NZMATH  1.2.0
About: NZMATH is a Python based number theory oriented calculation system.
  Fossies Dox: NZMATH-1.2.0.tar.gz  ("inofficial" and yet experimental doxygen-generated source code documentation)  

nzmath.poly.multiutil.PolynomialIdeal Class Reference
Inheritance diagram for nzmath.poly.multiutil.PolynomialIdeal:
Collaboration diagram for nzmath.poly.multiutil.PolynomialIdeal:

Public Member Functions

def __init__ (self, generators, aring)
def __contains__ (self, elem)
def __nonzero__ (self)
def __repr__ (self)
def __str__ (self)
- Public Member Functions inherited from nzmath.ring.Ideal
def __add__ (self, other)
def __mul__ (self, other)
def __eq__ (self, other)
def __hash__ (self)
def __ne__ (self, other)
def issubset (self, other)
def issuperset (self, other)
def reduce (self, element)

Public Attributes

- Public Attributes inherited from nzmath.ring.Ideal

Detailed Description

Multivariate polynomial ideal.

Definition at line 603 of file

Constructor & Destructor Documentation

◆ __init__()

def nzmath.poly.multiutil.PolynomialIdeal.__init__ (   self,
Initialize a polynomial ideal.

Reimplemented from nzmath.ring.Ideal.

Definition at line 607 of file

Member Function Documentation

◆ __contains__()

def nzmath.poly.multiutil.PolynomialIdeal.__contains__ (   self,
Return whether elem is in the ideal or not.

Reimplemented from nzmath.ring.Ideal.

Definition at line 613 of file

References nzmath.finitefield.FinitePrimeFieldElement.ring, and nzmath.ring.Ideal.ring.

◆ __nonzero__()

def nzmath.poly.multiutil.PolynomialIdeal.__nonzero__ (   self)
Report whether the ideal is zero ideal or not.  Of course,
False is for zero ideal.

Definition at line 623 of file

References nzmath.poly.multiutil.PolynomialIdeal.generators, nzmath.finitefield.FinitePrimeFieldElement.ring, and nzmath.ring.Ideal.ring.

◆ __repr__()

◆ __str__()

def nzmath.poly.multiutil.PolynomialIdeal.__str__ (   self)

Member Data Documentation

◆ generators

The documentation for this class was generated from the following file: