NZMATH
1.2.0
About: NZMATH is a Python based number theory oriented calculation system.
![]() ![]() |
Public Member Functions | |
def | __init__ (self) |
def | mul_module_action (self, other) |
def | exact_division (self, other) |
![]() | |
def | __init__ (self, *args, **kwd) |
def | getRing (self) |
def | __eq__ (self, other) |
def | __hash__ (self) |
def | __ne__ (self, other) |
CommutativeRingElement is an abstract class for elements of commutative rings.
def nzmath.ring.CommutativeRingElement.__init__ | ( | self | ) |
This class is abstract and cannot be instantiated.
Reimplemented in nzmath.poly.uniutil.RingElementProvider, nzmath.ring.FieldElement, nzmath.poly.multiutil.RingElementProvider, and nzmath.finitefield.FiniteFieldElement.
def nzmath.ring.CommutativeRingElement.exact_division | ( | self, | |
other | |||
) |
In UFD, if other divides self, return the quotient as a UFD element. The main difference with / is that / may return the quotient as an element of quotient field. Simple cases: - in a euclidean domain, if remainder of euclidean division is zero, the division // is exact. - in a field, there's no difference with /. If other doesn't divide self, raise ValueError.
Reimplemented in nzmath.ring.FieldElement.
Definition at line 320 of file ring.py.
References nzmath.poly.ratfunc.RationalFunction.getRing(), nzmath.poly.multiutil.RingElementProvider.getRing(), nzmath.real.Real.getRing(), nzmath.finitefield.FinitePrimeFieldElement.getRing(), nzmath.imaginary.Complex.getRing(), nzmath.intresidue.IntegerResidueClass.getRing(), nzmath.ring.RingElement.getRing(), nzmath.poly.multiutil.RingPolynomial.getRing(), nzmath.finitefield.ExtendedFieldElement.getRing(), nzmath.rational.Rational.getRing(), nzmath.algfield.BasicAlgNumber.getRing(), nzmath.algfield.MatAlgNumber.getRing(), nzmath.rational.Integer.getRing(), nzmath.matrix.RingSquareMatrix.getRing(), nzmath.poly.uniutil.RingElementProvider.getRing(), and nzmath.poly.uniutil.RingPolynomial.getRing().
def nzmath.ring.CommutativeRingElement.mul_module_action | ( | self, | |
other | |||
) |
Return the result of a module action. other must be in one of the action rings of self's ring.
Definition at line 305 of file ring.py.
References nzmath.poly.ratfunc.RationalFunction.getRing(), nzmath.poly.multiutil.RingElementProvider.getRing(), nzmath.real.Real.getRing(), nzmath.finitefield.FinitePrimeFieldElement.getRing(), nzmath.imaginary.Complex.getRing(), nzmath.intresidue.IntegerResidueClass.getRing(), nzmath.ring.RingElement.getRing(), nzmath.poly.multiutil.RingPolynomial.getRing(), nzmath.finitefield.ExtendedFieldElement.getRing(), nzmath.rational.Rational.getRing(), nzmath.algfield.BasicAlgNumber.getRing(), nzmath.algfield.MatAlgNumber.getRing(), nzmath.rational.Integer.getRing(), nzmath.matrix.RingSquareMatrix.getRing(), nzmath.poly.uniutil.RingElementProvider.getRing(), and nzmath.poly.uniutil.RingPolynomial.getRing().
Referenced by nzmath.intresidue.IntegerResidueClass.__mul__(), nzmath.ring.QuotientFieldElement.__mul__(), and nzmath.intresidue.IntegerResidueClass.__rmul__().