NZMATH  1.2.0
About: NZMATH is a Python based number theory oriented calculation system.
  Fossies Dox: NZMATH-1.2.0.tar.gz  ("inofficial" and yet experimental doxygen-generated source code documentation)  

nzmath.rational.Integer Class Reference
Inheritance diagram for nzmath.rational.Integer:
[legend]
Collaboration diagram for nzmath.rational.Integer:
[legend]

Public Member Functions

def __init__ (self, value)
 
def __div__ (self, other)
 
def __rdiv__ (self, other)
 
def __floordiv__ (self, other)
 
def __rfloordiv__ (self, other)
 
def __mod__ (self, other)
 
def __rmod__ (self, other)
 
def __divmod__ (self, other)
 
def __rdivmod__ (self, other)
 
def __add__ (self, other)
 
def __sub__ (self, other)
 
def __rsub__ (self, other)
 
def __mul__ (self, other)
 
def __rmul__ (self, other)
 
def __pow__ (self, index, modulo=None)
 
def __pos__ (self)
 
def __neg__ (self)
 
def __abs__ (self)
 
def __eq__ (self, other)
 
def __hash__ (self)
 
def getRing (self)
 
def inverse (self)
 
def actAdditive (self, other)
 
def actMultiplicative (self, other)
 
- Public Member Functions inherited from nzmath.ring.CommutativeRingElement
def __init__ (self)
 
def mul_module_action (self, other)
 
def exact_division (self, other)
 
- Public Member Functions inherited from nzmath.ring.RingElement
def __init__ (self, *args, **kwd)
 
def __ne__ (self, other)
 

Static Private Attributes

def __truediv__ = __div__
 
def __rtruediv__ = __rdiv__
 
def __radd__ = __add__
 

Detailed Description

Integer is a class of integer.  Since 'int' and 'long' do not
return rational for division, it is needed to create a new class.

Definition at line 639 of file rational.py.

Constructor & Destructor Documentation

◆ __init__()

def nzmath.rational.Integer.__init__ (   self,
  value 
)

Definition at line 644 of file rational.py.

Member Function Documentation

◆ __abs__()

def nzmath.rational.Integer.__abs__ (   self)

Definition at line 735 of file rational.py.

◆ __add__()

def nzmath.rational.Integer.__add__ (   self,
  other 
)

Definition at line 686 of file rational.py.

References nzmath.rational.isIntegerObject().

◆ __div__()

def nzmath.rational.Integer.__div__ (   self,
  other 
)

Definition at line 647 of file rational.py.

◆ __divmod__()

def nzmath.rational.Integer.__divmod__ (   self,
  other 
)

Definition at line 680 of file rational.py.

◆ __eq__()

def nzmath.rational.Integer.__eq__ (   self,
  other 
)
Equality test.

Reimplemented from nzmath.ring.RingElement.

Definition at line 738 of file rational.py.

Referenced by nzmath.ring.Ring.__ne__(), nzmath.real.RealField.__ne__(), and nzmath.ring.Ideal.__ne__().

◆ __floordiv__()

def nzmath.rational.Integer.__floordiv__ (   self,
  other 
)

Definition at line 663 of file rational.py.

◆ __hash__()

def nzmath.rational.Integer.__hash__ (   self)

Reimplemented from nzmath.ring.RingElement.

Definition at line 741 of file rational.py.

◆ __mod__()

def nzmath.rational.Integer.__mod__ (   self,
  other 
)

Definition at line 672 of file rational.py.

◆ __mul__()

◆ __neg__()

def nzmath.rational.Integer.__neg__ (   self)

Definition at line 732 of file rational.py.

◆ __pos__()

def nzmath.rational.Integer.__pos__ (   self)

Definition at line 729 of file rational.py.

◆ __pow__()

def nzmath.rational.Integer.__pow__ (   self,
  index,
  modulo = None 
)
If index is negative, result may be a rational number.

Definition at line 721 of file rational.py.

◆ __rdiv__()

def nzmath.rational.Integer.__rdiv__ (   self,
  other 
)

Definition at line 653 of file rational.py.

◆ __rdivmod__()

def nzmath.rational.Integer.__rdivmod__ (   self,
  other 
)

Definition at line 683 of file rational.py.

◆ __rfloordiv__()

def nzmath.rational.Integer.__rfloordiv__ (   self,
  other 
)

Definition at line 666 of file rational.py.

◆ __rmod__()

def nzmath.rational.Integer.__rmod__ (   self,
  other 
)

Definition at line 677 of file rational.py.

◆ __rmul__()

◆ __rsub__()

def nzmath.rational.Integer.__rsub__ (   self,
  other 
)

Definition at line 700 of file rational.py.

◆ __sub__()

def nzmath.rational.Integer.__sub__ (   self,
  other 
)

Definition at line 694 of file rational.py.

References nzmath.rational.isIntegerObject().

◆ actAdditive()

def nzmath.rational.Integer.actAdditive (   self,
  other 
)
Act on other additively, i.e. n is expanded to n time
additions of other.  Naively, it is:
  return sum([+other for _ in xrange(self)])
but, here we use a binary addition chain.

Definition at line 750 of file rational.py.

Referenced by nzmath.rational.Integer.__mul__(), and nzmath.rational.Integer.__rmul__().

◆ actMultiplicative()

def nzmath.rational.Integer.actMultiplicative (   self,
  other 
)
Act on other multiplicatively, i.e. n is expanded to n time
multiplications of other.  Naively, it is:
  return reduce(lambda x,y:x*y, [+other for _ in xrange(self)])
but, here we use a binary addition chain.

Definition at line 769 of file rational.py.

◆ getRing()

◆ inverse()

def nzmath.rational.Integer.inverse (   self)

Member Data Documentation

◆ __radd__

def nzmath.rational.Integer.__radd__ = __add__
staticprivate

Definition at line 692 of file rational.py.

◆ __rtruediv__

def nzmath.rational.Integer.__rtruediv__ = __rdiv__
staticprivate

Definition at line 661 of file rational.py.

◆ __truediv__

def nzmath.rational.Integer.__truediv__ = __div__
staticprivate

Definition at line 659 of file rational.py.


The documentation for this class was generated from the following file: