NZMATH
1.2.0
About: NZMATH is a Python based number theory oriented calculation system.
![]() ![]() |
Public Member Functions | |
def | __init__ (self) |
def | getRing (self) |
def | set_coefficient_ring (self, coeffring) |
![]() | |
def | mul_module_action (self, other) |
def | exact_division (self, other) |
![]() | |
def | __init__ (self, *args, **kwd) |
def | __eq__ (self, other) |
def | __hash__ (self) |
def | __ne__ (self, other) |
Private Attributes | |
_coefficient_ring | |
_ring | |
Provides interfaces for ring.CommutativeRingElement.
Definition at line 1142 of file uniutil.py.
def nzmath.poly.uniutil.RingElementProvider.__init__ | ( | self | ) |
Do not instantiate RingElementProvider. This initializer should be called from descendant: RingElementProvider.__init__(self)
Reimplemented from nzmath.ring.CommutativeRingElement.
Definition at line 1146 of file uniutil.py.
References nzmath.matrix.Matrix.__class__, nzmath.matrix.RingMatrix.__class__, nzmath.matrix.RingSquareMatrix.__class__, nzmath.matrix.FieldMatrix.__class__, nzmath.matrix.MatrixRing.__class__, and nzmath.matrix.Subspace.__class__.
def nzmath.poly.uniutil.RingElementProvider.getRing | ( | self | ) |
Return an object of a subclass of Ring, to which the element belongs.
Reimplemented from nzmath.ring.RingElement.
Reimplemented in nzmath.poly.uniutil.RingPolynomial.
Definition at line 1158 of file uniutil.py.
References nzmath.poly.ring.PolynomialRing._coefficient_ring, nzmath.poly.multiutil.RingElementProvider._coefficient_ring, nzmath.poly.multiutil.PolynomialRingAnonymousVariables._coefficient_ring, nzmath.poly.uniutil.RingElementProvider._coefficient_ring, nzmath.poly.multiutil.RingElementProvider._ring, nzmath.poly.uniutil.RingElementProvider._ring, nzmath.poly.formalsum.FormalSumContainerInterface.itercoefficients(), nzmath.poly.univar.BasicPolynomial.itercoefficients(), nzmath.poly.formalsum.DictFormalSum.itercoefficients(), nzmath.poly.multivar.BasicPolynomial.itercoefficients(), nzmath.poly.formalsum.ListFormalSum.itercoefficients(), nzmath.poly.univar.SortedPolynomial.itercoefficients(), nzmath.poly.multiutil.RingElementProvider.set_coefficient_ring(), and nzmath.poly.uniutil.RingElementProvider.set_coefficient_ring().
Referenced by nzmath.ring.QuotientFieldElement.__add__(), nzmath.poly.uniutil.RingPolynomial.__add__(), nzmath.ring.QuotientFieldElement.__eq__(), nzmath.poly.uniutil.FieldPolynomial.__pow__(), nzmath.poly.uniutil.RingPolynomial.__radd__(), nzmath.ring.QuotientFieldElement.__rsub__(), nzmath.poly.uniutil.RingPolynomial.__rsub__(), nzmath.ring.QuotientFieldElement.__rtruediv__(), nzmath.ring.QuotientFieldElement.__sub__(), nzmath.poly.uniutil.RingPolynomial.__sub__(), nzmath.ring.QuotientFieldElement.__truediv__(), nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider._small_index_mod_pow(), nzmath.ring.CommutativeRingElement.exact_division(), nzmath.poly.uniutil.DivisionProvider.extgcd(), nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider.factor(), nzmath.poly.uniutil.DivisionProvider.mod_pow(), nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider.mod_pow(), nzmath.poly.uniutil.PseudoDivisionProvider.monic_pow(), nzmath.ring.CommutativeRingElement.mul_module_action(), and nzmath.poly.uniutil.SubresultantGcdProvider.subresultant_gcd().
def nzmath.poly.uniutil.RingElementProvider.set_coefficient_ring | ( | self, | |
coeffring | |||
) |
Definition at line 1176 of file uniutil.py.
References nzmath.poly.ring.PolynomialRing._coefficient_ring, nzmath.poly.multiutil.RingElementProvider._coefficient_ring, nzmath.poly.multiutil.PolynomialRingAnonymousVariables._coefficient_ring, nzmath.poly.uniutil.RingElementProvider._coefficient_ring, nzmath.poly.multiutil.RingElementProvider._ring, and nzmath.poly.uniutil.RingElementProvider._ring.
Referenced by nzmath.poly.uniutil.RingPolynomial.__init__(), and nzmath.poly.uniutil.RingElementProvider.getRing().
|
private |
Definition at line 1155 of file uniutil.py.
Referenced by nzmath.poly.uniutil.RingPolynomial.__getitem__(), nzmath.poly.uniutil.RingPolynomial.__repr__(), nzmath.poly.uniutil.RingPolynomial.getCoefficientRing(), nzmath.poly.uniutil.RingElementProvider.getRing(), nzmath.poly.uniutil.RingPolynomial.ismonic(), and nzmath.poly.uniutil.RingElementProvider.set_coefficient_ring().
|
private |
Definition at line 1156 of file uniutil.py.
Referenced by nzmath.poly.uniutil.RingElementProvider.getRing(), nzmath.poly.uniutil.RingPolynomial.getRing(), and nzmath.poly.uniutil.RingElementProvider.set_coefficient_ring().