NZMATH  1.2.0
About: NZMATH is a Python based number theory oriented calculation system.
  Fossies Dox: NZMATH-1.2.0.tar.gz  ("inofficial" and yet experimental doxygen-generated source code documentation)  

nzmath.poly.uniutil.OrderProvider Class Reference
Inheritance diagram for nzmath.poly.uniutil.OrderProvider:
[legend]
Collaboration diagram for nzmath.poly.uniutil.OrderProvider:
[legend]

Public Member Functions

def __init__ (self, order=termorder.ascending_order)
 
def shift_degree_to (self, degree)
 
def split_at (self, degree)
 

Public Attributes

 order
 

Detailed Description

OrderProvider provides order and related operations.

Definition at line 28 of file uniutil.py.

Constructor & Destructor Documentation

◆ __init__()

def nzmath.poly.uniutil.OrderProvider.__init__ (   self,
  order = termorder.ascending_order 
)
Do not instantiate OrderProvider.
This initializer should be called from descendant:
  OrderProvider.__init__(self, order)
where order is default to termorder.ascending_order.

Definition at line 32 of file uniutil.py.

References nzmath.matrix.Matrix.__class__, nzmath.matrix.RingMatrix.__class__, nzmath.matrix.RingSquareMatrix.__class__, nzmath.matrix.FieldMatrix.__class__, nzmath.matrix.MatrixRing.__class__, and nzmath.matrix.Subspace.__class__.

Member Function Documentation

◆ shift_degree_to()

def nzmath.poly.uniutil.OrderProvider.shift_degree_to (   self,
  degree 
)

◆ split_at()

Member Data Documentation

◆ order

nzmath.poly.uniutil.OrderProvider.order

Definition at line 41 of file uniutil.py.

Referenced by nzmath.poly.uniutil.DivisionProvider.__divmod__(), nzmath.poly.uniutil.DivisionProvider.__floordiv__(), nzmath.poly.uniutil.DivisionProvider.__mod__(), nzmath.poly.uniutil.DivisionProvider._populate_reduced(), nzmath.poly.uniutil.DivisionProvider._populate_reduced_more(), nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider.distinct_degree_factorization(), nzmath.poly.uniutil.PseudoDivisionProvider.exact_division(), nzmath.poly.uniutil.DivisionProvider.extgcd(), nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider.factor(), nzmath.poly.uniutil.DivisionProvider.gcd(), nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider.isirreducible(), nzmath.elliptic.ECoverGF.issupersingular(), nzmath.poly.multiutil.NestProvider.leading_variable(), nzmath.poly.uniutil.DivisionProvider.mod(), nzmath.poly.uniutil.PseudoDivisionProvider.monic_divmod(), nzmath.poly.uniutil.PseudoDivisionProvider.monic_floordiv(), nzmath.poly.uniutil.PseudoDivisionProvider.monic_mod(), nzmath.elliptic.ECoverGF.pointorder(), nzmath.poly.uniutil.PseudoDivisionProvider.pseudo_divmod(), nzmath.poly.uniutil.PseudoDivisionProvider.pseudo_floordiv(), nzmath.poly.uniutil.PseudoDivisionProvider.pseudo_mod(), nzmath.poly.uniutil.KaratsubaProvider.ring_mul_karatsuba(), nzmath.poly.uniutil.OrderProvider.shift_degree_to(), nzmath.poly.uniutil.OrderProvider.split_at(), nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider.split_same_degrees(), nzmath.poly.uniutil.KaratsubaProvider.square_karatsuba(), nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider.squarefree_decomposition(), and nzmath.elliptic.ECoverGF.trace().


The documentation for this class was generated from the following file: