NZMATH
1.2.0
About: NZMATH is a Python based number theory oriented calculation system.
![]() ![]() |
Public Member Functions | |
def | __init__ (self) |
def | getQuotientField (self) |
def | isdomain (self) |
def | isnoetherian (self) |
def | isufd (self) |
def | ispid (self) |
def | iseuclidean (self) |
def | isfield (self) |
def | registerModuleAction (self, action_ring, action) |
def | hasaction (self, action_ring) |
def | getaction (self, action_ring) |
![]() | |
def | createElement (self, seed) |
def | getCharacteristic (self) |
def | issubring (self, other) |
def | issuperring (self, other) |
def | getCommonSuperring (self, other) |
def | __eq__ (self, other) |
def | __hash__ (self) |
def | __ne__ (self, other) |
Public Attributes | |
properties | |
Private Attributes | |
_actions | |
_actions_order | |
CommutativeRing is an abstract subclass of Ring whose multiplication is commutative.
def nzmath.ring.CommutativeRing.__init__ | ( | self | ) |
Initialize 'properties' attribute by an object of CommutativeRingProperties.
Reimplemented from nzmath.ring.Ring.
Reimplemented in nzmath.rational.IntegerRing, nzmath.rational.RationalField, nzmath.imaginary.ComplexField, nzmath.ring.Field, and nzmath.real.RealField.
def nzmath.ring.CommutativeRing.getaction | ( | self, | |
action_ring | |||
) |
Return the registered action for 'action_ring'.
Definition at line 180 of file ring.py.
References nzmath.ring.CommutativeRing._actions, and nzmath.ring.CommutativeRing._actions_order.
def nzmath.ring.CommutativeRing.getQuotientField | ( | self | ) |
getQuotientField returns the quotient field of the ring if available, otherwise raises exception.
Reimplemented in nzmath.rational.IntegerRing, nzmath.rational.RationalField, nzmath.poly.ring.RationalFunctionField, nzmath.poly.multiutil.PolynomialRingAnonymousVariables, nzmath.ring.Field, and nzmath.poly.ring.PolynomialRing.
def nzmath.ring.CommutativeRing.hasaction | ( | self, | |
action_ring | |||
) |
Return True if 'action_ring' is registered to provide action.
Definition at line 169 of file ring.py.
References nzmath.ring.CommutativeRing._actions, and nzmath.ring.CommutativeRing._actions_order.
def nzmath.ring.CommutativeRing.isdomain | ( | self | ) |
isdomain returns True if the ring is actually a domain, False if not, or None if uncertain.
Definition at line 114 of file ring.py.
References nzmath.ring.CommutativeRing.properties.
def nzmath.ring.CommutativeRing.iseuclidean | ( | self | ) |
iseuclidean returns True if the ring is actually a Euclidean domain, False if not, or None if uncertain.
Definition at line 142 of file ring.py.
References nzmath.ring.CommutativeRing.properties.
def nzmath.ring.CommutativeRing.isfield | ( | self | ) |
isfield returns True if the ring is actually a field, False if not, or None if uncertain.
Reimplemented in nzmath.intresidue.IntegerResidueClassRing, and nzmath.ring.Field.
Definition at line 149 of file ring.py.
References nzmath.ring.CommutativeRing.properties.
def nzmath.ring.CommutativeRing.isnoetherian | ( | self | ) |
isnoetherian returns True if the ring is actually a Noetherian domain, False if not, or None if uncertain.
Definition at line 121 of file ring.py.
References nzmath.ring.CommutativeRing.properties.
def nzmath.ring.CommutativeRing.ispid | ( | self | ) |
ispid returns True if the ring is actually a principal ideal domain, False if not, or None if uncertain.
Definition at line 135 of file ring.py.
References nzmath.ring.CommutativeRing.properties.
def nzmath.ring.CommutativeRing.isufd | ( | self | ) |
isufd returns True if the ring is actually a unique factorization domain, False if not, or None if uncertain.
Definition at line 128 of file ring.py.
References nzmath.ring.CommutativeRing.properties.
def nzmath.ring.CommutativeRing.registerModuleAction | ( | self, | |
action_ring, | |||
action | |||
) |
Register a ring 'action_ring', which act on the ring through 'action' so the ring be an 'action_ring' module.
Definition at line 156 of file ring.py.
References nzmath.ring.CommutativeRing._actions, nzmath.ring.CommutativeRing._actions_order, nzmath.ring.Ring.issubring(), and nzmath.bigrange.range().
Referenced by nzmath.finitefield.FinitePrimeField.__init__().
|
private |
Definition at line 104 of file ring.py.
Referenced by nzmath.ring.CommutativeRing.getaction(), nzmath.ring.CommutativeRing.hasaction(), and nzmath.ring.CommutativeRing.registerModuleAction().
|
private |
Definition at line 105 of file ring.py.
Referenced by nzmath.ring.CommutativeRing.getaction(), nzmath.ring.CommutativeRing.hasaction(), and nzmath.ring.CommutativeRing.registerModuleAction().
nzmath.ring.CommutativeRing.properties |
Definition at line 103 of file ring.py.
Referenced by nzmath.ring.Field.__init__(), nzmath.rational.IntegerRing.__init__(), nzmath.ring.CommutativeRing.isdomain(), nzmath.ring.CommutativeRing.iseuclidean(), nzmath.ring.CommutativeRing.isfield(), nzmath.intresidue.IntegerResidueClassRing.isfield(), nzmath.ring.CommutativeRing.isnoetherian(), nzmath.ring.CommutativeRing.ispid(), and nzmath.ring.CommutativeRing.isufd().