NZMATH
1.2.0
About: NZMATH is a Python based number theory oriented calculation system.
![]() ![]() |
Public Member Functions | |
def | __init__ (self, field, number_of_variables) |
def | __repr__ (self) |
def | __str__ (self) |
def | __eq__ (self, other) |
def | __contains__ (self, element) |
def | __hash__ (self) |
def | getQuotientField (self) |
def | getCoefficientRing (self) |
def | issubring (self, other) |
def | issuperring (self, other) |
def | getCharacteristic (self) |
def | getCommonSuperring (self, other) |
def | unnest (self) |
def | createElement (self, *seedarg, **seedkwd) |
def | getInstance (cls, coefffield, number_of_variables) |
![]() | |
def | __init__ (self, domain) |
![]() | |
def | __init__ (self) |
def | createElement (self, *args) |
def | isfield (self) |
def | gcd (self, a, b) |
![]() | |
def | isdomain (self) |
def | isnoetherian (self) |
def | isufd (self) |
def | ispid (self) |
def | iseuclidean (self) |
def | registerModuleAction (self, action_ring, action) |
def | hasaction (self, action_ring) |
def | getaction (self, action_ring) |
![]() | |
def | createElement (self, seed) |
def | __ne__ (self, other) |
Public Attributes | |
coefficient_field | |
number_of_variables | |
![]() | |
basedomain | |
![]() | |
properties | |
Properties | |
one = property(_get_one, None, None, "multiplicative unit.") | |
zero = property(_get_zero, None, None, "additive unit.") | |
Private Member Functions | |
def | _get_one (self) |
def | _get_zero (self) |
Private Attributes | |
_one | |
_zero | |
Static Private Attributes | |
dictionary | _instances = {} |
def nzmath.poly.ring.RationalFunctionField.__init__ | ( | self, | |
field, | |||
number_of_variables | |||
) |
def nzmath.poly.ring.RationalFunctionField.__contains__ | ( | self, | |
element | |||
) |
Return True if an element is in the field.
Definition at line 503 of file ring.py.
References nzmath.poly.ring.RationalFunctionField.issubring().
def nzmath.poly.ring.RationalFunctionField.__eq__ | ( | self, | |
other | |||
) |
equality test
Reimplemented from nzmath.ring.Ring.
Definition at line 486 of file ring.py.
References nzmath.poly.ring.RationalFunctionField.coefficient_field, nzmath.poly.ring.PolynomialRing.number_of_variables, nzmath.poly.ratfunc.RationalFunction.number_of_variables, nzmath.poly.multiutil.NestProvider.number_of_variables, nzmath.poly.multivar.BasicPolynomial.number_of_variables, nzmath.poly.multiutil.PolynomialRingAnonymousVariables.number_of_variables, nzmath.poly.ring.RationalFunctionField.number_of_variables, nzmath.poly.multiutil.NestProvider.unnest(), and nzmath.poly.ring.RationalFunctionField.unnest().
Referenced by nzmath.quad.ReducedQuadraticForm.__ne__(), nzmath.ring.Ring.__ne__(), nzmath.real.RealField.__ne__(), nzmath.ring.Ideal.__ne__(), and nzmath.prime.FactoredInteger.__ne__().
def nzmath.poly.ring.RationalFunctionField.__hash__ | ( | self | ) |
Return hash corresponding to equality.
Reimplemented from nzmath.ring.Ring.
Definition at line 511 of file ring.py.
References nzmath.poly.ring.RationalFunctionField.coefficient_field, nzmath.poly.ring.PolynomialRing.number_of_variables, nzmath.poly.ratfunc.RationalFunction.number_of_variables, nzmath.poly.multiutil.NestProvider.number_of_variables, nzmath.poly.multivar.BasicPolynomial.number_of_variables, nzmath.poly.multiutil.PolynomialRingAnonymousVariables.number_of_variables, and nzmath.poly.ring.RationalFunctionField.number_of_variables.
def nzmath.poly.ring.RationalFunctionField.__repr__ | ( | self | ) |
Return 'RationalFunctionField(Field, #vars)'
Definition at line 474 of file ring.py.
References nzmath.matrix.Matrix.__class__, nzmath.matrix.RingMatrix.__class__, nzmath.matrix.RingSquareMatrix.__class__, nzmath.matrix.FieldMatrix.__class__, nzmath.matrix.MatrixRing.__class__, nzmath.matrix.Subspace.__class__, nzmath.poly.ring.RationalFunctionField.coefficient_field, nzmath.poly.ring.PolynomialRing.number_of_variables, nzmath.poly.ratfunc.RationalFunction.number_of_variables, nzmath.poly.multiutil.NestProvider.number_of_variables, nzmath.poly.multivar.BasicPolynomial.number_of_variables, nzmath.poly.multiutil.PolynomialRingAnonymousVariables.number_of_variables, and nzmath.poly.ring.RationalFunctionField.number_of_variables.
def nzmath.poly.ring.RationalFunctionField.__str__ | ( | self | ) |
Return K()()
Definition at line 480 of file ring.py.
References nzmath.poly.ring.RationalFunctionField.coefficient_field, nzmath.poly.ring.PolynomialRing.number_of_variables, nzmath.poly.ratfunc.RationalFunction.number_of_variables, nzmath.poly.multiutil.NestProvider.number_of_variables, nzmath.poly.multivar.BasicPolynomial.number_of_variables, nzmath.poly.multiutil.PolynomialRingAnonymousVariables.number_of_variables, and nzmath.poly.ring.RationalFunctionField.number_of_variables.
|
private |
getter for one
Definition at line 608 of file ring.py.
References nzmath.imaginary.ComplexField._one, nzmath.poly.ring.PolynomialRing._one, nzmath.algfield.NumberField._one, nzmath.intresidue.IntegerResidueClassRing._one, nzmath.finitefield.FinitePrimeField._one, nzmath.poly.multiutil.PolynomialRingAnonymousVariables._one, nzmath.poly.ring.RationalFunctionField._one, nzmath.finitefield.ExtendedField._one, nzmath.matrix.MatrixRing._one, and nzmath.ring.QuotientField.basedomain.
|
private |
Definition at line 620 of file ring.py.
References nzmath.imaginary.ComplexField._zero, nzmath.poly.ring.PolynomialRing._zero, nzmath.intresidue.IntegerResidueClassRing._zero, nzmath.algfield.NumberField._zero, nzmath.finitefield.FinitePrimeField._zero, nzmath.poly.multiutil.PolynomialRingAnonymousVariables._zero, nzmath.poly.ring.RationalFunctionField._zero, nzmath.finitefield.ExtendedField._zero, nzmath.matrix.MatrixRing._zero, and nzmath.ring.QuotientField.basedomain.
def nzmath.poly.ring.RationalFunctionField.createElement | ( | self, | |
* | seedarg, | ||
** | seedkwd | ||
) |
Return an element of the field made from seed.
Definition at line 601 of file ring.py.
Referenced by nzmath.finitefield.FiniteField.random_element(), and nzmath.finitefield.FiniteField.TonelliShanks().
def nzmath.poly.ring.RationalFunctionField.getCharacteristic | ( | self | ) |
The characteristic of a rational function field is same as of its coefficient field.
Reimplemented from nzmath.ring.Ring.
Definition at line 562 of file ring.py.
References nzmath.poly.ring.RationalFunctionField.coefficient_field.
def nzmath.poly.ring.RationalFunctionField.getCoefficientRing | ( | self | ) |
Return the coefficient field. This method is provided for common interface with PolynomialRing.
Definition at line 523 of file ring.py.
References nzmath.poly.ring.RationalFunctionField.coefficient_field.
Referenced by nzmath.poly.uniutil.DomainPolynomial.discriminant(), nzmath.poly.uniutil.FieldPolynomial.discriminant(), nzmath.poly.multiutil.PseudoDivisionProvider.exact_division(), nzmath.poly.multiutil.GcdProvider.gcd(), nzmath.poly.multiutil.PseudoDivisionProvider.pseudo_divmod(), nzmath.poly.multiutil.PseudoDivisionProvider.pseudo_floordiv(), nzmath.poly.multiutil.PseudoDivisionProvider.pseudo_mod(), nzmath.poly.uniutil.SubresultantGcdProvider.resultant(), nzmath.poly.uniutil.FieldPolynomial.resultant(), nzmath.poly.uniutil.SubresultantGcdProvider.subresultant_extgcd(), and nzmath.poly.uniutil.DomainPolynomial.to_field_polynomial().
def nzmath.poly.ring.RationalFunctionField.getCommonSuperring | ( | self, | |
other | |||
) |
Return common superring.
Reimplemented from nzmath.ring.Ring.
Definition at line 569 of file ring.py.
References nzmath.poly.ring.RationalFunctionField.coefficient_field, nzmath.poly.ring.PolynomialRing.issuperring(), nzmath.imaginary.ComplexField.issuperring(), nzmath.finitefield.FinitePrimeField.issuperring(), nzmath.algfield.NumberField.issuperring(), nzmath.intresidue.IntegerResidueClassRing.issuperring(), nzmath.poly.multiutil.PolynomialRingAnonymousVariables.issuperring(), nzmath.poly.ring.RationalFunctionField.issuperring(), nzmath.finitefield.ExtendedField.issuperring(), nzmath.matrix.MatrixRing.issuperring(), nzmath.poly.ring.PolynomialRing.number_of_variables, nzmath.poly.ratfunc.RationalFunction.number_of_variables, nzmath.poly.multiutil.NestProvider.number_of_variables, nzmath.poly.multivar.BasicPolynomial.number_of_variables, nzmath.poly.multiutil.PolynomialRingAnonymousVariables.number_of_variables, and nzmath.poly.ring.RationalFunctionField.number_of_variables.
def nzmath.poly.ring.RationalFunctionField.getInstance | ( | cls, | |
coefffield, | |||
number_of_variables | |||
) |
Return an instance of the class with specified coefficient ring and number of variables.
Definition at line 632 of file ring.py.
References nzmath.poly.ring.PolynomialRing._instances, nzmath.finitefield.FinitePrimeField._instances, nzmath.intresidue.IntegerResidueClassRing._instances, nzmath.poly.multiutil.PolynomialRingAnonymousVariables._instances, nzmath.poly.ring.RationalFunctionField._instances, and nzmath.matrix.MatrixRing._instances.
def nzmath.poly.ring.RationalFunctionField.getQuotientField | ( | self | ) |
Return the quotient field (the field itself).
Reimplemented from nzmath.ring.Field.
def nzmath.poly.ring.RationalFunctionField.issubring | ( | self, | |
other | |||
) |
Return True if self is a subring of the other.
Reimplemented from nzmath.ring.Ring.
Definition at line 530 of file ring.py.
References nzmath.poly.ring.RationalFunctionField.coefficient_field, nzmath.poly.ring.PolynomialRing.number_of_variables, nzmath.poly.ratfunc.RationalFunction.number_of_variables, nzmath.poly.multiutil.NestProvider.number_of_variables, nzmath.poly.multivar.BasicPolynomial.number_of_variables, nzmath.poly.multiutil.PolynomialRingAnonymousVariables.number_of_variables, and nzmath.poly.ring.RationalFunctionField.number_of_variables.
Referenced by nzmath.poly.ring.RationalFunctionField.__contains__(), nzmath.ring.Ring.getCommonSuperring(), nzmath.rational.RationalField.getCommonSuperring(), and nzmath.rational.IntegerRing.getCommonSuperring().
def nzmath.poly.ring.RationalFunctionField.issuperring | ( | self, | |
other | |||
) |
Return True if self is a superring of the other.
Reimplemented from nzmath.ring.Ring.
Definition at line 542 of file ring.py.
References nzmath.poly.ring.RationalFunctionField.coefficient_field, nzmath.poly.ring.PolynomialRing.issuperring(), nzmath.imaginary.ComplexField.issuperring(), nzmath.finitefield.FinitePrimeField.issuperring(), nzmath.algfield.NumberField.issuperring(), nzmath.intresidue.IntegerResidueClassRing.issuperring(), nzmath.poly.multiutil.PolynomialRingAnonymousVariables.issuperring(), nzmath.poly.ring.RationalFunctionField.issuperring(), nzmath.finitefield.ExtendedField.issuperring(), nzmath.matrix.MatrixRing.issuperring(), nzmath.poly.ring.PolynomialRing.number_of_variables, nzmath.poly.ratfunc.RationalFunction.number_of_variables, nzmath.poly.multiutil.NestProvider.number_of_variables, nzmath.poly.multivar.BasicPolynomial.number_of_variables, nzmath.poly.multiutil.PolynomialRingAnonymousVariables.number_of_variables, and nzmath.poly.ring.RationalFunctionField.number_of_variables.
Referenced by nzmath.ring.Ring.getCommonSuperring(), nzmath.poly.ring.RationalFunctionField.getCommonSuperring(), nzmath.rational.RationalField.getCommonSuperring(), nzmath.rational.IntegerRing.getCommonSuperring(), nzmath.real.RealField.issubring(), and nzmath.poly.ring.RationalFunctionField.issuperring().
def nzmath.poly.ring.RationalFunctionField.unnest | ( | self | ) |
if self is a nested RationalFunctionField i.e. its coefficientField is also a RationalFunctionField, then the function returns one level unnested RationalFunctionField. For example: RationalFunctionField(RationalFunctionField(Q, 1), 1).unnest() returns RationalFunctionField(Q, 2).
Definition at line 588 of file ring.py.
References nzmath.poly.ring.RationalFunctionField.coefficient_field, nzmath.poly.ring.PolynomialRing.number_of_variables, nzmath.poly.ratfunc.RationalFunction.number_of_variables, nzmath.poly.multiutil.NestProvider.number_of_variables, nzmath.poly.multivar.BasicPolynomial.number_of_variables, nzmath.poly.multiutil.PolynomialRingAnonymousVariables.number_of_variables, and nzmath.poly.ring.RationalFunctionField.number_of_variables.
Referenced by nzmath.poly.ring.RationalFunctionField.__eq__(), nzmath.poly.multiutil.PseudoDivisionProvider.exact_division(), nzmath.poly.multiutil.GcdProvider.gcd(), nzmath.poly.multiutil.PseudoDivisionProvider.pseudo_divmod(), nzmath.poly.multiutil.PseudoDivisionProvider.pseudo_floordiv(), and nzmath.poly.multiutil.PseudoDivisionProvider.pseudo_mod().
|
staticprivate |
Definition at line 457 of file ring.py.
Referenced by nzmath.poly.ring.RationalFunctionField.getInstance().
|
private |
Definition at line 615 of file ring.py.
Referenced by nzmath.poly.ring.RationalFunctionField._get_one(), nzmath.real.RealField._getOne(), nzmath.ring.ResidueClassRing._getOne(), nzmath.rational.RationalField._getOne(), and nzmath.rational.IntegerRing._getOne().
|
private |
Definition at line 626 of file ring.py.
Referenced by nzmath.poly.ring.RationalFunctionField._get_zero(), nzmath.real.RealField._getZero(), nzmath.ring.ResidueClassRing._getZero(), nzmath.rational.RationalField._getZero(), and nzmath.rational.IntegerRing._getZero().
nzmath.poly.ring.RationalFunctionField.coefficient_field |
Definition at line 471 of file ring.py.
Referenced by nzmath.poly.ring.RationalFunctionField.__eq__(), nzmath.poly.ring.RationalFunctionField.__hash__(), nzmath.poly.ring.RationalFunctionField.__repr__(), nzmath.poly.ring.RationalFunctionField.__str__(), nzmath.poly.ring.RationalFunctionField.getCharacteristic(), nzmath.poly.ring.RationalFunctionField.getCoefficientRing(), nzmath.poly.ring.RationalFunctionField.getCommonSuperring(), nzmath.poly.ring.RationalFunctionField.issubring(), nzmath.poly.ring.RationalFunctionField.issuperring(), and nzmath.poly.ring.RationalFunctionField.unnest().
nzmath.poly.ring.RationalFunctionField.number_of_variables |
Definition at line 472 of file ring.py.
Referenced by nzmath.poly.ring.RationalFunctionField.__eq__(), nzmath.poly.ring.RationalFunctionField.__hash__(), nzmath.poly.ring.RationalFunctionField.__repr__(), nzmath.poly.ring.RationalFunctionField.__str__(), nzmath.poly.ring.RationalFunctionField.getCommonSuperring(), nzmath.poly.ring.RationalFunctionField.issubring(), nzmath.poly.ring.RationalFunctionField.issuperring(), nzmath.poly.multiutil.RingElementProvider.set_coefficient_ring(), and nzmath.poly.ring.RationalFunctionField.unnest().
|
static |
Definition at line 618 of file ring.py.
Referenced by nzmath.ring.Field.gcd(), nzmath.finitefield.FiniteField.Legendre(), nzmath.finitefield.FiniteField.order(), nzmath.finitefield.FiniteField.sqrt(), and nzmath.finitefield.FiniteField.TonelliShanks().
|
static |
Definition at line 629 of file ring.py.
Referenced by nzmath.ring.Field.gcd().