NZMATH
1.2.0
About: NZMATH is a Python based number theory oriented calculation system.
![]() ![]() |
Public Member Functions | |
def | resultant (self, other) |
def | subresultant_gcd (self, other) |
def | subresultant_extgcd (self, other) |
SubresultantGcdProvider provides gcd method using subresultant algorithm. REQUIRE: PseudoDivisionProvider, ContentProvider
Definition at line 616 of file uniutil.py.
def nzmath.poly.uniutil.SubresultantGcdProvider.resultant | ( | self, | |
other | |||
) |
Return the resultant of self and other.
Definition at line 623 of file uniutil.py.
References nzmath.ring.exact_division(), nzmath.poly.ring.PolynomialRing.getCoefficientRing(), nzmath.poly.multiutil.RingElementProvider.getCoefficientRing(), nzmath.poly.multiutil.RingPolynomial.getCoefficientRing(), nzmath.poly.multiutil.PolynomialRingAnonymousVariables.getCoefficientRing(), nzmath.poly.ring.RationalFunctionField.getCoefficientRing(), nzmath.matrix.RingMatrix.getCoefficientRing(), and nzmath.poly.uniutil.RingPolynomial.getCoefficientRing().
Referenced by nzmath.poly.uniutil.DomainPolynomial.discriminant(), and nzmath.poly.uniutil.FieldPolynomial.discriminant().
def nzmath.poly.uniutil.SubresultantGcdProvider.subresultant_extgcd | ( | self, | |
other | |||
) |
Return (A, B, P) s.t. A*self+B*other=P, where P is the greatest common divisor of given polynomials. They must be in the polynomial ring and its coefficient ring must be a UFD. Reference: Kida's paper p.18
Definition at line 700 of file uniutil.py.
References nzmath.ring.exact_division(), nzmath.poly.ring.PolynomialRing.getCoefficientRing(), nzmath.poly.multiutil.RingElementProvider.getCoefficientRing(), nzmath.poly.multiutil.RingPolynomial.getCoefficientRing(), nzmath.poly.multiutil.PolynomialRingAnonymousVariables.getCoefficientRing(), nzmath.poly.ring.RationalFunctionField.getCoefficientRing(), nzmath.matrix.RingMatrix.getCoefficientRing(), and nzmath.poly.uniutil.RingPolynomial.getCoefficientRing().
def nzmath.poly.uniutil.SubresultantGcdProvider.subresultant_gcd | ( | self, | |
other | |||
) |
Return the greatest common divisor of given polynomials. They must be in the polynomial ring and its coefficient ring must be a UFD. Reference: Algorithm 3.3.1 of Cohen's book
Definition at line 653 of file uniutil.py.
References nzmath.poly.ratfunc.RationalFunction.getRing(), nzmath.poly.multiutil.RingElementProvider.getRing(), nzmath.real.Real.getRing(), nzmath.finitefield.FinitePrimeFieldElement.getRing(), nzmath.imaginary.Complex.getRing(), nzmath.intresidue.IntegerResidueClass.getRing(), nzmath.ring.RingElement.getRing(), nzmath.poly.multiutil.RingPolynomial.getRing(), nzmath.finitefield.ExtendedFieldElement.getRing(), nzmath.rational.Rational.getRing(), nzmath.algfield.BasicAlgNumber.getRing(), nzmath.ring.ResidueClass.getRing(), nzmath.algfield.MatAlgNumber.getRing(), nzmath.rational.Integer.getRing(), nzmath.matrix.RingSquareMatrix.getRing(), nzmath.poly.uniutil.RingElementProvider.getRing(), and nzmath.poly.uniutil.RingPolynomial.getRing().