NZMATH  1.2.0
About: NZMATH is a Python based number theory oriented calculation system.
  Fossies Dox: NZMATH-1.2.0.tar.gz  ("inofficial" and yet experimental doxygen-generated source code documentation)  

nzmath.permute.ExPermute Class Reference

Public Member Functions

def __init__ (self, dim, value, key=None, flag=False)
def __getitem__ (self, other)
def __mul__ (self, other)
def __rmul__ (self, other)
def __div__ (self, other)
def __rdiv__ (self, other)
def __pow__ (self, other)
def __call__ (self, other)
def setKey (self, key=None)
def getValue (self)
def inverse (self)
def getGroup (self)
def order (self)
def ToNormal (self)
def simplify (self)
def sgn (self)
def permute (self, lists)
def __eq__ (self, other)
def __ne__ (self, other)
def __repr__ (self)
def __str__ (self)

Public Attributes


Static Private Attributes

def __truediv__ = __div__

Detailed Description

This is a class for cyclic type element of permutation group.
Example, (5, [(1, 2), (3, 4)])
This means (1, 2)(3, 4)=[2, 1, 4, 3, 5]

Definition at line 305 of file

Constructor & Destructor Documentation

◆ __init__()

def nzmath.permute.ExPermute.__init__ (   self,
  key = None,
  flag = False 

Definition at line 313 of file

Member Function Documentation

◆ __call__()

def nzmath.permute.ExPermute.__call__ (   self,

◆ __div__()

def nzmath.permute.ExPermute.__div__ (   self,

Definition at line 378 of file

◆ __eq__()

◆ __getitem__()

def nzmath.permute.ExPermute.__getitem__ (   self,

◆ __mul__()

def nzmath.permute.ExPermute.__mul__ (   self,

◆ __ne__()

def nzmath.permute.ExPermute.__ne__ (   self,

Definition at line 551 of file

◆ __pow__()

◆ __rdiv__()

◆ __repr__()

def nzmath.permute.ExPermute.__repr__ (   self)

◆ __rmul__()

def nzmath.permute.ExPermute.__rmul__ (   self,

Definition at line 375 of file

◆ __str__()

◆ getGroup()

def nzmath.permute.ExPermute.getGroup (   self)

Definition at line 450 of file

References nzmath.permute.Permute.key, and nzmath.permute.ExPermute.key.

◆ getValue()

def nzmath.permute.ExPermute.getValue (   self)

◆ inverse()

◆ order()

def nzmath.permute.ExPermute.order (   self)
This method returns order for permutation element.

Definition at line 453 of file

References nzmath.permute.ExPermute.simplify().

Referenced by nzmath.poly.uniutil.DivisionProvider.__divmod__(), nzmath.poly.uniutil.DivisionProvider.__floordiv__(), nzmath.poly.uniutil.DivisionProvider.__mod__(), nzmath.poly.uniutil.DivisionProvider._populate_reduced(), nzmath.poly.uniutil.DivisionProvider._populate_reduced_more(), nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider.distinct_degree_factorization(), nzmath.poly.uniutil.PseudoDivisionProvider.exact_division(), nzmath.poly.uniutil.DivisionProvider.extgcd(), nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider.factor(), nzmath.poly.uniutil.DivisionProvider.gcd(), nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider.isirreducible(), nzmath.poly.multiutil.NestProvider.leading_variable(), nzmath.poly.uniutil.DivisionProvider.mod(), nzmath.poly.uniutil.PseudoDivisionProvider.monic_divmod(), nzmath.poly.uniutil.PseudoDivisionProvider.monic_floordiv(), nzmath.poly.uniutil.PseudoDivisionProvider.monic_mod(), nzmath.poly.uniutil.PseudoDivisionProvider.pseudo_divmod(), nzmath.poly.uniutil.PseudoDivisionProvider.pseudo_floordiv(), nzmath.poly.uniutil.PseudoDivisionProvider.pseudo_mod(), nzmath.poly.uniutil.KaratsubaProvider.ring_mul_karatsuba(), nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider.split_same_degrees(), nzmath.poly.uniutil.KaratsubaProvider.square_karatsuba(), and nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider.squarefree_decomposition().

◆ permute()

def nzmath.permute.ExPermute.permute (   self,
permute list following with self permutation

Warning: The method do not check the compatibility of `lists` and self.key (except dict type).

Definition at line 509 of file

References,, nzmath.permute.ExPermute.dim, nzmath.permute.Permute.key, nzmath.permute.ExPermute.key, and nzmath.bigrange.range().

Referenced by nzmath.permute.ExPermute.__call__().

◆ setKey()

def nzmath.permute.ExPermute.setKey (   self,
  key = None 
Set other key.
The function may be used if you want to permute a different sequence with 
the same permutation.

Definition at line 402 of file

References,, nzmath.permute.ExPermute.dim, nzmath.permute.Permute.key, nzmath.permute.ExPermute.key, and nzmath.bigrange.range().

◆ sgn()

def nzmath.permute.ExPermute.sgn (   self)
This method returns sign for permutation element.

If self is even permutation, that is, self can be written as a composition
of an even number of transpositions, it returns 1. Otherwise,that is, for odd
permutation, it returns -1.

Definition at line 495 of file

References, and

◆ simplify()

def nzmath.permute.ExPermute.simplify (   self)
This method returns more simple element.

Definition at line 489 of file

References nzmath.permute.ExPermute.ToNormal().

Referenced by nzmath.permute.ExPermute.__eq__(), nzmath.permute.ExPermute.__str__(), and nzmath.permute.ExPermute.order().

◆ ToNormal()

def nzmath.permute.ExPermute.ToNormal (   self)

Member Data Documentation

◆ __truediv__

def nzmath.permute.ExPermute.__truediv__ = __div__

Definition at line 381 of file

◆ data

◆ dim

◆ key

The documentation for this class was generated from the following file: