NZMATH  1.2.0 About: NZMATH is a Python based number theory oriented calculation system.   Fossies Dox: NZMATH-1.2.0.tar.gz  ("inofficial" and yet experimental doxygen-generated source code documentation)
nzmath.poly.uniutil.PseudoDivisionProvider Class Reference
Inheritance diagram for nzmath.poly.uniutil.PseudoDivisionProvider:
[legend]
Collaboration diagram for nzmath.poly.uniutil.PseudoDivisionProvider:
[legend]

## Public Member Functions

def pseudo_divmod (self, other)

def pseudo_floordiv (self, other)

def pseudo_mod (self, other)

def __truediv__ (self, other)

def exact_division (self, other)

def scalar_exact_division (self, scale)

def monic_divmod (self, other)

def monic_floordiv (self, other)

def monic_mod (self, other)

def monic_pow (self, index, mod)

## Detailed Description

```PseudoDivisionProvider provides pseudo divisions for univariate
polynomials.  It is assumed that the coefficient ring of the
polynomials is a domain.

The class should be used as a mix-in.
```

Definition at line 338 of file uniutil.py.

## ◆ __truediv__()

 def nzmath.poly.uniutil.PseudoDivisionProvider.__truediv__ ( self, other )
```self / other

Return the result as a rational function.
```

Definition at line 434 of file uniutil.py.

## ◆ exact_division()

 def nzmath.poly.uniutil.PseudoDivisionProvider.exact_division ( self, other )
```Return quotient of exact division.
```

Definition at line 443 of file uniutil.py.

## ◆ monic_divmod()

 def nzmath.poly.uniutil.PseudoDivisionProvider.monic_divmod ( self, other )
```self.monic_divmod(other) -> (Q, R)

Q, R are polynomials such that
self == other * Q + R.

The leading coefficient of other MUST be one.
```

Definition at line 465 of file uniutil.py.

## ◆ monic_floordiv()

 def nzmath.poly.uniutil.PseudoDivisionProvider.monic_floordiv ( self, other )
```self.monic_floordiv(other) -> Q

Q is a polynomial such that
self == other * Q + R,
where R is a polynomial whose degree is smaller than other's.

The leading coefficient of other MUST be one.
```

Definition at line 492 of file uniutil.py.

## ◆ monic_mod()

 def nzmath.poly.uniutil.PseudoDivisionProvider.monic_mod ( self, other )
```self.monic_mod(other) -> R

R is a polynomial such that
self == other * Q + R,
where Q is another polynomial.

The leading coefficient of other MUST be one.
```

Definition at line 520 of file uniutil.py.

Referenced by nzmath.poly.uniutil.PseudoDivisionProvider.monic_pow().

## ◆ monic_pow()

 def nzmath.poly.uniutil.PseudoDivisionProvider.monic_pow ( self, index, mod )

## ◆ pseudo_divmod()

 def nzmath.poly.uniutil.PseudoDivisionProvider.pseudo_divmod ( self, other )
```self.pseudo_divmod(other) -> (Q, R)

Q, R are polynomials such that
d**(deg(self) - deg(other) + 1) * self == other * Q + R,
where d is the leading coefficient of other.
```

Definition at line 346 of file uniutil.py.

## ◆ pseudo_floordiv()

 def nzmath.poly.uniutil.PseudoDivisionProvider.pseudo_floordiv ( self, other )
```self.pseudo_floordiv(other) -> Q

Q is a polynomial such that
d**(deg(self) - deg(other) + 1) * self == other * Q + R,
where d is the leading coefficient of other and R is a
polynomial.
```

Definition at line 377 of file uniutil.py.

## ◆ pseudo_mod()

 def nzmath.poly.uniutil.PseudoDivisionProvider.pseudo_mod ( self, other )
```self.pseudo_mod(other) -> R

R is a polynomial such that
d**(deg(self) - deg(other) + 1) * self == other * Q + R,
where d is the leading coefficient of other and Q a
polynomial.
```

Definition at line 406 of file uniutil.py.

## ◆ scalar_exact_division()

 def nzmath.poly.uniutil.PseudoDivisionProvider.scalar_exact_division ( self, scale )
```Return quotient by a scalar which can divide each coefficient
exactly.
```

Definition at line 458 of file uniutil.py.

The documentation for this class was generated from the following file: