NZMATH
1.2.0
About: NZMATH is a Python based number theory oriented calculation system.
![]() ![]() |
Public Member Functions | |
def | __init__ (self, coefficients, coeffring=None, _sorted=False, **kwds) |
def | ring_mul (self, other) |
def | square (self) |
![]() | |
def | __init__ (self, ch) |
def | __pow__ (self, index, mod=None) |
def | mod_pow (self, polynom, index) |
def | squarefree_decomposition (self) |
def | pthroot (self) |
def | distinct_degree_factorization (self) |
def | split_same_degrees (self, degree) |
def | factor (self) |
def | isirreducible (self) |
![]() | |
def | __pow__ (self, index, mod=None) |
def | resultant (self, other) |
def | discriminant (self) |
![]() | |
def | __init__ (self) |
def | __divmod__ (self, other) |
def | __floordiv__ (self, other) |
def | __mod__ (self, other) |
def | mod (self, dividend) |
def | mod_pow (self, polynom, index) |
def | __truediv__ (self, other) |
def | scalar_exact_division (self, scale) |
def | gcd (self, other) |
def | extgcd (self, other) |
![]() | |
def | content (self) |
def | primitive_part (self) |
![]() | |
def | getRing (self) |
def | getCoefficientRing (self) |
def | __repr__ (self) |
def | __add__ (self, other) |
def | __radd__ (self, other) |
def | __sub__ (self, other) |
def | __rsub__ (self, other) |
def | ismonic (self) |
def | __getitem__ (self, degree) |
![]() | |
def | __init__ (self, order=termorder.ascending_order) |
def | shift_degree_to (self, degree) |
def | split_at (self, degree) |
![]() | |
def | __init__ (self, coefficients, _sorted=False, **kwds) |
def | __pos__ (self) |
def | __neg__ (self) |
def | __mul__ (self, other) |
def | __rmul__ (self, other) |
def | ring_mul_karatsuba (self, other) |
def | scalar_mul (self, scale) |
def | __pow__ (self, index) |
def | degree (self) |
def | leading_coefficient (self) |
def | leading_term (self) |
def | iterterms (self) |
def | iterbases (self) |
def | itercoefficients (self) |
def | __contains__ (self, degree) |
def | __len__ (self) |
def | __eq__ (self, other) |
def | __hash__ (self) |
def | __call__ (self, val) |
![]() | |
def | __init__ (self, coefficients, **kwds) |
def | term_mul (self, term) |
def | differentiate (self) |
def | upshift_degree (self, slide) |
def | downshift_degree (self, slide) |
def | terms_map (self, func) |
def | construct_with_default (self, terms) |
![]() | |
def | __iter__ (self) |
def | __ne__ (self, other) |
def | __nonzero__ (self) |
def | terms (self) |
def | coefficients (self) |
def | bases (self) |
def | coefficients_map (self, func) |
def | bases_map (self, func) |
![]() | |
def | __init__ (self) |
def | set_coefficient_ring (self, coeffring) |
![]() | |
def | mul_module_action (self, other) |
def | exact_division (self, other) |
![]() | |
def | __init__ (self, *args, **kwd) |
def | __eq__ (self, other) |
def | __hash__ (self) |
def | __ne__ (self, other) |
Additional Inherited Members | |
![]() | |
ch | |
![]() | |
order | |
![]() | |
sorted | |
![]() | |
number_of_variables | |
Fp polynomial
Definition at line 1500 of file uniutil.py.
def nzmath.poly.uniutil.FinitePrimeFieldPolynomial.__init__ | ( | self, | |
coefficients, | |||
coeffring = None , |
|||
_sorted = False , |
|||
** | kwds | ||
) |
Initialize the polynomial. - coefficients: initializer for polynomial coefficients - coeffring: finite prime field
Reimplemented from nzmath.poly.uniutil.FiniteFieldPolynomial.
Definition at line 1504 of file uniutil.py.
def nzmath.poly.uniutil.FinitePrimeFieldPolynomial.ring_mul | ( | self, | |
other | |||
) |
Multiplication of two polynomials in the same ring.
Reimplemented from nzmath.poly.univar.PolynomialInterface.
Definition at line 1519 of file uniutil.py.
References nzmath.elliptic.ECGeneric.ch, nzmath.elliptic.ECoverGF.ch, nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider.ch, and nzmath.poly.formalsum.FormalSumContainerInterface.construct_with_default().
Referenced by nzmath.poly.univar.BasicPolynomial.__mul__(), and nzmath.poly.univar.SortedPolynomial.__mul__().
def nzmath.poly.uniutil.FinitePrimeFieldPolynomial.square | ( | self | ) |
Return the square of self.
Reimplemented from nzmath.poly.univar.SortedPolynomial.
Definition at line 1542 of file uniutil.py.
References nzmath.elliptic.ECGeneric.ch, nzmath.elliptic.ECoverGF.ch, nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider.ch, nzmath.poly.formalsum.FormalSumContainerInterface.construct_with_default(), nzmath.bigrange.range(), and nzmath.poly.univar.SortedPolynomial.sorted.
Referenced by nzmath.poly.univar.BasicPolynomial.__pow__(), nzmath.poly.univar.SortedPolynomial.__pow__(), nzmath.poly.uniutil.FieldPolynomial.__pow__(), and nzmath.poly.uniutil.PseudoDivisionProvider.monic_pow().