NZMATH  1.2.0
About: NZMATH is a Python based number theory oriented calculation system.
  Fossies Dox: NZMATH-1.2.0.tar.gz  ("inofficial" and yet experimental doxygen-generated source code documentation)  

nzmath.poly.array.ArrayPolyMod Class Reference
Inheritance diagram for nzmath.poly.array.ArrayPolyMod:
[legend]
Collaboration diagram for nzmath.poly.array.ArrayPolyMod:
[legend]

Public Member Functions

def __init__ (self, coefficients, mod)
 
def __repr__ (self)
 
def __str__ (self)
 
def __add__ (self, other)
 
def __sub__ (self, other)
 
def scalar_mul (self, scalar)
 
def upshift_degree (self, slide)
 
def downshift_degree (self, slide)
 
def __eq__ (self, other)
 
def __ne__ (self, other)
 
def __mul__ (self, other)
 
def power (self)
 
def split_at (self, split_point)
 
def FFT_mul (self, other)
 
- Public Member Functions inherited from nzmath.poly.array.ArrayPoly
def __init__ (self, coefficients=[0])
 
def coefficients_to_dict (self)
 

Public Attributes

 mod
 
- Public Attributes inherited from nzmath.poly.array.ArrayPoly
 coefficients
 
 degree
 

Detailed Description

Polynomial with modulo n coefficients, n is a nutural number.
Coefficients has to be a initializer for list.

Definition at line 208 of file array.py.

Constructor & Destructor Documentation

◆ __init__()

def nzmath.poly.array.ArrayPolyMod.__init__ (   self,
  coefficients,
  mod 
)
Initialize the polynomial.
coefficients:initializer for polynomial coefficients
mod:initializer for coefficients modulo mod

Definition at line 214 of file array.py.

Member Function Documentation

◆ __add__()

def nzmath.poly.array.ArrayPolyMod.__add__ (   self,
  other 
)
self + other

Reimplemented from nzmath.poly.array.ArrayPoly.

Definition at line 234 of file array.py.

References nzmath.poly.array.ArrayPolyMod.mod.

◆ __eq__()

◆ __mul__()

◆ __ne__()

def nzmath.poly.array.ArrayPolyMod.__ne__ (   self,
  other 
)
self != other

Reimplemented from nzmath.poly.array.ArrayPoly.

Definition at line 284 of file array.py.

References nzmath.poly.array.ArrayPolyMod.mod.

◆ __repr__()

def nzmath.poly.array.ArrayPolyMod.__repr__ (   self)

◆ __str__()

def nzmath.poly.array.ArrayPolyMod.__str__ (   self)

◆ __sub__()

def nzmath.poly.array.ArrayPolyMod.__sub__ (   self,
  other 
)
self - other

Reimplemented from nzmath.poly.array.ArrayPoly.

Definition at line 243 of file array.py.

References nzmath.poly.array.ArrayPolyMod.mod.

◆ downshift_degree()

def nzmath.poly.array.ArrayPolyMod.downshift_degree (   self,
  slide 
)
Return the polynomial obtained by shifting downward all terms
with degrees of 'slide'.

Reimplemented from nzmath.poly.array.ArrayPoly.

Definition at line 267 of file array.py.

References nzmath.poly.array.ArrayPolyMod.mod.

Referenced by nzmath.poly.univar.SortedPolynomial.ring_mul_karatsuba(), nzmath.poly.uniutil.KaratsubaProvider.ring_mul_karatsuba(), and nzmath.poly.uniutil.KaratsubaProvider.square_karatsuba().

◆ FFT_mul()

◆ power()

◆ scalar_mul()

◆ split_at()

def nzmath.poly.array.ArrayPolyMod.split_at (   self,
  split_point 
)
Return tuple of two polynomials, which are splitted at the
given degree.  The term of the given degree, if exists,
belongs to the lower degree polynomial.

Reimplemented from nzmath.poly.array.ArrayPoly.

Definition at line 316 of file array.py.

References nzmath.poly.array.ArrayPoly.coefficients, nzmath.algfield.NumberField.degree, nzmath.poly.array.ArrayPoly.degree, nzmath.algfield.BasicAlgNumber.degree, nzmath.finitefield.ExtendedField.degree, nzmath.algfield.MatAlgNumber.degree, and nzmath.poly.array.ArrayPolyMod.mod.

◆ upshift_degree()

def nzmath.poly.array.ArrayPolyMod.upshift_degree (   self,
  slide 
)
Return the polynomial obtained by shifting upward all terms
with degrees of 'slide'.

Reimplemented from nzmath.poly.array.ArrayPoly.

Definition at line 259 of file array.py.

References nzmath.poly.array.ArrayPolyMod.mod.

Referenced by nzmath.poly.uniutil.OrderProvider.shift_degree_to().

Member Data Documentation

◆ mod


The documentation for this class was generated from the following file: