NZMATH  1.2.0 About: NZMATH is a Python based number theory oriented calculation system.   Fossies Dox: NZMATH-1.2.0.tar.gz  ("inofficial" and yet experimental doxygen-generated source code documentation)
nzmath.ring.CommutativeRing Class Reference
Inheritance diagram for nzmath.ring.CommutativeRing:
[legend]
Collaboration diagram for nzmath.ring.CommutativeRing:
[legend]

## Public Member Functions

def __init__ (self)

def getQuotientField (self)

def isdomain (self)

def isnoetherian (self)

def isufd (self)

def ispid (self)

def iseuclidean (self)

def isfield (self)

def registerModuleAction (self, action_ring, action)

def hasaction (self, action_ring)

def getaction (self, action_ring)

Public Member Functions inherited from nzmath.ring.Ring
def createElement (self, seed)

def getCharacteristic (self)

def issubring (self, other)

def issuperring (self, other)

def getCommonSuperring (self, other)

def __eq__ (self, other)

def __hash__ (self)

def __ne__ (self, other)

properties

_actions

_actions_order

## Detailed Description

```CommutativeRing is an abstract subclass of Ring
whose multiplication is commutative.
```

Definition at line 88 of file ring.py.

## ◆ __init__()

 def nzmath.ring.CommutativeRing.__init__ ( self )
```Initialize 'properties' attribute by an object of
CommutativeRingProperties.
```

Reimplemented from nzmath.ring.Ring.

Definition at line 94 of file ring.py.

## ◆ getaction()

 def nzmath.ring.CommutativeRing.getaction ( self, action_ring )
```Return the registered action for 'action_ring'.
```

Definition at line 180 of file ring.py.

## ◆ getQuotientField()

 def nzmath.ring.CommutativeRing.getQuotientField ( self )
```getQuotientField returns the quotient field of the ring
if available, otherwise raises exception.
```

Definition at line 107 of file ring.py.

## ◆ hasaction()

 def nzmath.ring.CommutativeRing.hasaction ( self, action_ring )
```Return True if 'action_ring' is registered to provide action.
```

Definition at line 169 of file ring.py.

## ◆ isdomain()

 def nzmath.ring.CommutativeRing.isdomain ( self )
```isdomain returns True if the ring is actually a domain,
False if not, or None if uncertain.
```

Definition at line 114 of file ring.py.

References nzmath.ring.CommutativeRing.properties.

## ◆ iseuclidean()

 def nzmath.ring.CommutativeRing.iseuclidean ( self )
```iseuclidean returns True if the ring is actually a Euclidean
domain, False if not, or None if uncertain.
```

Definition at line 142 of file ring.py.

References nzmath.ring.CommutativeRing.properties.

## ◆ isfield()

 def nzmath.ring.CommutativeRing.isfield ( self )
```isfield returns True if the ring is actually a field,
False if not, or None if uncertain.
```

Reimplemented in nzmath.intresidue.IntegerResidueClassRing, and nzmath.ring.Field.

Definition at line 149 of file ring.py.

References nzmath.ring.CommutativeRing.properties.

## ◆ isnoetherian()

 def nzmath.ring.CommutativeRing.isnoetherian ( self )
```isnoetherian returns True if the ring is actually a Noetherian
domain, False if not, or None if uncertain.
```

Definition at line 121 of file ring.py.

References nzmath.ring.CommutativeRing.properties.

## ◆ ispid()

 def nzmath.ring.CommutativeRing.ispid ( self )
```ispid returns True if the ring is actually a principal
ideal domain, False if not, or None if uncertain.
```

Definition at line 135 of file ring.py.

References nzmath.ring.CommutativeRing.properties.

## ◆ isufd()

 def nzmath.ring.CommutativeRing.isufd ( self )
```isufd returns True if the ring is actually a unique
factorization domain, False if not, or None if uncertain.
```

Definition at line 128 of file ring.py.

References nzmath.ring.CommutativeRing.properties.

## ◆ registerModuleAction()

 def nzmath.ring.CommutativeRing.registerModuleAction ( self, action_ring, action )
```Register a ring 'action_ring', which act on the ring through
'action' so the ring be an 'action_ring' module.
```

Definition at line 156 of file ring.py.

Referenced by nzmath.finitefield.FinitePrimeField.__init__().

## ◆ _actions

 nzmath.ring.CommutativeRing._actions
private

Definition at line 104 of file ring.py.

## ◆ _actions_order

 nzmath.ring.CommutativeRing._actions_order
private

Definition at line 105 of file ring.py.

## ◆ properties

 nzmath.ring.CommutativeRing.properties

The documentation for this class was generated from the following file: