NZMATH  1.2.0
About: NZMATH is a Python based number theory oriented calculation system.
  Fossies Dox: NZMATH-1.2.0.tar.gz  ("inofficial" and yet experimental doxygen-generated source code documentation)  

nzmath.poly.uniutil.FieldPolynomial Class Reference
Inheritance diagram for nzmath.poly.uniutil.FieldPolynomial:
Collaboration diagram for nzmath.poly.uniutil.FieldPolynomial:

Public Member Functions

def __init__ (self, coefficients, coeffring=None, _sorted=False, **kwds)
def __pow__ (self, index, mod=None)
def resultant (self, other)
def discriminant (self)
- Public Member Functions inherited from nzmath.poly.uniutil.DivisionProvider
def __init__ (self)
def __divmod__ (self, other)
def __floordiv__ (self, other)
def __mod__ (self, other)
def mod (self, dividend)
def mod_pow (self, polynom, index)
def __truediv__ (self, other)
def scalar_exact_division (self, scale)
def gcd (self, other)
def extgcd (self, other)
- Public Member Functions inherited from nzmath.poly.uniutil.ContentProvider
def content (self)
def primitive_part (self)
- Public Member Functions inherited from nzmath.poly.uniutil.RingPolynomial
def getRing (self)
def getCoefficientRing (self)
def __repr__ (self)
def __add__ (self, other)
def __radd__ (self, other)
def __sub__ (self, other)
def __rsub__ (self, other)
def ismonic (self)
def __getitem__ (self, degree)
- Public Member Functions inherited from nzmath.poly.uniutil.OrderProvider
def __init__ (self, order=termorder.ascending_order)
def shift_degree_to (self, degree)
def split_at (self, degree)
- Public Member Functions inherited from nzmath.poly.univar.SortedPolynomial
def __init__ (self, coefficients, _sorted=False, **kwds)
def __pos__ (self)
def __neg__ (self)
def __mul__ (self, other)
def __rmul__ (self, other)
def ring_mul_karatsuba (self, other)
def scalar_mul (self, scale)
def square (self)
def __pow__ (self, index)
def degree (self)
def leading_coefficient (self)
def leading_term (self)
def iterterms (self)
def iterbases (self)
def itercoefficients (self)
def __contains__ (self, degree)
def __len__ (self)
def __eq__ (self, other)
def __hash__ (self)
def __call__ (self, val)
- Public Member Functions inherited from nzmath.poly.univar.PolynomialInterface
def __init__ (self, coefficients, **kwds)
def ring_mul (self, other)
def term_mul (self, term)
def differentiate (self)
def upshift_degree (self, slide)
def downshift_degree (self, slide)
def terms_map (self, func)
def construct_with_default (self, terms)
- Public Member Functions inherited from nzmath.poly.formalsum.FormalSumContainerInterface
def __iter__ (self)
def __ne__ (self, other)
def __nonzero__ (self)
def terms (self)
def coefficients (self)
def bases (self)
def coefficients_map (self, func)
def bases_map (self, func)
- Public Member Functions inherited from nzmath.poly.uniutil.RingElementProvider
def __init__ (self)
def set_coefficient_ring (self, coeffring)
- Public Member Functions inherited from nzmath.ring.CommutativeRingElement
def mul_module_action (self, other)
def exact_division (self, other)
- Public Member Functions inherited from nzmath.ring.RingElement
def __init__ (self, *args, **kwd)
def __eq__ (self, other)
def __hash__ (self)
def __ne__ (self, other)

Additional Inherited Members

- Public Attributes inherited from nzmath.poly.uniutil.OrderProvider
- Public Attributes inherited from nzmath.poly.univar.SortedPolynomial
- Public Attributes inherited from nzmath.poly.univar.PolynomialInterface

Detailed Description

Polynomial with field coefficients.

Definition at line 1386 of file

Constructor & Destructor Documentation

◆ __init__()

def nzmath.poly.uniutil.FieldPolynomial.__init__ (   self,
  coeffring = None,
  _sorted = False,
**  kwds 
Initialize the polynomial.

- coefficients: initializer for polynomial coefficients
- coeffring: field

Reimplemented from nzmath.poly.uniutil.RingPolynomial.

Reimplemented in nzmath.poly.uniutil.FinitePrimeFieldPolynomial, and nzmath.poly.uniutil.FiniteFieldPolynomial.

Definition at line 1390 of file

Member Function Documentation

◆ __pow__()

◆ discriminant()

◆ resultant()

The documentation for this class was generated from the following file: