NZMATH
1.2.0
About: NZMATH is a Python based number theory oriented calculation system.
![]() ![]() |
Public Member Functions | |
def | __init__ (self) |
def | getRing (self) |
def | getCoefficientRing (self) |
def | set_coefficient_ring (self, coeffring) |
![]() | |
def | mul_module_action (self, other) |
def | exact_division (self, other) |
![]() | |
def | __init__ (self, *args, **kwd) |
def | __eq__ (self, other) |
def | __hash__ (self) |
def | __ne__ (self, other) |
Private Attributes | |
_coefficient_ring | |
_ring | |
Provides interfaces for ring.CommutativeRingElement.
Definition at line 95 of file multiutil.py.
def nzmath.poly.multiutil.RingElementProvider.__init__ | ( | self | ) |
Do not instantiate RingElementProvider. This initializer should be called from descendant: RingElementProvider.__init__(self)
Reimplemented from nzmath.ring.CommutativeRingElement.
Definition at line 99 of file multiutil.py.
References nzmath.matrix.Matrix.__class__, nzmath.matrix.RingMatrix.__class__, nzmath.matrix.RingSquareMatrix.__class__, nzmath.matrix.FieldMatrix.__class__, nzmath.matrix.MatrixRing.__class__, and nzmath.matrix.Subspace.__class__.
def nzmath.poly.multiutil.RingElementProvider.getCoefficientRing | ( | self | ) |
Return the coefficient ring.
Reimplemented in nzmath.poly.multiutil.RingPolynomial.
Definition at line 129 of file multiutil.py.
References nzmath.poly.multiutil.RingElementProvider._coefficient_ring.
Referenced by nzmath.poly.uniutil.DomainPolynomial.discriminant(), nzmath.poly.uniutil.FieldPolynomial.discriminant(), nzmath.poly.multiutil.PseudoDivisionProvider.exact_division(), nzmath.poly.multiutil.GcdProvider.gcd(), nzmath.poly.multiutil.PseudoDivisionProvider.pseudo_divmod(), nzmath.poly.multiutil.PseudoDivisionProvider.pseudo_floordiv(), nzmath.poly.multiutil.PseudoDivisionProvider.pseudo_mod(), nzmath.poly.uniutil.SubresultantGcdProvider.resultant(), nzmath.poly.uniutil.FieldPolynomial.resultant(), nzmath.poly.uniutil.SubresultantGcdProvider.subresultant_extgcd(), and nzmath.poly.uniutil.DomainPolynomial.to_field_polynomial().
def nzmath.poly.multiutil.RingElementProvider.getRing | ( | self | ) |
Return an object of a subclass of Ring, to which the element belongs.
Reimplemented from nzmath.ring.RingElement.
Reimplemented in nzmath.poly.multiutil.RingPolynomial.
Definition at line 111 of file multiutil.py.
References nzmath.poly.multiutil.RingElementProvider._coefficient_ring, nzmath.poly.multiutil.RingElementProvider._ring, nzmath.poly.formalsum.FormalSumContainerInterface.itercoefficients(), nzmath.poly.univar.BasicPolynomial.itercoefficients(), nzmath.poly.formalsum.DictFormalSum.itercoefficients(), nzmath.poly.multivar.BasicPolynomial.itercoefficients(), nzmath.poly.formalsum.ListFormalSum.itercoefficients(), nzmath.poly.univar.SortedPolynomial.itercoefficients(), and nzmath.poly.multiutil.RingElementProvider.set_coefficient_ring().
Referenced by nzmath.poly.multiutil.RingPolynomial.__add__(), nzmath.ring.QuotientFieldElement.__add__(), nzmath.poly.uniutil.RingPolynomial.__add__(), nzmath.ring.QuotientFieldElement.__eq__(), nzmath.poly.uniutil.FieldPolynomial.__pow__(), nzmath.poly.multiutil.RingPolynomial.__radd__(), nzmath.poly.uniutil.RingPolynomial.__radd__(), nzmath.poly.multiutil.RingPolynomial.__rsub__(), nzmath.ring.QuotientFieldElement.__rsub__(), nzmath.poly.uniutil.RingPolynomial.__rsub__(), nzmath.ring.QuotientFieldElement.__rtruediv__(), nzmath.poly.multiutil.RingPolynomial.__sub__(), nzmath.ring.QuotientFieldElement.__sub__(), nzmath.poly.uniutil.RingPolynomial.__sub__(), nzmath.ring.QuotientFieldElement.__truediv__(), nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider._small_index_mod_pow(), nzmath.ring.CommutativeRingElement.exact_division(), nzmath.poly.uniutil.DivisionProvider.extgcd(), nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider.factor(), nzmath.poly.uniutil.DivisionProvider.mod_pow(), nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider.mod_pow(), nzmath.poly.uniutil.PseudoDivisionProvider.monic_pow(), nzmath.ring.CommutativeRingElement.mul_module_action(), and nzmath.poly.uniutil.SubresultantGcdProvider.subresultant_gcd().
def nzmath.poly.multiutil.RingElementProvider.set_coefficient_ring | ( | self, | |
coeffring | |||
) |
Definition at line 135 of file multiutil.py.
References nzmath.poly.multiutil.RingElementProvider._coefficient_ring, nzmath.poly.multiutil.RingElementProvider._ring, nzmath.poly.univar.PolynomialInterface.number_of_variables, nzmath.poly.ring.PolynomialRing.number_of_variables, nzmath.poly.ratfunc.RationalFunction.number_of_variables, nzmath.poly.multiutil.NestProvider.number_of_variables, nzmath.poly.multivar.BasicPolynomial.number_of_variables, nzmath.poly.multiutil.PolynomialRingAnonymousVariables.number_of_variables, and nzmath.poly.ring.RationalFunctionField.number_of_variables.
Referenced by nzmath.poly.multiutil.RingPolynomial.__init__(), nzmath.poly.uniutil.RingPolynomial.__init__(), nzmath.poly.multiutil.RingElementProvider.getRing(), and nzmath.poly.uniutil.RingElementProvider.getRing().
|
private |
Definition at line 108 of file multiutil.py.
Referenced by nzmath.poly.ring.PolynomialRing.__contains__(), nzmath.poly.multiutil.PolynomialRingAnonymousVariables.__contains__(), nzmath.poly.ring.PolynomialRing.__eq__(), nzmath.poly.multiutil.PolynomialRingAnonymousVariables.__eq__(), nzmath.poly.uniutil.RingPolynomial.__getitem__(), nzmath.poly.ring.PolynomialRing.__hash__(), nzmath.poly.multiutil.PolynomialRingAnonymousVariables.__hash__(), nzmath.poly.multiutil.DomainPolynomial.__init__(), nzmath.poly.multiutil.UniqueFactorizationDomainPolynomial.__init__(), nzmath.poly.ring.PolynomialRing.__repr__(), nzmath.poly.multiutil.PolynomialRingAnonymousVariables.__repr__(), nzmath.poly.uniutil.RingPolynomial.__repr__(), nzmath.poly.ring.PolynomialRing.__str__(), nzmath.poly.multiutil.PolynomialRingAnonymousVariables.__str__(), nzmath.poly.ring.PolynomialRing._constant_polynomial(), nzmath.poly.ring.PolynomialRing._prepared_polynomial(), nzmath.poly.ring.PolynomialRing._zero_polynomial(), nzmath.poly.ring.PolynomialRing.createElement(), nzmath.poly.multiutil.PolynomialRingAnonymousVariables.createElement(), nzmath.poly.ring.PolynomialRing.getCharacteristic(), nzmath.poly.ring.PolynomialRing.getCoefficientRing(), nzmath.poly.multiutil.RingElementProvider.getCoefficientRing(), nzmath.poly.multiutil.RingPolynomial.getCoefficientRing(), nzmath.poly.multiutil.PolynomialRingAnonymousVariables.getCoefficientRing(), nzmath.poly.uniutil.RingPolynomial.getCoefficientRing(), nzmath.poly.ring.PolynomialRing.getCommonSuperring(), nzmath.poly.multiutil.PolynomialRingAnonymousVariables.getCommonSuperring(), nzmath.poly.ring.PolynomialRing.getQuotientField(), nzmath.poly.multiutil.PolynomialRingAnonymousVariables.getQuotientField(), nzmath.poly.multiutil.RingElementProvider.getRing(), nzmath.poly.uniutil.RingElementProvider.getRing(), nzmath.poly.uniutil.RingPolynomial.ismonic(), nzmath.poly.ring.PolynomialRing.issubring(), nzmath.poly.multiutil.PolynomialRingAnonymousVariables.issubring(), nzmath.poly.ring.PolynomialRing.issuperring(), nzmath.poly.multiutil.PolynomialRingAnonymousVariables.issuperring(), nzmath.poly.multiutil.UniqueFactorizationDomainPolynomial.resultant(), nzmath.poly.multiutil.RingElementProvider.set_coefficient_ring(), and nzmath.poly.uniutil.RingElementProvider.set_coefficient_ring().
|
private |
Definition at line 109 of file multiutil.py.
Referenced by nzmath.poly.multiutil.RingElementProvider.getRing(), nzmath.poly.multiutil.RingPolynomial.getRing(), nzmath.poly.uniutil.RingElementProvider.getRing(), nzmath.poly.uniutil.RingPolynomial.getRing(), nzmath.poly.multiutil.RingElementProvider.set_coefficient_ring(), and nzmath.poly.uniutil.RingElementProvider.set_coefficient_ring().