NZMATH
1.2.0
About: NZMATH is a Python based number theory oriented calculation system.
![]() ![]() |
Public Member Functions | |
def | __init__ (self, modulus) |
def | __repr__ (self) |
def | __str__ (self) |
def | __hash__ (self) |
def | card (self) |
def | getInstance (cls, modulus) |
def | createElement (self, seed) |
def | getCharacteristic (self) |
def | __contains__ (self, elem) |
def | isfield (self) |
def | __eq__ (self, other) |
def | __ne__ (self, other) |
def | issubring (self, other) |
def | issuperring (self, other) |
![]() | |
def | __init__ (self) |
def | getQuotientField (self) |
def | isdomain (self) |
def | isnoetherian (self) |
def | isufd (self) |
def | ispid (self) |
def | iseuclidean (self) |
def | registerModuleAction (self, action_ring, action) |
def | hasaction (self, action_ring) |
def | getaction (self, action_ring) |
![]() | |
def | getCommonSuperring (self, other) |
Public Attributes | |
m | |
![]() | |
properties | |
Static Public Attributes | |
def | isdomain = isfield |
def | isnoetherian = isfield |
def | isufd = isfield |
def | ispid = isfield |
def | iseuclidean = isfield |
Properties | |
one = property(_getOne, None, None, "multiplicative unit.") | |
zero = property(_getZero, None, None, "additive unit.") | |
Private Member Functions | |
def | _getOne (self) |
def | _getZero (self) |
Private Attributes | |
_one | |
_zero | |
Static Private Attributes | |
dictionary | _instances = {} |
IntegerResidueClassRing is also known as Z/mZ.
Definition at line 218 of file intresidue.py.
def nzmath.intresidue.IntegerResidueClassRing.__init__ | ( | self, | |
modulus | |||
) |
The argument modulus m specifies an ideal mZ.
Definition at line 225 of file intresidue.py.
def nzmath.intresidue.IntegerResidueClassRing.__contains__ | ( | self, | |
elem | |||
) |
Definition at line 277 of file intresidue.py.
References nzmath.intresidue.IntegerResidueClass.m, and nzmath.intresidue.IntegerResidueClassRing.m.
def nzmath.intresidue.IntegerResidueClassRing.__eq__ | ( | self, | |
other | |||
) |
Equality test.
Reimplemented from nzmath.ring.Ring.
Definition at line 302 of file intresidue.py.
References nzmath.intresidue.IntegerResidueClass.m, and nzmath.intresidue.IntegerResidueClassRing.m.
Referenced by nzmath.poly.multivar.TermIndices.__ne__(), nzmath.poly.ring.PolynomialRing.__ne__(), nzmath.quad.ReducedQuadraticForm.__ne__(), nzmath.ring.Ring.__ne__(), nzmath.poly.formalsum.FormalSumContainerInterface.__ne__(), nzmath.poly.array.ArrayPoly.__ne__(), nzmath.real.RealField.__ne__(), nzmath.ring.Ideal.__ne__(), and nzmath.prime.FactoredInteger.__ne__().
def nzmath.intresidue.IntegerResidueClassRing.__hash__ | ( | self | ) |
Reimplemented from nzmath.ring.Ring.
Definition at line 242 of file intresidue.py.
References nzmath.intresidue.IntegerResidueClass.m, and nzmath.intresidue.IntegerResidueClassRing.m.
def nzmath.intresidue.IntegerResidueClassRing.__ne__ | ( | self, | |
other | |||
) |
def nzmath.intresidue.IntegerResidueClassRing.__repr__ | ( | self | ) |
Definition at line 236 of file intresidue.py.
References nzmath.intresidue.IntegerResidueClass.m, and nzmath.intresidue.IntegerResidueClassRing.m.
def nzmath.intresidue.IntegerResidueClassRing.__str__ | ( | self | ) |
Definition at line 239 of file intresidue.py.
References nzmath.intresidue.IntegerResidueClass.m, and nzmath.intresidue.IntegerResidueClassRing.m.
|
private |
Definition at line 322 of file intresidue.py.
References nzmath.imaginary.ComplexField._one, nzmath.intresidue.IntegerResidueClassRing._one, nzmath.algfield.NumberField._one, nzmath.finitefield.FinitePrimeField._one, and nzmath.finitefield.ExtendedField._one.
|
private |
Definition at line 330 of file intresidue.py.
References nzmath.imaginary.ComplexField._zero, nzmath.intresidue.IntegerResidueClassRing._zero, nzmath.algfield.NumberField._zero, nzmath.finitefield.FinitePrimeField._zero, and nzmath.finitefield.ExtendedField._zero.
def nzmath.intresidue.IntegerResidueClassRing.card | ( | self | ) |
Return the cardinality of the ring.
Definition at line 245 of file intresidue.py.
References nzmath.intresidue.IntegerResidueClass.m, and nzmath.intresidue.IntegerResidueClassRing.m.
def nzmath.intresidue.IntegerResidueClassRing.createElement | ( | self, | |
seed | |||
) |
createElement returns an element of the ring with seed.
Reimplemented from nzmath.ring.Ring.
Definition at line 263 of file intresidue.py.
References nzmath.intresidue.IntegerResidueClass.m, and nzmath.intresidue.IntegerResidueClassRing.m.
Referenced by nzmath.finitefield.FiniteField.random_element(), and nzmath.finitefield.FiniteField.TonelliShanks().
def nzmath.intresidue.IntegerResidueClassRing.getCharacteristic | ( | self | ) |
The characteristic of Z/mZ is m.
Reimplemented from nzmath.ring.Ring.
Definition at line 271 of file intresidue.py.
References nzmath.intresidue.IntegerResidueClass.m, and nzmath.intresidue.IntegerResidueClassRing.m.
def nzmath.intresidue.IntegerResidueClassRing.getInstance | ( | cls, | |
modulus | |||
) |
getInstance returns an instance of the class of specified modulus.
Definition at line 252 of file intresidue.py.
References nzmath.finitefield.FinitePrimeField._instances, and nzmath.intresidue.IntegerResidueClassRing._instances.
def nzmath.intresidue.IntegerResidueClassRing.isfield | ( | self | ) |
isfield returns True if the modulus is prime, False if not. Since a finite domain is a field, other ring property tests are merely aliases of isfield.
Reimplemented from nzmath.ring.CommutativeRing.
Definition at line 283 of file intresidue.py.
References nzmath.intresidue.IntegerResidueClass.m, nzmath.intresidue.IntegerResidueClassRing.m, and nzmath.ring.CommutativeRing.properties.
def nzmath.intresidue.IntegerResidueClassRing.issubring | ( | self, | |
other | |||
) |
Report whether another ring contains the ring as a subring.
Reimplemented from nzmath.ring.Ring.
Definition at line 310 of file intresidue.py.
Referenced by nzmath.ring.Ring.getCommonSuperring(), nzmath.rational.RationalField.getCommonSuperring(), and nzmath.rational.IntegerRing.getCommonSuperring().
def nzmath.intresidue.IntegerResidueClassRing.issuperring | ( | self, | |
other | |||
) |
Report whether the ring is a superring of another ring.
Reimplemented from nzmath.ring.Ring.
Definition at line 316 of file intresidue.py.
Referenced by nzmath.ring.Ring.getCommonSuperring(), nzmath.poly.ring.PolynomialRing.getCommonSuperring(), nzmath.poly.multiutil.PolynomialRingAnonymousVariables.getCommonSuperring(), nzmath.poly.ring.RationalFunctionField.getCommonSuperring(), nzmath.rational.RationalField.getCommonSuperring(), nzmath.rational.IntegerRing.getCommonSuperring(), nzmath.real.RealField.issubring(), and nzmath.poly.ring.RationalFunctionField.issuperring().
|
staticprivate |
Definition at line 223 of file intresidue.py.
Referenced by nzmath.intresidue.IntegerResidueClassRing.getInstance(), nzmath.poly.ring.PolynomialRing.getInstance(), nzmath.poly.multiutil.PolynomialRingAnonymousVariables.getInstance(), nzmath.poly.ring.RationalFunctionField.getInstance(), and nzmath.matrix.MatrixRing.getInstance().
|
private |
Definition at line 325 of file intresidue.py.
Referenced by nzmath.poly.ring.PolynomialRing._get_one(), nzmath.poly.ring.RationalFunctionField._get_one(), nzmath.real.RealField._getOne(), nzmath.intresidue.IntegerResidueClassRing._getOne(), nzmath.poly.multiutil.PolynomialRingAnonymousVariables._getOne(), nzmath.ring.ResidueClassRing._getOne(), nzmath.rational.RationalField._getOne(), nzmath.rational.IntegerRing._getOne(), and nzmath.matrix.MatrixRing._getOne().
|
private |
Definition at line 333 of file intresidue.py.
Referenced by nzmath.poly.ring.PolynomialRing._get_zero(), nzmath.poly.ring.RationalFunctionField._get_zero(), nzmath.real.RealField._getZero(), nzmath.intresidue.IntegerResidueClassRing._getZero(), nzmath.poly.multiutil.PolynomialRingAnonymousVariables._getZero(), nzmath.ring.ResidueClassRing._getZero(), nzmath.rational.RationalField._getZero(), nzmath.rational.IntegerRing._getZero(), and nzmath.matrix.MatrixRing._getZero().
|
static |
Definition at line 296 of file intresidue.py.
|
static |
Definition at line 300 of file intresidue.py.
|
static |
Definition at line 297 of file intresidue.py.
|
static |
Definition at line 299 of file intresidue.py.
|
static |
Definition at line 298 of file intresidue.py.
nzmath.intresidue.IntegerResidueClassRing.m |
Definition at line 230 of file intresidue.py.
Referenced by nzmath.intresidue.IntegerResidueClassRing.__contains__(), nzmath.intresidue.IntegerResidueClassRing.__eq__(), nzmath.intresidue.IntegerResidueClassRing.__hash__(), nzmath.intresidue.IntegerResidueClassRing.__repr__(), nzmath.intresidue.IntegerResidueClassRing.__str__(), nzmath.intresidue.IntegerResidueClassRing.card(), nzmath.intresidue.IntegerResidueClassRing.createElement(), nzmath.intresidue.IntegerResidueClassRing.getCharacteristic(), and nzmath.intresidue.IntegerResidueClassRing.isfield().
|
static |
|
static |
Definition at line 336 of file intresidue.py.
Referenced by nzmath.ring.Field.gcd(), and nzmath.matrix.MatrixRing.zeroMatrix().