), nzmath.rational.Integer.__eq__(), nzmath.finitefield.ExtendedField.__eq__(), nzmath.poly.univar.SortedPolynomial.__eq__(), nzmath.rational.IntegerRing.__eq__(), and nzmath.matrix.MatrixRing.__eq__().

◆ issubset()

def nzmath.ring.Ideal.issubset (   self,
  other 
)
Report whether another ideal contains this ideal.

Reimplemented in nzmath.poly.ring.PolynomialIdeal.

Definition at line 536 of file ring.py.

Referenced by nzmath.ring.Ideal.__eq__().

◆ issuperset()

def nzmath.ring.Ideal.issuperset (   self,
  other 
)
Report whether this ideal contains another ideal.

Reimplemented in nzmath.poly.ring.PolynomialIdeal.

Definition at line 544 of file ring.py.

Referenced by nzmath.ring.Ideal.__eq__().

◆ reduce()

def nzmath.ring.Ideal.reduce (   self,
  element 
)
Reduce an element with the ideal to simpler representative.

Reimplemented in nzmath.poly.ring.PolynomialIdeal.

Definition at line 552 of file ring.py.

Member Data Documentation

◆ generators

nzmath.ring.Ideal.generators

Definition at line 478 of file ring.py.

Referenced by nzmath.ring.Ideal.__add__(), and nzmath.ring.Ideal.__mul__().

◆ ring


The documentation for this class was generated from the following file: