NZMATH
1.2.0
About: NZMATH is a Python based number theory oriented calculation system.
![]() ![]() |
Public Member Functions | |
def | __init__ (self, representative, modulus, modulus_is_prime=True) |
def | __repr__ (self) |
def | __str__ (self) |
def | getRing (self) |
def | order (self) |
![]() | |
def | __init__ (self, representative, modulus) |
def | __mul__ (self, other) |
def | __rmul__ (self, other) |
def | __div__ (self, other) |
def | __mod__ (self, other) |
def | __divmod__ (self, other) |
def | __rdiv__ (self, other) |
def | __add__ (self, other) |
def | __sub__ (self, other) |
def | __rsub__ (self, other) |
def | __pow__ (self, other) |
def | __neg__ (self) |
def | __pos__ (self) |
def | __nonzero__ (self) |
def | __eq__ (self, other) |
def | __ne__ (self, other) |
def | __hash__ (self) |
def | inverse (self) |
def | getModulus (self) |
def | getResidue (self) |
def | minimumNonNegative (self) |
def | minimumAbsolute (self) |
![]() | |
def | mul_module_action (self, other) |
![]() | |
def | __init__ (self, *args, **kwd) |
![]() | |
def | __init__ (self) |
![]() | |
def | exact_division (self, other) |
Public Attributes | |
ring | |
n | |
orderfactor | |
![]() | |
m | |
n | |
Additional Inherited Members | |
![]() | |
def | toInteger = minimumNonNegative |
The class for finite prime field element.
Definition at line 159 of file finitefield.py.
def nzmath.finitefield.FinitePrimeFieldElement.__init__ | ( | self, | |
representative, | |||
modulus, | |||
modulus_is_prime = True |
|||
) |
Definition at line 163 of file finitefield.py.
def nzmath.finitefield.FinitePrimeFieldElement.__repr__ | ( | self | ) |
Reimplemented from nzmath.intresidue.IntegerResidueClass.
Definition at line 173 of file finitefield.py.
References nzmath.intresidue.IntegerResidueClass.m, and nzmath.finitefield.FinitePrimeFieldElement.n.
def nzmath.finitefield.FinitePrimeFieldElement.__str__ | ( | self | ) |
Definition at line 176 of file finitefield.py.
References nzmath.intresidue.IntegerResidueClass.m, and nzmath.finitefield.FinitePrimeFieldElement.n.
def nzmath.finitefield.FinitePrimeFieldElement.getRing | ( | self | ) |
Return the finite prime field to which the element belongs.
Reimplemented from nzmath.intresidue.IntegerResidueClass.
Definition at line 179 of file finitefield.py.
References nzmath.intresidue.IntegerResidueClass.m, and nzmath.finitefield.FinitePrimeFieldElement.ring.
Referenced by nzmath.poly.multiutil.RingPolynomial.__add__(), nzmath.ring.QuotientFieldElement.__add__(), nzmath.poly.uniutil.RingPolynomial.__add__(), nzmath.ring.QuotientFieldElement.__eq__(), nzmath.poly.uniutil.FieldPolynomial.__pow__(), nzmath.poly.multiutil.RingPolynomial.__radd__(), nzmath.poly.uniutil.RingPolynomial.__radd__(), nzmath.poly.multiutil.RingPolynomial.__rsub__(), nzmath.ring.QuotientFieldElement.__rsub__(), nzmath.poly.uniutil.RingPolynomial.__rsub__(), nzmath.ring.QuotientFieldElement.__rtruediv__(), nzmath.poly.multiutil.RingPolynomial.__sub__(), nzmath.ring.QuotientFieldElement.__sub__(), nzmath.poly.uniutil.RingPolynomial.__sub__(), nzmath.ring.QuotientFieldElement.__truediv__(), nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider._small_index_mod_pow(), nzmath.ring.CommutativeRingElement.exact_division(), nzmath.poly.uniutil.DivisionProvider.extgcd(), nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider.factor(), nzmath.poly.uniutil.DivisionProvider.mod_pow(), nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider.mod_pow(), nzmath.poly.uniutil.PseudoDivisionProvider.monic_pow(), nzmath.ring.CommutativeRingElement.mul_module_action(), and nzmath.poly.uniutil.SubresultantGcdProvider.subresultant_gcd().
def nzmath.finitefield.FinitePrimeFieldElement.order | ( | self | ) |
Find and return the order of the element in the multiplicative group of F_p.
Definition at line 187 of file finitefield.py.
Referenced by nzmath.poly.uniutil.DivisionProvider.__divmod__(), nzmath.poly.uniutil.DivisionProvider.__floordiv__(), nzmath.poly.uniutil.DivisionProvider.__mod__(), nzmath.poly.uniutil.DivisionProvider._populate_reduced(), nzmath.poly.uniutil.DivisionProvider._populate_reduced_more(), nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider.distinct_degree_factorization(), nzmath.poly.uniutil.PseudoDivisionProvider.exact_division(), nzmath.poly.uniutil.DivisionProvider.extgcd(), nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider.factor(), nzmath.poly.uniutil.DivisionProvider.gcd(), nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider.isirreducible(), nzmath.poly.multiutil.NestProvider.leading_variable(), nzmath.poly.uniutil.DivisionProvider.mod(), nzmath.poly.uniutil.PseudoDivisionProvider.monic_divmod(), nzmath.poly.uniutil.PseudoDivisionProvider.monic_floordiv(), nzmath.poly.uniutil.PseudoDivisionProvider.monic_mod(), nzmath.poly.uniutil.PseudoDivisionProvider.pseudo_divmod(), nzmath.poly.uniutil.PseudoDivisionProvider.pseudo_floordiv(), nzmath.poly.uniutil.PseudoDivisionProvider.pseudo_mod(), nzmath.poly.uniutil.KaratsubaProvider.ring_mul_karatsuba(), nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider.split_same_degrees(), nzmath.poly.uniutil.KaratsubaProvider.square_karatsuba(), and nzmath.poly.uniutil.PrimeCharacteristicFunctionsProvider.squarefree_decomposition().
nzmath.finitefield.FinitePrimeFieldElement.n |
Definition at line 192 of file finitefield.py.
Referenced by nzmath.intresidue.IntegerResidueClass.__add__(), nzmath.intresidue.IntegerResidueClass.__eq__(), nzmath.intresidue.IntegerResidueClass.__hash__(), nzmath.intresidue.IntegerResidueClass.__mul__(), nzmath.intresidue.IntegerResidueClass.__neg__(), nzmath.intresidue.IntegerResidueClass.__nonzero__(), nzmath.intresidue.IntegerResidueClass.__pos__(), nzmath.intresidue.IntegerResidueClass.__pow__(), nzmath.intresidue.IntegerResidueClass.__repr__(), nzmath.finitefield.FinitePrimeFieldElement.__repr__(), nzmath.intresidue.IntegerResidueClass.__rsub__(), nzmath.finitefield.FinitePrimeFieldElement.__str__(), nzmath.intresidue.IntegerResidueClass.__sub__(), nzmath.intresidue.IntegerResidueClass.getResidue(), nzmath.intresidue.IntegerResidueClass.inverse(), nzmath.intresidue.IntegerResidueClass.minimumAbsolute(), and nzmath.intresidue.IntegerResidueClass.minimumNonNegative().
nzmath.finitefield.FinitePrimeFieldElement.orderfactor |
Definition at line 195 of file finitefield.py.
nzmath.finitefield.FinitePrimeFieldElement.ring |
Definition at line 171 of file finitefield.py.
Referenced by nzmath.ring.Ideal.__add__(), nzmath.poly.ring.PolynomialIdeal.__contains__(), nzmath.poly.multiutil.PolynomialIdeal.__contains__(), nzmath.ring.Ideal.__eq__(), nzmath.ring.Ideal.__mul__(), nzmath.poly.ring.PolynomialIdeal.__nonzero__(), nzmath.poly.multiutil.PolynomialIdeal.__nonzero__(), nzmath.poly.ring.PolynomialIdeal.__repr__(), nzmath.poly.multiutil.PolynomialIdeal.__repr__(), nzmath.poly.ring.PolynomialIdeal.__str__(), nzmath.poly.multiutil.PolynomialIdeal.__str__(), nzmath.poly.ring.PolynomialIdeal._euclidean_reduce(), nzmath.ring.ResidueClassRing._getOne(), nzmath.ring.ResidueClassRing._getZero(), nzmath.poly.ring.PolynomialIdeal._normalize_generators(), nzmath.finitefield.FinitePrimeFieldElement.getRing(), and nzmath.poly.ring.PolynomialIdeal.reduce().