NZMATH
1.2.0
About: NZMATH is a Python based number theory oriented calculation system.
![]() ![]() |
Public Member Functions | |
def | __init__ (self, re, im=None) |
def | __add__ (self, other) |
def | __sub__ (self, other) |
def | __rsub__ (self, other) |
def | __mul__ (self, other) |
def | __div__ (self, other) |
def | __rdiv__ (self, other) |
def | __pow__ (self, other) |
def | __eq__ (self, other) |
def | __hash__ (self) |
def | __ne__ (self, other) |
def | __abs__ (self) |
def | __pos__ (self) |
def | __neg__ (self) |
def | __nonzero__ (self) |
def | __repr__ (self) |
def | __str__ (self) |
def | inverse (self) |
def | conjugate (self) |
def | copy (self) |
def | __lt__ (self, other) |
comparisons are prohibited More... | |
def | __le__ (self, other) |
def | __gt__ (self, other) |
def | __ge__ (self, other) |
def | arg (self) |
def | __complex__ (self) |
def | getRing (self) |
![]() | |
def | __init__ (self) |
def | exact_division (self, other) |
![]() | |
def | mul_module_action (self, other) |
![]() | |
def | __init__ (self, *args, **kwd) |
Public Attributes | |
real | |
imag | |
Static Private Attributes | |
def | __radd__ = __add__ |
def | __rmul__ = __mul__ |
def | __truediv__ = __div__ |
def | __rtruediv__ = __rdiv__ |
Complex is a class for complex numbers. Each instance has a coupled numbers; real and imaginary part of the number.
Definition at line 13 of file imaginary.py.
def nzmath.imaginary.Complex.__init__ | ( | self, | |
re, | |||
im = None |
|||
) |
Definition at line 18 of file imaginary.py.
def nzmath.imaginary.Complex.__abs__ | ( | self | ) |
Definition at line 146 of file imaginary.py.
References nzmath.imaginary.Complex.imag, and nzmath.imaginary.Complex.real.
def nzmath.imaginary.Complex.__add__ | ( | self, | |
other | |||
) |
Definition at line 29 of file imaginary.py.
References nzmath.matrix.Matrix.__class__, nzmath.matrix.RingMatrix.__class__, nzmath.matrix.RingSquareMatrix.__class__, nzmath.matrix.FieldMatrix.__class__, nzmath.matrix.MatrixRing.__class__, nzmath.matrix.Subspace.__class__, nzmath.imaginary.Complex.imag, and nzmath.imaginary.Complex.real.
def nzmath.imaginary.Complex.__complex__ | ( | self | ) |
Definition at line 200 of file imaginary.py.
References nzmath.imaginary.Complex.imag, and nzmath.imaginary.Complex.real.
def nzmath.imaginary.Complex.__div__ | ( | self, | |
other | |||
) |
Definition at line 81 of file imaginary.py.
References nzmath.matrix.Matrix.__class__, nzmath.matrix.RingMatrix.__class__, nzmath.matrix.RingSquareMatrix.__class__, nzmath.matrix.FieldMatrix.__class__, nzmath.matrix.MatrixRing.__class__, nzmath.matrix.Subspace.__class__, nzmath.imaginary.Complex.imag, and nzmath.imaginary.Complex.real.
def nzmath.imaginary.Complex.__eq__ | ( | self, | |
other | |||
) |
Equality test.
Reimplemented from nzmath.ring.RingElement.
Definition at line 125 of file imaginary.py.
References nzmath.imaginary.Complex.imag, and nzmath.imaginary.Complex.real.
Referenced by nzmath.poly.multivar.TermIndices.__ne__(), nzmath.poly.ring.PolynomialRing.__ne__(), nzmath.quad.ReducedQuadraticForm.__ne__(), nzmath.ring.Ring.__ne__(), nzmath.poly.formalsum.FormalSumContainerInterface.__ne__(), nzmath.poly.array.ArrayPoly.__ne__(), nzmath.real.RealField.__ne__(), nzmath.ring.Ideal.__ne__(), and nzmath.prime.FactoredInteger.__ne__().
def nzmath.imaginary.Complex.__ge__ | ( | self, | |
other | |||
) |
Definition at line 192 of file imaginary.py.
def nzmath.imaginary.Complex.__gt__ | ( | self, | |
other | |||
) |
Definition at line 189 of file imaginary.py.
def nzmath.imaginary.Complex.__hash__ | ( | self | ) |
Reimplemented from nzmath.ring.RingElement.
Definition at line 134 of file imaginary.py.
References nzmath.imaginary.Complex.imag, and nzmath.imaginary.Complex.real.
def nzmath.imaginary.Complex.__le__ | ( | self, | |
other | |||
) |
Definition at line 186 of file imaginary.py.
def nzmath.imaginary.Complex.__lt__ | ( | self, | |
other | |||
) |
comparisons are prohibited
Definition at line 183 of file imaginary.py.
def nzmath.imaginary.Complex.__mul__ | ( | self, | |
other | |||
) |
Definition at line 67 of file imaginary.py.
References nzmath.matrix.Matrix.__class__, nzmath.matrix.RingMatrix.__class__, nzmath.matrix.RingSquareMatrix.__class__, nzmath.matrix.FieldMatrix.__class__, nzmath.matrix.MatrixRing.__class__, nzmath.matrix.Subspace.__class__, nzmath.imaginary.Complex.imag, and nzmath.imaginary.Complex.real.
def nzmath.imaginary.Complex.__ne__ | ( | self, | |
other | |||
) |
Inequality test.
Reimplemented from nzmath.ring.RingElement.
Definition at line 137 of file imaginary.py.
References nzmath.imaginary.Complex.imag, and nzmath.imaginary.Complex.real.
def nzmath.imaginary.Complex.__neg__ | ( | self | ) |
Definition at line 158 of file imaginary.py.
References nzmath.matrix.Matrix.__class__, nzmath.matrix.RingMatrix.__class__, nzmath.matrix.RingSquareMatrix.__class__, nzmath.matrix.FieldMatrix.__class__, nzmath.matrix.MatrixRing.__class__, nzmath.matrix.Subspace.__class__, nzmath.imaginary.Complex.imag, and nzmath.imaginary.Complex.real.
def nzmath.imaginary.Complex.__nonzero__ | ( | self | ) |
Definition at line 161 of file imaginary.py.
References nzmath.imaginary.Complex.imag, and nzmath.imaginary.Complex.real.
def nzmath.imaginary.Complex.__pos__ | ( | self | ) |
Definition at line 153 of file imaginary.py.
References nzmath.matrix.Matrix.__class__, nzmath.matrix.RingMatrix.__class__, nzmath.matrix.RingSquareMatrix.__class__, nzmath.matrix.FieldMatrix.__class__, nzmath.matrix.MatrixRing.__class__, nzmath.matrix.Subspace.__class__, nzmath.imaginary.Complex.imag, and nzmath.imaginary.Complex.real.
def nzmath.imaginary.Complex.__pow__ | ( | self, | |
other | |||
) |
Definition at line 111 of file imaginary.py.
References nzmath.matrix.Matrix.__class__, nzmath.matrix.RingMatrix.__class__, nzmath.matrix.RingSquareMatrix.__class__, nzmath.matrix.FieldMatrix.__class__, nzmath.matrix.MatrixRing.__class__, nzmath.matrix.Subspace.__class__, nzmath.imaginary.Complex.imag, nzmath.imaginary.Complex.inverse(), nzmath.ecpp.log, and nzmath.imaginary.Complex.real.
def nzmath.imaginary.Complex.__rdiv__ | ( | self, | |
other | |||
) |
Definition at line 96 of file imaginary.py.
References nzmath.matrix.Matrix.__class__, nzmath.matrix.RingMatrix.__class__, nzmath.matrix.RingSquareMatrix.__class__, nzmath.matrix.FieldMatrix.__class__, nzmath.matrix.MatrixRing.__class__, nzmath.matrix.Subspace.__class__, nzmath.imaginary.Complex.imag, and nzmath.imaginary.Complex.real.
def nzmath.imaginary.Complex.__repr__ | ( | self | ) |
Definition at line 164 of file imaginary.py.
References nzmath.imaginary.Complex.imag, and nzmath.imaginary.Complex.real.
def nzmath.imaginary.Complex.__rsub__ | ( | self, | |
other | |||
) |
Definition at line 55 of file imaginary.py.
References nzmath.matrix.Matrix.__class__, nzmath.matrix.RingMatrix.__class__, nzmath.matrix.RingSquareMatrix.__class__, nzmath.matrix.FieldMatrix.__class__, nzmath.matrix.MatrixRing.__class__, nzmath.matrix.Subspace.__class__, nzmath.imaginary.Complex.imag, and nzmath.imaginary.Complex.real.
def nzmath.imaginary.Complex.__str__ | ( | self | ) |
Definition at line 167 of file imaginary.py.
References nzmath.imaginary.Complex.imag, and nzmath.imaginary.Complex.real.
def nzmath.imaginary.Complex.__sub__ | ( | self, | |
other | |||
) |
Definition at line 43 of file imaginary.py.
References nzmath.matrix.Matrix.__class__, nzmath.matrix.RingMatrix.__class__, nzmath.matrix.RingSquareMatrix.__class__, nzmath.matrix.FieldMatrix.__class__, nzmath.matrix.MatrixRing.__class__, nzmath.matrix.Subspace.__class__, nzmath.imaginary.Complex.imag, and nzmath.imaginary.Complex.real.
def nzmath.imaginary.Complex.arg | ( | self | ) |
Definition at line 195 of file imaginary.py.
References nzmath.imaginary.Complex.imag, and nzmath.imaginary.Complex.real.
def nzmath.imaginary.Complex.conjugate | ( | self | ) |
Definition at line 176 of file imaginary.py.
References nzmath.matrix.Matrix.__class__, nzmath.matrix.RingMatrix.__class__, nzmath.matrix.RingSquareMatrix.__class__, nzmath.matrix.FieldMatrix.__class__, nzmath.matrix.MatrixRing.__class__, nzmath.matrix.Subspace.__class__, nzmath.imaginary.Complex.imag, and nzmath.imaginary.Complex.real.
def nzmath.imaginary.Complex.copy | ( | self | ) |
Definition at line 179 of file imaginary.py.
References nzmath.matrix.Matrix.__class__, nzmath.matrix.RingMatrix.__class__, nzmath.matrix.RingSquareMatrix.__class__, nzmath.matrix.FieldMatrix.__class__, nzmath.matrix.MatrixRing.__class__, nzmath.matrix.Subspace.__class__, nzmath.imaginary.Complex.imag, and nzmath.imaginary.Complex.real.
Referenced by nzmath.matrix.RingMatrix.__pos__(), nzmath.prime.FactoredInteger.__pos__(), nzmath.module.Module.__pow__(), nzmath.module.Ideal_with_generator.__pow__(), nzmath.matrix.RingSquareMatrix.__pow__(), nzmath.matrix.FieldMatrix._cohensSimplify(), nzmath.module.Module._module_mul(), nzmath.matrix.RingMatrix._SimplifyHNF(), nzmath.matrix.FieldMatrix.columnEchelonForm(), nzmath.matrix.RingSquareMatrix.determinant(), nzmath.prime.FactoredInteger.exact_division(), nzmath.matrix.RingSquareMatrix.extsmithNormalForm(), nzmath.matrix.RingMatrix.hermiteNormalForm(), nzmath.matrix.FieldSquareMatrix.hessenbergForm(), nzmath.module.Module.intersect(), nzmath.module.Submodule.intersectionOfSubmodules(), nzmath.matrix.Subspace.intersectionOfSubspaces(), nzmath.matrix.FieldSquareMatrix.inverse(), nzmath.matrix.FieldMatrix.inverseImage(), nzmath.matrix.FieldSquareMatrix.LUDecomposition(), nzmath.matrix.RingSquareMatrix.smithNormalForm(), nzmath.matrix.FieldMatrix.solve(), nzmath.matrix.Matrix.subMatrix(), nzmath.module.Submodule.sumOfSubmodules(), nzmath.matrix.Subspace.sumOfSubspaces(), nzmath.matrix.Subspace.supplementBasis(), and nzmath.matrix.FieldSquareMatrix.triangulate().
def nzmath.imaginary.Complex.getRing | ( | self | ) |
Return the complex field instance.
Reimplemented from nzmath.ring.RingElement.
Definition at line 203 of file imaginary.py.
Referenced by nzmath.poly.multiutil.RingPolynomial.__add__(), nzmath.ring.QuotientFieldElement.__add__(), nzmath.poly.uniutil.RingPolynomial.__add__(), nzmath.ring.QuotientFieldElement.__eq__(), nzmath.poly.uniutil.FieldPolynomial.__pow__(), nzmath.poly.multiutil.RingPolynomial.__radd__(), nzmath.poly.uniutil.RingPolynomial.__radd__(), nzmath.poly.multiutil.RingPolynomial.__rsub__(), nzmath.ring.QuotientFieldElement.__rsub__(), nzmath.poly.uniutil.RingPolynomial.__rsub__(), nzmath.ring.QuotientFieldElement.__rtruediv__(), nzmath.poly.multiutil.RingPolynomial.__sub__(), nzmath.ring.QuotientFieldElement.__sub__(), nzmath.poly.uniutil.RingPolynomial.__sub__(), nzmath.ring.QuotientFieldElement.__truediv__(), nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider._small_index_mod_pow(), nzmath.ring.CommutativeRingElement.exact_division(), nzmath.poly.uniutil.DivisionProvider.extgcd(), nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider.factor(), nzmath.poly.uniutil.DivisionProvider.mod_pow(), nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider.mod_pow(), nzmath.poly.uniutil.PseudoDivisionProvider.monic_pow(), nzmath.ring.CommutativeRingElement.mul_module_action(), and nzmath.poly.uniutil.SubresultantGcdProvider.subresultant_gcd().
def nzmath.imaginary.Complex.inverse | ( | self | ) |
Definition at line 170 of file imaginary.py.
References nzmath.matrix.Matrix.__class__, nzmath.matrix.RingMatrix.__class__, nzmath.matrix.RingSquareMatrix.__class__, nzmath.matrix.FieldMatrix.__class__, nzmath.matrix.MatrixRing.__class__, nzmath.matrix.Subspace.__class__, nzmath.imaginary.Complex.imag, and nzmath.imaginary.Complex.real.
Referenced by nzmath.permute.Permute.__pow__(), nzmath.imaginary.Complex.__pow__(), nzmath.intresidue.IntegerResidueClass.__pow__(), nzmath.permute.ExPermute.__pow__(), nzmath.module.Ideal.__pow__(), nzmath.matrix.RingSquareMatrix.__pow__(), nzmath.permute.Permute.__rdiv__(), nzmath.permute.ExPermute.__rdiv__(), and nzmath.ring.QuotientFieldElement.__rtruediv__().
|
staticprivate |
Definition at line 41 of file imaginary.py.
|
staticprivate |
Definition at line 79 of file imaginary.py.
|
staticprivate |
Definition at line 109 of file imaginary.py.
|
staticprivate |
Definition at line 94 of file imaginary.py.
nzmath.imaginary.Complex.imag |
Definition at line 21 of file imaginary.py.
Referenced by nzmath.imaginary.Complex.__abs__(), nzmath.imaginary.Complex.__add__(), nzmath.imaginary.Complex.__complex__(), nzmath.imaginary.Complex.__div__(), nzmath.imaginary.Complex.__eq__(), nzmath.imaginary.Complex.__hash__(), nzmath.imaginary.Complex.__mul__(), nzmath.imaginary.Complex.__ne__(), nzmath.imaginary.Complex.__neg__(), nzmath.imaginary.Complex.__nonzero__(), nzmath.imaginary.Complex.__pos__(), nzmath.imaginary.Complex.__pow__(), nzmath.imaginary.Complex.__rdiv__(), nzmath.imaginary.Complex.__repr__(), nzmath.imaginary.Complex.__rsub__(), nzmath.imaginary.Complex.__str__(), nzmath.imaginary.Complex.__sub__(), nzmath.imaginary.Complex.arg(), nzmath.imaginary.Complex.conjugate(), nzmath.imaginary.Complex.copy(), and nzmath.imaginary.Complex.inverse().
nzmath.imaginary.Complex.real |
Definition at line 20 of file imaginary.py.
Referenced by nzmath.imaginary.Complex.__abs__(), nzmath.imaginary.Complex.__add__(), nzmath.imaginary.Complex.__complex__(), nzmath.imaginary.Complex.__div__(), nzmath.imaginary.Complex.__eq__(), nzmath.imaginary.Complex.__hash__(), nzmath.imaginary.Complex.__mul__(), nzmath.imaginary.Complex.__ne__(), nzmath.imaginary.Complex.__neg__(), nzmath.imaginary.Complex.__nonzero__(), nzmath.imaginary.Complex.__pos__(), nzmath.imaginary.Complex.__pow__(), nzmath.imaginary.Complex.__rdiv__(), nzmath.imaginary.Complex.__repr__(), nzmath.imaginary.Complex.__rsub__(), nzmath.imaginary.Complex.__str__(), nzmath.imaginary.Complex.__sub__(), nzmath.imaginary.Complex.arg(), nzmath.imaginary.Complex.conjugate(), nzmath.imaginary.Complex.copy(), and nzmath.imaginary.Complex.inverse().