NZMATH  1.2.0 About: NZMATH is a Python based number theory oriented calculation system.   Fossies Dox: NZMATH-1.2.0.tar.gz  ("inofficial" and yet experimental doxygen-generated source code documentation)
nzmath.poly.multiutil.PolynomialIdeal Class Reference
Inheritance diagram for nzmath.poly.multiutil.PolynomialIdeal:
[legend]
Collaboration diagram for nzmath.poly.multiutil.PolynomialIdeal:
[legend]

## Public Member Functions

def __init__ (self, generators, aring)

def __contains__ (self, elem)

def __nonzero__ (self)

def __repr__ (self)

def __str__ (self)

Public Member Functions inherited from nzmath.ring.Ideal

def __mul__ (self, other)

def __eq__ (self, other)

def __hash__ (self)

def __ne__ (self, other)

def issubset (self, other)

def issuperset (self, other)

def reduce (self, element)

## Public Attributes

generators

Public Attributes inherited from nzmath.ring.Ideal
ring

generators

## Detailed Description

Multivariate polynomial ideal.

Definition at line 603 of file multiutil.py.

## ◆ __init__()

 def nzmath.poly.multiutil.PolynomialIdeal.__init__ ( self, generators, aring )
Initialize a polynomial ideal.

Reimplemented from nzmath.ring.Ideal.

Definition at line 607 of file multiutil.py.

## ◆ __contains__()

 def nzmath.poly.multiutil.PolynomialIdeal.__contains__ ( self, elem )
Return whether elem is in the ideal or not.

Reimplemented from nzmath.ring.Ideal.

Definition at line 613 of file multiutil.py.

## ◆ __nonzero__()

 def nzmath.poly.multiutil.PolynomialIdeal.__nonzero__ ( self )
Report whether the ideal is zero ideal or not.  Of course,
False is for zero ideal.

Definition at line 623 of file multiutil.py.

## ◆ __repr__()

 def nzmath.poly.multiutil.PolynomialIdeal.__repr__ ( self )

## ◆ __str__()

 def nzmath.poly.multiutil.PolynomialIdeal.__str__ ( self )
Return str string.

Definition at line 636 of file multiutil.py.

## ◆ generators

The documentation for this class was generated from the following file: