NZMATH
1.2.0
About: NZMATH is a Python based number theory oriented calculation system.
![]() ![]() |
Public Member Functions | |
def | __init__ (self, coefficients, coeffring=None, _sorted=False, **kwds) |
def | normalize (self) |
![]() | |
def | resultant (self, other) |
def | subresultant_gcd (self, other) |
def | subresultant_extgcd (self, other) |
![]() | |
def | content (self) |
def | primitive_part (self) |
![]() | |
def | discriminant (self) |
def | to_field_polynomial (self) |
def | __pow__ (self, index, mod=None) |
![]() | |
def | pseudo_divmod (self, other) |
def | pseudo_floordiv (self, other) |
def | pseudo_mod (self, other) |
def | __truediv__ (self, other) |
def | exact_division (self, other) |
def | scalar_exact_division (self, scale) |
def | monic_divmod (self, other) |
def | monic_floordiv (self, other) |
def | monic_mod (self, other) |
def | monic_pow (self, index, mod) |
![]() | |
def | getRing (self) |
def | getCoefficientRing (self) |
def | __repr__ (self) |
def | __add__ (self, other) |
def | __radd__ (self, other) |
def | __sub__ (self, other) |
def | __rsub__ (self, other) |
def | ismonic (self) |
def | __getitem__ (self, degree) |
![]() | |
def | __init__ (self, order=termorder.ascending_order) |
def | shift_degree_to (self, degree) |
def | split_at (self, degree) |
![]() | |
def | __init__ (self, coefficients, _sorted=False, **kwds) |
def | __pos__ (self) |
def | __neg__ (self) |
def | __mul__ (self, other) |
def | __rmul__ (self, other) |
def | ring_mul_karatsuba (self, other) |
def | scalar_mul (self, scale) |
def | square (self) |
def | __pow__ (self, index) |
def | degree (self) |
def | leading_coefficient (self) |
def | leading_term (self) |
def | iterterms (self) |
def | iterbases (self) |
def | itercoefficients (self) |
def | __contains__ (self, degree) |
def | __len__ (self) |
def | __eq__ (self, other) |
def | __hash__ (self) |
def | __call__ (self, val) |
![]() | |
def | __init__ (self, coefficients, **kwds) |
def | ring_mul (self, other) |
def | term_mul (self, term) |
def | differentiate (self) |
def | upshift_degree (self, slide) |
def | downshift_degree (self, slide) |
def | terms_map (self, func) |
def | construct_with_default (self, terms) |
![]() | |
def | __iter__ (self) |
def | __ne__ (self, other) |
def | __nonzero__ (self) |
def | terms (self) |
def | coefficients (self) |
def | bases (self) |
def | coefficients_map (self, func) |
def | bases_map (self, func) |
![]() | |
def | __init__ (self) |
def | set_coefficient_ring (self, coeffring) |
![]() | |
def | mul_module_action (self, other) |
def | exact_division (self, other) |
![]() | |
def | __init__ (self, *args, **kwd) |
def | __eq__ (self, other) |
def | __hash__ (self) |
def | __ne__ (self, other) |
Additional Inherited Members | |
![]() | |
order | |
![]() | |
sorted | |
![]() | |
number_of_variables | |
Polynomial with integer coefficients. This class is required because special initialization must be done for built-in int/long.
Definition at line 1362 of file uniutil.py.
def nzmath.poly.uniutil.IntegerPolynomial.__init__ | ( | self, | |
coefficients, | |||
coeffring = None , |
|||
_sorted = False , |
|||
** | kwds | ||
) |
Initialize the polynomial. - coefficients: initializer for polynomial coefficients - coeffring: unique factorization domain
Reimplemented from nzmath.poly.uniutil.UniqueFactorizationDomainPolynomial.
Definition at line 1369 of file uniutil.py.
def nzmath.poly.uniutil.IntegerPolynomial.normalize | ( | self | ) |
returns the unique normalized polynomial g which is associate to self (so g=u*self for some unit in coeffring). For IntegerPolynomial, g is positive.
Definition at line 1374 of file uniutil.py.
References nzmath.poly.termorder.TermOrderInterface.leading_coefficient(), nzmath.poly.termorder.UnivarTermOrder.leading_coefficient(), nzmath.poly.termorder.MultivarTermOrder.leading_coefficient(), and nzmath.poly.univar.SortedPolynomial.leading_coefficient().