NZMATH  1.2.0
About: NZMATH is a Python based number theory oriented calculation system.
  Fossies Dox: NZMATH-1.2.0.tar.gz  ("inofficial" and yet experimental doxygen-generated source code documentation)  

nzmath.imaginary.Complex Class Reference
Inheritance diagram for nzmath.imaginary.Complex:
[legend]
Collaboration diagram for nzmath.imaginary.Complex:
[legend]

Public Member Functions

def __init__ (self, re, im=None)
 
def __add__ (self, other)
 
def __sub__ (self, other)
 
def __rsub__ (self, other)
 
def __mul__ (self, other)
 
def __div__ (self, other)
 
def __rdiv__ (self, other)
 
def __pow__ (self, other)
 
def __eq__ (self, other)
 
def __hash__ (self)
 
def __ne__ (self, other)
 
def __abs__ (self)
 
def __pos__ (self)
 
def __neg__ (self)
 
def __nonzero__ (self)
 
def __repr__ (self)
 
def __str__ (self)
 
def inverse (self)
 
def conjugate (self)
 
def copy (self)
 
def __lt__ (self, other)
 comparisons are prohibited More...
 
def __le__ (self, other)
 
def __gt__ (self, other)
 
def __ge__ (self, other)
 
def arg (self)
 
def __complex__ (self)
 
def getRing (self)
 
- Public Member Functions inherited from nzmath.ring.FieldElement
def __init__ (self)
 
def exact_division (self, other)
 
- Public Member Functions inherited from nzmath.ring.CommutativeRingElement
def mul_module_action (self, other)
 
- Public Member Functions inherited from nzmath.ring.RingElement
def __init__ (self, *args, **kwd)
 

Public Attributes

 real
 
 imag
 

Static Private Attributes

def __radd__ = __add__
 
def __rmul__ = __mul__
 
def __truediv__ = __div__
 
def __rtruediv__ = __rdiv__
 

Detailed Description

Complex is a class for complex numbers.  Each instance has a coupled
numbers; real and imaginary part of the number.

Definition at line 13 of file imaginary.py.

Constructor & Destructor Documentation

◆ __init__()

def nzmath.imaginary.Complex.__init__ (   self,
  re,
  im = None 
)

Definition at line 18 of file imaginary.py.

Member Function Documentation

◆ __abs__()

def nzmath.imaginary.Complex.__abs__ (   self)

Definition at line 146 of file imaginary.py.

References nzmath.imaginary.Complex.imag, and nzmath.imaginary.Complex.real.

◆ __add__()

◆ __complex__()

def nzmath.imaginary.Complex.__complex__ (   self)

Definition at line 200 of file imaginary.py.

References nzmath.imaginary.Complex.imag, and nzmath.imaginary.Complex.real.

◆ __div__()

◆ __eq__()

◆ __ge__()

def nzmath.imaginary.Complex.__ge__ (   self,
  other 
)

Definition at line 192 of file imaginary.py.

◆ __gt__()

def nzmath.imaginary.Complex.__gt__ (   self,
  other 
)

Definition at line 189 of file imaginary.py.

◆ __hash__()

def nzmath.imaginary.Complex.__hash__ (   self)

Reimplemented from nzmath.ring.RingElement.

Definition at line 134 of file imaginary.py.

References nzmath.imaginary.Complex.imag, and nzmath.imaginary.Complex.real.

◆ __le__()

def nzmath.imaginary.Complex.__le__ (   self,
  other 
)

Definition at line 186 of file imaginary.py.

◆ __lt__()

def nzmath.imaginary.Complex.__lt__ (   self,
  other 
)

comparisons are prohibited

Definition at line 183 of file imaginary.py.

◆ __mul__()

◆ __ne__()

def nzmath.imaginary.Complex.__ne__ (   self,
  other 
)
Inequality test.

Reimplemented from nzmath.ring.RingElement.

Definition at line 137 of file imaginary.py.

References nzmath.imaginary.Complex.imag, and nzmath.imaginary.Complex.real.

◆ __neg__()

◆ __nonzero__()

def nzmath.imaginary.Complex.__nonzero__ (   self)

Definition at line 161 of file imaginary.py.

References nzmath.imaginary.Complex.imag, and nzmath.imaginary.Complex.real.

◆ __pos__()

◆ __pow__()

◆ __rdiv__()

◆ __repr__()

def nzmath.imaginary.Complex.__repr__ (   self)

Definition at line 164 of file imaginary.py.

References nzmath.imaginary.Complex.imag, and nzmath.imaginary.Complex.real.

◆ __rsub__()

◆ __str__()

def nzmath.imaginary.Complex.__str__ (   self)

Definition at line 167 of file imaginary.py.

References nzmath.imaginary.Complex.imag, and nzmath.imaginary.Complex.real.

◆ __sub__()

◆ arg()

def nzmath.imaginary.Complex.arg (   self)

Definition at line 195 of file imaginary.py.

References nzmath.imaginary.Complex.imag, and nzmath.imaginary.Complex.real.

◆ conjugate()

◆ copy()

def nzmath.imaginary.Complex.copy (   self)

Definition at line 179 of file imaginary.py.

References nzmath.matrix.Matrix.__class__, nzmath.matrix.RingMatrix.__class__, nzmath.matrix.RingSquareMatrix.__class__, nzmath.matrix.FieldMatrix.__class__, nzmath.matrix.MatrixRing.__class__, nzmath.matrix.Subspace.__class__, nzmath.imaginary.Complex.imag, and nzmath.imaginary.Complex.real.

Referenced by nzmath.matrix.RingMatrix.__pos__(), nzmath.prime.FactoredInteger.__pos__(), nzmath.module.Module.__pow__(), nzmath.module.Ideal_with_generator.__pow__(), nzmath.matrix.RingSquareMatrix.__pow__(), nzmath.matrix.FieldMatrix._cohensSimplify(), nzmath.module.Module._module_mul(), nzmath.matrix.RingMatrix._SimplifyHNF(), nzmath.matrix.FieldMatrix.columnEchelonForm(), nzmath.matrix.RingSquareMatrix.determinant(), nzmath.prime.FactoredInteger.exact_division(), nzmath.matrix.RingSquareMatrix.extsmithNormalForm(), nzmath.matrix.RingMatrix.hermiteNormalForm(), nzmath.matrix.FieldSquareMatrix.hessenbergForm(), nzmath.module.Module.intersect(), nzmath.module.Submodule.intersectionOfSubmodules(), nzmath.matrix.Subspace.intersectionOfSubspaces(), nzmath.matrix.FieldSquareMatrix.inverse(), nzmath.matrix.FieldMatrix.inverseImage(), nzmath.matrix.FieldSquareMatrix.LUDecomposition(), nzmath.matrix.RingSquareMatrix.smithNormalForm(), nzmath.matrix.FieldMatrix.solve(), nzmath.matrix.Matrix.subMatrix(), nzmath.module.Submodule.sumOfSubmodules(), nzmath.matrix.Subspace.sumOfSubspaces(), nzmath.matrix.Subspace.supplementBasis(), and nzmath.matrix.FieldSquareMatrix.triangulate().

◆ getRing()

◆ inverse()

Member Data Documentation

◆ __radd__

def nzmath.imaginary.Complex.__radd__ = __add__
staticprivate

Definition at line 41 of file imaginary.py.

◆ __rmul__

def nzmath.imaginary.Complex.__rmul__ = __mul__
staticprivate

Definition at line 79 of file imaginary.py.

◆ __rtruediv__

def nzmath.imaginary.Complex.__rtruediv__ = __rdiv__
staticprivate

Definition at line 109 of file imaginary.py.

◆ __truediv__

def nzmath.imaginary.Complex.__truediv__ = __div__
staticprivate

Definition at line 94 of file imaginary.py.

◆ imag

◆ real


The documentation for this class was generated from the following file: