NZMATH
1.2.0
About: NZMATH is a Python based number theory oriented calculation system.
![]() ![]() |
Public Member Functions | |
def | __init__ (self) |
def | __str__ (self) |
def | __repr__ (self) |
def | __contains__ (self, element) |
def | __eq__ (self, other) |
def | __ne__ (self, other) |
def | __hash__ (self) |
def | createElement (self, seed) |
def | issubring (self, aRing) |
def | issuperring (self, aRing) |
def | getCharacteristic (self) |
![]() | |
def | createElement (self, *args) |
def | isfield (self) |
def | gcd (self, a, b) |
def | getQuotientField (self) |
![]() | |
def | isdomain (self) |
def | isnoetherian (self) |
def | isufd (self) |
def | ispid (self) |
def | iseuclidean (self) |
def | registerModuleAction (self, action_ring, action) |
def | hasaction (self, action_ring) |
def | getaction (self, action_ring) |
![]() | |
def | getCommonSuperring (self, other) |
Properties | |
one = property(_getOne, None, None, "multiplicative unit.") | |
zero = property(_getZero, None, None, "additive unit.") | |
Private Member Functions | |
def | _getOne (self) |
def | _getZero (self) |
Private Attributes | |
_one | |
_zero | |
Additional Inherited Members | |
![]() | |
properties | |
ComplexField is a class of the field of real numbers. The class has the single instance 'theComplexField'.
Definition at line 210 of file imaginary.py.
def nzmath.imaginary.ComplexField.__init__ | ( | self | ) |
Set field flag True of 'properties' attribute.
Reimplemented from nzmath.ring.Field.
Definition at line 216 of file imaginary.py.
def nzmath.imaginary.ComplexField.__contains__ | ( | self, | |
element | |||
) |
Definition at line 227 of file imaginary.py.
def nzmath.imaginary.ComplexField.__eq__ | ( | self, | |
other | |||
) |
Equality test.
Reimplemented from nzmath.ring.Ring.
Definition at line 235 of file imaginary.py.
Referenced by nzmath.poly.multivar.TermIndices.__ne__(), nzmath.poly.ring.PolynomialRing.__ne__(), nzmath.quad.ReducedQuadraticForm.__ne__(), nzmath.ring.Ring.__ne__(), nzmath.poly.formalsum.FormalSumContainerInterface.__ne__(), nzmath.poly.array.ArrayPoly.__ne__(), nzmath.real.RealField.__ne__(), nzmath.ring.Ideal.__ne__(), and nzmath.prime.FactoredInteger.__ne__().
def nzmath.imaginary.ComplexField.__hash__ | ( | self | ) |
Reimplemented from nzmath.ring.Ring.
Definition at line 241 of file imaginary.py.
def nzmath.imaginary.ComplexField.__ne__ | ( | self, | |
other | |||
) |
def nzmath.imaginary.ComplexField.__repr__ | ( | self | ) |
Definition at line 224 of file imaginary.py.
References nzmath.matrix.Matrix.__class__, nzmath.matrix.RingMatrix.__class__, nzmath.matrix.RingSquareMatrix.__class__, nzmath.matrix.FieldMatrix.__class__, nzmath.matrix.MatrixRing.__class__, and nzmath.matrix.Subspace.__class__.
def nzmath.imaginary.ComplexField.__str__ | ( | self | ) |
Definition at line 221 of file imaginary.py.
|
private |
Definition at line 247 of file imaginary.py.
References nzmath.imaginary.ComplexField._one, nzmath.algfield.NumberField._one, nzmath.finitefield.FinitePrimeField._one, and nzmath.finitefield.ExtendedField._one.
|
private |
Definition at line 252 of file imaginary.py.
References nzmath.imaginary.ComplexField._zero, nzmath.algfield.NumberField._zero, nzmath.finitefield.FinitePrimeField._zero, and nzmath.finitefield.ExtendedField._zero.
def nzmath.imaginary.ComplexField.createElement | ( | self, | |
seed | |||
) |
createElement returns an element of the ring with seed.
Reimplemented from nzmath.ring.Ring.
Definition at line 244 of file imaginary.py.
Referenced by nzmath.finitefield.FiniteField.random_element(), and nzmath.finitefield.FiniteField.TonelliShanks().
def nzmath.imaginary.ComplexField.getCharacteristic | ( | self | ) |
The characteristic of the real field is zero.
Reimplemented from nzmath.ring.Ring.
Definition at line 271 of file imaginary.py.
def nzmath.imaginary.ComplexField.issubring | ( | self, | |
other | |||
) |
Report whether another ring contains the ring as a subring.
Reimplemented from nzmath.ring.Ring.
Definition at line 257 of file imaginary.py.
References nzmath.imaginary.ComplexField.issuperring(), nzmath.finitefield.FinitePrimeField.issuperring(), nzmath.algfield.NumberField.issuperring(), and nzmath.finitefield.ExtendedField.issuperring().
Referenced by nzmath.ring.Ring.getCommonSuperring(), nzmath.rational.RationalField.getCommonSuperring(), and nzmath.rational.IntegerRing.getCommonSuperring().
def nzmath.imaginary.ComplexField.issuperring | ( | self, | |
other | |||
) |
Report whether the ring is a superring of another ring.
Reimplemented from nzmath.ring.Ring.
Definition at line 264 of file imaginary.py.
Referenced by nzmath.ring.Ring.getCommonSuperring(), nzmath.poly.ring.PolynomialRing.getCommonSuperring(), nzmath.poly.multiutil.PolynomialRingAnonymousVariables.getCommonSuperring(), nzmath.poly.ring.RationalFunctionField.getCommonSuperring(), nzmath.rational.RationalField.getCommonSuperring(), nzmath.rational.IntegerRing.getCommonSuperring(), nzmath.real.RealField.issubring(), nzmath.imaginary.ComplexField.issubring(), and nzmath.poly.ring.RationalFunctionField.issuperring().
|
private |
Definition at line 218 of file imaginary.py.
Referenced by nzmath.poly.ring.PolynomialRing._get_one(), nzmath.poly.ring.RationalFunctionField._get_one(), nzmath.real.RealField._getOne(), nzmath.imaginary.ComplexField._getOne(), nzmath.intresidue.IntegerResidueClassRing._getOne(), nzmath.poly.multiutil.PolynomialRingAnonymousVariables._getOne(), nzmath.ring.ResidueClassRing._getOne(), nzmath.rational.RationalField._getOne(), nzmath.rational.IntegerRing._getOne(), and nzmath.matrix.MatrixRing._getOne().
|
private |
Definition at line 219 of file imaginary.py.
Referenced by nzmath.poly.ring.PolynomialRing._get_zero(), nzmath.poly.ring.RationalFunctionField._get_zero(), nzmath.real.RealField._getZero(), nzmath.imaginary.ComplexField._getZero(), nzmath.intresidue.IntegerResidueClassRing._getZero(), nzmath.poly.multiutil.PolynomialRingAnonymousVariables._getZero(), nzmath.ring.ResidueClassRing._getZero(), nzmath.rational.RationalField._getZero(), nzmath.rational.IntegerRing._getZero(), and nzmath.matrix.MatrixRing._getZero().
|
static |
|
static |
Definition at line 255 of file imaginary.py.
Referenced by nzmath.ring.Field.gcd(), and nzmath.matrix.MatrixRing.zeroMatrix().