NZMATH  1.2.0
About: NZMATH is a Python based number theory oriented calculation system.
  Fossies Dox: NZMATH-1.2.0.tar.gz  ("inofficial" and yet experimental doxygen-generated source code documentation)  

nzmath.poly.uniutil.RingPolynomial Class Reference
Inheritance diagram for nzmath.poly.uniutil.RingPolynomial:
[legend]
Collaboration diagram for nzmath.poly.uniutil.RingPolynomial:
[legend]

Public Member Functions

def __init__ (self, coefficients, coeffring=None, _sorted=False, **kwds)
 
def getRing (self)
 
def getCoefficientRing (self)
 
def __repr__ (self)
 
def __add__ (self, other)
 
def __radd__ (self, other)
 
def __sub__ (self, other)
 
def __rsub__ (self, other)
 
def ismonic (self)
 
def __getitem__ (self, degree)
 
- Public Member Functions inherited from nzmath.poly.uniutil.OrderProvider
def __init__ (self, order=termorder.ascending_order)
 
def shift_degree_to (self, degree)
 
def split_at (self, degree)
 
- Public Member Functions inherited from nzmath.poly.univar.SortedPolynomial
def __init__ (self, coefficients, _sorted=False, **kwds)
 
def __pos__ (self)
 
def __neg__ (self)
 
def __mul__ (self, other)
 
def __rmul__ (self, other)
 
def ring_mul_karatsuba (self, other)
 
def scalar_mul (self, scale)
 
def square (self)
 
def __pow__ (self, index)
 
def degree (self)
 
def leading_coefficient (self)
 
def leading_term (self)
 
def iterterms (self)
 
def iterbases (self)
 
def itercoefficients (self)
 
def __contains__ (self, degree)
 
def __len__ (self)
 
def __eq__ (self, other)
 
def __hash__ (self)
 
def __call__ (self, val)
 
- Public Member Functions inherited from nzmath.poly.univar.PolynomialInterface
def __init__ (self, coefficients, **kwds)
 
def ring_mul (self, other)
 
def term_mul (self, term)
 
def differentiate (self)
 
def upshift_degree (self, slide)
 
def downshift_degree (self, slide)
 
def terms_map (self, func)
 
def construct_with_default (self, terms)
 
- Public Member Functions inherited from nzmath.poly.formalsum.FormalSumContainerInterface
def __iter__ (self)
 
def __ne__ (self, other)
 
def __nonzero__ (self)
 
def terms (self)
 
def coefficients (self)
 
def bases (self)
 
def coefficients_map (self, func)
 
def bases_map (self, func)
 
- Public Member Functions inherited from nzmath.poly.uniutil.RingElementProvider
def __init__ (self)
 
def set_coefficient_ring (self, coeffring)
 
- Public Member Functions inherited from nzmath.ring.CommutativeRingElement
def mul_module_action (self, other)
 
def exact_division (self, other)
 
- Public Member Functions inherited from nzmath.ring.RingElement
def __init__ (self, *args, **kwd)
 
def __eq__ (self, other)
 
def __hash__ (self)
 
def __ne__ (self, other)
 

Additional Inherited Members

- Public Attributes inherited from nzmath.poly.uniutil.OrderProvider
 order
 
- Public Attributes inherited from nzmath.poly.univar.SortedPolynomial
 sorted
 
- Public Attributes inherited from nzmath.poly.univar.PolynomialInterface
 number_of_variables
 

Detailed Description

General polynomial with commutative ring coefficients.

Definition at line 1185 of file uniutil.py.

Constructor & Destructor Documentation

◆ __init__()

def nzmath.poly.uniutil.RingPolynomial.__init__ (   self,
  coefficients,
  coeffring = None,
  _sorted = False,
**  kwds 
)

Member Function Documentation

◆ __add__()

◆ __getitem__()

def nzmath.poly.uniutil.RingPolynomial.__getitem__ (   self,
  degree 
)

◆ __radd__()

◆ __repr__()

◆ __rsub__()

◆ __sub__()

◆ getCoefficientRing()

◆ getRing()

◆ ismonic()


The documentation for this class was generated from the following file: