NZMATH  1.2.0
About: NZMATH is a Python based number theory oriented calculation system.
  Fossies Dox: NZMATH-1.2.0.tar.gz  ("inofficial" and yet experimental doxygen-generated source code documentation)  

nzmath.poly.multiutil.UniqueFactorizationDomainPolynomial Class Reference
Inheritance diagram for nzmath.poly.multiutil.UniqueFactorizationDomainPolynomial:
Collaboration diagram for nzmath.poly.multiutil.UniqueFactorizationDomainPolynomial:

Public Member Functions

def __init__ (self, coefficients, **kwds)
def resultant (self, other, var)
- Public Member Functions inherited from nzmath.poly.multiutil.GcdProvider
def gcd (self, other)
- Public Member Functions inherited from nzmath.poly.multiutil.PseudoDivisionProvider
def pseudo_divmod (self, other)
def pseudo_floordiv (self, other)
def pseudo_mod (self, other)
def __truediv__ (self, other)
def exact_division (self, other)
- Public Member Functions inherited from nzmath.poly.multiutil.RingPolynomial
def getRing (self)
def getCoefficientRing (self)
def __repr__ (self)
def __add__ (self, other)
def __radd__ (self, other)
def __sub__ (self, other)
def __rsub__ (self, other)
- Public Member Functions inherited from nzmath.poly.multiutil.OrderProvider
def __init__ (self, order)
- Public Member Functions inherited from nzmath.poly.multiutil.NestProvider
def leading_variable (self)
def nest (self, outer, coeffring)
def unnest (self, q, outer, coeffring)
- Public Member Functions inherited from nzmath.poly.multivar.BasicPolynomial
def __mul__ (self, other)
def __rmul__ (self, other)
def ring_mul (self, other)
def scalar_mul (self, scale)
def term_mul (self, term)
def __pow__ (self, index)
def square (self)
def __hash__ (self)
def __call__ (self, target, value)
def __len__ (self)
def __getitem__ (self, index)
def iterterms (self)
def itercoefficients (self)
def iterbases (self)
def partial_differentiate (self, target)
def erase_variable (self, target=0)
def combine_similar_terms (self, target)
def construct_with_default (self, maindata)
- Public Member Functions inherited from nzmath.poly.multivar.PolynomialInterface
def total_degree (self)
def __neg__ (self)
def __pos__ (self)
- Public Member Functions inherited from nzmath.poly.formalsum.FormalSumContainerInterface
def __iter__ (self)
def __contains__ (self, base)
def __eq__ (self, other)
def __ne__ (self, other)
def __nonzero__ (self)
def terms (self)
def coefficients (self)
def bases (self)
def terms_map (self, func)
def coefficients_map (self, func)
def bases_map (self, func)
- Public Member Functions inherited from nzmath.poly.multiutil.RingElementProvider
def __init__ (self)
def set_coefficient_ring (self, coeffring)
- Public Member Functions inherited from nzmath.ring.CommutativeRingElement
def mul_module_action (self, other)
def exact_division (self, other)
- Public Member Functions inherited from nzmath.ring.RingElement
def __init__ (self, *args, **kwd)
def __eq__ (self, other)
def __hash__ (self)
def __ne__ (self, other)

Additional Inherited Members

- Public Attributes inherited from nzmath.poly.multiutil.OrderProvider
- Public Attributes inherited from nzmath.poly.multiutil.NestProvider
- Public Attributes inherited from nzmath.poly.multivar.BasicPolynomial

Detailed Description

Polynomial with unique factorization domain coefficients.

Definition at line 388 of file

Constructor & Destructor Documentation

◆ __init__()

def nzmath.poly.multiutil.UniqueFactorizationDomainPolynomial.__init__ (   self,
**  kwds 
Initialize the polynomial.

- coefficients: initializer for polynomial coefficients
- coeffring: unique factorization domain

Reimplemented from nzmath.poly.multiutil.DomainPolynomial.

Definition at line 392 of file

References nzmath.poly.multiutil.RingElementProvider._coefficient_ring.

Member Function Documentation

◆ resultant()

def nzmath.poly.multiutil.UniqueFactorizationDomainPolynomial.resultant (   self,
Return resultant of two polynomials of the same ring, with
respect to the variable specified by its position var.

Definition at line 404 of file

References nzmath.poly.multiutil.RingElementProvider._coefficient_ring, and nzmath.poly.multiutil.NestProvider.nest().

Referenced by nzmath.poly.uniutil.DomainPolynomial.discriminant(), and nzmath.poly.uniutil.FieldPolynomial.discriminant().

The documentation for this class was generated from the following file: