NZMATH  1.2.0
About: NZMATH is a Python based number theory oriented calculation system.
  Fossies Dox: NZMATH-1.2.0.tar.gz  ("inofficial" and yet experimental doxygen-generated source code documentation)  

nzmath.poly.uniutil.DivisionProvider Class Reference
Inheritance diagram for nzmath.poly.uniutil.DivisionProvider:
[legend]
Collaboration diagram for nzmath.poly.uniutil.DivisionProvider:
[legend]

Public Member Functions

def __init__ (self)
 
def __divmod__ (self, other)
 
def __floordiv__ (self, other)
 
def __mod__ (self, other)
 
def mod (self, dividend)
 
def mod_pow (self, polynom, index)
 
def __truediv__ (self, other)
 
def scalar_exact_division (self, scale)
 
def gcd (self, other)
 
def extgcd (self, other)
 

Private Member Functions

def _populate_reduced (self, degree, lc, upperbound)
 
def _populate_reduced_more (self, degrees)
 

Private Attributes

 _reduced
 

Detailed Description

DivisionProvider provides all kind of divisions for univariate
polynomials.  It is assumed that the coefficient ring of the
polynomials is a field.

The class should be used as a mix-in.

REQUIRE: OrderProvider

Definition at line 78 of file uniutil.py.

Constructor & Destructor Documentation

◆ __init__()

def nzmath.poly.uniutil.DivisionProvider.__init__ (   self)
Do not instantiate DivisionProvider.
This initializer should be called from descendant.

Definition at line 88 of file uniutil.py.

References nzmath.matrix.Matrix.__class__, nzmath.matrix.RingMatrix.__class__, nzmath.matrix.RingSquareMatrix.__class__, nzmath.matrix.FieldMatrix.__class__, nzmath.matrix.MatrixRing.__class__, and nzmath.matrix.Subspace.__class__.

Member Function Documentation

◆ __divmod__()

◆ __floordiv__()

◆ __mod__()

◆ __truediv__()

def nzmath.poly.uniutil.DivisionProvider.__truediv__ (   self,
  other 
)
self / other

The result is a rational function.

Definition at line 285 of file uniutil.py.

◆ _populate_reduced()

def nzmath.poly.uniutil.DivisionProvider._populate_reduced (   self,
  degree,
  lc,
  upperbound 
)
private
Populate self._reduced.

degree, lc is of self, and self._reduced is populated up to
the given upperbound.

Definition at line 202 of file uniutil.py.

References nzmath.poly.uniutil.DivisionProvider._reduced, nzmath.poly.univar.PolynomialInterface.construct_with_default(), nzmath.poly.formalsum.FormalSumContainerInterface.construct_with_default(), nzmath.poly.formalsum.DictFormalSum.construct_with_default(), nzmath.poly.multivar.BasicPolynomial.construct_with_default(), nzmath.poly.formalsum.ListFormalSum.construct_with_default(), nzmath.poly.formalsum.FormalSumContainerInterface.itercoefficients(), nzmath.poly.univar.BasicPolynomial.itercoefficients(), nzmath.poly.formalsum.DictFormalSum.itercoefficients(), nzmath.poly.multivar.BasicPolynomial.itercoefficients(), nzmath.poly.formalsum.ListFormalSum.itercoefficients(), nzmath.poly.univar.SortedPolynomial.itercoefficients(), nzmath.poly.multiutil.OrderProvider.order, nzmath.poly.uniutil.OrderProvider.order, nzmath.finitefield.FiniteField.order(), nzmath.finitefield.FinitePrimeFieldElement.order(), nzmath.permute.Permute.order(), nzmath.group.GroupElement.order(), nzmath.permute.ExPermute.order(), nzmath.elliptic.ECoverGF.order(), nzmath.bigrange.range(), nzmath.poly.univar.PolynomialInterface.scalar_mul(), nzmath.poly.array.ArrayPoly.scalar_mul(), nzmath.poly.multivar.BasicPolynomial.scalar_mul(), nzmath.poly.array.ArrayPolyMod.scalar_mul(), nzmath.poly.formalsum.DictFormalSum.scalar_mul(), nzmath.poly.formalsum.ListFormalSum.scalar_mul(), and nzmath.poly.univar.SortedPolynomial.scalar_mul().

Referenced by nzmath.poly.uniutil.DivisionProvider.mod().

◆ _populate_reduced_more()

def nzmath.poly.uniutil.DivisionProvider._populate_reduced_more (   self,
  degrees 
)
private

◆ extgcd()

◆ gcd()

def nzmath.poly.uniutil.DivisionProvider.gcd (   self,
  other 
)

◆ mod()

◆ mod_pow()

◆ scalar_exact_division()

def nzmath.poly.uniutil.DivisionProvider.scalar_exact_division (   self,
  scale 
)
Return quotient by a scalar which can divide each coefficient
exactly.

Definition at line 293 of file uniutil.py.

References nzmath.poly.formalsum.FormalSumContainerInterface.coefficients_map().

Referenced by nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider.factor(), and nzmath.poly.uniutil.ContentProvider.primitive_part().

Member Data Documentation

◆ _reduced


The documentation for this class was generated from the following file: